Modifying the Standard String Comparison

Technical Note TEO7

Modifying the Standard String Comparison

CONTENTS
General Structure
The Init Procedure

The Fetch Procedure

The Project Procedure

The Vernier Procedure

Installing an itl2 resource

References

Downloadables

This technical note describes how to modify
the standard string comparison by
constructing an i t | 2 resource. Developers
may want to modify the standard string
comparison if Apple's comparison doesn't
meet their needs or if Apple has not written a
string comparison routine for the language
that concerns them.

[Mar 01 1988]

General Structure

Thei t | 2 resource contains a number of procedures that are used for accurate comparison of text by the International
Utilities Package. Refer to Inside Macintosh , volume V for an explanation of the algorithm used. The default i t | 2 for
standard English text, which does no special processing, has the following form:

Page: 1

Modifying the Standard String Comparison

If mod

; normal | nclude/ Load statenents
I ncl ude ' hd: mpw: ai ncl udes: Scri pt Equ. a'
Pri nt On, NoMDI r

String Asl s

intll Proc

Wth | USor t Frane, | USt r Dat a
HookDi spat ch
dc. w Ret ur nEQ HookDi spat ch ; InitProc = 0
dc. w Ret ur nEQ HookDi spat ch ; FetchHook = 2
dc. w Ret ur nEQ HookDi spat ch ; Verni erHook = 4
dc. w Ret ur nEQ HookDi spat ch ; ProjectHook = 6
dc. w Ret ur nEQ HookDi spat ch ; ReservedHookl = 8
dc. w Ret ur nEQ HookDi spat ch ; ReservedHook2 = 10
; Some common exit points
Ret ur nNE
tst.w M nusOne ; set cc NE
rts
Ret ur nEQ
cnp. w do, do ; set cc EQ
rts
EndWt h
EndWt h
ifications need to be made to the comparison process, then one or more of the dispatches will be modified to point to

different routines:

There

dc. w I ni t Proc- HookDi spat ch ; InitProc = 0
dc. w Fet chPr oc- HookDi spat ch ; FetchHook = 2
dc. w Ver ni er Proc- HookDi spat ch ; Verni erHook = 4

are a number of different changes that can be made to the comparison routines. Some of the common modifications

include:

arwnNpE

Comparing two bytes as one character Yugoslavian "I'" < "lj"" < "m"; Japanese... [InitProc, FetchProc]

Comparing characters in different order Norwegian "z" < "&" [ProjectProc]

Comparing one character as twoh German "a" ~ "ae" [ProjectProc]

Ignoring characters unless strings are otherwise equal: "blackbird" < "black-bird" < "blackbirds™ [ProjectProc]
Changing the secondary orderingh Bibliographic "a" < "A" [VernierProc]

The comparison hook procedures are all assembly language based, with arguments described below. Since the routines may

be call

ed once per character in both strings, the routines should be as fast as possible.

The condition codes are used to return information about the status of the hook routine. Typically the normal processing of
characters will be skipped if the CCRis set to NE, so the default return should always have EQset. Each of these routines
has access to the stack frame (A6) used in the comparison routine, which has the following form:

Page: 2

Modifying the Standard String Comparison Page: 3

| USor t Fr ane Record { ol dA6}, Decr enent

resul t ds. w 1
argTop equ *
astr Text ds. | 1
bSt r Text ds. | 1
astrlLen ds. w 1

bStrLen ds. w 1
argsi ze equ argTop- *
1

return ds. |

ol dA6 ds. | 1

al nfo ds | USt r Dat a

bl nf o ds | USt r Dat a

want Mag ds. b 1 ; 1-MagStrig O-Magl dStri ng.

weak Eq ds. b 1 ; Signals at nost weak equality
nsLock ds. b 1 ; high byte of master ptr.
weakMag ds. b 1 ; -1 weak, 1 strong conpare

supSt or age ds. b 18 ; extra storage.

| ocal Si ze equ * ; frane size.

There are three fields in this frame that are of interest for altering text comparison. The SUPSt or age field is an area
reserved for use by the comparison hook procedures as they see fit. The al nf 0 and bl nf o records contain information
about the current byte positions in the two compared strings A and B, and information about the status of current
characters in those string. The | USt r Dat a record has the following form:

| USt r Dat a Recor d 0

cur Char ds. w 1 ; current character.

mapChar ds.w 1 ; projected character.

decChar ds. w 1 ; decision char for weak equality

buf Char ds. b 1 ; buffer for expansion.

just After ds. b 1 ; bool ean for AE vs |igature-AE

i gnChar ds. b 1 ; flag: ignore char.

noFet ch ds. b 1 ; flag: no fetch of next.

strCnt ds. w 1 ; length word.

strPtr ds. | 1 ; current ptr to string.
Back to top

The Init Procedure

The Init Procedure is used to initialize the comparison process. The main use for this procedure is for double-byte
scripts. As an optimization, the International Utilities will perform an initial check on the two strings, comparing for
simple byte-to-byte equality. Thus any common initial substrings are checked before the Init procedure is called. The
string pointers and lengths in the | USt r Dat a records have been updated to point just past the common substrings.

Languages such as Japanese or Yugoslavian, which may consider two bytes to be one character, may have to back up one
byte, as shown below.

Modifying the Standard String Comparison Page: 4

Rout i ne I nitProc

I nput A6 Local Frane

CQut put CCR NE to skip entire sort (usually set EQ
Tr ashes St andard regs: A0/ Al/ DO- D2

Doubl e- byt e scripts must synchroni ze Alnfo. StrPtr &
Bl nfo. StrPtr here!

Functi on Initialize any special international hooks.

Note: this should al so check for single-byte nigori or maru, as bel ow

I nitProc
nove. w AStrLen(a6), doO ; Alength
sub. w Al nfo. StrCnt (a6), do ; see if its changed
beq. s @i xB : Ais done if not
sub. | #2, sp ; return param
nove. | ASt r Text (a6), - (sp) ; textBuf
nove. w do, - (sp) ; textOFf set
_CharByte
tst.w (sp) + ; on character boundary?
bl e.s @i xB ; yes, continue
sub. | #1, Alnfo. StrPtr(A6) ; adj ust pointer
add. w #1, Al nf o. Str Cnt (A6) ; adj ust count
@i xB
nove. w BStrLen(a6), dO ; Blength
sub. w Bl nfo. StrCnt (a6), dO ; see if its changed
beq. s Quit Init ; Bis done if not
sub. | #2, sp ; return param
nove. | BStr Text (a6), -(sp) ; textBuf
nove. w do, -(sp) ; text O f set
_CharByte
tst.w (sp) + ; on character boundary?
bl e. w @uitlnit ; yes, continue
sub. | #1, Bl nfo. StrPtr(A6) ; adj ust pointer
add. w #1, Bl nf 0. St r Cnt (A6) ; adj ust count
@uitlnit
bra.s Ret ur nEQ ; return to the caller.
Back to top

The Fetch Procedure

The Fetch Procedure is used to fetch a character from a string, updating the pointer and length to reflect the remainder of
the string. For example, the following code changes the text comparison for Yugoslavian:

Rout i ne Fet chPr oc

the string, if they are not just a sequence of single bytes.

; I nput A2 String Data Structure

; A3 String pointer (one past fetched char)

; A6 Local Frane

; D4. W Character: top byte is fetched character, bottom

; is zero

; D5. B 1if string is enpty, otherw se 0

; Qut put D4. W Character: top byte set to character, bottomto
; ext ensi on

; D5. B 1if string is enpty, otherw se 0

; Trashes St andard regs: A0/ Al/ DO- D2

; Function This routine returns the characters that are fetched from

Fet chProc
tst.b d5 ; more characters in string?
bne. s Ret ur nEq ; no -> bail out.
nove. w d4, do ; load high byte.

nove. b (a3),do ; load | ow byte.

Modifying the Standard String Comparison

| ea pai r Tabl e, al ; load tabl e address
@onpar eChar

nove. w (al) +,d1 ; pair = 07?

beq. s Ret ur nEq ; yes -> end of table.

cnp. w do, d1 ; legal character pair?

bne. s @onpar eChar ; no ->try the next one.

add. w #1, a3 ; increment pointer.

sub. w #1, StrCnt (a2) ; decrenent | ength.

addx. w d5, d5 ; enpty -> set the flag.

nove. w do, d4 ; copy character pair.

rts ; return to caller with CCR=NE
pai r Tabl e

dc. b "Lj ;oL

dc. b "L ; L

dc. b 1 N

dc. b 1y i1

dc. b N\ ;i N

dc. b " NJ' 7 NJ

dc. b ‘nJ’ ;o nd

dc. b ‘nj’ ;onj

dc. b ‘D, $be ; Dz-hat

dc. b ‘D, %$ae ; DZ-hat

dc. b ‘d, %$ae ; dZ-hat

dc. b "d', $be ; dz-hat

DC. B $00, $00 ; table end
Fet chPr oc

with | USt r Dat a

tst.b d5 ; enpty string?

bne. s Ret ur nEq ; exit if length =0
; if we have a doubl e-byte char, add the second byte

| ea Cur Char (a2), a0 ; pass pointer

nove. w d4, (a0) ; set value at ptr

clr.w do ; pass | ength

sub. | #2, SP ; allocate return

nove. | ao, - (sp) ; pointer

nove. w do, - (sp) ; of fset

_CharByte

tst.w (sp) + ; test return

bm . s @oubl eByt e ; skip if high byte (first two)
; we don't have a double byte, but two special cases conbi ne second bytes

nove. b (a3), do ; get next byte

cmp. b #$DE, dO ; nigori?

beq. s @oubl eByt e ; add in

cmp. b #$DF, dO ; maru?

bne. s Ret ur nEq ; exit: single byte
@oubl eByt e

nove. b (a3) +, d4 ; get next byte

subg. w #1, StrCnt (A2) ; dec string length

addx. w d5, d5 ; set x=1if string len =0

Back to top

The Project Procedure

The Project Procedure is used to find the primary ordering for a character. This routine will map characters that differ
only in the secondary ordering onto a single character, typically the unmodified, uppercase character. For example, the
following changes the comparison order for some Norwegian characters, so that they occur after 'Z."

Page: 5

Modifying the Standard String Comparison Page: 6

char acters.
Exanple: a,A A -> A

; Routine Pr oj ect Proc

;| nput A2 String Data Structure

; D4. W Character (top byte is char, bottomis extension

; (the extension is zero unless set by FetchProc))

; Qut put D4. W Proj ect ed Character

; CCR NE to skip normal Project

; Trashes St andard regs: A0/ Al/ DO- D2

; Function This routine projects the secondary characters onto prinmary

Pr oj ect Proc

| ea Proj Tabl e, A1 ; load tabl e address.
@i ndChar

nove. | (al) +, DO ; get entry

cnp. w do, d4 ; original >= entry?

bhi . s @i ndChar ; no, try the next entry.

bne. s Ret ur nEq ; not equal, process normally
@ epl aceChar

swap do ; get repl acenent

nove. w do, d4 ; set new character word.
@loneChar

rts ; CCRis NEto skip project.

Pr oj Tabl e

; Tabl e contains entries of the form rl1, r2, ol, o2,

; where r1,r2 are the replacenent word, and

; 0l, 02 are the original character.

; The entries are sorted by 0l,02 for use in the above al gorithm

DC. B 'z, 3 'A o . Aafter @
DC. B 'z, 3 'A, o0 , Aafter @
DC. B ‘2, 1, 'AE, 0 ; MEafter Z
DC. B ‘2, 2, '@, 0 ; @ after A
DC. B ‘2, 1, 'E, 0 ; MEafter Z
DC. B ‘2, 2, '@, 0 ; @ after /E

The Project procedure can also be used to undo the effects of the normal projection. For example, suppose that "oe" is not
to be expanded into "oe": in that case, a simple test can be made against 'oe’,0, returning NE if there is a match, so that the
normal processing is not done. To expand one character into two, the routine should return the first replacement character
in D4. Wand modify two fields in the | USt r Dat a field. For example, given that Al points to a table entry of the form
(primaryCharacter: Wrd; secondaryCharacters: Wrd), the following code could be used:

nove. w (al) +, d4 ; return first, primary character

nove. w (al) +, Cur Char (A2) ; original => first, nodified char.
addqg. b #1, Just Aft er (A2) ; set to one (otherw se zero)

nove. b (al), Buf Char (A2) ; store second character (BYTE!)

Cur Char is where the original character returned by Fet chChar is stored. If characters are different even after being
projected onto their respective primary characters, then the Cur Char values for each string will be compared.

Just Af t er indicates that the expanded character should sort after the corresponding unexpanded form. This field must
be set whenever Cur Char is modified in order for the comparison to be fully ordered. Buf Char stores the next byte to
be retrieved from the string by Fet chChar .

To handle the case where characters are ignored unless the two compared strings are otherwise equal, the | gnChar flag
can be set. This can be used to handle characters such as the hyphen in English, or vowels in Arabic.

cnp w #hyphen, dO ; is it a ignorable?
seq I gnChar (a2) ; set whether or not

Modifying the Standard String Comparison Page: 7

Back to top

The Vernier Procedure

The Vernier Procedure is used to make a final comparison among characters that have the same primary ordering. It is
only needed if the Cur Char values are not ordered properly. For example, according to the binary encoding, & < A. To
change this ordering so that uppercase letters are before lowercase letters, Ã is mapped to $7F in normal
comparison. Notice that only the characters in the secondary ordering are affected: Ã can be mapped onto Z, but not
onto Ä, since that would cause a collision.

; Routine Ver ni er Proc

;| nput D4.B H gh byte of character

; D5. B Low byte of character

; Qut put D4.B H gh byte of character

; D5. B Low byte of character

; CCR NE if to skip standard Verni er

; Trashes St andard regs: A0/ Al/ DO- D2

; Function The Vernier routine conpares characters within the secondary

; ordering if two strings are otherw se equal
; Exanmpl e: (a, A A A

Ver ni er Pr oc
not.b d4

; invert secondary ordering
not. b d5

; ditto for |ower byte

Back to top
Installing an itl2 resource

To write an i t | 2 resource, follow the guidelines in M.PT.StandAloneCode for writing standalone code in MPW. The code
should be written in assembly language, and it must follow the specifications given in this technical note or serious system
errors could occur whenever string comparisons are made.

The default comparison routine is in the i t | 2 resource of the System file. In order to use a comparison routine other than
the standard one, you should include an i t | 2 resource in your application with the same name and resource ID as the one
in the System file that you wish to change. The Resource Manager will look for the resource in the application resource

file before it looks in the System resource file, so your string comparison routine will be used instead of the default one.

It is generally a dangerous practice to change a system resource since other applications may depend on it, but if you have
good reasons to permanently change the system i t | 2 resource so that all applications use a different comparison routine,
then you should write an installer script to change the i t | 2 resource in the System resource file. Writing an installer
script is documented in M.PT.Installer. You are required to write an installer script if you are planning to ship your
application on a licensed system software disk and your application makes a permanent change to any resources in the
System file. We strongly discourage changing the System i t | 2 as that would change the behavior of string comparison and
sorting for all applications. If that is your intent, then you should write an installer script. However, if you are changing
the i t | 2 resource in the System file for academic or internal use, then you can use a resource editor such as ResEdit to
copy your i t | 2 resource into the System file.

Back to top
References

The International Utilities
M.TP.Installer

M.PT.StandAloneCode

Back to top

Downloadables

Modifying the Standard String Comparison Page: 8

E Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

