
Modifying the Standard String Comparison Page: 1

CONTENTS

General Structure

The Init Procedure

The Fetch Procedure

The Project Procedure

The Vernier Procedure

Installing an itl2 resource

References

Downloadables

This technical note describes how to modify
the standard string comparison by
constructing an itl2 resource. Developers
may want to modify the standard string
comparison if Apple's comparison doesn't
meet their needs or if Apple has not written a
string comparison routine for the language
that concerns them.

[Mar 01 1988]

General Structure

The itl2 resource contains a number of procedures that are used for accurate comparison of text by the International
Utilities Package. Refer to Inside Macintosh , volume V for an explanation of the algorithm used. The default itl2 for
standard English text, which does no special processing, has the following form:

Modifying the Standard String Comparison Page: 2

 ; normal Include/Load statements
 Include 'hd:mpw:aincludes:ScriptEqu.a'
 Print On,NoMDir

 String AsIs

;--
; dispatch table at the front of the code.
;--
Intl1 Proc
 With IUSortFrame,IUStrData
HookDispatch
 dc.w ReturnEQ-HookDispatch ; InitProc = 0
 dc.w ReturnEQ-HookDispatch ; FetchHook = 2
 dc.w ReturnEQ-HookDispatch ; VernierHook = 4
 dc.w ReturnEQ-HookDispatch ; ProjectHook = 6
 dc.w ReturnEQ-HookDispatch ; ReservedHook1 = 8
 dc.w ReturnEQ-HookDispatch ; ReservedHook2 = 10

;--
; Some common exit points
;--
ReturnNE
 tst.w MinusOne ; set cc NE
 rts
ReturnEQ
 cmp.w d0,d0 ; set cc EQ
 rts
;--
 EndWith
 EndWith

If modifications need to be made to the comparison process, then one or more of the dispatches will be modified to point to
different routines:

 dc.w InitProc-HookDispatch ; InitProc = 0
 dc.w FetchProc-HookDispatch ; FetchHook = 2
 dc.w VernierProc-HookDispatch ; VernierHook = 4

There are a number of different changes that can be made to the comparison routines. Some of the common modifications
include:

1. Comparing two bytes as one character Yugoslavian "l" < "lj" < "m"; Japanese... [InitProc, FetchProc]
2. Comparing characters in different order Norwegian "z" < "å" [ProjectProc]
3. Comparing one character as twoh German "ä" ~ "ae" [ProjectProc]
4. Ignoring characters unless strings are otherwise equal: "blackbird" < "black-bird" < "blackbirds" [ProjectProc]
5. Changing the secondary orderingh Bibliographic "a" < "A" [VernierProc]

The comparison hook procedures are all assembly language based, with arguments described below. Since the routines may
be called once per character in both strings, the routines should be as fast as possible.

The condition codes are used to return information about the status of the hook routine. Typically the normal processing of
characters will be skipped if the CCR is set to NE, so the default return should always have EQ set. Each of these routines
has access to the stack frame (A6) used in the comparison routine, which has the following form:

Modifying the Standard String Comparison Page: 3

IUSortFrame Record {oldA6},Decrement
result ds.w 1
argTop equ *
aStrText ds.l 1
bStrText ds.l 1
aStrLen ds.w 1
bStrLen ds.w 1
argSize equ argTop-*
return ds.l 1
oldA6 ds.l 1
aInfo ds IUStrData
bInfo ds IUStrData
wantMag ds.b 1 ; 1-MagStrig 0-MagIdString.
weakEq ds.b 1 ; Signals at most weak equality
msLock ds.b 1 ; high byte of master ptr.
weakMag ds.b 1 ; -1 weak, 1 strong compare
supStorage ds.b 18 ; extra storage.
localSize equ * ; frame size.

There are three fields in this frame that are of interest for altering text comparison. The supStorage field is an area
reserved for use by the comparison hook procedures as they see fit. The aInfo and bInfo records contain information
about the current byte positions in the two compared strings A and B, and information about the status of current
characters in those string. The IUStrData record has the following form:

IUStrData Record 0
curChar ds.w 1 ; current character.
mapChar ds.w 1 ; projected character.
decChar ds.w 1 ; decision char for weak equality
bufChar ds.b 1 ; buffer for expansion.
justAfter ds.b 1 ; boolean for AE vs ligature-AE.
ignChar ds.b 1 ; flag: ignore char.
noFetch ds.b 1 ; flag: no fetch of next.
strCnt ds.w 1 ; length word.
strPtr ds.l 1 ; current ptr to string.

Back to top

The Init Procedure

The Init Procedure is used to initialize the comparison process. The main use for this procedure is for double-byte
scripts. As an optimization, the International Utilities will perform an initial check on the two strings, comparing for
simple byte-to-byte equality. Thus any common initial substrings are checked before the Init procedure is called. The
string pointers and lengths in the IUStrData records have been updated to point just past the common substrings.

Languages such as Japanese or Yugoslavian, which may consider two bytes to be one character, may have to back up one
byte, as shown below.

Modifying the Standard String Comparison Page: 4

;--
; Routine InitProc
; Input A6 Local Frame
; Output CCR NE to skip entire sort (usually set EQ)
; Trashes Standard regs: A0/A1/D0-D2
; Function Initialize any special international hooks.
; Double-byte scripts must synchronize AInfo.StrPtr &
; BInfo.StrPtr here!
;--
; Note: this should also check for single-byte nigori or maru, as below

InitProc
 move.w AStrLen(a6), d0 ; A length
 sub.w AInfo.StrCnt(a6),d0 ; see if its changed
 beq.s @FixB ; A is done if not
 sub.l #2,sp ; return param
 move.l AStrText(a6),-(sp) ; textBuf
 move.w d0,-(sp) ; textOffset
 _CharByte
 tst.w (sp)+ ; on character boundary?
 ble.s @FixB ; yes, continue
 sub.l #1,AInfo.StrPtr(A6) ; adjust pointer
 add.w #1,AInfo.StrCnt(A6) ; adjust count
@FixB
 move.w BStrLen(a6), d0 ; B length
 sub.w BInfo.StrCnt(a6),d0 ; see if its changed
 beq.s Quit Init ; B is done if not
 sub.l #2,sp ; return param
 move.l BStrText(a6), -(sp) ; textBuf
 move.w d0, -(sp) ; textOffset
 _CharByte
 tst.w (sp)+ ; on character boundary?
 ble.w @QuitInit ; yes, continue
 sub.l #1,BInfo.StrPtr(A6) ; adjust pointer
 add.w #1,BInfo.StrCnt(A6) ; adjust count
@QuitInit
 bra.s ReturnEQ ; return to the caller.

Back to top

The Fetch Procedure

The Fetch Procedure is used to fetch a character from a string, updating the pointer and length to reflect the remainder of
the string. For example, the following code changes the text comparison for Yugoslavian:

;--
; Routine FetchProc
; Input A2 String Data Structure
; A3 String pointer (one past fetched char)
; A6 Local Frame
; D4.W Character: top byte is fetched character, bottom
; is zero
; D5.B 1 if string is empty, otherwise 0
; Output D4.W Character: top byte set to character, bottom to
; extension
; D5.B 1 if string is empty, otherwise 0
; Trashes Standard regs: A0/A1/D0-D2
; Function This routine returns the characters that are fetched from
; the string, if they are not just a sequence of single bytes.
;--

FetchProc
 tst.b d5 ; more characters in string?
 bne.s ReturnEq ; no -> bail out.

 move.w d4,d0 ; load high byte.
 move.b (a3),d0 ; load low byte.

Modifying the Standard String Comparison Page: 5

 lea pairTable,a1 ; load table address

@compareChar
 move.w (a1)+,d1 ; pair = 0?
 beq.s ReturnEq ; yes -> end of table.
 cmp.w d0,d1 ; legal character pair?
 bne.s @compareChar ; no -> try the next one.
 add.w #1,a3 ; increment pointer.
 sub.w #1,StrCnt(a2) ; decrement length.
 addx.w d5,d5 ; empty -> set the flag.
 move.w d0,d4 ; copy character pair.
 rts ; return to caller with CCR=NE

pairTable
 dc.b 'Lj' ; Lj
 dc.b 'LJ' ; LJ
 dc.b 'lJ' ; lJ
 dc.b 'lj' ; lj

 dc.b 'Nj' ; Nj
 dc.b 'NJ' ; NJ
 dc.b 'nJ' ; nJ
 dc.b 'nj' ; nj

 dc.b 'D', $be ; Dz-hat
 dc.b 'D', $ae ; DZ-hat
 dc.b 'd', $ae ; dZ-hat
 dc.b 'd', $be ; dz-hat

 DC.B $00, $00 ; table end

FetchProc
 with IUStrData
 tst.b d5 ; empty string?
 bne.s ReturnEq ; exit if length = 0

; if we have a double-byte char, add the second byte
 lea CurChar(a2),a0 ; pass pointer
 move.w d4,(a0) ; set value at ptr
 clr.w d0 ; pass length

 sub.l #2,SP ; allocate return
 move.l a0,-(sp) ; pointer
 move.w d0,-(sp) ; offset
 _CharByte
 tst.w (sp)+ ; test return
 bmi.s @DoubleByte ; skip if high byte (first two)

; we don't have a double byte, but two special cases combine second bytes
 move.b (a3),d0 ; get next byte
 cmp.b #$DE,d0 ; nigori?
 beq.s @DoubleByte ; add in
 cmp.b #$DF,d0 ; maru?
 bne.s ReturnEq ; exit: single byte

@DoubleByte
 move.b (a3)+,d4 ; get next byte
 subq.w #1,StrCnt(A2) ; dec string length
 addx.w d5,d5 ; set x=1 if string len = 0

Back to top

The Project Procedure

The Project Procedure is used to find the primary ordering for a character. This routine will map characters that differ
only in the secondary ordering onto a single character, typically the unmodified, uppercase character. For example, the
following changes the comparison order for some Norwegian characters, so that they occur after 'Z.'

Modifying the Standard String Comparison Page: 6

;--
; Routine ProjectProc
; Input A2 String Data Structure
; D4.W Character (top byte is char, bottom is extension
; (the extension is zero unless set by FetchProc))
; Output D4.W Projected Character
; CCR NE to skip normal Project
; Trashes Standard regs: A0/A1/D0-D2
; Function This routine projects the secondary characters onto primary
; characters.
; Example: a,Ä,Ä -> A
;--

ProjectProc
 lea ProjTable,A1 ; load table address.
@findChar
 move.l (a1)+,D0 ; get entry
 cmp.w d0,d4 ; original >= entry?
 bhi.s @findChar ; no, try the next entry.
 bne.s ReturnEq ; not equal, process normally

@replaceChar
 swap d0 ; get replacement
 move.w d0,d4 ; set new character word.
@doneChar
 rts ; CCR is NE to skip project.

ProjTable
; Table contains entries of the form r1, r2, o1, o2,
; where r1,r2 are the replacement word, and
; o1, o2 are the original character.
; The entries are sorted by o1,o2 for use in the above algorithm

 DC.B 'Z', 3, 'Å', 0 ; Å after Ø
 DC.B 'Z', 3, 'Å', 0 ; Å after Ø
 DC.B 'Z', 1, 'Æ', 0 ; Æ after Z
 DC.B 'Z', 2, 'Ø', 0 ; Ø after Æ
 DC.B 'Z', 1, 'Æ', 0 ; Æ after Z
 DC.B 'Z', 2, 'Ø', 0 ; Ø after Æ

The Project procedure can also be used to undo the effects of the normal projection. For example, suppose that "oe" is not
to be expanded into "oe": in that case, a simple test can be made against 'oe',0, returning NE if there is a match, so that the
normal processing is not done. To expand one character into two, the routine should return the first replacement character
in D4.W, and modify two fields in the IUStrData field. For example, given that A1 points to a table entry of the form
(primaryCharacter: Word; secondaryCharacters: Word), the following code could be used:

 ...
 move.w (a1)+,d4 ; return first, primary character
 move.w (a1)+,CurChar(A2) ; original => first, modified char.
 addq.b #1,JustAfter(A2) ; set to one (otherwise zero)
 move.b (a1),BufChar(A2) ; store second character (BYTE!)

CurChar is where the original character returned by FetchChar is stored. If characters are different even after being
projected onto their respective primary characters, then the CurChar values for each string will be compared.
JustAfter indicates that the expanded character should sort after the corresponding unexpanded form. This field must
be set whenever CurChar is modified in order for the comparison to be fully ordered. BufChar stores the next byte to
be retrieved from the string by FetchChar.

To handle the case where characters are ignored unless the two compared strings are otherwise equal, the IgnChar flag
can be set. This can be used to handle characters such as the hyphen in English, or vowels in Arabic.

 ...
 cmp.w #hyphen,d0 ; is it a ignorable?
 seq IgnChar(a2) ; set whether or not

Modifying the Standard String Comparison Page: 7

Back to top

The Vernier Procedure

The Vernier Procedure is used to make a final comparison among characters that have the same primary ordering. It is
only needed if the CurChar values are not ordered properly. For example, according to the binary encoding, å < Ã. To
change this ordering so that uppercase letters are before lowercase letters, Ã is mapped to $7F in normal
comparison. Notice that only the characters in the secondary ordering are affected: Ã can be mapped onto Z, but not
onto Ä, since that would cause a collision.

;--
; Routine VernierProc
; Input D4.B High byte of character
; D5.B Low byte of character
; Output D4.B High byte of character
; D5.B Low byte of character
; CCR NE if to skip standard Vernier
; Trashes Standard regs: A0/A1/D0-D2
; Function The Vernier routine compares characters within the secondary
; ordering if two strings are otherwise equal.
; Example: (a,A,Ä,Ä)
;--

VernierProc
 not.b d4 ; invert secondary ordering
 not.b d5 ; ditto for lower byte

Back to top

Installing an itl2 resource

To write an itl2 resource, follow the guidelines in M.PT.StandAloneCode for writing standalone code in MPW. The code
should be written in assembly language, and it must follow the specifications given in this technical note or serious system
errors could occur whenever string comparisons are made.

The default comparison routine is in the itl2 resource of the System file. In order to use a comparison routine other than
the standard one, you should include an itl2 resource in your application with the same name and resource ID as the one
in the System file that you wish to change. The Resource Manager will look for the resource in the application resource
file before it looks in the System resource file, so your string comparison routine will be used instead of the default one.

It is generally a dangerous practice to change a system resource since other applications may depend on it, but if you have
good reasons to permanently change the system itl2 resource so that all applications use a different comparison routine,
then you should write an installer script to change the itl2 resource in the System resource file. Writing an installer
script is documented in M.PT.Installer. You are required to write an installer script if you are planning to ship your
application on a licensed system software disk and your application makes a permanent change to any resources in the
System file. We strongly discourage changing the System itl2 as that would change the behavior of string comparison and
sorting for all applications. If that is your intent, then you should write an installer script. However, if you are changing
the itl2 resource in the System file for academic or internal use, then you can use a resource editor such as ResEdit to
copy your itl2 resource into the System file.

Back to top

References

The International Utilities

M.TP.Installer

M.PT.StandAloneCode

Back to top

Downloadables

Modifying the Standard String Comparison Page: 8

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

