Translation Manager 1.1

Technical Note TB41
Translation Manager 1.1

CONTENTS This Technical Note discusses changes to the
Translation Manager which are available in
Macintosh Easy Open version 1.1 and later.
References The information contained here is in addition
to what is discussed in Inside Macintosh
More Macintosh Toolbox, Translation

Introduction

Downloadables

- “ Manager chapter, as well as in the APDA
Macintosh Easy Open Developers Kit.
[Jun 01 1994]
Introduction

The document assumes that you are somewhat familiar with the Translation Manager API.

Some of the new API's are available only in Translation Manager 1.1 and some have always been available. Use
Gest al t () as appropriate to check for the existence of some of the new API's (discussed later in this document).

gestaltTransl ati onMgrH nt O der = 1

The previous bit will be set if the Translation Manager hint order fix is in effect. In Translation Manager version 1.0.1
(fixed in version 1.0.2 and later) there is a bug where the hints in DoTr ansl| at eScrap() are reversed - the

dst TypeH nt is actually the sr cTypeH nt and vice-versa. If you want your Translation Extension to work with the
early versions of the Translation Manager, and you're these using these scrap hints, then you need to check this bit to see
where your destination and source hints are.

gestal t Transl ati onPPCAvai | = 2

If gestal t Transl ati onPPCAvai | bit is set then that is an indicator that the native PowerPC Translation Manager
library is available. This means that it's safe to make a call to the Translation Manager from native PowerPC code.

gestal t Transl ati onGet Pat hAPI Avail = 3

The new API's Get Fi | eTr ansl ati onPat h() and Get Pat hTransl ati onDi al og() calls are available if the
gestal t Transl ati onGet Pat hAPI Avai | bit is set.

Get Docunrent Ki ndSt ri ng() is available in all versions of the Translation Manager, therefore no gestalt selector is
needed to check for its existence.

The new Translation Extension routine DoGet Tr ansl at edFi | ename() does not have a gestalt selector since there is
no compatibility problem running a Translation Extension that supports the call on an earlier version of the Translation
Manager. In that case, the function will simply not be called.

The New Translation Manager API's

One of the most glaring limitations of the 1.0 Translation Manager APl was that the function CanDocBeCpened()
couldn't be used in the case where a translation preference did not exist. You would have to set the translation preference
manually using the automatic translation user interface in the Finder or Standard File. This meant for all purposes, that
you could not programmatically use the Translation Manager.

Starting with Translation Manager 1.1 this limitation has been removed with two new API's

Get Pat hFrontr ansl ati onDi al og() and CGet Fi | eTr ansl at i onPat hs() . The function

CGet Pat hFr onir ansl at i onDi al og() allows you to post the Translation Dialog box programmatically while the
function Get Fi | eTr ansl ati onPat hs() is a low level access routine allowing you to get all the translation
capabilities of the Translation Manager.

Additional API's have been added to provide access to the kind strings, the name of Translation Extensions, as well as to
programmatically execute scrap translations. These will be discussed later in this section.

Displaying The Translation Dialog Box Programmatically

Page: 1

Translation Manager 1.1

pascal OSErr Get Pat hFronilransl ati onD al og(
const FSSpec* theDocunent,
const FSSpec* theApplication,
const TypesBl ockPtr typelLi st,
DocCpenMet hod* howToQpen,
Fi |l eTransl ati onSpec* howToTr ansl at e)

As mentioned in the earlier, Get Pat hFr onir ansl at i onDi al og() is used to programmatically display the
Translation Dialog box. This has the "side-effect” of setting a preference so next time CanDocBeQpened() is called it
will have the preference and succeed.

Get Pat hFronir ansl at i onDi al og() targets the file specified by the t heDocunent and attempts to generate a list
of translation paths resulting in a document readable by the target application specified by the t heAppl i cati on. The
parameter t ypeLi st specifies, in a OL terminated form, a list of file types to translate the target document into. The
order in the list is important. The first item should be the file type most desired and the last item should be the file type
least wanted. The following two parameters howToQpen and howToTr ansl at e are returned once the user has
interacted with the Translation Dialog box and will contain the translation open method and the translation specification.
It's important to point out the howToTr ansl at e is only valid if howToOpen is equal to donir ansl at eFi r st ,
otherwise it's undefined.

Note:
None of the parameters are optional and NULL cannot be passed in place of them.

A common way of using this routine along with CanDocBeQpened() can be seen in the following snippet of code:

/* Transl ate

This routine translates a file. It assumes that the
application has the signature '"ttxt' and can only can
read the docurment types 'ttro' and ' TEXT' */

CSErr Transl at e(const FSSpec* tar get Docunent,
const FSSpec* destinati onDocunent,
const FSSpec* theApplication)

{

CSType typeList[3] ={ "ttro', 'TEXT', OL };
DocOpenMet hod howToQpen;

Fi | eTransl ati onSpec howToTr ansl at e;

CSEr r resul t;

/[* Try to get the translation path based on the
preference (if one is set) */

result = CanDocBeQpened(t ar get Docurnent ,
t heAppl i cati on- >vRef Num
"ttxt',
typeli st
fal se,
&owToQpen,
&owToTr ansl at e) ;

/[* Ddit work? */
if (result == noPrefAppErr) {

/* Couldn't find a path, run the Translation
D al og box to get the path and set the preference */

result = Get Pat hFronTransl ati onD al og(t ar get Docunent ,
t heAppl i cati on,
typelli st
&howToOpen,
&howToTr ansl at e) ;

-

/* Did we get a path from either CanDocBeQpened
Get Pat hFronTr ansl ati onD al og, and does the
transl ation path specified require translation? */
if ((result == noErr)
&& (howToOpen == domlranslateFirst)) {

/* Translate the file */
result = Transl at eFi | e(t arget Docunent ,

desti nati onDocunent ,
&owToTr ansl at e) ;

Page: 2

Translation Manager 1.1

}

return result;

Getting All The Translation Paths

At the low level, the new routine Get Fi | eTr ansl at i onPat hs() can be used to get raw translation paths. The paths
are each of the translation paths that allow a specific document to be translated to the target type (under some constraints
that are discussed later). A specific translation may have one or many paths - that depends on the translation itself and the
capabilities of the Translation Extensions installed.

Cet Fi | eTransl ati onPat hs() is defined as:

pascal short GetFil eTransl ati onPat hs(
FSSpec* srcDocunent,
Fi | eType dst DocType,
unsi gned short maxResul t Cnt,
Fi | eTransl ati onSpecArrayPtr resul tBuffer)

Both sr cDocunent and dst DocType are optional parameters. SrcDocumnent is the source document (if any) and
dst DocType is the desired document type to which you would like St cDocunent translated. Depending on what is
passed, the routine returns a different set of translation paths, as seen in Figure 1.

sr cDocunent dst DocType

Translation Paths Returned

valid valid All paths to translate St cDocunent todst DocType
NULL valid All paths to tranisate to dst DocType
valid O All paths from sr cDocunent

NULL O All translation paths

Figure 1
The parameter maxResul t Cnt is the maximum number of entries your r esul t Buf f er can hold.

The final parameter r esul t Buf f er is returned with the requested translation information. This buffer's type is defined
as:

struct FileTransl ati onSpec {

CSType conponent Si gnat ur e;
const voi d* transl ati onSyst enl nf o;
Fi | eTypeSpec src;

Fi | eTypeSpec dst;

typedef struct FileTransl ati onSpec Fil eTransl ati onSpec;

typedef Fil eTransl ati onSpec *Fil eTransl ati onSpecArrayPtr;

The function returns the number of translation paths, or a result code if the value is negative.

The following example shows a how to get the list of translation paths to open a specific document and how to translate
using the first path in the list.

Page: 3

Translation Manager 1.1

/* Transl at eUsi ngFi r st Pat h

le to ' SYLK' wusing the

This routine translates a fi
n the Transl ati on Manager

first translation path i
path list. */

CSErr Transl at e(FSSpec* t ar get Docunent ,
FSSpec* desti nati onDocunent,
FSSpec* theApplication) {

Fi |l eTransl ati onSpec ts[10];
CSEr r result;
short nunber Pat hs;

[* Try to get the translation path */
nunber Paths = GetFil eTransl ati onPat hs(t ar get Docunent ,
' SYLK' ,

10,
& s[0]);
if (nunberPaths > 0)
result = Transl ateFi | e(target Docunent, destinati onDocunent, ts);

el se
result = noTypeErr;

return result;

Getting Kind Strings

Kind strings describe documents; for instance "FreeHand graphic”. Previously the kind strings were displayed in the
Finder, but there was no programmatic way of accessing them. The Translation Manager now provides the means to get to
the kind strings, as well as the names of the Translation Extensions installed.

The routine to get a kind string looks like:

OSErr CGet Docunent Ki ndStri ng(short docVRef Num
CSType docType,
OSType docCr eat or,
Str63 ki ndString)

This routine takes in the docVRef Numparameter, the volume containing the document. This is a hint to the Translation
Manager where to look for the kind string. If it doesn't find the string on that volume, it will use an internal search path to
look on other volumes for the string. In doc Type and docCr eat or you pass the type and creator of the document you
want to query. When the function returns, Ki ndSt ri ng contains the kind string to display for that specific document.

If you have a Fi | eTr ansl at i onSpec and you want to find out the name of the Translation Extension that's performing
the translation, you call:

pascal OSErr Get Transl ati onExt ensi onNang(
const Fil eTransl ati onSpec* transl ati onMet hod,
Str31 extensi onNane)

This routine takes a Fi | eTr ansl ati onSpec (returned from CanDocBeQpened() or
Cet Fi |l eTransl ati onPat hs()) and returns, in ext ensi onNane, the name of the Translation Extension
performing the translation.

Both of these routines can be used, for example when using Get Fi | eTr ansl at i onPat hs() to create your own

Translation Dialog box. Using these will allow you to generate strings like "MacWrite Il document with XYZZY translation™
and so forth.

Scrap Translation
An additional routine has been made public in the Translation Manager allowing you to perform Scrap translation. The

name scrap translation is somewhat misleading; rather it's in-memory translation. Scrap translation is used by the Scrap
Manager, Edition Manager, Drag Manager, and OpenDoc to name a few clients for in-memory translation. Scrap translation

Page: 4

Translation Manager 1.1

can be used any time you want to translate a buffer of information.

The routine to call when you want to perform scrap translation is:

pascal OSErr Transl at eScrap(
Cet Scr apDat aProcPtr sourceDat aCGetter,

voi d* sour ceDat aGet t er Ref Con,
ScrapType desti nati onFor nat ,
Handl e desti nati onDat a,

short progr essD al ogl D)

The routine is designed in a way to use a callback you provide to get the source data to translate. That information is then
translated and placed into a destination handle.

The parameter Sour ceDat aGet t er and sour ceDat aCet t er Ref Con are the two parameters dealing with your
callback routine. sour ceDat aCet t er Ref Con is for your own use - allowing you to pass information to your callback.
The parameter souceDat aCet t er is defined as:

typedef pascal OSErr (*Get ScrapDataProcPtr) (
ScrapType request edFor nat ,
Handl e dat aH,
voi d* srcDat aGett er Ref Con) ;

The callback routine has two responsibilities. The first is to tell the caller what source types are available for translating
(if you are the Scrap Manager for example you would pass all the different formats already on the desk scrap). The other
responsibility is to actually provide the data requested.

For the first case, if the parameter r equest edFormat is ' f nt's', then it's the responsibility of the callback routine
to return in dat aHa list of pairs containing the Scr apType and the size of the that Scr apType's data. The handle
should be re-sized accordingly.

For the second case, the Translation Manager will call the callback routine with one of the types it had provided earlier in
response to ' f Mt s' . The callback in that case is responsible for re-sizing the dat aHand placing in it the data of type
requst edFor mat .

In the callback, the parameter sour ceDat aRef Con is the same as what you had passed in the
sour ceDat aCet t er Ref Con field in Tr ansl at eScrap() .

Back in Tr ansl at eScr ap(), the third parameter, dest i nat i onFor nat is the desired format you would like the

information translated into. dest i nat i onDat a is a handle you provide. The Translation Extension will automatically
re-size it as necessary during translation. Upon exit, if the routine successfully executes, it will contain the translated
information.

The final parameter is pr ogr essDi al ogl D. At this time that parameter should always be assigned the value
Transl at i onScr apPr ogr essDi al ogl D.

Page: 5

Translation Manager 1.1

struct FntsRecord
{

ScrapType t heType;
Si ze dat aSi ze;
e
typedef struct FntsRecord FntsRecord;
typedef FntsRecord *Fnt sRecordPtr;

pascal OSErr PStringGetter(
ScrapType request edFor nat ,
Handl e dat aH,

voi d* srcDat aCet t er Ref Con)
{
CSErr resul t;
Str63 thePStri ng;

/* Build an internal buffer to the PString we can get

Bl ockMove("\pHell o there, this is |ower case",
& hePString, sizeof(Str63));

/* See if we are being requested to tell what
source format's we have avail able */

if (requestedFormat == 'fnts') {

/* Size the handle to contain our one source
format */

Set Handl eSi ze(dat aH, si zeof (Fnt sRecord));
if ((result = MenError()) == noErr) {

/* Stuff our data into the fnts handle */

((Fnt sRecordPtr) *dat aH) - >t heType = ' PSTR ;

((Fnt sRecor dPtr) *dat aH) - >dat aSi ze = thePString[0] +1;

} else {

/* If we're here, we've been asked to get the

sour ce dat a. Stuff data into handle */

Set Handl eSi ze(dat aH, thePString[0] +1);
if ((result = MenError()) == noErr)

Bl ockMove(& hePString, *dataH, thePString[O0]+1);

return result;

}
voi d Transl at ePSTRToUPPR(voi d)
{

Handl e desti nati onDat a;
OSErr result;
/* A handle to fill with the translated data */

if (destinati onData = NewHandl e(0))
result = Transl ateScrap(PStringCetter,
0

“UPPR |,
desti nati onDat a,
Transl at i onScr apPr ogr essDi al ogl D) ;

/* Do sonething with the translated information */

The preceding example shows how to use the Tr ans| at eScr ap() routine and how to implement a data-getter. In the
above example, Tr ansl at eScr ap() is called requesting type ' UPPR (upper case) and providing the source data

through the data-getter referenced in PSt ri ngGetter.

New Translation Extension Capabilities

Beginning with Translation Manager 1.1, Translation Extensions now have the capability of generating the filenames of
documents created by a document converter. This is useful, for example, if your Translation Extension wants to provide a
DOS compatible filename for generated documents. Name generation is done by implementing the new Translation Extension

routine (selector kTr ansl at eGet Tr ansl at edFi | enang).

Page: 6

Translation Manager 1.1

pascal Conponent Result DoGCet Tr ansl at edFi | enanme(
Conponent | nst ance sel f,
Fi | eType dst Type,
| ong dst TypeH nt,
FSSpec* t heDocunent);

This routine is called after Dol denti f yFi | e(), but before DoTr ansl at eFi | e().
The first parameter, like all other references to self in the Component Manager, is a reference to this instance of the
component. dst Type is the target type and dst TypeHi nt is the hint that goes with that type - they are the same that

will be passed to DoTr ansl at eFi | e() when that call is made by the Translation Manager. The final parameter,
t heDocunent is the document to generate a name on - and where to store your generated name.

It's important to not modify t heDocunent unless your routine successfully completes because whatever is returned will
be used (even if you return an error).

Your Translation Extension should verify the uniqueness of the filename in the target location before returning.

The Translation Manager will not call your Translation Extension with this message unless you have the translation flags
correctly set. That is done by modifying the ' t hng' resources Fl ags field, and setting the

kTransl at or CanGener at eFi | enane bit.

PowerPC Translation Extensions

Native Translation Extensions are pretty much the same as 68K ones. The biggest difference is putting a wrapper around
the code. You have several options when writing a translator. Your translator can be 68K, your translator can be PowerPC
only, or your translator can be fat (both 68K and PowerPC).

The best of both worlds is the third case. Your translator is a bit bigger, but a user can simply drag it from machine to
machine without worrying about the platform. To implement a native PowerPC translator, simply replace your code
referred by your ' t hng' resource (usually type ' x| at ') with a reference to a resource wrapped by a' sdes'
resource (see MixedMode.r). An ' sdes' includes both your 68K and PowerPC code into a single resource and
automatically dispatches to the correct 68K or PowerPC code depending on what platform you are on.

For specific examples on putting together a fat resource, please consult Inside Macintosh , specifically, the chapter on the
Mixed Mode Manager.

Back to top

References

Inside Macintosh , More Macintosh Toolbox, Translation Manager
Inside Macintosh , More Macintosh Toolbox, Component Manager
Inside Macintosh , PowerPC System Software, Mixed Mode Manager

APDA , Macintosh Easy Open Developers Kit

Back to top
Downloadables
E Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

Page: 7

