
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Multiple Inheritance and HandleObjects
Platforms & Tools M.PT.HandleObjects

Written by: Larry Rosenstein August 1990

This Technical Note answers a common question about MPW C++: “Why doesn’t
HandleObject support multiple inheritance?” It does this by giving a brief overview of
how multiple inheritance is implemented in MPW C++.

What Are HandleObjects Anyway?

MPW C++ contains several extensions to “standard C++” for supporting Macintosh
programming. One such extension is the built-in class HandleObject. An instance of
any class descended from HandleObject is allocated as a handle in the heap. You refer
to one of these instances as if it were a simple pointer; the compiler takes care of the extra
dereference required because the object is really a handle.

A HandleObject is useful in Macintosh programming for the same reason a handle is
useful. The use of handles helps prevent heap fragmentation. The nature of
HandleObject imposes some restrictions on how you can use it in a program, however.

First, since each instance is allocated as a handle, it follows that all instances must be
allocated on the heap. (“Native” C++ objects can be allocated on the stack or in the global
space as well.) Consequently, you always declare variables, parameters, etc. to be pointers
to the class. For example:

 class TSample: public HandleObject {
 public:
 …
 long fData;
 };

 TSample *aSampleInstance; // Legal
 TSample anotherSample; // Results in a compile-time error

The error message the compiler generates in this case is “Can’t declare a handle/pascal object: anotherSample.” At first this message might
seem strange, because the last two lines in this code seem to both declare objects. Actually, the first declaration is of a pointer to an object, not
of the object itself.

The second restriction is that you must follow the usual rules for manipulating handles. In particular, you have to be careful about creating
pointers to a HandleObject instance variable, since the object might move if the heap is compacted. If you write

Developer Technical Support August 1990

Macintosh Technical Notes

 long *x = & (aSampleInstance -> fData);

then x becomes invalid if the object moves. The solution in this case is to lock the object if there’s a possibility of the heap being compacted.
Instances of HandleObject are allocated with a call to _NewHandle, so you can use _HLock and _HUnlock to lock and unlock the

object.

The third restriction is that you cannot use multiple inheritance with a HandleObject. The reason behind this restriction is not evident,

however. To understand the reason, you must look at the implementation of multiple inheritance.

Implementing Multiple Inheritance

To understand how multiple inheritance is implemented, one needs a simple example.
Suppose you define two classes as follows:

 class TBaseA {
 public:
 virtual void SetVarA(long newValue);
 long fVarA;
 …
 };

 class TBaseB {
 public:
 virtual void SetVarB(long newValue);
 long fVarB;
 …
 };

If you were to look at instances of these classes (see Figure 1), you would find that in each case the instance storage would contain four bytes for
the C++ virtual table (vtable) and four bytes for the instance variable. Any code that accesses the instance variable (for example
TBaseB::SetVarB) would do so using a fixed offset from the start of the object. (In this particular version of C++, this offset was 0; your

offset may vary.)

fVarA

vtableA

fVarB

vtableB

Figure 1–Layout of TBaseA and TBaseB Instances

Now suppose you define another class:

 class TDerived: public TBaseA, public TBaseB {
 public:
 virtual void SetDerivedVar(long newValue);
 long fDerivedVar;
 …
 };

Developer Technical Support August 1990

Macintosh Technical Notes

In this case, an instance of TDerived has the following layout:

fVarA

vtableDerived

fDerivedVar

fVarB

vtableB

Figure 2–Layout of TDerived Instance

This is what you would expect. TDerived inherits from both TBaseA and TBaseB, and therefore instances of TDerived contain a part that
is a TBaseA and a part that is a TBaseB. In addition, the virtual table vtableDerived includes the tables for both TBaseA and
TDerived.

TDerived also inherits the methods defined in TBaseA and TBaseB. Suppose you wanted to call the method SetVarB, using a
TDerived object. The code for SetVarB is expecting to be passed a pointer to a TBaseB object (all methods are passed a pointer to an
appropriate object as an implicit parameter), and refers to fVarB by a fixed offset from that pointer. Therefore, to call SetVarB using a
TDerived object, C++ passes a pointer to the middle of the object; specifically it passes a pointer to the part of the object that represents a
TBaseB.

This gives you a very basic idea of how C++ implements multiple inheritance. For more details, read “Multiple Inheritance for C++” by Bjarne
Stroustrup in Proceedings EUUG Spring 1987 Conference, Helsinki.

So What About HandleObjects?

The next question is how this implementation imposes a restriction on a HandleObject.
The answer is simple. Each method of a HandleObject class expects to be passed a
handle to the object, instead of a pointer. But when multiple inheritance is used, the
compiler sometimes has to pass a pointer to the middle of the object. It is not possible to
create a valid handle that refers to the middle of another handle. (Creating a fake handle is a
compatibility risk; besides, the pointer into the middle of the handle would be invalid if the
handle is moved.)

Designing a new implementation of multiple inheritance that is compatible with a
HandleObject, as well as the rest of C++, is a big undertaking. For that reason, it is
unlikely that this restriction will disappear in the future. There are, however, two
alternatives to consider:

Damn the Fragmentation, Full Speed Ahead

The main reason to use a HandleObject is to reduce the chance of fragmentation that
would result from using a non-relocatable block. In a few applications, however, the
memory allocation patterns are very predictable, and fragmentation might not be an issue. In
those cases, you can use “native” C++ classes. (Don’t use the argument that 8 Mb machines
are

Developer Technical Support August 1990

Macintosh Technical Notes

common, and virtual memory is here to stay so fragmentation isn’t an issue at all. Data
always expands to fill the available memory space, real or virtual.)

If you adopt this approach, you should read the article “Using C++ Objects in a Handle-
Based World” by Andrew Shebanow in Issue 2 of d e v e l o p, April 1990. This article
describes how you can use native C++ objects and minimize heap fragmentation, by
overriding the way C++ normally allocates objects. The same techniques can be used to
customize the way your program allocates certain objects.

“Doctor, It Hurts When I Do That…”

The other alternative is to give up multiple inheritance. In most cases, this isn’t as difficult
as it sounds. The typical way you would do this is with a form of delegation. For example,
you could rewrite the class TDerived as:

 class TSingleDerived: public TBaseA {
 public:
 virtual void SetDerivedVar(long newValue);
 void SetBaseB(long newValue);
 long fDerivedVar;
 TBaseB fBaseBPart;
 …
 };

In this case TSingleDerived inherits only from TBaseA, but includes an instance of TBaseB as an instance variable. It also implements
the method SetBaseB to call the method by the same name in the TBaseB class. (In effect, TSingleDerived delegates part of its
implementation to TBaseB.) The advantage of this approach is that it requires only single inheritance, yet you can still reuse the
implementation of TBaseB.

The disadvantages are that TSingleDerived is not a subtype of TBaseB, which means that an instance of TSingleDerived cannot be
used in a situation that requires a TBaseB. Also, TSingleDerived has to define a method that corresponds to each method in TBaseB.

(You can, however, define these functions as inline and non-virtual, which eliminates any run-time overhead.)

By The Way…

You should realize that the multiple inheritance implementation previously described costs some extra space, compared to a simpler
implementation that does not support multiple inheritance (e.g., the implementation used for a HandleObject). Each vtable is twice as

large, and each method call takes about 24 bytes, compared to 14. This is true even if you do not take advantage of multiple inheritance. For
this reason, MPW C++ also contains a built in class called SingleObject, whose instances are allocated in the same way as normal C++
instance, but which only supports single inheritance. (By the way, the third class built into MPW C++, PascalObject, uses Object Pascal’s

run-time implementation, which takes the least amount of space, but the most execution time.)

Developer Technical Support August 1990

Macintosh Technical Notes

Conclusion

You cannot use a HandleObject with multiple inheritance, because of the way multiple
inheritance is implemented in MPW C++. Your alternatives are to give up one or the other.
You can either use native C++ objects and let the objects fall where they may, or give up
multiple inheritance and use a form of delegation.

Further Reference:
• MPW C++ Reference Manual
• “Using C++ Objects in a Handle-Based World,” Andrew Shebanow, d e v e l o p, Issue

2, April 1990.
• “Multiple Inheritance for C++,” Bjarne Stroustrup, Proceedings EUUG Spring 1987

Conference, Helsinki.

Developer Technical Support August 1990

