
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

'ckid' Resource Format
Platforms & Tools M.PT.ProjectorResource

Written by: Keith Rollin April 1990

This Technical Note describes the 'ckid' resource format used by MPW’s Projector. If
you are writing an editor or development system, you may wish to allow or disallow file
modification based on the information in the resource.

MPW 3.0 and greater implement a source code control system called Projector. Projector
manages sets of source code files known as projects. Users are able to check out source
code, make modifications to it, and check it back into the project. Source code can be
checked out as “modifiable” or “read-only.” Only one modifiable version of a source file is
allowed to be checked out at a time. This feature is very useful if you store your files on a
server such as AppleShare; anyone else trying to check out the same file can only check it
out “read-only,” ensuring that two people are not modifying the same file at the same time.

Note: This is an overly simplistic description of Projector. It can actually manage
more than just source code and has provisions for variations on the modifiable
or read-only scheme, such as being able to create experimental offshoots of the
main source code called branches.

MPW attaches Projector information to checked out files by adding 'ckid' resources to
them. This resource contains information such as to what project the file is attached, when
the file was checked out, who checked it out, and whether or not it was checked out read-
only. If it is checked out read-only, the MPW Shell takes note of this, and does not allow the
user to edit the file.

If you are working on a development or source code editing system, then you may wish to
respect the 'ckid' resource. At the very least, this means not deleting it. When saving
changes to an existing file, some applications write the modified data to a temporary file,
delete the old file, and rename the temporary file to have the same name as the original.
Unfortunately, this deletes the 'ckid' resource, preventing the user from checking their
file back into the Projector database. Applications saving files with this technique should
transfer the resource over before deleting the old file.

If you want to include more support for the resource, you could prevent the user from
making changes if the file is checked out read-only. This can be done by reading the
Developer Technical Support April 1990

Macintosh Technical Notes

'ckid' resource and looking at the appropriate fields. The entire format of the 'ckid'
resource is appended to the end of this Note. You should be interested in only four fields of
the resource:

version This two-byte field holds the version number of the 'ckid'
resource. The current version number is 4. The information
presented in this Note is valid for this version number only.

Developer Technical Support April 1990

Macintosh Technical Notes

Any attempt to apply the information presented here to a 'ckid' resource with a
different version would be bad.

checkSum This four-byte field holds a checksum to validate the rest of the
resource. It is generated by summing all the subsequent longwords
in the resource handle, skipping the checksum field itself and any
extra bytes at the end that don’t compose a longword.

readOnly This two-byte field indicates whether the attached file is checked
out for modifications or not. If the file is not checked out for
modifications, this field contains a zero. If the file is modifiable,
this field is non-zero and contains special version information for
Projector.

modifyReadOnly This one-byte field provides a limited override to the
readOnly field. Sometimes it is desirable to be able to modify a
file that has been checked out read-only. One may want to do this
if they have a file checked out read-only, but later decide to make
modifications to it and no longer have access to the Projector
database to check out a modifiable version. Under MPW, the user
can execute the ModifyReadOnly command. This sets the
modifyReadOnly field to non-zero, indicating that the file can
be edited, even though it is checked out read-only.

In your application, you may wish to inhibit modifications to a file if it has a 'ckid'
resource and has been checked out read-only. In addition, as a convenience to your
customers, you may wish to include a ModifyReadOnly feature of your own. To do this, you
would need to set the modifyReadOnly field to non-zero and recalculate the checksum.

The following routines can help perform these functions. CKIDIsModifiable takes a
handle to a 'ckid' resource and returns TRUE if it indicates that the file is modifiable and
FALSE otherwise. HandleCheckSum takes a handle to a 'ckid' resource and returns a
calculated checksum.

MPW Pascal

TYPE
 CKIDRec = PACKED RECORD
 checkSum: LONGINT;
 LOC: LONGINT;
 version: INTEGER;
 readOnly: INTEGER;
 branch: BYTE;
 modifyReadOnly: Boolean;
 { There’s more, but this is all we need }
 END;
 CKIDPtr = ^CKIDRec;
 CKIDHandle = ^CKIDPtr;

Developer Technical Support April 1990

Macintosh Technical Notes

FUNCTION CKIDIsModifiable(ckid: CKIDHandle): Boolean;

 BEGIN
 IF ckid = NIL THEN
 CKIDIsModifiable := TRUE

Developer Technical Support April 1990

Macintosh Technical Notes

 ELSE
 WITH ckid^^ DO
 CKIDIsModifiable := (readOnly <> 0) |
 ((readOnly = 0) & modifyReadOnly);
 END;

FUNCTION HandleCheckSum(h: Handle): LONGINT;

 VAR
 sum: LONGINT;
 size: LONGINT;
 p: LongintPtr;

 BEGIN
 sum := 0;

 size := (GetHandleSize(h) DIV SizeOf(LONGINT)) - 1;
 p := LongintPtr(h^);
 p := LongintPtr(ORD(p) + SizeOf(LONGINT)); { skip over first long
 (checksum field) }
 WHILE (size > 0) DO BEGIN
 size := size - 1;
 sum := sum + p^;
 p := LongintPtr(ORD(p) + SizeOf(LONGINT));
 END;

 HandleCheckSum := sum;
 END;

MPW C

typedef unsigned long uLong;

typedef struct {
 uLong checkSum;
 long LOC;
 short version;
 short readOnly;
 char branch;
 Boolean modifyReadOnly;
 /* There’s more, but this is all we need */
} CKIDRec, *CKIDPtr, **CKIDHandle;

pascal Boolean CKIDIsModifiable(CKIDHandle ckid)
{
 if (ckid == nil)
 return(true);
 else
 return(((**ckid).readOnly != 0) ||
 (((**ckid).readOnly == 0) && (**ckid).modifyReadOnly));
}

pascal uLong HandleCheckSum(Handle h)
{
 long size;
 uLong sum = 0;
 uLong *p;

 size = (GetHandleSize(h) / sizeof(long)) - 1;
 p = (uLong *) *h;
 p++; /* skip over first long (checksum field) */
 while (size-- > 0) {
 sum += *p++;

Developer Technical Support April 1990

Macintosh Technical Notes

 }

 return(sum);
}

If you wanted to include a ModifyReadOnly function, you could use something like the following Pascal fragment:

 h := CKIDHandle(Get1Resource('ckid', 128));
 IF (h <> NIL) & (h^^.version = 4) THEN BEGIN
 h^^.modifyReadOnly := TRUE;
 h^^.checkSum := HandleCheckSum(Handle(h));
 ChangedResource(Handle(h));
 END;

'ckid' Resource format

This MPW Rez resource template is for your application’s information only. It is valid only
for version 4 of the resource. Please do not write to this resource or create one of your own.
If you feel that you need to change fields in the resource, then limit yourself to the
checkSum and modifyReadOnly fields, and only if the version field is equal to 4.
This resource format will change in the future.

type 'ckid'
 {
 unsigned longint; /* checkSum */
 unsigned longint LOC = 1071985200; /* location identifier */
 integer version = 4; /* ckid version number */
 integer readOnly = 0; /* Check out state, if = 0 it is modifiable */
 Byte noBranch = 0; /* if modifiable & Byte != 0 then branch was made
 on check out */
 Byte clean = 0,
 MODIFIED = 1; /* did user execute “ModifyReadOnly” on this file? */
 unsigned longint UNUSED; /* not used */
 unsigned longint; /* date and time of checkout */
 unsigned longint; /* mod date of file */

 unsigned longint; /* PID.a */
 unsigned longint; /* PID.b */

 integer; /* user ID */
 integer; /* file ID */
 integer; /* rev ID */

 pstring; /* Project path */
 Byte = 0;
 pstring; /* User name */
 Byte = 0;
 pstring; /* Revision number */
 Byte = 0;
 pstring; /* File name */
 Byte = 0;
 pstring; /* task */
 Byte = 0;
 wstring; /* comment */
 Byte = 0;
};

Developer Technical Support April 1990

Macintosh Technical Notes

Notes

The branch field (field 5) holds the letter of this branch (i.e., “a”, “b”, “c”, etc.). It holds
zero if this revision is on the main branch.

PID is the Project ID. It is generated using a combination of the tick count and time on your
computer in a way that should be sufficient to generate unique Project IDs for every project
ever created.

The pstring and wstring fields are variable length fields (pstring is a string
preceded by a length BYTE, while wstring is a string preceded by a length WORD), which
means that you cannot directly represent this resource with a RECORD in Pascal or struct
in C.

Further Reference:
• Macintosh Programmer’s WorkShop 3.0 Reference, Chapter 7,

Projector: Project Management

Developer Technical Support April 1990

