
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Pascal to C: PROCEDURE Parameters
Platforms & Tools M.PT.PascalToCProcParams

Revised by: Keith Rollin August 1990
Written by: Keith Rollin February 1990

This Technical Note talks about nested procedures and PROCEDURE parameters in Pascal
and what to do when converting them into C or C++.
Changes since February 1990: Fixed some type coercion problems.

Pascal and C offer many of the same features, but there are some differences. These
differences make converting between languages or calling libraries written in one language
from the other difficult sometimes. Two closely associated features of Pascal that C does not
offer are nested procedures and PROCEDURE parameters. Since these two features are
commonly used when programming with MacApp, the problem of implementing them in C+
+ is a common one.

How Pascal Implements Nested Procedures

Pascal lets programmers nest procedures within each other. Doing so allows one to limit the
scope of local variables, as well as allow multiple procedures access to the same set of
dynamically created variables.

Let’s take a look at the following bit o’ code:

 PROCEDURE CallBack; { Outer level procedure }

 BEGIN
 END;

 PROCEDURE CallingProcedure; { Outer level procedure }

 VAR
 aVar: integer;

 PROCEDURE NestedCallBack; { Nested procedure - can access “aVar” }

 VAR
 anotherVar: integer;

 BEGIN {NestedCallBack }
 aVar := 1;
 anotherVar := 2;
 END; {NestedCallBack }

Developer Technical Support August 1990

Macintosh Technical Notes
 BEGIN {CallingProcedure }
 CallBack;

Developer Technical Support August 1990

Macintosh Technical Notes
 NestedCallBack;
 END; {CallingProcedure }

This code shows three Pascal procedures: CallingProcedure, CallBack, and NestedCallBack. NestedCallBack is the nested
procedure, which means that it can access the local variables of the procedure it is nested within, namely, CallingProcedure.

The method used to allow NestedCallBack to access its host procedure’s local variables is not so obvious and involves a little hack. As you
may know, local variables are created on the stack when a procedure is entered, and the 680x0 register A6 is initialized to point to them. Fine,
but this leads to a little conflict within NestedCallBack. It needs to use A6 to point to its own local variables (e.g., anotherVar), so how
does it access its host procedure’s local variables?

The answer, logically enough, is that it uses another register for this purpose. When NestedCallBack is called from its host procedure, the
host’s A6 is pushed onto the stack after any and all formal parameters have been pushed on, but before the JSR is performed (this extra
parameter is often referred to as the “static link”). As NestedCallBack is being entered, you have a stack similar to that in Figure 1. By
comparison, Figure 2 shows what the stack would look like if you made a normal call to a procedure on the outer level, such as the procedure
shown above named CallBack.

previous contents of stack

parameters (if any)

A6 for CallingProcedure

Return Address

Return Address

parameters (if any)

previous contents of stack

bottom of stack

bottom of stack

Figure 1–Call to NestedCallBack & Figure 2–Call to CallBack

Each procedure knows at compile time whether it is nested or not and adjusts itself accordingly. If it turns out that a procedure is nested, then it
is compiled as if you had declared an extra parameter at the end of the formal parameter list, one that held the value of the host’s A6. Pascal
then uses this parameter for fetching the local variables of the nested procedure’s host. It pulls this parameter off of the stack just like any other
parameter, sticks it into a handy register, and uses it as a base address to the host’s local variables, just as it uses A6 as the base address to its
own locals.

How Pascal Implements PROCEDURE Parameters

As seen in the previous section, nested procedures require a little help to get themselves up
and running. Specifically, they need an extra parameter called a static link. You’ve seen one
way in which Pascal provides support for this parameter. In this section, you see another
important case.

Developer Technical Support August 1990

Macintosh Technical Notes

There are many Toolbox routines that require a pointer to a procedure being passed to them
as a parameter. These procedures are called “callback” procedures, because the Toolbox
makes a call back to those procedures to perform some application-specific function. An
example of this type of routine would be the Control Manager routine _TrackControl,
which requires a callback procedure called actionProc.

By now, you should see why you cannot pass the address of a nested procedure to such a
Toolbox routine. Nested procedures require that they be passed the static link parameter so
that they can access their host variables. The Toolbox doesn’t support this convention, so it
cannot pass the required static link to the nested routine.

While the Toolbox doesn’t support the nested procedure convention, Pascal itself does
support a method whereby you can pass around all the information necessary to implement a
callback procedure as a nested procedure. Syntactically, this is done by including a full
procedure heading in the list of formal parameters a procedure takes. An example of such
could look like the following:

 PROCEDURE SomeProcedure(PROCEDURE CallBackProc(i:integer); iterForward: BOOLEAN);
 BEGIN
 ...
 CallBackProc(5);
 ...
 END;

SomeProcedure takes two parameters. The first is a PROCEDURE parameter that refers to a routine that takes a parameter itself, namely, a
single integer. In addition, SomeProcedure takes a BOOLEAN called iterForward as a second parameter. You would call
SomeProcedure with something like the following:

 PROCEDURE MyCallingProcedure;

 PROCEDURE MyCallBackProcedure(i: integer);

 BEGIN { of MyCallBackProcedure }
 < mumble >;
 END;

 BEGIN { of MyCallingProcedure }
 SomeProcedure(MyCallBackProcedure, TRUE);
 END;

Through the use of the PROCEDURE parameter, you can invoke the callback procedure using a natural Pascal syntax. In the SomeProcedure
example, the statement CallBackProc(5) causes MyCallBackProcedure to be called with a value of five. Not only can you just
invoke the procedure by entering the name of the PROCEDURE variable, but you can pass parameters to it with full Pascal typechecking
invoked. In this case, Pascal ensures that when you call CallBackProc, you also pass a single integer to it.

PROCEDURE parameters also give the support for nested procedures for which you are looking. When a PROCEDURE parameter is passed on
the stack, two components are used to represent it. The first is a pointer to the actual procedure. The second is the static link. Therefore, you
can think of a PROCEDURE parameter as being represented by the following record:

Developer Technical Support August 1990

Macintosh Technical Notes
 TYPE
 ProcedureParameter = RECORD
 procPtr: Ptr;
 staticLink: Ptr;
 END;

When you pass a PROCEDURE parameter to a destination procedure, both of these components are pushed onto the stack as LONG values (four
bytes each). When it comes time for the destination procedure to invoke the callback, any necessary parameters for the callback are placed onto
the stack, followed by the staticLink value. Then the routine specified by procPtr is called.

The step where the destination procedure pushes the static link onto the stack is important and should be examined more closely. Specifically,
how do you know that a static link parameter is necessary at this point? After all, SomeProcedure simply declares that it takes a
PROCEDURE as a parameter; it doesn’t differentiate between nested and non-nested procedures. But, as you saw in the first section, these two
kinds of procedures are called differently. How do you know if the the static link passed to you needs to be pushed onto the stack for the
callback procedure?

The answer is that SomeProcedure receives a special value for the static link parameter for non-nested procedures. If the callback procedure
is at the outer level, SomeProcedure receives NIL for the value of the static link. When Pascal compiles the commands that invoke
PROCEDURE parameters, it generates code that checks the static link. If it is NIL, it doesn’t push it onto the stack. If it is not NIL, then you are
calling a nested procedure, and must push the static link onto the stack.

So, how do you utilize nested procedures and PROCEDURE parameters in C or C++? Obviously, you cannot—at least not directly. C and C++
don’t support them. At this point, you might as well just give up and use Pascal; you always said C++ was highly overrated anyway.

There are two scenarios to examine:

• A Pascal routine calls your C++ routine, passing a PROCEDURE parameter to another Pascal routine you have to call.
• Your C++ routine calls a Pascal routine expecting a PROCEDURE parameter, which you have implemented in C++.

The rest of the Note looks at both of these cases.

Pascal to C++ to Pascal

MacApp supports an object inspector, which it implements by calling a Fields method
common to all descendants of TObject. Each class you define should override this method
so that MacApp can find out about your class’s fields. Such a method definition would look
like the following:

Developer Technical Support August 1990

Macintosh Technical Notes
 PROCEDURE TJustCommand.Fields(PROCEDURE DoToField(fieldName: Str255; fieldAddr: Ptr;
 fieldType: INTEGER)); OVERRIDE;

 BEGIN
 DoToField('TJustCommand', NIL, bClass);
 DoToField('fTEView', @fTEView, bObject);
 DoToField('fOldJust', @fOldJust, bInteger);
 DoToField('fNewJust', @fNewJust, bInteger);
 INHERITED Fields(DoToField);
 END;

You tell it the name of your class so that whatever routine is calling you (usually MacApp’s inspector or debugger) can identify the class it is
inspecting. Then, for each field in your class, you call the procedure passed to you, giving it the three parameters it needs. Finally, you call your
superclass’ Fields method so that it can identify its name and fields.

When your Fields method is called, the DoToField parameter appears on the stack as a pointer to the procedure you are supposed to call, as
well as the static link value it needs. When you actually call DoToField, the necessary parameters are first pushed onto the stack (i.e.,
fieldName, fieldAddr, and fieldType). Pascal then adds some code that makes a determination based on the value of the static link
parameter. If it is non-zero, then you are calling a nested procedure and need to pass back the static link back on the stack. If static link is zero,
then you are not calling a nested procedure and don’t need to pass that static link back.

Pascal handles all of this for you transparently. This ease in Pascal makes the process of writing a similar routine in C or C++ that much more
difficult, as that process has been hidden from us.

There is no way in C or C++ to pass a variable number of parameters in one statement. In other words, you cannot do something like the
following:

 DoToField("\pTJustCommand", nil, bClass, StaticLink ? StaticLink : void); /* No Workie */

That would be too easy. Instead, you must use some inline glue that prepares the stack for you. This inline procedure accepts the three
parameters you see in the Pascal version, as well as both components of the PROCEDURE parameter (i.e., the procedure pointer and static link).
The glue looks at the static link value and removes it from the stack if it is zero and, thus, not needed.

One solution is as follows:

typedef pascal void (*FieldProcPtr) (StringPtr fieldName, Ptr fieldAddr,
 short fieldType, void *DoToField_StaticLink);

pascal void CallDoToField(StringPtr, Ptr, short, void *, FieldProcPtr)
 = {
 0x205F, // MOVEA.L (A7)+,A0 ; get the DoToField pointer
 0x4A97, // TST.L (A7) ; check the StaticLink
 0x6602, // BNE.S *+$0004 ; if non-zero, keep it in
 0x588F, // ADDQ.L #$4,A7 ; if zero, pull it off
 0x4E90 // JSR (A0) ; Call DoToField
 };

Developer Technical Support August 1990

Macintosh Technical Notes
pascal void TJustCommand::Fields(FieldProcPtr DoToField, void *DoToField_StaticLink)
{
 CallDoToField("\pTJustCommand", NULL, bClass, DoToField_StaticLink, DoToField);
 CallDoToField("\pfTEView", (Ptr) &fTEView, bObject, DoToField_StaticLink, DoToField);
 CallDoToField("\pfOldJust", (Ptr) &fOldJust, bInteger, DoToField_StaticLink, DoToField);
 CallDoToField("\pfNewJust", (Ptr) &fNewJust, bInteger, DoToField_StaticLink, DoToField);
 inherited::Fields(DoToField, DoToField_StaticLink);

C++ to Pascal to C++

Now look at another case that occurs often in MacApp. This is where your C++ routine calls
a MacApp procedure that needs a PROCEDURE reference back to one of your own routines.
For instance, MacApp has a class called TList that allows you to maintain a list of objects.
This class has a method called Each that allows you to perform some operation on each
object in the list. MacApp takes care of iterating over all of the objects and calls a routine
you pass to it for each one.

For this example, you have a list of objects stored in a TList and you want to pass the
Graze message to all of them. At the same time, you want to keep track of how many
grazed so much that they fell off a cliff during the process. If the number of objects grazing
off a cliff is greater than some threshold, then you call _SysBeep. You could use the
following procedures to accomplish this in Object Pascal:

 VAR
 myList: TList;

 PROCEDURE TMyApplication.GrazeAll;

 VAR
 offTheCliff: integer;

 PROCEDURE DoGraze(theObject: TObject);

 BEGIN
 TGrazer(theObject).Graze;
 IF TGrazer(theObject).GrazedOffTheCliff THEN
 offTheCliff := offThecliff + 1;
 IF offTheCliff > SELF.fCliffThreshhold THEN
 ApplicationBeep;
 END;

 BEGIN
 offTheCliff := 0;
 myGrazerList.Each(DoGraze);
 END;

You use a nested procedure so that DoGraze can access the local variable offTheCliff. This allows you to use a variable that has limited
scope and that is created dynamically so that you don’t have to allocate a global variable. Also, since DoGraze is embedded within a
TMyApplication method, you have access to the this symbol (this is the equivalent to SELF in Object Pascal).

Therefore, the problem for C++ programmers here is that there is no implicit support for getting access to local variables, such as
offTheCliff, as well as the reference to the correct object through this. So what’s the alternative for C++ programmers in a case like this?

First, let’s take a quick look at how the Each method is declared:

Developer Technical Support August 1990

Macintosh Technical Notes
Object Pascal

TList = OBJECT (TDynamicArray)
 ...
 PROCEDURE TList.Each(PROCEDURE DoToItem(item: TObject));
 ...
 END;

C++

class TList : public TDynamicArray {
 public:
 ...
 virtual pascal void Each(pascal void (*DoToItem)(TObject *item, void
 *DoToItem_StaticLink), void *DoToItem_StaticLink);
 ...
}

As you can see, the two components of the PROCEDURE parameter have to be declared explicitly in C++. Because of this, you can come up
with four different solutions to the problem, and all of them hinge on being creative with what you pass for the static link parameter.

1. Case: You need access to this, but don’t need to access any local variables. Pass this in DoToItem_StaticLink
directly.

2. Case: You need access to a single local variable, but not SELF. Pass the reference to that local variable in
DoToItem_StaticLink.

3. Case: You need access to multiple amounts of information, including more than one local variable and this. Pass a
pointer to a struct that contains this information.

4. Case: You don’t need access to anything from the host procedure (including local variables and this). Pass a NIL for the
static link.

Now to look at each of these in more depth.

Pass this in DoToItem_StaticLink Directly

This is the approach where you would pass this as the DoToItem_StaticLink value. You would want to do this if you needed to access
your object, but didn’t need to access any local variables. Here’s what some C++ code would look like using this method. You pass this as
the static link parameter and convert it back into an object reference in your callback procedure.

pascal void DoGraze(TObject* item, void* staticLink) {
 TMyApplication *self;

 self = (TMyApplication *) staticLink;
 self->DoSomethingElse();
 ((TGrazer *)item)->Graze();
}

pascal void TMyApplication::GrazeAll() {

 myGrazerList->Each(DoGraze, this);
}

Developer Technical Support August 1990

Macintosh Technical Notes

Pass the Reference to a Single Local Variable in DoToItem_StaticLink

You would use this method if all you had to do was access a local variable of your host procedure. Getting to your local variable is now just a
matter of dereferencing the staticLink parameter.

pascal void CountGrazers(TObject* item, void* staticLink) {
 int *grazerCountPtr = (int *) staticLink;

 ++(*grazerCountPtr);
}

pascal void TMyApplication::GrazeAll() {
 int grazerCount = 0;

 myGrazerList->Each(CountGrazers, &grazerCount);
}

Pass a Pointer to a struct in DoToItem_StaticLink

If you need to pass multiple amounts of information, such as more than one local variable, possibly including a reference to this, you can do
so with a struct. This struct would hold all the local variables you need to pass to the callback routine. You would declare an instance of
this struct in your local parameter list and pass a pointer to it as the static link. In your callback procedure, you would coerce the
staticLink variable back into a Pointer to this struct, and then get all the information you need.

An example of this could look as follows:

typedef struct {
 int offTheCliff;
 TMyApplication *self;
} localVars;

pascal void DoGraze(TObject* item, void* staticLink) {
 localVars *hostLocals = (localVars *) staticLink;

 ((TGrazer *)item)->Graze();
 if ((TGrazer *)item->GrazedOffTheCliff()) {
 ++(hostLocals->offTheCliff);
 }
 if (hostLocals->offTheCliff > hostLocals->self->fCliffThreshhold) {
 ApplicationBeep();
 }
}

pascal void TMyApplication::GrazeAll() {
 localVars myLocals;

 myLocals.self = this;
 myLocals.offTheCliff = 0;
 myGrazerList->Each(DoGraze, &myLocals);
}

Developer Technical Support August 1990

Macintosh Technical Notes
Pass a Zero for the Static Link

You would do this in situations where you can get by with the formal parameters that are given to you and don’t need to access any of your
host’s local variables or the object reference. Since passing a zero means “don’t push a static link onto the stack” in this convention, you have to
adjust the parameter list of your callback DoGraze accordingly.

typedef pascal void (* EachProcType)(TObject *, void *);

pascal void DoGraze(TObject* item) {
 ((TGrazer *)item)->Graze();
}

pascal void TMyApplication::GrazeAll() {
 myGrazerList->Each((EachProcType)DoGraze, nil);
}

Which of these methods you use is up to you.

Further Reference:
• MPW 3.0 Pascal Reference, Chapter 8, pp. 145-147
• Your dentist, twice a year

Developer Technical Support August 1990

