
Partial Resource Myths and Legends Page: 1

CONTENTS

Three Bogus Error Codes

Replacement Partial Resource Documentation

Reading and Writing Partial Resources

ReadPartialResource

WritePartialResource

References

Downloadables

This Technical Note corrects and clarifies
Inside Macintosh: More Macintosh Toolbox

for the ReadPartialResource and
WritePartialResource calls.

[Apr 01 1994]

Three Bogus Error Codes

The documentation for reading and writing partial resources is incorrect in three important ways--it states that the
Resource Manager returns error codes to protect you against bad inputs, when it does no such thing. Three of the errors
described in Resource Manager documentation are completely erroneous and are never returned by Resource Manager
routines. Those codes are:

1. inputOutOfBounds does not exist

Inside Macintosh: More Macintosh Toolbox states that the ReadPartialResource and WritePartialResource
calls check your count and offset input parameters and return inputOutOfBounds if they are out of range. This is
not true; the only check on your input parameters is the verification of your resource handle. The result code
inputOutOfBounds is completely erroneous and is not returned by any Resource Manager call.

2. resourceInMemory is never returned

The documentation also indicates that the Resource Manager returns the code resourceInMemory if the resource handle
is not empty. This too is false; the only test performed on your resource handle is whether it is in the current map chain.
The result code resourceInMemory is completely erroneous and is not returned by any Resource Manager call.

3. writingPastEnd is a figment of our imagination

In the case of WritePartialResource, if the combination of the offset and the count would extend the write
request past the end of the resource on disk, the documentation indicates that the routine enlarges the resource and returns
the result code writingPastEnd. This is not true; it does not automatically resize the resource and blindly overwrites
any data in the following resource. If it is your intent to enlarge the resource, you must call SetResourceSize prior to
the write. The result code writingPastEnd is completely erroneous and is not returned by any Resource Manager call.

Back to top

Replacement Partial Resource Documentation

The correct text documenting these two routines follows. This supersedes all current documentation concerning partial
resources, including: Inside Macintosh, Volume VI , pages 13-16-17, 13-21-23; and Inside Macintosh: More
Macintosh Toolbox , pages 1-111-115.

Back to top

Reading and Writing Partial Resources

You can use the ReadPartialResource, WritePartialResource, and SetResourceSize procedures to work
with a portion of a large resource that may not otherwise fit in memory.

When using partial resource routines, you should call the SetResLoad procedure, specifying FALSE for the load
parameter, before you call GetResource. Using the SetResLoad procedure prevents the Resource Manager from
reading the entire resource into memory. Be sure to restore the normal state by calling SetResLoad again, with the load
parameter set to TRUE, immediately after you call GetResource. Then use ReadPartialResource to read a portion

Partial Resource Myths and Legends Page: 2

of the resource into a buffer and WritePartialResource as needed to write a portion of the resource from a buffer to
disk.

Note that the partial resources routines work with the data in the memory pointed to by the buffer parameter, not the
memory referenced through the resource's handle. Therefore, you may experience problems if you have a copy of a
resource in memory when you are using the partial resource routines. If you have modified the copy in memory and then
access the resource on disk using the ReadPartialResource procedure, ReadPartialResource reads the data on
disk, not the data in memory, which is referenced through the resource's handle. Similarly, WritePartialResource
writes data from the specified buffer, not from the data in memory, which is referenced through the resource's handle.

The partial resources routines do not decompress Apple's compressed resource format. It is not really possible to
decompress part of a resource, since the current decompression method requires the entire resource to be in memory for
the conversion to occur. Therefore, the partial resources routines should not be used when the data is in Apple's
proprietary format. You can determine if a resource is compressed by examining bit 0 of the resource's attributes. If this
bit is clear, the resource is not compressed and it is safe to use these partial resources routines.

Back to top

ReadPartialResource

You can use the ReadPartialResource procedure to read part of a resource into memory and work with a small
subsection of a large resource.

PROCEDURE ReadPartialResource (theResource: Handle;
 offset: LongInt; buffer: UNIV Ptr;

theResource A handle to a resource.

offset The beginning of the resource subsection to be read, measured in bytes from the beginning of the
resource.

buffer A pointer to the buffer into which the partial resource is to be read.

count The length of the resource subsection.

Description

The ReadPartialResource procedure reads the resource subsection identified by the theResource, offset, and
count parameters into a buffer specified by the buffer parameter. Your application is responsible for the buffer's
memory management. You cannot use the ReleaseResource procedure to release the memory the buffer occupies.

The ReadPartialResource procedure always tries to read resources from disk. If the handle in the parameter
theResource doesn't refer to a resource in an open resource fork, ResError returns the result code resNotFound.

When using partial resource routines, you should call the SetResLoad procedure, specifying FALSE for the load
parameter, before you call GetResource. Using the SetResLoad procedure prevents the Resource Manager from
reading the entire resource into memory. Be sure to restore the normal state by calling SetResLoad again, with the load
parameter set to TRUE, immediately after you call GetResource. Then use ReadPartialResource to read a portion
of the resource into a buffer.

Note:
If the entire resource is in memory and you want only part of its data, it's faster to use the Memory Manager
procedure BlockMove instead of the ReadPartialResource procedure. If you read a partial resource into
memory and then change its size, you can use SetResourceSize to change the entire resource's size on disk
as necessary.

Special Considerations

The ReadPartialResource procedure may move or purge memory blocks in the application heap. Your application
should not call this procedure at interrupt time.

Assembly-Language Information

The trap macro and routine selector for ReadPartialResource are:

Trap macro Selector

_ResourceDispatch $7001

Result Codes

noErr 0 No error

resNotFound -192 Resource not found

Back to top

WritePartialResource

Partial Resource Myths and Legends Page: 3

You can use the WritePartialResource procedure to write part of a resource to disk when working with a small
subsection of a large resource.

PROCEDURE WritePartialResource (theResource: Handle;
 offset: LongInt; buffer: UNIV Ptr;

theResource A handle to a resource.

offset The beginning of the resource subsection to write, measured in bytes from the beginning of the
resource.

buffer A pointer to the buffer containing the data to write.

count The length of the resource subsection to write.

Description

The WritePartialResource procedure writes the data specified by the buffer parameter to the resource subsection
identified by the theResource, offset, and count parameters. Your application is responsible for the buffer's
memory management.

If the disk or the file is locked, the ResError function returns an appropriate File Manager result code.

The WritePartialResource procedure tries to write the data from the buffer to disk. If the attempt is successful and
the resource data (referenced through the resource's handle) is in memory, be aware that the data of the resource
subsection on disk matches the data from the buffer, not the resource data referenced through the resource's handle. If the
attempt to write the data from the buffer to the disk fails, ResError returns an appropriate error.

If the handle in the parameter theResource does not refer to a resource in an open resource fork, ResError returns
the result code resNotFound.

The WritePartialResource procedure checks that the information in the resource map is internally consistent. If it
isn't, the ResError function returns the result code mapReadErr.

When using partial resource routines, you should call the SetResLoad procedure, specifying FALSE for the load
parameter, before you call GetResource. Doing so prevents the Resource Manager from reading the entire resource into
memory. Be sure to restore the normal state by calling SetResLoad again, with the load parameter set to TRUE,
immediately after you call GetResource.

Note:
If you read a partial resource into memory and then change its size, you must use SetResourceSize to
change the entire resource's size on disk as necessary before you write the partial resource.

Special Considerations

The WritePartialResource procedure may move or purge memory blocks in the application heap. Your application
should not call this procedure at interrupt time.

Assembly-Language Information

The trap macro and routine selector for WritePartialResource are:

Trap macro Selector_ResourceDispatch $7002

Result Codes

noErr 0

No errordskFulErr -34

Disk fullresNotFound -192

Resource not foundmapReadErr -199

Map inconsistent with operation

Back to top

References

Inside Macintosh: More Macintosh Toolbox

Technical Note TB 555- Resource Manager Q&As

Back to top

Downloadables

Partial Resource Myths and Legends Page: 4

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

