Basic QuickDraw Q&As Page: 1

Technical Note QD505
Basic QuickDraw Q&AS

CONTENTS This Technical Note contains a collection of
archived Q&As relating to a specific
topic--questions sent the Developer Support
Center (DSC) along with answers from the
DSC engineers. Current Q&As can be found
on the Macintosh Technical Q&As web site.

Downloadables

[Oct 01 1990]

Determining whetheropygits to a PICT was successful

Date Written: 1/7/93
Last reviewed: 3/1/93
If I'm recording a PICT and doing a CopyBi t S of a really big image into the PICT, how can | determine whether I'm out of

memory?

The only reliable way to see whether a COpyBi t S to a PICT succeeded is after the fact. You need to test the PICT's
pi cFrame rect (Inside Macintosh Volume V, page V-87) to see whether it's empty after the COpyBi t S. The test
would look like:

I f (EnptyRect (& **nyPi cture). pi cFrane))

Back to top

Random function requires priakitGaf rect call

Date Written: 12/16/92
Last reviewed: 3/1/93

The Randomfunction call listed in QuickDraw.h can't be called from MPW tools without crashing my system. It appears to
work when the function is called from applications or cdevs. What could be causing this problem?

Use SANE's RandomnX function instead of QuickDraw's Randomfunction if possible because it gives you better
randomness. If you do use QuickDraw's Randomfunction, be sure to call | ni t G af rect before calling Randomfrom
any application or tool. | ni t G af rect initializes a set of QuickDraw global variables for use with the QuickDraw
tools; these globals must be initialized because the Randomfunction uses one of them as a seed to generate the random
number.

Basic QuickDraw Q&As Page: 2
Normally, it's not good practice to call initialization routines from within an MPW tool, but calling | nit G- af rect is
OK. For more information on which initialization routines are OK to call and which ones aren't, see page 7 in the MPW
Tools chapter of Building and Managing Programs in MPW.
Sometimes it isn't obvious when you need to call | ni t G af rect before using the Randomfunction. For example, if

you're using the Macintosh serial tool in a faceless background application, you'll need to initialize QuickDraw because the
tool calls Random

Back to top

GetlconCacheData rect & SetlconCacheData rect bug and
workaround

Date Written: 12/8/92
Last reviewed: 3/1/93

The Icon Utilities routine Get | conCacheDat a r ect leaves two bytes of garbage on the stack. This surfaced as a
problem for me because it prevented a saved register from getting restored properly. Set | conCacheDat a r ect
probably has the same problem, since it calls the same trap internally. | solved the problem by encapsulating

Cet | conCacheDat a rect within my own static function, like so:

static OSErr _CetlconCacheData rect(Handl e theCache, void **theData)
{
return GetlconCacheData rect(theCache, theData);

}
#defi ne GetlconCacheData rect GetlconCacheData rect

| then call Get | conCacheDat a rect normally. The #define redirects my call to my static wrapper function. The
extra two bytes on the stack are recovered when the wrapper function UNLKs and returns. This method has the advantage
that the calling code will still work even after the trap is fixed. Am | correct?

You're quite correct; this is a bug in Get | conCacheDat a rect and Set | conCacheDat a rect . Here's the
offending code from the source:

EXIT MOVEA. L (SP)+, A0 ; Pop return address into AO
ADDQ. L #6, SP : Point stack at return val ue
MOVE. W DO, (SP) ; Put return val ue on the stack
JVP (A0) ; Return

As you can see, the exit routine is adding 6 to the stack to clear up the input parameters instead of 8 (handle and handle),
so an extra word of garbage is being left on the stack. Thanks for letting us know about the problem.

Back to top

DrawText and DrawString patched to be script aware

Date Written: 11/16/92
Last reviewed: 6/14/93
While localizing our software, we were told not to assume that a character is only one byte, and thus not to use DrawChar.

Does this mean that we can't use Dr awText or DrawSt ri ng?

Dr awChar takes a one-byte character as a parameter, so it isn't suitable for drawing a character whose internal

Basic QuickDraw Q&As Page: 3

representation requires two bytes. However, Dr awText and Dr awSt r i ng (both end up in the same bottleneck procedure
StdText) are patched in script-aware systems, and do recognize whether a given byte in a given font-script still
corresponds to a one-byte character, or is the first byte of a two-byte character. In the latter case, it transparently
fetches the next byte, and looks up the right glyph encoded by a double byte, before actually drawing the glyph.

Back to top

QuickDraw globals at INIT time

Date Written: 6/1/92
Last reviewed: 9/15/92

If I call | nitGraf rect before | reference Curr ent A5, will Current A5 be valid and can the QuickDraw globals be
referenced off it? The SCr eenBi t S bounds values seem screwy on some machines. Does the problem lie with
Cur r ent A5? Should | be referencing A5?

Here's the process used by Showl NI T, which is remarkably compatible with system software and other INITs (and it had
better be, because it's used by more than half the system extensions available):

It saves the value in the Cur r ent A5 global to restore it later.

It points the A5 register at 4 bytes of storage for use by the system.

It copies the value now in A5 into the Cur r ent A5 global.

It calls I ni t Gaf rect, passing a pointer to the thePort field of a QuickDraw globals structure.
It opens a port and draws as necessary. [This is where all the functionality goes.]

After it's done, it closes its port.

It copies the value saved in step (1) into the A5 register.

It copies the restored A5 value into the Cur r ent A5 global.

NG AN

To summarize, Showl NI T saves the A5, creates and initializes its own A5 world, does its drawing, then restores the
previous A5 world. For more information on this subject, see the Macintosh Technical Note "Stand-Alone Code."

Back to top

Macintosh QuickDraw LineTo bug and workaround

Date Written: 4/23/92
Last reviewed: 7/13/92

Our zooming function crashes into flames when we pass valid coordinate values to Li neTo, as in the following example:

Set Port (nyPort);
MoveTo(154, 31619) ;
Li neTo(74, -31742); (* You are dead! *)

What can we do to avoid Li neTo crashes like this?

The QuickDraw Engineering group is aware of the problem you described. The bug probably is going to be fixed in the next
release that includes bug fixes. Given that waiting for a system solution may demand more patience than is reasonable, you
may want to consider including in your software some form of workaround that will prevent your users from crashing
every time an operation takes the software to the limits of QuickDraw.

One way to approach this problem is to replace the | i nePr oc bottleneck. All you need to do is to check the distance
between the current pen positio_n and the line's end, and when the distance becomes too big (let's say more than 32000)
your procedure will call St dLi ne a couple of times, splitting the operation in two.

Basic QuickDraw Q&As Page: 4

Replacing the bottlenecks is a very straightforward operation (which you are probably already using) and in most of the
cases will only result in another level of indirection into StdLine but that will prevent your program from calling
QuickDraw with parameters that are guaranteed to cause crashes.

Back to top

Use crsrNew flag to unobscure cursor without mouse move

Date Written: 3/3/92
Last reviewed: 6/14/93

The Macintosh QuickDraw routine Gbscur eCur sor hides the cursor until the next time the mouse is moved, but it isn't
affected by H deCur sor or ShowCur sor . Our application needs to use Gbscur eCur sor while the user is typing but

needs the cursor to be visible after no typing has occurred for a short period. How do we "undo™ Cbscur eCur sor, since
we can't rely on the user to move the mouse?

The only way (besides actual mouse movement) to make an obscured cursor visible again is to convince the system that the
mouse has moved. There's no really good way to do this via Toolbox calls, so you're going to have to do it the hard way and
simply update the low-memory cursor information to tell the system the cursor moved (even though you don't need to
update the actual position).

To tell the system the cursor has changed location, simply set the Cr Sr New flag (a byte located at $08CE) to 1. When the
system sees this byte is 1, it will assume the cursor has moved and redraw the unobscured cursor at the appropriate place
(where it was all along), and reset Cr St New, waiting for the mouse to move again.

Back to top

Macintosh CalcMask and CopyMask code sample

Date Written: 2/27/92
Last reviewed: 6/14/93

| can't get the black-and-white version of my lasso-type tool to work correctly with Cal cMask and CopyMask. with
Cal cCMVask it seems to work fine. What could | be doing wrong?

Cal cMask and Cal cCMVask are similar in that they both generate a 1-bit mask given a source bitmap. With

Cal cCVask, though, a pixMap can be used in place of the source bitmap; the SeedRGEB determines which color sets the
bits in the mask image. An easy mistake to make is to forget that Cal cCVask accepts a pointer to a bitmap data structure
while Cal cMask expects a pointer to the actual bit image. And unlike Cal cCMask, which uses bounding Rect s for the
image's dimensions, Cal cMask uses the bitmap’s r owByt €S and pixel image offsets to determine the bounding Rects for
the image. A typical call to these routines would be:

Bi t Map source, mask;
Cal cMask (source. baseAddr, mask.baseAddr, source.rowBytes,
mask. rowByt es, source. bounds. bott om sour ce. bounds. t op,
sour ce. r owByt es>>1) ;
Cal cCVask (&source, &mask, &(*source).bounds, &(*nmask).bounds,
&seedRGB, nil, 0);

One last thing to note when using Cal cVasK is that the width of the image is in words and not bytes. To learn more about
these routines, see page 24 of Inside Macintosh Volume IV and page 72 of Inside Macintosh Volume V. Also, the
Developer CD Series disc contains a sample, CalcCMask&CalcMask, that shows how to use both these routines.

Back to top

Basic QuickDraw Q&As Page: 5

Code for filling an area fully bounded by polygon

Date Written: 2/21/92
Last reviewed: 6/14/93

Currently, when a polygon is filled, an even-odd rule is applied to determine which areas of the polygon are to be filled.
For our application, we also need to fill all the areas of the defined polygon. Is there a relatively easy way to accomplish
this?

There are many different ways to fill polygons, as you may know. If you do not want to use QuickDraw's standard

Fi I | Pol y routine, you'll have to create your own. The following sample illustrates one technique that might be used to
fill the area fully bounded by a polygon. It can be dropped right into the traffic light sample (sample.p) that ships with
MPW as a replacement for its Dr awMV ndow procedure. The green star is drawn using Fi | | Pol y and the black star is
drawn using my filling technique that uses an offscreen bitmap and cal cMask to fill in the poly the desired way, then
CopyBi t s to transfer it to the onscreen port. The drawbacks of this method are that it is not as fast as writing a
specialized poly routine; the benefits are that it's small, fast enough for most operations, and can be used for more than
just polygons.

{$S Mai n}
PROCEDURE Dr awW ndow(Wi ndow. W ndowPtr) ;

var MyPol y: Pol yHandl e;
M/Rgn : RgnHandl e;
O fPort, OnPort: Gaf Ptr;

Functi on Creat e f port (VAR newdk f screen: graf Ptr;
i nBounds: Rect) : Bool ean;

var SavePort, NewPort: Grafptr;

begi n
Cet Port (SavePort) ;
NewPort : =G af Pt r (NewPt r (si zeof (graf port)));
| f MenError<>noErr then Begin
Createf fport: =fal se;
EXIT(CreateO fport);
END,

QpenPor t (newPort) ;
Wth newPort” do begin
port Rect : =l nbounds;
Rect Rgn(d i pRgn, i nBounds) ;
Rect Rgn(vi sRgn, i nBounds) ;
End;

Wth newPort”. PortBits DO BEG N

Bounds: =I nbounds;

rowByt es: = ((i nBounds. ri ght-i nBounds. Left+15) DIV 16) *2;

baseAddr: = NewPt r (rowByt es

* LONG NT(i nBounds. Bott om i nBounds. Top)) ;

End;
I f MenkError <>noErr THEN BEG N

Set Port (SavePort);

Cl osePort (newPort);

Di sposPtr(ptr(newPort));

Creat e f port: =f al se;

END

ELSE BEGQ N

Er aseRect (i nBounds) ;

newcr f screen : =newPort ;

Basic QuickDraw Q&As Page: 6

set Port (SavePort);
CreateO fPort: =true;
end;
end;

Procedur e Kill O fPort (ol dXfscreen : GafPtr);
Begi n

Cl osePort (ol dO f screen);

Di sposPtr (A dOfF fscreen”. portBi ts. baseAddr) ;
Di sposPtr(ptr (A dOf f Screen));

End;

BEG N
If NOT (CreateO fPort(offPort,w ndow'. portRect)) THEN Exit (DrawW ndow) ;
If NOT (CreateCOfPort(onPort,w ndow*. port Rect)) THEN Exit (Dr awW ndow) ;

Set Port (wi ndow) ;

M/Rgn: =NewRgn;

OpenRgn;
MoveTo(10, 25) ;
Li neto(70, 25);
Li net o(15, 70);
Li net o(40, 10);
Li net o(65, 70) ;
Li neto(10, 25);

Q oseRgn(M/Rgn) ;

M/Pol y: =CpenPol vy;
MoveTo(10, 25);
Li net o(70, 25) ;
Li net o(15, 70);
Li net 0(40, 10);
Li net o(65, 70) ;
Li net o(10, 25);
d osePol y;
O f set Pol y(M/Pol y, 0, 100) ;

Set Port (O f Port);

Fr amePol y(M/Pol y) ;

{ Now "Fill the poly" the right way }

Cal cMask(O fport”. portBits. BaseAddr, OnPort”. port Bi t s. BaseAddr,
OfPort”. portBits. RowBytes, OnPort”. portBits. RowByt es,
O f Port”. port Rect. bottom OnPort”. port Rect. Top,
OfPort”.portBits. RowBytes DIV 2);

Set Port (OnPort);

Set Por t (W ndow) ;

I f gStopped then
CopyBi t s(OnPort”. portBits, Wndow'. portBits,
OnPort”. port Rect, Wndow*. port Rect, srcCopy, N L)
ELSE
CopyBi t s(OfPort”. portBits, Wndow'. portBits,
O fPort”. port Rect, Wndow‘. portRect, srcCopy, NL);

| F gSt opped THEN
begi n
For eCol or (greenCol or) ;
FrameRgn(M/Rgn) ;
end
ELSE
begi n
For eCol or (greenCol or) ;
Pai nt Rgn(MyRgn) ;

Basic QuickDraw Q&As Page: 7

end,
For eCol or (bl ackCol or) ;
Di sposeRgn(M/Rgn) ;
Ki Il Pol y(M/Pol y);
KillOfPort (O fport);
Kill O fPort(OnPort);
END; {Dr awMV ndow}

Back to top

Inside Macintosh Vol. V PICT opcode size should be fixed

Date Written: 1/22/92
Last reviewed: 2/28/92

The definition of PICT version 2 on pages 92-105 of Inside Macintosh Volume V says that the data size of the opcodes
$001Aand $001Bis variable, but also that the data is an RGBCol or . This is confusing, since the size of an RGBCol or
is fixed at six bytes. How can these two opcodes vary in the amount of associated data?

Seems like you've run into a cut/paste problem. All the opcodes that refer to Table 4 are new for Color QuickDraw. Also,
most of them are variable in length, so the author simply had a standard notation for anything that was explained further
in table 4 (page V-103). The information contained in table 4 is, in fact, accurate. The size information of several of the
opcodes listed is not variable even though the preceding pages told you they were.

All you gotta do is believe Table 4 and you will be fine.

Back to top

PICTs with PostScript PICT comments and memory use

Date Written: 1/10/92
Last reviewed: 6/14/93

Why does my PICT (including dotted lines) use so much memory when drawn in MacDraw, and even more when drawn in
SuperPaint? Do they include Pi cConment s for PostScript?

Your guess that it has to do with PicComments is quite right; both MacDraw and SuperPaint include a PostScript
representation of the dotted (dashed) lines and some other graphic operations in the PICT, together with the QuickDraw
commands. During printing, this allows the LaserWriter driver to take advantage of specific PostScript capabilities that
are unavailable in QuickDraw, like primitives for dashed lines.

On the other hand, the PostScript representation for dashed lines is much shorter than the QuickDraw representation,
which requires a (long, very long ...) sequence of Short Li ne opcodes. So, another piece of explanation for the large PICT
size basically is that QuickDraw does not have facilities to describe dotted lines in an economic way.

SuperPaint also includes a copy of a proprietary dictionary, which adds substantially to the size of a PICT. On the other
hand, the code that resides in that dictionary makes the picture's PostScript representation that much better. Ultimately,
WYSIWYG is the goal, and sometimes it takes a little extra code to make that happen. (Incidentally, the PostScript
dictionary contained in pictures created by older versions of SuperPaint makes assumptions about the contents of the
LaserPrep file which are not true for the recent versions of the LaserWriter driver. Documents containing such pictures
will not print correctly any more.)

To determine the primitives that define other nonstandard QuickDraw objects found in drawing applications, you can use
MPW's DeRez function or a third-party utility such as Palomar Software's PICT Detective on the resource PICT. These
tools will provide the opcodes that define the PICT.

Back to top

Basic QuickDraw Q&As Page: 8

Where copysits looks for memory to use

Date Written: 1/3/92
Last reviewed: 1/27/92

Where does CopyBi t s look for the memory it needs?

CopyBi t s checks the stack to determine if there is enough stack space for it to copy the whole image, which in some cases
may be roughly up to 5 extra rowbytes of special effects per row, depending on what special effects such as dithering or
scaling are being used. If there is not enough stack space for the whole image, COpyBi t S then tries for half the image, and
keeps halving until it gets down to one row of the image (plus the room for the special effects rows). If there is not enough
stack space for one row of the image, then CopyBi t s tries to allocate temporary memory.

Before allocating temporary memory, CopyBi t S checks if the temporary memory traps are available. (They are
available under both System 6 MultiFinder and System 7.) If the traps are available, COpyBi t S tries to allocate a 256K
byte buffer for use as a "fake" stack. (CopyBi t S used to try for a 64K block, but this has been changed, and it may
change again.) If this succeeds, then all is well and the image is copied. If the temporary memory traps do not exist, or if
CopyBi t s cannot allocate a 256K buffer, then the image is not copied and CopyBi t S returns.

CopyBi t s does not check in the application heap for free memory, at least not for its work buffer. For its work buffer it
will only use the stack, and after that it resorts to temporary memory, if available. There are some circumstances that
may cause memory allocations in the application heap, but this memory is not used for CopyBi t S's image buffer.

Also, please note that the implementation of COpyBi t S is subject to change in future versions of QuickDraw.

Back to top

GrafPort patStretch: valid values

Date Written: 12/19/91
Last reviewed: 6/14/93

I'd like to know more about that Pat St r et ch field inside a G af Port or CG af Port . If | stuff a values in
Pat St ret ch(4) then nothing happens; prints look the same, even using a standard bottleneck. Please tell me how | can
get this to work.

Pat St r et ch only works with values of 2 or 3. With any other value, it defaults to no stretching. The "2" case was
created because of the ImageWriter (72->144 dpi) situation. The "3" case was added to support the ImageWriter LQ and
the AppleFax modem.

So why wasn't a "4" (72->300 dpi) handler added for the LaserWriter driver? Good question. Somehow or other it was
decided that pattern stretching for the LaserWriter driver would be done completely by the driver itself. The LaserWriter
driver actually does pattern stretching by using a pattern 4 times as large, rather than 4.17. In other words, it really
scales the 72 dpi pattern to 288 dpi rather than 300 dpi. You may want to take a similar approach, since you'd only have
to work with whole numbers this way.

So, if you want to do 4-times pattern stretching, you must scale the pattern yourself. If you copy the original pattern into
an area that's twice as wide and twice as tall and use that, you should be all set. You'll need to use PrGeneral to set the
printer to the appropriate resolution and CopyBi t S to copy the pattern into the object that needs to be filled, using the
"'cookie cutter" approach to fill the object.

X-Ref:Inside Macintosh Volume I, page 1-150

Back to top

How to tell whether GetPictinfo is available

Basic QuickDraw Q&As Page: 9

Date Written: 12/16/91
Last reviewed: 6/14/93
How do you determine whether the Picture Utilities Package function Get Pi ct | nf 0 is available? Gest al t doesn't seem

to have the right stuff!

To determine whether the Get Pi ct | nf 0 routine is available, check the system version number with the Gestalt
function. Get Pi ct | nf 0 is available in system software version 7.0 and later. Use the Gestalt selector

gest al t Syst enVer si on to determine the version of the system currently running. Usually it's best not to rely on the
system version to determine whether features are available, but in this case, it's the only way to determine whether the
Picture Utilities Package is available.

For example, the following C function will determine whether the GetPictinfo call is available:

#i ncl ude <GCestal t EQU. h>

Bool ean | sGet Pi ct | nfoAvail ()

{

CSErr err;

| ong feature,;

err = Cestalt(gestaltSystenVersion, & eature);
/* Check for System7 and |ater */

return (feature >= 0x00000700);

}

In Inside Macintosh Volume VI, see page 3-42 for information on using Gestalt to check the system version number, and
see page 18-3 for information on the Picture Utilities Package.

Back to top
Detecting whether application window is partially hidden

Date Written: 9/26/92
Last reviewed: 6/14/93

We draw directly to the screen to gain the fastest possible animation speed, and when we need compatibility--such as
when windows overlap or for multiple screens--we do use CopyBi t S. How do we tell whether the window is hidden or

that the visible part is not rectangular?

If your window is covered partially by another applications window or if your layer has been hidden by the process menu,
the Vi SRgn of your window's grafport will not be the port Rect anymore. (Keep in mind that if you scroll by modifying
the por t Rect of the gr af por t, then you'll have to do a more complex calculation...) Here is a small Pascal routine that
returns this information:

Basic QuickDraw Q&As Page: 10

Functi on UseCopyBits(thePort: grafptr): Bool ean;
begi n
UseCopyBits: = NOT((thePort”. Vi sRgn*”. rgnSi ze=10) and
(t hePort”. vi sRgn*”. RgnBBox=t hePort . Port Rect));
end;

The rect strucRgn™*.rgnBBox will be zero for a visible window if the system
has hi dden the application.

Back to top

CopyBits bug and workaround

Date Written: 6/26/91

Last reviewed: 6/14/93

Has anyone run across what I'm told is a bug in CopyBi t s? It works like this: In the deep, dark workings of CopyBi t s,
some routine tries to read the two bytes preceding the baseAddr ess of the source Pi XMap. If the baseAddr ess is at

the start of a card's NuBus space and there isn't a card filling the adjacent space, this causes a bus error! Has anyone found
a good workaround?

The short answer is: you're right. QuickDraw inadvertently reads from memory below the base address of a pixmap. The
workaround is to place the video base address 32 bytes into the slot memory space for the card; if the card you're using
doesn't have this workaround, there's nothing you can do other than making sure there's a card in the next-lower slot.

Back to top

Macintosh animation samples

Date Written: 11/6/91

Last reviewed: 6/14/93

Do you have an example of flicker-free animation on the Macintosh?

We have some good stuff that's written in MPW Pascal. It's DTS Sample Code #16, OffSample, and this uses some routines
defined in DTS Sample Code #15, OffScreen. Also, the System 7.0 CD sample code folder contains a smaller sample called

"GMonde" that uses GWorlds.

Back to top

System 7 QuickDrawnr awtext performance

Date Written: 11/4/91

Last reviewed: 11/27/91

We've noticed that using Dr awText is much slower in System 7, especially when drawing in color (anything other than

black on white). What can be done to restore the drawing speed to System 6 levels?

A QuickDraw function like DrawString or Dr awText will be slower under certain circumstances in System 7 than
System 6. Specifically, if you are drawing in St cCopy mode and you colorize the text--that is, foreground color is not
black and background color is not white (Inside Macintosh Volume VI, page 17-16)--then QuickDraw really slows down

Basic QuickDraw Q&As Page: 11
as you have noticed. Sometimes, the speed of drawing is 6 times as slow as System 6.

The cause of this slowness is a known System 7 bug. The bug has concerned the engineers greatly and will be responded to
in an appropriate manner in the future.

There are a few workarounds: One, you can avoid using the Sr cCopy mode and use the default St ¢Or mode instead.
However, this is not a real workaround, since you may have essential reasons to use Sr cCopy. The other option is to
create an offscreen pixmap or GNr | d and perform a Dr awText with St cOr to this GMr | d with colorization. Then,
you can perform a CopyBi t s from the offscreen to the screen with St cCopy mode and no colorization. Using CopyBi t s
will not cost you much time. Again, this is a workaround and is not ideal.

The srcOr is a bit slower than in System 6.0.x, but it does not have a bug; rather it is a side effect of system
enhancements. The slow speed is a trade-off taken to receive the host of other benefits.

Back to top

Updating Macintosh cursor without mouse competition

Date Written: 6/12/91
Last reviewed: 6/14/93

How can | programmatically move the Macintosh mouse without the real mouse interfering?

The real answer to your question is twofold: First, you can do exactly what you want to do with the sample included below.
However, this is not a good thing to do, it would be better if you took the solution used in Apple's Guided Tour disks:
Always hide the cursor and then decouple the cursor from the mouse. Then, instead of using the system's cursor, simply
draw your own "cursor" using QuickDraw and treat it as a little animated bitmap on the screen. This avoids all the
problems that you have with the mouse competing. (Apple does update the mouse globals with the mouse position so that
other things function correctly.)

Now, as promised, here is the way to do what you want using the real cursor. As you have discovered, setting the

crsr Cou pl € variable to false prohibits the mouse from affecting the cursor; unfortunately, it also prohibits the

j cr sr Task routine from drawing the cursor. The solution to this is to set Cr Sr couple to TRUE, call the cursor drawing
routine] Cr sr Task yourself, and then set the cr sr Coupl e variable to false, as shown below:

Basic QuickDraw Q&As

procedure callcrsr;

{

inline $2078 , $08EE , $4E90;
nove. L j crsrTask, AO

jsr (A0) }

Procedur e FudgeMouse;

type

var

begi n

end;

Back to top

Techniques for graying Macintosh text

Poi nt Pt r ="Poi nt ;

Rawivbuse: Poi nt Ptr;
Mrenp: Poi nt Ptr;
RandPt : Poi nt ;
CrsrNew ptr;
CrsrCoupl e: ptr;
fred: Longi nt;

RawMbuse: =Poi nt Pt r ($82C) ;
Mrenp: =Poi nt Pt r ($828) ;
CrsrNew. =pt r ($8CE) ;
O sr Coupl e: =pt r ($8CF) ;
RandPt : =Rawi\buse”;
r epeat
RandPt . h: =RandPt . h+1;
RandPt . V: =RandPt . v+1;
RawMbuse”: =RandPt ;
Mremp”: =RandPt ;

CrsrNew': =1;
Crsr Coupl e?: =1;
call Crsr;

crsr Coupl e”: =0;

repeat until fred<tickCount;

fred: =ti ckCount +3;
until Button;
crsrCoupl e?: =1;

Date Written: 6/3/91

Last reviewed: 6/14/93

How do | draw grayed-out text on the Macintosh, like the text for disabled buttons or menu items?

Page: 12

There are currently two different kinds of grayed text: First, there's "patterned" gray, where every other dot is missing.

This really only looks good with Chicago or other heavy fonts and was always used for graying out menus and controls in

system software through 6.0.x, and is still used in 7.0 when the screen is set to less than 4 bits deep. This is done by first

drawing the text in a normal, Sr cCopy transfer mode. Then a gray rectangle is drawn over the text using the pat Bi c
mode. This "erases" half the bits in the text, and is rapid enough that there is very rarely any flicker.

The second kind of text is the actually gray text, which is used in System 7 on screens that are 4 bits deep or deeper for
menus, controls, and other grayed text. To draw this text, just call Get G ay (as documented on page 17-27 of Inside
Macintosh Volume VI) to get an appropriate gray. Then draw the text in that color.

Back to top

Basic QuickDraw Q&As Page: 13

Use srcOr instead of srcCopy for Macintosh text drawing

Date Written: 6/4/91
Last reviewed: 10/9/91

Dr awText with srcCopy takes six times as long as with St cOr now that my Macintosh is running System 7. Why is this
so slow? Is this a bug in System 7?

It's true that St cCopy is slower than Sr cOr when handling text, especially in color mode. This loss in speed occurs
because COpyBi t S is a lot smarter than it used to be. It can handle foreground and background colors a lot better, but that
improvement came at the cost of speed. Our recommended method for drawing text is to erase before drawing, and use
srcOr to draw, not Sr cCopy. Alternatively, you could draw colorized text in srcOr mode off screen and then use

CopyBi t s to draw it on the screen in Sr cCopy mode without colorization.

Back to top
Code for reversing Macintosh PICT images

Date Written: 3/4/91
Last reviewed: 6/14/93

Is there a simple way to put PICT images up in mirror image format, or is there sample code showing how to flip an
offscreen bitmap?

There is no easy way to do this, nor do we have sample code showing how to flip an offscreen bitmap. Indeed, the best way to
do what you want is to draw it to an offscreen pixel map and reverse it.

If you are using Color QuickDraw, always draw it to an 8-bit-per-pixel offscreen bitmap, and then the reverse is a very
simple task. Here is some sample Pascal code that might roughly do what you want, with the following assumptions:

You are going to add error checking where appropriate.
Rowbyt es correspond exactly to pixel width of the port.
The port is 8 bits deep.

You add the code to make this sketch work.

The origin of your offscreen port is (0,0).

arwNPR

Basic QuickDraw Q&As Page: 14

Procedure FlipScanLine(theV:Integer; thePort:cGafPtr);

{ Gven any scan line nunber in the indicated port, this routine will flip }
{ that scan line horizontally. This routine assunes that you have nmade }
{ sure that scan line theV exists. }

type ScanLn=Packed Array [0..0] of Byte;
ScanPt r =AScanlLi ne;
var thePi xMap: Pi xMapPtr;
I ndex, Si ze: | nt eger
Thi sScanLi ne: ScanPt r
TenmpPi xel : Byt e;

Begi n

t hePi xMap: =t hePort ~. Port Pi xMap”;

{ First create a pointer to the scan line we are currently reversing. }
Thi sScanLi ne: =ScanPt r (t hePi xMap”. BaseAddr) ;

Thi sScanLi ne: =ScanPt r (or d4(Thi sScanLi ne) +(t hePi xMap”. RowByt es*t heV)) ;

{ Now sinply reverse all the bytes. }
{ The scan line is sinply an array [0.. RowBytes] of Byte, and since this is }
{ 8 bits per pixel, each one is a single pixel.}
Si ze: =t hePi xMap”. RowByt es;
For Index:=0 to (Size div 2) do
begi n
t enpPi xel : =Thi sScanLi ne”[| ndex] ;
Thi sScanLi ne”[| ndex] : =Thi sScanLi ne[Si ze- | ndex- 1] ;
Thi sScanLi ne”[| ndex] : =t enpPi xel ;
end;
end;

This same procedure can be used also to swap a 1-, 2- or 4-bit-per-pixel pixmap if you add a function that accepts a byte
and swaps the pixels in it.

Back to top

Using dithered drawing mode with QuickDraw

Date Written: 11/28/90
Last reviewed: 12/19/90

When | draw a 32-bit Macintosh PICT image from a file to an 8-bit port via an offscreen GMr | d, | use dither mode in
the CopyBi t s call and the results are quite impressive. If there is not enough memory to allocate the GAr | d, | draw
the image directly to the port. But since there does not seem to be any way to tell QuickDraw to use dithered drawing mode,
the image looks horrible.

Do you have any suggestions? | have installed bottleneck procs to allow Dr awPi ct ur e to get its data from the file instead
of the handle in memory. Is there a way, while in the bottlenecks, to find the COpyBi t S call that comes from the picture
and force it to use dithered mode instead of source mode? | don't want to try and parse the PICT myself, but | thought that
maybe a QuickDraw global could be modified in my St dBi t s proc to force dithered drawing for that operation only?

You can install a St dBi t s or bi t SPr oc bottleneck procedure to get all the COpyBi t S calls when the picture is being
played back. One of the parameters to the St dBi t S call is the mode. You can install a procedure that saves the current
mode, and then passes ditherMode to the original St dBi t S proc. This is all you should need to do. It's been done here so we
know it works, only not in any form that can be sent to you as sample code at this time.

Back to top

Using PicComments to rotate text

Basic QuickDraw Q&As Page: 15

Date Written: 11/28/90
Last reviewed: 12/19/90

| have a PostScript routine (using Text Begi n/ Text End) to generate bitmapped rotated text on the screen (which can
be later printed on QuickDraw printers). Why do | get duplicate text? | get both bitmapped rotated text and PostScript
rotated text when | print on the LaserWriter Il, and both bitmapped rotated text and horizontal text on the ImageWriter.
When | make a machine dependent check (check type of printer) and call the proper printing procedure, it works fine.
Because of the speed and memory considerations of generating the rotated bitmapped text (especially at 300 dpi), is there
a way to ensure that the printer will use the PostScript BEFORE generating the bitmap?

We will use the following Macintosh Pi cComment s to hide your QuickDraw calls from the LaserWriter, but the
ImageWriter will use them:

Post Scri pt Begi n
>> Put your CopyBits and QuickDraw calls to i mage your rotated
>> bi t mapped text here....

Post Scri pt End

By wrapping your QuickDraw code within the Post Scri pt Begi n and Post Scri pt End Pi cComment s, the code will
be ignored by the LaserWriter, but the ImageWriter will use the QuickDraw calls. Basically, the Post Scri pt Begi n
and Post Scri pt End PicComments tell the LaserWriter driver to turn "off" QuickDraw. In the ImageWriter case, the

ImageWriter does not understand the PicComments. Therefore, it will use the QuickDraw calls to create and image your
bitmapped text.

Now, we need to use the rotation Pi cComment S to rotate the text on the LaserWriter, but have the ImageWriter ignore
the code:

Rect zeroRect;
Set Rect (&zeroRect, 0, 0, 0, 0);
Text Begi n
Text Cent er
Qi pRect (&zeroRect);
>> Draw your text to be rotated on the LaserWiter....

C i pRect (& PageRect);
Text End

Wrapping your text drawing call(s) between the C i pRect calls will ensure that the text is drawn only on the
LaserWriter. Setting the O i pRect to zero tells the ImageWriter to ignore all QuickDraw calls until the Cl i pRect is
reset to something "real" (actually, a zero U | pRect prevents QuickDraw from drawing anything). After we have
completed drawing the rotated text, we reset the Cl i pRect to the dimensions of r Page (that is, r Page is the
image-able area of the currently selected printer--see Inside Macintosh Volume Il, page 150). This will allow all of
your normal drawing to continue on the ImageWriter and LaserWriter. If you did not reset the ClipRect after the

Text End call, nothing would be drawn on the ImageWriter or LaserWriter.

Back to top
Why grafPort's clipRgn should be changed before OpenPicture

Date Written: 11/1/90

Last reviewed: 12/19/90

Basic QuickDraw Q&As Page: 16

On page 189 of Inside Macintosh Volume |, in the QuickDraw chapter's description of QpenPi ct ur e, is the following
warning: "A grafPort's clipRgn is initialized to an arbitrarily large region. You should always change the clipRgn to a
smaller region before calling OpenPicture, or no drawing may occur when you call DrawPicture." The "arbitrarily large"
clipping region rectangle is set to -32767,- 32767,32767,32767 (top, left, bottom, right) for new ports. This is the
largest rectangle possible. If this is not a "valid" clipping rectangle for pictures, what is? Is there some specific limit to
the size of the clipping rectangle? Does it depend on either available memory or the size of the picture?

Inside Macintosh' s warning is based on truth but it's incomplete. It didn't actually say that this rectangle is invalid as a
clipping region, because this is in fact a perfectly valid clipping region. But, you could run into problems if you use this
as a clipping region when creating a QuickDraw picture. It's not a matter of available memory or size; it's a simple matter
of 16-bit signed integer overflow and underflow.

When you open a picture, the current clip region is recorded in the picture (this wasn't necessarily true in some early
versions of QuickDraw). When you draw the resulting picture using the picture's picFrame as the destination rectangle,
there won't be any problems. But if you use a destination rectangle that's larger than the pi CFr ame, QuickDraw scales
everything in the picture proportionately, including the clip region. If you allowed the default clip region to be recorded
into the picture, then its r gnBBoX, already as large as possible, will be made even larger. That means that the -32767
coordinates might wrap around to the positive number range, and the 32767 coordinates might wrap around to the
negative number range. This leaves you with an empty clip region. Nothing at all gets drawn when the current port's clip
region is empty.

If the destination rectangle is smaller than the picture's pi CFr ane, you won't have any problems because the default clip
region will be made smaller, and that's no problem.

This is why Inside Macintosh suggests that you make the clip region smaller than the default clip region before opening a
picture. By doing this, you're almost guaranteed that the clip region won't get scaled to the point that it turns inside out.
What size should you make it? Small enough so that the risk of the clip region's coordinates being scaled out of QuickDraw
coordinate space is minimal. | usually just set the clip region to the picFrame of the picture. It's hard to go wrong this
way.

Back to top

Calling InitCursor instead of SetCursor
Date Written: 10/23/90
Last reviewed: 6/14/93

Is it legal to call | ni t Cur sor instead of Set Cur sor (arr ow) when | want to set the cursor to an arrow (after my
normal one-time program initialization code, in my Updat eCur sor routine)? The only reason I'd want to do such a
nasty thing is to save code. Calling a trap with no parameters is less code than one with parameters. What, exactly, if
anything, does | ni t Cur sor do besides setting the cursor to an arrow and setting the cursor level to zero?

There's no problem at all with this, as long as you are aware that the hidden, busy, and obscured states are cleared when
you call | ni t Cur sor, so if the cursor was hidden or obscured for good reason it'll suddenly reappear. It also gets the
arrow from QuickDraw, of course, but that's not a problem.

Back to top

Macintosh PICT-to-PostScript conversion

Date Written: 8/3/90
Last reviewed: 10/8/91

How do | convert PICT format data to PostScript in my printer driver?

Converting PICT files to PostScript involves a detailed understanding of both bitmaps (or pixmaps) and the graphics state

Basic QuickDraw Q&As Page: 17

in PostScript, which is a data structure defining the context in which other graphic operators in PostScript execute. If you
don't know PostScript, the following manuals are a must:

O PostScript Language Tutorial and Cookbook (Addison-Wesley) is an introduction to PostScript.

O PostScript Language Reference Manual (Addison-Wesley).

O PostScript Language Program Design (Addison-Wesley) details designing efficient PostScript programs. It has a
lot of useful sample programs on topics like writing a print spooler.

You need to convert all the QuickDraw operations in a PICT to corresponding PostScript operations. To get a feel for this
conversion, you can analyze the PostScript dump from a LaserWriter to see how it converts a PICT to PostScript. Under
System 6.x, a PostScript dump can be obtained by pressing Command-K while printing. Under System 7.0, you can get a
dump by selecting the PostScript File option in the Print dialog.

Some areas of QuickDraw, such as transfer modes, do not have a correspondence in PostScript. The PostScript imaging
model is designed so that all areas of a page affected by an image are marked as if with opaque paint. Using image masks can
help. See the Graphics chapter in the PostScript reference manual.

PICT-to-PostScript conversion can be a long process, especially if one is unfamiliar with PostScript. Using the above
books and the PostScript dump from the LaserWriter (but ONLY as a general guide) should help.

Back to top

Sending PostScript via PostScriptHandle PicComment

Date Written: 5/1/90
Last reviewed: 10/9/91

If | use the Post Scri pt Handl e Pi cConment to send PostScript code to the LaserWriter driver, do | need to open a
picture and then draw the picture to the driver, or can | just use the Pi cComment with no picture open while drawing to
the printer's gr af Port ?

You don't need to create a picture with your Pi cComrent in it and draw the picture to the driver. The best method for
sending PostScript code to the LaserWriter is to use the Post Scri pt Handl e Pi cComment documented in the
Macintosh Technical Note "Optimizing for the LaserWriter--Picture Comments," as shown below.

Pr OpenPage(. . .)

{ Send sonme QuickDraw so that the Printing Manager gets a }
{ chance to define the clipping region. }

PenSi ze(0, 0) ;

MoveTo(0, 0) ;

Li neTo(0, 0);

PenSi ze(1, 1);

Pi cComment (Post Scri pt Begin, 0, NL);

{ QuickDraw representation of graphic. }

MoveTo(100, 100);

Li neTo(200, 200);

{ PostScript representation of graphic. }

t hePSHandl e := '100 100 noveto 200 200 |ineto stroke';

Pi cConment (Post Scri pt Handl e, Cet Handl eSi ze(t hePSHandl e),
t hePSHandl) ;

Pi cConment (Post Scri pt End, 0, NL);

Pr d osePage(...)

The above code prints a line on any type of printer, PostScript or not. The first MoveTo/ Li neTo combination is
required to give the LaserWriter driver a chance to define a clipping region. The LaserWriter driver replaces the

gr af Procs record in the gr af Port returned from Pr QpenDoc. In order for the LaserWriter driver to get execution
time, you must execute a QuickDraw drawing routine that calls one of the gr af Pr ocs. In this case, the

Basic QuickDraw Q&As Page: 18

MoveTo/ Li neTo combination calls the St dLi ne gr af Proc. wWhen St dLi ne executes, it notices that the gr af Por t
has been reinitialized, and therefore initializes the clipping region for the port. Until the MoveTo/ Li neTo combination
is executed, the clipping region for the port is set to (0,0,0,0). If PostScript code is sent via the Post Scri pt Handl e
Pi cComment before executing any QuickDraw routines, all PostScript operations will be clipped to (0,0,0,0).

The next thing that's done is to send the Post Scri pt Begi n Pi cComment . This comment is recognized only by
PostScript printer drivers. When the driver receives this comment, it saves the current state of the PostScript device
(by executing the PostScript gsave operator), then disables all QuickDraw drawing operations. This way, the QuickDraw
representation of the graphic will be ignored by PostScript devices. In the above example, the second MoveTo/ Li neTo
combination is executed only on non-PostScript devices.

The next Pi cConmrent is PostScriptHandle, which tells the driver that the data in t hePSHandl e is to be sent to the
device as EostScript code. The driver then passes this code unchanged to the PostScript device for execution. The
Post Scri pt Handl e comment is recognized only by PostScript printer drivers.

The last Pi cComent , Post Scri pt End, tells the driver to restore the previous state of the device (via a PostScript
gr est or e call), and to enable QuickDraw drawing operations.

Since most Pi cConmrent s are ignored by QuickDraw devices, only the QuickDraw representation is printed. Since
Post Scri pt Begi n tells PostScript drivers to ignore QuickDraw operations, only the PostScript representation is
printed on PostScript devices. This is a truly device-independent method for providing both PostScript and QuickDraw
representations of a document.

Back to top

Macintosh QuickDraw region quirks

Date Written: 1/1/90
Last reviewed: 11/21/90
I'm working with regions, and I'm having problems with Macintosh QuickDraw trashing the heap and crashing, even
though my regions are under 32K.
There are some quirks in the current version of QuickDraw. Here are some the commonly-encountered problems:
1. When doing operations which use more than one region, sduch as Uni onRgn, Di f f Rgn, Xor Rgn, or Sect Rgn,
the sum of the sizes of the source regions must be less than 32K, regardless of the size of the resulting region.
2. FranmeRgn will fail if it tries to frame a region bigger than 16K.

3. If O oseRgn fails, the internal region data is already corrupt; there is nothing you can do to recover. Cl 0seRgn
will also fail if there isn't at least a 32K block of free space available.

Here are some workarounds:
1. Keep regions small and not too complex. Keep track of the sizes of all regions so you can check the SUM of the sizes
before calling a routine that has a 32K limit.

2. Keep 32K free, or allocate a 32K block and release it just before calling CloseRgn.

Apple is working on these problems and expects to fix them in future versions of QuickDraw.

Back to top

How to get Macintosh QuickDraw arc endpoints
Date Written: 1/1/90
Last reviewed: 6/14/93

Is there a way to obtain the endpoints of an arc drawn by the Macintosh QuickDraw arc routines, such as Fr aneAr ¢ and
Pai nt Ar c?

Basic QuickDraw Q&As

Page: 19

Given a rectangle R which frames the arc you wish to draw, convert your angles to an absolute coordinate system, where

three o'clock is O degrees and 12 o'clock is 90 degrees.

Now, let:

right - Rleft)
bottom - R top)

<
11l
a1
—~
+
@]
=
]
~

The endpoint of the curve will be defined by:

EndPoi nt . h

x (+ or -) cos(ang);
EndPoi nt . v

y (+ or -) sin(ang);

h & v are relative to center of rectangle R

This calculates only the upper endpoint of the arc, but you can easily calculate the other endpoint using the same formula

by calculating the absolute angle for the start point and applying the same formula.

Here is a subroutine which illustrates the algorithm, in ThinkSpeed Pascal:

{ DrawCurve: draw an arc fromO degrees until the point defined }
{ by "angle'. At that point draw a 4 by 4 crosshair. }

procedure DrawCurve (franme : Rect; angle : integer);
var
X, Yy : integer;

Xr, yr : extended,;
rad : extended;

begi n

{ Convert angle to radi ans
rad : = (90 - angle) / 180 * 3.14159;

{ Find end point }

xr := (frame.right - frame.left) * cos(rad) / 2;

yr := (frame.bottom- frame.top) * sin(rad) / 2;

X := (frane.right + frane.left) / 2 + Nunl nteger (xr);
y := (frane.bottom+ frame.top) / 2 + Nun®l nteger(yr);

{ Draw crosshair }
MoveTo(x - 4, y);
Li neTo(x + 4, vy);
MoveTo(x, y - 4);
Li neTo(x, y + 4);

{ Draw arc }
FraneArc(frame, 0, angle);
end;

Back to top

Downloadables

Basic QuickDraw Q&As Page: 20

E‘ Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

