
Component Manager Q&As Page: 1

CONTENTS

Downloadables

This Technical Note contains a collection of
archived Q&As relating to a specific
topic--questions sent the Developer Support
Center (DSC) along with answers from the
DSC engineers. Current Q&A's can be found
on the Macintosh Technical Q&A's web site.

[May 01 1993]

SetComponentInstanceA5 used for custom heap

What's the correct usage of SetComponentInstanceA5? My component will be registered globally but the individual
instances should use the application's storage. The Component Manager chapter says that SetComponentInstanceA5 is
usually called in the open request for a connection. If so, where and how do you get the A5 value of the application to set in
the SetComponentInstanceA5 call?

The Component Manager SetComponentInstanceA5 (or GetComponentInstanceA5) call is used primarily in
cases where you might want to set a custom A5 world for your component. In the case that you're using the client's A5
world (default), you don't have to do anything. In fact, A5 will be set to your client's heap for you automatically by the
Component Manager. You can call NewHandle in your open routine and it will create a handle in your client's heap. This is
your component instances private storage. So, the answer to your question is that you don't have to call
SetComponentInstanceA5 unless you have a custom heap.

However, if you use public globals that you want all component instances to be able to access, you may want to switch to
the system zone, allocate the global record with NewHandle, and then switch back to the previous zone. The reason you'd
want to do this is that you wouldn't want the public globals to disappear if the non-system's heap is disposed of. The
reference to public globals is usually stored in the component's refcon.

Back to top

RegisterComponentResource and 'thng' resource

Date Written: 2/17/93

Last reviewed: 5/28/93

I'm using the Component Manager to write my own color picker, and I'm trying to register the component from my own
application using RegisterComponentResource. The resource fork of the application includes the appropriate
resources with the appropriate ID numbers such as 'thng' and 'cpkr', but the register operation fails and I get a null
pointer in return. Any suggestions why?

The documentation is somewhat obscure on this, but what you need to pass to RegisterComponentResource is the
'thng' resource. Depending on what you're doing, you may want to pass a value of 1 in the global parameter, to make
your component available to other applications. The following code accomplishes what you want:

Component RegisterPicker (short pickerID)
{
 Component aComponent = 0L; /* prepare for failure */
 ComponentResource **CmpHdl;
 CmpHdl = (ComponentResource **) GetResource ('thng', pickerID);
 if (CmpHdl) /* make sure you got the resource */
 aComponent = RegisterComponentResource (CmpHdl, 0);
 return (aComponent);

Back to top

Component Manager and multiple segments

Date Written: 2/10/93

Last reviewed: 7/2/93

Component Manager Q&As Page: 2

How does the Component Manager handle multiple segments?

The Component Manager doesn't automatically support multiple code segments. In fact, it assumes that all the code is in one
segment. The 'thng' resource allows you to specify one segment. Therefore, if you load other code segments from your
main segment, they should be loaded and locked in the system heap. There are several ways you can do this; the register
routine probably is the best place to do it. Since the register routine is called only once at registration time, this allows
your component to completely load the remaining code segments into the system heap. Components should ensure that A5
(or A4) is set appropriately before any intersegment calls. For more information, see "Managing Component Registration"
in issue 15 of develop.

Back to top

Typecasting a component for use within OpenComponentResFile

Date Written: 1/20/93

Last reviewed: 4/26/93

How can I typecast a component instance so that it can be used within OpenComponentResFile?

When the Component data type is needed from within a component, you can cast the component instance to type Component
and everything will work as expected, as shown below:

pascal ComponentResult SomeComponentRoutine(ComponentInstance self)
{
 short return_val;
 . . .
 if (return_val = OpenComponentResFile((Component)self) <= 0)
 {
 // Error code here
 }
 . . .

DrawTextCodec on the QuickTime 1.5 CD demonstrates the use of various calls such as GetComponentRefcon and
OpenComponentResFile from within a component. It's also located on the Developer CD Series disc, Tool Chest edition.

Back to top

Component Manager is part of System 7.1

Date Written: 1/21/93

Last reviewed: 7/2/93

Is the Component Manager bundled with QuickTime? In other words, will the users of the application I'm designing have to
buy QuickTime in order to get the Component Manager?

The Component Manager was first introduced as part of the QuickTime 1.0 system extension. This makes the presence of
QuickTime a requirement for system software versions earlier than System 7.1. The Component Manager is now part of
System 7.1, giving the extended functionality to any Macintosh application running on System 7.1 regardless of the
presence of QuickTime.

Back to top

Component Manager documentation

Date Written: 1/21/93

Last reviewed: 4/1/93

Where can I find documentation on the Component Manager?

Presently, the only documentation for the Component Manager is Chapter 4 in the QuickTime Developer's Guide 1.0.
There will be documentation on the Component Manager in the new Inside Macintosh in the future.

There's also an article called "Techniques for Writing and Debugging Components" in issue 12 of develop. This article
gives you some criteria on whether to write a component and the advantages of using a component. Best of all, there's an
accompanying sample code (Dev CD Feb. 93:Periodicals:develop:develop 12 code) for implementing a sample math
component.

Back to top

QuickTime Components.p interface conflict

Date Written: 11/30/92

Last reviewed: 3/1/93

When I try to compile the Components.p include file from the QuickTime 1.5 CD, I get "unsatisfied forward reference"

Component Manager Q&As Page: 3

error messages. Can you advise?

A declaration conflict in the c header files is causing the problem. Until the Components.p file is updated, replace the
following declarations:

Component = ^privateComponentRecord;
ComponentInstance = ^privateComponentInstanceRecord;

with

Component = ^ComponentRecord
ComponentRecord = RECORD
 data: ARRAY[0..0] OF LONGINT;
 END;

ComponentInstance = ^ComponentInstanceRecord;
ComponentInstanceRecord = RECORD
 data: ARRAY[0..0] OF LONGINT;

Back to top

Downloadables

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

