Component Manager version 3.0 Page: 1

Technical Note QT05
Component Manager version 3.0

CONTENTS This note contains information regarding the
version of the Component Manager that
shipped with QuickTime 1.6 and the changes
Component Manager version 3 routines necessary to support native PowerPC
components.

Introduction

How to create a PowerPC ComponentResource

) [Mar O1 1994]
Component Manager interfaces

References

Downloadables

Introduction

The Component Manager in QuickTime 1.6.x and for the Power Macintosh (PowerPC) release has some new features. It has
added the ability to automatically resolve conflicts between different versions of the same component. It will ensure that only
the most recent version of a given component is actually registered. The Component Manager now supports Icon Suites for a
component, so a component's icon no longer has to be just black and white. In addition, the Component Manager can support
code written in the native format of the PowerPC.

The result returned for the Gest al t selector gest al t Conponent Myr will be 3, indicating version number 3 of the
Component Manager. This is the version being discussed in this note. To insure that you have the features discussed here,
check that version 3 is installed.

For support of the Power Macintosh, the Component Manager has been extended to allow use of native PowerPC components.
When the Component Manager loads a native component on the Power Macintosh, it calls uses the Code Fragment Manager and
calls Get Mentr agnment and then later Cl oseConnect i on when it unloads your code resource (specified in a
Conponent Pl at f or m nf 0). This is how the Component Manager supports a native code fragment.

A component can support multiple platforms such as the 68K and PowerPC. Existing 68K code is always supported on the
Power Macintosh through emulation. But you can also have native PowerPC code for your component to support better
performance. The Component Manager will allow you to create a component that contains both code formats, so that you can
support all platforms with a single component. The Component Manager also was extended in a way that allows for native
PowerPC only components (without any 68K code support).

Extended ComponentResource

The Conponent Resour ce data structure (the ' t hng' resource) has been extended. These extensions define additional
information about the component. The complete data structure is shown below. The first portion is the same as the existing
Conponent Resour ce, with the new fields added at the end. The Component Manager determines if it is present by
examining the size of the "thng' resource.

Component Manager version 3.0 Page: 2

struct Ext Conponent Resource {
Conponent Description cd; /* Registration paraneters */
Resour ceSpec conponent ;
/* resource where Conponent code is found */
Resour ceSpec component Nanme; /* nane string resource */
Resour ceSpec componentinfo; /* info string resource */
Resour ceSpec componentlcon; /* icon resource */

/'l new data for Conponent Manager version 3

| ong conponent Versi on; /* version of Conponent */

| ong conponent Regi sterFlags; /* flags for registration */
short conponent|conFamly; /* resource id of Icon Famly */
long count; /* elenments in platformArray */

Conponent Pl at form nf o pl atformArray|[1] ;

b

componentVersion

The componentVersion field contains the version number of the component. This should be identical to the value returned by
CGet Conponent Ver si on. For convenience, if this value is set to 0, the component is called to get the version. This is
useful during development. The version number stored in the Conmponent Resour ceExt ensi on is used by the Component
Manager to avoid having to load and call the component to retrieve the component's version during startup.

componentRegisterFlags

The conponent Regi st er FI ags allow you to define additional register information. These flags are discussed below.

[* Conponent Resource Extension flags */

component DoAut oVer si on = (1<<0)

conponent Vnt sUnr egi ster = (1<<1)
conponent Aut oVer si onl ncl udeFl ags = (1<<2)
conponent HasMul ti pl ePl at fornms = (1<<3)

The conponent DoAut oVer si on flag tells the Component Manager that you want your component registered only if there
is no later version available. If there is an older version of the component installed, it will be unregistered. If an older
version of the same component attempts to register after you, it will be immediately unregistered. Further, if a newer
version of the same component registers after you, you will automatically be unregistered. Using the automatic version
control feature of the Component Manager allows you to make sure that only the most recent version of your software is
running on a given machine, regardless of how many versions may be installed.

The conponent Want sUnr egi st er flag indicates that your component wants to be called when it is unregistered. This is
useful if your component allocates global memory at register time, for example. The prototype of the unregister message is
identical to the register message. If your component has never been opened, its unregister message is not be called. The
routine selector for unregister is given below.

The conponent Aut oVer si onl ncl udeFl ags flag tells the Component Manager to use the component flags as criteria for
its component search. If a component wants automatic version control, the Component Manager has to search for similar
components. Normally, the Component Manager searches only for another component using the type, subType, and
manufacturer fields of a Conmponent Descr i pti on record. This flag tells the Component Manager to include the
componentFlags in its search.

The conponent HasMul ti pl ePl at f or s flag indicates that your component contains multiple versions of the code for
different platforms. If you plan on supporting the PowerPC native code format, then you need to use the

Conponent Pl at f or m nf o within the component resource structure. Then set this bit in the

conponent Regi st er Fl ags field. If this bit is not set then the code is assumed to be 68K format. Without this flag being
set, the Component Manager will ignore any Conponent Pl at f or m nf o.

componenticonFamily

Component Manager version 3.0 Page: 3

Finally, the componenticonFamily field allows you to provide the resource ID of a System 7 Icon Suite. If this field is O, it
indicates that there is no icon suite.

count
This is the number of elements contained in the ComponentPlatforminfo array.
platformArray

This is an array of elements that describe the code to be used for different platforms. If the platform is for 68K, then the
information within this element is a copy from the conponent Fl ags of the Conponent Descri pt i on and ResourceSpec
of the original Conponent Resour ce structure. This insures backwards compatibility with older Component Managers. If
the component contains native code support for the PowerPC, then an element of the array will contain the information about
its conponent Fl ags, resource type, and resource ID.

The pl at f or nlype field is a value that represents which platform the component code is to support. The Gestalt result for
selector gest al t SysAr chi t ect ur e will be matched with the value in platformType of the Conponent Resour ce. If a
match is found, then that code is used to support the given platform.

1, /* Mdtorola MCG8K architecture */
2, /* | BM Power PC architecture */

gest al t 68k
gest al t Power PC

struct Conponent Pl atform nfo

| ong component Fl ags; /* flags of Conponent */
Resour ceSpec conponent; /* resource where Conponent code is found */
short pl atfornType; /* gestaltSysArchitecture result */
1
Back to top

Component Manager version 3 routines

GetComponentlconSuite

Cet Conponent | conSui t e returns an Icon Suite for the given component. This call works only under System 7 or later.
If called on System 6, it returns an error. If the component doesn't have an Icon Suite but does have a Component Icon (as
returned by Get Conponent | nf 0), Get Conponent | conSui t e creates an Icon Suite containing just the
black-and-white Component Icon. In this way, you can use Get Conponent | conSui t e whether or not a component has an
Icon Suite.

pascal OSErr Get Conponent | conSuite(Conmponent aConponent, Handl e *iconSuite)

aConponent Conponent I D, retrieved with Fi ndNext Conponent .
i conSui te Pointer to the lcon Suite you will receive.

RegisterComponent

RegisterComponentResource

RegisterComponentResourceFile

The only change made to these routines was to modify the use of the global parameter. The upper byte now contains the
platform ID to be used by the component being registered. This change is hecessary because these calls do not have access to

the Conponent Resour ce which contains the Conponent Pl at f or m nf 0. If the upper byte of the global parameter is
zero, then the platform is assumed to be the platform68k.

Component Manager version 3.0 Page: 4

Back to top

How to create a PowerPC ComponentResource

The basics step for running on a Power Macintosh with a native component are:

Create component code fragment with native PowerPC code

Main entry point to code is a mixed mode routine descriptor

Package component code fragment as a resource

If you supply an interface for the component to be called directly, then for PowerPC code to call your component you
must provide custom glue to make the call.

® Create the extended ' t hng' resource using the Conponent Pl at f or m nf o

Each of these steps are discussed in more detail below:
Creating the component code fragment

The first step in creating a native PowerPC component is to port your code. For complete details on porting to PowerPC, see
Inside Macintosh: PowerPC System Software. Especially important for the following discussion is an understanding of the
Mixed Mode and Code Fragment Managers.

Like other code ported for PowerPC, anytime your code uses a callback function (Pr ocPt r), it must be converted to a
Uni ver sal Pr ocPt r. But unlike callbacks defined by the system, callbacks to your component have their own function

prototypes. With the exception of some callbacks defined for QuickTime components, there are no system supplied function
prototypes or UniversalProcPtrs, so you must create these yourself.

If, in response to a request code, your component dispatches to internal functions using Cal | Conponent Funct i on or
Cal | Conmponent Functi onW t hSt or age, then this is a place where you must use a Uni ver sal ProcPtr.

Suppose your component currently responds to an open request as follows:

switch (parans->what)
case kComponent GpenSel ect: /* Qpen request */

result = Cal | Component Functi onWt hSt orage (storage, parans, M/Qpen);
br eak;

}

MyQpen is an internal function callback, so you must create a Rout i neDescr i pt or/ Uni ver sal ProcPtr for it.
MyQpen is declared as follows:

The first step is to create a ProcInfo value for this function:

enum {
uppMyOpenPr ocl nf o = kPascal St ackBased
| RESULT_SI ZE(SI ZE_CCODE(si zeof (Component Resul t)))
| STACK _ROUTI NE_PARAMETER(1, SIZE CCDE(si zeof (Handl e)))
| STACK ROUTI NE_PARAMETER(2, SIZE CODE(si zeof (Conponent | nst ance)))
15

Next you must update your source to build a Uni ver sal ProcPt r and use it. You could use NewRout i neDescr i pt or for
this purpose, but the disadvantage is that creates a heap object which your component must dispose of properly.

An alternate approach is to declare a global Rout i neDescr i pt or (global variables are not a problem for a native
PowerPC component, since a code fragment automatically has global variables):

Component Manager version 3.0 Page: 5

#i f def powerc
Rout i neDescri ptor M/QpenRD = BUI LD _ROUTI NE_DESCRI PTOR (uppM/QpenPr ocl nf o, MyQpen);
#endi f

If you want your code to be compilable for both 68K and PowerPC, using the Universal Interfaces, then to avoid a lot of
conditional compilation, the following macros may be useful:

#i f def powerc
#defi ne Cal | Conponent Functi onWt hSt or ageUni v(st orage, parans, funcNanme) \
Cal | Conponent Functi onWt hSt or age(st orage, parans, & uncNanme##RD)
#defi ne Cal | Conponent Functi onUni v(parans, funcNanme) \
Cal | Conponent Funct i on(par ans, & uncNanme##RD)
#def i ne | NSTANTI ATE_ROUTI NE_DESCRI PTOR(f uncName) Routi neDescri ptor funcName##RD = \
BUI LD _ROUTI NE_DESCRI PTOR (upp##f uncName##Pr ocl nf o, f uncNamne)
#el se
#def i ne Cal | Conponent Functi onW't hSt or ageUni v(st orage, parans, funcNanme) \
Cal | Conponent Funct i onW't hSt or age(st orage, parans, (Conponent Functi onUPP) f uncNamne)
#def i ne Cal | Conponent Functi onUni v(parans, funcNane) \
Cal | Conponent Funct i on(par ans, (Conponent Functi onUPP) f uncNare)
#endi f

These macros, exactly analogous to Cal | Conponent Funct i on and Cal | Conponent Functi onW t hSt or age,
generate the appropriate code when compiled for 68K and PowerPC. Note that the PowerPC macro expansion depends on the
global Rout i neDescri pt or name being FuncNaneRD, i.e. the name of the function with RD appended. The
INSTANTIATE_ROUTINE_DESCRIPTOR macro can be used for that purpose:

#i f def powerc
| NSTANTI ATE_ROUTI NE_DESCRI PTOR(M/Open) ;
#endi f

This is identical to the declaration of MyOpenRD earlier, but simplifies the editing.

With all the conditional stuff out of the way, then the original code can simply be updated by replacing
Cal | Conponent Funct i onW t hSt or age with Cal | Conponent Functi onW t hSt or ageUni v:

switch (parans->what)
case kConmponent GpenSel ect: // Qpen request

{
result = Cal | Component Functi onWt hSt or ageUni v(st orage, paranms, M/Qpen);
br eak;

}

Repeat the above steps for all internal component dispatches you make.

Setting the main entry point

Lastly, you must set up the entry point into your component correctly. Unlike a 68K code resource, a PowerPC code fragment
(which your component will be) has a well defined entry point. The Component Manager, rather than just jumping to the

start of the code resource, will call the main entry point, as defined when linking, instead.

But the Component Manager is 68K code, which means your main entry point must be a Rout i neDescr i pt or . You can set
that up as follows:

Component Manager version 3.0 Page: 6

pascal Conmponent Resul t mai n (Conponent Par anet ers *par ans,
Handl e st or age) ;
#i f def powerc
enum {
uppMai nProcl nfo = kPascal St ackBased
| RESULT_SI ZE(SI ZE_CCODE(si zeof (Conponent Resul t)))
| STACK ROUTI NE_PARAMETER(1, S| ZE CODE(si zeof (Conponent Paranmeters *)))
| STACK_ RQUTI NE_PARAMETER(2, S| ZE CCDE(si zeof (Handl)))
15
Rout i neDescri ptor Mai nRD = BU LD _ROUTI NE_DESCRI PTOR(uppMai nPr ocl nf o, mai n);
#endi f

When you link the component, you must then specify MainRD as the entry point.

Note:
Your development environment may issue a warning because your main entry point is in a data section, not a
code section. You may ignore the warning.

Note:
If your code is dependent on C or C++ runtime initializations, then your main entry point would be st art
or __cpl usst art, respectively, rather than main. Modify the previous example accordingly.

Note:

Some components rely on a "fast dispatching" mechanism for calling component functions. This mechanism is
dependent on the 68K architecture and is unsupported for native components, although it will work for
emulated components running on the Power Macintosh.

Last Note:

In all these modifications for PowerPC, the most difficult thing to get right is the Pr ocl nf o value. It's very
easy to make a "cut and paste" error, or get a type wrong (short instead of short *). If your component is
crashing the first thing to check (and check and check and check!) are the Pr ocl nf o values.

Packaging the PowerPC component into a resource

PowerPC development tools create your PowerPC code in a code fragment in the data fork of the file. Your component code
must be a resource (the resource type and id are specified in the ' t hng' resource described below). You can use the MPW

Rez "read" command to read from the data fork into a resource. For example:
reads the code fragment from the file mycomponent.pef and creates the resource 'mycp'(130).
Providing an interface to the component

If you wish your component to be called directly, you must also supply an interface so callers know how to call it. For
standard functions, such as Open, Close, Version, etc., this is not a problem as the Component Manager supplies functions to
do this for you. Nor is this a problem if you are writing QuickTime components, as QuickTime supplies standard interfaces
and libraries for calling components.

But one of the advantages of the Component Manager is it lets you define your own routines with their own parameter lists,
and for these routines you must supply an interface. Typically, for 68K this involved providing callers an interface file with
function prototypes for your calls and inline 68K assembly to actually make the call.

Obviously, the inline 68K code is a problem for a native PowerPC caller, so you must provide glue to accomplish the same
thing. The following discussion also applies to calling a 68K component from PowerPC code. The interface is the same, either
way.

Component Manager version 3.0 Page: 7

To take the example for Inside Macintosh: More Macintosh Toolbox, page 6-30, you might have a call like:

pascal Conponent Result Drawer Setup (Conponentl nstance nyl nstance, Rect *r) =
Component Cal | Now (kDr awer Set UpSel ect, 4);

Conponent Cal | Nowis a macro that expands to inline 68K code that pushes additional parameters and then executes an
A-trap to call the Component Manager.

The first thing when using the new Universal Headers, is that the definition of Conponent Cal | Now has changed slightly.
The above declaration would change to:

pascal Conponent Result Drawer Setup (Conponent | nstance nyl nstance, Rect *r)

The only difference in this declaration is that the '="' character is missing. This is necessary to allow the code to compile for
both 68K and PowerPC.

For 68K code, Conponent Cal | Now continues to expand to inline 68K code, but for PowerPC, the Conponent Cal | Now
macro expands to nothing, which means the above declaration reduces to:

You must now supply glue for Dr awer Set up that does the same thing on PowerPC as the 68K inlines would do.

The strategy here is to mimic what 68K code calling your component would do. Namely, push a bunch of parameters on the
stack, then call the component. You do that by building a struct that looks like the parameters as they would appear on
the 68K stack. Each call will require a different struct because each call can have different parameters.

Use the struct below (Dr awer Set upd uePB) as a template. The first three fields, conponent Fl ags,
conponent Par antSi ze, and conponent What are required, as is the last field, which is the component instance.

conponent Fl ags is unused and should be zero.

conponent Par anfSi ze is the size, in bytes, of the parameters to the call, not counting the component instance. This is the
same number that is passed as the second parameter in a Conponent Cal | Now macro call, and should be the same as the
size of the params struct, discussed below.

conponent What is the selector for your component call. Its the same as the first parameter to a Conponent Cal | Now
macro call.

The params field is a separate struct that exactly mirrors your parameters. This must be customized for your call. A
separate struct is used here because it simplifies the Si zeof calculation for the conponent Par anfi ze field.
Parameters in this struct are specified in reverse order from the parameter list.

Note:

Remember that the struct mirrors 68K stack alignment, not 68K struct alignment. This means that byte
parameters, e.g., char or Boolean, get passed as two bytes, not one. The struct must mirror that fact, so you
must declare byte fields to be a byte field followed by a pad byte field and take it into account in your parameter
size calculations.

Once you have the struct, initialize it as shown in the example, and call the component via Cal | Uni ver sal Pr oc with the
Cal | Conponent UPP. Cal | Conponent UPP is declared for you and is part of the InterfaceLib. You don't need to do
anything special to use it.

uppCal | Conponent Pr ocl nf 0 should have been in the interfaces, because the call is always the same, but it's not, so it's
defined below.

Component Manager version 3.0 Page: 8

enum {
uppCal | Component Procl nfo = kPascal St ackBased
| RESULT_ Sl ZE(kFour Byt eCode)
| STACK ROUTI NE_PARAMETER(1, kFour Byt eCode)

b

Here's the code for the glue function. Once you have the structure defined, create an instantiation of it, and initialize it.
Finally, call the component using Cal | Uni ver sal Pr oc as shown in the example.

pascal Conponent Result Drawer Set up (Conponent | nstance nyl nstance, Rect *r)
#def i ne kDr awer Set upPar antSi ze (si zeof (Drawer Set upParans))

#i f def powerc
#pragma options al i gn=mac68k

#endi f
struct Drawer Set upParans {
Rect *theRect; /* Your paraneters go here!!

In reverse order from parameter list. */
tyioedef struct Drawer Set upPar ans Dr awer Set upPar ans;

struct Drawer Set upd uePB {

unsi gned char conponentFl ags; /* Flags - set to zero */

unsi gned char conponent Paranti ze; /* Size of the parans struct */
short conmponent What; /* The conponent request selector */

Dr awer Set upPar ans parans; /* The paraneters, see above */
Conponent | nst ance i nstance; /* This conponent instance */

i
t ypedef struct Drawer Set upd uePB Dr awer Set upd uePB;
#i f def powerc
#pragma options align=reset
#endi f
Dr awer Set upd uePB nyDr awer Set upd uePB;

nmyDr awer Set upd uePB. conponent Fl ags = 0;

myDr awer Set upd uePB. conmponent Par antsi ze = kDr awer Set upPar anti ze;
myDr awer Set upd uePB. conponent What = kDr awer Set UpSel ect ;

myDr awer Set upd uePB. par ans. t heRect = r;

myDr awer Set upd uePB. i nst ance = nyl nst ance;

return Cal | Uni versal Proc(Cal | Conponent UPP,
uppCal | Conponent Procl nfo, &nmyDrawer Set upd uePB) ;

Repeat the above steps for all the public functions for your component. To allow for future updating, the best way to make
this glue available to your clients is to build the glue into a Code Fragment Manager shared library that is built into your
component. Provide your client with an XCOFF file to link against. That way, if the glue changes, the client applications will
not have to be relinked. Be sure you choose a unique name for the glue library to avoid possible name conflicts.

Creating the extended thng" ComponentResource

Here is how to create the ' t hng' Conponent Resour ce for a component that supports both pl at f or n68k and

pl at f or mPower PC. This is the source for MPW Rez using the latest version of Types.r that supports the

UseExt endedThi ngResour ce template. Before using the new Types.r you need to define the

UseExt endedThi ngResour ce conditional with the value 1. A component defined with this resource will work for all
previous versions of the Component Manager. By keeping the original portions of the Conponent Resour ce setup for the
pl at f or m68k information, it allows your component to work on all 68K Macintosh computers. Adding the new information
about your code fragment for the Power Macintosh allows the Component Manager for that machine to use your native code.

Component Manager version 3.0 Page: 9

resource 'thng' (128, purgeable) {
kComponent Type,
kConponent SubType,
kComponent Cr eat or,
crmpWant sRegi st er Message,
kAnyComponent FI agsMask,
k68KCodeType, k68KCodel D
'STR ', kComponent NanmeSt ri ngl D,
'STR ', kConponent| nfoStringl D,
"I CON', kComponent | conl D,

#i f UseExt endedThi ngResour ce
0x00010001, /* version 1.1 */
conponent HasMul ti pl ePl at f or s,
kConponent | conFam | yI D

{
cnpWant sRegi st er Message, k68KCodeType, k68KCodel D, pl at f or m68k

cnpWant sRegi st er Message, kPower PCCodeType, kPower PCCodel D, pl at f or nPower PC
b
#endi f
3

If you have a component that only supports the 68K Macintosh, then you do not need to use the extended

Conponent Resour ce structure. However, if you wish to utilize Icon Families and automatic version registration, then
use the extended Conponent Resour ce without the Conponent Pl at f or m nf 0 and do not set the

conponent HasMul ti pl ePl at f or s flag of the conmponent Regi st er FlI ags. You may also include the
Conponent Pl at f or m nf o if you wish to and just have a single element that describes your 68K component code.

If you have a "fat" component, with both 68K and PowerPC code, set the component flags as you would for the 68K only case
and duplicate that information in the Conponent Pl at f or m nf o portion of the extended resource. That will allow your
component to work correctly for versions of the Component Manager that are not aware of the extended ' t hng' resource.

If you have a component that only supports the PowerPC in native mode, then you must use the extended

Conponent Resour ce. In this case, some care must be taken so that the component will not be registered on 68K machines.
Set the Resour ceSpec field in the non-extended part of the ' t hng' resource to zero. In addition, set the component flags
in the non-extended part of the resource to CpWANt sRegi st er Message, regardless of whether or not you handle the
register message. This will cause the 68K Component Manager to attempt to register your component, it will fail, because
there is no 68K code resource and your component will not be registered.

For the PowerPC case, you need to include a single Conponent Pl at f or M nf 0 element that describes your PowerPC
native component code for PowerPC implementations of your component to be registered. Set the component flags in the
extended portion of the resource as you would normally.

Back to top

Component Manager interfaces

/* MPWRez interfaces */
#def i ne cnpWant sRegi st er Message (1<<31) /* bits for conponent flags */

#def i ne conponent DoAut oVersi on (1<<0) /* bits for registration flags */
#def i ne conponent Vnt sUnr egi ster (1<<1)

#def i ne conponent Aut oVer si onl ncl udeFl ags (1<<2)

#defi ne conponent HasMul ti pl ePl at forns (1<<3)

type 'thng' {
literal longint; /* Type */
literal longint; /* Subtype */

Component Manager version 3.0 Page: 10

literal longint; /* Manufacturer */

unsi gned hex longint; /* conponent flags */

unsi gned hex | ongi nt kAnyComponent Fl agsMask = 0;

/* conponent flags Mask */

literal longint; /* Code Type */

i nteger; /* Code ID */

literal longint; /* Name Type */

integer; /* Name ID */

literal longint; /* Info Type */

integer; /* Info ID */

literal longint; /* lcon Type */

integer; /* lcon ID */

#i f UseExt endedThi ngResour ce

unsi gned hex longint; /* version of Conponent */

longint; /* flags for registration */

integer; /* resource id of lcon Famly */

| ongi nt = $$Count O (Conponent Pl at f or M nf 0) ;

wi de array ConponentPl atform nfo {
unsi gned hex longint; /* conponent flags */
literal longint; /* Code Type */
integer; /* Code ID */
i nteger platfornm68k = 1, platfornmPower PC = 2;
[* platformtype */

#endi f
b

[* MPWC interfaces */

enum {
#def i ne gest al t Conponent Myr

[

cpnt' /* Conponent Myr version */

#def i ne gestal t Qui ckTi meFeatures 'qtrs' /* QuickTime features */
gest al t PPCQui ckTi meLi bPresent = 0,
[* Power PC Qui ckTime glue library is present */

#define gestaltSysArchitecture 'sysa' /* Native System Architecture */
gestalt68k = 1, /* Mdtorola MX68K architecture */
gestal t PowerPC = 2, /* | BM Power PC architecture */

/* conponent Regi sterFl ags flags for Conmponent Resour ceExt ensi on */

component DoAut oVer si on = (1<<0),
conponent Vant sUnr egi st er = (1<),
conmponent Aut oVer si onl ncl udeFl ags = (1<<2),
conponent HasMul ti pl ePl at f or s = (1<<3)
b
struct Conponent Pl atform nfo
| ong component Fl ags; /* flags of Conponent */
Resour ceSpec conponent; /* resource where Conponent code is found */
short pl atfornType; /* gestaltSysArchitecture result */

Ji 5
t ypedef struct Conponent Pl at form nf o Conponent Pl at f or m nf o;

struct Ext Conponent Resource {

Conponent Descri ption cd; /* Registration paraneters */

Resour ceSpec component; /* resource where Conponent code is found */
Resour ceSpec conponent Nane; /* nane string resource */

Resour ceSpec componentInfo; /* info string resource */

Resour ceSpec conponentlcon; /* icon resource */

/1l new data for Conponent Manager version 3

Component Manager version 3.0 Page: 11

| ong conponent Versi on; /* version of Conponent */

| ong conponent Regi sterFlags; /* flags for registration */
short component | conFam ly; /* resource id of lcon Famly */
| ong count; /* elenments in platformArray */

Conponent Pl at form nfo pl atformArray[1];

Ji 5
t ypedef struct Ext Component Resource Ext Conponent Resour ce;

Back to top

References

Inside Macintosh: More Macintosh Toolbox (Component Manager)
Inside Macintosh: PowerPC System Software (Mixed Mode Manager and Code Fragment Manager)

Macintosh Technical Note, Drawing Icons the System 7 Way (M.IM.IlconDrawing).

Back to top
Downloadables
Ei Acrobat version of this Note (56K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

