Principia Off-Screen Graphics Environments Page: 1

Technical Note QD13
Principia Off-Screen Graphics Environments

CONTENTS Using Color QuickDraw to draw off screen is
a common requirement of applications and

Introduction other kinds of programs that run on the

The Building Blocks Macintosh. This Note discusses what Color
QuickDraw needs in a graphics environment
Building the Blocks and how to create one for off-screen drawing.
Playing With Blocks A brief discussion of Gar | ds, which are
off-screen graphics environments that are set
Put That Checkbook Away! up by the system, is given to help you decide

whether to use them or the do-it-yourself
techniques described in this Note for setting
Summary up an off-screen graphics environment. The
author's intent is to provide concepts and

The GWorld Factor

References . . .
routines for creating an off-screen graphics
Downloadables environment, and also to explain why existing
L / routines for off-screen drawing act as they do.
[Jul 24 2000]
Introduction

Many, many thanks go to Guillermo Ortiz, Konstantin Othmer, Bruce Leak, and Jon Zap for all their expertise on this
subject, Rich Collyer, Rick Blair, and Jim Friedlander for paving the way, and especially to all people who inspired this
update by asking great off-screen drawing questions.

Off-Screening

The Macintosh, as with every other CPU ever made by Apple, has memory-mapped video. That is, what you see on the
screen is just the visual representation of a part of memory that's reserved for the video hardware (that's stretching the
truth just a bit in the case of the text screens of the original Apple computer, the Apple Il line, and the Apple Ill because
there's also a character generator in those, but the overall process still looks roughly the same). If you change the
contents of a memory location in this part of memory, then you'll see the corresponding location on the screen change when
the video hardware draws the next frame or field of video. The resident raster graphics package, QuickDraw in the case of
the Macintosh, draws images by stuffing the right values into the right places in the part of memory reserved for the video
display. The resulting image on the screen looks like a line or perhaps an oval if you asked QuickDraw to draw a line or an
oval, or it could be an entire complex image if you asked QuickDraw to draw one. This is normal, on-screen drawing.

Because video memory is a part of RAM just like any other part of RAM in the memory map of the Macintosh (or almost
like; video memory might exist on a NuBus(TM) video card, but it's still RAM), QuickDraw can be told to draw into a part
of memory that isn't reserved for the video hardware, maybe into a part of your own application's heap. When you tell
QuickDraw to draw into a part of memory that's not reserved for the video hardware, you can't see any of the results. This

Principia Off-Screen Graphics Environments Page: 2

is off-screen drawing. There are plenty of perfectly good reasons to do this, such as providing storage for a paint-style
document or to smoothly animate an image, but the assumption here is that you have a perfectly good reason to do this so
you're more interested in the "how" of it instead of the "why" of it. If you need to know why, there are several books that
cover off-screen drawing and the perfectly good reasons to do such a thing. A good place to start is Scott Knaster's book,
Macintosh Programming Secrets , referenced at the end of this Note.

This Note is divided into these major sections:

® The introduction is the part that you're reading now.

® The Building Blocks provides an overview of the data structures that you need to tell Color QuickDraw to draw off
screen.

® Building the Blocks discusses the construction and initialization of these data structures.

® Playing With Blocks shows an example of the use of these structures to draw off screen.

® Put That Checkbook Away! discusses some variations of these techniques to handle off-screen drawing for special
cases.

® The GMr | d Factor provides a brief overview of G/Nr | ds, how to use them, and how they compare and contrast
to the manual techniques that are described in most of this Note.

Those of you who aren't quite sure whether to use G/Nr | ds or the do-it-yourself techniques might want to skip ahead for
amoment to "The GNOr | d Factor" just in case doing it yourself is a waste of time. In any case, it's a good idea to read this
whole Note because the concepts are mostly the same whether you're using GAor | ds or not. GMr | ds just make the
process a lot easier, and they let you take advantage of the 8*24 GC video card. But, we're not in that section of the Note
yet.

Back to top

The Building Blocks

Before you can tell QuickDraw to draw off of the screen, you'll need to build three major data structures: a CGr af Port , a
Pi xMap, and a GDevi ce. You'll also need a couple of tables that define the colors involved with drawing to and copying
from the off-screen image: the color table and the inverse table. Of course, you'll need the pixel image itself, which is
often called the "pixel buffer" or the "image buffer" or the "off-screen buffer"” or just "the buffer.” It's always called the
"pixel image" in this Note. It doesn't necessarily buffer anything anyway.

The CGrafPort

ACG af Port describes a drawing environment, and it's the color version of the G af Port structure that's described on
pages 147 through 155 in the QuickDraw chapter of Inside Macintosh Volume |. The drawing environment consists of,
among other things, the size and location of the graphics pen, the foreground and background colors to use when something
is drawn, the pattern to use, the region to clip all drawing to, and the portion of a pixel image that the CG af Por t
logically exists in. Any initialized C& af Port or G af Port can be set as the current port through the _Set Por t
routine. The current port is a set of parameters that are implicitly passed to most QuickDraw routines.

The most important reason to build a new C& af Port when you draw off screen rather than using an existing

CG af Port is so that switching between drawing to an off-screen graphics environment and drawing to one or more
windows (each of which is an extended G af Port or CG af Port structure) on the screen is very easy. Some people use
just one CGr af Por t to share between on-screen and off-screen graphics environments, and switch their Pi xVap
structures to switch between drawing on screen and drawing off screen. That does work, but if the off-screen and
on-screen graphics environments have a different cl i pRgn, vi SRgn, pen characteristic, por t Rect, or any other
characteristics that are different, then those must be switched at that time too. If you instead create a C& af Port that's
dedicated to one graphics environment, then a simple call to _Set Por t effectively switches all these things for you at
once. That's why every window on the screen comes with its own port. A simple call to _Set Port switches between the
characteristics of each window even if each window has radically different drawing characteristics.

The CG af Port data structure is more completely described in the "Color QuickDraw" chapter of Inside Macintosh
Volume V, pages 49 through 52, and in the "Graphics Overview" chapter of Inside Macintosh Volume VI, pages 16-12
through 16-13.

The PixMap

A pixel image alone is just a formless blob of memory. Pixel maps, defined by the Pi XMap structure, describe pixel
images, giving them a form and structure that's suitable for Color QuickDraw to draw into them and copy from them. The

Principia Off-Screen Graphics Environments Page: 3

Pi xMap structure tells you the dimensions and location in memory of the pixel image, its coordinate system, and the
depth and format of the pixels. Pixel maps that describe indexed-color pixel images additionally describe the colors that
are represented by the values of the pixels in the pixel image. This is done through the color table, also known as the color
look-up table or CLUT. Color tables are attached to pixel maps through their pnifabl e field. Direct-color pixel images
have pixel values that describe their own colors, and so color tables aren't needed for those.

The Pi XxMAp structure is described in the "Color QuickDraw" chapter of Inside Macintosh Volume V, pages 52 through
55, and in the "Graphics Overview" chapter of Inside Macintosh Volume VI, pages 16-11 through 16-12. The concept of
direct-color and indexed-color pixels is described in this same chapter on pages 16-16 through 16-18, and also in the
"Color QuickDraw" chapter of the same volume on pages 17-4 through 17-10.

The GDevice

Graphics devices, defined by the GDevi ce structure, describe color environments. They're the most misunderstood data
structure when it comes to off-screen graphics environments for three major reasons: first, they're not originally
documented as being relevant to humans; second, they look as though they're only for screens; and third, it looks as though
color tables describe color environments. We can dispose of these myths here: graphics devices are documented as being
useful to humanity in this Note at least; they're critically important for both on-screen and off-screen drawing; and color
tables describe the colors in pixel images, not color environments.

What's all this about color environments? In theory, there are virtually three hundred trillion colors available with
Color QuickDraw through the 48-bit RGBCol or record. In reality, there are never this many colors available, and in
fact there might be only two. Color QuickDraw maps the theoretical color that you specify to the pixel value of the closest
available color in the current color environment. This can be done with a color table, but that's not very efficient. Finding
the closest available color to an RGBCol or in a color table means searching the entire color table for that one closest
color. If that's done just once, then performance isn't much of an issue, but if it's done many times, the performance hit
could be significant. A very bad case of this is _CopyBi t s, where every pixel value in the source image is converted to an
RGBCol or by looking it up in the color table of the source Pi XMap. If the color table of the destination Pi X Map had to be
searched to find the closest available color for every pixel in the source Pi XxMap, then the performance of even the most
straightforward _CopyBi t s call could be a lot slower than it has to be.

To avoid this performance hit, the current GDevi ce provides an inverse table and a device type which are used to
determine the available set of colors. Inverse tables are anticolor tables. Where color tables give you a color for a given
pixel value, inverse tables give you a pixel value for a given color. Every conceivable color table has a corresponding
conceivable inverse table, just as every positive real number has a corresponding negative real number, or every Mr.
Spock has a corresponding Mr. Spock with a goatee. The device type specifies whether the color environment uses the
indexed-color, fixed-color, or direct-color model. In the direct-color model, the inverse table is empty. Only the
indexed-color and direct-color models are described in this Note.

When you specify a color in an indexed-color environment, Color QuickDraw takes the RGBCol or specification and
converts it into a value that can be used as an index into the inverse table of the current GDevi ce. To do this conversion,
Color QuickDraw takes the top few significant bits of each color component and combines them into part of a 16-bit word,
blue bits in the least significant bits, green bits right above it, and the red bits right above green bits. Any unused bits are
in the most significant bits of the 16-bit word. The resulting 16-bit word is used as an index into the inverse table. The
value in the inverse table at that index is the pixel value which best represents that color in the current color
environment. The number of bits of each component that are used is determined by what's called the "resolution™ of the
inverse table. Almost always, the resolution of an inverse table is four bits, meaning the most significant four bits of each
component are used to form the index into the inverse table. Figure 1 shows how an RGBCol or record is converted to an
index into an inverse table when the inverse-table resolution is four.

red
|||EI |j|||||||| |=$1234

Zreen
RBFEColor recond =$5675

hlne

=$IARC

YyYYy
Inwverse table index | | | | | | | | | | | | | |=$D159

Principia Off-Screen Graphics Environments Page: 4
Figure 1. Conversion of RGBColor Record to Inverse-Table Index

The same process is used when _CopyBi t s is called with an indexed-color destination. Each pixel in the source pixel
image is converted to an RGBCol or either by doing a table look-up of the source pixel map's color table if the source
pixel image uses indexed colors, or by expanding the pixel value to an RGBCol or record if the source pixel image uses
direct colors. The resulting RGCol or is then used to look up a pixel value in the inverse table of the current GDevi ce,
and this pixel value is put into the destination pixel image.

If you specify a color in a direct-color environment, then the resulting RGBCol or is converted to a direct pixel value by
the processes that are shown on pages 17-6 through 17-9 of the "Color QuickDraw" chapter of Inside Macintosh Volume
VI.

Usually, inverse-table look-up involves an extra step to find what are called "hidden colors" using proprietary
information that's stored at the end of the inverse table. With an inverse-table resolution of four, only 16 shades of any
particular component can be distinguished, and that's often not enough. An inverse table with a resolution of five is much
larger, but it still only gives you 32 shades of any component. Hidden colors are looked up after the normal inverse-table
look-up to give a much more accurate representation of the specified color in the current color environment than the
inverse-table look-up alone can produce. Sometimes, most notably when the arithmetic transfer modes are used or if
dithering is used, the hidden colors are ignored.

When a new color table is assigned to a Pi XIVap or when its existing color table is modified, then a new corresponding
inverse table should be generated for the GDevi ce that'll be used when drawing into that environment. Normally, this
happens automatically without you having to do any more than inform Color QuickDraw of the change. This is described in
more detail in "Changing the Off-Screen Color Table" later in this Note.

Graphics devices are documented in the "Graphics Devices" chapter of Inside Macintosh Volume VI which supersedes the
"Graphics Devices" chapter of Inside Macintosh Volume V. They're also discussed in the "Graphics Overview" chapter of
Inside Macintosh Volume VI, pages 16-13 through 16-14. The inverse-table mechanism is described in the "Color
Manager" chapter of Inside Macintosh Volume V, pages 137 through 139.

All Together Now

There are a lot of different ways to put the three structures together, and this Note discusses the architecture that's shown
in Figure 2. This architecture is useful when you want a simple, atomic, off-screen graphics environment.

CerafPort GDhevice

Inverse Tahle

portPixllap gdITable | I

(— gdFPIap

PixHap

Zolor Table

ruTable | I

Figure 2. Relationships Between Structures for Off-Screen Drawing

Notice that there's no way to get to the GDevi ce from the C& af Por t , nor is there a way to get to the C& af Port from
the GDevi ce, though the Pi X Map can be found through either one. Your application must keep track of both the
CG af Port and the GDevi ce.

Back to top

Principia Off-Screen Graphics Environments Page: 5

Building the Blocks

As with just about any algorithm, there are many ways to put the different structures together that form an off-screen
graphics environment. This section covers just one way to build the architecture that's shown in Figure 2.

Building the CGrafPort

The CQ&r af Port structure is the easiest one to put together because the _CpenCPor t routine initializes so many of the
fields of the CG af Port structure for you. It also allocates and initializes the structures that are attached to every

CG af Por t, such as the vi SRgn, cl i pRgn, gr af Var s handle, and so forth. Most of these are initialized with values
that are fine for general purposes, but the Vi SRgn, cl i pRgn, and port Rect fields should be set to the desired
boundary rectangle of the off-screen graphics environment. What follows is an overview of each of the fields that you have
to worry about when you're setting up a CG af Port for drawing off screen.

port Pi xMap handle to the off-screen Pi xMap. _OpenCPor t initializes this field to a copy of the Pi XxMap that's
attached to the gdPMap field of the current GDevi ce. An overview of setting up this Pi XMap for drawing off screen is
given in "Building the PixMap" later in this Note.

port Rect specifies the rectangular area of the associated pixel image that this CG af Port controls. This field should
be set to the desired rectangular area of the off-screen image because _(QpenCPor t doesn't necessarily initialize it to
this size. Usually, the top-left corner of this rectangle has the coordinates (0, 0), but not necessarily so.

Vi SRgn handle to the region that specifies the visible area into which you can draw. _QpenCPort doesn't necessarily
initialize it to the size of the off-screen image, so it should be set to the same size and coordinates as the por t Rect and
left at that. This field is more important for windows because parts of them can be hidden by other windows.

cl i pRgn handle to the region that specifies the logical area into which you can draw. _QpenCPor t initializes it to cover
the entire QuickDraw coordinate plane. It's usually a good idea to set it to the same size and coordinates as the por t Rect
to avoid problems if the Cl i pRgn is scaled or translated, which causes its signed integer coordinates to overflow and turn
it into an empty region. One of the most common cases of this occurs when a picture that's created in this CG af Port is
drawn into a destination rectangle that's any larger than or translated from the original picture frame. Everything in the
picture, including the clip region, is scaled to fit the destination rectangle. If the clip region covers the entire QuickDraw
coordinate plane, then its coordinates overflow their signed integer bounds, and the clip region becomes logically empty.
The result is that nothing is drawn.

The Cr eat eX f Scr een routine in Listing 1 creates an off-screen graphics environment, given a boundary rectangle,
pixel depth, and color table, and it returns a new off-screen C& af Port and GDevi ce, along with an error code. The
desired pixel depth in bits per pixel is given in the dept h parameter. If the pixel depth is eight or less, then an
indexed-color graphics environment is created and a color table is required in the col or S parameter. If the pixel depth
is 16 or 32 bits per pixel and 32-Bit QuickDraw is available, then a direct-color graphics environment is created and
the col or s parameter is ignored. If 32-Bit QuickDraw isn't available, then a pixel depth of 16 or 32 bits per pixel
results in CreateOffScreen doing nothing more than returning a parameter error. A description of CreateOffScreen is given
following the listing.

MPW Pascal Listing 1

FUNCTI ON Cr eat e f Scr een(

bounds: Rect ; {Boundi ng rectangl e of off-screen}
dept h: | nt eger; {Desired nunber of bits per pixel in off-screen}
col ors: CTabHandl e; {Col or table to assign to off-screen}
VAR ret Port: CGafPtr; {Returns a pointer to the new CG af Port}
VAR r et GDevi ce: GDHandl e {Returns a handle to the new GDevi ce}
): COSErr;
CONST
kMaxRowByt es = $3FFE; {Maxi num nunber of bytes in a row of pixel s}
VAR
newPort : CG af Ptr; {Pointer to the new of f-screen CG af Port}

newPi xMap: Pi xMapHandl e; {Handl e to the new of f-screen Pi xMap}

Principia Off-Screen Graphics Environments Page: 6

newbevi ce: CGDHandl e; {Handl e to the new of f-screen CGDevi ce}
gdVer si on: Longl nt ; {Version of QuickDraw currently in use}
savedPort: GafPtr; {Pointer to Gaf Port used for save/restore}
savedState: SignedByte; {Saved state of color table handl e}

byt esPer Row. | nt eger; {Nunmber of bytes per row in the PixMap}
error: CSErr; {Returns error code}

BEG N
(* Initialize a few things before we begin *)
newPort := NL;
newPi xMap := N L;
newDevi ce := N L;
error := noErr;

(* Save the color table's current state and nake sure it isn't purgeabl e*)
IF colors <> NIL THEN
BEG N
savedState : = HGet Stat e(Handl e(col ors));
HNoPur ge(Handl e(col ors)) ;
END;

(* Calculate the nunber of bytes per rowin the off-screen PixMap *
byt esPer Row : = ((depth * (bounds.right - bounds.left) + 31) DV 32)

(* CGet the current Qui ckDraw version *)
error := GCestalt(gestaltQickdrawersion, qdVersion);
error noErr;

(* Make sure depth is in dexed or depth is direct and 32-Bit @ installed*)
IF (depth = 1) O?(de h = 2) O?(dept =4) OR (depth = 8) OR
(((depth = 16) OR (depth = 32)) AND (qgdVersion >= gestalt32Bit QD))

THEN
BEG N
(* Maxi mum nunber of bytes per row is 16, 382; nake sure within range*)
| F byt esPer Row <= kMaxRowByt es THEN
BEG N
(* Make sure a color table is provided if the depth is indexed*)
| F depth <= 8 THEN
IF colors = NNL THEN
(* Indexed depth and clut is NIL; is parameter error *)
error := parankrr;
END
ELSE
(* # of bytes per rowis nore than 16,382; is parameter error *)
error := parankrr;
END
ELSE
(* Pixel depth isn't valid; is parameter error *)
error := parankrr;

(* If sanity checks succeed, then allocate a new CG af Port *)
I F error = noErr THEN
BEG N
newPort := CGafPtr(NewPtr(Si zeO (CGafPort)));
| F newPort <> NIL THEN
BEG N
(* Save the current port *)
Cet Port (savedPort);

(* Initialize the new C&xafPort and make it the current port*)
OpenCPort (newPort) ;

(* Set portRect, visRgn, and clipRgn to the given bounds rect*)
newPort”. port Rect := bounds;

Principia Off-Screen Graphics Environments

Rect Rgn(newPor t . vi SRgn, bounds);
d i pRect (bounds) ;

(* Initialize the new Pi xMap for of f-screen drawi ng *)
error := SetUpPi xMap(depth, bounds, colors, bytesPerRow,
newPort ~. por t Pi xMap) ;
IF error = noErr THEN
BEA N
(* Gab the initialized Pi xMap handl e *)
newPi xMap : = newPort”. port Pi xMVap;

(* Allocate and initialize a new Gevice *)
error := CreateCevice(newPi xMap, newDevi ce);
END;

(* Restore the saved port *)
Set Port (savedPort) ;
END
ELSE
error .= Menkrror;
END;

(* Restore the given state of the color table *)
IF colors <> NIL THEN
HSet St at e(Handl e(col ors), savedState);

(* One Last Look Around The House Before W CGo... *)
IF error <> noErr THEN
BEG N
(* Some error occurred; dispose of everything we all ocated *)
| F newPi xMap <> NIL THEN
BEG N
D sposCTabl e(newPi xVap”~. pnirabl e) ;
Di sposPt r (newPi xMap~~. baseAddr) ;
END;
| F newbDevi ce <> NIL THEN
BEG N
Di sposHandl e(Handl e(newDevi ce®”. gdl Tabl e)) ;
D sposHandl e(Handl e(newbDevi ce)) ;
END;
| F newPort <> NIL THEN
BEG N
Cl oseCPort (newPort) ;
Di sposPtr(Ptr(newPort));

END;
END
ELSE
BEGA N
(* Bverything's OK; return refs to off-screen CG af Port and GDevi ce*)
retPort := newPort;
ret GDevi ce : = newDevi ce;
END;
CreateOfScreen := error;

END;

MPWC Listing 1

#defi ne kMaxRowByt es Ox3FFE /* Maxi num nunber of bytes in a row of pixels */
CSErr Creat e f Screen(

Rect *pounds, /* Boundi ng rectangl e of off-screen */
short dept h, /* Desired nunber of bits per pixel in off-screen*/
CrabHandl e col ors, [* Color table to assign to off-screen */

CGafPtr *retPort, /* Returns a pointer to the new C& af Port */

Page: 7

Principia Off-Screen Graphics Environments Page: 8

GDHandle *retGDevice) /* Returns a handle to the new GDevice */

{
CGafbtr newPort ; [* Pointer to the new of f-screen CG af Port */
Pi xMapHandl e newPi xMap; /* Handl e to the new of f-screen Pi xMap */
GDHandl e newbDevi ce; /* Handl e to the new of f-screen Gevice */
| ong gdVer si on; /* Version of QuickDraw currently in use */
GafPtr savedPort ; /[* Pointer to G afPort used for save/restore */
SignedByte savedState; [/* Saved state of color table handle */
short byt esPer Row; /* Nunber of bytes per row in the PixMap */
CSErr error; /* Returns error code */

[* Initialize a few things before we begin */
newPort = nil;

newPi xMap = nil;

newDevi ce = nil;

error = noErr;

/* Save the color table's current state and nake sure it isn't purgeabl e*/
if (colors !'=nil)

savedState = HCGet State((Handl e)col ors);
HNoPur ge((Handl e)col ors);

/* Cal cul ate the nunber of bytes per row in the off-screen PixMap */
byt esPer Row = ((depth * (bounds->right - bounds->left) + 31)
>>5) << 2;

[* Get the current QuickDraw version */
(voi d) Gestal t (gestalt Qi ckdrawer si on, &qgdVersion);

/* Make sure depth is indexed or depth is direct and 32-Bit QD installed*/
if (depth == 1 || depth == 2 || depth == 4 || depth == 8 ||
((depth == 16 || depth == 32) && qdVersion >=gestal t 32Bi t QD))

/* Maxi mum nunber of bytes per rowis 16,382; make sure w thin range*/
i f (bytesPerRow <= kiaxRowByt es)

/* Make sure a color table is provided if the depth is indexed */
if (depth <= 8)
if (colors == nil)
/* I ndexed depth and clut is NIL; is parameter error */
error = parankrr;
}
el se
/* # of bytes per rowis nore than 16,382; is paranmeter error */
error = parankrr;

el se
/[* Pixel depth isn't valid; is paraneter error */
error = parankrr;

[* If sanity checks succeed, then allocate a new CG af Port */
if (error == noErr)
{
newPort = (CG afPtr) NewPtr(sizeof (CGafPort));
if (newPort !'= nil)
{
/* Save the current port */
CGet Port (&savedPort);

/* Initialize the new Ca af Port and make it the current port */
QpenCPort (newPort);

Principia Off-Screen Graphics Environments

/* Set portRect, visRgn, and clipRgn to the given bounds rect */
newPort - >port Rect = *bounds;

Rect Rgn(newPort - >vi sRgn, bounds);

C i pRect(bounds);

/* Initialize the new PixMVap for off-screen draw ng */

error = Set UpPi xMap(depth, bounds, colors, bytesPerRow,
newPort - >port Pi xMap) ;

if (error == noErr)

[* Gab the initialized PixMap handle */
newPi xMap = newPort - >port Pi xMVap;

/* Allocate and initialize a new Gevice */
error = CreateCevi ce(newPi xMap, &newbDevi ce);

}

/* Restore the saved port */
Set Port (savedPort);

}
el se
error = Menkrror();
}
/* Restore the given state of the color table */
if (colors !'=nil)

HSet St at e((Handl e) col ors, savedState);
/* One Last Look Around The House Before W Co... */

if (error !'= noErr)
{
/* Sonme error occurred; dispose of everything we allocated */
if (newPixMap !'= nil)
Di sposCTabl e((**newPi xMap) . pnirabl e) ;
Di sposPtr((**newPi xMap) . baseAddr);
}
if (newDevice !=nil)
{
D sposHandl e((Handl e) (**newDevi ce). gdl Tabl e);
D sposHandl e((Handl e) newDevi ce);
}
if (newPort != nil)
Cl oseCPort(newPort);
Di sposPtr((Ptr)newPort);
el se

[* Everything's OK return refs to off-screen C&GafPort and GDevi ce*/
*retPort = newPort;
*ret GDevi ce = newbDevi ce;

return error;

Cr eat eX f Scr een begins by making sure that the color table, if there is one, doesn't get purged during the time that

the off-screen graphics environment is created. Then, a sanity check is done for the given depth, bounds, and color table.

The depth must be either 1, 2, 4, or 8 bits per pixel, or additionally 16 or 32 bits per pixel if 32-Bit QuickDraw is
available. If these conditions aren't satisfied, then it's decided that there's an error in the parameter list, and
Cr eat ed f Scr een does nothing more. To determine whether 32-Bit QuickDraw is available or not, the _CGest al t

Page: 9

Principia Off-Screen Graphics Environments Page: 10

routine is used. If _CGest al t returns a value that's equal to or greater than the constant gest al t 32Bi t QD, then
32-Bit QuickDraw is available and depths of 16 and 32 bits per pixel are supported. It's not necessary to determine
whether _Gest al t is available or not because it's implemented as glue code in the Macintosh Programmer's Workshop.

A check is then done to determine whether the number of bytes in each row of the off-screen pixel image is too much for
QuickDraw to handle. Color QuickDraw can handle up to and including 16,382 ($3FFE) bytes in each row of any pixel
image. If the required number of bytes per row exceeds this amount, then Cr eat ef f Scr een decides that there's an
error in the parameter list and does nothing more. The minimum number of bytes in a row that's enough to cover the given
boundary rectangle at the given pixel depth is calculated with the formula:

byt esPer Row : = ((depth * (bounds.right - bounds.left) + 31) DV 32) * 4;

This formula multiplies the number of pixels across the Pi XMap by the pixel depth to get the number of bits, and then
this is divided by eight to get the number of bytes. This division by eight looks very strange because the number of bytes
per row must be even, so this formula takes advantage of integer division and multiplication to make the result come out
even. This particular formula additionally makes sure that the number of bytes per row is a multiple of four. This helps
optimize the performance of Color QuickDraw operations because it allows Color QuickDraw to refer to each row beginning
on a long word boundary in memory.

The last sanity check is to make sure that a color table is given as a parameter if it's needed. Indexed-color graphics
environments need color tables, so if the given pixel depth is eight or less (which implies an indexed-color graphics
environment) and the given color table is NIL, then CreateOffScreen decides that there's an error in the parameter list and
does nothing more. If the given pixel depth is 16 or 32 (which implies a direct-color graphics environment), then

Creat eX f Scr een ignores the given color table.

If all the sanity checks succeed, then the off-screen C& af Port is allocated using a call to _NewPt r, and then it's
initialized and opened as a CG af Port by passing the resulting pointer to _CpenCPor t . Because _(QpenCPor t makes
the new C&r af Por t the current port, the current port is first saved so that it can be restored as the current port when
CreateOffScreen is done.

As mentioned above, the _CQpenCPort doesn't necessarily initialize the port Rect, vi SRgn, and cl i pRgn of the new
CG af Port to the areas that are needed for any particular off-screen graphics environment. So, the given boundary
rectangle is assigned to the por t Rect field, _Rect Rgn is called to make the Vi SRgn equal to the given boundary
rectangle, and _Cl i pRect is called to set the cl i pRgn so that it's equal to the given boundary rectangle.

The Pi XxVAp in the por t Pi xMap field needs to be initialized for off-screen drawing, and that's handled by the
SetUpPixMap routine that's described and defined in "Building the PixMap" later in this Note. Similarly, the off-screen
CGDevi ce must be created and initialized. That's handled by the CreateGDevice routine that's described and defined in
"Building the GDevice" later in this Note.

Once these things are done, Cr eat e f Scr een returns a pointer to the off-screen C& af Port in the r et Port
parameter and a handle to the off-screen GDevi ce in the r et GDevi ce parameter. The way to use these references is
described in "Playing With Blocks" later in this Note.

Building the PixMap

_QpenCPor t initializes the port Pi xMap field of the C& af Por t it's initializing with a copy of the Pi xMap of the
current GDevi ce. When the CreateOffScreen routine described earlier executes, the current GDevi ce is unknown. So,
all the fields of the Pi xVap that the new CG&r af Port receives must be initialized so that it can be used for drawing off
screen.* What follows is an overview of each of the Pi Xap fields and how they should be initialized for off-screen
drawing.

baseAddr pointer to the off-screen pixel image. The off-screen pixel image is allocated as a nonrelocatable block in the
heap. The size of this block of memory is calculated from the r owByt es field, described next, multiplied by the number
of rows in the given boundary rectangle.

r owByt es number of bytes in each row of the pixel image. This value is calculated from the formula that's given in the
CreateOffScreen routine. The most significant bit of this field should be set so that Color QuickDraw knows that this is a
Pi xMap rather than a Bi t Map. The maximum value, ignoring the most significant bit, is 16,382.

bounds defines the coordinate system and the dimensions of the pixel image. For most off-screen drawing, this should be
a rectangle that covers the entire off-screen graphics environment.

Principia Off-Screen Graphics Environments Page: 11

pmJer si on set of internally and externally defined flags. As of 32-Bit QuickDraw 1.2, only the baseAddr 32 flag is
defined externally. This flag is described in "Choosing Your Off-Screen Memory" later in this Note. For most off-screen
drawing, this field is set to zero.

packType image compression scheme for pictures. The options for this field are discussed in the "Graphics Overview"
chapter of Inside Macintosh Volume VI, pages 17-22 through 17-23. In this Note, image compression isn't discussed so
this field is set to zero.

packsSi ze internally used field. This field is always set to zero.

hRes horizontal resolution of the pixel map. By default, the QuickDraw resolution is 72 dots per inch,which is the value
this Note uses. This is a fixed-point field, so the actual value in this field is $00480000.

vRes vertical resolution of the pixel map. See the hRes description.

pi xel Type format of the pixels. In indexed-color pixel maps, this field holds zero. In direct-color pixel maps, this field
holds the RGBDI r ect constant, which is equal to 16.

pi xel Si ze number of bits in every pixel. For indexed-color pixels, this is 1, 2, 4, or 8 bits per pixel. For
direct-color pixels, this is 16 or 32 bits per pixel.

cnpCount number of components in every pixel. In indexed-color pixel maps, this field is set to 1. In direct-color pixel
maps, this field is set to 3. Sometimes it's handy to set this field to 4 in 32-bit deep pixel maps when they're being saved
in a picture. See the "Color QuickDraw" chapter of Inside Macintosh Volume VI, page 17-23, for details about this.

cnpSi ze number of bits in each color component. In indexed-color pixel maps, this field is set to the same value that's in
the pi xel Si ze field. In 16-bit deep direct pixel maps, this field is set to 5. In 32-bit deep direct pixel maps, this field
is set to 8.

pl aneByt es not currently defined. This field is set to zero.

prmTabl e handle to the color table for indexed-color pixel maps. A method to create a color table is given in "About That
Creation Thing . . ." later in this Note. In direct-color pixel maps, this field contains a handle to a dummy color table, and
building one of these is shown in the Set UpPi xMap routine in Listing 2.

pnReser ved not currently defined. This field is set to zero. (*This part of these routines really bothers me because it
feels impure to initialize all the Pi xMap fields when _OpenCPor t has initialized them already, just not in a way that's
any good for off-screen drawing. | tried creating the GDevi ce and Pi XxMap first and then calling _OpenCPort so that it
initializes its Pi XxMap for off-screen drawing, but then you end up with two pixel maps and that makes this tougher to
explain, or you have to dispose of one Pi X Map which seems worse than the method I'm using.)

The Set UpPi xMap routine in Listing 2 initializes the Pi X Map that's passed to it in the aPi XxMap parameter so that it
can be used in an off-screen graphics environment. The dept h, bounds, and col or parameters are the same as the ones
passed to the Cr eat e f Scr een routine. The byt esPer Row parameter is the number of bytes in each row of the
off-screen pixel image. A description of Set UpPi xMap follows the listing.

MPW Pascal Listing 2

FUNCTI ON Set UpPi xMap(

dept h: I nt eger; {Desired nunber of bits/pixel in off-screen}
bound: Rect ; {Boundi ng rectangl e of off-screen}

col ors: CTabHandl e; {Color table to assign to off-screen}

byt esPer Row. | nt eger; {Nunber of bytes in each row of pixels}

aPi xMap: Pi xMapHandl e {Handl e to the PixMap being initialized}

): COSErr;

CONST

kDef aul t Res = $00480000; {Default resolution is 72 DPl; Fixed type}
VAR

Principia Off-Screen Graphics Environments Page: 12

newCol or s: CTabHandl e; {Col or table used for the off-screen PixMap}

of f BaseAddr: Ptr; {Pointer to the off-screen pixel image}
error: CSErr; {Returns error code}
BEG N
error := nokErr;

newCol ors := N L;
of f BaseAddr := N L;

(* done the clut if indexed color; allocate a dummy clut if direct col or¥*)
| F depth <= 8 THEN

BEG N
newCol ors : = col ors;
error := HandToHand(Handl e(newCol ors));
END
ELSE
BEG N

newCol ors : = CTabHandl e(NewHand| e(Si zeOf (Col or Tabl e) -
Si zeOr (CSpecArray)));

error .= MenError;
END;
IF error = noErr THEN
BEG N

(* Allocate pixel image; long integer nultiplication avoids overfl ow)
of f BaseAddr := NewPtr (Longl nt(bytesPerRow) * (bound. bottom -
bound. t op)) ;
| F of f BaseAddr <> NIL THEN
W TH aPi xMap””* DO

BEGA N
(* Initialize fields common to i ndexed and direct Pi xMaps*)
baseAddr := of f BaseAddr; {Point to inmge}
rowByt es : = BOR(bytesPer Row, {MSB set for PixMap}
$8000) ;
bounds : = bound; {Use gi ven bounds}
pm/ersi on : = O; {No special stuff}
packType : = O; {Default PICT pack}
packSi ze : = 0; {Al ways zero when in nmenory}
hRes : = kDef aul t Res; {72 DPI default resolution}
VRes : = kDef aul t Res; {72 DPI default resolution}
pi xel Si ze : = depth; {Set nunber of bits/pixel}
pl aneBytes : = O; {Not used}
pnReserved : = 0; {Not used}

(* Initialize fields specific to i ndexed and direct PixMaps*)
| F depth <= 8 THEN

BEG N
(* PixMap is indexed *)
pi xel Type : = 0; {1 ndi cat es i ndexed}
cnpCount := 1; {Have 1 conponent}
cnpSi ze : = dept h; { Conponent si ze=dept h}
pmrabl e : = newCol ors; {Handl e to CLUT}

END

ELSE
BEG N

(* PixMap is direct *)
pi xel Type : = R@&Direct; {Indicates direct}

cmpCount : = 3; {Have 3 conponent s}
| F depth = 16 THEN

cnpSize : =5 {5 bits/conponent}
ELSE

cnpSi ze : = 8§; {8 bits/conponent}

(* Initialize fields of the dumry color table *)
newCol or s, ct Seed : = 3 * aPi xMap™". cnpSi ze;

Principia Off-Screen Graphics Environments Page: 13

newCol or s*. ct Fl ags : = O;
newCol or s*. ctSi ze : = 0;
pmrabl e : = newCol ors;
END;
END
ELSE
error .= Menkrror;
END
ELSE
newCol ors := N L;

(* If no errors occurred, return a handle to the new of f-screen Pi xMap *)
IF error <> noErr THEN
BEG N
| F newCol ors <> NIL THEN
Di sposCTabl e(newCol ors) ;
END;

(* Return the error code *)

Set UpPi xMap : = error;
END;

MPW C Listing 2

#defi ne kDef aul t Res 0x00480000 /* Default resolution is 72 DPl; Fixed type */
CSErr Set UpPi xMap(

short dept h, [* Desired nunber of bits/pixel in off-screen*/
Rect *bounds, /* Boundi ng rectangle of off-screen */
CTabHandl e col ors, /[* Color table to assign to off-screen */
short byt esPer Row, /* Number of bytes per row in the PixMap */
Pi xMapHandl e aPi xMap) /* Handl e to the PixMap being initialized */

{
CTabHandl e newCol ors; [* Color table used for the off-screen PixMap */
Ptr of f BaseAddr; /* Pointer to the off-screen pixel image */
CSErr error; [* Returns error code */

error = noErr_;
newCol ors = nil;
of f BaseAddr = nil;

/[* done the clut if indexed color; allocate a dummy clut if direct col or*/
if (depth <= 8)

newCol ors = col ors;
error = HandToHand((Handl e *)&newCol ors);

}
el se
newCol ors = (CTabHandl e) NewHandl e(si zeof (Col or Table) -
si zeof (CSpecArray));
error = Menkrror();
if (error == noErr)

/* Allocate pixel image; long integer multiplication avoi ds overfl ow*/
of f BaseAddr = NewPtr((unsi gned | ong) byt esPer Row * (bounds->bottom

- bounds->top));
if (offBaseAddr != nil)

/* Initialize fields common to i ndexed and direct PixMaps */
(**aPi xMap) . baseAddr = of fBaseAddr; /* Point to i mage */

Principia Off-Screen Graphics Environments
(**aPi xMap) . rowByt es = byt esPer Row
0x8000;
XxMap) . bounds = *bounds;
xMap) . pnVer si on = 0;
xMap) . packType = O;
xMap) . packSi ze = 0;
xMap) . hRes = kDef aul t Res;
xMap) . vRes = kDef aul t Res;
xMap) . pi xel Si ze dept h;
xMap) . pl aneByt es 0;
xMap) . pnReser ved 0;

(**aPi
(**aPi
(**aPi
(**aPi
(**aPi
(**aPi
(**aPi
(**aPi
(**aPi

Page: 14

MSB set for PixMap */
Use gi ven bounds */
No special stuff */
Default PICT pack */
Al ways zero in nem */
72 DPl default res */
72 DPl default res */
Set # bits/pixel */
Not used */

Not used */

/* Initialize fields specific to indexed and direct Pi xMaps */

if (depth <= 8)

/* PixMap is indexed */
(**aPi xMvap) . pi xel Type 0;
(**aPi xMap) . crpCount = 1;

(**aPi xMap) . cnpSi ze = dept h;
(**aPi xMap) . pmrabl e = newCol ors;
}
el se
{ : .
/* PixMap is direct */
(**aPi xMap) . pi xel Type = RGBD rect;
(**aPi xMap) . crpCount = 3;
if (depth == 16)
(**aPi xMap) . cnpSi ze = 5;
el se
(**aPixth).cnpSize = 8;
(**newCol ors).ctSeed = 3 * (**aP
(**newCol ors).ctFlags = 0;
(**newCol ors).ctSi ze = 0;
(**aPi xMVap) . pnTabl e = newCol ors;
}
el se
error = Menkrror();
}
el se
newCol ors = nil
/* If no errors occurred, return a handle to
if (error !'= noErr)
if (newColors !'=nil)
D sposCTabl e(newCol ors);
}
/[* Return the error code */

return error;

/* Indicates indexed */

/* Have 1 conponent */

[* Conponent size=depth */
/* Handl e to CLUT */

/* Indicates direct */
/* Have 3 conponents */

/* 5 bits/conmponent */

/* 8 bits/conmponent */
xMap) . cnpSi ze;

the new of f-screen Pi xMap */

Set UpPi xMap begins by copying the given color table if an indexed-color graphics environment is being built, or
allocating a dummy color table if a direct-color graphics environment is being built. A copy of the color table is made
because this allows the given color table and the off-screen graphics environment's color table to be manipulated
independently without interfering with each other, and this lets the off-screen graphics environment routines manipulate
the color table without needing to worry about whether the color table is a "clut’ resource or not. The dummy color table is
made so that routines which assume that every PixMap has a color table won't do something catastrophic if they find a NIL
color table. The off-screen pixel image is then allocated as a nonrelocatable block in the application’s heap.

Some of the fields of a Pi XMap have to be initialized differently depending

upon whether the indexed-color model or the

Principia Off-Screen Graphics Environments Page: 15

direct-color model is being used. So, the fields that are the same regardless of the color model that's being used are
assigned first. Then the desired pixel depth is compared to 8. If the depth is less than or equal to 8, then the rest of the
fields are initialized for the indexed-color model. Otherwise, the rest of the fields are initialized for the direct color
model. In the case of the direct-color model, the dummy color table is initialized to have no CSpecAr r ay entries and its
ct Seed field is set to three times the component size. This dummy color table is then installed into the Pi xMap.

Once Set UpPi xMap completes, the Pi xVap of the new C& af Por t is ready to hold an off-screen image. It's not quite
ready to be drawn into with Color QuickDraw though. To do that, the off-screen GDevi ce is still needed; the construction
and initialization of the GDevi ce are covered in the next section.

Building the GDevice

The _QpenCPort routine automatically allocates and initializes a Pi X Map, and the Set UpPi XxMap routine reinitializes
that existing Pi xMap. _QpenCPort doesn't allocate nor initialize a GDevi ce, so one has to be created from scratch.
Pages 21-20 through 21-21 of "The Graphics Devices Manager" chapter of Inside Macintosh Volume VI describe the
_NewCDevi ce routine. This routine seems as though it's the ticket to getting a GDevi ce for off-screen drawing, but it
always allocates the new GDevVi ce in the system heap. That's not so good because if your program unexpectedly quits or if
you just forget to dispose of the GDevi ce before you quit for real, the GDevi ce gets orphaned in the system heap. To
prevent this from happening, NewGDevi ce should be ignored and the off-screen GDevi ce should instead be allocated
and initialized from scratch. What follows is a description of how each field of the GDevi ce structure should be
initialized.

gdRef Numreference number of video driver. Off-screen graphics environments don't need to have video drivers because
there's no video device associated with them, so this field is set to zero.

gdl Dused to identify specific GDevi ce structures from color-search procedures. This isn't necessary for off-screen
drawing, so this is normally set to zero.

gdType type of GDevi ce. This field is set to the constant cl ut Type (equal to zero) for an indexed-color environment
and set to the constant di r ect Type (equal to 2) for a direct-color environment.

gdl Tabl e handle to the inverse table. Initially, this field is set to an arbitrarily small handle. Later, the
_Makel Tabl e routine is used to resize and initialize this handle to a real inverse table.

gdResPr ef inverse-table resolution. When _Makel Tabl e is called by QuickDraw, the value of this field is used as the
inverse-table resolution. Almost all inverse tables have a resolution of 4. There are some cases when a inverse-table
resolution of 5 is useful, particularly when the arithmetic transfer modes are used with _CopyBi t S. See "The GDevice"
earlier in this Note.

gdSear chPr oc pointer to the color-search procedure. If a color-search procedure is needed, this field can be set later
by calling the _AddSear ch routine (see the "Color Manager" chapter of Inside Macintosh Volume V, pages 145 through
147). Usually, this field is just set to NIL and left at that.

gdConpPr oc pointer to the color-complement procedure. If a color-complement procedure is needed, this field can be
set later by calling the _AddConp routine (see the "Color Manager" chapter of Inside Macintosh Volume V, pages 145
through 147). Usually, this field is set to NIL and left at that.

gdFl ags flags indicating certain states of the GDevi ce. This field should initially be set to zeroes. After the GDevi ce
has been built, these flags can be set with the _Set Devi ceAt t r s routine (see the “"Graphics Devices Manager" chapter
of Inside Macintosh Volume VI, pages 21-10 and 21-22).

gdPMap handle to a Pi XMap. A handle to the Pi x Map of the CGr af Port that was created earlier is put into this field.

gdRef Con miscellaneous data. _Cal cCVask and _SeedCFi | | use this field as described on pages 71 through 72 of
Inside Macintosh Volume V. Initially, this field is set to zero.

gdNext GD handle to next GDevi ce in the GDevi ce list. The system maintains a linked list of GDevi ce records in
which there's one GDevi ce for every screen, and the links are kept in this field. Off-screen GDevi ce structures should
never be put into this list, so this field should be set to NIL.

gdRect rectangle of GDevi ce. Strictly speaking, this field is used only for screens, but it should be the same as the

Principia Off-Screen Graphics Environments

bounds rectangle of the off-screen Pi xMVap.

Page: 16

gdMode current video mode. This field is used by video drivers to keep track of the current mode that the video device is

in. For off-screen GDevi ce structures, this field should be set to -1.

gdCC.. These four fields are used only with GDevi ce structures for screens. For off-screen GDevi ce structures, these

fields should be set to zero.

gdReser ved not currently defined. This field is set to zero.

The CreateGDevice routine shown below in Listing 3 allocates and initializes a GDevi ce structure. It takes the initialized

off-screen Pi XxMap in the basePi xMap parameter and returns the initialized GDevi ce in the r et GDevi ce
parameter. If any error occurs, any memory that's allocated is disposed of and the result code is returned as a function

result.

MPW Pascal Listing 3

FUNCTI ON Cr eat e@evi ce(

basePi xMap: Pi xMapHandl e; {Handle to the PixMap to base GDevi ce on}
VAR ret GDevi ce: GDHandl e {Returns a handle to the new GDevi ce}

): CSErr;

CONST

kl TabRes = 4; {lnverse-table resol ution}

VAR
newDevi ce: GDHandl e; {Handl e to the new GDevi ce}
enbryol Tab: | TabHandl e; {Handl e to the enbryonic inverse table}

error: CSErr; {Error code}
BEG N
(* Initialize a few things before we begin *)
error := noErr;

newDevi ce := N L;
enbryol Tab := NL;

(* Allocate nenory for the new GDevice *)
newDevi ce : = GDHandl e(NewHand! e(Si zeOr (Gevi ce)));
| F newbDevi ce <> NIL THEN

BEG N
(* Allocate the enmbryonic inverse table *)
enbryol Tab : = | TabHandl e(NewHandl eC ear (2)) ;
I F enbryol Tab <> NIL THEN
BEG N

(* Initialize the new Gevice fields *)
W TH newDevi ce*” DO

BEA N
gdRef Num : = 0; {Only used for screens}
gdl D : = 0; {Wn't normally use}

| F basePi xMap””. pi xel Si ze <= 8 THEN
gdType : = cl ut Type
ELSE
gdType : = direct Type;
gdl Tabl e : = enbryol Tab;

gdSearchProc := N L;
gdConpProc := NL;

{Dept h<=8; clut device}

{Dept h>8; direct device}
{2-byte handl e for now}
gdResPref := kl TabRes; {Normal inv table res}
{No col or-search proc}
{No conpl enment proc}
gdFl ags : = 0; {WIl set these later}

gdPMap : = basePi xMap;

gdRef Con : = 0;

gdNext GD : = NI L;

gdRect : = basePi xMap"”. bounds;
gdMode : = -1;

{Ref erence our Pi xMap}
{Wbn't nornmally use}
{Not in CDevice list}
{Use Pi xMap di nensi ons}
{For nonscreens}

Principia Off-Screen Graphics Environments

gdCCBytes : = 0; {Only used for screens}
gdCCDept h : = 0; {Only used for screens}
gdCCXData := N L; {Only used for screens}
gdCCXMask := NL; {Only used for screens}
gdReserved : = 0; {Currently unused}

END;

(* Set color-device bit if PixMap isn't black & white *)
| F basePi xMap””. pi xel Size > 1 THEN
Set Devi ceAttri but e(newbDevi ce, gdDevType, true);

(* Set bit to indicate that the Gevice has no video driver *)
Set Devi ceAttri but e(newbDevi ce, noDriver, true);

(* Initialize the inverse table *)
| F basePi xMap””. pi xel Si ze <= 8 THEN
BEG N
Makel Tabl e(basePi xMap””. pnTabl e, newDevi ce””. gdl Tabl e,
newDevi ce™”. gdResPr ef) ;
error := QDError;
END;

END
ELSE
error .= MenError;

END
ELSE
error

MenEr r or;

(* Handl e any errors along the way *)
IF error <> noErr THEN

BEG N

| F enbryol Tab <> NIL THEN

D sposHandl e(Handl e(enbr yol Tab)) ;
| F newbDevice <> NI L THEN

D sposHandl e(Handl e(newbDevi ce)) ;

END
ELSE

ret GDevi ce : = newDevi ce;

(* Return a handle to the new GDevi ce *)
CreateCevice : = error;

END;

MPW C Listing 3

#defi ne kl TabRes 4 /* I nverse-table resol ution */

CSErr O eat eCevi ce(
Pi xMapHandl e basePi xMap, /* Handle to the PixMap to base GDevice on */

GDHandl e
GDHandl e

Rect
CSErr

ret@evice) / Returns a handle to the new Gevice */
newbDevi ce; Handl e to t he new @Devi ce */

devi ceRect ;
error;

Rect angl e of CDevice */
Error code */

/*
| TabHandl e enbryol Tab; /* Handle to the enbryonic inverse table */
/*

[* Initialize a few things before we begin */
error = noErr;

newDevi ce

nil;

enbryol Tab = nil;

/* Allocate nenory for the new GDevice */

Page: 17

Principia Off-Screen Graphics Environments Page: 18

newDevi ce = (GDHandl e) NewHandl e(si zeof (GDevice));
if (newDevice !'=nil)

/* A locate the enbryonic inverse table */
enbryol Tab = (I TabHandl e) NewHandl e ear (2);
if (enbryolTab !'= nil)

{

/* Set rectangle of device to PixMap bounds */
devi ceRect = (**basePi xMap) . bounds;

/* Initialize the new Gevice fields */
(**newDevi ce) . gdRef Num = 0; /* Only used for screens*/
(**newDevi ce).gdl D = 0; [* Wn't normal |y use */
if ((**basePi xMap) . pi xel Si ze <= 8)
I (**newDevi ce) . gdType = cl ut Type; [* Dept h<=8; clut device*/
el se

(**newDevi ce) . ngype = direct Type; /* Depth>8; direct device*/
(**newDevi ce). gdl Tabl e = enbryol Tab; /* 2-byte handl e for now-/
(**newDevi ce) . gdResPref = kl TabRes; /[* Normal inv table res */
(**newDevi ce) . gdSear chProc = nil; /* No col or-search proc */
(**newbDevi ce) . gdCompProc = nil; /* No conpl emrent proc */
(**newDevi ce) . gdFl ags = 0; /* WII set these later */
(**newDevi ce) . gdPVap = basePi xMap; /* Reference our PixMap */

(**newDevi ce) . gdRef Con = 0; /* Wn't normal ly use */
(**newDevi ce) . gdNext GD = ni | ; /[* Not in GDevice list */
(**newDevi ce) . gdRect = devi ceRect; /* Use Pi xMap di mensi ons*/
(**newbDevi ce) . gdMbde = -1; /[* For nonscreens */
(**newDevi ce) . gdCCByt es = O0; /* Only used for screens*/
(**newDevi ce) . gdCCDept h = 0; [* Only used for screens*/
(**newDevi ce) . gdCCXDat a = O; /* Only used for screens*/
(**newDevi ce) . gdCCXMask = 0; [* Only used for screens*/
(**newDevi ce) . gdReserved = 0; /* Qurrently unused */

/* Set color-device bit if PixMap isn't black & white */
if ((**basePi xMap) . pi xel Si ze > 1)
Set Devi ceAttri but e(newbevi ce, gdDevType, true);

/* Set bit to indicate that the GDevice has no video driver */
Set Devi ceAttri but e(newbDevi ce, noDriver, true);

/[* Initialize the inverse table */
i f ((**basePi xMap) . pi xel Si ze <= 8)

Makel Tabl e((**basePi xMap) . pnirabl e, (**newDevi ce). gdl Tabl e,
(**newDevi ce) . gdResPref);
error = QDError();
}

el se
error = Menkrror();
}
el se
error = MenkError();

/* Handl e any errors along the way */
if (error !'= noErr)

if (enbryolTab !'= nil)
D sposHandl e((Handl e) enbryol Tab);
if (newDevice !'=nil)
} D sposHandl e((Handl e) newDevi ce);
el se
*ret GDevi ce = newDevi ce;

Principia Off-Screen Graphics Environments Page: 19

/* Return a handle to the new @evice */
return error;

CreateGDevice begins by allocating the GDevVi ce structure and an embryonic form of the inverse table in the current
heap. The inverse table is allocated as two zero bytes for now; it'll be resized and initialized to be a real inverse table later
in this routine. Then, each of the GDevi ce fields are initialized as described earlier.

After all the fields have been initialized, the gdFl ags field is set through _Set Devi ceAt t ri but e. If the desired pixel
depth is greater than 1, then the gdDev Type bit is set. This indicates that the GDeVvi ce is for a color graphics
environment. This bit should be set even if a gray-scale color table is used for this off-screen graphics environment. The
noDri ver bit is set because this is an off-screen GDeVi ce and so there's no associated video device driver.

Finally, the inverse table is resized and initialized by calling the _Makel Tabl e routine. A handle to the two-byte
embryonic inverse table that was created earlier in CreateGDevice is passed as a parameter, as is a handle to the
off-screen color table and the preferred inverse-table resolution.

All Fall Down

Now that we have a way to create an off-screen graphics environment, there has to be a way to get rid of it too. The

Di sposed f Scr een routine shown in Listing 4 does this. The Cr eat e f Scr een routine returns an off-screen
graphics environment that's represented by a CGr af Port and GDevi ce. The Di sposeC f Scr een routine takes the
off-screen CG af Port and GDevi ce and deallocates all the memory that's associated with them including the

CG af Port and its dependent structures, the GDevi ce, the Pi xVap, the color table, and the inverse table.

MPW Pascal Listing 4

PROCEDURE Di sposeCf f Screen(

doonedPort : CGafPtr; {Pointer to the CGafPort we're getting rid of}
dooned@evi ce: CGDHandl e {Handle to the GDevice we're getting rid of}
)
VAR
currPort: CxafPtr; {Pointer to the current port}
curr @evi ce: GHandl e; {Handle to the current GDevi ce}
BEA N

(* Check to see whether the doomed CGafPort is the current port *)
CetPort (G afPtr(currPort));
IF currPort = doomedPort THEN
BEA N
(* It is; set current port to Wndow Manager CG af Port *)
CGet CWWgr Port (currPort);
Set Port (Graf Ptr(currPort));
END;

(* Check to see whether the doomed CGDevice is the current GDevice *)
curr@evi ce := Cet Gevi ce;
I F curr Gevi ce = doonmedGevi ce THEN

(* It is; set current Gevice to the main screen's Gevice *)

Set Gevi ce(Get Mai nDevi ce) ;

(* Throw everything anay *)
doonedCevi ce®”. gdPVap : = N L;
D spos@evi ce(dooned@evi ce) ;
Di sposPt r (doonedPort”. port Pi xMap~”~. baseAddr) ;
| F doomedPort”. port Pi xMap~”. pnifabl e <> NI L THEN
Di sposCTabl e(doonedPor t ~. port Pi xMap”~. pniTabl e) ;
d oseCPort (dooredPort) ;
Di sposPtr (Ptr(doonedPort));

Principia Off-Screen Graphics Environments Page: 20

END;

MPW C Listing 4

voi d Di sposed f Screen(
CG af Ptr doonedPort , /* Pointer to the CGafPort to be di sposed of */
GDHandl e doonmedCevice) /* Handle to the GDevice to be di sposed of */

{
CGafPtr currPort; /* Pointer to the current port */
GDHandl e curr@evice; /* Handle to the current @evice */
/* Check to see whether the dooned CG afPort is the current port */
CetPort((GafPtr *)&currPort);
if (currPort == doonedPort)
/[* It is; set current port to Wndow Manager CGaf Port */
Get OWWgr Port (&currPort);
SetPort((GafPtr)currPort);
}
[* Check to see whether the dooned GDevice is the current GDevice */
curr @evi ce = Cet Gevi ce();
i f (curr@evice == doomedGevi ce)
/[* It is; set current Gevice to the main screen's GDevice */
Set GDevi ce(Cet Mai nDevi ce());
[* Throw everything anway */
(**doomedCDevi ce) . gdPMap = nil;
Di sposGevi ce(doonedCevi ce);
Di sposPtr((**doonedPort - >port Pi xMVap) . baseAddr);
if ((**doomedPort->portPi xMap) . pnirable !'= nil)
D sposCTabl e((**doomedPort - >port Pi xMap) . pnTrabl e) ;
G oseCPort (doonedPort);
Di sposPtr((Ptr)doonedPort);
}

One mildly tricky aspect of this is that we shouldn't dispose of the current graphics environment. To prevent this, the
current port is retrieved by a call to _Get Por t . If it returns a pointer to the same port that DisposeOffScreen is
disposing, then the current port is set to the Window Manager's C& af Por t . That was an arbitrary choice, but it's the
most neutral. Similarly, the current GDevi ce is retrieved by a call to _Get GDevi ce. If it returns a handle to the same
@Devi ce that DisposeOffScreen is disposing, then the current port is set to the main screen’'s GDevi ce. Again, that's an
arbitrary, neutral choice.

The inverse table, GDevi ce, pixel image, and color table are disposed of. Before disposing of the color table, a check is
first made to see whether it's NIL. That's because it's reasonable, though not normal, for the Pi X Map not to have even a
dummy color table if the direct-color model is being used. Then the C& af Port is closed which deallocates all the pieces
associated with the C& af Por t , including the Pi XxMap. Once this is done, all the structures that were created by calling
Creat ed f Scr een are deallocated.

Back to top

Playing With Blocks

Now that these four routines with two entry points can create and dispose of off-screen graphics environments, how are
they used? There are several phases to using an off-screen graphics environment: creating it, drawing into it, switching
between it and other off-screen and on-screen graphics environments, copying images to and from it, and disposing of it.
Listing 5 shows a routine called ExerciseOffScreen which is a very basic example of all of these phases.

MPW Pascal Listing 5

Principia Off-Screen Graphics Environments Page: 21

PROCEDURE Exer ci seF f Scr een;

CONST
kO f Depth = 8; {Nunber of bits per pixel in off-screen environment}
rGaydut = 1600; {Resource |ID of gray-scale clut}
rColorut = 1601; {Resource ID of full-color clut}
VAR
grayPort: CGafPtr; G aphi cs environnent for gray off screen}

{
grayDevi ce: GDbHandl e; {Col or environnent for gray off screen}
col orPort: CGafPtr; {G aphi cs environment for color off screen}
col or Devi ce: GDHandl e; {Col or environnent for color off screen}
savedPort: GafPtr; {Pointer to the saved graphics environment}

savedDevi ce: GDbHandl e; {Handl e to the saved col or environnent}
of f Col ors: CTabHandl e; {Col ors for off-screen environnents}
of f Rect : Rect ; {Rectangl e of off-screen environnents}
circleRect: Rect; {Rectangl es for circle-draw ng}

count : I nt eger; {Generic counter}

aCol or: R&BCol or; {Col or used for drawi ng off screen}
error: CSErr; {Error return fromoff-screen creation}

BEG N
(* Set up the rectangle for the of f-screen graphics environnents *)
Set Rect (of fRect, 0, 0, 256, 256);

(* CGet the color table for the gray off-screen graphics environnent *)
of fCol ors : = GetCTabl e(rG ayd ut);

(* CGreate the gray of f-screen graphics environnent *)
error := CreateOfScreen(of f Rect, kO fDepth, offColors, grayPort,
grayDevi ce) ;

IF error = noErr THEN
BEG N
(* Get the color table for the col or of f-screen graphics environnent*)
of f Col ors := Get CTabl e(rCol ord ut);

(* Create the color off-screen graphics environnent *)
error := CreateO f Screen(of fRect, kO fDepth, offColors, colorPort,
col or Devi ce) ;

| F error = noErr THEN
BEG N
(* Save the current graphics environnent *)
Cet Port (savedPort);
savedDevi ce : = CGet Gevi ce;

(* Set the current graphics environnent to the gray one *)
Set Port (Graf Ptr(grayPort));
Set GDevi ce(grayDevi ce) ;

(* Draw gray-scale ranp into the gray off-screen environnent*)
FOR count := 0 TO 255 DO

BEG N
aColor.red : = count * 257;
aCol or. green : = aCol or. red;
aCol or. bl ue := aCol or. green;

R@&BFor eCol or (aCol or) ;

MoveTo(0, count);

Li neTo(255, count);
END,

Principia Off-Screen Graphics Environments Page: 22

(* Copy gray ranp into color off-screen colorized with green*)
Set Port (Graf Ptr(col orPort));
Set GDevi ce(col or Devi ce) ;
aCol or.red : = $0000; aCol or.green := $FFFF; aCol or. bl ue : =$0000;
RGBFor eCol or (aCol or) ;
CopyBits(Gaf Ptr(grayPort)”. portBits,

GafPtr(colorPort)”. portBits,

grayPort”. port Rect,

col or Port ”~. port Rect,

srcCopy + ditherCopy, NL);

(* Draw red, green, and blue circles *)

PenSi ze(8, 8);

aCol or.red : = $FFFF; aCol or.green := $0000; aCol or. bl ue : =$0000;
RGBFor eCol or (aCol or) ;

circleRect := colorPort”. portRect;

FranmeOval (circl eRect);

aCol or.red : = $0000; aCol or.green := $FFFF; aCol or. bl ue : =$0000;
RGBFor eCol or (aCol or) ;

I nset Rect (circl eRect, 20, 20);
FraneOval (circl eRect);

aCol or.red : = $0000; aCol or.green :
RGBFor eCol or (aCol or) ;

I nset Rect (circl eRect, 20, 20);
FraneOval (circl eRect);

$0000; aCol or. bl ue : =$FFFF;

(* Copy the color off-screen environment to the current port¥*)
Set Port (savedPort);
Set GDevi ce(savedDevi ce) ;
CopyBits(Gaf Ptr(col orPort)”. portBits, savedPort”. portBits,
col orPort”. port Rect, savedPort”. port Rect,
srcCopy, NL);

(* Dispose of the off-screen graphics environnments *)
D spose f Screen(grayPort, grayDevice);
Di sposed f Screen(col or Port, col orDevi ce);

END;

END;
END;

MPW C Listing 5

#define kOffDepth 8 /* Nunber of bits per pixel in off-screen environnent

*/

#define rGaydut 1600 /* Resource ID of gray-scale clut */
#define rColorClut 1601 /* Resource ID of full-color clut */

voi d Exerci seO f Screen()

{
CG af Ptr

CGDHandl e
CG af Ptr
CGDHandl e
Gaf Ptr
CGDHandl e
CTabHandl e
Rect

Rect
short
RG@EBCol or
CSErr

grayPort ; [* Graphics environnment for gray off screen */
grayDevice; [/* Color environnent for gray off screen */

col or Port; [* Graphics environment for color off screen */
col orDevice; /* Color environment for color off screen */
savedPort ; [* Pointer to the saved graphics environnent */
savedDevice; /* Handle to the saved col or environnment */
of f Col or s; [* Colors for off-screen environnents */

of f Rect ; /* Rectangle of off-screen environnments */
circleRect; /* Rectangles for circle-drawing */

count ; /* Ceneric counter */

aCol or; [* Color used for drawing off screen */

error; [* Error return fromoff-screen creation */

Principia Off-Screen Graphics Environments

[* Set up the rectangle for the of f-screen graphics environnents */
Set Rect (&of f Rect, 0, 0, 256, 256);

[* CGet the color table for the gray off-screen graphics environnment */
of fCol ors = GetCTabl e(rGayd ut);

/* Create the gray off-screen graphics environment */

error = Create f Screen(&of f Rect,

&grayPort, &grayDevice);

if (error == noErr)

{

/* Get the color table for the col or off-screen graphics environment*/

of fCol ors = GetCTabl e(rCol ordl ut);

kX f Dept h,

of f Col or s,

/* Create the col or off-screen graphics environnment */

error = CreateO f Screen(&of f Rect,

&col or Port, &col orDevice);

if (error == noErr)

{

/* Save the current graphics environnent */

Cet Port (&savedPort);
savedDevi ce = CGet GDevi ce();

/* Set the current graphics environnent to the gray one */

SetPort((GrafPtr)grayPort);
Set Gevi ce(grayDevice);

kCf f Dept h,

of f Col or s,

/* Draw gray-scale ranp into the gray of f-screen environnent */
for (count = 0; count < 256; ++count)

aCol or.red = aCol or.green = aCol or. bl ue

R@&3For eCol or (&Col or);
MoveTo(O, count);
Li neTo(255, count);

}

= count

* 257,

/* Copy gray ranmp into color off-screen colorized with green */

SetPort((GafPtr)colorPort);
Set GDevi ce(col orDevi ce);

aCol or.red = 0x0000; aCol or.green = OxFFFF;

RGBFor eCol or (&aCol or);

CopyBits(& (G afPtr)grayPort)->portBits,
& (G afPtr)col orPort)->portBits,

&grayPort - >port Rect ,
&col or Port - >port Rect
srcCopy | ditherCopy, nil

)

/* Draw red, green, and blue circles */

PenSi ze(8, 8);

aCol or.red = OxFFFF; aCol or. green
RGBFor eCol or (&aCol or);

circl eRect = col orPort ->port Rect;
FraneOval (&circl eRect);

aCol or.red = 0x0000; aCol or. green
RGBFor eCol or (&aCol or);

I nset Rect (&circl eRect, 20, 20);
FraneOval (&circl eRect);

aCol or.red = 0x0000; aCol or. green
RGBFor eCol or (&aCol or);

I nset Rect (&circl eRect, 20, 20);
FraneOval (&circl eRect);

0x0000;

OxFFFF;

0x0000;

aCol or

aCol or

aCol or

aCol or

. bl ue

. bl ue

. bl ue

. bl ue

0x0000;

0x0000;

0x0000;

OxFFFF;

Page: 23

Principia Off-Screen Graphics Environments Page: 24

/* Copy the color off-screen environnent to the current port */
Set Port (savedPort);
Set GDevi ce(savedDevi ce);
CopyBits(& (G afPtr)col orPort)->portBits, &avedPort->portBits,
&col or Port ->port Rect, &savedPort->port Rect,
srcCopy, nil);

/* Dispose of the off-screen graphics environnents */
D spose f Screen(grayPort, grayDevice);
Di spose f Screen(col orPort, col orDevice);

Two off-screen graphics environments are created in the same way. A rectangle that's 256 pixels wide by 256 pixels high
and with its top-left coordinate at (0, O) is created in the of f Rect local variable. ' ¢l ut' resources are loaded from
the application's resource fork to use as the color tables of the two off-screen graphics environments; a gray-scale
"clut' in the first case and a full-color ' ¢l ut' in the second case. Then, Cr eat eX f Scr een is called with the
rectangle, color table, and a hard-coded pixel depth of eight bits per pixel.

If O eat eX f Scr een returns NOEr r in both cases, then the current graphics environment is saved so that it can be
restored later. Graphics environments consist of the current port and the current GDevi ce. The current G af Port or
CQG af Port is saved with_Get Port . The current GDevi ce is saved with _Get GDevi ce.

The gray-scale off-screen graphics environment is set as the current graphics environment by calling _Set Port with
its C&G af Port and caling _Set GDevi ce with its GDevi ce. A vertical gray ramp is drawn into this graphics
environment with the usual set of QuickDraw calls. This graphics environment's pixel image is then copied to the
full-color off-screen graphics environment with dithering and colorization with green (dithering requires 32-Bit
QuickDraw and consistent colorization requires system software version 7.0; both of these features are described in
Konstantin Othmer's article "QuickDraw's CopyBits Procedure: Better Than Ever in System 7.0" in Issue 6 of develop).
Before this copy happens, the full-color off-screen graphics environment must be set as the current one. Once this is
done, _CopyBi t s can properly map colors from the gray-scale off-screen graphics environment to the full-color one
which gets a green ramp image.

Red, green, and blue concentric circles are drawn into the full-color off-screen graphics environment over the green
ramp. This image is then copied to the graphics environment that was the current one when Exer ci sef f Scr een was
called. To do this, the saved graphics environment is set as the current one by what should now be the familiar calls to
_Set Port and _Set GDevi ce. The off-screen image is then copied to the saved graphics environment with _CopyBi t s.

Finally, the two off-screen graphics environments are disposed of by calling the Di sposeC f Scr een routine that's
defined in the section "All Fall Down" earlier in this Note.

Back to top

Put That Checkbook Away!

The previous section covered the basics of creating and using off-screen graphics environments. This is good enough for
many, if not most, needs of off-screen drawing. But there are variations to creating and maintaining an off-screen
graphics environment for specific cases. This section discusses a few of the more common cases.

About That Creation Thing . . .

The Cr eat eX f Scr een routine, defined in Listing 1, takes three pieces of information: the boundary rectangle, the
desired pixel depth, and the desired color table. But there's much more to these pieces than ExerciseOffScreen shows. This
section describes these pieces in more detail.

The first parameter to Or eat ef f Scr een is a rectangle which determines the size and coordinate system of the
off-screen graphics environment. Usually, the top-left corner of the rectangle has the coordinate (O, O) because it's
usually easiest to draw everything using coordinates that can also be thought of as the horizontal and vertical distance in
pixels from the top-left corner of the graphics environment. But in some cases, it's more convenient to have the (O, 0)
coordinate somewhere else, and passing Cr eat eX f Scr een a rectangle with a nonzero coordinate in the top-left corner

Principia Off-Screen Graphics Environments Page: 25

is an easy way to O!o t_his. The coordinate system can be translated after the off-screen graphics environment is created by
using the _Set Ori gi n routine that's described on pages 153 through 155 of Inside Macintosh Volume I.

Warning:

As Inside Macintosh Volume |, page 154, notes, the clip region of the port "sticks" to the coordinate system
when you call _Set Ori gi n. If _Set Ori gi n offsets the coordinate system by a large amount, then the clip
region might be moved completely outside of the port's drawing area, and nothing can be drawn into that port.
After calling _Set Ori gi n, you should set the clip region so that you can continue drawing into the port.

The number of bits per pixel implies the maximum number of available colors in a graphics environment, at least roughly
speaking. The relationship between the number of bits per pixel and the number of available colors is discussed in the
"Graphics Overview" chapter of Inside Macintosh Volume VI, pages 16-8 through 16-9.

If an indexed-color graphics environment is being made, then a color table must be passed to Cr eat e} f Scr een. In
ExerciseOffScreen, the color table is retrieved from a 'clut’ resource that's in the application's resource fork with a call
to_Get CTabl e. Because Or eat e(f f Scr een clones this color table, this ' Cl ut"' resource can be purgeable so that it
can be thrown out if its memory is needed for other purposes. _Get CTabl e can also be passed some special constants that
tell it to allocate various system color tables that can also be passed to Or eat e f Scr een. These special constants are
described on page 17-18 of the ""Color QuickDraw" chapter of Inside Macintosh Volume VI. _Get CTabl e allocates
memory for these system color tables, so they should be disposed of after you're done with them.

A color table could also be built from scratch by allocating it with a call to _NewHand| e and then initializing it by hand.
The Col or Tabl e structure is documented on pages 48 through 49 of Inside Macintosh Volume V. Here's what each of the
fields should be set to:

ct Seed identification value. This is an arbitrary value that should be changed any time the contents of the color table
change so that the inverse table can be kept current. When Color QuickDraw draws anything, it compares the ct Seed of
the color table of the Pi XMap of the current GDevi ce against the i TabSeed field of the inverse table of the current
@Devi ce. If they're the same, then Color QuickDraw uses colors according to that inverse table. If they're different, then
Color QuickDraw first rebuilds the inverse table according to the new color table's contents and its | TabSeed is set to
the value of the new color table's Ct Seed; then the rebuilt inverse table is used.

When _CopyBi t s is called with the sr cCopy transfer mode, the Ct Seed fields of the source and destination pixel maps
are compared. If they're the same, then _CopyBi t s simply transfers the source pixels to the destination with no
mapping of colors. If they're different, then _CopyBi t S checks each entry of the color tables to determine whether they
have the same colors for the same pixel values. If they do, then _CopyBi t S again simply transfers the source pixels to
the destination with no mapping of colors. If they don't, then _CopyBi t S maps colors in the source Pi XxMap to the colors
in the current graphics environment according to the inverse table of the current GDevi ce. The ct Seed field of a color
table should be changed whenever its contents are changed so that _CopyBi t S doesn't make the wrong assumptions about
the equality of the source and destination color tables.

You can get a seed value for a new color table by assigning to it the result of the _Get CTSeed routine, documented in the
"Color Manager" chapter of Inside Macintosh Volume V, page 143. If the contents of an existing color table are changed,
then it should be passed to the _CTabChanged routine which assigns a new value to its ct Seed field. If the
_CTabChanged routine isn't available (it's available with 32-Bit QuickDraw and is included with the system beginning
with system software version 7.0), then the ct Seed field should be given a new value with another call to _Get CTSeed.

ct Fl ags indicates the Boolean characteristics of a color table. If the most significant bit of ct Fl ags is clear, then the
val ue field of each Col or Spec entry in the ct Tabl e array is interpreted as the pixel value for the color that's
specified in the r gb field in the same Col or Spec entry. You can build a color table with nonconsecutive pixel values this
way. If this bit is set, then all the val ue fields in the color table are ignored and the index of each Col or Spec record in
the ct Tabl e array is that record’s pixel value. It's your choice whether to clear this bit and set the val ue fields or set
this bit and ignore the val ue fields; traditionally this bit is clear for off-screen color tables.

If the next most significant bit of ct FI ags is set, then the val ue field of each Col or Spec record in the ct Tabl e
array is used by _CopyBi t s as an index into the color palette that's attached to the destination window, and the r gb field
is ignored. This is documented in the "Palette Manager" chapter of Inside Macintosh Volume VI, page 20-17.

The other bits are reserved for future use. If you create a color table from scratch, these other bits must be set to zero. If
you use a color table that's generated by the system, then these bits must be preserved.

Principia Off-Screen Graphics Environments Page: 26

ct Si ze the number of color table entries minus 1. Normally, this field is set to 1, 3, 15, or 255 for 1-, 2-, 4-, and
8-bits per pixel, respectively. In special cases, it's reasonable to have less than the maximum number of entries for the
pixel depth. For example, a color table for an 8-bit per pixel graphics environment could have just 150 entries, in which
case the Ct Si ze field should hold 149. For this case, it's still important to allocate as much space in the color table for
the maximum number of entries for a pixel depth and clear the entries you're not using to zero because some parts of
Color QuickDraw assume the size of a color table based on the pixel depth.

ct Tabl e array of colors and pixel values. This table defines all the available colors in the color table and their pixel
values. The val ue field of each Col or Spec record indicates that color's pixel value if the most significant bit of

ct Fl ags is clear. It's ignored if the most significant bit of ct F| ags is set. The val ue field is used as an index into a
palette if the next most significant bit of Ct Fl ags is set, in which case the r gb field is ignored. See the discussion of the
ct Fl ags field earlier in this Note for more details.

Warning:

Color QuickDraw's text-drawing routines assume that the color table of the destination graphics environment
has the maximum number of colors for the pixel depth of the graphics environment, and that white is the first
entry in the color table and black is the last entry. If these conditions aren't satisfied, then the resulting image
is unpredictable.

The code fragment in Listing 6 shows how to allocate a 256-entry color table from scratch. Color tables have a variable
size, so the _NewHandl e call has to calculate the size of the Col or Tabl e record plus the maximum number of color

table entries for the pixel depth multiplied by the size of a Col or Spec record. KNuntCol or s - 1 is used in the
calculation because the size of the Col or Tabl e record includes the size of one Col or Spec entry in most development
environments.

MPW Pascal Listing 6

CONST
kNunCol ors = 256; {Nunber of color table entries}

VAR
newCol ors: CTabHandl e; {Handle to the new col or tabl e}
i ndex: | nt eger ; {Index into the table of col ors}

(* Allocate nenory for the color table *)
newCol ors : = CTlabHandl e(NewHandl ed ear (Si zeOk (Col or Tabl e) +
Si zeOX (Col or Spec) * (kNunColors - 1)));
I F newCol ors <> NIL THEN
BEG N
(* Initialize the fields *)
newCol or s"”. ct Seed : = Get CTSeed,;
newCol or s*. ctFl ags : = 0;
newCol or s . ct Si ze : = kNuntCol ors - 1;

(* Initialize the table of colors *)
FOR index := 0 TO kNunCol ors - 1 DO

BEG N
newCol or s, ct Tabl e[i ndex] . val ue : = i ndex;
newCol or s, ct Tabl e[i ndex] . rgb.red : = someRedVal ue;
newCol or s**. ct Tabl e[i ndex] . rgb. green : = soneG eenVal ue;
newCol or s, ct Tabl e[i ndex] . rgb. bl ue : = soneBl ueVal ue
END

END

MPW C Listing 6

Principia Off-Screen Graphics Environments Page: 27

#defi ne kNuntCol ors 256 /* Nunber of color table entries */

CTabHandl e newCol ors; /* Handle to the new color table */
short i ndex; /* Index into the table of colors */

/* A locate menory for the color table */

newCol ors = (CTabHandl e) NewHandl ed ear (si zeof (Col orTable) +
si zeof (Col or Spec) * (kNumColors - 1));

if (newColors !'=nil)

{
/* Initialize the fields */
(**newCol ors) . ct Seed = CGet CTSeed();
(**newCol ors).ctFlags = 0;
(**newCol ors).ctSize = kNunCol ors - 1
/* Initialize the table of colors */
for (index = 0; index < kNunCol ors; index++)
{
(**newCol ors) . ct Tabl e[i ndex] . val ue = i ndex;
(**newCol ors) . ct Tabl e[i ndex].rgb.red = soneRedVal ue;
(**newCol ors) . ct Tabl e[i ndex] . rgb. green = sonmeG eenVal ue;
(**newCol ors) . ct Tabl e[i ndex] . rgb. bl ue = soneBl ueVal ue;
}
}

Changing Your Environment

After you create an off-screen graphics environment with certain dimensions, you might later want to change its size,
depth, or color table without creating a completely new graphics environment from scratch and without needing to redraw
the existing image. The Updat eCf f Scr een routine in Listing 7 shows just one way to do this. It takes the same
parameters that Cr eat ef f Scr een (defined in Listing 1) does, but instead of creating a new CG af Port and

GDevi ce, it alters the ones that you pass through the updPort and updGDevi ce parameters. If the newBounds
parameter specifies an empty rectangle, then the existing boundary rectangle for the off-screen graphics environment is
used. Similarly, if newDept h is zero, then the existing depth is used; and if the newCol or s parameter is NIL, then the
existing color table is used. UpdateOffScreen alters the given C& af Port and GDevi ce to the new settings, but it
completely replaces the Pi Xx\Vap. After all the alterations are made, the old Pi XIVAp's image is copied to the new

Pi xMap's image, and then the old Pi XMap and its image are disposed.

MPW Pascal Listing 7

FUNCTI ON Updat eOF f Scr een(
newBounds: Rect; {New boundi ng rectangl e of off-screen}
newDept h: I nt eger; {New nunber of bits per pixel in off-screen}
newCol ors: CTabHandl e; {New color table to assign to off-screen}
updPort : CGafPtr; {Returns a pointer to the updated CG af Port}
updGevi ce: CGDHandl e {Returns a handle to the updated CDevi ce}
): OSErr;

CONST
kMaxRowByt es = $3FFE; {Maxi mum nunber of bytes per row of pixel s}

VAR
newPi xMVap: Pi xMapHandl e; {Handl e to the new of f-screen Pi xMap}
ol dPi xVap: Pi xMapHandl e; {Handle to the ol d off-screen Pi xMap}

bounds: Rect ; {Boundary rectangl e of off-screen}

dept h: I nt eger; {Depth of the off-screen PixMp}

byt esPer Row. | nt eger; {Nunber of bytes per row in the PixMp}
col ors: CTabHandl e; {Col ors for the of f-screen Pi xMap}
savedFor e: RG&BCol or; {Saved foreground col or}

savedBack: RGBCol or; {Saved background col or}

aCol or: RGBCol or; {Used to set foreground and backgroundcol or}

Principia Off-Screen Graphics Environments

gdVer si on: Longl nt ; {Version of QuickDraw currently in use}
savedPort: GafPtr; {Pointer to Graf Port used for save/restore}
savedDevi ce: GDHandl e; {Handl e to GDevi ce used for save/restore}
savedState: SignedByte; {Saved state of color table handl e}
error: CSErr; {Returns error code}

BEG N

(* Initialize a few things before we begin *)
newPi xMap : = N L;
error := noErr;

(* Keep the old bounds rectangle, or get the new one *)
| F Enpt yRect (newBounds) THEN

bounds : = updPort”. port Rect
ELSE

bounds := newBounds;

(* Keep the old depth, or get the old one *)
I F newbDepth = 0 THEN
dept h : = updPort”. port Pi xMap””. pi xel Si ze
ELSE
depth :

newDept h;

(* Get the old clut, or save new clut's state and nake it nonpurgeabl e *)
IF newCol ors = NNL THEN
col ors : = updPort”. port Pi xMap~~. pnirabl e
ELSE
BEG N
savedSt ate : = HGet St at e(Handl e(newCol ors)) ;
HNoPur ge(Handl e(newCol ors)) ;
col ors : = newCol ors;
END;

(* Calculate the nunber of bytes per rowin the off-screen PixMap *)
byt esPer Row : = ((depth * (bounds.right - bounds.left) + 31) DV 32) * 4;

(* CGet the current QuickDraw version *)
error := Cestalt (gestalt Qi ckdrawersion, qgdVersion);
error noErr;

(* Make sure depth is indexed or depth is direct and 32-Bit QD install ed*)
IF (depth = 1) OR (depth = 2) OR (depth = 4) OR (depth = 8) OR
(((depth = 16) OR (depth = 32)) AND (gdVersion >= gestalt32Bit QD))

THEN
BEG N
(* Maxi mum nunber of bytes per row is 16, 382; nake sure within range*)
| F byt esPer Row <= kMaxRowByt es THEN
BEG N
(* Make sure a color table is provided if the depth is indexed*)
| F depth <= 8 THEN
IF colors = NNL THEN
(* Indexed depth and clut is NIL; is paranmeter error *)
error := parankrr;
END
ELSE
(* # of bytes per rowis nore than 16,382; is paranmeter error *)
error := parankrr;
END
ELSE
(* Pixel depth isn't valid; is paraneter error *)
error := parankrr;

(* If sanity checks succeed, attenpt to update the graphics environment *)
IF error = noErr THEN

Page: 28

Principia Off-Screen Graphics Environments Page: 29

BEG N
(* All ocate a new Pi xMap *)
newPi xMap : = Pi xMapHandl e(NewHandl ed ear (Si zeO (Pi xMap))) ;
| F newPi xMap <> NIL THEN
BEGA N
(* Initialize the new Pi xMap for of f-screen drawi ng *)
error := SetUpPi xMap(depth, bounds, col ors, bytesPerRow,

newPi xMap) ;
IF error = noBrr THEN
BEA N

(* Save old PixMap and install new, initialized one *)
ol dPi xMap : = updPort”. port Pi xMap;
updPort~. port Pi xMap : = newPi xMap;

(* Save current port & GDevice; set ones we're updating *)
Get Port (savedPort);

savedDevi ce : = Cet GDevi ce;

Set Port (G af Pt r(updPort));

Set GDevi ce(updCevi ce) ;

(* Set portRect, visRgn, clipRgn to given bounds rect *)
updPort . port Rect := bounds;

Rect Rgn(updPort . vi sRgn, bounds) ;

d i pRect (bounds) ;

(* Update the GDevice *)
| F newPi xMap”~. pi xel Si ze <= 8 THEN
updCGevi ce™”. gdType : = cl ut Type
ELSE
updCevi ce™. gdType : = direct Type;
updGevi ce”. gdPMap : = newPi xMap;
updC@evi ce™”. gdRect : = newPi xMap”~~. bounds;

(* Set color-device bit if PixMap isn't black & white*)
| F newPi xMap~~. pi xel Si ze > 1 THEN

Set Devi ceAttri but e(updGevi ce, gdDevType, TRUE);
el se

Set Devi ceAttri but e(upd@evi ce, gdDevType, FALSE);

(* Save current fore/back colors and set to B&W *)
Cet For eCol or (savedFor e) ;

Get BackCol or (savedBack) ;

aColor.red := 0; aColor.green := 0; aColor.blue := 0;
RGBFor eCol or (aCol or);

aCol or.red : = $FFFF;

aCol or. green : = $FFFF;

aCol or. bl ue : = $FFFF;

RGBBackCol or (aCol or) ;

(* Copy old inmage to the new graphics environment *)

HLock(Handl e(ol dPi xMap)) ;

CopyBi t s(Bi t MapPtr (ol dPi xMap”) ”~, Graf Ptr (updPort)”. portBits,
ol dPi xMap””. bounds, updPort”. port Rect,
srcCopy, NL);

HUnl ock(Handl e(ol dPi xMap)) ;

(* Restore the foreground/background col or *)
R@&BFor eCol or (savedFore) ;
RGBBackCol or (savedBack) ;

(* Restore the saved port *)
Set Port (savedPort);
Set GDevi ce(savedDevi ce) ;

Principia Off-Screen Graphics Environments Page: 30

(* Get rid of the old PixMap and its dependents *)
Di sposPtr (ol dPi xMap~”™. baseAddr) ;

D sposeCTabl e(ol dPi xMap”~”. pnTabl e) ;

Di sposHandl e(Handl e(ol dPi xMap)) ;

END;
END
ELSE
error := MenError;
END;

(* Restore the given state of the color table *)
IF colors <> NIL THEN
HSet St at e(Handl e(col ors), savedState);

(* One Last Look Around The House Before W Co... *)
F error <> noErr THEN
BEG N
| F newPi xMap <> NIL THEN
BEGA N
| F newPi xMap””. pnifabl e <> NI L THEN
Di sposCTabl e(newPi xVap””. pnirabl e) ;
| F newPi xMap”". baseAddr <> NI L THEN
Di sposPt r (newPi xVap””. baseAddr) ;
Di sposHandl e(Handl e(newPi xMVap)) ;
END;
END;
Updat e f Screen : = error;
END;

MPW C Listing 7

#def i ne kMaxRowByt es Ox3FFE /* Maxi mum nunber of bytes in a row of pixels */
CSErr Updat ek f Scr een(

Rect *newBounds, /* New bounding rectangl e of off-screen */

short newbDept h, /* New nunber of bits per pixel in off-screen */
CTabHandl e newCol ors, /* New color table to assign to off-screen */
CGafPtr updPort /* Returns a pointer to the updated CG af Port */

GbHandl e updGevice) /* Returns a handle to the updated GDevice */

Pi xMapHandl e newPi xMap; /* Handl e to the new of f-screen Pi xMap */
Pi xMapHand! e ol dPi xMap; /* Handle to the old off-screen PixMap */

Rect bounds; /* Boundary rectangle of off-screen */

short dept h; [* Depth of the off-screen PixMap */

short byt esPer Row, /* Number of bytes per row in the PixMap */
CTabHandl e col ors; [* Colors for the off-screen PixMap */

RGBCol or savedFor e; /* Saved foreground col or */

RGEBCol or savedBack; [* Saved background col or */

RGBCol or aCol or; /* Used to set foreground and background col or*/
| ong gdVer si on; [* Version of QuickDraw currently in use */
GafPtr savedPort ; /* Pointer to G afPPort used for save/restore */
GDHandl e savedDevi ce; /* Handl e to (@evice used for save/restore */
Si gnedByte savedState; [/* Saved state of color table handle */

CSErr error; [* Returns error code */

[* Initialize a few things before we begin */
newPi xMap = nil;
error = noErr;

/* Keep the old bounds rectangle, or get the new one */
i f (EnptyRect(newBounds))
bounds = updPort->port Rect ;

Principia Off-Screen Graphics Environments Page: 31

el se
bounds = *newBounds;

/* Keep the old depth, or get the old one */
if (newDepth ==

dept h = (**updPort - >port Pi xMVap) . pi xel Si ze;
el se

dept h = newbDept h;

/[* CGet the old clut, or save new clut's state and make it nonpurgeabl e */
if (newColors == nil)

col ors = (**updPort->port Pi xMap) . pnirabl e;
el se

savedState = HCet State((Handl e) newCol ors);
HNoPur ge((Handl e) newCol ors);
col ors = newCol ors;

}

[* Cal cul ate the nunber of bytes per row in the of f-screen PixMap */
byt esPer Row = ((depth * (bounds.right - bounds.left) + 31) >> 5)<< 2;

[* Get the current QuickDraw version */
(voi d) Gestal t (gestalt Qi ckdrawversi on, &qgdVersion);

/* Make sure depth is indexed or depth is direct and 32-Bit QD installed*/
if (depth == 1 || depth == 2 || depth == 4 || depth == 8 ||
((depth == 16 || depth == 32) && qdVersion >=gestal t 32Bi t QD))

[* Maxi mum nunber of bytes per rowis 16,382; make sure w thin range*/
i f (bytesPerRow <= kiaxRowByt es)

/* Make sure a color table is provided if the depth is indexed */
if (depth <= 8)
if (colors == nil)
/* I ndexed depth and clut is NIL; is parameter error */
error = parankrr;
}
el se
/* # of bytes per rowis nore than 16,382; is parameter error */
error = parankrr;

el se
/* Pixel depth isn't valid; is paraneter error */
error = parankrr;

[* If sanity checks succeed, attenpt to create a new graphi cs environment*/
if (error == noErr)
{
/* Allocate a new Pi xMap */
newPi xMap = (Pi xMapHandl e) NewHandl ed ear (si zeof (Pi xMap));
if (newPixMap !'= nil)
{
/* Initialize the new PixMap for off-screen draw ng */
error = Set UpPi xMap(dept h, &bounds, col ors, bytesPer Row, newPi xMap);
if (error == noErr)
{
/* Save the old PixMap and install the new, initialized one*/
ol dPi xMap = updPort - >port Pi xMVap;
updPort - >port Pi xMap = newPi xMap;

/[* Save current port & GDevice and set ones we're updating*/
Cet Port (&savedPort);
savedDevi ce = Get Gevi ce();

Principia Off-Screen Graphics Environments

}
}

el se

SetPort((GafPtr)updPort);
Set Gevi ce(updCGevice);

/* Set portRect, visRgn, and clipRgn to the gi ven bounds
updPort - >port Rect = bounds;

Rect Rgn(updPort - >vi sRgn, &bounds);

d i pRect (&bounds);

/* Update the GDevice */
if ((**newPi xMap) . pi xel Si ze <= 8)
I (**upd@evi ce) . gdType = cl ut Type;
el se
(**updQ@evi ce) . gdType = direct Type;
(**updCevi ce) . gdPMap = newPi xMap;
(**updCGevi ce) . gdRect (**newPi xMap) . bounds;

/[* Set color-device bit if PixMap isn't black & white */
if ((**newPi xMap) . pi xel Si ze > 1)

Set Devi ceAttri but e(updCGevi ce, gdDevType, true);
el se

Set Devi ceAttri but e(updCGevi ce, gdDevType, false);

rect*/

/* Save current foreground/background colors and set to B&W/

Cet For eCol or (&savedFore);

Cet BackCol or (&savedBack);

aCol or.red = aCol or.green = aCol or. blue = 0;
R@&BFor eCol or (&aCol or);
aCol or.red = aCol or. green
R@GBackCol or (&aCol or);

aCol or. bl ue = OxFFFF;

/* Copy old image to the new graphics environnent */
HLock((Handl e)ol dPi xMap) ;

CopyBits((BitMipPtr)*ol dPi xMap, & (G afPtr)updPort)->portBits,

& **ol dPi xMap) . bounds, &updPort - >port Rect,
srcCopy, nil);
Hunl ock((Handl e) ol dPi xMap) ;

/* Restore the foreground/ background col or */
RGBFor eCol or (&savedFore);
R@&BackCol or (&savedBack) ;

/* Restore the saved port */
Set Port (savedPort);
Set Gevi ce(savedDevi ce);

[* Get rid of the old PixMap and its dependents */
Di sposPtr((**ol dPi xMap) . baseAddr);

Di sposeCTabl e((**ol dPi xMap) . pnTabl e) ;

D sposHandl e((Handl e) ol dPi xMap) ;

error = MenkError();

}

/* Restore the given state of the color table */
if (colors !'=nil)
HSet St at e((Handl e) col ors, savedState);

[* One Last Look Around The House Before W Go... */

if (error

I'= noErr)

[* Some error occurred; dispose of everything we allocated */
if (newPixMap !'= nil)

Page: 32

Principia Off-Screen Graphics Environments Page: 33

if ((**newPi xMap) . pmrabl e)

Di sposCTabl e((**newPi xMap) . pnirabl e) ;
if ((**newPi xMap) . baseAddr)

D sposPtr ((**newPi xMap) . baseAddr);
Di sposHandl e((Handl e) newPi xMap) ;

}

return error;

Updat e f Scr een begins by checking the boundary rectangle, depth, or color table for emptiness, zero, or NIL,
respectively. If any these satisfy that condition, then the existing characteristic is used. Next, the same sanity check that
Creat e f Scr een uses is done. If this sanity check succeeds, then a new Pi XVap is allocated, and then it's initialized
by the Set UpPi xMap routine that's given in Listing 2 which gives the new Pi X Map a new pixel image and its own copy of
the color table. This new Pi XMap is installed into the CG af Por t after saving the reference to the old Pi XxMap. Then,
the port Rect, vi sRgn, andcl i pRgn of the CG af Por t are set to the new boundary rectangle, as is the gdRect of
the GDevi ce. The gdType of the GDevi ce is set either for the indexed-color or direct-color model, the gdPMap is set
to the new Pi XxMap, and the device attributes are set according to the pixel depth. Details about the settings for the

CG af Port and GDevi ce are in "Building the CGrafPort™ and "Building the GDevice," respectively, earlier in this Note.

At this point, the off-screen graphics environment is ready with its new characteristics, but it has garbage for an image
because nothing has been drawn into it yet. The old Pi XMap, pixel image, and color table are still around, so _CopyBi t s
transfers the old image into the altered graphics environment. _CopyBi t s handles the mapping from the old image's
characteristics to the new characteristics, so the altered graphics environment gets the best possible representation of the
old image according to its new characteristics.

Changing the Off-Screen Color Table

Sometimes, it's useful to change some or all of the colors in an off-screen color table, or to replace the off-screen color
table with another one, so that the existing image in an indexed-color graphics environment appears with new colors. For
example, if you had an off-screen image of a blue car and wanted to see what it looked like in green, you could change all of
the shades of blue in the off-screen color table to green, and then _CopyBi t S the image to the screen. Notice that this is
different from calling the Updat e f Scr een routine in the previous section with a different color table. That routine
tries to reproduce the colors from the original image as best it can in the new set of colors. This section discusses the case
in which you want the image's colors to change.

The most obvious part of doing this is simply to get the color table from the off-screen pixel map's pnTabl e field and
modify the entries, or to dispose of the off-screen graphics environment's current color table and assign the new one to it.
There's one more step to complete the process though. The discussion about GDevi ce records in "The Building Blocks" in
this Note discusses inverse tables and how they go hand-in-hand with color tables. If you alter or replace the color table,
you have to make sure that the inverse table of the off-screen drawing environment is rebuilt according to the new colors
because Color QuickDraw uses that inverse table to know what pixel values to use for the specified color. You don't have to
rebuild the inverse table explicitly as long as you tell Color QuickDraw that the color table changed. To do this, all you
have to do is make sure that the Ct Seed of the changed or altered color table is set to a new value. And to do this, you can
simply call _CTabChanged, which is documented on page 17-26 of the "Color QuickDraw™ chapter of Inside Macintosh
Volume VI. _CTabChanged is available beginning with 32-Bit QuickDraw and it's available in system software version
7.0. If this routine isn't available, then you can still tell Color QuickDraw that the color table has been changed by calling
_ Cet CTSeed and assigning its result directly to your new color table's ct Seed field.

The next time you draw into this off-screen drawing environment, Color QuickDraw checks the ct Seed of the
environment's color table against the i TabSeed of the inverse table of the environment's GDevi ce. Because you changed
the ct Seed of the color table either through _CTabChanged or _CGet CTSeed, these two seeds are different so Color
QuickDraw automatically rebuilds the inverse table of the current GDevi ce and then it copies the ct Seed of the color
table to the | TabSeed of the rebuilt inverse table. Then drawing continues normally.

Follow That Screen!

One common need of off-screen graphics environments is that they have a depth and color table that matches a screen. The
Cr eat e f Scr een routine requires a color table for indexed-color environments, and a pixel depth. Because there can

Principia Off-Screen Graphics Environments Page: 34

be more than one screen attached to a Macintosh system, you have to decide which screen’s depth and color table you should
use. Typically, the depth and color table of the deepest screen that contains the area that you're interested in (probably the
area of a window) is used. Another option is to use the depth and color table of the screen that has the largest area of
intersection with the area that you're interested in. To find the depth and color table of the screen on which you want to
base an off-screen graphics environment, you must use the list of graphics devices for all screens which is maintained by
the system. Every GDeVi ce record for a screen has a handle to that screen's Pi XMap, and you can find the screen's depth

and color table there.

Listing 8 shows a routine called Cr eat eScr eenCf f Scr een which creates an off-screen graphics environment that has
the depth and color table of a selected screen. The first parameter, bounds, specifies the rectangular part of the screen
area in which you're interested in global coordinates. The scr een(Qpt i on parameter specifies how you want the screen
to be chosen. If you pass kDeepest Scr een in this parameter, O eat eScr eenOf f Scr een creates the new off-screen
graphics environment with the depth and color table of the deepest screen that intersects the bounds rectangle. If you
instead pass kLar gest Scr eenAr ea, then the new off-screen graphics environment is created with the depth and color
table of the screen with the largest area of intersection with the bounds rectangle.

MPW Pascal Listing 8

TYPE
ScreenOpt = (kDeepest Screen, kLargest AreaScreen) ;

FUNCTI ON Cr eat eScr eenCf f Scr een(

bounds: Rect ; {d obal rectangle of part of screen to save}
screen(pti on: ScreenOpt; {Use deepest or largest intersection area screen?}
VAR ret Port: CGafPtr; {Returns a pointer to the new CG af Port}
VAR ret GDevice: GHandle {Returns a handle to the new GDevi ce}
): OSErr;
VAR
base@evi ce: CGbHandl e; {CGDevi ce to base of f-screen on}
aCevi ce: GbHandl e; {Handl e to each GDevice in the Gevice list}
basePi xMVap: Pi xMapHandl e; {baseGevi ce's Pi xMap}
maxAr ea: Longl nt; {Largest intersection area found}
ar ea: Longl nt ; {Area of rectangle of intersection}
commonRect : Rect ; {Rectangl e of intersection}
nor mal Bounds: Rect; {bounds rectangle normalized to (0, 0)}
error: | nt eger; {Error code}
BEG N
error := noErr;

(* Dfferent screen options require different algorithnms *)
| F screenOpti on = kDeepest Screen THEN
(* Graphics Devices Manager tells us the deepest intersecting screen *)
base@evi ce : = CGet MaxDevi ce(bounds)
ELSE | F screenQption = kLar gest AreaScreen THEN
BEG N
(* Get a handle to the first Gevice in the Gevice |ist *)
aCevi ce : = GetDevi celi st;

(* Keep looping until all GDevices have been checked *)
maxArea : = 0;
base@evice := NL;
VWH LE aGDevice <> NIL DO
BEGA N
(* Check to see whet her screen rectangl e and bounds intersect?*)
| F Sect Rect (aCGevi ce™”. gdRect, bounds, commonRect) THEN

BEA N
(* Calculate area of intersection *)
area : = Longl nt (commonRect . bottom - conmonRect.top) *

Longl nt (commonRect . ri ght - comonRect. | eft);

(* Keep track of largest area of intersection so far *)

Principia Off-Screen Graphics Environments Page: 35

| F area > maxArea THEN
BEG N
maxArea .= area;
base@evi ce : = aCDevi ce;
END;
END;

(* G to the next Gevice in the Gevice list *)
aCGevi ce : = CGet Next Devi ce(aGevi ce) ;

END;
END
ELSE
error := parantrr;

(* If no screens intersect the bounds, baseDevice is N L *)
| F (base@evice <> NIL) AND (error = noErr) THEN

BEG N
(* Normalize the bounds rectangle *)
nor mal Bounds : = bounds;

O f set Rect (nor mal Bounds, -nor nmal Bounds. | eft, -normal Bounds. t op);

(* Oreate off-screen graphics environment w depth, clut of screen*)
basePi xMap : = baseCDevi ce™”. gdPMap;
error := CreatedfScreen(nornal Bounds, basePi xMap””. pi xel Si ze,
basePi xMap””. pnirabl e, retPort, ret@evice);
END;
Creat eScreenCf f Screen : = error;
END,;

MPW C Listing 8

enum

kDeepest Scr een,
kLar gest Ar eaScr een,

b

CSErr CreateScreenO f Screen(
Rect *bounds, /[* A obal rectangle of part of screen to save */
short screenQption, /* Use deepest or |argest intersection area screen*/
CGafPtr *retPort, /* Returns a pointer to the new C& af Port */
GDHandl e *retGevice) /[/* Returns a handle to the new Gevice */

{
GDHandl e base@evice; [* @Device to base off-screen on */
GDHandl e aCGevi ce; /* Handl e to each GDevice in the Gevice |ist*/
Pi xMapHandl e basePi xMap; [* base@evice's PixMap */
| ong maxAr ea; [* Largest intersection area found */
| ong ar ea; /* Area of rectangle of intersection */
Rect comonRect ; /* Rectangle of intersection */
Rect nor mal Bounds; /* bounds rectangle normalized to (0, 0) */
short error; /* Error code */

error = noErr;

/[* Different screen options require different algorithnms */

if (screenQoption == kDeepest Scr een)
/* Gaphics Devices Manager tells us the deepest intersecting screen */
baseCevi ce = Get MaxDevi ce(bounds);

else if (screenQpti on == kLar gest Ar eaScr een)

/[* Get a handle to the first Gevice in the GDevice list */
a@evi ce = CetDevi celList();

Principia Off-Screen Graphics Environments Page: 36

/* Keep |l ooping until all GDevices have been checked */
maxArea = 0;

baseCGevice = nil;

while (aCGevice !=nil)

{
[* Check to see whether screen rectangl e and bounds intersect */
if (SectRect(& **aCDevice).gdRect, bounds, &conmmonRect))
/* Calcul ate area of intersection */
area = (|l ong)(commonRect. bottom - comonRect.top) *
(1 ong) (commonRect . right - commonRect.left);
/* Keep track of |argest area of intersection found so far */
if (area > maxArea)
maxArea = area;
base@evi ce = aGevi ce;
}
}
/* Go to the next Gevice in the Gevice list */
a@evi ce = Cet Next Devi ce(aGevi ce);
}
}
el se

error = parankrr;

[* If no screens intersect the bounds, baseDevice is NL */
if (base@evice != nil &% error == noErr)

{

/* Normalize the bounds rectangle */
nor mal Bounds = *bounds;
O f set Rect (&nor mal Bounds, -nor mal Bounds. | eft, -nornal Bounds.top);

[* Create off-screen graphics environnment w depth, clut of screen */

basePi xMap = (**baseCevi ce) . gdPVap;

error = CreateC f Screen(&nor mal Bounds, (**basePi xMap) . pi xel Si ze,
(**basePi xMap) . pnTabl e, retPort, retGevice);

}

return error;

Finding the deepest screen that intersects an on-screen area is trivially easy because there's a Graphics Devices Manager
routine that finds it called _CGet MaxDevi ce which is documented on page 21-22 of the "Graphics Devices Manager"
chapter of Inside Macintosh Volume VI. The rectangle in global coordinates of the screen area you're interested in is
passed to _CGet Max Devi ce, and it returns a handle to the deepest screen that intersects that area, even if the area of
intersection is as small as one pixel. If no screens intersect that area, then _Get MaxDevi ce returns NIL.

Finding the GDevi ce of the screen that has the maximum area of intersection with the screen area you're interested in
isn't quite so easy because there's no single Graphics Devices Manager routine to find this GDevi ce; you have to search
the GDevi ce list yourself. You can get a handle to the first GDevi ce in the list by calling _Get Devi ceLi st , and you
can get a handle to each successive GDevi ce by calling _Get Next Devi ce. Get Devi celi st is documented on pages
21-21 through 21-22 of the "Graphics Devices Manager" chapter of Inside Macintosh Volume VI, and

_ Cet Next Devi ce is documented on page 21-22 of the same chapter. For each GDevi ce in the list, the area of
intersection between the bounds and the gdRect of the GDevi ce is calculated. If the calculated area is the largest area
of intersection found so far, then that area and the GDevi ce of that screen are remembered.

Once a winning GDevi ce has been chosen, either by being the deepest intersecting GDevi ce or the GDevi ce with the
largest intersecting area, then Cr eat ef f Scr een routine is called with the pixel depth and color table of the Pi x Vap
of the GDevi ce, and the bounds rectangle normalized so that its top-left coordinate has the coordinates (O, O).

Principia Off-Screen Graphics Environments Page: 37

Creat ed f Scr een returns with the new off-screen graphics environment, and CreateScreenOffScreen returns this to
the caller.

Choosing Your Off-Screen Memory

The Cr eat eX f Scr een routine in Listing 1 creates an off-screen graphics environment with its pixel image allocated
as a nonrelocatable block in the application's heap. But this isn't the only way that the pixel image can be allocated. Pixel
images can be big, and big blocks of nonrelocatable memory in your heap can be expensive in terms of performance, and
they can cause a bad case of heap fragmentation. Why not put the pixel image in a relocatable block of memory instead? If
there isn't much free memory in your heap and if MultiFinder or system software version 7.0 is running, there's memory
that's not being used by any open applications, called temporary memory (formerly called MultiFinder temporary
memory). Why not use this area of memory for the pixel image? Some people have NuBus[TM] cards with plenty of
memory on them. Why not move the pixel image out of the heaps altogether and instead use NuBus memory for the pixel
image? All of these things can be done with simple modifications to what's been discussed in this Note, and these
modifications are discussed in the next few paragraphs.

How can pixel images be relocatable? After all, pixel images are referred to only by the baseAddr field of a Pi xMap,
and the baseAddr is a pointer, not a handle. It's true that while QuickDraw is being used to draw into a graphics
environment, the pixel image had better not move or else QuickDraw will start drawing over the area of memory that the
pixel image used to be rather than where it is. But if QuickDraw isn't doing anything with the graphics environment, then
it doesn't care what happens to the pixel image as long as the baseAddr points to it once QuickDraw starts drawing into
the graphics environment. This implies a strategy: allocate the pixel image as a relocatable block and let it float in the
heap; when QuickDraw is about to to draw into the graphics environment or to copy from it, lock the pixel image and copy
its master pointer into the baseAddr field of the Pi XMap; when the drawing or copying is finished, unlock the pixel
image. There are many ways to implement this, and Listing 9 shows a code fragment for one very simple method.

MPW Pascal Listing 9

(* Allocate the pixel image; use long nultiplication to avoid overfl ow)
of f BaseAddr := NewHandl e(Longl nt (byt esPer Row) * (bounds”. bottom -
bounds”. top));
| F of f BaseAddr <> NIL THEN
BEG N
(* Initialize fields common to i ndexed and direct Pi xMaps *)
aPi xMap"”. baseAddr := Ptr(of fBaseAddr); (* Reference the inage *)

PROCEDURE LockCr f Screen(
of f ScreenPort: CGafPtr {Ptr to off-screen CG af Port}
)

VAR
of f | mageHnd: Handl e; {Handl e to the of f-screen pixel inage}

BEG N
(* Get the saved handle to the of f-screen pixel inmge *)
of f I mmgeHnd : = Handl e(of f Scr eenPort ~. port Pi xMap”*”. baseAddr) ;

(* Lock the handle to the pixel inage *)
HLock(of f | mrageHnd) ;

(* Put pixel inmage master pointer into baseAddr so that QuickDraw can use it¥*)
of f Scr eenPor t ~. port Pi xMap””. baseAddr : = of f | mageHnd”;
END;

PROCEDURE Unl ockOf f Scr een(
of f ScreenPort: CGafPtr {Ptr to off-screen port}

),
VAR

Principia Off-Screen Graphics Environments Page: 38

of fl magePtr: Ptr; {Pointer to the off-screen pixel inmge}
of f I mageHnd: Handl e; {Handl e to the off-screen pixel inage}

BEA N
(* Get the handle to the off-screen pixel inage *)
of f I magePtr := of f ScreenPort”. port Pi xMap~”*. baseAddr ;
of f I mageHnd : = Recover Handl e(of f | magePtr) ;

(* Unl ock the handl e *)
HUnl ock(of f | mageHnd) ;

(* Save the handl e back in the baseAddr eld)
of f ScreenPort /. port Pi xMap~”. baseAddr : = r (of f I mageHnd) ;
END,;

MPW C Listing 9

[* Allocate the pixel inage; use long multiplication to avoid overfl owt/
of f BaseAddr = NewHandl e((unsi gned | ong) byt esPer Row
* (bounds->bottom - bounds->top));
if (of fBaseAddr != nil)
{
[* Initialize fields conmon to i ndexed and direct PixMaps */
(**aPi xMVap) . baseAddr = (Ptr)of f BaseAddr; /* Reference the inmage*/

voi d LockOF f Screen(

{

CGafPtr offScreenPort) /* Pointer to the off-screen CG af Port */
Handl e of fl mageHnd; /* Handle to the of f-screen pixel inmage */

/* Get the saved handle to the off-screen pixel image */
of f I mageHnd = (Handl e) (**of f Scr eenPort - >port Pi xMap) . baseAddr ;

/* Lock the handle to the pixel inmge */
HLock(of fl mageHnd);

/[* Put pixel inmage master pointer into baseAddr so that QuickDraw can use it */
(**of f ScreenPort - >port Pi xMap) . baseAddr = *of f | mageHnd;

voi d Unl ockO f Scr een(

{

CGafPtr offScreenPort) /* Pointer to the off-screen CGaf Port */

Ptr of flmagePtr; /* Pointer to the off-screen pixel inage */
Handl e of fl mageHnd; /* Handl e to the of f-screen pixel image */

[* CGet the handle to the of f-screen pixel image */
of f | magePt r (**of f ScreenPort - >port Pi xMap) . baseAddr ;
of f | mageHnd Recover Handl e(of fl magePtr);

/* Unl ock the handl e */
HUnl ock(of f I mageHnd) ;

/* Save the handl e back in the baseAddr field */
(**of f ScreenPort - >port Pi xMap) . baseAddr = (Ptr) of f | mageHnd;

Principia Off-Screen Graphics Environments Page: 39

Listing 9 starts with a code fragment from the Set UpPi X Map routine that's modified so that it allocates a new handle for
the off-screen pixel image instead of a new pointer. This handle is saved in the baseAddr field for now. When you're
about to draw into the off-screen graphics environment or to copy from it, the LockOffScreen routine in Listing 9 should
be called with a pointer to the off-screen graphics environment's C& af Port as the parameter. It takes the handle to the
pixel image from the baseAddr field of the off-screen graphics environment's Pi X Map and passes it to _HLocKk which
makes sure the pixel image can't move in the heap. Then, the pixel image's handle is dereferenced to get the master pointer
to the pixel image, and this master pointer is copied into the baseAddr field. Now, QuickDraw can draw into or copy from
the off-screen graphics environment.

When you're finished drawing into the off-screen graphics environment, the pixel image should be unlocked, and the
UnlockOffScreen routine in Listing 9 does this. The baseAddr field of the Pi X Map holds the pixel image's master
pointer, so this is passed to _Recover Handl e to get the pixel image's handle. This handle is passed to _HUnI ock to let
the pixel image float in the heap again, and then this handle is saved in the baseAddr field.

One potentially useful addition to the LockOffScreen routine would be a call to _MoveHH just before the call to _HLock.
This helps reduce heap fragmentation while the pixel image is locked by moving it up as high in the heap as possible before
locking it, allowing the other relocatable blocks to move without tripping over it. You have to be careful with _NMoveHH
though because it not only moves the handle as high in the heap as possible, it moves other relocatable blocks out of the top
of the heap to make room for the handle. This could involve moving huge amounts of memory, and it's not unusual for
_MoveHH to take several seconds to do this.

How do you make an off-screen graphics environment that uses temporary memory for the pixel image? Temporary
memory is allocated as handles, so there's almost no difference between using temporary memory and using relocatable
blocks in your own heap in the way that Listing 9 shows. All you have to do is replace the calls to _NewHandl e, HLock,
and _HUnl ock with calls to _TenpNewHand| e, _TenpHLock, and _TenpHuUnl ock. If temporary memory handles are
real, then you don't even have to replace the _HLock and _HUnl ock calls--they work properly with temporary memory
handles that are real.You can tell whether temporary memory handles are real or not by calling _CGest al t with the

gest al t OSAt t r selector. If the gest al t Real TenpMenor y bit is set, then all temporary memory handles are real.
See the sections "About Temporary Memory" and "Using Temporary Memory" of Inside Macintosh Volume VI, pages

28-33 through 28-40.

How do you make an off-screen graphics environment that stores the pixel image on a NuBus memory card? The Macintosh
Memory Manager doesn't keep track of heaps on NuBus memory cards so it can't be used to allocate memory on those cards,
but if applications can use that card's memory at will, then an application can set up the off-screen graphics environment
with its pixel image in the NuBus card's memory simply by setting the address of the card's memory in the baseAddr
field of the off-screen graphics environment's Pi X VAp instead of allocating anything.

If your NuBus memory card doesn't require 32-bit addressing mode to access its memory, then setting the baseAddr to
the address of the NuBus card's memory is all you have to do. Some NuBus memory cards require its memory to be accessed
in 32-bit addressing mode. Without 32-Bit QuickDraw, these memory cards can't be used for storing the pixel image of an
off-screen graphics environment because Color QuickDraw without 32-Bit QuickDraw always reads and writes pixel
images in 24-bit addressing mode regardless of whether the pixel image is in main memory, on a NuBus video card, or on
a NuBus memory card. With 32-Bit QuickDraw, Color QuickDraw automatically switches to 32-bit addressing mode
before reading or writing a pixel image that's on a video card. It won't know to switch to 32-bit addressing mode if your
off-screen graphics environment uses a pixel image on a NuBus memory card that's not a video card, but you can tell it to
make this switch by setting bit 2 of the pnVer si on field of the Pi XMap for the off-screen graphics environment. This is
normally done by logically ORing the pnVer si on field with the predefined constant baseAddr 32. See "About 32-Bit
Addressing" in Issue 6 of develop , page 36, for more details about how QuickDraw handles addressing modes.

Back to top

The GWorld Factor

In May 1989, 32-Bit QuickDraw was introduced as an extension to the system. While it had a lot of new features, the
GWr | d mechanism was the one that made the big news. G\or | ds are off-screen graphics environments that you can
have the system put together in one call. There's no need for routines like Cr eat ef f Scr een, Set UpPi xMap, or

Cr eat e@evi ce - all of the off-screen graphics environment is set up with _NewGAbr | d. You can change most of its
characteristics with _Updat eGM\r | d, set the current off-screen graphics environment with _Set GAor | d, and get rid
of the off-screen graphics environment with _Di sposeGA\r | d. All the GAor | d routines are described in the "Graphics
Devices Manager" chapter of Inside Macintosh Volume VI. As an example, Listing 10 shows the same routine as the

Principia Off-Screen Graphics Environments

Exer ci seX f Scr een routine that's shown in Listing 5, but Listing 10 uses GMr | ds rather than the do-it-yourself

routines that are defined in this Note.

MPW Pascal Listing 10

PROCEDURE Exer ci sef f Scr een;

CONST
kO fDepth = 8; {Nunber of bits per pixel in off-screen environment}
r@GayCut = 1600; {Resource ID of gray-scale clut}
rColorCut = 1601; {Resource ID of full-color clut}

VAR
grayPort : GMrldPtr; {Gaphics environnent for gray off screen}
col orPort: GMrldPtr; {Gaphics environnent for color off screen}
savedPort : GafPtr; {Pointer to the saved graphi cs environnent}
savedDevi ce: CGDHandl €; {Handl e to the saved col or environment}
of f Col or s: CTabHandl e; {Col ors for off-screen environnents}
of f Rect : Rect ; {Rectangl e of off-screen environnents}
circleRect: Rect; {Rectangl es for circle-draw ng}
count: | nt eger; {Generic counter}
aCol or: R&BCol or; {Col or used for draw ng off-screen}
error: CSErr; {Error return fromoff-screen creation}

BEG N

(* Set up the rectangle for the of f-screen graphics environnents *)
Set Rect (of f Rect, 0, 0, 256, 256);

(* Get the color table for the gray off-screen graphics environment *)
of fCol ors := GetCTabl e(rG ayd ut);

(* CGreate the gray of f-screen graphics environnent *)
error := NewGMrld(grayPort, kO fDepth, off Rect, offColors, NL, []);

IF error = noErr THEN
BEG N

(* Get the color table for the col or of f-screen graphics environnent*)

of f Col ors := Get CTabl e(rCol ord ut);

(* OGreate the col or off-screen graphics environnent *)
error := NewGMrl d(col orPort, kCOffDepth, offRect, offColors, NL,[]);

| F error = noErr THEN
BEG N
(* Save the current graphics environment *)
Cet GMr | d(savedPort, savedDevi ce);

(* Set the current graphics environment to the gray one *)
Set GMrl d(grayPort, N L);

(* Draw gray-scale ranp into the gray off-screen environnent*)
FOR count := 0 TO 255 DO

BEGA N
aColor.red := count * 257;
aCol or. green := aCol or. red;
aCol or. bl ue : = aCol or. green;

R&BFor eCol or (aCol or) ;

MoveTo(O, count);

Li neTo(255, count);
END;

(* Copy gray ranmp into color off-screen colorized with green*)
Set GMr il d(colorPort, NL);

Principia Off-Screen Graphics Environments Page: 41

aCol or.red : = $0000; aCol or.green : = $FFFF; aCol or. bl ue : =$0000;
R&BFor eCol or (aCol or);
CopyBits(G af Ptr(grayPort)”. portBits,

G afPtr(colorPort)”. portBits,

grayPort”. port Rect ,

col or Port ~. port Rect,

srcCopy + ditherCopy, NL);

(* Draw red, green, and blue circles *)
PenSi ze(8, 8);

aCol or.red : = $FFFF; aCol or.green :
R&BFor eCol or (aCol or);

circleRect := colorPort”. port Rect;
FrameOval (circl eRect);

aCol or.red := $0000; aCol or.green :
R&BFor eCol or (aCol or) ;

I nset Rect (circl eRect, 20, 20);
FrameOval (circl eRect);

aCol or.red : = $0000; aCol or.green :
R&BFor eCol or (aCol or) ;

I nset Rect (circl eRect, 20, 20);
FrameOval (circl eRect);

$0000; aCol or. bl ue : =$0000;

$FFFF; aCol or. bl ue :=%$0000;

$0000; aCol or. bl ue : =$FFFF;

(* Copy the color off-screen environment to the current port*)
Set GMr | d(savedPort, savedDevice);
CopyBits(Gaf Ptr(col orPort)”. portBits,

savedPort”. portBits,

col or Port ~. port Rect,

savedPort . port Rect,

srcCopy, NL);

(* Dispose of the off-screen graphics environnments *)
D sposeGMr i d grayPort);
Di sposeGMr | d(col or Port);
END;
END;
END,;

MPW C Listing 10

#define kO fDepth 8 /* Nunber of bits per pixel in off-screen environnent
*/

#define rGaydut 1600 /* Resource ID of gray-scale clut */

#define rColord ut 1601 /* Resource ID of full-color clut */

voi d Exerci se) f Screen()

{
Gmrl dPtr grayPort; [* Graphics environment for gray off screen */
GnrldPtr col orPort; [* G aphics environnent for color off screen */
CGafbtr savedPort ; /* Pointer to the saved graphics environnent */
GHandl e savedDevice; /* Handle to the saved col or environment */
CTabHandl e of f Col ors; [* Colors for off-screen environnents */
Rect of f Rect ; /* Rectangle of off-screen environnments */
Rect circleRect; /* Rectangles for circle-drawing */
short count ; /* Ceneric counter */
RGEBCol or aCol or; [* Col or used for drawi ng off-screen */
CSEr r error; [* Error return fromoff-screen creation */

/* Set up the rectangle for the off-screen graphics environnments */
Set Rect (&of fRect, 0, 0, 256, 256);

/* Get the color table for the gray off-screen graphics environment */

Principia Off-Screen Graphics Environments Page: 42

of f Col ors = GetCTable(rGaydut);

/[* Create the gray off-screen graphics environment */
error = NewGMr | d(&grayPort, kO fDepth, &offRect, offColors, nil,0);

if (error == noErr)

{
/* CGet the color table for the color off-screen graphics environment*/
of fCol ors = GetCTabl e(rColord ut);

/[* Create the color off-screen graphics environment */
error = NewGMrl d(&col orPort, kO fDepth, &offRect, offColors,nil, 0);

if (error == noErr)

{

/* Save the current graphics environnment */
CGet GMWr | d(&savedPort, &savedDevice);

/* Set the current graphics environment to the gray one */
Set GMrld(grayPort, nil);

/* Draw gray-scale ranp into the gray of f-screen environnent */
for (count = 0; count < 256; count ++)

{
aCol or.red = aCol or.green = aCol or. bl ue = count * 257;
R&BFor eCol or (&aCol or);
MoveTo(0, count);
Li neTo(255, count);
}

[* Copy gray ranp into color off-screen colorized with green */
SetGMrld(colorPort, nil);

aCol or.red = 0x0000; aCol or.green = OxFFFF; aCol or. bl ue = 0x0000;
R&For eCol or (&aCol or);
CopyBits(& (G afPtr)grayPort)->portBits,
& (G af Ptr)col orPort)->portBits,
&grayPort - >port Rect ,
&col or Port - >port Rect ,
srcCopy | ditherCopy, nil);
[* Draw red, green, and blue circles */
PenSi ze(8, 8);
aCol or.red = OxFFFF; aCol or. green = 0x0000; aCol or. bl ue = 0x0000;
R&For eCol or (&aCol or);
circl eRect = col orPort->port Rect;
FrameOval (&circl eRect);
aCol or.red = 0x0000; aCol or.green = OxFFFF; aCol or. bl ue = 0x0000;
R&For eCol or (&aCol or);
I nset Rect (&circl eRect, 20, 20);
FrameOval (&circl eRect);
aCol or.red = 0x0000; aCol or.green = 0x0000; aCol or. bl ue = OxFFFF;

R&For eCol or (&aCol or);
I nset Rect (&circl eRect, 20, 20);
FrameOval (&circl eRect);

/* Copy the color off-screen environment to the current port */
Set GMr | d(savedPort, savedDevice);
CopyBits(& (G afPtr)col orPort)->portBits,

& (G af Ptr)savedPort)->portBits,

&col or Port - >port Rect ,

&savedPort - >port Rect,

srcCopy, nil);

/* Dispose of the off-screen graphics environnents */

Principia Off-Screen Graphics Environments Page: 43

D sposeGMrl d(grayPort);
Di sposeGMr | d(col orPort);

_NewGWor | d creates an off-screen graphics environment by creating a CG af Port , Pi xMap, and GDevi ce--the
same structures that you normally put together when you make an off-screen graphics environment yourself. In this
aspect, and in fact in most aspects, there's nothing magical about GAor | ds. Do GMr | ds make the Cr eat ek f Scr een,
Di sposed f Scr een, and their dependents useless? That depends on what your needs are. What follows are a few issues
about off-screen drawing and how that determines whether you use your own routines, such as Cr eat eC(f f Scr een, to
create and maintain off-screen graphics environments or whether you use GMr | ds for the same purpose.

| Want the Best Performance!

As mentioned in the last paragraph, there's nothing magical about G\r | ds in most aspects. In one major aspect, there
certainly is: the version of Color QuickDraw that runs with the 8*24 GC video card's acceleration on knows about

GWr | ds and can cache their C&r af Port, Pi xMap, GDevi ce, inverse table, color table, and pixel image on the 8*24
GC card if there's enough memory on it. When this is done, QuickDraw operations on the GAdr | d can be much faster than
they'd normally be because the image data can stay in the card's memory where the fast microprocessor is, and image data
doesn't have to move across NuBus in transfer operations between the G\r | d and the screen. Additionally, these
operations are executed asynchronously which increases the overall speed of your programs. For details about how the
8*24 GC card and GC QuickDraw work, see Guillermo Ortiz's article, "Macintosh Display Card 8*24 GC: The Naked
Truth," in Issue 5 of develop .

8*24 GC QuickDraw doesn't know about the off-screen graphics environments that you create, so it doesn't cache its
structures. All QuickDraw commands that move image data between the off-screen graphics environment and the screen
have to move the data across NuBus, and that slows down the operation in comparison to keeping all the image data on the
card.

If you want the highest possible drawing and copying performance with the 8*24 GC card, you must use G\or | ds for
your off-screen graphics environments.

| Want to Use a NuBus Memory Card for My GWorld's Off-Screen Pixel Image

One common desire is to use a NuBus memory card to hold a pixel image. Because GMr | ds are so easy to set up, and
because GNr | ds have all the same parts that you can make for an off-screen graphics environment, it's tempting to
make a GAOr | d and then point the baseAddr of the GMr | d's Pi xVap at the NuBus card's memory. But GM\r | ds are
designed to be fairly atomic structures, so they can't be changed in this way. You can change a GAr | d's dimensions,
depth, and color table because there's a routine (_Updat eGA\or | d) that is designed to change these things, but you can't
change the pixel image without risking future compatibility.

If you want to have an off-screen graphics environment use a NuBus video card to store the pixel image, you should set up
your own off-screen graphics environment rather than use GMr | ds. This is covered earlier in this Note in"Choosing
Your Off-Screen Memory."

| Want My Program to Work on All System Software Releases

GWr | ds have been around since 32-Bit QuickDraw was released (while system software version 6.0.3 was current).
Until system software version 7.0, 32-Bit QuickDraw was an optional part of the system, so you aren't guaranteed use of
GWr | ds even under recent system software releases. Obviously, if GAor | ds aren't available and your program still
has to work with off-screen graphics environments, then there's no choice but to use your own routines for creating,
maintaining, and disposing of off-screen graphics environments. What's usually done in these cases is to check via

_CGest al t whether GAor | ds are available or not. If they aren't, then you create your off-screen graphics environment
with your own routines. If they are, then you can use GMr | ds without having to take up memory with your code for
creating off-screen graphics environments yourself.

Back to top

Principia Off-Screen Graphics Environments Page: 44

Summary

Reliable, understandable, and maintainable off-screen drawing routines means not taking short-cuts. The most common
problems that people run into with off-screen drawing routines is the appearance of strange colors and the gradual
degradation of reliability as the program does more off-screen drawing. Building an off-screen graphics environment out
of a CO af Port, Gevi ce, and PixMap or by using GNr | ds, combined with an understanding of how Color QuickDraw
uses off-screen graphics environments, helps get rid of these problems. Hopefully, this Note helps you understand these
things so that you can get better programs out the door faster.

Back to top

References

Apple Computer, Inc., Inside Macintosh Volume |, Addison-Wesley, Reading, MA, 1985

Apple Computer, Inc., Inside Macintosh Volume V, Addison-Wesley, Reading, MA, 1988.

Apple Computer, Inc., Inside Macintosh Volume VI, Addison-Wesley, Reading, MA, 1991.

Knaster, S., Macintosh Programming Secrets , Addison-Wesley, Reading, MA, 1988.

Leak, B., "Realistic Color For Real-World Applications," develop , January 1990, 4-21.

Ortiz, G., "Braving Offscreen GWorlds," develop , January 1990, 28-40.

Ortiz, G., "Deaccelerated _CopyBits & 8*24 GC QuickDraw," Macintosh Technical Note #289 , January 1991.
Ortiz, G., "Macintosh Display Card 8*24 GC: The Naked Truth,” develop , July 1990, 332-347.

Othmer, K., "QuickDraw's CopyBits Procedure: Better Than Ever in System 7.0," develop , Spring 1991, 23-42.
Tanaka, F., "Of Time and Space and _CopyBits," Macintosh Technical Note #277 , June 1990.

Zap, J., F. Tanaka, J. Friedlander, and G. Jernigan, "Drawing Into an Off-Screen Bitmap," Macintosh Technical Note #41 ,
June 1990.

Back to top

Change History

01-October-1991 Created.

01-July-1992 A very embarrassing bug was found in Cr eat eCf f Scr een and Updat eCf f Scr een.
If you try to create a 16- or 32-bit off-screen graphics environment, you'll just get a
par ankr r. it won't do that now.

NuBus is a trademark of Texas Instruments.

Back to top

Downloadables

jzi Acrobat version of this Note (K). Download

Principia Off-Screen Graphics Environments Page: 45

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

