
Translation Manager 1.1 Page: 1

CONTENTS

Introduction

References

Downloadables

This Technical Note discusses changes to the
Translation Manager which are available in
Macintosh Easy Open version 1.1 and later.
The information contained here is in addition
to what is discussed in Inside Macintosh

More Macintosh Toolbox, Translation
Manager chapter, as well as in the APDA

Macintosh Easy Open Developers Kit.

[Jun 01 1994]

Introduction

The document assumes that you are somewhat familiar with the Translation Manager API.

Some of the new API's are available only in Translation Manager 1.1 and some have always been available. Use
Gestalt() as appropriate to check for the existence of some of the new API's (discussed later in this document).

 gestaltTranslationMgrHintOrder = 1

The previous bit will be set if the Translation Manager hint order fix is in effect. In Translation Manager version 1.0.1
(fixed in version 1.0.2 and later) there is a bug where the hints in DoTranslateScrap() are reversed - the
dstTypeHint is actually the srcTypeHint and vice-versa. If you want your Translation Extension to work with the
early versions of the Translation Manager, and you're these using these scrap hints, then you need to check this bit to see
where your destination and source hints are.

gestaltTranslationPPCAvail = 2

If gestaltTranslationPPCAvail bit is set then that is an indicator that the native PowerPC Translation Manager
library is available. This means that it's safe to make a call to the Translation Manager from native PowerPC code.

gestaltTranslationGetPathAPIAvail = 3

The new API's GetFileTranslationPath() and GetPathTranslationDialog() calls are available if the
gestaltTranslationGetPathAPIAvail bit is set.

GetDocumentKindString() is available in all versions of the Translation Manager, therefore no gestalt selector is
needed to check for its existence.

The new Translation Extension routine DoGetTranslatedFilename() does not have a gestalt selector since there is
no compatibility problem running a Translation Extension that supports the call on an earlier version of the Translation
Manager. In that case, the function will simply not be called.

The New Translation Manager API's

One of the most glaring limitations of the 1.0 Translation Manager API was that the function CanDocBeOpened()
couldn't be used in the case where a translation preference did not exist. You would have to set the translation preference
manually using the automatic translation user interface in the Finder or Standard File. This meant for all purposes, that
you could not programmatically use the Translation Manager.

Starting with Translation Manager 1.1 this limitation has been removed with two new API's
GetPathFromTranslationDialog() and GetFileTranslationPaths(). The function
GetPathFromTranslationDialog() allows you to post the Translation Dialog box programmatically while the
function GetFileTranslationPaths() is a low level access routine allowing you to get all the translation
capabilities of the Translation Manager.

Additional API's have been added to provide access to the kind strings, the name of Translation Extensions, as well as to
programmatically execute scrap translations. These will be discussed later in this section.

Displaying The Translation Dialog Box Programmatically

Translation Manager 1.1 Page: 2

 pascal OSErr GetPathFromTranslationDialog(
 const FSSpec* theDocument,
 const FSSpec* theApplication,
 const TypesBlockPtr typeList,
 DocOpenMethod* howToOpen,
 FileTranslationSpec* howToTranslate)

As mentioned in the earlier, GetPathFromTranslationDialog() is used to programmatically display the
Translation Dialog box. This has the "side-effect" of setting a preference so next time CanDocBeOpened() is called it
will have the preference and succeed.

GetPathFromTranslationDialog() targets the file specified by the theDocument and attempts to generate a list
of translation paths resulting in a document readable by the target application specified by the theApplication. The
parameter typeList specifies, in a 0L terminated form, a list of file types to translate the target document into. The
order in the list is important. The first item should be the file type most desired and the last item should be the file type
least wanted. The following two parameters howToOpen and howToTranslate are returned once the user has
interacted with the Translation Dialog box and will contain the translation open method and the translation specification.
It's important to point out the howToTranslate is only valid if howToOpen is equal to domTranslateFirst,
otherwise it's undefined.

Note:
None of the parameters are optional and NULL cannot be passed in place of them.

A common way of using this routine along with CanDocBeOpened() can be seen in the following snippet of code:

 /* Translate

 This routine translates a file. It assumes that the
 application has the signature 'ttxt' and can only can
 read the document types 'ttro' and 'TEXT' */

 OSErr Translate(const FSSpec* targetDocument,
 const FSSpec* destinationDocument,
 const FSSpec* theApplication)
 {
 OSType typeList[3] = { 'ttro', 'TEXT', 0L };
 DocOpenMethod howToOpen;
 FileTranslationSpec howToTranslate;
 OSErr result;

 /* Try to get the translation path based on the
 preference (if one is set) */

 result = CanDocBeOpened(targetDocument,
 theApplication->vRefNum,
 'ttxt',
 typeList,
 false,
 &howToOpen,
 &howToTranslate);

 /* Did it work? */

 if (result == noPrefAppErr) {

 /* Couldn't find a path, run the Translation
 Dialog box to get the path and set the preference */

 result = GetPathFromTranslationDialog(targetDocument,
 theApplication,
 typeList,
 &howToOpen,
 &howToTranslate);
 }

 /* Did we get a path from either CanDocBeOpened
 GetPathFromTranslationDialog, and does the
 translation path specified require translation? */

 if ((result == noErr)
 && (howToOpen == domTranslateFirst)) {

 /* Translate the file */

 result = TranslateFile(targetDocument,
 destinationDocument,
 &howToTranslate);

Translation Manager 1.1 Page: 3

 }

 return result;
 }

Getting All The Translation Paths

At the low level, the new routine GetFileTranslationPaths() can be used to get raw translation paths. The paths
are each of the translation paths that allow a specific document to be translated to the target type (under some constraints
that are discussed later). A specific translation may have one or many paths - that depends on the translation itself and the
capabilities of the Translation Extensions installed.

GetFileTranslationPaths() is defined as:

 pascal short GetFileTranslationPaths(
 FSSpec* srcDocument,
 FileType dstDocType,
 unsigned short maxResultCnt,
 FileTranslationSpecArrayPtr resultBuffer)

Both srcDocument and dstDocType are optional parameters. srcDocument is the source document (if any) and
dstDocType is the desired document type to which you would like srcDocument translated. Depending on what is
passed, the routine returns a different set of translation paths, as seen in Figure 1.

srcDocumentdstDocType

Translation Paths Returned

valid valid All paths to translate srcDocument to dstDocType

NULL valid All paths to tranlsate to dstDocType

valid 0 All paths from srcDocument

NULL 0 All translation paths

Figure 1

The parameter maxResultCnt is the maximum number of entries your resultBuffer can hold.

The final parameter resultBuffer is returned with the requested translation information. This buffer's type is defined
as:

 struct FileTranslationSpec {
 OSType componentSignature;
 const void* translationSystemInfo;
 FileTypeSpec src;
 FileTypeSpec dst;
 };

 typedef struct FileTranslationSpec FileTranslationSpec;

 typedef FileTranslationSpec *FileTranslationSpecArrayPtr;

The function returns the number of translation paths, or a result code if the value is negative.

The following example shows a how to get the list of translation paths to open a specific document and how to translate
using the first path in the list.

Translation Manager 1.1 Page: 4

 /* TranslateUsingFirstPath

 This routine translates a file to 'SYLK' using the
 first translation path in the Translation Manager
 path list. */

 OSErr Translate(FSSpec* targetDocument,
 FSSpec* destinationDocument,
 FSSpec* theApplication) {

 FileTranslationSpec ts[10];
 OSErr result;
 short numberPaths;

 /* Try to get the translation path */
 numberPaths = GetFileTranslationPaths(targetDocument,
 'SYLK',
 10,
 &ts[0]);

 if (numberPaths > 0)
 {
 result = TranslateFile(targetDocument, destinationDocument, ts);
 }
 else
 result = noTypeErr;

 return result;
 }

Getting Kind Strings

Kind strings describe documents; for instance "FreeHand graphic". Previously the kind strings were displayed in the
Finder, but there was no programmatic way of accessing them. The Translation Manager now provides the means to get to
the kind strings, as well as the names of the Translation Extensions installed.

The routine to get a kind string looks like:

 OSErr GetDocumentKindString(short docVRefNum,
 OSType docType,
 OSType docCreator,
 Str63 kindString)

This routine takes in the docVRefNum parameter, the volume containing the document. This is a hint to the Translation
Manager where to look for the kind string. If it doesn't find the string on that volume, it will use an internal search path to
look on other volumes for the string. In docType and docCreator you pass the type and creator of the document you
want to query. When the function returns, kindString contains the kind string to display for that specific document.

If you have a FileTranslationSpec and you want to find out the name of the Translation Extension that's performing
the translation, you call:

 pascal OSErr GetTranslationExtensionName(
 const FileTranslationSpec* translationMethod,
 Str31 extensionName)

This routine takes a FileTranslationSpec (returned from CanDocBeOpened() or
GetFileTranslationPaths()) and returns, in extensionName, the name of the Translation Extension
performing the translation.

Both of these routines can be used, for example when using GetFileTranslationPaths() to create your own
Translation Dialog box. Using these will allow you to generate strings like "MacWrite II document with XYZZY translation"
and so forth.

Scrap Translation

An additional routine has been made public in the Translation Manager allowing you to perform Scrap translation. The
name scrap translation is somewhat misleading; rather it's in-memory translation. Scrap translation is used by the Scrap
Manager, Edition Manager, Drag Manager, and OpenDoc to name a few clients for in-memory translation. Scrap translation

Translation Manager 1.1 Page: 5

can be used any time you want to translate a buffer of information.

The routine to call when you want to perform scrap translation is:

 pascal OSErr TranslateScrap(
 GetScrapDataProcPtr sourceDataGetter,
 void* sourceDataGetterRefCon,
 ScrapType destinationFormat,
 Handle destinationData,
 short progressDialogID)

The routine is designed in a way to use a callback you provide to get the source data to translate. That information is then
translated and placed into a destination handle.

The parameter sourceDataGetter and sourceDataGetterRefCon are the two parameters dealing with your
callback routine. sourceDataGetterRefCon is for your own use - allowing you to pass information to your callback.
The parameter souceDataGetter is defined as:

 typedef pascal OSErr (*GetScrapDataProcPtr)(
 ScrapType requestedFormat,
 Handle dataH,
 void* srcDataGetterRefCon);

The callback routine has two responsibilities. The first is to tell the caller what source types are available for translating
(if you are the Scrap Manager for example you would pass all the different formats already on the desk scrap). The other
responsibility is to actually provide the data requested.

For the first case, if the parameter requestedFormat is 'fmts', then it's the responsibility of the callback routine
to return in dataH a list of pairs containing the ScrapType and the size of the that ScrapType's data. The handle
should be re-sized accordingly.

For the second case, the Translation Manager will call the callback routine with one of the types it had provided earlier in
response to 'fmts'. The callback in that case is responsible for re-sizing the dataH and placing in it the data of type
requstedFormat.

In the callback, the parameter sourceDataRefCon is the same as what you had passed in the
sourceDataGetterRefCon field in TranslateScrap().

Back in TranslateScrap(), the third parameter, destinationFormat is the desired format you would like the
information translated into. destinationData is a handle you provide. The Translation Extension will automatically
re-size it as necessary during translation. Upon exit, if the routine successfully executes, it will contain the translated
information.

The final parameter is progressDialogID. At this time that parameter should always be assigned the value
TranslationScrapProgressDialogID.

Translation Manager 1.1 Page: 6

 struct FmtsRecord
 {
 ScrapType theType;
 Size dataSize;
 };
 typedef struct FmtsRecord FmtsRecord;
 typedef FmtsRecord *FmtsRecordPtr;

 pascal OSErr PStringGetter(
 ScrapType requestedFormat,
 Handle dataH,
 void* srcDataGetterRefCon)
 {
 OSErr result;
 Str63 thePString;

 /* Build an internal buffer to the PString we can get
 BlockMove("\pHello there, this is lower case",
 &thePString, sizeof(Str63));

 /* See if we are being requested to tell what
 source format's we have available */

 if (requestedFormat == 'fmts') {

 /* Size the handle to contain our one source
 format */

 SetHandleSize(dataH, sizeof(FmtsRecord));
 if ((result = MemError()) == noErr) {

 /* Stuff our data into the fmts handle */

 ((FmtsRecordPtr)*dataH)->theType = 'PSTR';
 ((FmtsRecordPtr)*dataH)->dataSize = thePString[0]+1;
 }
 } else {

 /* If we're here, we've been asked to get the
 source data. Stuff data into handle */

 SetHandleSize(dataH, thePString[0]+1);
 if ((result = MemError()) == noErr)
 BlockMove(&thePString, *dataH, thePString[0]+1);
 }

 return result;
 }
 void TranslatePSTRToUPPR(void)
 {
 Handle destinationData;
 OSErr result;

 /* A handle to fill with the translated data */

 if (destinationData = NewHandle(0))
 result = TranslateScrap(PStringGetter,
 0,
 'UPPR',
 destinationData,
 TranslationScrapProgressDialogID);

 /* Do something with the translated information */

 }

The preceding example shows how to use the TranslateScrap() routine and how to implement a data-getter. In the
above example, TranslateScrap() is called requesting type 'UPPR' (upper case) and providing the source data
through the data-getter referenced in PStringGetter.

New Translation Extension Capabilities

Beginning with Translation Manager 1.1, Translation Extensions now have the capability of generating the filenames of
documents created by a document converter. This is useful, for example, if your Translation Extension wants to provide a
DOS compatible filename for generated documents. Name generation is done by implementing the new Translation Extension
routine (selector kTranslateGetTranslatedFilename).

Translation Manager 1.1 Page: 7

 pascal ComponentResult DoGetTranslatedFilename(
 ComponentInstance self,
 FileType dstType,
 long dstTypeHint,
 FSSpec* theDocument);

This routine is called after DoIdentifyFile(), but before DoTranslateFile().

The first parameter, like all other references to self in the Component Manager, is a reference to this instance of the
component. dstType is the target type and dstTypeHint is the hint that goes with that type - they are the same that
will be passed to DoTranslateFile() when that call is made by the Translation Manager. The final parameter,
theDocument is the document to generate a name on - and where to store your generated name.

It's important to not modify theDocument unless your routine successfully completes because whatever is returned will
be used (even if you return an error).

Your Translation Extension should verify the uniqueness of the filename in the target location before returning.

The Translation Manager will not call your Translation Extension with this message unless you have the translation flags
correctly set. That is done by modifying the 'thng' resources Flags field, and setting the
kTranslatorCanGenerateFilename bit.

PowerPC Translation Extensions

Native Translation Extensions are pretty much the same as 68K ones. The biggest difference is putting a wrapper around
the code. You have several options when writing a translator. Your translator can be 68K, your translator can be PowerPC
only, or your translator can be fat (both 68K and PowerPC).

The best of both worlds is the third case. Your translator is a bit bigger, but a user can simply drag it from machine to
machine without worrying about the platform. To implement a native PowerPC translator, simply replace your code
referred by your 'thng' resource (usually type 'xlat') with a reference to a resource wrapped by a 'sdes'
resource (see MixedMode.r). An 'sdes' includes both your 68K and PowerPC code into a single resource and
automatically dispatches to the correct 68K or PowerPC code depending on what platform you are on.

For specific examples on putting together a fat resource, please consult Inside Macintosh , specifically, the chapter on the
Mixed Mode Manager.

Back to top

References

Inside Macintosh , More Macintosh Toolbox, Translation Manager

Inside Macintosh , More Macintosh Toolbox, Component Manager

Inside Macintosh , PowerPC System Software, Mixed Mode Manager

APDA , Macintosh Easy Open Developers Kit

Back to top

Downloadables

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

