
_ZoomWindow Page: 1

CONTENTS

Basics

For the More Adventurous (or Seeing Double)

References

Downloadables

This Technical Note contains some hints
about using _ZoomWindow.

[Jun 01 1986]

Basics

_ZoomWindow allows a window to be toggled between two states (where "state" means size and location): a default state and a
user-selectable state. The default state stays the same unless the application changes it, while the user-selectable state is
altered when the user changes the size or location of a zoomable window. The code to handle zoomable windows in a main event
loop would look something like the examples which follow.

Note:
_ZoomWindow assumes that the window that you are zooming is the current GrafPort. If thePort is not
set to the window that is being zoomed, an address error is generated.

MPW Pascal

 CASE myEvent.what OF
 mouseDown: BEGIN
 partCode:= FindWindow(myEvent.where, whichWindow);
 CASE partCode OF
 inZoomIn, InZoomOut:
 IF TrackBox(whichWindow, myEvent.where, partCode) THEN
 BEGIN
 GetPort(oldPort);
 SetPort(whichWindow);
 EraseRect(whichWindow^.portRect);
 ZoomWindow(whichWindow, partCode, TRUE);
 SetPort(oldPort);
 END; {IF}
 ...{and so on}
 END; {CASE}
 END; {mouseDown}
 ...{and so on}

MPW C

 switch (myEvent.what) {
 case mouseDown:
 partCode = FindWindow(myEvent.where, &whichWindow);
 switch (partCode) {
 case inZoomIn:
 case inZoomOut:
 if (TrackBox(whichWindow, myEvent.where, partCode)) {
 GetPort(&oldPort);
 SetPort(whichWindow);
 EraseRect(whichWindow->portRect);
 ZoomWindow(whichWindow, partCode, true);
 SetPort(oldPort);
 } /* if */
 break;
 ... /* and so on */
 } /* switch */
 ... /* and so on */

_ZoomWindow Page: 2

If a window is zoomable, that is, if it has a window definition ID = 8 (using the standard 'WDEF') ,
WindowRecord.dataHandle points to a structure that consists of two rectangles. The user-selectable state is stored in
the first rectangle, and the default state is stored in the second rectangle. An application can modify either of these states,
though modifying the user-selectable state might present a surprise to the user when the window is zoomed from the default
state. An application should also be careful to not change either rectangle so that the title bar of the window is hidden by the
menu bar.

Before modifying these rectangles, an application must make sure that DataHandle is not NIL. If it is NIL for a window
with window definition ID = 8, that means that the program is not executing on a system or machine that supports zooming
windows.

One need not be concerned about the use of a window with window definition ID = 8 making an application
machine-specific--if the system or machine that the application is running on doesn't support zooming windows,
_FindWindow never returns inZoomIn or inZoomOut, so neither _TrackBox nor _ZoomWindow are called.

If DataHandle is not NIL, an application can set the coordinates of either rectangle. For example, the Finder sets the
second rectangle (default state) so that a zoomed-out window does not cover the disk and trash icons.

Back to top

For the More Adventurous (or Seeing Double)

Developers should long have been aware that they should make no assumptions about the screen size and use
screenBits.bounds to avoid limiting utilization of large video displays. Modular Macintoshes and Color QuickDraw
support multiple display devices, which invalidates the use of screenBits.bounds unless the boundary of only the
primary display (the one with the menu bar) is desired. When dragging and growing windows in a multi-screen
environment, developers are now urged to use the bounding rectangle of the GrayRgn. In most cases, this is not a major
modification and does not add a significant amount of code. Simply define a variable.

and use this in place of screenBits.bounds. When zooming a document window, however, additional work is required to
implement a window-zooming strategy which fully conforms with Apple's Human Interface Guidelines.

One difficulty is that when a new window is created with _NewWindow or _GetNewWindow, its default stdState
rectangle (the rectangle determining the size and position of the zoomed window) is set by the Window Manager to be the gray
region of the main display device inset by three pixels on each side. If a window has been moved to reflect a position on a
secondary display, that window still zooms onto the main device, requiring the user to pan across the desktop to follow the
window. The preferred behavior is to zoom the window onto the device containing the largest portion of the unzoomed
window. This is a perfect example of a case where it is necessary for the application to modify the default state rectangle
before zooming.

DoWZoom is a Pascal procedure which implements this functionality. It is a good example of how to manipulate both a
WStateData record and the Color QuickDraw device list. On machines without Color QuickDraw (e.g., Macintosh Plus,
Macintosh SE, Macintosh Portable) the stdState rectangle is left unmodified and the procedure reduces to five
instructions, just like it is illustrated under "Basics." If Color QuickDraw is present, a sequence of calculations determines
which display device contains most of the window prior to zooming. That device is considered dominant and is the device onto
which the window is zoomed. A new stdState rectangle is computed based on the gdRect of the dominant GDevice.
Allowances are made for the window's title bar, the menu bar if necessary, and for the standard three-pixel margin. (Please
note that DoWZoom only mimics the behavior of the default _ZoomWindow trap as if it were implemented to support
multiple displays. It does not account for the "natural size" of a window for a particular purpose. See Human Interface Note
#7, Who's Zooming Whom?, for details on what constitutes the natural size of a window.) It is not necessary to set
stdState prior to calling _ZoomWindow when zooming back to userState, so the extra code is not executed in this case.

DoWZoom is too complex to execute within the main event loop as shown in "Basics," but if an application is already using a
similar scheme, it can simply add the DoWZoom procedure and replace the conditional block of code following

with

Happy Zooming.

_ZoomWindow Page: 3

PROCEDURE DoWZoom (theWindow: WindowPtr; zoomDir: INTEGER);
VAR
 windRect, theSect, zoomRect : Rect;
 nthDevice, dominantGDevice : GDHandle;
 sectArea, greatestArea : LONGINT;
 bias : INTEGER;
 sectFlag : BOOLEAN;
 savePort : GrafPtr;
BEGIN
 { theEvent is a global EventRecord from the main event loop }
 IF TrackBox(theWindow,theEvent.where,zoomDir) THEN
 BEGIN
 GetPort(savePort);
 SetPort(theWindow);
 EraseRect(theWindow^.portRect); {recommended for cosmetic reasons}

 { If there is the possibility of multiple gDevices, then we }
 { must check them to make sure we are zooming onto the right }
 { display device when zooming out. }
 { sysConfig is a global SysEnvRec set up during initialization }
 IF (zoomDir = inZoomOut) AND sysConfig.hasColorQD THEN
 BEGIN
 { window's portRect must be converted to global coordinates }
 windRect := theWindow^.portRect;
 LocalToGlobal(windRect.topLeft);
 LocalToGlobal(windRect.botRight);
 { must calculate height of window's title bar }
 bias := windRect.top - 1
 - WindowPeek(theWindow)^.strucRgn^^.rgnBBox.top;
 windRect.top := windRect.top - bias; {Thanks, Wayne!}
 nthDevice := GetDeviceList;
 greatestArea := 0;
 { This loop checks the window against all the gdRects in the }
 { gDevice list and remembers which gdRect contains the largest }
 { portion of the window being zoomed. }
 WHILE nthDevice <> NIL DO
 IF TestDeviceAttribute(nthDevice,screenDevice) THEN
 IF TestDeviceAttribute(nthDevice,screenActive) THEN
 BEGIN
 sectFlag := SectRect(windRect,nthDevice^^.gdRect,theSect);
 WITH theSect DO
 sectArea := LONGINT(right - left) * (bottom - top);
 IF sectArea > greatestArea THEN
 BEGIN
 greatestArea := sectArea;
 dominantGDevice := nthDevice;
 END;
 nthDevice := GetNextDevice(nthDevice);
 END; {of WHILE}
 { We must create a zoom rectangle manually in this case. }
 { account for menu bar height as well, if on main device }
 IF dominantGDevice = GetMainDevice THEN
 bias := bias + GetMBarHeight;
 WITH dominantGDevice^^.gdRect DO
 SetRect(zoomRect,left+3,top+bias+3,right-3,bottom-3);
 { Set up the WStateData record for this window. }
 WStateDataHandle(WindowPeek(theWindow)^.dataHandle)^^.stdState := zoomRect;
 END; {of Color QuickDraw conditional stuff}

 ZoomWindow(theWindow,zoomDir,TRUE);
 SetPort(savePort);
 END;

In an attempt to avoid declaring additional variables, the original version of this document was flawed. In addition, the
assignment statement responsible for setting the stdState rectangle is relatively complex and involves two type-casts.
The following may look like C, but it really is Pascal. Trust me.

It could be expanded into a more readable form such as:

 VAR
 theWRec : WindowPeek;
 zbRec : WStateDataHandle;

 theWRec := WindowPeek(theWindow);
 zbRec := WStateDataHandle(theWRec^.dataHandle);

Back to top

References

_ZoomWindow Page: 4

Inside Macintosh , Volume IV, The Window Manager (pp. 49-52)

Inside Macintosh , Volume V, Graphics Devices (p. 124), The Window Manager (p. 210)

Human Interface Note #7, Who's Zooming Whom?

Back to top

Downloadables

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

