
QuickTime 1.6.1 Features Page: 1

NOTE: This Technical Note has been retired. Please see the Technical Notes page for current documentation.

CONTENTS

Introduction

Features You Get for Free

Features You Get With Some Code

Image Compression Enhancements

Base Media Handler Enhancements

Text Media Handler Enhancements

Import/Export Components Enhancements

ColorSync

Sequence Grabber Enhancement

Image Codec Enhancement

New Component Manager Features

QuickTime 1.6.1 Bug Fixes

References

Downloadables

This Note is a technical discussion of the
changes between QuickTime 1.5 and
QuickTime 1.6.1. QuickTime 1.6.1 introduces
some new QuickTime features, new
Component Manager features, and better
reliability than other QuickTime versions.

[Jun 01 1993]

QuickTime 1.6.1 Features

The new features of QuickTime 1.6.1 are fully described in this Note. These new features are logically divided into two
sections: "Features You Get for Free" and "Features You Get With Some Code."

This Note assumes the reader is QuickTime-literate. If this Note does not suffice, refer to Inside Macintosh, QuickTime
and Inside Macintosh, QuickTime Components. In addition, most QuickTime questions are answered through rummaging
through the sample code and/or applications on the QuickTime 1.5 and the QuickTime 1.0 CDs.

QuickTime 1.6.1 fixes a problem that was uncovered in QuickTime 1.6 between QuickTime and the Alias Manager (the
problem was most noticeable with various commercial utilities) and enhances the appearance of high resolution Photo CD
images. QuickTime 1.6.1 is the currently supported version of QuickTime.

QuickTime 1.6.1 Features Page: 2

Back to top

Features You Get for Free

This section describes the features of QuickTime 1.6.1 that are added transparently to QuickTime. In general, you will not
have to do anything to your application for these features. But the user may have to install a specific extension and/or have
the appropriate equipment. QuickTime 1.6.1 exploits these software extensions: Sound Manager, Macintosh Easy Open, and
ColorSync. As far as hardware, QuickTime 1.6.1 has code that takes advantage of the Apple CD 300, grayscale, Macintosh
PowerBook and PowerBook Duo computers, Macintosh LC II class machines, Macintosh Quadra computers, and stereo
output devices.

Reduced Memory Footprint

QuickTime 1.6.1 code is segmented. QuickTime code segmentation allows unused code segments to be unloaded when not in
use. QuickTime 1.6.1 uses less than 18K when installed, whereas QuickTime 1.5 used approximately 160K.

Because of this segmentation, substantially less memory is required for movie playback. If applications are not using a
particular functionality, the corresponding code segments may be unloaded. For example, movie editing code will not be
loaded unless the movie application requires it.

Sound Manager 3.0 Support

QuickTime 1.6.1 supports the new Sound Manager, version 3.0. The new Sound Manager completely replaces the existing
Sound Manager, and it will work with all versions of QuickTime. If Sound Manager 3.0 is installed, QuickTime 1.6.1 will
take advantage of its new features.

You can use QuickTime with Sound Manager 3.0 in the following ways:

Export multiple sound tracks into one sound resource

An outstanding feature of the new Sound Manager is the ability to mix multiple sound tracks into one sound resource.

Play sound more efficiently

The new Sound Manager lessens the load on the CPU for sound. As a rule of thumb, you will be able to get one extra frame
per second for video playback.

Support alternate sound output devices You can now hook up hardware to your Macintosh for CD-quality 16-bit
44 kHz stereo sound output.
Allow better control over multiple sound channels

With Sound Manager 3.0, sound overdriving is possible. By setting the movie volume above 1.0, the sound will actually be
overdriven. To overdrive a movie's sound, a user can hold down shift key and click on the sound icon of the movie
controller. The sound can be overdriven by a factor of 3.

Support true balance control

The track balance of an audio track can now be proportionally panned left and right, instead of just full left or full right.

Handle sound mixing better

Better sound mixing improves the quality of multiple sound track playback.

Use the new Sound control panel

You can choose the default sound output device.

Cinepak Enhancement

Compact Video is now called Cinepak. Cinepak playback to 16-bit destinations (thousands of colors) is now of higher
quality using an improved dithering algorithm.

QuickTime 1.6.1 Features Page: 3

Audio CD Import

A Movie Import component is provided that allows you to open audio CD tracks from the QuickTime Standard File Preview
dialog box, just as you could open PICS and AIFF files with QuickTime 1.5. If you have an Apple CD 300 or CD 300i drive,
you can use QuickTime 1.6.1 to convert tracks of your favorite audio CD directly into QuickTime movies.

Figure 1. Audio CD Import Options

When you try to open an audio track on an Apple CD 300i, the Open button will change to a Convert... button. When you
click this button, the Audio CD Import Options dialog box will appear. With this dialog box, you can configure the sound
settings of the movie. The rate, size, and channel can be specified for the movie. In addition, you can select the portion of
the track that should become a movie. You can select the start time and end time for the track. You can play your selection
to be sure you have the selection you want.

Macintosh Easy Open Support

QuickTime 1.6.1 fully supports Macintosh Easy Open. Macintosh Easy Open is an Apple system extension that provides
document and Clipboard translation for all applications. If a user has Macintosh Easy Open installed in combination with
QuickTime 1.6.1, then he or she can copy and paste various media formats into applications that do not support QuickTime.

QuickTime 1.5 contained translation components for importing and exporting movie data from files and the Clipboard.
QuickTime 1.6.1 provides a Macintosh Easy Open translation component that makes all QuickTime Movie Import/Export
components work automatically with non-QuickTime-aware applications. For example, you can paste a sound track into a
sound editing application, and it will translate the format from a QuickTime sound movie to a sound file.

QuickTime 1.6.1 includes support for importing sound, PICTs, and PICS. It also supports exporting movies to PICT and
sound. Additional MovieImport and MovieExport components can be found on the QuickTime 1.5 Developer CD in the
Sample Components folder.

Text Track Export

A Text Movie Export component lets you easily extract text from movies. With Macintosh Easy Open installed, you can copy

QuickTime 1.6.1 Features Page: 4

a series of text frames from a movie and paste them directly into any application that supports text, such as MPW.

Tear-free Movie Playback

Support has been added to the Image Compression Manager to reduce the tearing that is visible when playing back movies
with large amounts of motion. The feature works only on machines with fast screen access, so it isn't usually noticeable on
NuBus video cards. Typically, better tear-free movie playback will be seen on Cinepak movies in 16 bits on a Macintosh
Quadra. A good movie to look at to see the improvement is the beginning of "Everybody Loves Me But You" on the QuickTime
1.5 Developer CD.

PowerBook Movie Playback Enhancements

The Macintosh PowerBook computers that use 4-bit grayscale (Macintosh PowerBook 160, PowerBook 180, PowerBook
Duo 210, PowerBook Duo 230) are supported using new fast dithering. All decompressors transparently take advantage of
this fast dithering.

YUV Codec

A YUV Compressor/Decompressor component is new in QuickTime 1.6.1. It stores data in YUV 4:2:2 format. The
compression algorithm is not lossless, but the image quality is extremely high. The compression ratio is 3:2 (or 1.5:1).
It does not support frame differencing. It is useful with certain video input solutions, such as the Macintosh Quadra 840AV
and Centris 660AV. In addition, it is also useful as an intermediate storage format if you are applying multiple effects or
transitions to an image.

By default, YUV does not appear in the Standard Compression dialog box. If you hold down the Option key when clicking the
compressor list to display the complete list, it will appear.

Back to top

Features You Get With Some Code

This section describes the features of QuickTime 1.6.1 that are not added transparently to QuickTime. Your application
will need new code to take advantage of them. In this section, the use of these features is explained.

Movie Toolbox Enhancements

The Movie Toolbox has three new calls and two new flags.

showUserSettingsDialog is a new flag. When using either PasteHandleIntoMovie or
ConvertFileToMovieFile to import data into a movie, you can now set the showUserSettingsDialog flag. This
displays the user settings dialog box for that import operation, if there is one. For example, when importing a picture,
this would cause the Standard Compression dialog box to be displayed so the compression method could be selected.

showUserSettingsDialog = 2

hintsHighQuality is a new flag you may pass to the SetMoviePlayHints and SetMediaPlayHints routines. It
specifies that the given movie or media should render at the highest quality. Rendering at highest quality may take
considerably more time and memory. Therefore, this mode is typically not appropriate for real-time playback, but is
very useful for recompressing as it can generate higher quality images.

The high-quality mode can be used with other media handlers as well. For example, the Video Media Handler turns off fast
dithering and allows high-quality dithering. Now we will introduce the three new Movie Toolbox calls.

SetMovieDrawingCompleteProc

SetMovieDrawingCompleteProc lets you set a callback procedure that is called after a movie has drawn in one or
more of its tracks. In this way, your application can be aware of when QuickTime has drawn frames and when it hasn't.
This information is very useful when combined with SetTrackGWorld (see below).

QuickTime 1.6.1 Features Page: 5

pascal void SetMovieDrawingCompleteProc(
 Movie theMovie,
 MovieDrawingCompleteProcPtr proc,
 long refCon)

theMovie The Movie to set the proc on.
proc Your call back procedure, or nil to remove it.
refCon Value to pass to your callback procedure.

typedef pascal OSErr (*MovieDrawingCompleteProcPtr)(
 Movie theMovie,
 long refCon);

Errors:

invalidMovie -2010

SetTrackGWorld

SetTrackGWorld lets you force a track to draw into a particular Gworld. This Gworld may be different from that of
the entire movie. After the track has drawn, it calls your transfer procedure to copy the track to the actual movie
Gworld. When your transfer procedure is set, the current Gworld is set to the correct destination. You can also install a
transfer procedure and set the Gworld to nil. This results in your transfer procedure being called only as a notification
that the track has drawn--no transfer needs to take place.

pascal void SetTrackGWorld(
 Track theTrack,
 CGrafPtr port,
 GDHandle gdh,
 TrackTransferProc proc,
 long refCon)

theTrack The track to set the proc to.
port The port for the track to draw to,
 or nil to use the movie's GWorld.
gdh GDevice associated with the port, or nil.
proc Returns pointer to your transfer procedure,
 or nil to remove it.
refCon Value to pass to your transfer procedure.

typedef pascal OSErr (*TrackTransferProc)(
 Track t,
 long refCon);

Errors:

invalidTrack -2009

typedef struct {
 GWorldPtr gw;
 GWorldPtr efxTrack;
 GWorldPtr tween;

QuickTime 1.6.1 Features Page: 6

 short trackStat;
 Rect dst;
 WindowPtr wp;
} mSpfx;

typedef struct {
 Movie mv;
 MovieController mctl;
 Rect mrect;
 mSpfx *mefx;
 GWorldPtr backPict;
} mvInfo, *mvPtr;

/* these are the track transfer procedures,
all they do is set a flag to indicate to the
drawing completion proc that both tracks are ready */

pascal OSErr FrontTrackTransferProc(Track t, mSpfx *mfx)
{
 mfx->trackStat |= 1; /* first bit for the
 front, or main track */
 return noErr;
}

pascal OSErr EfxTrackTransferProc(Track t, mSpfx *mfx)
{
 mfx->trackStat |= 2; /* second bit for the
 special effects track */
 return noErr;
}

pascal OSErr MovieDrawingProc(Movie m, mvPtr mvp) {}

void SetUpMovieEffect(Movie m, WindowPtr wp)
{
 Track t;
 mSpfx *mfx;
 OSErr err;
 Rect bounds;
 mvPtr mvi;
 long numTracks;

 /* set up the transfer procedures for each track */
 /* track 1 is the main movie track */
 /* track 2 is the special effects track */
 t = GetMovieIndTrack(m,1);
 SetTrackGWorld(t,
 mfx->gw,
 nil,
 (TrackTransferProc)FrontTrackTransferProc,
 (long) mfx);
 t = GetMovieIndTrack(m,2);
 SetTrackGWorld(t,
 mfx->efxTrack,
 nil,
 (TrackTransferProc)EfxTrackTransferProc,
 (long) mf);
 /* set up the routine that actually does the
 this routine is called after the movie toolbox
 draws all the tracks into the offscreen GWorlds
 set up above */
 SetMovieDrawingCompleteProc(m,
 (MovieDrawingCompleteProcPtr)MovieDrawingProc,
 (long) mvi);

QuickTime 1.6.1 Features Page: 7

 GoToBeginningOfMovie(m);
}

GetMovieCoverProcs

GetMovieCoverProcs lets you retrieve the cover procedures that you set with SetMovieCoverProcs.

pascal OSErr GetMovieCoverProcs(
 Movie theMovie,
 MovieRgnCoverProc *uncoverProc,
 MovieRgnCoverProc *coverProc,
 long *refcon)

Movie Movie reference.
MovieRgnCoverProc Returns the uncover proc for the movie.
MovieRgnCoverProc Returns the cover proc for the movie.
long Returns the refcon for the cover procedures.

Errors:

invalidMovie -2010

Back to top

Image Compression Enhancements

The Image Compression has five new routines, and its performance is increased.

Both the Photo CD and JPEG decompressors have been upgraded to directly support the clipping of images. Large images are
displayed much more quickly. In particular, it makes it much easier to work with high-resolution Photo CD images.

DecompressSequenceBeginS

DecompressSequenceBeginS allows you to pass a compressed sample so the codec can do preflighting before the first
DecompressSequenceFrame.

pascal OSErr DecompressSequenceBeginS(
 ImageSequence *seqID,
 ImageDescriptionHandle desc,
 Ptr data,
 CGrafPtr port,
 GDHandle gdh,
 const Rect *srcRect,
 MatrixRecordPtr matrix,
 short mode,
 RgnHandle mask,
 CodecFlags flags,
 CodecQ accuracy,
 DecompressorComponent codec)

QuickTime 1.6.1 Features Page: 8

seqID Contains a pointer to a field to
 receive the unique identifier for
 this sequence returned by the
 CompressSequenceBegin function.

desc Contains a handle to the image
 description structure that describes
 the compressed image.

port Points to the graphics port for the
 destination image.

gdh Contains a handle to the graphics
 device record for the destination
 image.

srcRect Contains a pointer to a rectangle
 defining the portions of the image
 to decompress.

matrix Points to a matrix structure that
 specifies how to transform the image
 during decompression.

mode Specifies the transfer mode for the
 operation.

mask Contains a handle to the clipping
 region in the destination coordinate
 system.

flags Contains flags providing further
 control information.

accuracy Specifies the accuracy desired in
 the decompressed image.

codec Contains compressor identifier.

SetSequenceProgressProc

SetSequenceProgressProc allows you to set a progress procedure on a Compression or Decompression Sequence,
just as in the past you could have a progress procedure when compressing or decompressing a still image.

pascal OSErr SetSequenceProgressProc(
 ImageSequence seqID,
 ProgressProcRecord *progressProc)

seqID Sequence identifier.

progressProc Pointer to a record
 containing information about the
 application's progress proc.

Three additional calls--GDHasScale, GDGetScale, GDSetScale--allow applications to zoom a monitor. They are
considered low-level calls (comparable to SetEntries) that should be used only when playing back QuickTime movies
in a controlled environment with no user interaction. Also, because this capability is not present on all machines,
applications should not depend on its availability.

QuickTime 1.6.1 Features Page: 9

The new calls provide a standard way for developers to access the resizing abilities of a user's monitor for playback.
Effectively, this allows you to have full screen Cinepak playback on low-end Macintosh computers.

Hardware 200 percent resize is currently available only on the Macintosh LC II, IIvx, IIvi, Performa 400, Performa
600, and Color Classic in 16-bit (thousands of colors) display mode on the 12-inch (512 x 384 pixels) monitors. In the
future, other graphic devices may take advantage of it.

To implement this functionality, the Image Compression Manager actually makes calls to the video driver for the given
device. Video card manufacturers interested in supporting this functionality in their cards should send an AppleLink to
DEVSUPPORT for more information.

GDHasScale

GDHasScale returns the closest possible scaling that a particular screen device can be set to in a given pixel depth. It
returns scaling information for a particular GDevice for a requested depth. It allows you to query a GDevice without
actually changing it. For example, if you specify 0x20000, but the GDevice does not support it, GDHasScale wi l l
return with noErr, and a scale of 0x10000. Remember, it checks for a supported depth, so your requested depth must be
supported by the GDevice. GDHasScale references the video driver through the graphics device structure.

For multiple screens, see "Multiple Screens Revealed" in develop #10 to find out how to walk the GDeviceList.

pascal OSErr GDHasScale(
 GDHandle gdh,
 short depth,
 Fixed *scale)

gdh A handle to a screen graphics device.

depth Pixel depth of screen device. Use this field to
 specify which pixel depth scaling information
 should be returned for.

scale A pointer to a fixed point scale value. On input,
 this field should be set to the desired scale value.
 On output, this field will contain the closest
 scale available for the given depth. A scale of
 0x10000 indicates normal size, 0x20000 indicates

Errors:

cDepthErr The requested depth is not supported.

cDevErr Not a screen device.

controlErr Video driver can not respond to this call.

GDGetScale

GDGetScale returns the current scale of the given screen graphics device.

pascal OSErr GDGetScale(
 GDHandle gdh,
 Fixed *scale,

QuickTime 1.6.1 Features Page: 10

gdh A handle to a screen graphics device.

scale Pointer to a fixed point field to hold the scale result.

flags Pointer to a short integer. It returns the status parameter
 flags for the video driver.
 For now, 0 is always returned in this field.

Errors:

cDevErr Not a screen device.
controlErr Video driver can not respond to this call.

GDSetScale

GDSetScale sets a screen graphics device to a new scale.

pascal OSErr GDSetScale(
 GDHandle gdh,
 Fixed scale,
 short flags)

gdh A handle to a screen graphics device.
scale A fixed point scale value.
flags Always pass 0.

Errors:

cDevErr Not a screen device.
controlErr Video driver can not respond to this call.

Back to top

Base Media Handler Enhancements

Three new calls and a new flag extend the Base Media Handler interface. These features provide higher quality movie
playback, but incur a performance penalty. The Text Media Handler takes advantage of these new calls and provides
built-in support for anti-aliased text. It is achieved through a playback hint to the base media handler, which the Apple
Text Media Handler derives. This hint, hintsHighQuality, has been discussed in the "Movie Toolbox Enhancements"
section earlier in this Note.

The MediaSetHints and MediaGetOffscreenBufferSize routines were added to the Derived Media Handler
interface to support high-quality mode. Since the Apple Text Media Handler derives the base media handler, it can use
these new calls to support anti-aliased text.

MediaGetOffscreenBufferSize

MediaGetOffscreenBufferSize determines the dimensions of the offscreen buffer. Before the Base Media Handler
allocates an offscreen buffer for your Derived Media Handler, it calls your MediaGetOffscreenBufferSize routine.
The depth and color table used for the buffer are also passed. When this routine is called the bounds parameter specifies
the size that the Base Media Handler intends to use for your offscreen by default. You can modify this as appropriate before
returning. This capability is useful if your media handler can draw only at particular sizes. It is also useful
forimplementing anti-aliased drawing as you can request a buffer that is larger than your destination area and have the

QuickTime 1.6.1 Features Page: 11

Base Media Handler scale the image down for you.

pascal ComponentResult MediaGetOffscreenBufferSize(
 ComponentInstance ci,
 Rect *bounds,
 short depth,
 CTabHandle ctab)

ci Component instance of a Base Media Handler.

bounds The boundaries of your offscreen buffer.

depth Depth of the offscreen.

ctab Color table associated with offscreen.
 You can set it to nil.

Errors:

badComponentInstance 0x80008001

MediaSetHints

MediaSetHints implements the appropriate behavior for the various media hints such as scrub mode and high-quality
mode. When an application calls SetMoviePlayHints or SetMediaPlayHints, your media handler's
MediaSetHints routine is called for each media in the movie.

pascal ComponentResult MediaSetHints (
 ComponentInstance ci,

ci Component instance of a Base Media Handler.

hints All hint bits that currently apply to
 the given media.

Errors:

badComponentInstance 0x80008001

MediaGetName

MediaGetName lets you retrieve the name of the media type. For example, the Video Media Handler will return the
string "Video."

pascal ComponentResult MediaGetName(
 MediaHandler mh,
 Str255 name,
 long requestedLanguage,
 long *actualLanguage)

QuickTime 1.6.1 Features Page: 12

mh The Base Media Handler instance.
name The name of the media type.
requestLanguage Language you want it to return name in.
actualLanguage Language it returns the name in.

Errors:

badComponentInstance 0x80008001

Back to top

Text Media Handler Enhancements

The Text Media Handler interface includes six new flags, two constants, and one new routine.

The display flags control the behavior of the Text Media Handler. The Text Media Handler is responsible for rendering the
text. These flags provide additional control over the rendering process. To change the Text Media Handler's behavior with
these flags, you will normally add these flags to each text sample. When the Text Media Handler reads each sample, it will
also read the associated flags. The Text Media Handler will then adjust its behavior according to the display flag.

To add a text sample to the media, you use the routines AddTESample and AddTextSample. To add display flags to a text
sample, you pass them in the displayFlags parameter of these routines.

enum {
dfContinuousScroll = 1<<9,
dfFlowHoriz = 1<<10,
dfDropShadow = 1<<12,
dfAntiAlias = 1<<13,
dfKeyedText = 1<<14
};

dfContinuousScroll is a display flag that tells the Apple Text Media Handler to let new samples cause previous samples to
scroll out. dfScrollIn and/or dfScrollOut must also be set for this to take effect.

dfFlowHoriz is a display flag that tells the Apple Text Media Handler to let horizontally scrolled text flow within the
text box. This behavior contrasts with letting text flow as if the text box had no right edge.

dfDropShadow is a display flag that tells the Apple Text Media Handler to support true drop shadows. Using
SetTextSampleData, the position and translucency of the drop shadow is under application control.

dfAntiAlias is a display flag that tells the Apple Text Media Handler to attempt to display text anti-aliased. While
anti-aliased text looks nicer, it incurs a significant performance penalty.

dfKeyedText is a display flag that tells the Apple Text Media Handler to render text over the background without
drawing the background color. This technique is otherwise known as "Masked Text."

findTextUseOffset is a new find text flag that instructs FindNextText to look at the value pointed to by the offset
parameter and start the search at that offset into the text sample indicated by startTime. This allows you to continue a
text search from within a given sample, so that multiple occurrences of the search string can be found within a single
sample.

SetTextSampleData

SetTextSampleData allows you to set values prior to calling AddTextSample or AddTESample. Two types are
currently supported: dropShadowOffsetType and dropShadowTranslucencyType. The first type,
dropShadowOffsetType, is the drop shadow offset. Pass the address of a point for the data parameter.

QuickTime 1.6.1 Features Page: 13

dropShadowTranslucencyType is the drop shadow translucency. Pass a value from 0 to 255, where 0 is the lightest
and 255 is the darkest.

 #define dropShadowOffsetType 'drpo'
 #define dropShadowTranslucencyType 'drpt'

pascal ComponentResult SetTextSampleData(
 MediaHandler mh,
 void *data,
 OSType dataType)

mh Reference to the Text Media Handler. Could use GetMediaHandler.
data Pointer to data, defined by dataType parameter.
dataType Sets the type of data in the handle. For now, either 'drpo' or 'drpt'.

Errors:

badComponentInstance 0x80008001

The following sample code snippet demonstrates the use of SetTextSampleData.

short trans = 127;
Point dropOffset;
MediaHandler mh;

dropOffset.h = dropOffset.v = 4;
SetTextSampleData(mh,
 (void *)&dropOffset,dropShadowOffsetType);
SetTextSampleData(mh,
 (void *)&trans,dropShadowTranslucencyType);

Be sure to turn on the dfDropShadow display flag when you call AddTextSample or AddTESample.

If you pass nil for textColor and/or backColor parameters in AddTextSample or AddTESample, they default to black
(for textColor) and white (for backColor).

Back to top

Import/Export Components Enhancements

Export components have two new components, four new flags, one new error, two new functions, one new data structure,
and an enhancement to the Sound Export component. The Text Movie Export component and the Audio CD Movie Import
component were introduced earlier in this Note.

Four new flags were introduced for these components with QuickTime 1.6.1:

 canMovieExportAuxDataHandle = 128
 canMovieImportValidateHandles = 256
 canMovieImportValidateFiles = 512
 dontRegisterWithEasyOpen = 1024

canMovieExportAuxDataHandle is a Movie Export component flag. A Movie Export component that supports the
MovieExportGetAuxiliaryData call should also now set the canMovieExportAuxDataHandle flag in its

QuickTime 1.6.1 Features Page: 14

ComponentFlags.

canMovieImportValidateHandles is a Movie Import component flag. A Movie Import component should set this flag
if it can import handles and wants to validate them. Validation is the process of verifying a handle and checking for
corruption. If your movie import component can and wants to validate handles, then set this flag.

canMovieImportValidateFiles is a Movie Import component flag. A Movie Import component should set this flag if
it can validate files and wants to validate them.

dontRegisterWithEasyOpen is a Movie Import component flag. A Movie Import component should set this flag if
Macintosh Easy Open is installed and your component does not want to be registered. You set this flag if you want to handle
interactions with Macintosh Easy Open yourself.

The error auxiliaryExportDataUnavailable has been added. A Movie Export component returns this when
MovieExportGetAuxiliaryData is called requesting a type of auxiliary data that the component cannot generate.

The Sound Movie Export component has been updated to take advantage of the new Sound Manager. Previously, only the first
sound track in the movie was exported. Now sound tracks are mixed together before being exported. If your application
wants to take advantage of the sound mixing, you can use PutMovieIntoTypedHandle. It will take advantage of the
Export component. Furthermore, you can now specify the format of the exported sound, so you can convert 16-bit sound to
8-bit sound, or reduce stereo to mono.

MovieExportSetSampleDescription

MovieExportSetSampleDescription allows an application to request the format of the exported data; the routine
MovieExportSetSampleDescription has been added. This call is currently supported by the Sound Movie Export
component.

pascal ComponentResult MovieExportSetSampleDescription(
 MovieExportComponent ci,
 SampleDescriptionHandle desc,
 OSType mediaType)

ci Component Instance of Movie Import component.
desc Handle to a valid QuickTime sample description.
mediaType The type of the media that the sample
 description is from.

Errors:

badComponentInstance 0x80008001

MovieImportGetAuxiliaryDataType

MovieImportGetAuxiliaryDataType returns the type of the auxiliary data that it can accept. This is useful if you
are interested with import components directly. For example, if you call the Text Import component with this call, it will
indicate that it can accept 'styl' information.

pascal ComponentResult MovieImportGetAuxiliaryDataType(
 MovieImportComponent ci,
 OSType *auxType)

QuickTime 1.6.1 Features Page: 15

ci The Movie Import component instance. Retrieve
 it with OpenDefaultComponent or OpenComponent.
auxType Pointer to the type of auxiliary data it can
 import. For example, a Text Import component
 can bring in 'text' data. But, if it says it
 can return 'styl', then it will import the
 style information as well.

Errors:

badComponentInstance 0x80008001

MovieImportValidate

MovieImportValidate is a new Movie Import component routine. Validation is a method of checking and verifying data
which will passed to your component. If your component can and wants to validate (see flags above), then you need to
implement this call.

pascal ComponentResult MovieImportValidate(
 MovieImportComponent ci,
 const FSSpec
 *theFile,
 Handle theData,
 Boolean *valid)

ci The Movie Import component instance. Retrieve
 it with OpenDefaultComponent or OpenComponent.
theFile The file to validate.
theData The data to validate.
valid Return true if the data and/or file is valid.
 Return false if the data and/or file is not valid.

Errors:

badComponentInstance 0x80008001

TextDisplayData

TextDisplayData is a new data structure for the Text Export component. This data is useful after a text track has been
exported. An application may want to know the way the text was stored as a track. You can use
TextExportGetDisplayData to retrieve this data.

QuickTime 1.6.1 Features Page: 16

typedef struct {
 long displayFlags;
 long textJustification;
 RGBColor bgColor;
 Rect textBox;
 short beginHilite;
 short endHilite;
 RGBColor hiliteColor;
 Boolean doHiliteColor;
 TimeValue scrollDelayDur;
 Point dropShadowOffset;
 short dropShadowTransparency;
} TextDisplayData;

typedef ComponentInstance TextExportComponent;

TextExportGetDisplayData

TextExportGetDisplayData returns the text display data for the text sample that was last exported by the given
Text Export component. After exporting text from a text track, it is often useful to find out about the text track
characteristics. This data structure contains this extra information.

pascal ComponentResult TextExportGetDisplayData(
 TextExportComponent ci,
 TextDisplayData *textDisplay)

ci The Text Export component instance. Retrieve
 it with OpenDefaultComponent or OpenComponent.
textDisplay
 Pointer to the text display data.

Errors:

badComponentInstance 0x80008001

The style information is obtained by calling MovieExportGetAuxiliaryData on the Text Export component instance.

Back to top

ColorSync

ColorSync is an extension for Macintosh providing a platform for consistent color reproduction between widely varying
output devices. Color Matching ability was added to the Image Compression Manager DrawPicture calls. Accurate color
reproduction of images (not movies) is made easier with the QuickTime flexible DrawPicture calls. To enable color
matching you simply set the useColorMatching flag in the flags parameter to these calls. You can set the flag even
when ColorSync is not installed, although it will be ignored.

Back to top

Sequence Grabber Enhancement

The Sequence Grabber component has just one flag added to it. grabPictCurrentImage is a new flag to the
SGGrabPict call. It provides the fastest possible image capture, but may fail under certain circumstances. This failure
is not fatal; it just will not return a picture. You can then call SGGrabPict again without the flag set. The routine does
not pause the current preview or grab the next frame. It causes the currently displayed image to be captured. It is a good

QuickTime 1.6.1 Features Page: 17

idea to call SGPause yourself before calling SGGrabPict with this flag.

Back to top

Image Codec Enhancement

The interface for image codecs has three new functions and one new flag defined.

codecConditionFirstScreen is a new codec condition flag.This flag is set when the codec is decompressing an image
to the first of multiple screens. In other words, if the decompressed image crosses multiple screens, then the codec can
look at this flag to determine if this is the first time an image is being decompressed for each of the screens it is being
decompressed to. A codec which depends on the maskBits field of the decompressParams being a valid regionHandle on
CDPreDecompress (for example to do rectangular clipping, instead of bitMask clipping) needs to know that in this
case it is not able to do clipping since the region handle is only passed in for the first of the screens, and the clipping would
be incorrect for the subsequent screen for that image.

 #define codecConditionFirstScreen (1L<<12)

The Standard Compression dialog box now provides Compressor components the option of displaying their own settings
within the dialog box. If a compressor supports the dialog, an additional button will appear. The compressor's settings are
saved with the standard compressor settings when the SCGetInfo call is used with the scCodecSettingsType flag.
The codec can implement the functionality using the following three routines.

CDRequestSettings

CDRequestSettings allows the display of a dialog box of additional compression settings specific to the codec. This
information is stored in a settings handle. The codec can store whatever data in any format it wants in the settings handle
and resize it accordingly. It should store some type of tag or version information that it can use to verify that the data
belongs to the codec. The codec should not dispose of the handle.

 pascal ComponentResult CDRequestSettings(
 ComponentInstance ci,
 Handle settings,
 Rect *rp,
 ModalFilterProcPtr filterProc)

ci Component instance of codec.

settings Handle of data specific to the codec.
 If the handle is empty, the codec should
 use some type of default settings.

rp Pointer to rectangle giving the coordinates
 of the Standard Compression dialog box in
 screen coordinates. The codec can use this
 to position its dialog box in the same area
 of the screen.

filterProc A pointer to modal dialog filter proc
 that the codec must either pass to ModalDialog
 or call at the beginning of the codec dialogs
 filter. This proc gives the calling application
 and Standard Compression a chance to process
 update events.

CDGetSettings

QuickTime 1.6.1 Features Page: 18

CDGetSettings allows a codec to get the settings chosen by a user. From this call, the codec should return its current
internal settings. If there are no current settings or the settings are the same as the defaults, the codec can set the handle
to empty.

pascal ComponentResult CDGetSettings(
 ComponentInstance ci,
 Handle settings)

ci Component instance of codec.

settings A handle that the codec should resize and
 fill in with the current internal settings. It
 should be resized to empty if there are no
 current internal settings.

CDSetSettings

CDSetSettings allows a codec to set the settings of the optional dialog box. Set the codec's current internal settings to
the state specified in the settings handle. The codec should always do a validity check on the contents of the handle so that
invalid settings are never used.

pascal ComponentResult CDSetSettings(
 ComponentInstance ci,

ci Component instance of Movie Import component.

settings
 A handle to internal settings originally returned
 by either the CDRequestSettings or CDGetSettings
 calls. The codec should set its internal settings
 to match those of the settings handle. Because the
 codec does not own the handle, it should not dispose
 of it, and should only copy its contents, not the
 handle itself. If the settings handle passed in
 is empty, the codec should set its internal settings
 to a default state.

Back to top

New Component Manager Features

The Component Manager in QuickTime 1.6.1 has some new features. The result returned for the selector
gestaltComponentMgr will be 3, indicating version number 3 of the Component Manager. It has added the ability to
automatically resolve conflicts between different versions of the same component. It will ensure that only the most recent
version of a given component is actually registered. In addition, the Component Manager now supports Icon Suites for a
component, so a component's icon no longer has to be just black and white.

The ComponentResource data structure can now have an optional extension. This extension defines additional
information about the component. The data structure is shown below.

QuickTime 1.6.1 Features Page: 19

struct ComponentResourceExtension {
 long componentVersion; /* version of component */
 long componentRegisterFlags; /* flags for registration */
 short componentIconSuite; /* resource id of Icon Suite */
};
typedef struct ComponentResourceExtension ComponentResourceExtension;

The ComponentResourceExtension is appended to the end of existing ComponentResource structures. The
Component Manager determines if it is present by examining the size of the resource.

The componentVersion field contains the version number of the component. This should be identical to the value
returned by GetComponentVersion. For convenience, if this value is set to 0, the component is called to get the
version. This is useful during development. The version number stored in the ComponentResourceExtension is used
by the Component Manager to avoid having to load and call the component to retrieve the component's version during
startup.

The componentRegisterFlags allow you to define additional register information. These flags are shown below.

// Component Resource Extension flags
enum {
 componentDoAutoVersion = 1<<0,
 componentWantsUnregister = 1<<1,
 componentAutoVersionIncludeFlags = 1<<2
};

The componentDoAutoVersion flag tells the Component Manager that you want your component registered only if
there is no later version available. If there is an older version of the component installed, it will be unregistered. If an
older version of the same component attempts to register after you, it will be immediately unregistered. Further, if a
newer version of the same component registers after you, you will automatically be unregistered. Using the automatic
version control feature of the Component Manager allows you to make sure that only the most recent version of your
software is running on a given machine, regardless of how many versions may be installed.

The componentWantsUnregister flag indicates that your component wants to be called when it is unregistered. This
is useful if your component allocates global memory at register time, for example. The prototype of the unregister
message is identical to the register message. If your component has never been opened, its unregister message is not be
called. The routine selector for unregister is given below.

The componentAutoVersionIncludeFlags flag tells the Component Manager to use the component flags as criteria
for its component search. If a component wants automatic version control, the Component Manager has to search for
similar components. Normally, the Component Manager searches only for another component using the type, subType, and
manufacturer fields of a ComponentDescription record. This flag tells the Component Manager to include the
componentFlags in its search.

Finally, the componentIconSuite field allows you to provide the resource ID of a System 7 Icon Suite. If this field is
0, it indicates that there is no icon suite.

GetComponentIconSuite

GetComponentIconSuite returns an Icon Suite for the given component. This call works only under System 7 or
later. If called on System 6, it returns an error. If the component doesn't have an Icon Suite but does have a Component
Icon (as returned by GetComponentInfo), GetComponentIconSuite creates an Icon Suite containing just the
black-and-white Component Icon. In this way, you can use GetComponentIconSuite whether or not a component has
an Icon Suite.

For more details on Icon Suites, see the Macintosh Technical Note, Drawing Icons the System 7 Way (M.IM.IconDrawing).

QuickTime 1.6.1 Features Page: 20

pascal OSErr GetComponentIconSuite(
 Component aComponent,

aComponent Component ID, retrieved with FindNextComponent.
iconSuite Pointer to the Icon Suite you will receive.

Errors:

Back to top

QuickTime 1.6.1 Bug Fixes

QuickTime 1.6.1 fixes all known bugs in QuickTime 1.5. Many of these bugs are listed below.

Movie Toolbox

The Movie Toolbox interesting time calls have been substantially improved. The values returned are much more
consistent and accurate.
GetMoviePict has two major improvements:

GetMoviePict no longer fails on certain Cinepak movies.

GetMoviePict now reports out of memory errors rather than returning empty pictures when memory is low.

UpdateMovieResource has been fixed for single fork files.
Editing movies with alternate tracks no longer creates duplicate tracks.
Movie Uncover Procedures have been significantly improved. If a movie with tracks that are semitransparent has
a Movie Uncover procedure set (by SetMovieCoverProcs), the uncover procedure is now called before each
frame to fill or erase the background. Previously the Movie Toolbox performed the erase, which limited a cover
procedure-aware application's options.
The dialog sequence that appears when a movie data file is lost has been reworked to eliminate the "This is not a
valid movie file" dialog box.
Fixed problem with deactivating and reactivating Cinepak movies that caused "shimmering" effects in the image.
GetMoviePosterPict now properly handles tracks that are only in the poster and not in the movie.
Movies played in loop mode using the Movie Controller no longer briefly pause when they jump from the end back
to the beginning of the movie.
Movie Controller
The Movie Controller performs much smarter drawing, so it takes up less time during movie playback.
The Movie Controller no longer leaves the port clipping region changed after drawing the badge.
Movie Import/Export
The Import AIFF Sound File to Movie component now always imports the entire file.
The PICT and PICS Import components no longer scale down images larger than the screen.

Text Media Handler

When multiline text is grown, lines after line 1 were not displayed. The bug did not occur when grown exactly 2x.
It is now fixed.
Empty text samples sometimes caused the Text Media Handler to lose track of subsequent text size. It is now fixed.
FindText did not do "case insensitive" searches properly. Furthermore, it tried to dispose of the text string that
was passed in. It is now fixed.
FindText "wraparound" search did not always work properly. It now does .
Hilite text samples did not always display properly. They now do.
If the track contained multiple text descriptions, performance was sometimes severely degraded--not anymore.
Text clipping and scrolling are now much more reliable.

Image Compression Manager

The AlignWindow call has been fixed to respect vertical repositioning.

QuickTime 1.6.1 Features Page: 21

Cinepak

In some cases, the Cinepak compressor allowed the data rate to exceed the limit set by the calling application,
causing playback problems from CD. QuickTime 1.6.1 fixes this bug.
Decompressing grayscale Cinepak data to an 8-bit color destination no longer crashes.

Standard Compression

If scAllowZeroFrameRate is true, default to 0 frame rate.
The key frame rate now updates correctly when changed from hook procedure.
Rate-constrain item checked if non-zero default value present.

Sequence Grabber

Sound wouldn't get restarted or turned off correctly if the record bit wasn't set in its channel usage. It is now
fixed.
Video panel does not cause bus error if the digitizer doesn't support hue.

Component Manager

The Component Manager no longer changes the current resource file when loading a component.
The Component Manager now tracks files using File IDs when possible, rather than FSSpec records.
It is now OK to pass an empty handle to GetComponentInfo. This is helpful, since it can return them.

Back to top

References

Inside Macintosh, QuickTime

Inside Macintosh, QuickTime Components

Back to top

Downloadables

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

