
Image Compression Manager Q&As Page: 1

CONTENTS

QuickTime for Windows movie compression

Using QuickTime dither tables in a codec

How to tell whether a picture is QuickTime-compressed

Saving offscreen GWorld as compressed PICT resource

QuickTime fills in image descriptor when data is compressed

Decompressing to partial window: Bug & workaround

Downloadables

This Technical Note contains a collection of
archived Q&As relating to a specific
topic--questions sent the Developer Support
Center (DSC) along with answers from the
DSC engineers. Current Q&As can be found
on the Macintosh Technical Q&As web site.

[Oct 01 1990]

QuickTime for Windows movie compression

Date Written: 2/15/93

Last reviewed: 7/8/93

What are the compressors supported under QuickTime for Windows?

QuickTime for Windows currently supports these compressors:

Apple Animation
Apple Graphics
Apple None
Apple Photo-JPEG
Apple Video
Compact Video

The current version of QTW is 1.1.

Back to top

Using QuickTime dither tables in a codec

Date Written: 1/25/93

Last reviewed: 4/26/93

How can I use QuickTime fast dither tables provided by the Image Compression Manager to write a codec? I haven't been
able to find any documentation on how to access and use them. Are these tables available?

For QuickTime 1.0 you could use the MakeDitherTable and DisposeDitherTable calls in ImageCompression.h. The calls
were taken out for QuickTime 1.5 because the format is likely to change and your code would break in the future. The
current dither table format isn't available for that reason, though the documentation on the QuickTime 1.0 CD describes
the calls, if that helps.

You can use QuickTime to perform the dithering. If you do use QuickTime, you could draw the image in an off-screen
GWorld, using the DrawPictureFile with the dither flag set, and then compress it with your codec.

Back to top

How to tell whether a picture is QuickTime-compressed

Date Written: 12/2/92

Last reviewed: 4/1/93

How can I tell whether or not a picture is QuickTime-compressed?

The key to your question is "sit in the bottlenecks." If the picture contains any QuickTime-compressed images, the images
will need to pass through the StdPix bottleneck. This is a new graphics routine introduced with QuickTime. Unlike
standard QuickDraw images, which only call StdBits, QuickTime-compressed images need to be decompressed first in
the StdPix routine. Then QuickDraw uses StdBits to render the decompressed image. So, swap out the QuickDraw
bottlenecks, and put some code in the StdPix routine. If it's called when you call DrawPicture, you know you have a
compressed picture. To determine the type of compression, you can access the image description using
GetCompressedPixMapInfo. The cType field of the ImageDescription record will give you the codec type. See
the Snippets: Imaging: Graphics: CollectPictColors snippet and page 46-47 of develop Issue 13 for further reference on
swapping out the bottlenecks.

Image Compression Manager Q&As Page: 2

Back to top

Saving offscreen GWorld as compressed PICT resource

Date Written: 11/6/92

Last reviewed: 3/1/93

Can I use the CompressPicture routine to spool in a source picture from disk by overriding the QuickDraw proc
getPicProc as documented in Inside Macintosh Volume V, pages 88-89? I'm trying to save the contents of an
off-screen GWorld as a compressed PICT resource. Unfortunately there's no direct way to compress the GWorld's pixMap
to a resource.

We definitely don't recommend trying to spool in or out the results of CompressPicture or CompressImage. We
recommend doing one of the following instead:

You can compress the GWorld using CompressImage and then call OpenPicture, DecompressImage, and
ClosePicture using a data-unloading picture proc. The drawback here is that you need to have a copy of the
compressed image in memory.
If it's unacceptable to have an entire compressed image in memory, you can consider banding along with data
unloading. So, you'd then call OpenPicture, CompressImage on a band, DecompressImage on a band,
CompressImage on another band, DecompressImage on the other band, and so on. When all bands are done,
then call ClosePicture. The drawback for this is that the compressed picture will have bands of image data that
won't display well dithered. This could be an issue, but the best way to find out is to try it.

The second suggestion is probably the best idea if you want to keep your memory footprint small. But much of the decision
depends on your application.

Back to top

QuickTime fills in image descriptor when data is compressed

Date Written: 6/14/91

Last reviewed: 6/14/93

When I send compressed images over Ethernet, CompressSequenceBegin doesn't fill in the ImageDescription,
which is needed at the other end of the conference link to DecompressSequenceBegin. Is this a bug?

CompressSequenceBegin doesn't actually modify the handle that you pass. Instead, QuickTime makes a note of the
handle that's passed and doesn't actually modify the contents until the first call that actually compresses data, such as
CompressSequenceFrame. At that point, the handle will be changed.

If you can postpone dealing with the image descriptor until after the first call that compresses data, whatever you are
writing should work just fine.

Back to top

Decompressing to partial window: Bug & workaround

Date Written: 6/18/92

Last reviewed: 9/15/92

Under System 7, decompressing directly to a window that is partially "off the screen" (that is, not completely visible)
results in a -50 (invalid param) QuickTime error. We can special case when windows are off the screen and decompress
into an offscreen GWorld but we would prefer a fix to either QuickTime or System 7.

The problem you are having is due to a bug in the Image Compression Manager. It fails to clear QDError when starting a
decompression job and later checks it to see if it is OK to continue the operation. Something else is setting QDErr and your
call fails.

The solution that you can implement now consists of clearing QDErr before calling any of the decompression routines. You
can accomplish this by calling QDError (which clears the error after it passes the current value to you) or zeroing the
low mem QDerr (0xD6E) by hand.

Future versions of QuickTime will have the fix and will not require that you work around the problem.

Back to top

Downloadables

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

