
Colorizing With CopyBits Page: 1

CONTENTS

What Happens

Possible Problems

How To Colorize - An Example

References

Downloadables

Inside Macintosh Volume V states that the
foreground and background colors are
applied to an image during a CopyBits or
CopyMask call. Accidental use of this feature
can create bizarre coloring effects. This note
explains what happens, how to avoid
problems, and how to use it.

[Nov 01 1987]

What Happens

Color QuickDraw has a feature that will allow you to convert a monochrome image to a color image. During a CopyBits or
CopyMask call, if the foreground and background colors are not black and white, respectively, Color QuickDraw
performs the following operation on every pixel being copied:

 NOTE: color table index = pixel value

 s = color table index of source pixel
 fg = color table index of foreground color
 bg = color table index of background color

 ColoredPixelValue = (NOT(s) AND bg) OR (s AND fg)

If your source image contains only black and white pixels, then all black pixels would become the foreground color and all
white pixels would become the background color. This is because the color table index for white is all zeros and the color
table index for black is all ones.

For example, suppose your source image was a 4-bit deep color PixMap. Then the color table index for white (in binary)
is 0000 and the index for black is 1111. And let's suppose that your foreground color is green with an index of 1101
while your background color is red with an index of 0011. Then for the black pixels, the above procedure produces:

 ColoredPixelValue = (NOT(1111) AND 0011) OR (1111 AND 1101)
 1101 = (0000 AND 0011) OR (1111 AND 1101)

And the operation on the white pixels yields:

Colorizing With CopyBits Page: 2

 ColoredPixelValue = (NOT(0000) AND 0011) OR (0000 AND 1101)
 0011 = (1111 AND 0011) OR (0000 AND 1101)

Back to top

Possible Problems

This colorizing will only work on 2-color (i.e. black and white) images, and then only if those colors occupy the first and
last entries in the color table. Trying to colorize colors that are not the first and last color table entries will yield
unexpected results.

This is mainly due to the fact that the colorizing algorithm uses a pixel's color table index value rather than its actual RGB
color. To illustrate this, let's assume that foreground and background colors are as above, and your image contains yellow
with a color table index of 1000. The colorizing operation would give:

 ColoredPixelValue = (NOT(1000) AND 0011) OR (1000 AND 1101)
 1011 = (0111 AND 0011) OR (1000 AND 1101)

Since the color table may have any RGB color at the resulting index position, the final color may not even be close to the
source, foreground, or background colors.

Similar things occur if you are trying to colorize a black and white image when white and black do not occupy the first and
last positions in the color table.

The bottom line rules for CopyBitsing in a color environment are these:

Thou shalt set thy background color to white and thy foreground color to black before calling CopyBits or
CopyMask, unless thou art coloring a monochrome image.
Thou shalt, when colorizing, make sure that the first color table entry is white and the last color table entry is
black.

The second rule is easy to follow because the default color tables are constructed properly, and if you are using the Palette
Manager (and you are, right?) then it will make sure that the color tables obey this rule.

Back to top

How To Colorize - An Example

This code fragment shows how to implement a color fill, like the paint bucket in MacPaint. It relies on three main things:
SeedCFill for calculating the fill area, CopyMask for actually changing the bits, and QuickDraw colorizing.

Colorizing With CopyBits Page: 3

PROCEDURE PaintBucket(where: Point; paintColor: RGBColor);

 VAR
 savedFG : RGBColor;
 offBits : BitMap;

 BEGIN
 {First, create an offscreen bitmap.}
 offBits.bounds := myWindow^.portRect;
 WITH offBits.bounds DO BEGIN
 offBits.rowBytes := ((right - left + 15) DIV 16) * 2;
 offBits.baseAddr := NewPtr((bottom-top) * offBits.rowBytes);
 END;

 {Check MemError here! Make sure NewPtr succeeded!}

 SeedCFill(myWindow^.portBits,offBits,myWindow^.portRect,
 myWindow^.portRect,where.h,where.v,NIL,0);
 GetForeColor(savedFG);
 RGBForeColor(paintColor);
 CopyMask(offBits,offBits,myWindow^.portBits,myWindow^.portRect,
 myWindow^.portRect,myWindow^.portRect);
 RGBForeColor(savedFG);

 DisposPtr(offBits.BaseAddr);
 END;

The variable offBits is an offscreen BitMap (not a PixMap) with bounds = myWindow^.portRect. SeedCFill
effectively creates, in the offscreen BitMap, a monochrome image of the bits that we want to paint. Since offBits
contains the exact bits that we want to paint, it is used as both the source image and the mask for CopyMask.

By setting the foreground color to the desired paint color, the result is a colorized version of the mask (the paint area)
being copied onto the window's PixMap without affecting any other bits.

Back to top

References

Color QuickDraw

Back to top

Downloadables

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

