
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Picture Comments—The Real Deal
Imaging M.IM.PictComments

Revised by: Scott “Zz” Zimmerman, Dave Hersey, Matt Deatherage, and
Joseph Maurer July 1992

Written by: Ginger Jernigan November 1986

Changes since March 1988: This Note (formerly titled “Optimizing for the LaserWriter—
PicComments”) describes the picture comments defined and interpreted by the Apple printer
drivers. Most of the picture comments are specific to PostScript, but we renamed the Note to
emphasize that LaserWriter printers are not necessarily PostScript devices, and that
QuickDraw printer drivers may implement their own picture comment handling. This Note
has been completely rewritten and incorporates all additional insights gained during the last
few years. We are also much more determined now to discourage the use of obsolete and
problem-laden (although still supported) picture comments, and we carefully point out
known problems or limitations of each comment.

Introduction

The QDProcs record (see Inside Macintosh Volume I, page 197) reflects the foundations of the
architecture of QuickDraw. The commentProc field points to a procedure that processes picture
comments, as included in a picture by means of the PicComment procedure (Inside Macintosh
Volume I, page 189). This allows applications to include application-specific additional information in
the pictures they create. Technical Note #181, “Every Picture [Comment] Tells Its Story, Don’t it?”
documents how applications can define their own types of picture comments without conflicting with
other applications’ definitions.

The QDProcs record also is the key to understanding how Macintosh printer drivers work. When the
application calls PrOpenPage and draws into the printing port, the printer driver collects the
drawing commands by hooking into the QDProcs of the printing port. In particular, if an application
calls the PicComment procedure while drawing into the printing port, the printer driver gets a
chance to capture the information contained in the kind and dataHandle parameters.

During the development of the original LaserWriter driver, it became obvious that applications should be
able to take advantage of certain PostScript features that were not accessible through the standard
QuickDraw calls, like rotated text, rotated graphics, dashed lines, fractional line widths, and special
PostScript operations on polygons. Also, certain applications needed a way to transmit their own native
PostScript instructions to the printer. Picture comments seemed to be the ideal vehicle for providing these
capabilities. This is how the list of picture comments was created (see Table 1). They are recognized by all
PostScript LaserWriter drivers version 3.1 and later.

Developer Technical Support July 1992

Macintosh Technical Notes

Developer Technical Support July 1992

Macintosh Technical Notes

Table 1 PostScript LaserWriter Picture Comments

Type Kind Data Size Data Description

TextBegin 150 6 TTxtPicRec Begin text function
TextEnd 151 0 NIL End text function
StringBegin 152 0 NIL Begin pieces of original string
StringEnd 153 0 NIL End pieces of original string
TextCenter 154 8 TTxtCenter Offset to center of rotation

LineLayoutOff 155 0 NIL Turn LaserWriter line layout off
LineLayoutOn 156 0 NIL Turn LaserWriter line layout on

ClientLineLayout 157 16 TClientLL

PolyBegin 160 0 NIL Begin special polygon
PolyEnd 161 0 NIL End special polygon
PolyIgnore 163 0 NIL Ignore following polygon data
PolySmooth 164 1 PolyVerb Close, Fill, Frame
PolyClose 165 0 NIL Close the polygon

DashedLine 180 - TDashedLine Draw following lines as dashed
DashedStop 181 0 NIL End dashed lines
SetLineWidth 182 4 Point Set fractional line widths

PostScriptBegin 190 0 NIL Set driver state to PostScript
PostScriptEnd 191 0 NIL Restore QuickDraw state
PostScriptHandle 192 - PSData PostScript data in handle

† PostScriptFile 193 - FileName FileName in data handle
† TextIsPostScript 194 0 NIL QuickDraw text is sent as PostScript
† ResourcePS 195 8 Type/ID/Index PostScript data in a resource file

PSBeginNoSave 196 0 NIL Set driver state to PostScript
SetGrayLevel 197 4 Fixed Call PostScript's setgray operator

RotateBegin 200 4 TRotation Begin rotated port
RotateEnd 201 0 NIL End rotation
RotateCenter 202 8 Center Offset to center of rotation

FormsPrinting 210 0 NIL Don’t clear print buffer after each page
EndFormsPrinting 211 0 NIL End forms printing after PrClosePage

† These comments are obsolete.
These comments are not recommended.

Most of the comments in Table 1 were designed specifically for the original LaserWriter driver. In fact, the term LaserWriter has been (and often
still is) used in the sense of “PostScript printer,” and the LaserWriter driver is known to be basically a QuickDraw-to-PostScript translator.
Meanwhile, however, QuickDraw-based LaserWriter models came out, so we should start being more careful in our terminology. This is why we
insist on talking about PostScript drivers or PostScript printers when a picture comment applies to PostScript.

QuickDraw printer drivers may implement their own (more or less private) picture comments, or support some of the above in order to provide
additional capabilities. Third-

Developer Technical Support July 1992

Macintosh Technical Notes

party printer drivers might implement rotation of text and bitmaps even for printers without PostScript, for example.

Apple's QuickDraw printer driver for the LaserWriter SC supports the following three picture comments:

LineLayoutOff 155 0 NIL Turn LaserWriter line layout off
LineLayoutOn 156 0 NIL Turn LaserWriter line layout on

SetLineWidth 182 4 Point Set fractional line widths.

The ImageWriter LQ driver and the first versions of the StyleWriter driver (prior to 7.2) implement the LineLayoutOff and
LineLayoutOn picture comments. The current StyleWriter driver (version 7.2.2) and the personal LaserWriter LS driver do not support any

picture comments at all.

Even the ImageWriter driver, which does not care about LineLayoutOff, LineLayoutOn, and SetLineWidth, reacts to picture

comments:

BitMapThinningOff 1000 0 NIL Turn off hiRes bitmap thinning
BitMapThinningOn 1001 0 NIL Turn on hiRes bitmap thinning,

and it does the same toggling of the "bitmap thinning" of fat bitmaps in "Best" mode, when it encounters a TextBegin or TextEnd picture

comment (undocumented feature - never mind!). The ImageWriter LQ driver handles these comments similarly.

The point of all this is

It is impossible to determine which picture comments
have been implemented by which printer driver.

In other words: Your application should never assume a particular picture comment is available in the current printer driver.

How can you then take advantage of the features provided?

Fortunately, there is a solution, at least for most of the picture comments directly related to PostScript. Your application must generate the code
required to perform the operation with the picture comments and without, and the selected printer driver determines the correct representation to
use.

It’s important to always send both representations to any printer driver—future system software may allow spool files to be redirected to a
printer other than the one chosen when you sent your picture comments. This is also why DTS does not like the idea of determining the type of
printer driver by looking at the high byte of the prStl .wDev field of the print record. As documented in Inside Macintosh Volume II, page
152, the PostScript LaserWriter printer drivers have a wDev value of $03, and some applications use this information to send only the PostScript
representation to the printer. Although the wDev field will continue to be supported for some time (for obvious compatibility reasons), it’s
usually preferable not to rely upon it.

In this Note, we first discuss the available techniques to include both a QuickDraw and a PostScript representation in a picture, or in the imaging
instructions sent to a printing port. This leads us quite naturally to some general caveats. We then present two procedures to synchronize the
QuickDraw and PostScript graphic states. This is sometimes required when

Developer Technical Support July 1992

Macintosh Technical Notes

PostScript picture comments are intertwined with a sequence of QuickDraw calls. Finally, we go through the individual picture comments by
subject, as suggested by Table 1, describe their effects, demonstrate how to use them correctly, and explain the potential problems with them.

Cohabitation of QuickDraw and PostScript

Device-Independent Pictures

We can think of the Printing Manager’s PrOpenPage and PrClosePage calls as being
equivalent to the OpenPicture and ClosePicture calls (which, by the way, reminds
us to never call OpenPicture between PrOpenPage and PrClosePage; see Inside
Macintosh Volume II, page 160). In both cases, a stream of imaging instructions is recorded
for deferred rendering. As recommended above, we want to create pictures that include both
QuickDraw and optimized PostScript representations so that we obtain best results under all
circumstances.

The two picture comments PostScriptBegin and PostScriptEnd clearly suggest
that any imaging instructions in between are intended exclusively for PostScript printing
devices (or, potentially, for printer drivers endeavoring to emulate some PostScript features).
In the case of the PostScript LaserWriter driver, the effect of PostScriptBegin is to
disable all bottlenecks except commentProc, txMeasProc, getPicProc and
putPicProc. This means that QuickDraw’s text, line, shape (Rects, RoundRects, Ovals,
Arcs, Polygons) and bitmap drawing calls don’t have any effect in the printing port when
enclosed by PostScriptBegin and PostScriptEnd. Obviously, this is precisely what
we need to hide the QuickDraw representation from a PostScript printing device: The
QuickDraw representation of the graphics will appear only on printers whose driver does not
understand PostScriptBegin and PostScriptEnd.

So we are left with the opposite problem: how to prevent QuickDraw printers (or the screen)
from displaying the effect of drawing instructions intended for a PostScript device
exclusively. This can be tricky, and will be addressed on a case-by-case basis in the
discussion of the various picture comment families.

Basically, there are two ways:

• Under certain circumstances (like between the TextBegin and TextEnd picture
comments), the PostScript driver ignores the QuickDraw clip region. This helps for rotated
text, which has to be communicated to the PostScript driver through a standard QuickDraw
text drawing command like DrawString. Setting the clip region to an empty rectangle
prevents the QuickDraw text from appearing.

• For drawing operations that involve the GrafPort’s pnMode, early Macintosh developers
discovered a QuickDraw feature that (unintentionally) solves the problem. Passing the
“magic” mode 23 to PenMode inhibits QuickDraw’s normal drawing, but still lets the
printer driver see the drawing instructions come through the bottlenecks so that it can
translate them into PostScript. Note that this pen mode always has been undocumented;

Developer Technical Support July 1992

Macintosh Technical Notes

using it was considered a compatibility risk (and frowned upon) for some time. Given the
current state of affairs, however, it’s the only viable way for certain picture comments to
include both QuickDraw and PostScript representations in the same picture.

Developer Technical Support July 1992

Macintosh Technical Notes

General Caveats (for those who would like to stop reading now)

The picture comments PostScriptFile and ResourcePS do not work with
background printing. They are considered obsolete and should not be used.

There is no good reason at all to use the TextIsPostScript picture comment. Use the
PostScriptHandle comment instead.

The picture comments ClientLineLayout, SetGrayLevel, FormsPrinting, and
EndFormPrinting are not recommended (for various reasons). It seems extremely
unlikely that you’ll encounter situations where you really need to use them.

Nesting of picture comments, or combining them beyond their primary intention, is not
supported. This means, for example, that you can’t use the polygon comments in conjunction
with the rotation comments to draw a rotated polygon (instead, rotate the points of the
polygon before drawing). Similarly, the DashedLine picture comment behaves very
poorly with polygons (don’t even try it).

If you choose to use PostScript directly in your pictures, be very careful not to make
assumptions about Apple’s "md" dictionary (essentially the contents of the former
LaserPrep file). Otherwise, your pictures bear the risk of not printing correctly with
future versions of the PostScript LaserWriter driver. Also, be aware of compatibility
problems within the PostScript world, and test your application with as many different
PostScript devices as possible. In particular, watch out for printers with PostScript
Level 1 and PostScript Level 2 interpreters, and “PostScript-compatible” printers
(PostScript clones).

Flushing the Port State and Flushing PostScript

There are two situations, in the context of picture comments, where the design of the
PostScript LaserWriter driver requires special precautions from the application programmer.

First, certain QuickDraw instructions like Move, MoveTo, PenPat, and PenSize change
the state of the GrafPort, without going through the QDProcs bottleneck procedures. A
Macintosh printer driver takes these changes into account only at the time it executes an
actual drawing instruction. Remember, the printer driver hooks into the QDProcs to get
execution time, and only “sees” instructions coming through the QDProcs. Nothing is
wrong with it—unless PostScript code is woven into the graphics instructions by means of
picture comments. (Note that PostScript code may be generated transparently when the
LaserWriter driver encounters certain picture comments.) If the PostScript code assumes the
current state of the GrafPort corresponds to what you expect it to be, then you have to

Developer Technical Support July 1992

Macintosh Technical Notes

flush the state of the GrafPort explicitly, before inserting the PostScript code. This is
easier than it sounds; just do something inoffensive that goes through the
QDProcs.lineProc bottleneck, like in the following utility procedure:

PROCEDURE FlushGrafPortState;
{ This routine causes the state of the Printing Manager's GrafPort to be }
{ flushed out to the LaserWriter, by making a dummy call through the }
{ QDProcs.lineProc bottleneck procedure. Pen size and pen location are }
{ preserved so that there are no side effects. }

 VAR
 penInfo: PenState;

Developer Technical Support July 1992

Macintosh Technical Notes

 BEGIN
 GetPenState(penInfo); { Save pen size. }
 PenSize(0,0); { Make it invisible. }
 Line(0,0); { Go through QDProcs.lineProc. }
 PenSize(penInfo.pnSize.h, penInfo.pnSize.v); { Restore pen size. }
 END;

Another unwanted effect is related to the PostScript LaserWriter driver’s multiple internal buffering of generated PostScript code. The
PostScript code generated for text drawing instructions (which usually involves font queries and, sometimes, font downloading) is buffered
independently from the PostScript code inserted by means of picture comments. In certain cases, this results in apparently nonsequential
execution of drawing instructions, and may affect clip regions or may have side effects on the PostScript code you included in picture
comments. In order to synchronize the sequence of QuickDraw instructions with the generation of PostScript code, you need to call the
following procedure:

PROCEDURE FlushPostScriptState;
{ This routine flushes the buffer maintained by the LaserWriter driver. }
{ All PostScript, generated either by the app or by the LaserWriter }
{ driver, will be sent to the device. }
 BEGIN
 PicComment(PostScriptBegin, 0, NIL);
 PicComment(PostScriptEnd, 0, NIL);
 END;

In the following discussion of picture comments, we’ll refer to these two utility routines as
appropriate.

Text Rotation

Comments: TextBegin, TextCenter, TextEnd

These comments give access to PostScript’s capabilities of rotating, flipping, and justifying
text. They are intended for applications that are likely to be used with PostScript printers
(like desktop publishing and advanced drawing applications), but don’t want to use
PostScript explicitly. QuickDraw does not support rotated or flipped text, and you must
provide a bitmap representation of the rotated/flipped text as a fallback solution in case the
printer driver does not support these picture comments.

Let’s look at sample code right away. Please, consult the Appendix “Pascal Interface for
Picture Comments” for the definition of the structures used in the TextBegin and
TextCenter comments.

USES PicComments; { see Appendix; defines constants for just and flip, and the }
 { structures referred to by TTxtPicHdl and TCenterHdl. }

PROCEDURE QDStringRotation(s: Str255; ctr: Point; just, flip: Integer; rot: Fixed);
 EXTERNAL;
{ QDStringRotation provides a QuickDraw substitute for the PostScript feature. }
{ May contain any QuickDraw imaging, except picture comments. }
{ Left as an exercise for the reader ... }

PROCEDURE DrawXString(s: Str255; ctr: Point; just, flip: Integer; rot: Fixed);
{ Draws the string s rotated by rot degrees around the current point, offset }
{ by ctr, justifying and flipping according to the just and flip parameters. }

Developer Technical Support July 1992

Macintosh Technical Notes

{ If printed to a PostScript device, the rotation is done by the PostScript }
{ interpreter; if the printer driver does not recognize the PostScriptBegin }
{ and PostScriptEnd picture comments, the external procedure QDStringRotation }
{ is used to image the rotated string. The pen position is preserved. }

 VAR
 hT: TTxtPicHdl; { defined in PicComments.p - see Appendix }
 hC: TCenterHdl; { –"– }
 zeroRect: Rect;
 pt: Point;
 oldClip: RgnHandle;

 BEGIN

 GetPen(pt); { to preserve the pen position }

 { This is for non-PostScript printers: }
 { ------------------------------------ }
 PicComment(PostScriptBegin,0,NIL);
 QDStringRotation(s, ctr, just, flip, rot);
 PicComment(PostScriptEnd,0,NIL);

 { The following is for PostScript printers only: }
 { -- }
 hT := TTxtPicHdl(NewHandle(SizeOf(TTxtPicRec)));
 hC := TCenterHdl(NewHandle(SizeOf(TCenterRec)));
 { no error handling: if these fail, we are in deep trouble anyway ...}
 WITH hT^^ DO BEGIN
 tJus := just;
 tFlip := flip;
 tAngle := - FixRound(rot); { I like counter-clockwise better }
 tLine := 0; { reserved }
 tCmnt := 0; { used internally by the printer driver }
 tAngleFixed := - rot;
 END;
 hC^^.y := Long2Fix(ctr.v);
 hC^^.x := Long2Fix(ctr.h);

 PicComment(TextBegin,SizeOf(TTxtPicRec),Handle(hT));
 PicComment(TextCenter,SizeOf(TCenterRec),Handle(hC));
 { PostScript graphics state now has rotated/flipped coordinates }

 { Hide the following DrawString from QuickDraw }
 oldClip := NewRgn;
 GetClip(oldClip);
 SetRect(zeroRect,0,0,0,0);
 ClipRect(zeroRect);
 { The PostScript driver ignores clipping between TextBegin and TextEnd }
 DrawString(s); { in the rotated PostScript environment }
 ClipRect(oldClip^^.rgnBBox);

 PicComment(TextEnd,0,NIL);
 { Set PostScript's environment back to the original state }

 DisposHandle(Handle(hT));
 DisposHandle(Handle(hC));

 MoveTo(pt.h,pt.v); { to preserve the pen position }
 END;

The preceding discussion about including both QuickDraw and PostScript representations and the comments included in the source code say it
all: the QuickDraw representation is hidden from PostScript by means of PostScriptBegin and PostScriptEnd, and the

Developer Technical Support July 1992

Macintosh Technical Notes

PostScript representation is hidden from QuickDraw by setting the clip region to empty (ignored by the PostScript LaserWriter driver between
TextBegin and TextEnd).

Some Additional Hints

• Because of QuickDraw’s orientation of the vertical coordinate axis, the rotation angle is measured clockwise. Nothing prevents us from using
the negative angle if we are used to the counterclockwise orientation.

• The angle is measured in degrees (0..360), and passed as a Fixed type number (that is, if taken as a LongInt value, you have to divide it
“mentally” by 65536 to obtain the angle in degrees). For integer angles, it is possible to use a reduced TTxtPicRec structure that does not
contain the tRotFrac field. The PostScript LaserWriter driver uses GetHandleSize(hT) to determine whether it must use the fractional
angle in the tRotFrac field. To be safe, always set the tRot field to FixRound(tRotFrac) if you go with the extended TTxtPicRec
(as we do here).

• It is convenient that clipping regions are ignored between the TextBegin and TextEnd picture comments, because it allows us to clip out
the DrawString on printers that don’t support these comments. Unfortunately, this also means that text rotated this way can’t be clipped. If
clipping of rotated text is required, you’ll have to do it entirely within PostScript.

• If you don’t insert the QuickDraw representation (surrounded by the PostScriptBegin/ PostScriptEnd picture comments) before the
section with TextBegin - TextCenter - TextEnd, the effect of ignoring clip regions might be propagated to preceding sections of
your drawing instructions because of the internal buffering of generated PostScript code. In this case, you need to call the
FlushPostScriptState procedure described earlier before the TextBegin comment.

• The tJus field in the TTxtPicRec, if different from tJusNone, tells the printer driver to maintain either the left, right, or center point of
the string (corresponding to the values tJusLeft, tJusRight, and tJusCenter), without recalculating the interword and intercharacter
spacing. Using tJusFull justification specifies that the original length of the string (on the QuickDraw screen) must be maintained. This is
important when rotating a fully justified block of text.

• The tFlip field in the TTxtPicRec specifies horizontal or vertical flipping about the center point specified by the TextCenter
comment.

• The TextCenter comment specifies the center of rotation for any text enclosed within the TextBegin and TextEnd calls, as offset to the
location of the current point. The rotation is achieved by changing PostScript’s coordinate system. A sequence of DrawString - MoveTo
instructions is rotated as a whole until TextEnd is encountered.

• Some versions of double-byte Kanji systems print Kanji characters by calling CopyBits instead of calling standard text drawing routines.
This means the comments in the Text Rotation family cannot be used with these fonts. Instead, use the Graphics Rotation comment family
described later in this Note.

Line Layout Control

Comments: LineLayoutOn, LineLayoutOff, ClientLineLayout

Developer Technical Support July 1992

Macintosh Technical Notes

When drawing to a printing grafPort, the selected printer driver does a lot of work “behind
the scenes” to try to maintain the infamous “What-You-See-Is-What-You-Get”
(WYSIWYG) from the screen to the paper, and generally to make the printed output look as
good as possible. Depending on the target device, the printer driver, and the configuration of
fonts in the system, the font you draw text with may be scaled, smoothed, remapped, or even
replaced by a font built into the printer. In nearly all cases where the device resolution of the
printer is different from QuickDraw’s “hardcoded” 72 dpi screen resolution, the width of text
rendered on the printer is not the same as the text width on the screen. This is due to
nonproportionally scaling bitmap fonts, different character widths after font substitution, and
rounding errors of fractional character widths on the screen. The difference in the width of a
line of text is called the line layout error.

The printer driver is responsible for adjusting the word and character spacing in the printed
output so that the two widths are identical. If it doesn’t, apparently fully justified text on the
screen may appear ragged on the paper, and certain lines of text may extend beyond the
right border and be badly clipped. Many existing applications make this task really difficult
for the printer drivers (don’t blame them, though!). They position the words (or even
characters) separately on a line, and the printer driver has to figure out how to collect the
complete line before applying its line layout algorithm to distribute the difference of the text
widths into word and character spacing. Given the uneven distribution of the character width
differences, and the requirement of achieving good typographical quality in the printed
output, it is unavoidable that the position and width of a word within a justified line differs
slightly from what appears on the screen; only the length of the whole line is maintained.

There are situations, however, where the printer driver’s line layout algorithm has effects
that do not meet the intentions of the application programmer. Music applications that draw
notes or other music symbols using characters from a font (like Sonata) definitely don’t want
to have the printer driver take care of line layout! Similarly, printing mathematical formulas
and equations requires precise placement of each symbol rather than automatic line layout
adjustment. Examples in less artistic environments include tables with columns of vertically
aligned text entries (or formatted programming source code . . .); they better not be
submitted to the printer driver’s zealous word shifting for line layout purposes.

The LineLayoutOff picture comment turns much of the printer driver’s line layout
adjustment off. Text will be printed using the default character and word spacing as built into
the font used by the printer, regardless of differences with the original font used on the
screen. This allows the application to better control the placement of words and characters
on a line—at least, in principle. Not so surprisingly, the LineLayoutOn picture comment
is meant to reactivate the printer driver’s line layout algorithm.

The ClientLineLayout picture comment, supported by the (PostScript) LaserWriter
driver, has never been documented. Its effect is rather subtle and very specific to the
PostScript LaserWriter driver. Basically, it allows the application to redefine the character
that absorbs the major part of the line layout error (usually the space character), and the

Developer Technical Support July 1992

Macintosh Technical Notes

percentages of the “major” and “minor” parts of the line layout error (usually 80% versus
20%). The “minor” part is distributed across intercharacter spacing.

Only very ambitious page layout applications might be interested in this functionality; but
usually, they prefer designing their own line layout scheme and generating their own
PostScript code. It is conceivable that applications for non-Roman scripts with a word
delimiter different from ASCII $20 might want to use this picture comment, but then again,
they should rather aim at a more general scheme of line layout control that does not rely
upon this very driver-specific picture comment.

Developer Technical Support July 1992

Macintosh Technical Notes

The PicComment.p interface (see the Appendix) describes the TClientLLRecord
structure passed through the handle parameter to the picture comment. Feel free to
experiment with it, by including the ClientLineLayout picture comment in the sample
code below. Note, however, that we do not recommend that you use this picture comment in
your application.

The following piece of code can be used to observe the line layout activity of a printer
driver. For noticeable effects, choose fonts such that the printer driver will substitute printer
fonts with different character widths (like New York), or bitmap fonts with character widths
nonproportional to the point size (like bitmap Courier), and change the font sizes. A printer
driver has no line layout problems with TrueType fonts, unless it has the same name (and
different character widths) as a printer-resident PostScript font. You may also want to add
instructions like SetFractEnable(TRUE) and compare the results for different versions
of the LaserWriter driver (see “Caveats” below).

PROCEDURE ObserveLineLayout;

 CONST
 testString1 = 'Whatever you like, preferably ';
 testString2 = 'with spaces, long and short words';
 fontName = 'New York';
 fontSize = 14;
 x0 = 20; { starting point }
 y0 = 40;
 h = 30; { line height }

 VAR
 familyID: Integer;
 w, y : Integer;

 BEGIN
 GetFNum(fontName,familyID);
 TextFont(familyID);
 TextSize(fontSize);

 w := StringWidth(testString1);
 y := y0;
 MoveTo(x0 + w, y - h);
 Line(0, 4 * h); { This is to estimate the difference. }

 MoveTo(x0, y); { Here is the default behavior. }
 DrawString(testString1);
 MoveTo(x0 + w, y);
 DrawString(testString2);
 y := y + h;

 PicComment(LineLayoutOff, 0, NIL);

{ ••• (1) - see below, under "String Delimitation" •••}
 MoveTo(x0, y);
 DrawString(testString1);
 MoveTo(x0 + w, y);
{ ••• (2) - see below, under "String Delimitation" •••}

 FlushGrafPortState; {••• Try with and without! •••}

 DrawString(testString2);
 y := y + h;

 PicComment(LineLayoutOn, 0, NIL);
 { Back to the original behavior ? }

Developer Technical Support July 1992

Macintosh Technical Notes

 MoveTo(x0, y);

Developer Technical Support July 1992

Macintosh Technical Notes

 DrawString(testString1);
 MoveTo(x0 + w, y);
 DrawString(testString2);

 END;

And this is (approximately) the output of the ObserveLineLayout (with LaserWriter driver version 7.1.1, and the default setting “Font
Substitution enabled”). Each line is drawn in two pieces (testString1 and testString2). Line layout is turned off before the second line,

and turned on again for the third line.

Whatever you like, preferably with spaces, long and short words
(aaa)

Whatever you like, preferably with spaces, long and short words
(aaa)

Whatever you like, preferably with spaces, long and short words

Figure 1 With FlushGrafPortState

Whatever you like, preferably with spaces, long and short words
(aaa)

Whatever you like, preferably with spaces, long and short words
(aaa)

Whatever you like, preferably with spaces, long and short words

Figure 2 Without FlushGrafPortState

The PostScript LaserWriter driver substitutes Times for New York. But New York (on the screen) is larger than Times, and the driver distributes
the line layout error among the word spacings and, to a much lesser extent, among the intercharacter spacing. Note that the beginning of the
testString2 ("with spaces, ...") is slightly moved to the left in lines 1 and 3. The LaserWriter driver heuristically concludes that
testString1 and testString2 belong to the same line, and applies the distribution of the line layout error to the concatenated string. It
appears that the driver deliberately ignores the MoveTo(x0+w,y) instruction; figure 2 demonstrates this quite clearly in the second line,
where the LineLayoutOff picture comment has been issued. LineLayoutOff does not disable the driver's attempt to collect the
arguments of separate text drawing instructions into one logically coherent piece of text. This behavior is necessary to assure that indices or
exponents in the text appear at the right horizontal position. Figure 1 shows that FlushGrafPortState after a MoveTo always guarantees
precise text placement.

Caveats

• As demonstrated above, LineLayoutOff does not guarantee precise text placement, as you might expect. The driver just stops to preserve

the text width as measured on the screen, and uses the default character widths of the printer font. In practice, this means that even when placing
characters or words separately, the LaserWriter driver may shift them

Developer Technical Support July 1992

Macintosh Technical Notes

horizontally because it supposes that they are part of the same text run, and prints them as contiguous text. Flushing the GrafPort state after each
MoveTo guarantees precise placement. Unfortunately, this creates a lot of overhead for all printer drivers, and affects their performance.

• Some (older) printer drivers supporting the LineLayoutOff picture comment are unable to correctly obey a subsequent LineLayoutOn

picture comment.

• Don’t forget that if you use LineLayoutOff, the burden of “WYSIWYG” is now on your shoulders, and not the printer driver’s.

• The previous version of this Note said that setting the Font Manager’s FractEnable global to TRUE has the same effect as sending the
LineLayoutOff picture comment. As it turned out, the statement was based on observations with a specific (older) version of the
LaserWriter driver, under specific circumstances, and is not true in general. The setting of FractEnable does have some more or less subtle
effects on the line layout algorithm, however; and this is quite plausible. Similarly, the results of combining the picture comments
LineLayoutOff and LineLayoutOn with calls to SpaceExtra (Inside Macintosh Volume I, page 172) or CharExtra (Inside
Macintosh Volume V page 77) are sometimes unpredictable, depending on the particular printer driver.

And Finally the Good News

• Given that the effect of the LineLayoutOff and LineLayoutOn comments does not require any changes in your printing code, you don't
have to worry whether or not a particular driver supports them. If the comment isn’t recognized, the picture renderer will still be able to place
your text as well as it would have without the comment. It’s mainly useful when you’re sure you want no external assistance in computing word
and character spacing for full justification, or when you need precise control over the horizontal placement of words and characters, like in
forms or tabulated text, and understand how to achieve this.

• Regarding the first “caveat” above, you must not necessarily call FlushGrafPortState if you want to turn LineLayout completely
OFF, in placing characters or words separately on a line. There is a better solution: Read on!

String Delimitation

Comments: StringBegin, StringEnd

These comments allow applications to specify the logical beginning and end of a string,
possibly drawn with multiple calls to a QuickDraw text drawing routine (such as
DrawChar). But even when there is only one DrawString between StringBegin and
StringEnd, it is important to notify the printer driver that it should consider the string as
an independent entity. Otherwise, it will continue to perform its heuristic accumulation of
other text drawing instructions for the same line, and defeat your text positioning intentions.
Indeed, both StringBegin and StringEnd trigger the generation of PostScript
instructions for drawing the text that has been accumulated in a line layout buffer, and
reinitialize the internal variables for line layout computations.

If we insert

PicComment(StringBegin,0,NIL);

Developer Technical Support July 1992

Macintosh Technical Notes

in the ObserveLineLayout procedure above, where indicated by {••• (1) ... }, and

PicComment(StringEnd,0,NIL);

where indicated by {••• (2) ... }, and remove the call to FlushGrafPortState, we will
obtain the same output as in Figure 1. In other words, these picture comments are what you
need to turn the LaserWriter driver’s line layout behavior off, and completely so!

Of course, there is still a slight overhead tied to inserting the StringBegin and
StringEnd picture comments, but it is much smaller than calling
FlushGrafPortState, and it is restricted to where it belongs (that is, the PostScript
LaserWriter driver), and does not affect all other printer drivers.

Polygon Comment Family

Comments: PolyBegin, PolyEnd, PolyClose, PolySmooth, PolyIgnore

PostScript has the built-in capability of drawing cubic Bézier curve sections (see the
PostScript Language Reference Manual, Second Edition, page 393). This is convenient for
“smoothing” of polygons. The polygon-related picture comments have been provided to give
applications easy access to this PostScript feature, with provision for including a QuickDraw
approximation of the curve.

Schematically, the polygon comments are used as follows:

PolyBeginComment; { Put the PostScript driver into “polygon mode.” }
ClipRect(zeroRect); { Hide the following from QuickDraw. }
PolyCloseComment; { Optionally, if “closed” smoothing desired. }
PolySmoothComment; { Tell the driver to draw a Bézier curve. }
DrawPolygon; { Invisible for QuickDraw; PostScript output = curve. }
PolyIgnoreComment; { The following line drawing is ignored by the PS driver. }
SetClip(origClipRgn); { Make it visible for QuickDraw. }
DrawQDPolygon; { Usually, a QuickDraw approximation of the curve. }
PolyEndComment; { PostScript driver resumes standard mode. }

A piece of sample code is sometimes worth more than one or two pictures; below, you’ll find
both. For clarity and completeness of the exposition, we provide the coordinate definition of
the polygons through arrays of Points, initialized in a preliminary DefineVertices
procedure. You can enclose the PolygonDemo procedure between OpenPicture and
ClosePicture calls to create a picture containing both QuickDraw and PostScript
representations (see Figures 3 and 4), or you can call it as is when a printing page is open.

 USES PicComments;
 { See Appendix of this Note, for the definition of the TPolyRec structure. }

Developer Technical Support July 1992

Macintosh Technical Notes

 CONST
 kN = 4; { number of vertices for PostScript}
 kM = 6; { number of vertices for QuickDraw approximation }

 TYPE
 PointArray = array[0..0] of Point; { Range checking OFF }
 PointArrayPtr = ^PointArray;

Developer Technical Support July 1992

Macintosh Technical Notes

PROCEDURE DefineVertices(VAR p,q: PointArrayPtr);

 CONST
 cx = 280;
 cy = 280;
 r0 = 200;

 BEGIN
 { The array p^ contains the array of the control points for the Bézier curve: }
 SetPt(p^[0],cx + r0,cy);
 SetPt(p^[1],cx,cy + r0);
 SetPt(p^[2],cx - r0,cy);
 SetPt(p^[3],cx,cy - r0);
 p^[4] := p^[0];
 { q^ contains the points for a crude polygon approximation of the curve: }
 q^[0] := p^[0];
 SetPt(q^[1],cx,cy + round(0.7 * (p^[1].v - cy)));
 SetPt(q^[2],(p^[1].h + p^[2].h) DIV 2,(p^[1].v + p^[2].v) DIV 2);
 SetPt(q^[3],cx + round(0.8 * (p^[2].h - cx)),cy);
 SetPt(q^[4],q^[2].h,cy + cy - q^[2].v);
 SetPt(q^[5],q^[1].h,cy + cy - q^[1].v);
 q^[6] := q^[0];
 END;

PROCEDURE PolygonDemo;

 VAR
 p,q: PointArrayPtr;
 aPolyVerbH: TPolyVerbHdl;
 i: Integer;
 clipRgn, polyRgn: RgnHandle;
 zeroRect: Rect;

 BEGIN
 p := PointArrayPtr(NewPtr(SizeOf(Point) * (kN + 1)));
 q := PointArrayPtr(NewPtr(SizeOf(Point) * (kM + 1)));
 IF (p = NIL) OR (q = NIL) THEN DebugStr('NewPtr failed');
 DefineVertices(p,q);

 PenNormal; { First show the standard QuickDraw polygon }
 MoveTo(p^[0].h,p^[0].v);
 FOR i := 1 TO kN DO LineTo(p^[i].h,p^[i].v);

 PenSize(2,2); { Now the same polygon "smoothed" }
 PenPat(gray);
 { First, the PostScript representation, clipped off from QuickDraw: }
 aPolyVerbH:= TPolyVerbHdl(NewHandle(SizeOf(TPolyVerbRec)));
 IF aPolyVerbH<> NIL THEN
 WITH aPolyRecH^^ DO BEGIN { ••• see comment 1. below ••• }
 fPolyFrame := TRUE;
 fPolyFill := FALSE;
 fPolyClose := FALSE; { compare with the result for TRUE ! }
 f3 := FALSE;
 f4 := FALSE;
 f5 := FALSE;
 f6 := FALSE;
 f7 := FALSE;
 END;
 MoveTo(p^[0].h,p^[0].v); { ••• see comment 2. below ••• }
 PicComment(PolyBegin,0,NIL);
 { PicComment(PolyClose,0,NIL); <<< only if fPolyClose = TRUE, above! }
 PicComment(PolySmooth,SizeOf(TPolyVerbRec),Handle(aPolyVerbH));
 clipRgn := NewRgn;
 GetClip(clipRgn);
 ClipRect(zeroRect);
 FOR i := 1 TO kN DO LineTo(p^[i].h,p^[i].v);

Developer Technical Support July 1992

Macintosh Technical Notes

 { Next, the -crude- QuickDraw approximation of the smoothed polygon, }
 { invisible for PostScript because of PolyIgnore: }
 SetClip(clipRgn);
 PicComment(PolyIgnore,0,NIL);
 polyRgn := NewRgn; { ••• see comment 3. below ••• }
 OpenRgn;
 MoveTo(q^[0].h,q^[0].v);
 FOR i := 1 TO kM DO LineTo(q^[i].h,q^[i].v);
 CloseRgn(polyRgn);
 FrameRgn(polyRgn); { or FillRgn, if fPolyFill above is TRUE }
 PicComment(PolyEnd,0,NIL);

 DisposHandle(Handle(aPolyVerbH));
 DisposeRgn(polyRgn);
 DisposPtr(Ptr(p));
 DisposPtr(Ptr(q));
 END;

Figure 3 Output on QuickDraw Printer Figure 4 Output on PostScript Printer

Additional Comments and Explanations

1. The fPolyFrame and fPolyFill fields of the TPolyRec record are self-explanatory. The fPolyClose flag is redundant with the
PolyClose picture comment, but is included for the convenience of the LaserWriter driver. It is often misunderstood. It does not mean the
polygon is being closed automatically, like with the PostScript closepath operator; instead, it affects the shape of the smooth curve. Figure 4
above shows the result for fPolyClose = FALSE; the start and end point of the polygon is distinguished. In the case of fPolyClose =
TRUE, all vertices of the polygon are treated in the same manner, and the resulting curve resembles a circle (in this case).

2. The anonymous fields f3..f7 are reserved and should be set to zero (that is, FALSE).

3. The polygon will be drawn at the current pen location when the PolyBegin comment is received.

Developer Technical Support July 1992

Macintosh Technical Notes

4. In general (and in this example), you do not need to open a region, collect the line segments in the region, and draw the polygon through
FrameRgn. It is demonstrated here only to prepare you for the situation where you want to fill the polygon with a pattern. You cannot open a
polygon and use FillPoly, because the PostScript driver “owns” the polygon concept at this point and captures—and ignores—all line
drawing between the PolyIgnore and PolyEnd comment. Regions do not interfere with polygons, however, and can be used to paint or fill
the polygonal shape.

Caveat (only one)

PostScript Level 1 has problems with very large polygons (more than about 1000 points). The workaround is to subdivide the large polygon into
several smaller ones.

Dashed Lines

Comments: DashedLine, DashedStop

PostScript allows applications to draw precisely dashed lines with a given dash pattern in
every direction (see the setdash operator, PostScript Language Reference Manual, Second
Edition, page 500). The QuickDraw Ersatz of setting the pen pattern appears to be awkward
at best; the result depends very much upon the direction of the line. Coding correctly dashed
lines in QuickDraw is quite a hassle and rather clumsy. This is why the DashedLine and
DashedStop picture comments have been provided for applications where dashed lines
are important and used frequently. Applications can take advantage of these comments when
printing to a PostScript printer .

The DashedLine comment tells the driver that the line drawing instructions following the
comment should be dashed according to the parameters in the TDashedLine structure
(compare. the Appendix “Interfaces for Picture Comments”). These parameters closely
correspond to the parameters passed to the PostScript setdash operator. Only the
centered field of the TDashedLine structure is not currently supported by the
LaserWriter driver. For now, it should be set to 0 in case support for centering is added in the
future.

The interesting question relating to this picture comment is again, how can both QuickDraw
and PostScript representations be included in the same picture? We have already learned that
the PostScriptBegin - PostScriptEnd bracket is perfect for hiding the QuickDraw
imaging from being printed on a PostScript device. But we still need a trick to hide the line
drawing instruction that produces the dashed lines in the PostScript output from QuickDraw.
Here comes the “magic pen mode” to our rescue:

PROCEDURE DashDemo;

 CONST
 magicPen = 23; { the infamous penMode ! }
 cx = 280;
 cy = 280;
 r0 = 200;

 VAR
 dashHdl: TDashedLineHdl;
 i: Integer;
 a, rad : Extended;

Developer Technical Support July 1992

Macintosh Technical Notes

 BEGIN
 PenSize(2,2);
 { First the PostScript picture comment version. }
 { The "magic pen mode" 23 makes the line drawing invisible for QuickDraw. }
 PenMode(magicPen);
 dashHdl := TDashedLineHdl(NewHandle(SizeOf(TDashedLineRec)));
 IF dashHdl <> NIL THEN
 WITH dashHdl^^ DO BEGIN
 offset := 4; { just for fun}
 centered := 0; { currently ignored - set to 0 }
 numIntvls := 2; { number of interval specs }
 intervals[0] := 4;
 intervals[1] := 6; { this means 4 points on, 6 points off }
 PicComment(DashedLine, SizeOf(TDashedLineRec), Handle(dashHdl));
 END;
 rad := 3.14159 / 180; { conversion degrees -> radians }
 FOR i := 0 TO 9 DO BEGIN { draw some dashed lines }
 a := i * 20 * rad;
 MoveTo(cx, cy);
 Line(round(r0 * cos(a)), - round(r0 * sin(a)));
 END;
 PicComment(DashedStop, 0, NIL); { That's enough! }
 DisposHandle(Handle(dashHdl));
 PenMode(srcOr); { No magic any more. }

 { Now, the QuickDraw version. The PostScript driver must ignore it, }
 { so we enclose it between PostScriptBegin and PostScriptEnd comments.}
 PicComment(PostScriptBegin, 0, NIL);
 PenSize(2,2);
 FOR i := 0 TO 9 DO BEGIN
 MoveTo(cx,cy);
 DashedQDLine(round(r0 * cos(i * 20 * rad)),
 - round(r0 * sin(i * 20 * rad)), dashHdl);
 END;
 PicComment(PostScriptEnd,0,NIL);
 END;

But where is the DashedQDLine procedure? Well, that’s another story. It’s not precisely
the subject of this Note, and thus, again, is left as a spare-time exercise for the reader. For the
sake of testing, I used the following placeholder:

PROCEDURE DashedQDLine(dx,dy: Integer; dashSpec: TDashedLineHdl);

 VAR
 oldPat: Pattern;

 BEGIN
 oldPat := thePort^.pnPat;
 PenPat(gray);
 Line(dx,dy);
 PenPat(oldPat);
 END;

Caveat

As mentioned earlier in the section “General Caveats,” the current version of the PostScript LaserWriter driver produces poor results
when the DashedLine picture comment is applied to polygons.

Developer Technical Support July 1992

Macintosh Technical Notes

Fractional Line Width

Comment: SetLineWidth

QuickDraw’s design is based on a fixed 72 dpi resolution. Even when printing to a high-
resolution device, the Printing Manager presents the printing port, corresponding to the
printable area of the page, in the integer-valued QuickDraw coordinate system with 72 dpi.
(Applications can use PrGeneral to image at higher device resolutions (see Inside Macintosh
Volume V, page 410) but this is mainly useful for immediate printing. As a consequence,
lines are usually always at least one pixel wide, corresponding to the smallest pen size (1,1).
For a 300 dpi device like the LaserWriter, this is disappointing.

The SetLineWidth comment allows an application to set the width of a line to any
fractional value, in particular to values less than a QuickDraw pixel width of 1/72 inch. A
value of 1/4 approximately corresponds to a “hairline” on a 300 dpi LaserWriter. Curiously
(but conveniently), a QuickDraw Point structure is passed in the PicComment’s data
handle, the vertical coordinate representing the denominator, and the horizontal coordinate
the numerator of the fraction.

Unfortunately, it is not implemented in all high-resolution QuickDraw printers; and if it is
(like in the LaserWriter SC), it works differently than in PostScript printer drivers. You must
be careful to support both implementations. The difference appears as soon as
SetLineWidth is used for the second time.

The PostScript LaserWriter driver keeps an internal line scaling factor; this factor is
initialized to 1.0 when a job is started. Each number passed through SetLineWidth is
multiplied by the current internal scaling factor to get the effective scaling factor for the pen
size.

The LaserWriter SC driver, on the other hand, replaces its current scaling factor for the pen
size completely by the new value passed through SetLineWidth.

In order to support both implementations, you must always use an additional
SetLineWidth step in order to reset the PostScript driver line width to 1.0, before scaling
to the new value.

Example

Let’s say you have set the line width to 0.25, and want to replace it by a line width of 0.5.
The following two SetLineWidth comments will have the desired effect on both
PostScript (PS) and QuickDraw (QD) drivers that implement the SetLineWidth
comment. You don’t care about the temporary line width of 4.0 on the QuickDraw driver.

Current Line Width Parameter Passed New Line Width
PS driver QD driver in SetLineWidth PS DriverQD Driver

Developer Technical Support July 1992

Macintosh Technical Notes

0.25 0.25 4/1 1.0 4.0
1.0 4.0 1/2 0.5 0.5

If the SetLineWidth picture comment is not implemented on the chosen printer driver,
nothing happens to the pen size. Instead of hairlines, you’ll get the ordinary 1/72 inch
thickness; and if you use the SetLineWidth comment to specify lines thicker than the
standard one pixel width, they will still be drawn with the previous, nonscaled pen size if the
comment is unsupported. There is no reasonable way out of this dilemma, other than to

Developer Technical Support July 1992

Macintosh Technical Notes

special case your printing code for a PostScript driver (which is not recommended), or to use
PrGeneral and to image at device resolution, without using the SetLineWidth
comment at all.

The following sample code currently gives the expected results only on a PostScript
LaserWriter, and with QuickDraw printer drivers that have the SetLineWidth comment
implemented.

PROCEDURE SetNewLineWidth(oldWidth,newWidth: TLineWidth);

 VAR
 tempWidthH: TLineWidthHdl;

 BEGIN
 tempWidthH := TLineWidthHdl(NewHandle(SizeOf(TLineWidth)));
 { If tempWidthH = NIL we are screwed anyway }
 tempWidthH^^.v := oldWidth.h;
 tempWidthH^^.h := oldWidth.v;
 PicComment(SetLineWidth,SizeOf(TLineWidth),Handle(tempWidthH));
 tempWidthH^^ := newWidth;
 PicComment(SetLineWidth,SizeOf(TLineWidth),Handle(tempWidthH));
 DisposHandle(Handle(tempWidthH));
 END;

PROCEDURE LineWidthDemo;

 CONST
 y0 = 50; { topleft of demo }
 x0 = 50;
 d0 = 440; { length of horizontal lines }
 e0 = 5; { distance between lines }
 kN = 5; { number of lines }
 VAR
 oldWidth,newWidth: TLineWidth; { actually a "Point" }
 i,j,y: Integer;

 BEGIN
 PenNormal;
 y := y0;
 SetPt(oldWidth,1,1); { initial linewidth = 1.0 }
 FOR i := 1 TO 5 DO BEGIN
 SetPt(newWidth,4,i);
 { want to set it to i/4 = 0.25, 0.50, 0.75 ... }
 SetNewLineWidth(oldWidth,newWidth);
 MoveTo(x0, y);
 Line(d0, 0);
 y := y + e0;
 oldWidth := newWidth;
 END;
 END;

A Slight Imperfection

If you experiment with the above code and draw a whole series of
hairlines, you will see (depending on the values of e0 and kN) that
certain lines appear thicker than they should be. This is due to
rasterization effects in PostScript’s scan conversion algorithm when the
line width is close to the device pixel size. In many cases, the PostScript
Developer Technical Support July 1992

Macintosh Technical Notes

LaserWriter driver tries to compensate for this by rounding coordinates
to the 300 dpi grid. If you include SetLineWidth (or, by the way,
DashedLine) picture comments, however, this does not work.
PostScript Level 2 addresses this problem by means of an optional
stroke adjustment

Developer Technical Support July 1992

Macintosh Technical Notes

feature (see the PostScript Language Reference Manual, Second
Edition, pages 322 and 515).

Graphics Rotation

Comments: RotateBegin, RotateCenter, RotateEnd

Like the picture comments discussed earlier in this Note in the section “Text Rotation,” the
graphics rotation picture comments provide a method of rotating QuickDraw objects on
PostScript devices. Instead of having QuickDraw perform the rotation, the picture interpreter
(usually the LaserWriter driver) rotates the entire PostScript coordinate space so that
everything drawn between RotateBegin and RotateEnd will be rotated on the printer
itself. This includes text drawing! You specify the center of rotation with RotateCenter
and the angle of the rotation, together possibly with horizontal or vertical flipping, through
the TRotation record (see the interface definitions in the Appendix).

Unlike in text rotation, you must insert the RotateCenter comment and pass the relative
offset to the center of rotation before you use the RotateBegin picture comment. The
point passed to RotateCenter specifies the offset from the anchor point of the first object
drawn after RotateBegin to the desired center of rotation. Once you set up the rotation
parameters with RotateCenter and RotateBegin, you can draw the graphics objects
you want to rotate.

In order to hide the unrotated QuickDraw objects between RotateBegin and
RotateEnd, we’ll use the “magic pen mode” (23) again. To complete the dual
QuickDraw/PostScript representation, draw the rotated QuickDraw image with CopyBits
(preferably at maximum printer resolution determined by PrGeneral) inside
PostScriptBegin and PostScriptEnd comments so that the QuickDraw
representation won’t show up on PostScript devices. The following sample demonstrates
this.

PROCEDURE QDRotatedRect(r: Rect; ctr: Point; angle: Integer);
 BEGIN
 { An exercise again - this one is easy ... }
 { Rotates the four points of the rectangle by "angle" }
 { around the center obtained by adding the point "ctr" }
 { as offset to r.topLeft, and draws the rotated Rect. }
 END;

PROCEDURE PSRotatedRect(r: Rect; offset: Point; angle: Integer);
{ Does the rectangle rotation for the PostScript LaserWriter driver. }
{ Uses the RotateCenter, RotateBegin and RotateEnd picture comments, }
{ and the "magic" pen mode 23 to hide the drawing from QuickDraw. }

 CONST
 magicPen = 23;

 VAR
 rInfo: TRotationHdl;

Developer Technical Support July 1992

Macintosh Technical Notes

 rCenter: TCenterHdl;
 oldPenMode: Integer;

 BEGIN
 rInfo := TRotationHdl(NewHandle(SizeOf(TRotationRec)));
 rCenter := TCenterHdl(NewHandle(SizeOf(TCenterRec)));
 IF (rInfo = NIL) OR (rCenter = NIL) THEN DebugStr('NewHandle failed');

Developer Technical Support July 1992

Macintosh Technical Notes

 WITH rInfo^^ DO BEGIN
 rFlip := 0;
 rAngle := - angle;
 rAngleFixed := BitShift(LongInt(rAngle),16);
 END;

 WITH rCenter^^ DO BEGIN
 x := Long2Fix(offset.h);
 y := Long2Fix(offset.v);
 END;

 MoveTo(r.left,r.top);
 FlushGrafPortState;
 PicComment(RotateCenter,SizeOf(TCenterRec),Handle(rCenter));
 PicComment(RotateBegin,SizeOf(TRotationRec),Handle(rInfo));

 oldPenMode := thePort^.pnMode;
 PenMode(magicPen);
 FrameRect(r);
 PenMode(oldPenMode);

 PicComment(RotateEnd,0,NIL);

 DisposeHandle(Handle(rInfo));
 DisposeHandle(Handle(rCenter));
 END;

PROCEDURE RotateDemo;

 CONST
 angle = 30;

 VAR
 spinRect: Rect;
 delta: Point;

 BEGIN
 SetRect(spinRect,100,100,300,200);
 WITH spinRect DO SetPt(delta,(right - left) DIV 2,(bottom - top) DIV 2);

 PenSize(2,2);
 PenPat(ltGray);
 FrameRect(spinRect); { show the unrotated square }
 PenNormal;

 PSRotatedRect(spinRect,delta,angle);

{ QuickDraw equivalent of the rotated object, hidden from PostScript driver }
{ because of PostScriptBegin and PostScriptEnd }

 PicComment(PostScriptBegin,0,NIL);
 QDRotatedRect(spinRect,delta,angle);
 PicComment(PostScriptEnd,0,NIL);

 END;

PostScript Comments

Comments: PostScriptBegin, PSBeginNoSave, PostScriptEnd,
PostScriptHandle

Developer Technical Support July 1992

Macintosh Technical Notes

The PostScript comments tell the picture interpreter (usually the LaserWriter driver) that the
application is going to communicate with the LaserWriter directly using PostScript code
instead of QuickDraw. All QuickDraw drawing instructions between the
PostScriptBegin and PostScriptEnd picture comments are ignored. The driver
sends the PostScript text contained in the PostScriptHandle data to the printer with no
preprocessing and no error checking. When the application is finished sending PostScript,
the PostScriptEnd comment tells the printer driver to resume normal QuickDraw mode.
The driver uses the PostScript save and restore operators to preserve the state of the
PostScript interpreter across the section enclosed by PostScriptBegin and
PostScriptEnd. Some applications do not want to restore the previous state of the
PostScript interpreter after including their PostScript code; for these situations, the
PSBeginNoSave comment is a replacement for PostScriptBegin that does not
preserve the state. Clearly, this comment should be used with extreme caution.

Some state information may be stored in global variables, so nesting
PostScriptBegin (or PSBeginNoSave) and PostScriptEnd comments is not
allowed.

The PostScriptHandle comment gives developers direct access to PostScript from
applications. Instead of having the LaserWriter driver convert QuickDraw calls into the
corresponding PostScript code, the application can generate its own PostScript, and transmit
it to the printer or include it in a picture through the data handle of the PicComment
procedure. The handle contains pure ASCII text; the valid length of the data is specified in
the PicComment’s size parameter. Don’t forget to terminate the PostScript text at least
with a space character, or better with a carriage return (ASCII $0D), so that it is separated
from the following PostScript instructions (either yours, or the printer driver’s).

You must still use PostScriptBegin (or PSBeginNoSave) and PostScriptEnd
around PostScriptHandle comments or the LaserWriter driver will not properly save
and restore the PostScript drawing environment.

As with all picture comments, the handle you pass belongs to you and you must dispose of it
when you’re finished with it.

PROCEDURE PostScriptLine(s: Str255);
{ A utility procedure to transmit a string of PostScript code through }
{ the PostScriptHandle picture comment to the PostScript printer. }
{ It should be called only between PostScriptBegin and PostScriptEnd }
{ picture comments. }

 VAR
 h: Handle;

 BEGIN
 h := NewHandle(256);
 IF h = NIL THEN DebugStr('NewHandle failed');
 BlockMove(@s[1],h^, Length(s));
 PicComment(PostScriptHandle,Length(s), h);
 h^^ := 13;
 PicComment(PostScriptHandle, 1, h); { add a carriage return }
 DisposeHandle(h);

Developer Technical Support July 1992

Macintosh Technical Notes

 END;

PROCEDURE PostScriptComments;

 BEGIN
 { First, the simple example: }
 PicComment(PostScriptBegin,0,NIL);

Developer Technical Support July 1992

Macintosh Technical Notes

 PostScriptLine('100 100 moveto 0 100 rlineto 100 0 rlineto ');
 PostScriptLine('0 -100 rlineto -100 0 rlineto');
 PostScriptLine('stroke');
 MoveTo(30,30);
 DrawString('This text does not appear on PostScript devices');
 PicComment(PostScriptEnd,0,NIL);

 { Now, a new PostScript definition you want to keep in the }
 { userdict. If you used PostScriptBegin, the definition would }
 { be lost when PostScriptEnd is encountered, because the state }
 { previous to the PostScriptBegin comment would be restored. }
 PicComment(PSBeginNoSave,0,NIL);
 PostScriptLine('userdict begin');
 PostScriptLine('/myFrameRect {');
 PostScriptLine('250 250 moveto 0 100 rlineto');
 PostScriptLine('200 0 rlineto 0 -100 rlineto -200 0 rlineto ');
 PostScriptLine('stroke } def');
 PostScriptLine('end');
 PicComment(PostScriptEnd,0,NIL);

 { Let's test if the definition from above is still available. }
 { This assumes that no font downloading has occurred. }

 PicComment(PostScriptBegin,0,NIL);
 PostScriptLine('//userdict /myFrameRect get exec ');
 PicComment(PostScriptEnd,0,NIL);
 END;

FormsPrinting Picture Comments

Comments: FormsPrinting, EndFormsPrinting

The FormsPrinting comment tells the PostScript LaserWriter driver not to clear its page
buffer after printing a page. EndFormsPrinting turns this mode off. When the page is
completed, the application must erase the areas that need to be updated and draw the new
information. The graphics that make up the form are drawn only once per page, which may
improve performance. — Currently, you need to write special printing code for the
PostScript LaserWriter driver, if you want to use this comment.

(More or Less) Obsolete PostScript Picture Comments

Comments: SetGrayLevel,
TextIsPostScript, ResourcePS, PostScriptFile

The SetGrayLevel picture comment was designed to provide access to the PostScript
setgray operator while still drawing with QuickDraw in black and white mode. In
practice, this turned out to be not so useful, however. For most drawing operations, the
printer driver sets the gray level to match the foreground color currently stored in the
printing grafPort, and the effect of the SetGrayLevel comment is often unpredictable.
If direct access to the PostScript setgray operator seems nevertheless desirable, it is easy
to include the instruction in a PostScriptHandle comment.

The TextIsPostScript picture comment has all text drawn through standard

Developer Technical Support July 1992

Macintosh Technical Notes

QuickDraw text drawing calls (DrawChar, DrawString, DrawText, and anything else
that eventually calls the StdText bottleneck) be interpreted as PostScript instructions.
There is no good reason to use this picture comment, but there is one important reason not to
use it:

Developer Technical Support July 1992

Macintosh Technical Notes

Printer drivers that do not deal with the TextIsPostScript comment will print the
PostScript text instead of interpreting it! If you need to transmit pure PostScript code directly
to a printer that understands it, use the PostScriptHandle comment, and include a
QuickDraw representation for all other printer drivers.

The ResourcePS picture comment loads PostScript code from a specified resource. The
resource file is expected to be open at the time that the ResourcePS comment is used.
Under MultiFinder or System 7, there are no guarantees the file will still be open when the
Printing Manager needs it. Background printing makes this even more complicated, to the
point where the comment is not supported when background printing is enabled. For this
reason alone, you should write a small routine that loads the resources from the file and
sends their contents using the PostScriptHandle comment described earlier in this
Note.

PostScriptFile has the same problems as ResourcePS described above. Basically,
the Printing Manager cannot guarantee that the file will be available when it’s needed.

Appendix: Pascal Interface for Picture Comments

(File PicComments.p)

CONST
 TextBegin = 150;
 TextEnd = 151;
 StringBegin = 152;
 StringEnd = 153;
 TextCenter = 154;
 LineLayoutOff = 155;
 LineLayoutOn = 156;
 ClientLineLayout = 157;
 PolyBegin = 160;
 PolyEnd = 161;
 PolyIgnore = 163;
 PolySmooth = 164;
 PolyClose = 165;
 DashedLine = 180;
 DashedStop = 181;
 SetLineWidth = 182;
 PostScriptBegin = 190;
 PostScriptEnd = 191;
 PostScriptHandle = 192;
 PostScriptFile = 193;
 TextIsPostScript = 194;
 ResourcePS = 195;
 PSBeginNoSave = 196;
 SetGrayLevel = 197;
 RotateBegin = 200;
 RotateEnd = 201;
 RotateCenter = 202;
 FormsPrinting = 210;
 EndFormsPrinting = 211;

 { Values for the tJus field of the TTxtPicRec record }
 tJusNone = 0;
 tJusLeft = 1;
 tJusCenter = 2;
 tJusRight = 3;
 tJusFull = 4;

 { Values for the tFlip field of the TTxtPicRec record }
Developer Technical Support July 1992

Macintosh Technical Notes

 tFlipNone = 0;
 tFlipHorizontal = 1;

Developer Technical Support July 1992

Macintosh Technical Notes

 tFlipVertical = 2;

TYPE
 TTxtPicHdl = ^TTxtPicPtr;
 TTxtPicPtr = ^TTxtPicRec;
 TTxtPicRec = PACKED RECORD
 tJus : Byte;
 tFlip : Byte;
 tAngle: Integer; { clockwise rotation in degrees 0..360 }
 tLine : Byte; { Unused/Ignored }
 tCmnt : Byte; { Reserved }
 tAngleFixed: Fixed; { same as "tAngle" in Fixed precision }
 END; { TTxtPicRec }

 TRotationHdl = ^TRotationPtr;
 TRotationPtr = ^TRotation;
 TRotationRec = RECORD
 rFlip: Integer;
 rAngle: Integer; { Clockwise rotation in degrees 0..360 }
 rAngleFixed: Fixed; { same as "rAngle" in Fixed precision }
 END; { TRotationRec }

 TCenterHdl = ^TCenterPtr;
 TCenterPtr = ^TCenter;
 TCenterRec = RECORD {offset from current pen location to center of rotation}
 y: Fixed;
 x: Fixed;
 END; { TCenterRec }

 TPolyVerbHdl = ^TPolyVerbPtr;
 TPolyVerbPtr = ^TPolyVerbRec;
 TPolyVerbRec = PACKED RECORD
 f7,f6,f5,f4, f3, { Reserved }
 fPolyClose, { TRUE = smoothing works across endpoint }
 fPolyFill, { TRUE = Polygon should be filled }
 fPolyFrame: BOOLEAN; { TRUE = Polygon should be framed }
 END;

 TDashedLineHdl = ^TDashedLinePtr;
 TDashedLinePtr = ^TDashedLineRec;
 TDashedLineRec = PACKED RECORD
 offset : SignedByte; { Offset into pattern for first dash }
 centered : SignedByte; { (Ignored) }
 numIntvls: SignedByte; { Number of intervals }
 intervals: ARRAY [0..5] { Array of dash intervals }
 OF SignedByte;
 END;

 TLineWidthHdl = ^TLineWidthPtr;
 TLineWidthPtr = ^TLineWidth;
 TLineWidth = Point; { v = numerator, h = denominator }

 TClientLLHdl = ^TClientLLPtr; { used in the ClientLineLayout picture comment }
 TClientLLPtr = ^TClientLLRec;
 TClientLLRec = RECORD
 chCount : Integer; { Apply for so many characters. }
 major : Fixed; { Percentage of line layout error to be }
 { distributed among space characters. }
 spcChar : Integer; { Code of character that is to absorb }
 { the "major" line layout error. }
 minor : Fixed; { Percentage of intercharacter distrib. }
 ulLength: Fixed; { Underline length. }
 END;

Developer Technical Support July 1992

Macintosh Technical Notes

Further Reference:
• PostScript Language Reference Manual, Adobe Systems Inc.
• Inside Macintosh, Volumes II, V, and VI
• LaserWriter Reference Manual, Addison-Wesley
• Macintosh Technical Note M.IM.AppPictComments —

Every Picture [Comment] Tells Its Story, Don’t It?
• Macintosh Technical Note M.IM.PictAndPrinting —

Pictures and the Printing Manager
• develop Issue 3, “Meet PrGeneral” by Pete “Luke” Alexander

Adobe is a trademark of Adobe Systems, Incorporated.
PostScript and Sonata are registered trademarks of Adobe Systems Incorporated.

Developer Technical Support July 1992

