Displaying Large PICT Files Page: 1

Technical Note QD05
Displaying Large PICT Files

CONTENTS Now that we have scanners and other
massive-picture producing types of
applications, there is a need to address the
Spooling from a PICT file problem of how to display a PICT format
object that is bigger than a current PICT
resource is allowed to be. Note that this
technique applies equally well to version 1
and version 2 (word-opcode) pictures as
More on Picture Compatibility produced by the Macintosh II.

Future Compatibility

MPW Pascal Example

MPW C Example

References
- [Jul 01 1987]

Downloadables

Future Compatibility

Think of the handle returned by a Get Resour ce(' Pl CT' , | D) as a "handle" in the more general sense of being an abstract
"tag"--something that the ROM routines can use to draw the picture with. Don't assume that the entire picture has been read
into memory or that you can directly read any bytes beyond the basic Pi Ct ur e record structure (pi CSi ze followed by

pi cFr ame). Someday we may provide a mechanism for the resource to be disk- instead of memory-based. The QuickDraw
bottleneck procedures will know how to get data from and put data into the pictures in any case.

Back to top

Spooling from a PICT file

In order to display pictures of arbitrary size, your application should be able to import a QuickDraw picture from a file of
type PICT. This is the file produced by a "Save as..." from MacDraw with the PICT option selected.

What follows is a small program fragment that demonstrates how to spool in a picture from [the data fork of] a PICT file. The

picture can be larger than the historical 32K resource size. See technical note #88 if you are unfamiliar with the Si gnal
mechanism. We assume that a Cat chSi gnal s has been done before Get andDr awPl CTFi | e is called.

Back to top

MPW Pascal Example

{the follow ng variable nmust be at the top |evel}

VAR
gl obal Ref : | NTEGER; {refNumof the file to read from

Displaying Large PICT Files

{the follow ng procedure nmust be at the top |evel}

PROCEDURE Cet PI CTDat a(dataPtr: Ptr; byteCount: |NTEGER);
{repl acement for the QuickDraw bottl eneck routine}

VAR

err

CSErr ;

| ongCount . LONG NT;

BEG N

| ongCount : = byt eCount;

err

: = FSRead(gl obal Ref, | ongCount , dat aPtr);

{can't check for an error because we don't know how to handle it}

END;
CONST
abort Pl CT = 128; {error code if DrawPicture aborted}
PROCEDURE Cet Dr awPI CTFi | e; {read in a PICT FILE selected by the user}
VAR
wher . Point; {where to display dial og}
reply . SFReply; {reply record}

nyFi | eTypes : SFTypelList; {nore Standard FILE goodi es}
nunti | eTypes: | NTEGER,

savedProcs : QDProcsPtr;
nmyPr ocs . @Procs; {use CQDProcs for a col or w ndow}
nmyPi cture . PicHandl e; {we need a picture handl e for DrawPicture}
| ongCount . LONG NT;
ny ECF - LONG NT;
myFi | ePos . LONG NT;
BEG N
wher. h : = 20;
wher.v := 20;

nunfi | eTypes : = 1; {display PICT fil es}

nmyFi | eTypes[0] :
SFCet Fi | e(wher, '

I F

"PICT;
, NI L, nunti | eTypes, nyFi | eTypes, NI L, reply);

reply. good THEN BEG N

Set St dProcs(nyProcs); {use SetStdCProcs for a C& af Port}

nmyPr ocs. get Pi cProc : = @zet Pl CTDat a;

savedProcs := thePort”.graf Procs; {set the graf Procs to ours}
t hePort ~. graf Procs : = @yProcs;

nyPi cture : = Pi cHandl e(NewHandl e(Si zeOf (nmyPi cture)));

Si gnal (FSOpen(repl y. f nane, repl y. vRef Num gl obal Ref)) ;

Si gnal (Get EOF(gl obal Ref , nyECF)); {get EOF for |ater check}

Si gnal (Set FPos(gl obal Ref , fsFrontart, 512)); {skip header}

{read in the (obsolete) size word and the pi cFrane}

| ongCount : = SizeO (nyPi cture);

Si gnal (FSRead(gl obal Ref , | ongCount, Ptr (nyPi cture®)));

Dr awPi ct ure(myPi ct ur e, nyPi ct ur e®. pi cFrane); {draw the picture}

Si gnal (Get FPos(gl obal Ref , fil ePos)); {get position for check}
Si gnal (FSO ose(gl obal Ref));

D sposHandl e(Handl e(nyPi cture));

Page: 2

Displaying Large PICT Files Page: 3
thePort”. graf Procs : = savedProcs; {restore the procs}

{Check for errors. If there wasn't enough room }
{DrawPi cture will abort; the FILE position mark}
{won't be at the end of the FILE }
IF fil ePos <> nyECF THEN Si gnal (abort Pl CT);
END; {IF reply.good}
END; {Get DrawPl CTFi | e}

Back to top

MPW C Example

[*repl acenent for the Qui ckDraw bottl eneck routine*/
pascal void Cet Pl CTDat a(dat aPtr, byt eCount)

Ptr dataPtr;

short byt eCount ;

{ /* GetPl CTData */
CSEr r err,
| ong | ongCount ;

| ongCount = byt eCount ;

err = FSRead(gl obal Ref, & ongCount , dat aPtr);

[*can't check for an error because we don't know how to handle it*/
} /* CGetPlCIData */

[*error code if DrawPi cture aborted*/
#def i ne abort PI CT 128

CSErr CGet DrawPl CTFi | e() [*read in a PICT FILE sel ected by the user*/
{ /* GetDrawPl CTFile */

Poi nt wher ; [*where to display dial og*/
SFRepl y reply; [*reply record*/
SFTypelLi st nyFi | eTypes; /*nmore Standard Fl LE goodi es*/
short nunti | eTypes;
CSEr r err;
QDPr ocshktr savedPr ocs;
QDPr ocs nyPr ocs; /*use C(DProcs for a col or w ndowt/
Pi cHandl e nyPi ct ure; /[*we need a picture handl e for DrawPicture*/
| ong | ongCount , nyECF, fi | ePos;
wher. h = 20;
wher.v = 20;
nunFi | eTypes = 1; [*display PICT files*/

nmyFi | eTypes[0] = 'PICT";
SFCGet Fi | e(wher, ' ', nil, nunFil eTypes, nyFil eTypes, ni |, & eply);

if (reply.good)

Set St dPr ocs(&y Procs) ;

[*use Set StdCProcs for a CG af Port*/
nmyPr ocs. get Pi cProc = Get Pl CTDat a;
savedProcs = (*qd.thePort). graf Procs;

[*set the grafProcs to ours*/
(*qd.thePort).graf Procs = &myProcs;

Displaying Large PICT Files Page: 4
nyPi cture = (Pi cHandl e) NewHandl e(si zeof (Pi cture));

err = FSOpen(& eply. f Nang, repl y. vRef Num &gl obal Ref);
if (err '= noErr) return err;

err = Cet EOF(gl obal Ref, &y ECF) ;
[*get EOF for |ater check*/
if (err '= noErr) return err;

err = Set FPos(gl obal Ref , fsFronfStart, 512);/*ski p header*/
if (err '= noErr) return err;

/*read in the (obsol ete) size word and the pi cFranme*/

| ongCount = si zeof (Picture);

err = FSRead(gl obal Ref, & ongCount, (Ptr)*nyPi cture);

if (err !'= noErr) return err;

DrawPi cture(nyPi cture, & **nyPi cture). pi cFrane); /*draw the picture*/

err = Cet FPos(gl obal Ref, & i | ePos) ;/*get position for check*/

if (err '= noErr) return err;
err = FSC ose(gl obal Ref);
if (err !'=noErr) return err;

D sposHandl e((Handl e) nyPi ct ure) ;
(*qd.thePort).graf Procs = savedProcs;/*restore the procs*/

/*Check for errors. if there wasn't enough room */
/[*DrawPi cture will abort; the FILE position mark*/
/*won't be at the end of the FILE. */

if (filePos != nyECF) return abort Pl CT;
el se return noErr;
[*if (reply.good) */

} /* GetDrawPl CTFi |l e */

Back to top

More on Picture Compatibility

Many applications already support PICT resources larger than 32K. The 128K ROMs (and later) allow pictures as large as
memory (or spooling) will accommodate. This was made possible by having QuickDraw ignore the size word and simply read
the picture until the end-of-picture opcode was reached.

For maximum safety and convenience, let QuickDraw generate and interpret your pictures.

While Apple has provided you with the data formats that allow you to read or write picture data directly, we recommend that
you always let Dr awPi ct ur e or QpenPi ct ur e and O 0sePi ct ur e process the opcodes.

One reason to read a picture directly by scanning the opcodes would be to disassemble it to, for example, extract a Color
QuickDraw pixel map to save off in a private data structure. This shouldn't normally be necessary.

If you do look at the picture data be sure and check the version information. You may want to put up an alert in your
application that indicates to the user when a picture was created using a later version of the picture format than your
application recognizes, letting them know that some elements of the picture cannot be displayed. If the version information
indicates a QuickDraw picture version later than the one recognized by your application, your program should skip over the
new opcodes and only attempt to parse the ones it knows.

As with reading picture data directly, it is best to use QuickDraw to create data in the PICT format. If you do need to create
PICT format data directly, it is essential that you use the latest opcode specifications and that you thoroughly test the data
produced on both color and black and white Macintosh machines. Contact Macintosh Developer Technical Support if you are

Displaying Large PICT Files Page: 5
not sure that you have the latest specifications.

Apple does not guarantee that a picture which wasn't produced by QuickDraw will work.

Back to top

References

QuickDraw

Technical Note M.IM.gifureOpcodes -- Internal Picture Format

Technical Note M.PT.Signals -- Signals

Back to top
Downloadables
E Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

Displaying Large PICT Files Page: 6

Displaying Large PICT Files Page: 7

Displaying Large PICT Files Page: 8

Displaying Large PICT Files Page: 9

Displaying Large PICT Files Page: 10

