
How to Construct Word-Break Tables Page: 1

CONTENTS

Constructing break tables

Extensions

References

Downloadables

This technical note describes how to construct
auxiliary break tables for use with the
FindWord routine in the Script Manager.

[Nov 01 1987]

Constructing break tables

The FindWord algorithm finds word boundaries by determining where words should not be broken. For example, "re-do"
is one word: it should not be broken at the hyphen. In other words, a sequence of the form: (letter, hyphen, letter) should
not be broken between the first and second or second and third character. This is called a continuation sequence. The
algorithm used by the FindWord routine allows for continuation sequences of lengths one, two and three. Examples of a
sequence of length two include (letter, letter), or (number, number). For a length of one, there is only one sequence,
consisting of the characters of type nonBreaking: these characters are never separated from preceding or following
characters.

For most scripts, this information about continuation sequences is packed into a table for use by the FindWord
algorithm. (For complex scripts like Japanese, a different algorithm is used for portions of the script.) The default break
tables for a given script can be overridden by a user-specified breakTable parameter, but should only be used for
known scripts. That is, before overriding the breakTable parameter, the programmer should first check the script of
the current font.

A break table consists of two sections, a 256 byte character type table followed by a character triple table.

How to Construct Word-Break Tables Page: 2

The character type table is indexed by the character's ASCII code and contains one type value for each character. The
character types in the table are limited to values between 1 and 31. There are two distinguishing values: the type
nonBreaking (= 1) indicates that the character is non-breaking; it always continues a word. The type wild (=0)
indicates that the character may or may not break, depending on information in the character triple table, as described
below. Otherwise, the choice of numbers to represent character types is completely arbitrary.

For example, the following in MPW Assembler defines character types for use in a word-selection break table, then sets
up a character type table using an assembly macro (setByte) to store character type values in an array. (Note that the
character types could have been defined with equate definitions (EQU), rather than using the record structure.) Writing
the setByte macro is left as an exercise to the reader. Note that the break value is the default. This value is not
distinguished, but should have no continuation sequences.

;==
charWordRec record 0
wild ds.b 1 ; constant! not in char table.
nonbreak ds.b 1 ; constant! non-breaking space.
letter ds.b 1 ; letters.
number ds.b 1 ; digits.
break ds.b 1 ; always breaks.
midLetter ds.b 1 ; a'a.
midLetNum ds.b 1 ; a'a 1'1.
preNum ds.b 1 ; $, etc.
postNum ds.b 1 ; %, etc.
midNum ds.b 1 ; 1,1.
preMidNum ds.b 1 ; .1234.
blank ds.b 1 ; spaces and tabs.
cr ds.b 1 ; add carriage return
 endr
;==
 with charWordRec
wordTable
 dcb.b 256,break
 setByte wordTable,nonBreak,$ca
 setByte wordTable,letter,('A','Z'),('a','z')('Ä','Ü')
 setByte wordTable,letter,'Æ','Ø','Æ','Ø',('À','oe'),'Ÿ'
 setByte wordTable,midLetter,'-'
 setByte wordTable,midLetNum,$27,'''
 setByte wordTable,number,('0','9')
 setByte wordTable,preNum,'$','cents','[[sterling]]','[[yen]]'
 setByte wordTable,postNum,'%'
 setByte wordTable,midNum,','
 setByte wordTable,preMidNum,'.'
 setByte wordTable,blank,$00,' ',$09
 setByte wordTable,cr,$0d
 endWith

The character triple table is a coded representation of a list of continuation sequences. It consists of a list of packed one
word triples, preceded by a length word. This length word contains the number of triples minus one. Each triple contains
three character types, either as derived from the charType table or the special type wild (= zero). The three types in
a triple are packed into fields five bits apiece, with the most significant bit in the word cleared. The first type in the
triple is the leftmost.

A continuation sequence of length three (xyz) is represented by entering three triples into the triple list: xyz, *xy, and

How to Construct Word-Break Tables Page: 3

yz* (where '*' stands for the type wild, which is always zero).

A continuation sequence of length two (xy) is represented by entering two triples into this list: *xy, and xy*. A
continuation sequence of length one has no entry in the triple list: the character type is simply nonBreaking.

Note that the type wild cannot appear as the middle element of a triple. The words in the triple table must be sorted in
ascending numerical order for future compatibility.

The following is an example of how a character triple table could be coded. The defSeq macro takes a continuation
sequence as a parameter, and enters a set of triples into an internal array. The dumpSeq macro sorts the triples, and
stores them in the proper order with dc.w commands. Once again, writing the macros defSeq and dumpSeq is left as an
exercise for the reader.

;==
 with charWordRec
 defSeq letter,letter
 defSeq letter,preMidNum,letter
 defSeq letter,midLetter,letter
 defSeq letter,midLetNum,letter

 defSeq number,number
 defSeq number,letter
 defSeq number,midNum,number
 defSeq number,midLetNum,number
 defSeq number,preMidNum,number
 defSeq number,postNum
 defSeq preNum,number
 defSeq preMidNum,number

 defSeq blank,blank
 defSeq blank,cr
 endWith

;==
 dc.w ((wordEnd-wordBegin)/2)-1 ; length word.
wordBegin
 dumpSeq
wordEnd

A series of blanks should generally select as a single word. Make certain, however, that a carriage return does not continue
a word to the right (note how it has a separate character type from blank for this reason), otherwise word selection and
wrapping do not work properly across paragraphs.

Back to top

Extensions

The values 16-31 in the character type table entry for null ($00) (the first byte in the character type table) are
reserved by Apple for future expansion. The use of one of these values indicates the presence of a supplementary table
after the triple table.

Back to top

References

The Script Manager

How to Construct Word-Break Tables Page: 4

Back to top

Downloadables

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

