
QuickDraw's Internal Picture Definition Page: 1

CONTENTS

Introduction

Terms

Notes

References

Downloadables

This technical note describes the internal
format of the QuickDraw picture data
structure. This revision corrects some errors
in the opcode descriptions and provides
some examples.

[Apr 01 1985]

Introduction

This technical note describes the internal definition of the QuickDraw picture. The information given here only applies to
QuickDraw picture format version 1.0 (which is always created by Macintoshes without Color QuickDraw). Picture
format version 2.0 is documented in the Color QuickDraw chapter of Inside Macintosh . This information should not be
used to write your own picture bottleneck procedures; if we add new objects to the picture definition, your program will
not be able to operate on pictures created using standard QuickDraw. Your program will not know the size of the new
objects and will, therefore, not be able to proceed past the new objects. (What this ultimately means is that you can't
process a new picture with an old bottleneck proc.)

Back to top

Terms

An opcode is a number that DrawPicture uses to determine what object to draw or what mode to change for subsequent
drawing. The following list gives the opcode, the name of the object (or mode), the associated data, and the total size of the
opcode and data. To better interpret the sizes, please refer to page I-91 of the Using Assembly Language chapter of Inside
Macintosh . For types not described there, here is a quick list:

opcode byte

mode word

point 4 bytes

0..255 byte

-128..127 signed byte

rect 8 bytes

poly 10+ bytes (starts with word size for poly (incl. size word)

region 10+ bytes (starts with word size for region (incl. size word)

QuickDraw's Internal Picture Definition Page: 2

fixed point long

pattern 8 bytes

rowbytes word (always even)

bit data rowbytes * (bounds.bottom - bounds.top) bytes

Each picture definition begins with a picsize (word), then a picframe (rect), and then the picture definition,
which consists of a combination of the following opcodes:

QuickDraw's Internal Picture Definition Page: 3

QuickDraw's Internal Picture Definition Page: 4

Back to top

Notes

Rounded-corner rectangles use the setting of the ovSize point (see opcode $0B, above).

OpenPicture and DrawPicture set up a default set of port characteristics when they start. When drawing occurs, if
the user's settings don't match the defaults, mode opcodes are generated. This is why there is usually a clipRgn code after
the picVersion: the default clip region is an empty rectangle.

The only savings that the "same" opcodes achieve under the current implementation is for rectangles. DrawPicture
keeps track of the last rectangle used and if a "same" opcode is encountered that requests a rectangle, the last rect. will be
used (and no rectangle will appear in the opcode's data).

This last section contains some Pascal program fragments that generate pictures. Each section starts out with the picture
itself (yes, they're dull) followed by the code to create and draw it, and concludes with a commented hex dump of the
picture.

 {variables used in all examples}

 VAR
 err: OSErr;
 ph: PicHandle;
 h: Handle;
 r: Rect;
 smallr: Rect;
 orgr: Rect;
 pstate: PenState; {are they in the Rose Bowl, or the state pen?}

QuickDraw's Internal Picture Definition Page: 5

I. {Rounded-corner rectangle}
 SetRect(r, 20, 10, 120, 175);
 ClipRect(myWindow^.portRect);
 ph := OpenPicture(r);
 FrameRoundRect (r, 5, 4); {r,width,height}
 ClosePicture;
 DrawPicture(ph, r);

'PICT' (1) 0026 {size} 000A 0014 00AF 0078 {picFrame}
 1101 {version 1} 01 000A 0000 0000 00FA 0190 {clipRgn -- 10 byte region}
 0B 0004 0005 {ovSize point} 40 000A 0014 00AF 0078 {frameRRect
 rectangle}
 FF {fin}

II. {Overpainted arc}
 GetPenState(pstate); {save}
 SetRect(r, 20, 10, 120, 175);
 ClipRect(myWindow^.portRect);
 ph := OpenPicture(r);
 PaintArc(r, 3, 45); {r,startangle,endangle}
 PenPat(gray);
 PenMode(patXor); {turn the black to gray}
 PaintArc(r, 3, 45); {r,startangle,endangle}
 ClosePicture;
 SetPenState(pstate); {restore}
 DrawPicture(ph, r);

data 'PICT' (2) 0036 {size} 000A 0014 00AF 0078 {picFrame}
 1101 {version 1} 01 000A 0000 0000 00FA 0190 {clipRgn -- 10 byte region}
 61 000A 0014 00AF 0078 0003 002D {paintArc rectangle,startangle,endangle}
 08 000A {pnMode patXor -- note that the pnMode comes before the pnPat}
 09 AA55 AA55 AA55 AA55 {pnPat gray}
 69 0003 002D {paintSameArc startangle,endangle}
 FF {fin}

QuickDraw's Internal Picture Definition Page: 6

III. {CopyBits nopack, norgn, nowoman, nocry}
 GetPenState(pstate);
 SetRect(r, 20, 10, 120, 175);
 SetRect(smallr, 20, 10, 25, 15);
 SetRect(orgr, 0, 0, 30, 20);
 ClipRect(myWindow^.portRect);
 ph := OpenPicture(r);
 PaintRect(r);
 CopyBits (myWindow^.portBits, myWindow^.portBits,
 smallr, orgr, notSrcXor, NIL);
 {note: result BitMap is 8 bits wide instead of the 5 specified by smallr}
 ClosePicture;
 SetPenState(pstate); {restore the port's original pen state}
 DrawPicture(ph, r);

data 'PICT' (3) 0048 {size} 000A 0014 00AF 0078 {picFrame}
 1101 {version 1} 01 000A 0000 0000 00FA 0190 {clipRgn -- 10 byte region}
 31 000A 0014 00AF 0078 {paintRect rectangle}
 90 0002 000A 0014 000F 001C {BitsRect rowbytes bounds (note that bounds
 is wider than smallr)}
 000A 0014 000F 0019 {srcRect}
 0000 0000 0014 001E {dstRect}
 00 06 {mode=notSrcXor}
 0000 0000 0000 0000 0000 {5 rows of empty bitmap (we copied from a
 still-blank window)}
 FF {fin}

Back to top

References

QuickDraw

Color QuickDraw

Using Assembly Language

Technical Note #59--Pictures and Clip Regions

Back to top

Downloadables

QuickDraw's Internal Picture Definition Page: 7

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

