
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

_StripAddress: The Untold Story
Memory M.ME.StripAddress

Revised by: Paul Snively & Andrew Shebanow August 1990
Written by: Andrew Shebanow October 1988

Inside Macintosh, Volume V, The OS Utilities, incorrectly documents the _StripAddress
trap; this Technical Note correctly documents the trap and gives guidelines for its use.
Changes since April 1990: Added a discussion of why the _StripAddress trap should
be used under certain circumstances when patching traps.

Don’t Believe Everything You Read

The _StripAddress trap is described in the OS Utilities chapter of Inside Macintosh,
Volume V as:

FUNCTION StripAddress(theAddress: LONGINT): LONGINT;

If the system is running in 24-bit mode, _StripAddress is identical in
function to the global variable Lo3Bytes: it returns the value of the low-
order three bytes of the address passed in theAddress. If the system is in
32-bit mode, however, _StripAddress simply passes back the address
unchanged.

This description is incorrect, and it is located in the wrong chapter of Inside Macintosh (it
should be in the Memory Manager chapter). The _StripAddress trap now takes a Ptr
as a parameter and returns a Ptr:

 FUNCTION StripAddress(theAddress: Ptr): Ptr;

The effect of _StripAddress on the passed address depends on the native (bootup) mode the operating system uses, and not on the current
mode. The following chart shows the results of _StripAddress in all of its configurations:

Operating System 24-Bit MMUMode 32-Bit MMUMode
System Software < 7.0 masked with Lo3Bytes masked with Lo3Bytes
System 7.0 (24-Bit Bootup) masked with Lo3Bytes masked with Lo3Bytes

System 7.0 (32-Bit Bootup) (never in 24-bit mode) address unchanged
A/UX 1.1.1 (never in 24-bit mode) address unchanged
A/UX 2.0 (24-Bit Login) masked with Lo3Bytes masked with Lo3Bytes

A/UX 2.0 (32-Bit Login) (never in 24-bit mode) address unchanged

Developer Technical Support August 1990

Macintosh Technical Notes

Should I Call _StripAddress Each Time I Use An Address?

In a word, no. Twenty-four-bit addresses are not inherently dangerous—they only cause
problems when you access them in 32-bit mode, so unless you are switching modes with the
_SwapMMUMode trap, you rarely need to call _StripAddress inside a “typical”
application or driver. Calling _StripAddress is unnecessary in the following three
cases:

Dereferencing A Pointer or A Handle

You don’t need to call _StripAddress before dereferencing a pointer or a handle unless
you are switching the CPU into 32-bit mode with the _SwapMMUMode trap. After all, if
this is a full-time 32-bit machine, the pointer is always a valid 32-bit address, and if it is a
24-bit machine, your addresses are valid 24-bit addresses unless you switch the machine into
32-bit mode yourself.

Comparing Pointers And Handles For Equality

As long as you don’t futz with the high bits of pointers and handles yourself (which you
cannot do safely if you want to run in 32-bit mode in any case), you should be able to
compare pointers and handles for equality without doing a _StripAddress, since the
high byte always contains the same “garbage” when you are in 24-bit mode that it did when
the pointer or handle was created. There is an exception to this rule, which is discussed in
the “Comparing Dereferenced Handles” section later in this Note.

Performing Address Arithmetic

You do not need to call _StripAddress before performing address arithmetic, since
adding or subtracting two 24-bit addresses always results in the correct 24-bit address,
regardless of the high byte values. Random high byte values can cause ordered comparisons
on the results of pointer arithmetic to fail, since underflow or overflow could occur, so you
should never test the result of address arithmetic against a value (only against NIL or 0).

Okay, So When Do I Need To Call _StripAddress?

Ordered Address Comparison

If you need to sort by address or do any other kind of ordered address comparison, you need
to call _StripAddress on each address before doing any ordered comparisons (>, <, >=,
<=). Remember, even though the CPU only uses the lower 24 bits in 24-bit mode, it still
uses all 32 bits when performing arithmetic operations.

Comparing Dereferenced Handles (Master Pointers)

Developer Technical Support August 1990

Macintosh Technical Notes

If you want to perform any type of comparison on dereferenced handles, you need to call
_StripAddress on the value first, since the Memory Manager stores its flags in the high
byte of the Master Pointer on 24-bit machines, and these flags can change at any time. Of
course, this implies that you need to call _StripAddress before comparing two pointers
for equality if you could be comparing against a dereferenced handle.

Developer Technical Support August 1990

Macintosh Technical Notes

On Handles And Pointers Before Dereferencing in 32-Bit Mode

If you are going to switch the machine into 32-bit mode yourself, you need to call
_StripAddress on all 24-bit pointers and handles that you access while in 32-bit mode.
Of course, you had better not call _StripAddress on a 32-bit address (for example, a 32-
bit NuBus™ slot address could generate some very nice fireworks if you strip off its high byte with _StripAddress and then try to
access the “improved” address). For example, the 32-Bit QuickDraw routine _GetPixBaseAddr returns a 32-bit address. Refer to Technical

Note #277, 32-Bit QuickDraw: Version 1.2 Features, for more details about 32-Bit QuickDraw and 32-bit addressing.

Program Counter in 32-Bit Mode

This issue is described in depth in Technical Note #228, Use Care When Swapping MMU Mode, so this Note won’t go into depth here.
Basically, if you are going to switch into 32-bit mode within a code resource, you need to make sure that your Program Counter (PC) contains a

valid 32-bit address before you switch modes.

One not-so-obvious example of this case is a trap patch that lives in a block in the heap. If you pass the address of the block to the
_SetTrapAddress trap without first calling _StripAddress on it and the patched trap is later called in 32-bit mode, bad things happen.
Specifically, the high byte of the address contains Memory Manager information, so when the patched trap is called, the PC points to never-

never land, making results extremely unpredictable. So if you are going to patch a trap using the address of a heap block, call
_StripAddress on it first.

Filenames Passed To _OpenResFile And _OpenRFPerm

This issue is described in depth in Technical Note #232, Strip With _OpenResFile and _OpenRFPerm. A patch to these traps calls
_RecoverHandle on the string passed to these routines, which can cause crashes if _StripAddress is not called.

Whaaahh! _StripAddress Is Too Slow! How Can I Make It Faster?

If you follow the guidelines discussed in this Note, speed shouldn’t be an issue, since you
are calling _StripAddress rarely, if at all. Just for the sake of argument, though, let’s say that you do call
_StripAddress inside of a time-critical loop inside an interrupt routine. The solution to this problem is to cache the mask
that _StripAddress uses to do its work. Here’s how:

Developer Technical Support August 1990

Macintosh Technical Notes

MPW C:

 long gStripAddressMask; /* our cached global mask variable */

 /* you can use this macro to do a quick _StripAddress equivalent */
 #define QuickStrip(ptr) ((ptr) & gStripAddressMask)

 main()
 {
 /* do all of the usual initialization */
 /* cache _StripAddress result */
 gStripAddressMask = 0xffffffff;
 gStripAddressMask = (long) StripAddress((Ptr) gStripAddressMask);
 /* have your program do something useful here… */
 }

MPW Pascal:

 PROGRAM StripTease;
 VAR
 gStripAddressMask : LONGINT; { our cached global mask variable }

 { you can use this function to do a quick _StripAddress equivalent }
 FUNCTION QuickStrip(thePtr : Ptr) : Ptr;
 BEGIN
 QuickStrip := Ptr(BAND(LONGINT(thePtr),gStripAddressMask));
 END;

 BEGIN
 { do all of the usual initialization }
 { cache _StripAddress result }
 gStripAddressMask := $FFFFFFFF;
 gStripAddressMask := LONGINT(StripAddress(Ptr(gStripAddressMask)));
 { have your program do something useful here… }
 END.

This technique avoids the overhead of the Trap Dispatcher, works on present and future machines, and it should be fast enough for any
application—just call the QuickStrip routine (macro to us C weenies) in place of _StripAddress.

Further Reference:

• Inside Macintosh, Volume V, The OS Utilities
• Technical Note M.OV.32BitClean —

 The Joy Of Being 32-Bit Clean
• Technical Note M.ME.SwapMMUMode —

 Use Care When Swapping MMU Mode
• Technical Note M.TB.StripOpenResFile —

Strip With _OpenResFile And _OpenRFPerm

• Technical Note M.IM.32BitQD —
 32-Bit QuickDraw: Version 1.2 Features

NuBus is a trademark of Texas Instruments.

Developer Technical Support August 1990

