
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

International Resource Q&As
Text M.TX.IntlRsrc.Q&As

Revised by: Developer Support Center October 1992
Written by: Developer Support Center October 1990

This Technical Note contains a collection of Q&As relating to a specific topic—questions
you’ve sent the Developer Support Center (DSC) along with answers from the DSC
engineers. While DSC engineers have checked the Q&A content for accuracy, the Q&A
Technical Notes don’t have the editing and organization of other Technical Notes. The Q&A
function is to get new technical information and updates to you quickly, saving the polish for
when the information migrates into reference manuals.

Q&As are now included with Technical Notes to make access to technical updates easier for
you. If you have comments or suggestions about Q&A content or distribution, please let us
know by sending an AppleLink to DEVFEEDBACK. Apple Partners may send technical
questions about Q&A content to DEVSUPPORT for resolution.

New Q&As and Q&As revised this month are marked with a bar in the side margin.

Determining the language being used to enter text
Written: 11/20/90
Last reviewed: 8/1/92

Is there a way to tell what language is being used on the Macintosh? I know how to find the
script and other international items, but the language being spoken would be a very useful
thing to know.

It depends on what you mean by “language.” It’s impossible to determine what language the
user is typing in without doing a high-level analysis of what is being typed, as you probably
know.

One way that’s been suggested in the past is to check on the current KCHR by calling
GetScript with an smScriptKeys verb. This returns the resource ID of the currently active
KCHR. All international systems come with a U.S. KCHR and possibly others, such as the
Romaji and Kana KCHRs in the Japanese systems and the alternative Roman KCHRs in the
various German and French systems. The thought was that the user will most likely choose

Developer Support Center October 1992

Macintosh Technical Notes

the U.S. KCHR to type in English, and choose the French KCHR to type in French. One
problem with this is that it isn’t necessarily true. You can type English with the French
KCHR and you can type French with the U.S. KCHR, and many people do. A much larger
problem is that the KCHR IDs aren’t standardized within a script system range. Because
Apple defines a range of resource IDs for each script system for the international resources,
you can tell what script

Developer Support Center October 1992

Macintosh Technical Notes

system a KCHR is for, and you can even match up the KCHR ID with the standard KCHR
IDs that Apple defines, but there’s nothing wrong with someone creating their own KCHR
and giving it any ID they want, as long as it’s in the proper range for the script system
they’ve written it for. If that’s the currently active KCHR, its resource ID tells you what
script system it’s for, but it won’t tell you anything about what language it was intended for.
For this reason, this method is frowned upon now.

In fact, there really is no reliable way of knowing the language that’s being used. The best
you can do currently is to find out what the system is localized for. This is done by grabbing
the vers resource ID 1 from the System file. In this resource is what was called the country
code (the term “country code” is obsolete, in favor of “region code”) which indicates what
region the system is localized for. These region codes are defined in Packages.p in MPW,
and have names like verUS and verFrance and the like.

There’s another way that you might want to consider. One of the GetScript verbs is
smScriptLang. This returns the language code of the specified script system for the current
system. If you pass smRoman as the script code to GetScript, it’ll return langFrench on a
French system, langGerman on a German system, langEnglish on a U.S. or U.K. or
Australian system, and so forth. If you pass smJapanese as the script code to GetScript, it’ll
return langJapanese. Interestingly, if you pass smRoman as the script code to GetScript when
a Japanese script system is running, it’ll return langEnglish. All non-Roman script systems
return langEnglish if you pass smRoman as the script code to GetScript. The language
constants are in Language.p in MPW. You’ll probably what to combine this GetScript call
with a call to GetEnvirons to find out what the currently active script is. It might look
something like this:

(* Get the currently-active keyboard script *)
keyboardScript := GetEnvirons (smKeyScript);

(* Now get the language that the keyboard script corresponds to *)
languageCode := GetScript (keyboardScript, smScriptLang);

In summary, there’s no system support for retrieving the language that the user is typing, nor is there any reliable support for retrieving the
language related to any KCHR. But, you can find the region code of the active system, and you can find the language associated with the active
script. Hopefully, that’s enough information to be useful to you.

RelString & EqualString vs International Utilities
Written: 1/25/91
Last reviewed: 8/1/92

What is the difference between RelString and the EqualString? What does DTS suggest its
Macintosh developers use when sorting? Or do you suggest having an option for the
international sort?

RelString and EqualString are mainly intended for the File Manager. The File Manager uses
them for quick-and-dirty string comparison so that it knows how to return files ordered
alphabetically when you use an indexed File Manager routines and so that it can detect file

Developer Support Center October 1992

Macintosh Technical Notes

name collisions. Beyond that, RelString and EqualString aren’t localizable and they’re not
extensible.

Developer Support Center October 1992

Macintosh Technical Notes

The International Utilities string comparison routines are localizable and extensible. They
use information in the active 'itl2' resource to determine how the characters are sorted. Most
localized systems come with their own 'itl2' resource, and so string comparisons are done
correctly for the region that the system is localized for. RelString and EqualString stay the
same for all these regions, and so you’ll probably find some cases in which strings are
compared incorrectly by these routines.

One important place where RelString and EqualString don’t work very well is with the new
characters in the extended Macintosh character set. When the LaserWriter was introduced,
the LaserWriter fonts used the extended Macintosh character set which added many new
characters, including several new upper-case characters with diacriticals. In system software
version 6.0.4, the International Utilities were updated to take advantage of these new
characters. For example, the upper case “E” with a grave accent first appeared in the
extended Macintosh character set. With 6.0.4, the lower and upper case “E” with a grave
accent were considered to be equal in primary ordering, and unequal in secondary ordering,
which is correct. But RelString and EqualString, even today, still think in the old Macintosh
character set, so they think that lower and upper case “E” with a grave accent have nothing
to do with each other, and that’s not right.

Because the RelString and EqualString algorithms are more crude than the string comparison
routines in the International Utilities, RelString and EqualString should win races with the
International Utilities string comparison routines hands down. The File Manager uses them
partly for this reason, and partly because RelString and EqualString don’t need access to the
'itl2' resource, which is usually pretty big. Normally, File Manager sorting isn’t critical
anyway because it’s either irrelevant, or it can easily be cleaned up by using the International
Utilities string comparison routines. The Standard File package, for example, uses the
International Utilities string comparison routines to order file and folder names in its list so
that the list is ordered correctly regardless of the system it’s running on.

X-Ref:
Inside Macintosh Volume VI, page 14-82, “The 'itlm' Resource”

Macintosh PRAM’s MachineLocation dlsDelta field
Written: 1/25/91
Last reviewed: 8/1/92

How is the dlsDelta field in PRAM’s time zone MachineLocation record used and set?

Currently, the dlsDelta field is not being used by Macintosh system software, nor is its
meaning defined. There are plans to use it in the future, so it’s important that you preserve its
current value if you ever use WriteLocation to set the value of gmtDelta. See the description
of the WriteLocation routine in “WorldWide Development: Guide to System Software,”
available on the latest developer CD and from APDA (#M7047/A), for details on getting and
setting gmtDelta while leaving dlsDelta intact. In short, the code looks like this:

Developer Support Center October 1992

Macintosh Technical Notes

 VAR
 myLocation: Location;
 myGMTDelta: LongInt;
 tempSignedByte: SignedByte;
 :
 tempSignedByte := myLocation.dlsDelta;
 myLocation.gmtDelta := myGMTDelta;
 myLocation.dlsDelta := tempSignedByte;

Developer Support Center October 1992

Macintosh Technical Notes

Why 1904 is Macintosh Time base
Written: 9/6/91
Last reviewed: 8/1/92

The global variable Time contains the number of seconds since midnight, Jan. 1, 1904. Why
was the year 1904 chosen ?

The ability to go back in time is one consideration. You would not want to start the clock
from, say, 1984. You also want to go ahead in time a good amount, of course. So, the clock
start date needs to put our current date somewhere in the middle of the clock’s range.

So what is the clock’s range? Since the clock chip has a four byte counter which is
incremented each second, they had 4,294,967,295 seconds to work with, or approximately
136 years. This would make the Macintosh clock run out in 1904+136 = 2040. The
maximum value, $FFFFFFFF, corresponds to 6:28:15 a.m., February 6, 2040.

Given the possible range of years/leap years/nonleap years (every fourth year, but not if at
the end of a century, except at the end of every fourth century, which is a leap year) and the
date when the clock will run out (2040) - the “leap year code” in the Macintosh only has to
deal with the rule “every fourth year is a leap year” because none of the possible Macintosh
dates violate that rule! Remember, 2000 is evenly divisible by 400, so it IS a leap year. 1900
is not. If they started at 1900, they would have to use a different algorithm that accounts for
“non-leap year” leap years. Some other clocks start on 1901.

Why did they start on 12:00:00, January 1, 1904? Well, it probably has to do with 1904
being the first leap year after a “non-leap year” leap year (1900). So, the year was chosen for
mechanical (4 byte limit on number of seconds) and pragmatic (you only want to use one
algorithm to figure out the date et al) considerations.

So, back to the future...

X-Ref:
Chapter 4, “Worldwide Guide to System Software”

System 7 and 'itl1' resources
Written: 9/16/91
Last reviewed: 8/1/92

System 7 doesn’t recognize some of my 'itl1' resource changes, such as date abbreviation
length, that are recognized by System 6.

Developer Support Center October 1992

Macintosh Technical Notes

The field that you refer to is not doing what you want because System 7 introduced an
expanded 'itl1' resource, with several new fields, including arrays that contain the proper
abbreviations of all the months and days. If you look in Inside Macintosh Volume VI on
pages 14-87 thru 14-89 you’ll find a description of this new resource as well as the rez
definition of it. Note the two new arrays, abbrevDays and abbrevMonths. If you were to
modify these

Developer Support Center October 1992

Macintosh Technical Notes

additional fields, you’d see the date in the finder windows change. (In fact, the abbrev length
field does not seem to be used if these new fields are present.)

'itl0' resource time1Suff…time8Suff field interpretation
Written: 11/4/91
Last reviewed: 8/1/92

How are the 'itl0' resource time1Suff, time2Suff, … to be interpreted? On the German
system, these bytes seem to contain “ Uhr Uhr.” The correct 24-hour time suffix should be a
single “ Uhr.” How do we know how many bytes of this 8-character entity are significant?
Similar question for the mornStr and eveStr: are all 4 characters of each of these significant?

The time1Suff…time8Suff fields in the 'itl0' resource of all localized systems divide those
fields into two sections. The first four bytes (time1Suff through time4Suff) are used from
12:00 midnight through one second before noon, and the last four bytes (time5Suff through
time8Suff) are used from 12:00 noon through one second before midnight. This is to take
into account any system that has hours from 00:00:00 through 23:59:59, but has different
time trailers for the morning and evening hours. I don’t know of any that work this way
offhand, though. The German standard is just to append “Uhr” onto the time, morning or
evening, and it’s separated from the time by one space. Any unused bytes just contain zero.
For example, if the German time suffix was “Uh”, then the time suffix fields would contain a
space, “U”, “h”, zero, space, “U”, “h”, and zero. If there’s no time suffix, then all eight bytes
are zero.

The morning string and evening strings are done in a similar way. Each one holds a
maximum of four bytes, and any unused bytes are filled with zeros.

By the way, you’ll find that a lot of time suffixes are filled in with something even though
the flags say that time suffixes aren’t used. This is just localization garbage, which probably
will be cleaned up someday.

Developer Support Center October 1992

