
MultiFinder Frequently Asked Questions Page: 1

NOTE: This Technical Note has been retired. Please see the Technical Notes page for current documentation.

CONTENTS

How can I tell if WaitNextEvent is implemented?

How can I tell if the MultiFinder Temporary Memory Allocation
calls are implemented?

How can I tell if my application is running in the background?

When exactly does juggling take place?

Can I disable suspend/resume events by passing the
appropriate event mask to WNE/GNE/EventAvail?

Should my application use WaitNextEvent?

Is there anything else that I can do to be MultiFinder friendly?

Can I use a debugger with MultiFinder?

What happened to animated icons under MultiFinder?

How can I ensure maximal compatibility with MultiFinder?

References

Downloadables

This technical note provides answers to some
of the more frequently asked questions about
MultiFinder. The development name for
MultiFinder was Juggler, so the term "juggle"
is used in this technical note to denote a
context switch.

[Nov 01 1993]

How can I tell if WaitNextEvent is implemented?

Most applications should not need to tell if MultiFinder is running. Most of the time, the application really needs to know
something like: "How can I tell if WaitNextEvent is implemented?" Here's a Pascal fragment that demonstrates how to
check to see if WaitNextEvent is implemented:

MultiFinder Frequently Asked Questions Page: 2

 FUNCTION TrapAvailable(tNumber: INTEGER; tType: TrapType): BOOLEAN;

 CONST
 UnimplementedTrapNumber = $A89F; {number of "unimplemented trap"}

 BEGIN {TrapAvailable}

 {Check and see if the trap exists.}
 {On 64K ROM machines, tType will be ignored.}

 TrapAvailable := (NGetTrapAddress(tNumber, tType) <>
 GetTrapAddress(UnimplementedTrapNumber));

 END; {TrapAvailable}

 FUNCTION WNEIsImplemented: BOOLEAN;

 CONST
 WNETrapNumber = $A860; {trap number of WaitNextEvent}

 VAR
 theWorld : SysEnvRec; {to check if machine has new traps}
 discardError : OSErr; {to ignore OSErr return from SysEnvirons}

 BEGIN {WNEIsImplemented}

 { Since WaitNextEvent and HFSDispatch both have the same trap
 number ($60), we can only call TrapAvailable for WaitNextEvent
 if we are on a machine that supports separate OS and Toolbox
 trap tables. We call SysEnvirons and check if machineType < 0.}

 discardError := SysEnvirons(1, theWorld);

 { Even if we got an error from SysEnvirons, the SysEnvirons glue
 has set up machineType.}

 IF theWorld.machineType < 0 THEN
 WNEIsImplemented := FALSE
 {this ROM doesn't have separate trap tables or WaitNextEvent}
 ELSE
 WNEIsImplemented := TrapAvailable(WNETrapNumber, ToolTrap);
 {check for WaitNextEvent}

 END; {WNEIsImplemented}

 {Note that we call SystemTask if WaitNextEvent isn't available.}

 ...
 hasWNE := WNEIsImplemented;
 ...
 IF hasWNE THEN BEGIN
 {call WaitNextEvent}
 ...
 END ELSE BEGIN
 {call SystemTask and GetNextEvent}
 ...
 END;

Here's a C fragment:

MultiFinder Frequently Asked Questions Page: 3

 Boolean TrapAvailable(tNumber, tType)
 short tNumber
 TrapType tType
 {

 /* define trap number for old MPW or non-MPW C */
 #ifndef _Unimplemented
 #define _Unimplemented 0xA89F
 #endif

 /* Check and see if the trap exists. */
 /* On 64K ROM machines, tType will be ignored. */

 return(NGetTrapAddress(tNumber, tType) !=
 GetTrapAddress(_Unimplemented));

 }

 Boolean WNEIsImplemented()
 {

 /* define trap number for old MPW or non-MPW C */
 #ifndef _WaitNextEvent
 #define _WaitNextEvent 0xA860
 #endif

 SysEnvRec theWorld; /* used to check if machine has new traps */

 /* Since WaitNextEvent and HFSDispatch both have the same trap
 number ($60), we can only call TrapAvailable for WaitNextEvent
 if we are on a machine that supports separate OS and Toolbox
 trap tables. We call SysEnvirons and check if machineType < 0. */

 SysEnvirons(1, &theWorld);

 /* Even if we got an error from SysEnvirons, the SysEnvirons glue
 has set up machineType. */

 if (theWorld.machineType < 0) {
 return(false)
 /* this ROM doesn't have separate trap tables or WaitNextEvent */
 } else {
 return(TrapAvailable(_WaitNextEvent, ToolTrap));
 /* check for WaitNextEvent */
 }

 }

 /* Note that we call SystemTask if WaitNextEvent isn't available. */

 ...
 hasWNE = WNEIsImplemented();
 ...
 if (hasWNE) {
 /* call WaitNextEvent */
 ...
 } else {
 /* call SystemTask and GetNextEvent */
 ...
 }

Note:
Testing to see if WaitNextEvent is implemented is not the same as testing to see whether MultiFinder is
running. Systems 6.0 and newer include WaitNextEvent whether or not MultiFinder is running.

Back to top

How can I tell if the MultiFinder Temporary Memory Allocation calls
are implemented?

Date Written: 9/87

Last reviewed: 3/88

The technique that's used to determine this is similar to the above technique. The TrapAvailable routine above is reused. In
Pascal:

MultiFinder Frequently Asked Questions Page: 4

 FUNCTION TempMemCallsAvailable: BOOLEAN;

 CONST
 OSDispatchTrapNumber = $A88F; {number for temporary memory calls}

 BEGIN {TempMemCallsAvailable}

 { Since OSDispatch has a trap number that was always defined
 to be a toolbox trap ($8F), we can always call TrapAvailable.
 If we are on a machine that does not have separate OS and
 Toolbox trap tables, we'll still get the right trap address.}

 TempMemCallsAvailable := TrapAvailable(OSDispatchTrapNumber, ToolTrap);
 {check for OSDispatch}

In C:

 Boolean
 TempMemCallsAvailable()
 {

 /* define trap number for old MPW or non-MPW C */
 #ifndef _OSDispatch
 #define _OSDispatch 0xA88F
 #endif

 /* Since OSDispatch has a trap number that was always defined to
 be a toolbox trap ($8F), we can always call TrapAvailable.
 If we are on a machine that does not have separate OS and
 Toolbox trap tables, we'll still get the right trap address. */

 return(TrapAvailable(_OSDispatch, ToolTrap));
 /* check for OSDispatch */

Back to top

How can I tell if my application is running in the background?

Date Written: 9/87

Last reviewed: 3/88

To run in the background under MultiFinder, an application must have set the canBackground bit (bit 12 of the first
word) in the SIZE resource. In addition, the acceptSuspendResumeEvents bit (bit 14) should be set. An application
can tell it is running in the background if it has received a suspend event but not a resume event.

Back to top

When exactly does juggling take place?

Date Written: 9/87

Last reviewed: 3/88

Juggling takes place at WaitNextEvent/GetNextEvent/EventAvail time. If you have the
acceptSuspendResumeEvents bit set in the SIZE resource, you will receive suspend/resume events. When you get a
suspend event (or, when you call EventAvail and a suspend event has been posted), you will be juggled out the next
time that you call WNE/GNE/EventAvail. When you receive a suspend event, you are going to be juggled, so don't do
anything to try to retain control (such as calling ModalDialog).

Speaking of ModalDialog, MultiFinder will not suspend your application when the frontmost window is a modal dialog,
though background tasks will continue to get time.

Back to top

Can I disable suspend/resume events by passing the appropriate
event mask to WNE/GNE/EventAvail?

Date Written: 9/87

Last reviewed: 3/88

suspend/resu,e events are not queued, so be careful when masking out app4Evts. You will still get the event, all that
will happen if you mask out app4Evts is that your application won't know when it is going to be juggled out (your

MultiFinder Frequently Asked Questions Page: 5

application will still be juggled out when you call WNE/GNE/EventAvail). If your application sets a boolean to tell
whether or not it's in the foreground or the background, you definitely don't want to mask out app4Evts.

Back to top

Should my application use WaitNextEvent?

Date Written: 9/87

Last reviewed: 3/88

Yes, this will enable background tasks to get as much time as possible. All user events that your program needs to handle
will be passed to your application as quickly as possible. Applications that run in the background should try to be as
friendly as possible. It's best to do things a small chunk at a time so as to give maximum time to the foreground
application. "Cooperative multi-tasking" requires cooperation!

If your application calls WaitNextEvent, it shouldn't call SystemTask.

Back to top

Is there anything else that I can do to be MultiFinder friendly?

Date Written: 9/87

Last reviewed: 11/16/93

It is very important that you save the positions of windows that you open, so that the next time the user launches your
application, the windows will go where they had them last. This greatly enhances the usability of MultiFinder. See
Technote TB575 - Window Manager Q&As: "How to save and restore window positions."

Back to top

Can I use a debugger with MultiFinder?

Date Written: 9/87

Last reviewed: 3/88

Yes, MacsBug will load normally, since it is loaded well before MultiFinder. Since TMON is currently installed as a startup
application, you should Set Startup to it, then launch MultiFinder manually (by holding down Option-Command while
double-clicking the MultiFinder icon) or use a program that will run multiple startup applications (such as Sequencer),
making sure that TMON is run before MultiFinder. If you try to run TMON after MultiFinder has been installed, a system
crash will result. The latest version of TMON (2.8) has an INIT that loads it before MultiFinder is present.

It is necessary to check CurApName ($910) when you first enter a debugger (TMON users can anchor a window to
$910) to see which layer (whose code, which low-memory globals and so on) is currently executing, especially if you
entered the debugger by pressing the interrupt button.

Back to top

What happened to animated icons under MultiFinder?

Date Written: 9/87

Last reviewed: 3/88

Finders 6.0 and newer no longer use the mask that you supply in an ICN# to "punch a hole" in the desktop. Instead, the
Finder uses a default mask that consists of a solid black copy of the icon with no hole.

Back to top

How can I ensure maximal compatibility with MultiFinder?

Date Written: 9/87

Last reviewed: 3/88

If you follow the guidelines presented in the MultiFinder Developer's Package you will stand a very good chance of being
fully compatible with MultiFinder.

Back to top

References

M.OV.GestaltSysenvirons

M.OV.ChkForFunction

MultiFinder Developer's Package

MultiFinder Frequently Asked Questions Page: 6

Back to top

Downloadables

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

