International Canceling Page: 1

Technical Note TE23
International Canceling

CONTENTS This Technical Note describes potential
problems canceling operations with the
Command-period key sequence and

A Bit Confusing (to me at least) international keyboards.

Where Did That Key Go?

References [Feb 01 1990]

Downloadables

Where Did That Key Go?

Canceling an operation, from printing to compiling, has always been done with the key sequence Command-Period. The
problem with this is that on some international systems, one needs to hold the Shift key down to produce a period. Many
keyboard mappings, including that of the U.S., ignore the Shift key when the Command key is down. In other words, on a
system where a period (.) is a shifted character (e.g., Italian) pressing Command-Shift-KeyThatMakesAPeriod does not
generate the ASCII code for a period. Instead, the keyboard mapping software generates the ASCIl code for the unshifted
character. If an application is looking for Command-period to cancel some time intensive operation, and an international
user types the shifted key sequence that normally produces a period along with the Command key, the application is going to
miss that request unless it takes special precautions.

Back to top

A Bit Confusing (to me at least)

The solution to this potential international disaster is to strip the Command key out of the modifiers, and then run the key
code back through the keyboard mapping software. The trap _KeyTr ans makes this procedure very easy. _KeyTr ans
takes as parameters a pointer to a' KCHR' resource (see M.TB.KeyMapping), a word which contains the keycode and the
modifier bits, and a word which serves as a state variable.

One note on the result returned by _KeyTr ans. Inside Macintosh , Volume V-195, The Toolbox Event Manager, states,
"ASCIl 1 is the ASCII value of the first character generated by the key code parameter.” This statement is followed by an
illustration (Figure 7 on page V-195) which shows ASCII 1 as the low byte of the high word in the long word result.
Although this statement and the accompanying illustration are correct, they have mislead a number of people (me for one).

It is dangerous to expect the character code in one particular word of the long word result. In fact, the architecture of the
_KeyTr ans trap does not specify which word contains the character code in which you might be interested. This is because
the _KeyTr ans trap's primary purpose is to create a package that can be used to build a key-down event, and the Toolbox
Event Manager just doesn't care about particular keys. In fact, it is possible to get a result from _KeyTr ans that contains
character codes in both words. This is how dead keys are handled.

But how does one handle a particular character, specifically a period? The strategy adopted in the sample function in this
Note is to check both words of the result. If a period exists in either word and the Command key is down, it is counted as a
Command-period key sequence.

Now that everything is straight about parameters and results, it's time to look at some sample code. The code fragment
which follows ensures that you get that period regardless of the state of the modifier keys.

MPW Pascal

International Canceling Page: 2

CONST
kMaskModi fier = $FE00; {need to strip command key from Modifi ers}
kMaskVi rt ual Key = $0000FF00; {get virtual key from event nessage}
kMaskASCI | 1 = $00FF0000;
kMaskASCl | 2= $000000FF; {get key from KeyTrans return}
kKeyUpMask = $0080;
kPeriod = ORD('.");

TYPE
Event Ptr = “Event Record;

FUNCTI ON OndPeri od(t heEvent: EventPtr): Bool ean;
VAR

keyCode : Integer;

vi rt ual Key,

keyl nf o,

| owChar ,

hi ghChar,

stat e,

keyC d : Longi nt;

hKCHR : Handl e;

BEG N
CrdPeriod := FALSE;
I|F (theEvent”.what = keyDown) | (theEvent”~.what = autoKey) THEN BEGQ N

{see if the command key is down. |If it is, get the ASC I }
IF BAND(t heEvent”. nodifiers, cmdKey) <> 0 THEN BEG N

virtual Key := BAND(t heEvent”. nessage, kMaskVi rt ual Key) DIV 256;
{strip the virtual key by AND ng the nodifiers with our mask}
keyCode : = BAND(t heEvent”. nodi fi ers, kMaskModi fi er);
keyCode : = BOR(keyCode, kkeyUpMask); {let KeyTrans think it was a keyup event,
this will keep special dead key processing fromoccurring }
{Finally OR in the virtual Key}
keyCode : = BOR(keyCode, virtual Key) ;
state := O;

keyCld := GetScript(GetEnvirons(snKeyScript), sntcriptKeys);

{read the appropriate KCHR resource }
hKCHR : = Get Resource(' KCHR |, keyCl d) ;

IF hKCHR <> NIL THEN BEGA N
{ we don't need to | ock the resource since KeyTrans will not nove nenory }
keyl nfo : = KeyTrans(hKCHR*, keyCode, st at €) ;
Rel easeResour ce(hKCHR) ;

END
ELSE
{if we can't get the KCHR for sone reason we set keylnfo to the nessage
field. This ensures that we still get the Cancel operation on systens where
".'" isn't shifted.}
keyl nfo : = theEvent *. nessage;

LowChar : = BAND(keyl nf o, kMaskASCl | 2) ;
H ghChar : = BSR(BAND(keyl nf o, kMaskASClI | 1), 16) ;

IF (LowChar = kPeriod) | (H ghChar = kPeriod) THEN
CrdPeri od : = TRUE;
END;

END;

MPW C

International Canceling

#defi ne kMaskModi fiers OxFEOO /1 we need the nodifiers wthout the command key

/1 for KeyTrans
#defi ne kMaskVi rt ual Key 0x0000FFO0 /1 get virtual key
/'l KeyTrans

#def i ne kUpKeyMask 0x0080

#defi ne kShiftWwrd 8 [/ we shift the virtual
/'l keyCode for KeyTrans

#defi ne kMaskASCl | 1 0x00FF0000 /1 get the key out

#defi ne kMaskASCl | 2 0x000000FF /1 get the key out

#defi ne kPeri od Ox2E /] ascii for a period

Bool ean OndPeri od(Event Record *t heEvent)
{

Bool ean fTi meToQuit;

short keyCode;

| ong virtual Key, keylnfo, |owChar, highChar, state,
Handl e hKCHR;

fTi meToQuit = fal se;

if (((*theEvent).what == keyDown) || ((*theEvent).what

/! see if the command key is down. If it is, find out
/1 equival ent for the acconpanying key.

if ((*theEvent).nodifiers & cndkKey) {

virtual Key = ((*theEvent). message & kMaskVi rt ual Key)
/1 And out the command key and O in the virtual Key

from event nmessage for
key to mask it into the

of the ASCII1 byte
of the ASC |2 byte

keyd d;

== aut okey)) {
the ASC |

>> kShi ft Wr d;

| virtual Key;

keyCode = ((*theEvent).nodifiers & kiMaskModi fi ers)

state = 0;

keyC d = Get Script(CGetEnvirons(snKeyScript), snScriptKeys);
hKCHR = CGet Resource('KCHR , keydd);

if (hKCHR !'= nil) {

/* Don't bother |ocking since KeyTrans will never nove nenory */

keyl nfo = KeyTrans(*hKCHR, keyCode, &state);
Rel easeResour ce(hKCHR);
}

el se

keyl nfo = (*t heEvent) . nessage;

| owChar = keylnfo & kMaskASd | 2;

hi ghChar = (keylnfo & kMaskASCl | 1) >> 16;

if (lowChar == kPeriod || highChar == kPeri od)
fTi meToQuit = true;

} // end the command key i s down
} // end key down event

return(fTinmeToQuit);

Back to top

What About That Resource

The astute observer may have noticed that the code example requires that you read a resource. Although this certainly isn't
that big of a deal, it is always nice when you can cut down on disk accesses. In System 7.0 a verb is added that can be used to

get_Cet Envi r ons to return a pointer to the current ' KCHR' . The verb is defined

Pascal

CONST
snKCHRCache = 38;

and used as follows:

Page: 3

International Canceling Page: 4

#def i ne snKCHRCache 38

Unfortunately, in system software prior to 7.0, you must use _(Get Resour ce as demonstrated above to obtain the current
" KCHR' resource. However, since _CGet Envi r ons always returns zero when passed a verb it does not recognize, you can

build System 7.0 compatibility into your application without having to check which system software is running. To do this,

you could modify the routines as follows:

Pascal

CONST {define our own constant until System 7.0 headers ship. At that point, if you
have not shi pped, you can put in the real constant}
NewVer b_snKeyCache = 38;

VAR
KCHRPtr : Ptr;
KCHRPt r : = Ptr(Get Envi rons(Newerb_snkKeyCache));
hKCHR = NL; {set to NNL before starting}
IF KCHRPtr = NNL THEN BEGN {we didn't get the ptr from Get Environs}
keyCl d : = Get Script(Cet Environs(snkKeyScript), snScriptKeys);
{read the appropriate KCHR resource }
hKCHR : = Get Resour ce(' KCHR , keyCl d) ;
KCHRPtr : = hKCHR";
END;
IF KCHRPtr <> NIL THEN BEG N
{ we don't need to | ock the resource since KeyTrans will not nove nenory }
keyl nfo : = KeyTrans(KCHRPt r, keyCode, st at e) ;
IF hKCHR <> NI L THEN
Rel easeResour ce(hKCHR) ;
C

/* again we define our own constant for now */
#defi ne NewWer b_snKeyCache 38

Ptr KCHRPtr;

hKCHR = nil; /* set this to nil before starting */
KCHRPtr = (Ptr) Get Envi rons(NewWer b_snkKeyCache);

IF ('KCHRPLT)
keyCld = GetScript(CGetEnvirons(snKeyScript), snScriptKeys);

hKCHR = Get Resource(' KCHR , keyd d) ;
KCHRPt r = *hKCHR;
I
I F (KCHRPt)
keyl nfo : = KeyTrans(KCHRPtr , keyCode, state);
i f (hKCHR)
Rel easeResour ce(hKCHR) ;
Back to top
References

Inside Macintosh , Volume V, The Script Manager

International Canceling Page: 5

Inside Macintosh , Volume V, The Toolbox Event Manager

M.TB.KeyMapping

Back to top
Downloadables
E‘ Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

