MultiFinder Miscellanea Page: 1

NOTE: This Technical Note has been retired. Please see the Technical Notes page for current documentation.

Technical Note TB35

MultiFinder Miscellanea

CONTENTS This Technical Note discusses MultiFinder
o issues of which programmers should be
Switching aware.

Suspend and Resume Events
[Nov 01 1987]
Referencing Global Data (A5 and MultiFinder)
Launching and MultiFinder
The Scrap and MultiFinder

UnmountVol and MultiFinder

Displaying a Splash Screen

The Apple Menu and MultiFinder

Interprocess Communication

PostEvent

Miscellaneous Miscellanea

References

Downloadables

Switching

For conceptual clarity, it is best to think of MultiFinder 6.0 and earlier as using three types of switching: major, minor, and
update. All switching occurs at a well defined times, namely, when a call is made to either _\Mi t Next Event ,
_Get Next Event, or _Event Avai | .

Major switching is a complete context switch, that is, an application's windows are moved from the background to the
foreground or vice versa. A5 worlds are switched, and the application's low-memory world is switched. If the application
accepts Suspend and Resume events, it is so notified at major switch time.

Major switching will not occur when a modal dialog is the frontmost window of the front layer, though minor and update
switching will occur. To determine whether major switching will occur, MultiFinder checks (among other things) if the
window definition procedure of that window is dBoxPr oc. If it is, then MultiFinder won't allow a switch via the user
clicking on another application. A window definition procedure of dBoXPr oc is specifically reserved for modal
dialogs--when most users see a dBoxPr oc, they are expecting a modal situation. If you are using a dBoxPr oc for a
non-modal window, we strongly recommend that you change it to some other window type, or risk the wrath of the
User-Interface Thought Police (UITP).

Minor switching occurs when an application needs to be switched out to give time to background processes. In a minor
switch, A5 worlds are switched, as are low-memory worlds, but the application's layer of windows is not switched, and the
application won't be notified of the switch via Suspend and Resume events.

Update switching occurs when MultiFinder detects that one or more of the windows of an application that is not frontmost
needs updating. This happens whether or not the application has the canBackgr ound bit in the ' SI ZE' - 1 resource set.
This switch is very similar to minor switching, except that update events are sent to the application whose window need
updating.

Both minor and update switches should be transparent to the frontmost application.

Back to top

Suspend and Resume Events

MultiFinder Miscellanea

If your application does not accept Suspend and Resume events (as set in the ' SI ZE' - 1 resource), then if a mouse-click
event occurs in a window that isn't yours, MultiFinder will send your application a mouse-down event with code

i nMenuBar (with menul Dequal to the ID of the Apple menu and Menul t emset to "About MultiFinder..."). The reason that
MultiFinder does this is to force your application to think that a desk accessory is opening, so that it will convert any private
scrap that it might be keeping. MultiFinder is expecting your application to call _MenuSel ect --if you don't, it will
currently issue a few more mouse-down events in the menu bar before finally giving up. This isn't really a problem, but a
lot of developers have run into it, especially in "quick and dirty" applications.

If you are switching menu bars with _Set MenuBar (and switching the Apple Menu) during the execution of your
application, then you should definitely make sure that your application accepts Suspend and Resume events. MultiFinder
records the ID of the original Apple menu that you use and won't keep track of any changes that you make to the Apple menu.
So, in the above situation, MultiFinder will give you a mouse-down event in the menu bar with the nenul t emset to the item
number of "About MultiFinder..." that was in the original Apple menu, which could be quite a confusing situation. If you set
the MultiFinder friendly bit in the ' SI ZE' resource, MultiFinder will never give you these mouse-down events.

Back to top

Referencing Global Data (A5 and MultiFinder)

MultiFinder maintains a separate A5 world for each application. MultiFinder switches A5 worlds as appropriate, so most
applications don't have to worry about A5 at all (except to make sure that it points to a valid QuickDraw global record at
_Get Next Event or _\Wi t Next Event time). MultiFinder also switches low-memory globals for you. To get the value of
the application's A5, use the routines from TM.OV.A5.

If an application uses routines that execute at interrupt time and accesses globals, then it needs to be concerned about A5.
MultiFinder affects four basic types of interrupt routines:

® \/BL tasks

® Completion routines

® Time Manager tasks

® |nterrupt service routines

VBL Tasks

If an application installs a VBL task into its application heap, MultiFinder will currently “unhook™ that VBL routine when it
switches that application out (using either a major or a minor switch). It will "rehook™ it when the application is switched
back in. A VBL task that is installed in the system heap will always receive time, that is, it will never be "unhooked." Given
this condition, it is technically not necessary for a VBL task that is in the application's heap to worry about its A5 context,
since it will only be running when that application’s partition is switched in. However, we would still like to encourage you
to set up A5 by carrying its value around with the VBL, since we may change the way this works in future versions of
MultiFinder (and even without MultiFinder, the VBL could trigger at a time when A5 is not correct).

The following short MPW examples show how to do this using the new MPW 3.0 calls mentioned in M.OV.A5. Please note that
this technique does not involve writing into your code segment (we’'ll get to that later), we just put our value of the
application’s A5 in a location where we can find it from our VBL task. Nor does it depend on the VBL task information being
allocated globally. This gives you more flexibility setting up your VBL.

This example also serves to demonstrate how one might write a completion routine for an asynchronous Device Manager call.
It is not intended to be a complete program, nor to demonstrate optimal techniques for displaying information.

MPW Pascal 3.0

UNT VBLS
{$R-}
| NTERFACE

USES
Di al ogs, Events, OSEvents, Retrace, Packages, Types, Traps;

CONST
Interval =
rinfoDial o
|

140;
r St at Text =1

g =
tem
TYPE

{ Define a record to keep track of what we need. Put theVBLTask into the

record first because its address will be passed to our VBL task in AO. }
VBLRec = RECORD

t heVBLTask: VBLTask; { the actual VBLTask }
VBLAS: Longl nt ; { saved CQurrent A5 where we can (find it }
END;
VBLRecPtr = “VBLRec;
VAR
gCount er: Longl nt; { dobal counter incremented by (VBL }

PROCEDURE | nst al | VBL;
| MPLEMENTATI ON

Page: 2

MultiFinder Miscellanea Page: 3

{ GetVBLRec returns the address of the VBLRec associated with our VBL task.
This works because on entry into the VBL task, AO points to the theVBLTask
field in the VBLRec record, which is the first field in the record and that
is the address we return. Note that this method works whether the VBLRec
is allocated globally, in the heap (as long as the record is |ocked in
nmenory) or if it is allocated on the stack as is the case in this exanple.
In the latter case this is OK as long as the procedure which installed the
task does not exit while the task is running. This trick allows us to get
to the saved A5, but it could also be used to get to anything we wanted to
store in the record.

FUNCTI ON Get VBLRec: VBLRecPtr;

I NLI NE $2E88; { MOVE.L A0, (A7) }

PROCEDURE DoVBL (VRP: VBLRecPtr);
{ DoVBL is called only by StartVBL }

BEG N

gCounter := gCounter + 1; { Show we can set a global }

VRP". t heVBLTask. vbl Count := Interval; { Set ourselves to run again }
END;

PROCEDURE St art VBL;

{ This is the actual VBL task code. It uses GetVBLRec to get our VBL record
and properly set up A5. Having done that, it calls DoVBL to increnent a
gl obal counter and sets itself to run again. Because of the vagaries of
MPWC 3.0 optim zation, it calls a separate routine to actually access
gl obal variables. See MOV.A5 for the reasons for this, as well
as for a description of SetA5. }

VAR

cur A5: Longl nt ;

rechPtr: VBLRecPtr;
BEG N

recPtr := GetVBLRec; { First get our record }

cur A5: = Set A5(recPtr”. VBLAS); { Get our application's A5 }

{ Now we can access gl obal s }

DoVBL (recPtr); { Call another routine for actual (work}

cur A5: = Set A5(cur A5) ; { restore original A5, ignoring (result }
END;

PROCEDURE | nst al | VBL;

{ Install VBL creates a dialog just to denonstrate that the gl obal variable
is being updated by the VBL Task. Before installing the VBL, we store
our A5 in the actual VBL Task record, using SetCurrentA5 described in
MOV.A5. W'Ill run the VBL, showi ng the counter being increnented,
until the nouse button is clicked. Then we renove the VBL Task, close the
di al og, and renove the nmouse down events to prevent the application from
bei ng i nadvertently switched by Milti Finder. }

VAR
t heVBLRec: VBLRec;
i nfoDPtr: Di al ogPtr;
i nf oDSt or age: Di al ogRecor d;
nunst r: St r 255;
theErr: CSErr;
t hel t enHandl e: Handl e;
t hel t enType: | NTEGER;
t heRect : Rect ;
BEG N
gCounter:= 0 initialize the global variable }

infoDPtr:—Gétl\lemDang(rInfoDalog, @ nf oDSt orage, Pointer(-1));
Dr awDi al og(i nf oDPtr);
CetDiten(infoDPtr, rStatTextltem theltenType, theltentandl e, theRect);

t heVBLRec. VBLAS5: = Set Curr ent A5; { get our A5 }
W TH t heVBLRec. t heVBLTask DO
BEG N
vbl Addr: = @3t art VBL; { pointer to VBL code }
vbl Count : = Interval; { frequency of VBL in Systemticks }
gType: = ORD(vType); { gElenent is a VBL type }
vbl Phase: = 0; { no phases }
END;
theErr:= Vinstal | (@heVBLRec. t heVBLTask) ; { install this VBL task }
|F theErr = noErr THEN { we'll show the global value in }
BEG N { the dialog until a nouse click }
REPEAT

NunmroSt ri ng(gCount er, nunftr);
Set | Text (theltenHandl e, nunftr);
UNTI L Button;

MultiFinder Miscellanea Page: 4

theErr: = VRenove(@heVBLRec. t heVBLTask); { renove the VBL task }

END;
Cl oseDi al og(i nfoDPtr); { get rid of the info dialog }
Fl ushEvent s(mDownMask, 0); { renove all nouse down events }
END;
MPW C 3.0

#i ncl ude <Events. h>
#i ncl ude <CSEvents. h>
#i ncl ude <GsUils. h>
#i ncl ude <D al ogs. h>
#i ncl ude <Packages. h>
#i ncl ude <Retrace. h>
#i ncl ude <Traps. h>

#def i ne | NTERVAL 6
#define rlnfoD al og 140
#define rStat Textltem 1

/*

* These are globals which will be referenced fromour VBL Task

*/

| ong gCount er; /* Counter increnented each time our VBL gets called */
/*

* Define a struct to keep track of what we need. Put theVBLTask into the

* struct first because its address will be passed to our VBL task in AO

*/
struct VBLRec {

VBLTask t heVBLTask; /* the VBL task itself */

| ong VBLAS5; /* saved Current A5 where we can find it */
IE
typedef struct VBLRec VBLRec, *VBLRecPtr;
/*
* Get VBLRec returns the address of the VBLRec associated with our VBL task.
* This works because on entry into the VBL task, A0 points to the theVBLTask
* field in the VBLRec record, which is the first field in the record and that
* js the address we return. Note that this method works whether the VBLRec
* jis allocated globally, in the heap (as long as the record is |ocked in
* nenory) or if it is allocated on the stack as is the case in this exanple.
* Inthe latter case this is K as long as the procedure which installed the
* task does not exit while the task is running. This trick allows us to get
* to the saved A5, but it could al so be used to get to anything we wanted to
* store in the record.

*/

VBLRecPtr Get VBLRec ()

= 0x2008; /* MOVE. L A0, DO */
/*
* DoVBL is called only by StartVBL ()
*/

voi d DoVBL (VRP)
VBLRecPt r VRP;

{

gCount er ++; /* Show we can set a gl obal */

VRP- >t heVBLTask. vbl Count = | NTERVAL; /* Set ourselves to run again */
}
/*
* This is the actual VBL task code. It uses GetVBLRec to get our VBL record
* and properly set up A5. Having done that, it calls DoVBL to increnent a
* global counter and sets itself to run again. Because of the vagaries of
* MPWC 3.0 optimzation, it calls a separate routine to actually access
* global variables. See MOV.A5 - "Setting and Restoring A5" for
* the reasons for this, as well as for a description of SetAS5.
*/
void StartVBL ()
{

| ong cur A5;

VBLRecPt r recPtr;

recPtr = GetVBLRec (); /* First get our record */

curA5 = Set A5 (recPtr->VBLAS); /[* Get the saved A5 */

/* Now we can access gl obals */
DoVBL (recPtr); /* Call another routine to do actual work */

(void) SetA5 (curAb); /* Restore old A5 */

MultiFinder Miscellanea Page: 5

}
/*
* |InstallVBL creates a dialog just to denonstrate that the gl obal variable
* is being updated by the VBL Task. Before installing the VBL, we store
* our A5 in the actual VBL Task record, using SetCurrentA5 described in
* TMOV.A5. W'll run the VBL, showi ng the counter being increnented,
* until the nouse button is clicked. Then we renove the VBL Task, close the
*

di al og, and renove the nouse down events to prevent the application from
* being inadvertently sw tched by MultiFi nder.
*/

void Install CvBL ()

{

VBLRec t heVBLRec;

Di al ogPt r i nfoDPtr;

Di al ogRecord i nf oDSt or age;

Str 255 nunstr;

CSEr r t heErr;

Handl e t hel t enHandl e;

short t hel t enType;

Rect t heRect ;

gCounter = O; /* Initialize our global counter */

infoDPtr = GetNewDi al og (rInfoD alog, (Ptr) & nfoDStorage, (WndowPtr) -1);
DrawDi al og (i nfoDPtr);
GetDitem (infoDPtr, rStatTextltem &theltenType, &t heltenHandl e,

&t heRect) ;

/*
* Store the current value of A5 in the M/A5 field. For nore
* information on SetCurrentA5 see MOV.A5
*
/
t heVBLRec. VBLA5 = Set CurrentA5 ();
/* Set the address of our routine */
t heVBLRec. t heVBLTask. vbl Addr = (VBLProcPtr) StartVBL;
t heVBLRec. t heVBLTask. vbl Count = | NTERVAL; /* Frequency of task, in ticks */
t heVBLRec. t heVBLTask. qType = vType; /* qElenent is a VBL task */
t heVBLRec. t heVBLTask. vbl Phase = 0;

/* Now install the VBL task */
theErr = Vinstall ((QEl enPtr) & heVBLRec. t heVBLTask) ;

if ('theErr) {
do {

NunifoSt ri ng (gCounter, nunftr);
Set | Text (theltentHandl e, nunStr);
} while (!Button ());
theErr = VRenove ((CQEl enPtr) & heVBLRec. theVBLTask); /* Renove it when done */

}

[* Finish up */

Cl oseD al og (infoDPtr); /[* Get rid of our dialog */

Fl ushEvent s (nDownMask, 0); /* Flush all nouse down events */

Completion Routines

Currently, MultiFinder will not do a major, minor, or update switch if an asynchronous File Manager call is pending. This
may not be true in the future. We recommend that you use the above technique to save A5 for asynchronous File Manager
calls. MultiFinder does allow a switch if an asynchronous Device Manager or Sound Manager call is pending. When the call
completes, the completion routine has no way of knowing whose partition is active, that is, it doesn't know if AS is valid (it
needs A5 if it wants to access a global). Sounds pretty hopeless, huh?

Well, actually this one is quite easy, you just need to put the value of A5 that "belongs" to your partition in a place where you
can find it from your completion routine. It is guaranteed that AO will point to your parameter block when your completion
routine is called, so you can use the same technique shown with VBL tasks to put the value of A5 at a known offset from the
beginning of the parameter block, and then reference it from AO. Completion routines are normally written in assembly
language, though you can also write them in a high-level language. A simple example of how to do this in MPW Pascal and C
can be found in the previous section about VBL tasks (it was easier to provide a clear, concise example for VBL tasks than for
asynchronous Device Manager completion routines).

Time Manager Tasks

The Time Manager was rewritten for System 6.0.3. The new version will put a pointer to the TMIask record in Al. This is
not true in System 6.0.2 or earlier. The technique shown in the example VBL for accessing an application’s globals is
possible using System 6.0.3 and the Time Manager. Prior to System 6.0.3, the task must also store the application's A5 into
its code. This method is not a very good idea and runs the risk of incompatibility (self-modifying code).

Interrupt Service Routines

If your application needs to get to its application globals, and it replaces the standard 68xxx interrupt vectors (levels 1-7)
with pointers to its own routines, it must also store the application's A5 into its code (since there is no parameter block for

MultiFinder Miscellanea

interrupt service routines). This method is not a very good idea and runs the risk of compatibility (self-modifying code).

Note:
WDEFs should also maintain a copy of A5 in the same fashion as Time Manager tasks (prior to System Software
6.0.3) and set up A5 when called; WDEFs should also be non-purgeable.

Back to top

Launching and MultiFinder

M.PS.SubLaunching discusses the sublaunching feature of Systems 4.1 and newer. If you are running MultiFinder, and you
use the technique demonstrated in that Technical Note, your application will be able to launch the desired application and
remain open.

Note:
MultiFinder does not support _Chai n; your application should never call this trap.

The application that you launch will become the foreground application. Unlike non-MultiFinder systems, when the user
quits the application that you have sublaunched, control will not necessarily return to your application, but rather to the
next frontmost layer.

Note:
The warnings in M.PS.SubLaunching about sublaunching still apply, but, if you still wish to sublaunch, we
strongly recommend that you set both high bits of LaunchFI ags.

Back to top

The Scrap and MultiFinder

MultiFinder 6.0 and earlier keeps separate scrap variables for each partition. MultiFinder only checks to see whether or not
to increment the other partitions' scr apCount variables in response to a user-initiated Cut or Copy. To do this, it watches
for a call to _SysEdi t (Syst entdi t) or a menu event to determine if an official Cut or Copy command has been issued.

When an application calls _Put Scr ap or _Zer oScr ap in response to a Cut or Copy menu selection, the other partitions’
scrapCount variables will be incremented (the other partitions will know that something new has been put in the scrap).

Back to top
__UnmountVol and MultiFinder

__Unnount Vol was changed in System 4.2 so that it would work better in a shared environment. In systems 4.1 and prior,
__Unnount Vol would successfully unmount a volume even if files were open on that volume. Under MultiFinder, that would
be disastrous, since one application could unmount a volume that another application was using (this exact problem could
occur when MultiFinder is not active, if a DA unmounted a volume "out from under" an application).

System 4.2 changes the behavior of _Unnount Vol (whether or not MultiFinder is active) so that it returns a -47
(FBsYEr r) error if any files are open on the volume you wish to unmount. Since the Finder always has a Desktop file open
for each volume, a call to_Unnount Vol asks it to close the Desktop file so you won't get an error if the only file open is the
Desktop file. However, there is a bug with this new behavior. In System 6.0.3, and earlier, _Unnount Vol does not close the
Desktop file for MFS-formatted volumes. Only the Finder can unmount a MFS volume (when the user drags the disk icon to
the trash).

Back to top
Displaying a Splash Screen

Some applications like to put up a "splash screen" to give the user something to look at while the application is loading. If
your application does this and has the canBackgr ound bit set in the size resource, then it should call _Event Avai |
several times (or _Wai t Next Event or _Get Next Event) before putting up the splash screen, or the splash screen will
come up behind the frontmost layer. If the canBackgr ound bit is set, MultiFinder will not move your layer to the front
until you call _Get Next Event, Wi t Next Event, or _Event Avai | .

Back to top

The Apple Menu and MultiFinder

Applications should avoid doing anything untoward with the Apple menu. For example, if your application puts an icon next to
the "About MyApplication..." item, MultiFinder may unceremoniously write over it. It is important to consider the Apple
Menu owned by the system. You can have the standard about item, but other than this, you should avoid using the Apple menu.
Don't make any assumptions about the contents of this menu. Even reading from its data may be a compatibility risk since its
structure may change.

Back to top

Page: 6

MultiFinder Miscellanea

Interprocess Communication

MultiFinder 6.0, and earlier, does not have full-fledged interprocess communication facilities. There is no standard way to
communicate between applications in MultiFinder 6.0. There are, however, a couple of ways to communicate between
applications.

Note:
It is in your best interest to wait until Apple implements Interapplication Communication (IAC) in System 7.0.

Back to top

__PostEvent

Even though you can have many applications running at once, each with a fairly independent world, the Event Manager
maintains only one event queue. Because of this single queue, and because there is no facility implemented to keep track of
which events belong to which layer, all events in the queue are passed to the frontmost application. This situation can cause
problems for applications that take advantage of application-defined events. If the application is in the background and posts
one of these events, then it is the foreground application that receives it.

This does not apply to events which are not really stored in the event queue. The list of these events include, but is not limited

to, activate and update events, which are generated by the Window Manager as needed, and are correctly routed to the right
application.

Back to top

Miscellaneous Miscellanea

The sound driver glue that shipped with MPW 1.0 and 2.0 is not MultiFinder compatible and should not be used. This also
includes much of the glue supplied with older development systems. Instead, applications should be using the Sound Manager.

All code needs to be aware of the shared environment; this includes screen savers. Screen savers should make sure that
background processing continues. A simple scenario for a screen saver that's an INIT might be: patch _Post Event at INIT
time, put up a full-screen black window spider, call Vi t Next Event , and watch _Post Event to see if an event that
should cause the screen saver to go away has occurred.

Back to top

References
Inside Macintosh , Volume V, Compatibility Guidelines
Programmer's Guide to MultiFinder (APDA)

M.PS.SubLaunching

M.OV.GestaltSysenvirons

M.TB.Multifinder

M.OV.Multifinder

M.OV.A5
Back to top
Downloadables
Ei Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

Page: 7

