Drawing Icons the System 7 Way Page: 1

Technical Note QD18

Drawing [cons the System 7 Way

CONTENTS This Technical Note describes how to utilize
_ the built-in System 7 icon drawing utility. Use

Introduction this information to better conform to the

The New 'ic’ Type Resources System 7 visual human interface.

Icon Families (or Suites and Caches As the Tool Set Refers to [May 01 1992]

Them)

Drawing Modes or Transforms

Alignment

And Now (Drum Roll Please) the Calls and What to Pass

Error Codes

Type(def)s and Glue for Pascal and C

References

Change History

Downloadables

Introduction

With the introduction of System 7 for the Macintosh, Apple has defined a new look and feel for many screen elements that
better utilize color. Among those redefined elements are the icons drawn by the Finder and other system components. Until
now, Apple has not documented how to draw icons the way the Finder does in System 7.

This Technical Note discusses the icon toolkit calls that the Finder uses to draw and manipulate the screen icons. Two of the
calls, Pl ot | conl Dand Pl ot Cl conHandl e, are the ones you will probably use the most since they simply deal with
drawing single icons to the screen. Some parts of the toolbox require that an icon family handle be passed to them to allow
the drawing of color icons. The icon toolkit provides calls that allow you to create, draw, and manipulate these handles.

Back to top

The New ‘ic' Type Resources

Pl ot | conl Dand Pl ot Cl conHandl e allow the use of standard Cl cons as documented in Inside Macintosh Volume V.
The Pl ot | conl Decall also permits the use of a new set of icon resources documented in Inside Macintosh Volume VI,

Chapter 9. This new set is a collection of different icons, representing a single Finder object, into a family. Each member
of the family has the same resource ID as the ' | CN#' , and a resource type indicating the icon data it contains. Currently

Drawing Icons the System 7 Way Page: 2

Apple has defined three sizes of icons and three bit depths for each size. The sizes are large (32 by 32 pixels), small (16
by 16 pixels), and mini (12 by 12 pixels). The bit depths are 1, 4, and 8. The actual resource types are defined as:

Lar gelBi t Mask = " ON#' ;
Lar ge4Bi t Dat a = ‘icl4';
Lar ge8Bi t Dat a = "icl8';
Smal | 1Bi t Mask = i cs#'
Snal | 4Bi t Dat a = "ics4';
Smal | 8Bi t Dat a = 'ics8';
M ni 1Bi t Mask = "o
M ni 4Bi t Dat a = "icmd'
M ni 8Bi t Dat a = "icnB';

The 1-bit-per-pixel member of each size also contains the mask data for all icons of that size (yes, this means that all
your icons of a certain size must have the same mask). A 1-bit-per-pixel member must exist for each icon size that

Pl ot | conl Duses. The icon size used is determined by the size of the destination rectangle. If the destination rectangle is
greater than 16 pixels on a side then the large icon will be used. If the rectangle is 13-16 pixels on both sides, the small
icon will be used. If itis 12 or less on each side, the mini-icon will be used. The bit depth is determined by the device of
the grafPort you plot into at drawing time. Be sure to create a color grafPort when you want to use color icons.

Back to top

Icon Families (or Suites and Caches As the Tool Set Refers to
Them)

An icon family is simply a collection of icon handles that contain up to one image of each bit depth and size for a given icon.
The family can be fully populated (every possible size or depth available), or it can have only those icons that exist or are
needed. By using families, you remove the need to determine which size or depth of icon to use when drawing into a given
rectangle. Several system routines, the Notification Manager for example, can take an icon family handle when an icon is
requested. This permits them to use the proper color icons if available. In the case of a sparsely populated icon family,
when the proper icon is not available, the icon toolkit will pick a substitute to produce the best results.

An icon cache is a family that also has a Pr ocPt r and ar ef Con. The main difference between a cache and a family is that
the elements of the cache’s array are sparsely populated. When using an icon cache, the system either will use the entry in
the icon family portion of the cache or, if the desired element is empty, it will call the procedure pointed to by the

Pr ocPt r and request the data for the icon. The procedure should have this interface:

FUNCTI ON | conCetter (theType: ResType;
yourDataPtr: Ptr): Handl e;

This function should return either the icon data to be drawn or NIL to signify that this entry in the icon cache does not
exist. Icon caches can be used with all icon family calls. A few extra calls are also available to manipulate icon caches.

Back to top

Drawing Modes or Transforms

In addition to various sizes and bit depths, icons can be drawn with different modes or transforms. Transforms are
analogous to certain Finder states for the icons. For example, the transform that you would use to show an icon of a disk
that has been ejected ist t Of f | i ne. Here is a list of the available transforms:

Drawing Icons the System 7 Way Page: 3

tt Sel ect edD sabl ed
ttSel ectedOfline
tt Sel ect edOpen

(ttSel ected + ttDisabled);
(ttSelected + ttCOffline);
(ttSel ected + ttQOpen);

tt None = $0;
tt Di sabl ed = $1;
ttOffline = $2;
tt Qpen = $3;
tt Sel ect ed = $4000;

The actual appearance of the icon drawn by each transform type may vary with future system software, so you should
always use the transform that best fits the state it represents in your application. This way you will be consistent with
future changes to the look and feel of regular system icons. Note the t t Sel ect ed transform can be added to any of the
other transform types.

There are also transforms that use the Finder label colors to color the icon. To determine the proper label for a file's icon,
you can check bits 1-3 of the f dFl ags field in the file's Finder info. (See the Finder Interface chapter in Inside
Macintosh Volume VI for more information). These bits contain a number from O to 7. Simply add the corresponding

tt Label value to the transform that you give the call. The label values are defined like this:

tt Label 1 = $0100;
tt Label 2 = $0200;
tt Label 3 = $0300;
tt Label 4 = $0400;
tt Label 5 = $0500;
tt Label 6 = $0600;
tt Label 7 = $0700;

Back to top

Alignment

Most icons do not fully fill their rectangle, and it is sometimes necessary to draw an icon relative to other data (like menu
text). In these instances it is nice to be able to have the icon move in its rectangle so that it will be at a predictable
location in the destination rectangle. When drawing an icon you can pass one of these standard alignments in the alignment
parameter or you can add a vertical alignment to a horizontal alignment to create a composite alignment value.

at None = ;

at Verti cal Cent er $1;
at Top $2;
at Bot t om :
at Hori zont al Cent er $4;

(afVerticaI Center + atHorizontal Center);
(at Top + atHori zontal Center);
(atBottom + at Hori zont al Cent er) ;

at Absol ut eCent er
at Cent er Top
at Cent er Bott om

at Left $8;

at Cent er Lef t (atVertical Center + atleft);
at TopLeft (atTop + atlLeft);

at Bot t onlLef t (atBottom + at Left);

at Ri ght $C,

at Cent er R ght (atVertical Center + atRight);
at TopR ght (at Top + atRight);

L 1 1 1 I e I I O =2
o

©~

&

at Bot t onRi ght (atBottom + at Ri ght);

Back to top

And Now (Drum Roll Please) the Calls and What to Pass

Drawing Icons the System 7 Way Page: 4

Now that we have defined every major data type we can think of, here are the actual toolkit calls themselves. One word of
caution: only the For Eachl conDo call protects the handle that is passed to it, so make your icon resources
nonpurgeable.

Icon Family Calls

Newl conSui t e returns an empty icon family handle with all members set to NIL.

FUNCTI ON Addl conToSui t e(t hel conDat a: Handl e;
t heSui te: Handl e;
t heType: ResType): CSErr;

This call will add the data in t hel conDat a into the suite at the location reserved for t heType of icon data.
Addl conToSui t e will replace any old data in that slot without disposing of it, so you may want to call

Cet | conFr onBui t e to obtain the old handle (if any) to dispose of it. This call will be used most often with the
Newl conSui t e call to fill the empty family after it's created.

FUNCTI ON Get | conFr onfui t e(VAR t hel conDat a: Handl e;
t heSuite: Handl e;
t heType: ResType): OSErr;

This call will return a handle to the pixel data of the family member of t heSui t e specified by t heType. If you intend to
dispose of this handle, be sure to call Addl conToSui t € with a NIL handle to zero out the family entry.

FUNCTI ON For Eachl conDo(t heSui te: Handl e;
sel ector: |conSel ect or Val ue;
action: |conAction;
yourDataPtr: Ptr): OSErr;

This routine will call your | conAct i on procedure (see below) for each icon in the family specified by sel ect or and
t heSui t e. The sel ect or parameter is a bit-level flag that specifies which family members to operate on; they can be
added together to create composite selectors that work on several different family members. The values for selector are:

svAl | 1Bi t Dat a
svAl | 4Bi t Dat a
svAl | 8Bi t Dat a
svAl | Avai | abl eD

(svLargelBit + svSmall1Bit + svMni 1Bit);
(svLarge4Bit + svSmall4Bit + svMni 4Bit);
(svLarge8Bit + svSnall8Bit + svMni 8Bit);
$FFFFFFFF,;

svlLar gelBit = $00000001;

svLar ge4Bi t = $00000002;
svlLar ge8Bi t = $00000004;
svSmal | 1Bi t = $00000100;
svSmal | 4Bi t = $00000200;
svSmal | 8Bi t = $00000400;
svM ni 1Bi t = $00010000;
svM ni 4Bi t = $00020000;
svM ni 8Bi t = $00040000;
svAl | Lar geDat a = $000000FF;
svAl | Smal | Dat a = $0000FFO0O0;
svAl | M ni Dat a = $00FF0000;

The action procedure that gets called for each icon type selected for the family is a Pascal type function with the following
interface:

Drawing Icons the System 7 Way Page: 5

FUNCTI ON | conActi on(t heType: ResType;
VAR t hel con: Handl e;

The parameter t hel con is passed by reference here so that your routine can modify the contents of the suite directly.
The your Dat aPt r parameter is the value passed when you called For Eachl conDo. It allows you to easily
communicate with your application. The action procedure returns an OSEr r. If any value other than NOEr r is returned,
For Eachl conDo will stop processing immediately and return the error passed. (Note: This implies that the icons
selected may only be partially operated on. There is no guaranteed order in which the icons get operated on.)

FUNCTI ON Get | conSui t e(VAR t hel conSui te: Handl e;
t heRes| D | NTEGER;
sel ector: |conSel ectorValue): CSErr;

Cet | conSui t e will create a new icon family and fill it from the current resource chain with the icons of resource ID
t heRes| D and types indicated by sel ect or . This is the call you will probably use most often to create an icon family.
Note that if you Set ResLoad(Fal se) before making this call, the suite will be filled with unloaded resource handles.

FUNCTI ON Pl ot | conSui t e(t heRect: Rect;
align: |conAlignnent Type;
transform | conTransf or nType;
t hel conSui te: Handle): OSErr;

This call renders the proper icon image from the passed icon family based on the bit depth of the display you are using and
the rectangle that you have passed. The parameters align and transform are applied to the icon selected for drawing and
then the icon is plotted into the current grafPort. Pl ot | conSui t e chooses the appropriate icon based primarily on size.
Once the proper icon size is determined (based on the destination rectangle), the present member of that size with the
deepest bit depth that the current device can use is selected. A size category is considered present if the black-and-white
member (with mask), ' | CN#' , ' i cs#' , or ' i cm#' | is present. Pl ot | conSui t e can be used for both picture
accumulation and printing.

FUNCTI ON Di sposel conSui t e(t hel conSuite: Handl e;
di sposeDat a: BOOLEAN): OSErr;

This call disposes the icon family handle itself. In addition, if di sposeDat a is true, any of the icon data handles that do
not belong to a resource fork will also be disposed.

This call allows you to specify a label to draw an icon of this suite when no label is specified in Pl ot | conSui t e. This is
used primarily to ensure that a family passed to a system routine gets drawn with the proper label. The default label can
be overridden by specifying a label in Pl ot | conSui t e.

Cet Sui t eLabel returns the label previously set with Set Sui t eLabel .

Icon Cache Calls

In addition to the icon family calls, icon caches have these additional calls:

FUNCTI ON Makel conCache(VAR t heHandl e: Handl e;
nmakel con: | conGetter;
yourDataPtr: UNIV Ptr): OSErr;

This call creates an empty icon cache similar to Newl conSui t e, and associates the additional icon loading procedure and
data value with the family.

Drawing Icons the System 7 Way Page: 6

FUNCTI ON Loadl conCache(t heRect: Rect;
al i gn: |conAlignment Type;
transform |conTransfornType;
t hel conCache: Handl e): OCSErr;

This call allows preflight loading of certain elements of your icon cache. This is handy if you suspect that certain drawing
operations may occur at a time not convenient for loading your icon data (e.g., when your resource fork might not be in
open chain). Loadl conCache takes the same parameters as Pl ot | conSui t e and uses the same criteria to select the
icon to load. The grafPort must be set properly before making this call since it is one of the criteria for determining the
icon to load.

The following four calls are provided to change t heDat a or t hePr oc associated with an icon cache:

FUNCTI ON Get | conCacheDat a(t heCache: Handl e;
VAR theData: Ptr): OSErr;
FUNCTI ON Set | conCacheDat a(t heCache: Handl e;
theData: Ptr): OSErr;
FUNCTI ON Get | conCacheProc(t heCache: Handl e;
VAR theProc: |conCetter): OSErr;
FUNCTI ON Set | conCacheProc(t heCache: Handl e;
theProc: |conCetter): OSErr;

Plotting Icons Not Part of a Suite

The next calls are grouped because they are similar. They let you plot an icon to the screen without your creating an icon
suite. They are also good if you have a' Ci cn' instead of an icon family.

FUNCTI ON Pl ot | conl D(t heRect: Rect;
align: |conAlignnent Type;
transform | conTransf ornType;
theResI D. | NTEGER): OSErr;

FUNCTI ON PI ot Cl conHandl e(t heRect: Rect;
al i gn: |conAlignnent Type;
transform |conTransfornType;
t heCl con: C conHandl e): OSErr;

FUNCTI ON Pl ot | conMet hod(t heRect: Rect;
align: IconAlignnent Type;
transform | conTransf or nType;
t heMet hod: |conGCetter;
yourDataPtr: UNIV Ptr): OSErr;

FUNCTI ON Pl ot | conHandl e(t heRect: Rect;
align: |conAlignnent Type;
transform | conTransf or nType;
t hel con: Handl e): OSErr;

FUNCTI ON PI ot SI CNHandl e(t heRect: Rect;
al i gn: |conAlignment Type;
transform |conTransfornType;
theSICN: Handl e): CSErr;

All these routines share the following parameters: t heRect is the destination rectangle to draw the indicated icon into;
al i gnis the alignment method to use if the icon does not fit the rectangle given; t r ansf or mindicates the desired
appearance of the icon on the screen.

Drawing Icons the System 7 Way Page: 7

In Pl ot | conl D, the parameter t heRes| Dis the resource ID of the family of ' i C' type resources to use. If the correct
bit depth or the size required is not defined, the closest-fitting one will be used.

The Pl ot Cl conHandl| e parameter t heCl con is a handle that you get to a standard QuickDraw color icon. Unlike
Pl ot Cl con, Pl ot Cl conHandl e does not honor the current foreground and background colors. Call Get Cl con to load
the icon. Dispose of it when you are done, since they can take up quite a bit of memory.

Pl ot | conMet hod calls your | conGet t er procedure, discussed earlier, to check for the existence of icon data.

Pl ot | conHandl| e will plot the data from an' | CN#' or ' | CON resource from its handle. It is a new version of
Pl ot | con.

Pl ot SI CNHandl e plots the dataof a' SI CN' resource from its handle. Only ' SI CN' resources with a single member,
or one in which the second member is a mask for the first, will plot correctly.

All the functions return an error code if things did not go well with the drawing or, in the case of the Pl ot | conl D call, if
the indicated icon family could not be used.

Miscellaneous Calls

FUNCTI ON Get Label (| abel Nunber: | NTEGER;
VAR | abel Col or: RG@&BCol or;
VAR | abel String: Str255): OSErr;

This call returns the actual color and string used in the label menu of the Finder and the label's Control Panel. This
information is provided in case you wish to include the label text or color when displaying a file's icon in your application.

FUNCTI ON | conSui t eToRgn(t heRgn: RgnHandl e;
i conRect: Rect;
align: IconAlignnent Type;
thel conSuite: Handle): OSErr;

FUNCTI ON | conl DToRgn(t heRgn: RgnHandl e;
i conRect: Rect;
align: IconAlignnent Type;
iconlD: I NTEGER): OSErr;

FUNCTI ON | conMet hodToRgn(t heRgn: RgnHandl e;
i conRect: Rect;
align: IconAlignnentType;
t heMet hod: |conGCetter;
yourDataPtr: Ptr): OSErr;

These routines will create a region from the mask of the icon selected by the i conRect and al i gn values passed. They
will allow you to do accurate hit testing and outline dragging of an icon in your application. The RgnHandl e must have
been previously allocated before you make this call.

Drawing Icons the System 7 Way Page: 8

FUNCTI ON Rect | nl conSuite(test Rect: Rect;
i conRect: Rect;
al i gn: |conAlignnent Type;
t hel conSui te: Handl e): BOOLEAN

FUNCTI ON Rect I nl conl D(t est Rect: Rect;
i conRect: Rect;
align: |conAlignnent Type;
i conl D | NTEGER): BOCLEAN,

FUNCTI ON Rect | nl conMet hod(t est Rect: Rect;
i conRect: Rect;
al i gn: |conAlignnent Type;
t heMet hod: |conGCetter;
yourDataPtr: Ptr): BOOLEAN

FUNCTI ON PtInlconSuite(testPt: Point;
i conRect: Rect;
al i gn: |conAlignment Type;
t hel conSui te: Handl e): BOOLEAN;

FUNCTI ON Pt I nl conl D(testPt: Point;
i conRect: Rect;
align: |conAlignnent Type;
i conl D | NTEGER): BOCLEAN,

FUNCTI ON Pt | nl conMet hod(testPt: Point;
i conRect: Rect;
al i gn: |conAlignment Type;
t heMet hod: |conGCetter;
yourDataPtr: Ptr): BOOLEAN

These calls hit test the passed Point or Rect against the icon indicated. The parameters i conRect and al i gn, and the
grafPort should be the same as when the icon was last drawn. The functions return true if the point is in the icon mask or
if the rectangle intersects the icon mask.

Back to top

Error Codes

The Icon Utilities will pass back any errors encountered during execution, so you can expect to see Memory Manager,
Resource Manager, and other normal errors.

There is one error code defined specifically for the Icon Utilities routines that may be returned by the Icon plotting
routines.

{ Pascal }
CONST

noMaskFound = -1000;
END;

[* C*/
#def i ne noMaskFound -1000

This error will be returned if the Icon Utilities package could not find or create a mask for the icon family. The Icon
Utilities will use the correct mask for each icon size, if one is available. If no mask for a specific size is available, a mask
will be created from any mask in the family, but if there are no 1 bit images and no mask in the family, plotting calls will
fail with this error.

Drawing Icons the System 7 Way Page: 9

Back to top

Type(def)s and Glue for Pascal and C

The Pascal and C interfaces are provided here to copy and paste since the current MPW standard interface files do not
contain the glue for these calls.

MPW C, Pascal, and Assembler files also have been submitted to AppleLink and the Developer CD, but their paths were not
known when this note was written.

{ Pascal Types }

I conActi on = Prochktr;
{ FUNCTI ON | conAct i on(
t heType: ResType;
VAR t hel con: Handl e;
yourDataPtr: Ptr): OSErr;}
I conGetter = ProcPtr;
{ FUNCTI ON | conGet t er (
t heType: ResType;
yourDataPtr: Ptr): Handle;}

| conSel ectorValue = LONG NT;
| conAl i gnnent Type = | NTEGER,
| conTr ansf or mlype = | NTECGER;

{ Pascal due }

FUNCTI ON PI ot | conl X
theRect: Rect;
align: |conAlignnent Type;
transform |conTransfornType;
theResl D: | NTEGER): OSErr;
I NLI NE $303C, $0500, $ABC9;

FUNCTI ON Newl conSui t e(
VAR t hel conSuite: Handle): COSErr;
I NLINE $303C, $0207, $ABC9;

FUNCTI ON AddIl conToSui t e(
t hel conDat a: Handl e;
t heSui te: Handl e;
t heType: ResType): OSErr;
| NLI NE $303C, $0608, $ABC9;

FUNCTI ON Get | conFr onfui t e(
VAR t hel conDat a: Handl e;
t heSui te: Handl e;
t heType: ResType): OSErr;
I NLINE $303C, $0609, $ABC9I;

FUNCTI ON For Eachl conDo(
t heSui te: Handl e;
sel ector: | conSel ect or Val ue;
action: |conAction;
yourDataPtr: Ptr): OSErr;
| NLI NE $303C, $060A, $ABC9;

FUNCTI ON Get | conSui t e(
VAR t hel conSui te: Handl e;
t heRes| D: | NTEGER;
sel ector: |conSel ectorValue): OSErr;
I NLI NE $303C, $0501, $ABC9;

Drawing Icons the System 7 Way Page: 10

FUNCTI ON Di sposel conSui t e(
t hel conSui te: Handl e;
di sposeDat a: BOOLEAN): OSErr;
I NLI NE $303C, $0302, $ABC9;

FUNCTI ON Pl ot | conSui t e(
t heRect: Rect;
align: |conAlignnent Type;
transform |conTransfornlype;
thel conSuite: Handle): OSErr;
I NLI NE $303C, $0603, $ABC9;

FUNCTI ON Makel conCache(
VAR t heHandl e: Handl e;
makel con: |conGetter;
yourDataPtr: UNIV Ptr): CSErr;
I NLI NE $303C, $0604, $ABC9;

FUNCTI ON Loadl conCache(
theRect: Rect;
align: IconAlignnent Type;
transform |conTransfornType;
t hel conCache: Handl e): OCSErr;
I NLI NE $303C, $0606, $ABC9;

FUNCTI ON PI ot | conMet hod(
t heRect: Rect;
align: |conAlignnent Type;
transform |conTransfornlype;
t heMet hod: |conGCetter;
yourDataPtr: UNIV Ptr): OSErr;
I NLI NE $303C, $0805, $ABC9;

FUNCTI ON Get Label (
| abel Nunber: | NTEGER,
VAR | abel Col or: RGBCol or;
VAR | abel String: Str255): OSErr;
I NLI NE $303C, $050B, $ABC9;

FUNCTI ON Pt | nl conl X
testPt: Point;
i conRect: Rect;
align: IconAlignnent Type;
i conl D: | NTEGER) : BOOLEAN;
I NLI NE $303C, $060D, $ABC9;

FUNCTI ON Pt I nl conSui t e(
testPt: Point;
i conRect: Rect;
align: |conAlignnent Type;
t hel conSui te: Handl e) : BOCLEAN,
I NLI NE $303C, $070E, $ABC9;

FUNCTI ON Pt | nl conMet hod(
testPt: Point;
i conRect: Rect;
align: |conAlignnent Type;
t heMet hod: | conCetter;
yourDataPtr: Ptr): BOOLEAN
I NLI NE $303C, $090F, $ABC9I;

FUNCTI ON Rect I nl conl DX
test Rect: Rect;
i conRect: Rect;

Drawing Icons the System 7 Way Page: 11

align: IconAlignnent Type;
i conl D: | NTEGER) : BOOLEAN
NLINE $303C, $0610, $ABC9;

FUNCTI ON Rect | nl conSui t e(
test Rect: Rect;
i conRect: Rect;
align: IconAlignnent Type;
t hel conSui te: Handl e) : BOCLEAN,
I NLI NE $303C, $0711, $ABC9;

FUNCTI ON Rect | nl conMet hod(
test Rect: Rect;
i conRect: Rect;
align: IconAlignnent Type;
t heMet hod: |conCetter;
yourDataPtr: Ptr): BOOLEAN
I NLI NE $303C, $0912, $ABC9;

FUNCTI ON | conl DToRgn(
t heRgn: RgnHandl e;
i conRect: Rect;
align: |conAlignnent Type;
iconlD: | NTEGER): OSErr;
NLINE $303C, $0913, $ABC9;

FUNCTI ON | conSui t eToRgn(
t heRgn: RgnHandl e;
i conRect: Rect;
align: |conAlignnent Type;
t hel conSuite: Handle): OSErr;
I NLI NE $303C, $0914, $ABC9;

FUNCTI ON | conMet hodToRgn(
t heRgn: RgnHandl e;
i conRect: Rect;
align: IconAlignnent Type;
t heMet hod: |conGetter;
yourDataPtr: Ptr): OSErr;
I NLI NE $303C, $0915, $ABC9;

FUNCTI ON Set Sui t eLabel (
t heSui t e: Handl e;
t heLabel : | NTECER): OSErr;
I NLI NE $303C, $0316, $ABC9;

FUNCTI ON Get Sui t eLabel (
theSuite: Handle): | NTECER,
[NLI NE $303C, $0217, $ABC9;

FUNCTI ON Cet | conCacheDat a(
t heCache: Handl e;
VAR t heData: Ptr): OSErr;
I NLI NE $303C, $0419, $ABC9;

FUNCTI ON Set | conCacheDat a(
t heCache: Handl e;
theData: Ptr): CSErr;
[NLI NE $303C, $041A, $ABCY;

FUNCTI ON Get | conCachePr oc(
t heCache: Handl e;
VAR t heProc: |lconCetter): OSErr;
I NLI NE $303C, $041B, $ABC9;

Drawing Icons the System 7 Way Page: 12

FUNCTI ON Set | conCachePr oc(
t heCache: Handl e;
theProc: |conCetter): OSErr;
I NLI NE $303C, $041C, $ABC9;

FUNCTI ON PI ot | conHandl e(
theRect: Rect;
align: IconAlignnent Type;
transform |conTransfornType;
t hel con: Handl e): OSErr;
I NLI NE $303C, $061D, $ABC9;

FUNCTI ON PI ot SI CNHandl e(
t heRect: Rect;
align: IconAlignnent Type;
transform |conTransfornType;
theSI CN: Handl e): OSErr;
NLI NE $303C, $061E, $ABC9;

FUNCTI ON PI ot Cl conHandl e(
theRect: Rect;
align: |conAlignnent Type;
transform |conTransfornType;
t heCl con: C conHandl e): OSErr;
I NLI NE $303C, $061F, $ABC9;

/* C Typedefs */

t ypedef pascal OSErr (*1 conActi on) (
ResType t heType,
Handl e *t hel con,
voi d *yourDataPtr);

t ypedef pascal Handle (*lconGetter)/(
ResType t heType,
voi d *yourDataPtr);

t ypedef unsigned | ong |conSel ector Val ue;

t ypedef short | conAl i gnment Type;
t ypedef short | conTr ansf or nType;
/* C due */

pascal OSErr Pl otlconl X
const Rect *theRect,
| conAl i gnnent Type ali gn,
| conTr ansf or niType transform
short theResl D)
= {0x303C, 0x0500, OxABC9};

pascal OSErr New conSuit e(
Handl e *t hel conSui t e)
= {0x303C, 0x0207, OxABC9};

pascal OSErr Addl conToSuit e(
Handl e t hel conDat a,
Handl e theSuit e,
ResType t heType)
= {0x303C, 0x0608, OxABC9};

pascal OSErr Getl conFronBuite(
Handl e *t hel conDat a,

Drawing Icons the System 7 Way Page: 13

Handl e theSuite,
ResType t heType)
= {0x303C, 0x0609, OxABC9};

pascal OSErr For Eachl conDo(
Handl e t heSui t e,
| conSel ect or Val ue sel ect or,
| conActi on acti on,
voi d *your Dat aPtr)
= {0x303C, 0x080A, O0xABC9};

pascal OSErr GetlconSuite(
Handl e *t hel conSui t e,
short theResl D,
| conSel ect or Val ue sel ect or)
= {0x303C, 0x0501, OxABC9};

pascal OSErr Di sposel conSuit e(
Handl e t hel conSui t e,
Bool ean di sposeDat a)
= {0x303C, 0x0302, OxABC9};

pascal OSErr Pl otlconSuite(
const Rect *theRect,
| conAl i gnnent Type al i gn,
| conTr ansf or niType transform
Handl e t hel conSuite)
= {0x303C, 0x0603, OxABC9};

pascal OSErr Makel conCache(
Handl e *t heHandl e,
| conCGetter makel con,
voi d *your Dat aPtr)
= {0x303C, 0x0604, O0xABC9};

pascal OSErr Loadl conCache(
const Rect *theRect,
| conAl i gnnent Type ali gn,
| conTr ansf or niType transform
Handl e t hel conCache)
= {0x303C, 0x0606, OxABC9};

pascal OSErr Pl otl conMet hod(
const Rect *theRect,
| conAl i gnnent Type al i gn,
| conTr ansf or niType transform
I conCGetter theMet hod,
voi d *your Dat aPtr)
= {0x303C, 0x0805, OxABC9};

pascal OSErr GCet Label (
short | abel Nunber,
R&BCol or *| abel Col or,
Str255 | abel String)
= {0x303c, 0x050B, 0xABC9};

pascal Bool ean Pt nl conl X
Poi nt testPt,
Rect *i conRect,
| conAl i gnnent Type al i gnnent,
short iconl D)
= {0x303c, 0x060D, OxABC9};

pascal Bool ean Ptlnl conSuite(

Drawing Icons the System 7 Way

Poi nt testPt,
Rect *iconRect,
| conAl i gnnent Type al i gnnent ,
Handl e thel conSuite)
= {0x303c, 0x070E, OxABC9};

pascal Bool ean PtI nl conMet hod(
Poi nt testPt,
Rect *i conRect,
| conAl i gnnent Type al i gnnent,
I conCetter theMet hod,
voi d *your Dat aPtr)
= {0x303c, 0x090F, OxABC9};

pascal Bool ean Rect | nl conl X
Rect *testRect,
Rect *i conRect,
| conAl i gnnent Type al i gnnent,
short iconl D)
= {0x303c, 0x0610, OxABC9};

pascal Bool ean Rect | nl conSuit e(
Rect *testRect,
Rect *iconRect,
| conAl i gnnent Type al i gnnent ,
Handl e thel conSuite)
= {0x303c, 0x0711, OxABC9};

pascal Bool ean Rect | nl conMet hod(
Rect *testRect,
Rect *i conRect,
| conAl i gnnent Type al i gnnent,
| conCetter theMet hod,
voi d *your Dat aPtr)
= {0x303c, 0x0912, OxABC9};

pascal OSErr | conl DToRgn(
RgnHandl e t heRgn,
Rect *i conRect,
| conAl i gnnent Type al i gnnent,
short iconl D)
= {0x303c, 0x0613, OxABC9};

pascal OSErr |conSuiteToRgn(
RgnHandl e t heRgn,
Rect *iconRect,
| conAl i gnnent Type al i gnnent ,
Handl e thel conSuite)
= {0x303c, 0x0714, OxABC9};

pascal OSErr |conMet hodToRgn(
RgnHandl e t heRgn,
Rect *i conRect,
| conAl i gnnent Type al i gnnent,
I conCGetter theMet hod,
voi d *your Dat aPtr)
= {0x303c, 0x0915, OxABC9};

pascal OSErr Set SuiteLabel (
Handl e theSuite,
short thelLabel)
= {0x303C, 0x0316, OxABC9};

pascal short Get SuiteLabel (

Page: 14

Drawing Icons the System 7 Way Page: 15

Handl e theSuite)
= {0x303C, 0x0217, OxABC9};

pascal OSErr GetlconCacheDat a(
Handl e t heCache,
voi d **t heDat a)
= {0x303C, 0x0419, OxABC9};

pascal OSErr Setl| conCacheDat a(
Handl e t heCache,
voi d *t heDat a)
= {0x303C, 0x041A, OxABC9};

pascal OSErr GetlconCacheProc(
Handl e t heCache,
| conCGetter *theProc)
= {0x303C, 0x041B, OxABC9};

pascal OSErr Setl|conCacheProc(
Handl e t heCache,
I conCetter theProc)
= {0x303C, 0x041C, OxABC9};

pascal OSErr Pl otlconHandl e(
const Rect *theRect,
| conAl i gnnent Type ali gn,
| conTr ansf or niType transform
Handl e t hel con)
= {0x303C, 0x061D, OxABC9};

pascal OSErr Pl ot SI CNHandl e(
const Rect *theRect,
| conAl i gnnent Type al i gn,
| conTr ansf or niType transform
Handl e t heSl CN)
= {0x303C, 0Ox061E, OxABC9};

pascal OSErr Pl ot Cl conHandl e(
const Rect *theRect,
| conAl i gnnent Type ali gn,
| conTr ansf or nType transform

Cl conHandl e t heCl con)
= {0x303C, O0x061F, OxABC9};

Back to top

References
Inside Macintosh , Volume V, QuickDraw chapter
Inside Macintosh , Volume VI, Finder Interface chapter

Change History

In this Note, we replaced the C and Pascal interface files and corrected the related text.

May-01-1992 So much text was tweaked that change bars are used only on code changes.

Oct-01-1991 Originally written.

Back to top

Drawing Icons the System 7 Way Page: 16

Downloadables

E‘ Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

