Picture Comments - The Real Deal

Technical Note QD10

CONTENTS
Introduction

Picture Comments Repertoire

Cohabitation of QuickDraw and PostScript

Text Rotation

Line Layout Control

String Delimitation

Polygon Comment Family

Dashed Lines

Fractional Line Width

Graphics Rotation

PostScript Comments

FormsPrinting Picture Comments

(More or Less) Obsolete PostScript Picture Comments

Appendix: Pascal Interface for Picture Comments

References

Downloadables

Page: 1

Picture Comments - The Real Deal

This Note (formerly titled "Optimizing for the
LaserWriter--PicComments") describes the
picture comments defined and interpreted by
the Apple printer drivers. Most of the picture
comments are specific to PostScript, but we
renamed the Note to emphasize that
LaserWriter printers are not necessarily
PostScript devices, and that QuickDraw
printer drivers may implement their own
picture comment handling. This Note has been
completely rewritten and incorporates all
additional insights gained during the last few
years. We are also much more determined
now to discourage the use of obsolete and
problem-laden (although still supported)
picture comments, and we carefully point out
known problems or limitations of each
comment.

[Nov 01 1988]

Introduction

The QDPr ocs record (see Inside Macintosh Volume I, page 197) reflects the foundations of the architecture of
QuickDraw. The comrent Pr oc field points to a procedure that processes picture comments, as included in a picture by
means of the Pi cCommrent procedure (Inside Macintosh Volume |, page 189). This allows applications to include
application-specific additional information in the pictures they create.

The QDPr ocs record also is the key to understanding how Macintosh printer drivers work. When the application calls
Pr OpenPage and draws into the printing grafPort, the printer driver collects the drawing commands by hooking into the

Picture Comments - The Real Deal Page: 2

QDPr ocs of the printing port. In particular, if an application calls the Pi cComent procedure while drawing into the
printing grafPort, the printer driver gets a chance to capture and process the information contained in the Ki nd and
dat aHandl e parameters.

During the development of the original LaserWriter driver, it became obvious that applications should be able to take
advantage of certain PostScript features that were not accessible through standard QuickDraw calls, such as rotated text
and graphics, dashed lines, fractional line widths, and smoothed polygons. Also, certain applications needed a way to
transmit their own native PostScript instructions to the printer. Picture comments seemed to be the ideal vehicle for
providing these capabilities.

Unfortunately, there are conflicts with the device-independent nature of the Macintosh Printing Manager architecture. In
this Note, we still want to document picture comments as completely and correctly as possible; and we want to tell you how
to use the best of their features, while maintaining the important goal of device-independent printing and all- purpose
PICTs. (This is why it has such a painful history!)

First, we give an overview of the picture comments as currently implemented by Apple's printer drivers. This leads us
immediately to the problem section "Cohabitation of QuickDraw and PostScript," which also shows how to keep the

QuickDraw and PostScript graphics states synchronized during printing. Finally, we discuss all the picture comments by
subject, in the order suggested by Table 1.

Back to top

Picture Comments Repertoire

The following picture comments are recognized by all PostScript LaserWriter drivers version 3.1 and later.

Table 1. PostScript LaserWriter Picture Comments

Data
Type Eind Size Data Description
TextEegin 150 G TTxtFicERer Eegin text function
TextEnd 151 0 HIL Exnd k2t function
EtringEegin 152 1] HIL Ezzin string delimitation
ErringEnd 153 0 HIL Exnd string delimitation
Te xtC enter 154 =] TTxtC enker QIEE=et ko eenter of rotation
LineLavyoutOEE 155 o] HIL Turn LazerWriter Ling lavyout off
LineLayoutOn 156 i) HIL Turn Lazer T riter Lline Laynout on
i C lientLineLairout 157 16 TC lientLL Customire line Iayout arvor
diskribution
PolyEegin 160 i HIL Eegin special polywzon
PolyEnd 161 1] HIL End speeial polygon
Polylznore 163 i] HIL Iznore following polygon data
PolyEmaath 164 1 Palyierh Cla=e, Fill, Frame
PalyC lose 165 u] HIL Cloze the polygon
DarhedLine 150 - Thazhedling IrawEollowing lines ar dazhed
DarhedStop 151 u] HIL End dashed lines
ZetLineWidth 152 3 Foint Ext fraational ling widths
PostZeriptBegin 1490 1] HIL et driver stake to PostZeript
PostZeriptEnd 191 1] HIL Eestore QuickIraw state
PostZeriptHandle 192 - PETrata PostZeript data in handle
t PostZeriptFile 193 = FileHame FileHame in data handle
t Te xtIsPostZeript 194 1] HIL Quick I ke xk is sent ax PostZeript
t BesouracPE 195 g Type/Il ' Inde x PostEeript data ina resoures File
PEEegintaZawe 196 u] HIL Sat driver skakg to PostSaript
| EetGrayLewel 197 4 Fixed Call FostSaript's setgrayr oparator
EotateEegin 200 4 TRotation Eegin rotated port
EotateEnd 201 i) HIL End rotation
EotatelC antar 202 -] Cenker QiEEzat ko aenter of rotation
i FormsPrinting 210 1] HIL Dron't alear print buffer after ecach page
| EndFormsFrinting 211 1] HIL End forms printing after FriZ loseFage

These comments are obsolete,
These comments are nok recommended.

H —+

Picture Comments - The Real Deal Page: 3

Most of the comments in Table 1 were designed specifically for the original LaserWriter driver. In fact, the term
LaserWriter has been (and often still is) used in the sense of "PostScript printer," and the LaserWriter driver is known
to be basically a QuickDraw-to-PostScript translator. Meanwhile, however, QuickDraw-based LaserWriter models came
out, so we should start being more careful in our terminology. This is why we insist on talking about PostScript drivers
or PostScript printers when a picture comment applies to PostScript.

QuickDraw printer drivers may implement their own picture comments, or some of the above comments, in order to
provide additional capabilities. Certain third-party printer drivers implement text rotation, for example, by supporting
the Text Begi n/ Text Cent er/ Text End picture comments.

Apple's QuickDraw printer driver for the LaserWriter SC supports the following three picture comments:

l'ine | ayout off
i ne |l ayout on
i ne wi dt hs.

Li neLayout O f 155 0 NI L Turn LaserWiter
Li neLayout On 156 0 NI L Turn LaserWiter |
Set Li neW dt h 182 4 Poi nt Set fractional |

The ImageWriter LQ driver and the first versions of the StyleWriter driver (prior to 7.2) implement the
Li neLayout O f and Li neLayout On picture comments. Even the ImageWriter driver reacts to picture comments:

Bi t MapThi nni ngO f 1000 0 NI L Turn off hi-res bitmap thinning
Bi t MapThi nni ngOn 1001 0 NI L Turn on hi-res bitmap thinning

The ImageWriter driver does the same toggling of the "bitmap thinning” of fat bitmaps in Best mode, when it encounters a
Text Begi n or Text End comment (undocumented feature- - never mind!). The ImageWriter LQ driver handles these
comments similarly.

The current StyleWriter driver (version 7.2.2) and the personal LaserWriter LS driver do not support any picture
comments at all.

The point of all this is:
It is impossible to determine which picture comments are supported by which printer driver.

In other words, your application should never assume a particular picture comment is available, but your application also
should not defeat the device-independent design of the Macintosh printing architecture by writing printer driver-specific
code!

Of course, you know (Inside Macintosh Volume II, page 152) that the high byte of the pr St | .wDevV field of the print
record identifies a printer driver species, and that a value of $03 tells you the printer driver belongs to the PostScript
LaserWriter driver ancestry. As a matter of fact, many applications use this information to achieve special printing
features not available through the Printing Manager interface.

And, of course, you also know that we don't like this idea. One reason is future system software may allow spool files to be
redirected to a printer other than the one chosen when you sent your printing instructions (including picture comments).
Another reason is that picture comments usually are included in PICTs; documents containing such pictures should print
with optimal results on any printer configuration. And, finally, you never know what the future holds for you, in terms of
new printing devices or new printer drivers--or a new printing architecture!

Instead, if a picture (i.e., a sequence of imaging instructions) contains picture comments to enhance the output on devices
that support them, it should also contain a standard QuickDraw representation as a fallback solution, in case the rendering

device does not recognize the picture comments. The design and implementation of these picture comments should
incorporate conventions to make this cohabitation of two representations in one picture possible.

Back to top

Cohabitation of QuickDraw and PostScript

Picture Comments - The Real Deal Page: 4

Device-Independent Pictures

We can think of the Printing Manager's Pr OpenPage and Pr C osePage calls as being analogous to the GpenPi ct ur e
and Cl osePi ct ur e calls (which, by the way, reminds us to never call OpenPi ct ur e between Pr QpenPage and

Pr d osePage; see Inside Macintosh Volume Il, page 160). In both cases, a stream of imaging instructions is recorded
for deferred rendering. We want to create pictures that include both QuickDraw and optimized PostScript representations
so that we obtain the best results in all circumstances. We must take special care for third-party QuickDraw printer
drivers that support picture comments originally intended for PostScript devices only.

Let's start with the easy ones.

The two picture comments Post Scri pt Begi n and Post Scr i pt End clearly suggest that any imaging instructions in
between are intended exclusively for PostScript printing devices. In the case of the PostScript LaserWriter driver, the
effect of Post Scr i pt Begi n is to disable all bottlenecks except conment Pr oc, t xMeasPr oc, get Pi cProc, and
put Pi cProc. This means that QuickDraw's text, line, shape (Rects, RoundRects, Ovals, Arcs, Polygons) and bitmap
drawing calls don't have any effect in the printing grafPort when enclosed by Post Scri pt Begi n and Post Scri pt End.
Instead, the PostScript LaserWriter driver expects to receive the imaging instructions as data enclosed in the

Post Scri pt Handl e comment. This way, both the PostScript and QuickDraw representation can coexist in the same
picture without conflict. As a consequence, non-PostScript printer drivers, unable to interpret general PostScript text,
must not imitate this behavior of ignoring QuickDraw instructions, even when they implement other picture comments
such as Text Begi n and Text End for text rotation. Otherwise, they would miss the QuickDraw representation of some
PostScript imaging.

The text rotation picture comments (Text Begi n, Text Cent er, Text End) silently include the assumption that a
printer driver that supports these comments:

a. ignores the QuickDraw clipping region between Text Begi n and Text End
b. ignores the QuickDraw CopyBi t s instruction within Text Begi n/ Text End

This way, a bitmap representation of the rotated text can be included in the picture. It will be used only if the

Text Begi n/ Text End comments are not supported. Conversely, the QuickDraw commands required to draw the text to
be rotated by the printer driver are "hidden™ from QuickDraw by setting the clipping region to empty, which is ignored by
the driver supporting the comments.

The polygon picture comments provide another solution to the problem, in form of the special comment Pol yl gnor e. It
allows one to include a QuickDraw representation of the smoothed polygon, ignored by a driver that supports polygon
smoothing (such as via PostScript's CUr ve operator). And for filled polygons, QuickDraw's region concept works around a
conflict of who owns which polygon (see sample code later in this Note).

Some picture comments (such as the line layout comments) do not require a fallback solution in case they are not
supported by a printer driver; or the feature, if absent, is not a big loss (such as Set Li neW dt h, provided you use it
only for widths smaller than one 72-dot-per-inch (dpi) QuickDraw pixel).

But for the picture comments DashedLi ne/ DashedSt op and Rot at eBegi n/ Rot at eCent er / Rot at eEnd, there
is no general solution to the "cohabitation” problem; and we are distressed about it. It is obvious that they have been
defined with the PostScript LaserWriter driver in mind, without anticipating a future furnished by some 150

third-party printer drivers. The only way to include both representations in these cases is indeed to assume that only
PostScript drivers will support the picture comment, such that the Post Scri pt Begi n and Post Scri pt End
comments can be used to "comment out" the QuickDraw representation.

Even under the above assumption, we still need a trick to prevent the QuickDraw calls within the scope of the picture
comments from showing up when the comments are not recognized. Fortunately, early Macintosh developers discovered a
QuickDraw feature that, unintentionally, solves the problem. Passing the "magic" mode 23 to PenMbde inhibits
QuickDraw's normal drawing, but still lets the LaserWriter driver see the drawing instructions come through the
bottlenecks, so that it can translate them into PostScript. Note that this pen mode always has been undocumented, and that
using it was considered a compatibility risk and frowned upon for some time. Given the current state of affairs, however,
there is no reason anymore to be paranoid about it.

Keeping QuickDraw and PostScript Synchronized

There are two situations, in the context of picture comments, where the design of the PostScript LaserWriter driver
requires special precautions from the application programmer.

Picture Comments - The Real Deal Page: 5

First, certain QuickDraw instructions like Move, MoveTo, PenPat , and PenSi ze change the state of the grafPort,
without going through the QDPr 0CS bottleneck procedures. A Macintosh printer driver takes these changes into account
only at the time it executes an actual drawing instruction. Remember, the printer driver hooks into the QDPr oCS to get
execution time and only "sees" instructions coming through the QDPr ocs. Nothing is wrong with it--unless PostScript
code is woven into the graphics instructions by means of picture comments. (Note that PostScript code may be generated
transparently when the LaserWriter driver encounters certain picture comments.) If the PostScript code assumes that
the current state of the grafPort corresponds to what you expect it to be, then you have to flush the state of the grafPort
explicitly before inserting the PostScript code. This is easier than it sounds; just do something inoffensive that goes
through the QDPr ocs. | i nePr oc bottleneck, like in the following utility procedure:

PRCCEDURE Fl ushG af Port St at e;

{ This routine causes the state of the Printing Manager's grafPort to be }
{ flushed out to the LaserWiter, by nmaking a dunmy call through the }
{ Q@FProcs.lineProc bottleneck. Pen size and pen |ocation are preserved. }

VAR
penl nf o: PenSt at e;
BEA N
CGet PenSt at e(penl nf o) ; { Save pen size. }
PenSi ze(0, 0) ; { Make it invisible. }
Li ne(0, 0); { Go through QDProcs.!lineProc. }
PenSi ze(penl nf 0. pnSi ze. h, penl nf 0. pnSi ze. v) ; { Restore pen size. }
END,;

Another unwanted effect is related to the PostScript LaserWriter driver's multiple internal buffering of generated
PostScript code. The PostScript code generated for text drawing instructions (which usually involves font queries and,
sometimes, font downloading) is buffered independently from the PostScript code inserted by means of picture comments.
In certain cases, this results in apparently nonsequential execution of drawing instructions, and may affect clipping
regions or may have side effects on the PostScript code you included in picture comments. In order to synchronize the
sequence of QuickDraw instructions with the generation of PostScript code, you need to call the following procedure:

PROCEDURE Fl ushPost Scri pt St at e;
{ This routine flushes the buffer maintained by the LaserWiter driver. }

{ All PostScript, generated either by the app or by the LaserWiter }
{ driver, will be sent to the device. }
BEGA N

Pi cComment (Post Scri ptBegin, 0, NL);
Pi cConment (Post Scri pt End, 0, NL);
END;

In the following discussion of picture comments, we'll refer to these two utility routines as appropriate.
Back to top

Text Rotation
Comments: Text Begi n, Text Cent er, Text End

These comments give access to PostScript's capabilities of rotating, flipping, and justifying text. They are intended for
applications likely to be used with PostScript printers (such as desktop publishing and advanced drawing applications),
but which don't want to use PostScript explicitly. Note that some non-PostScript printer drivers support these comments
as well. For situations where the comments are not supported (such as the QuickDraw screen, or most QuickDraw printer
drivers), you must provide a bitmap representation of the rotated text as an alternative.

Let's look at sample code right away.

Picture Comments - The Real Deal Page: 6

USES PicConments; { See Appendi x; defines constants for just and flip and }
{ the structures referred to by TTxtPicHdl and TCenterHdl .}

PROCEDURE QDStringRotation(s: Str255; ctr: Point;

just, flip: Integer; rot: Fixed); EXTERNAL;
{ This routine should generate a bitmap of the rotated and fli pped text
{ and use CopyBits to draw it to the grafPort. Left as an exercise ...

———

PROCEDURE DrawXString(s: Str255; ctr: Point; just, flip: Integer; rot: Fixed);

{ Draws the string s rotated by rot degrees around the current point, offset }
{ by ctr, justifying and flipping according to the just and flip paraneters. }
{ If the printer driver supports the TextBegin, TextCenter, and Text End }
{ picture conments, it rotates the text at device resol ution; otherw se, the }
{ external procedure QStringRotation is called to inmage the rotated string. }
{ The pen position is preserved. }
VAR

hT: TTxtPi cHdl ; { Defined in PicComments.p - see Appendi x. }

hC. TCenter Hdl ; { -"-1

zeroRect: Rect;

pt: Point;

ol ddip: RgnHandl e;

BEG N
CGetPen(pt); { to preserve the pen position }

hT : = TTxt Pi cHdl (NewHand! e(Si zeO' (TTxt Pi cRec))) ;
hC : = TCent er Hdl (NewHand! e(Si zeOr (TCent er Rec))) ;
{ No error handling: if these fail, we are in deep trouble anyway ...}
W TH hTA" DO BEG N
t Jus .= just;
tFlip = flip;
t Angl e = - FixRound(rot); { I like counterclockw se better. }
t Li ne = 0; { reserved }
t Gmt =0; { used internally by the printer driver }
t Angl eFi xed := - rot;
END;
hCM.y := Long2Fi x(ctr.v);
hCrM. x : = Long2Fi x(ctr. h);

Pi cCommrent (Text Begi n, Si zeOf (TTxt Pi cRec), Handl e(hT)) ;
Pi cComment (Text Cent er, Si zeOF (TCent er Rec) , Handl e(hC)) ;
{ PostScript graphics state now has rotated/fli pped coordi nates. }

olddip := NewRgn;

Getdip(olddip);

Set Rect (zeroRect, 0,0, 0, 0);

ClipRect(zeroRect); { Hdes the followi ng DrawString from Qui ckDraw }
Drawstring(s); { in the rotated PostScript environnent. }

d i pRect (ol dd i pA”. rgnBBox) ;

{ Now the "fall back" bitmap representati on; see the comments above }

{ at the declaration of the QDStringRotati on procedure. }
Q@sStringRotation(s, ctr, just, flip, rot);

Pi cComment (Text End, O, NIL); { Set environment back to the original state }

Di sposHandl e(Handl e(hT));
Di sposHandl e(Handl e(hQ)) ;

MoveTo(pt.h,pt.v); { to preserve the pen position }
END;

Picture Comments - The Real Deal Page: 7

The preceding discussion about including both QuickDraw and PostScript representations and the comments included in the
source code say it all: The conventions tied to the usage of the Text Begi n and Text End picture comments allow you to
take advantage of a printer driver's implementation of high-resolution text rotation, while including a bitmapped
representation for where the comments are not supported.

Some Additional Hints

O Because of QuickDraw's orientation of the vertical coordinate axis, the rotation angle is measured clockwise.
Nothing prevents us from using the negative angle if we are used to the counterclockwise orientation.

O The angle is measured in degrees (0..360), and passed as a Fi Xxed type number (that is, if taken as a Longl nt
value, you have to divide it by 65536 to obtain the angle in degrees). For integer angles, it is possible to use a
reduced TTxt Pi cRec structure that does not contain the t Rot Fr ac field. The PostScript LaserWriter driver
uses Cet Handl eSi ze(hT) to determine whether it must use the fractional angle in the t Rot Fr ac field. To be
safe, always set the t Rot field to Fi xRound('t Rot Fr ac) if you go with the extended TTxt Pi cRec (as we do
here).

O It is convenient that clipping regions are ignored between the Text Begi n and Text End picture comments,
because it allows us to clip out the Dr awSt r i ng on printers that don't support these comments. Unfortunately,
this also means that text rotated this way can't be clipped. If clipping of rotated text is required, you'll have to do
it entirely within PostScript.

O Due to the LaserWriter driver's internal buffering of generated PostScript code, the effect of ignoring clip regions
may be propagated to preceding sections of your drawing instructions. We recommend calling the
FI ushPost Scri pt St at e procedure described earlier immediately before the Text Begi n comment.

O Thet Jus field in the TTxt Pi cRec, if different from t JusNone, tells the printer driver to maintain either the
left, right, or center point of the string without recalculating the interword and intercharacter spacing. The
t JusFul | value specifies that the original length of the string (on the QuickDraw screen) must be maintained.
This is important when the printer font has widths different from those of the screen font, and when you rotate
justified blocks of text.

O Thet Fl i pfield in the TTxt Pi cRec specifies horizontal or vertical flipping about the center point specified by
the Text Cent er comment.

O The Text Cent er comment specifies the center of rotation for any text enclosed within the Text Begi n and
Text End calls, as an offset to the location of the current point. The rotation is achieved by changing PostScript's
coordinate system. A sequence of Dr awSt ri ng - MveTo instructions is rotated as a whole until Text End is
encountered.

O Some versions of double-byte Kanji systems print Kanji characters by calling CopyBi t S instead of calling
standard text drawing routines. This means the comments in the Text Rotation family cannot be used with these
fonts. Instead, use the Graphics Rotation comment family described later in this Note.

Back to top

Line Layout Control
Comments: Li neLayout On, Li neLayout O f, d i ent Li neLayout

When drawing to a printing grafPort, the selected printer driver does a lot of work "behind the scenes" to try to maintain
the infamous "What-You-See-Is-What-You-Get" (WYSIWYG) metaphor from the screen to the paper, and generally to
make the printed output look as good as possible. Depending on the target device, the printer driver, and the configuration
of fonts in the system, the font you draw text with may be scaled, smoothed, remapped, or even replaced by a font built
into the printer. In nearly all cases where the device resolution of the printer is different from QuickDraw's "hard-coded"
72-dpi screen resolution, the width of text rendered on the printer is different from the text width on the screen. This is
due to nonproportionally scaling bitmapped fonts, different character widths after font substitution, and rounding errors
of fractional character widths on the screen. The difference in the width of a line of text is called the line layout error.

The printer driver is responsible for adjusting the word and character spacing in the printed output so that the two widths
are identical. If it doesn't, apparently fully justified text on the screen may appear ragged on the paper, and certain lines
of text may extend beyond the right border and be badly clipped. Many existing applications make this task really difficult
for the printer drivers (don't blame them, though!). They position the words (or even characters) separately on a line,
and the printer driver has to figure out how to collect the complete line before applying its line layout algorithm to
distribute the difference of the text widths into word and character spacing. Given the uneven distribution of the character
width differences, and the requirement of achieving good typographical quality in the printed output, it is unavoidable that
the position and width of a word within a justified line differs slightly from what appears on the screen; only the length of
the whole line is maintained.

Picture Comments - The Real Deal Page: 8

In computing the required line layout adjustments, the LaserWriter driver proceeds as follows:

1. It collects text coming through the printing grafPort's t ext Pr oc bottleneck, and heuristically puts it together
into what it "believes" is a logically contiguous line of text. This includes text moved vertically away from the
baseline, to take care of indices or exponents in the text. The process of accumulating text is stopped when the
LaserWriter driver detects that the horizontal component of the pen position has changed since the previous text
drawing instruction, or when picture comments like Text Begi n, Text End, Stri ngBegi n, Stri ngEnd are
encountered.

2. It determines the width of the accumulated logical line of text, both on the screen and on the printer, and
distributes the line layout error among the interword and intercharacter spacing of the printed output.

The Li neLayout O f picture comment disables only the second step (distribution of the line layout error); the
heuristic algorithm of accumulating text into a logically contiguous piece is not affected. Otherwise, if the character
widths of the printer font are different from those of the screen font, and if the text contains exponents or indices, the
latter would often be misplaced.

The following code fragment shows a probably unexpected consequence of this behavior. We draw a line in two pieces three

times. A vertical line shows the starting pen position of the second Dr awSt r i ng call. The second line is enclosed by
Li neLayout O f and Li neLayout On picture comments.

PROCEDURE (bser veli neLayout ;

CONST
testStringl = ' Whatever you like, preferably *;
testString2 = 'with spaces, long and short words';
font Name = ' New York' ;
fontSi ze = 14;
x0 = 20; { starting point }
y0 = 40;
h =30; { line height }
VAR
fam |yl D | nteger;
W, y . I nteger;
BEG N

Get FNunq(f ont Nane, fam |yl D);
Text Font (fam |yl D);
Text Si ze(font Si ze) ;

w = StringWdth(testStringl);

y :=_y0;

MoveTo(x0 + w, y - h);

Li ne(0, 4 * h); { This is to estimate the difference. }

{ Draw the first line, in two pieces.

{ This is the default |line |ayout behavior of the LaserWiter driver. }
MoveTo(x0, Y);

DrawsString(testStringl);

MoveTo(x0 + w, Y);

DrawsString(testString2);

{ Draw the second line, in the same way as above. }

{ Because of the LineLayoutOf picture conment, the unnodified w dths }
{ of the printer font are used. }

y:i=y+h

Pi cCommrent (Li neLayout O f, 0, NIL);

{ * % * (1) ***}
MoveTo(x0, y);
DrawString(testStringl);
MoveTo(x0 + w, y);

Picture Comments - The Real Deal Page: 9

. . { * k% % (2) ***}
DrawsString(testString2);
y 1=y +h

Pi cComment (Li neLayout On, 0, NIL);
{ Back to the original behavior. }
MoveTo(x0, y);
DrawsString(testStringl);

MoveTo(x0 + w, Y);

DrawsString(test String2);

END;

And this is (approximately) the output of the Cbser veLi neLayout (with LaserWriter driver version 7.1.1, and the
default setting "Font Substitution enabled"):

Wwhatewer wou like, preferably with spaces, long and short words
SWhatewer yvou like, preferably with spaces, long and short words
Wwhatewer wou like, preferably with spaces, long and short womds

Figure 1. Effect of the Li neLayout Of f comment

For most noticeable effects, we choose the bitmapped New York font, such that the LaserWriter driver substitutes
PostScript Times (note that there are no line layout problems with TrueType fonts, unless the TrueType font has the same
name and different character widths as a printer-resident PostScript font). The screen font New York is larger than the
PostScript font Times, and in the first and third lines, the printer driver (after accumulating t est St ri ngl and

test St ri ng2 into one logical line) distributes the line layout error (mainly) among the spaces between words. You may
even notice that the starting point of t est St ri ng2 ("with ..."") has been slightly moved to the left in the process. The
width of the whole line, however, is the same as on the screen.

The second line, where the Li neLayout Of f comment is active, demonstrates a dramatic counterexample to the popular
belief that this picture comment is here to assure precise positioning of text. It seems the opposite is true, and the
LaserWriter driver has deliberately ignored the MoveTo(Xx0+w, y) instruction! What we would have expected is this:

Wwhatewer wou like, preferably with spaces, long and short words
“Whatever vou like, preferably [withspaces, long and short wrords
“whatewer wou like, preferably with spaces, long and short womds

Figure 2. Desired result of the Li neLayout O f comment

The attentive reader already knows the explanation. As mentioned earlier, we must break the LaserWriter driver's
heuristic line accumulation algorithm before drawing t est St ri ng2. Short of adequate documentation, developers have
found out that a Fl ushGr af Por t St at e call right after the MoveTo(X0O+w, y) instruction has the desired effect (see
{*** (2) ***} in the code snippet given earlier). Unfortunately, it creates quite a lot of overhead in the pictures, and
penalizes all printer drivers that don't need it. A better solution is to use the St ri ngBegi n and St ri ngENd picture
comments at the markers {*** (1) ***} and {*** (2) ***} in the code shown earlier. This indicates that

t est Stringl is to be considered a logically independent text entity, and must not be put together with any other pieces
of text coming through the t ext Pr oc bottleneck. The overhead of these comments is much smaller, and they don't affect
other printer drivers at all.

The i ent Li neLayout picture comment, supported by the (PostScript) LaserWriter driver, has never been
documented. Its effect is rather subtle and very specific to the PostScript LaserWriter driver. Basically, it allows the
application to redefine the character that absorbs the major part of the line layout error (usually the space character),

Picture Comments - The Real Deal Page: 10

and the percentages of the "major" and "minor" parts of the line layout error (usually 80 percent versus 20 percent).
The "minor" part is distributed across intercharacter spacing.

Only very ambitious page layout applications might be interested in this functionality; but then, they should rather aim at
a more general scheme of line layout control that does not rely upon this very driver-specific picture comment.

The Pi cComment . p interface (see the Appendix) describes the TCl i ent LLRecor d structure passed through the
handle parameter to the picture comment. If you want, feel free to experiment with it; we recommend, however, that you
do not use this picture comment in your application.

Caveats

O Some older printer drivers supporting the Li neLayout O f picture comment are unable to correctly obey a
subsequent Li neLayout On picture comment.

O Don't forget that if you use Li neLayout O f, the burden of "WYSIWYG" is now on your shoulders, and not the
printer driver's.

O A previous version of this Note said that setting the Font Manager's Fr act Enabl e global to TRUE implied the
effect of the Li neLayout O f picture comment. As it turned out, the statement was based on observations with a
specific (older) version of the LaserWriter driver, and is not true in general. The setting of Fr act Enabl e does
have some more or less subtle effects on the line layout algorithm, however; and this is quite plausible.

Similarly, the results of combining the picture comments Li neLayout O f and Li neLayout On with calls to
SpaceExt r a (Inside Macintosh Volume |, page 172) or Char Ext r a (Inside Macintosh Volume V, page 77)
are sometimes unpredictable, depending on the particular printer driver.

And Finally the Good News

Given that the effect of the Li neLayout O f and Li neLayout On comments does not require any changes in your
printing code, you don't have to worry whether or not a particular driver supports them. They are useful mainly when
you're sure you want no external assistance in computing word and character spacing for full justification, or when you
need precise control over the horizontal placement of words and characters (such as in forms or tabulated text) and
understand how to achieve this.

Back to top

String Delimitation
Comments: St ri ngBegi n, Stri ngEnd

These comments allow applications to specify the logical beginning and end of a string, possibly drawn with multiple calls
to a QuickDraw text drawing routine (such as Dr awChar). If this was their only raison d'étre, they would have no
relationship with the PostScript LaserWriter driver. But, as already let out in the preceding section on line layout, they
are important to notify the printer driver that it should consider the text coming through the t ext Pr oc bottleneck
between St ri ngBegi n and St ri ngENd as an independent entity. Otherwise, the driver might continue to perform its
heuristic accumulation of text drawing instructions for the same line, and defeat your text positioning intentions. Indeed,
both St ri ngBegi n and St ri ngENd trigger the generation of PostScript instructions for drawing the text that has been
accumulated in a line layout buffer, and reinitialize the internal variables for line layout computations. In other words,
you need these picture comments to turn the LaserWriter driver's line layout behavior completely off.

Back to top

Polygon Comment Family

Comments: Pol yBegi n, Pol yEnd, Pol yd ose, Pol ySnoot h, Pol yl gnor e

PostScript has the built-in capability of drawing cubic Bézier curve sections (see the PostScript Language Reference
Manual, Second Edition, page 393). This is convenient for "smoothing" of polygons. The polygon-related picture
comments have been provided to give applications easy access to this PostScript feature, with provision for including a

QuickDraw approximation of the curve.

Schematically, the polygon comments are used as follows:

Picture Comments - The Real Deal Page: 11
PolyBeginComment; { Put the PostScript driver into "polygon mode." }
ClipRect(zeroRect); { Hide the following from QuickDraw. }
PolyClose Comment; { Optionally, if "closed" smoothing desired. }
PolySmoothComment; { Tell the driver to draw a Bézier curve. }
DrawPolygon; { Invisible for QuickDraw; PostScript output = curve. }
PolylgnoreComment; { The driver will ignore the following line drawing. }
SetClip(origClipRgn); { Make it visible for QuickDraw. }
DrawQDPolygon; { Usually, a QuickDraw approximation of the curve. }
PolyEndComment; { PostScript driver resumes standard mode. }
A piece of sample code is sometimes worth more than one or two pictures; below, you'll find both. For clarity and
completeness of the exposition, we provide the coordinate definition of the polygons through arrays of Poi nts, initialized
in a preliminary Def i neVerti ces procedure. You can enclose the Pol ygonDend procedure between GpenPi ct ur e

and Cl 0sePi ct ur e calls to create a picture containing both QuickDraw and PostScript representations (see Figures 3
and 4), or you can use it as is when a printing page is open.

USES Pi cComment s;
{ See Appendi x of this Note for the definition of the TPol yRec structure. }

CONST

kKN = 4; { nunber of vertices for PostScript }

kM = 6; { nunber of vertices for QuickDraw approxi mation }
TYPE

PointArray = array[0..0] of Point; { range checking OFF }
Poi nt ArrayPtr = ~Poi nt Array;

PROCEDURE Def i neVertices(VAR p,q: PointArrayPtr);

CONST
cx = 280;
cy = 280;
ro = 200;
BEG N i
{ The array p” contains the control points for the BEzier curve: }
Set Pt (p~[0],cx + rO0,cy);
Set Pt (p*[1] ,cx,cy + r0);
SetPt(p”r[2],cx - rO0,cy);
Set Pt (p*[3],cx,cy - r0);
pr[4] := pM[O];
{ g~ contains the points for a crude pol ygon approxi mati on of the curve: }
gr[0] := p[0O];
SetPt(qA[l] cx,cy + round(0.7 * (pM1].v - cy)));
SetPt (g~[2], (pA[1].h + p*[2].h) DIV 2, (p*[1].v + p*[2].v) DV 2);
SetPt(qA[3],cx + round(0.8 * (p" [2] h - ¢cX)),cy);
Set Pt (gq~[4],g*[2].h,cy + cy - g*[2
SetPt(q°[5], g 1. h,cy + cy - g°[1].)
qr[6] := o[0];
END;

PROCEDURE Pol ygonDeno

VAR
p, g: PointArrayPtr

Picture Comments - The Real Deal Page: 12

aPol yVer bH: TPol yVer bHdl ;

i: Integer;

cli pRgn, pol yRgn: RgnHandl e;
zeroRect: Rect;

= PointArrayPtr (NewPtr (Si zeO (Point) * (kN + 1))
= Poi ntArrayPtr (NewPtr (Si zeO (Point) * (kM+ 1))
(p = NL) OR (g = NL) THEN DebugStr (' NewPtr f ai
in

)
1
eVertices(p,q);

;ed');

PenNor nal ; { First show the standard Qui ckDraw pol ygon. }
MoveTo(p”A[0] . h, pA[0] . V) ;
FORi := 1 TO kN DO Li neTo(p~[i].h, pri].V);

PenSi ze(2, 2) ; { Now show t he sane pol ygon "snoot hed. " }
PenPat (gray) ;

{ First, the PostScript representation, clipped off from Qui ckDraw. }
aPol yVer bH: = TPol yVer bHdI (NewHandl e(Si zeOf (TPol yVer bRec))) ;

| F aPol yVer bH<> NI L THEN

W TH aPol yRecH** DO BEGQ N { *** See conment 1, below *** }
f Pol yFrame : = TRUE;
f Pol yFi I | = FALSE;
f Pol yd ose : = FALSE; { Conpare with the result for TRUE ! }
f3 : = FALSE;
f4 .= FALSE;
f5 := FALSE
f6 := FALSE;
f7 := FALSE;

END;

MoveTo(p”[0] . h, pA[0] . V) ; { *** See conment 2, below *** }

Pi cComment (Pol yBegi n, 0, NI L) ;

{ PicComent(Polydose,0,NIL); <<< Only if fPolyd ose = TRUE, above! }
Pi cCommrent (Pol ySnoot h, Si zeOf (TPol yVer bRec) , Handl e(aPol yVer bH)) ;
clipRgn : = NewRgn;

Getdip(clipRgn);
Cl i pRect (zeroRect);
FORi := 1 TO kN DO Li neTo(p™[i].h, pri].V);

{ Next, the -crude- Qui ckDraw approxi mati on of the snoot hed pol ygon, }
{ invisible for PostScript because of Polylgnore: }

Setdip(clipRgn);

Pi cCommrent (Pol yl gnore, O, NI L) ;

pol yRgn : = NewRgn; { *** See comment 3, below *** }
OpenRgn;

MoveTo(g”[O] . h, g*[0] . Vv);

FORi := 1 TO kM DO Li neTo(g”[i].h,g™i].V);

C oseRgn(pol yRgn) ;

Fr ameRgn(pol yRgn) ; { O FillRgn, if fPolyFill above is TRUE. }

Pi cComment (Pol yEnd, 0, NI L) ;

Di sposHandl e(Handl e(aPol yVer bH)) ;
D sposeRgn(pol yRgn) ;
Di sposPtr(Ptr(p));
Di sposPtr(Ptr(q));
END;

Picture Comments - The Real Deal Page: 13

Figure 3. QuickDraw Output
Figure 4. PostScript printern printer output
Additional Comments and Explanations

1. Thef Pol yFrane and f Pol yFi | | fields of the TPol yRec record are self-explanatory. The f Pol yCl ose flag
is redundant with the Pol yCI 0Se picture comment, but is included for the convenience of the LaserWriter
driver. It is often misunderstood. It does not mean the polygon is being closed automatically, such as with the
PostScript ¢l osepat h operator; instead, it affects the shape of the smooth curve. Figure 4 shows the result for
f Pol yO ose = FALSE,; the start and end point of the polygon is distinguished. In the case of f Pol yO ose =
TRUE, all vertices of the polygon are treated in the same manner, and the resulting curve resembles a circle (in
this case).

2. The anonymous fields f 3. . f 7 are reserved and should be set to zero (that is, FALSE).

3. The polygon is drawn at the current pen location when the Pol yBegi n comment is received.

4. In general (and in this example), you do not need to open a region, collect the line segments in the region, and
draw the polygon through Fr aneRgn. It is demonstrated here only to prepare you for situations where you want
to fill the polygon with a pattern. You cannot open a polygon and use Fi | | Pol y, because the PostScript driver
"owns" the polygon concept at this point and captures--and ignores--all line drawing between the Pol y| gnor e
and Pol yEnd comment. Regions do not interfere with polygons, however, and can be used to paint or fill the
polygonal shape.

Caveats

PostScript Level 1 has problems with very large polygons (more than about 1000 points). The workaround is to
subdivide the large polygon into several smaller ones.

You cannot combine the polygon picture comments with other comments such as the rotation comments or the
DashedLi ne comment. It's just another limitation--no comment.

Back to top

Dashed Lines
Comments: DashedLi ne, DashedSt op

PostScript allows applications to draw precisely dashed lines with a given dash pattern in every direction (see the

set dash operator, PostScript Language Reference Manual, Second Edition, page 500). The QuickDraw ersatz of setting
the pen pattern appears to be awkward at best; the result depends very much on the direction of the line. Coding correctly
dashed lines in QuickDraw is quite a hassle and rather clumsy. This is why the DashedLi ne and DashedSt op picture
comments have been provided for applications where dashed lines are important and used frequently. Applications can take
advantage of these comments when printing to a PostScript printer.

The DashedLi ne comment tells the driver that the line drawing instructions following the comment should be dashed

Picture Comments - The Real Deal Page: 14

according to the parameters in the TDashedLi ne structure (see the Appendix). These parameters closely correspond to
the parameters passed to the PostScript Set dash operator. Only the cent er ed field of the TDashedLi ne structure is
not currently supported by the LaserWriter driver. It should be set to O in case support for centering is added in the
future.

Unlike the picture comments for text rotation or even polygon smoothing, the DashedLi ne picture comment should not
be supported by a non-PostScript driver. The only way to include representations of dashed lines with and without usage of
the DashedLi ne picture comment is to make the following assumption: If the DashedLi ne comment is supported, then
the printer is a PostScript printer, and the Post Scri pt Begi n/ Post Scri pt End bracket may be used to hide the
QuickDraw imaging from the printer. Remember that non-PostScript printer drivers must not ignore QuickDraw
imaging within Post Scri pt Begi n and Post Scri pt End!

But we still need a trick to hide the line drawing instructions within the DashedLi ne - DashedSt op bracket from
QuickDraw. Here comes the "magic pen mode" to our rescue:

PROCEDURE DashDeno;

CONST
magi cPen = 23; { the infanous penhMde ! }
CX = ;
cy = 280;
ro = 200;
VAR
dashHdl : TDashedLi neHdl ;
i: Integer;

a, rad : Extended;

BEG N
PenSi ze(2, 2) ;
{ First the PostScript picture conmrent version. }
{ The "magi c pen node" 23 makes the line drawing invisible for Qi ckDraw }
PenMbde(magi cPen) ;
dashHdl : = TDashedLi neHdl (NewHandl e(Si zeOf (TDashedLi neRec))) ;
| F dashHdl <> NIL THEN
W TH dashHdl " DO BEA N

of fset := 4; { just for fun }

centered : = 0; { Currently ignored - set to 0. }
interval s[0] := 2; { nunber of interval specs }
intervals[1l] := 4; { This nmeans 4 points on ... }
intervals[2] :=6; { ... and 6 points off. }

Pi cConmrent (DashedLi ne, SizeO (TDashedLi neRec), Handl e(dashHdl));

END;
rad := 3.14159 / 180; { Conversion degrees -> radi ans. }
FORi := 0 TO9 DO BEA N { Draw sone dashed |ines. }

a:=1i * 20 * rad;

MoveTo(cx, cy);

Li ne(round(r0 * cos(a)), - round(r0 * sin(a)));
END;

Pi cCommrent (DashedStop, 0, NIL); { That's enough! }
Di sposHandl e(Handl e(dashHdl)) ;
PenMbde(srcOr); { No magic any nore. }

{ Now, the QuickDraw version. The PostScript driver nust ignore it, }
{ so we enclose it between Post Scri pt Begi n and Post Scri pt End conment s. }
Pi cComrent (Post Scri pt Begin, 0, NL);
PenSi ze(2, 2) ;
FORi := 0 TO 9 DO BEG N

MoveTo(cx, cy) ;

Dashed@DLi ne(round(r0 * cos(i * 20 * rad)),

- round(r0 * sin(i * 20 * rad)), dashHdl);

END;
Pi cCommrent (Post Scri pt End, O, NI L) ;

Picture Comments - The Real Deal Page: 15

END;

By the way: The DashedQDLi ne procedure is intentionally missing. It's not precisely the subject of this Note, and thus,
again, is left as a spare-time exercise for the reader.

Caveat

As mentioned earlier, the current version of the PostScript LaserWriter driver produces poor results when the
DashedLi ne picture comment is applied to polygons. Just don't do it!

Back to top

Fractional Line Width

Comment: SetLineWidth

QuickDraw's design is based on a fixed 72-dpi resolution. Even when printing to a high-resolution device, the Printing
Manager presents the printing grafPort, corresponding to the printable area of the page, in the integer-valued QuickDraw
coordinate system with 72 dpi. Applications can use Pr Gener al to image at higher device resolutions (see Inside
Macintosh Volume V, page 410), but this is useful mainly for immediate printing. As a consequence, lines are usually
always at least 1/72 inch wide, corresponding to the smallest pen size (1,1). For a 300-dpi device like the LaserWriter,
this is disappointing.

The Set Li neW dt h comment allows an application to set the width of a line to any fractional value. A value of 1/4
approximately corresponds to a "hairline” on a 300 dpi LaserWriter. Curiously (but conveniently), a QuickDraw Poi nt
structure is passed in the Pi cConmrent 's data handle, the vertical coordinate representing the denominator, and the
horizontal coordinate the numerator of the fraction.

Unfortunately, it is not implemented in all high-resolution QuickDraw printers; and if it is (as in the LaserWriter SC),
it works differently than in PostScript printer drivers. Moreover, there is no possibility to include alternative imaging
instructions in case Set Li neW dt h is not supported. While this is not much of a loss for hairlines, it prevents us from
using the comment for fractional widths > 1, where the alternative would be to include a PenSi ze call with rounded
arguments. Another drawback may be that, allegedly, there are plotter drivers out there that abuse this comment to set the
pen color--clearly an unpleasant situation.

The difference in the implementation of the Set Li neW dt h comment between the PostScript LaserWriter driver and the
LaserWriter SC appears as soon as Set Li neW dt h is used for the second time. The PostScript driver keeps an internal
line scaling factor; this factor is initialized to 1.0 when a job is started. Each number passed through Set Li neW dt h is
multiplied by the current internal scaling factor to get the effective scaling factor for the pen size. The LaserWriter SC
driver, on the other hand, replaces its current scaling factor for the pen size completely by the new value passed through
Set Li neW dt h. In order to support both implementations, you must always use an additional Set Li neW dt h step in
order to reset the PostScript driver line width to 1.0, before scaling to the new value.

Example
Let's say you have set the line width to 0.25, and want to replace it by a line width of 0.5. The following two

Set Li neW dt h comments will have the desired effect on both PostScript (PS) and QuickDraw (QD) drivers that
implement the Set Li neW dt h comment. You don't care about the temporary line width of 4.0 on the QuickDraw driver.

Current Line Width Parameter Paszsed Hew Line Width
PS driver QD driver in SetLineWidth P8 Driver QD Driver

0.25 0.25 4.1 1.0 4.0

1.0 4.0 172 0.5 0.5

The following sample code gives the expected results only on a PostScript LaserWriter and on QuickDraw printer drivers
that have the Set Li neW dt h comment implemented.

Picture Comments - The Real Deal Page: 16

PROCEDURE Set NewLi neW dt h(ol dW dt h, newW dt h: TLi neW dt h) ;

VAR
t enpW dt hH. TLi neW dt hHdl ;

BEG N
tempW dt hH : = TLi neW dt hHdl (NewHandl e(Si zeOf (TLi neW dth))) ;
{ If tempWdthH = NIL we are screwed anyway. }
tempW dt hHM. v : = ol dW dt h. h;
t enpW dt hH*. h : = ol dW dt h. v;
Pi cComment (Set Li neW dt h, Si zeOf (TLIi neW dt h) , Handl e(t enpW dt hH)) ;
t enpW dt hH* : = newW dt h;
Pi cComment (Set Li neW dt h, Si zeOf (TLIi neW dt h) , Handl e(t enpW dt hH)) ;
Di sposHandl e(Handl e(t enpW dt hH)) ;
END;

PROCEDURE Li neW dt hDeno;

CONST
y0 = 50; { topleft of deno }
x0 = 50;
d0 = 440; { length of horizontal |ines }
e0 = 5; { distance between lines }
kN = 5; { nunber of I|ines }
VAR

ol dWdt h, newWN dt h: TLineWdth; { actually a "Point" }
i,j,y: Integer;

BEG N
PenNor nal ;
y :=y0, o -
Set Pt (ol dWdth, 1,1); { initial linewidth = 1.0 }
FORi :=1 TO5 DO BEG N
Set Pt (newwWdth, 4,i);

{ want to set it toi/4 =0.25, 0.50, 0.75 ... }

Set NewLi neW dt h(ol dW dt h, newW dt h) ;
MoveTo(x0, vy);
Li ne(do, 0);

=y + e0;
ol dWdth : = newWdt h;

END,
END;

*A Slight Imperfection

O If you experiment with the above code and draw a whole series of hairlines, you will see (depending on the values
of €0 and kN) that certain lines appear thicker than they should be. This is due to rasterization effects in
PostScript's scan conversion algorithm when the line width is close to the device pixel size. In many cases, the
PostScript LaserWriter driver tries to compensate for this by rounding coordinates to the 300-dpi grid. If you
include Set Li neW dt h (or, by the way, DashedLi ne) picture comments, however, this does not work.
PostScript Level 2 addresses this problem by means of an optional stroke adjustment feature (see the
PostScript Language Reference Manual, Second Edition, pages 322 and 515).

Back to top

Graphics Rotation
Comments: Rot at eBegi n, Rot at eCent er, Rot at eEnd

Like the picture comments discussed earlier in this Note in the section "Text Rotation," the graphics rotation picture

Picture Comments - The Real Deal Page: 17

comments provide a method of rotating QuickDraw objects on PostScript devices. Instead of having QuickDraw perform the
rotation, the printer driver rotates the entire PostScript coordinate space so that everything drawn between

Rot at eBegi n and Rot at eEnd will be rotated on the printer itself. This includes text drawing! You specify the center
of rotation with Rot at eCent er and the angle of the rotation, together possibly with horizontal or vertical flipping,
through the TRot at i on record (see the interface definitions in the Appendix).

Unlike text rotation, you must insert the Rot at eCent er comment and pass the relative offset to the center of rotation
before you use the Rot at eBegi n picture comment. The point passed to RotateCenter specifies the offset from the anchor
point of the first object drawn after Rot at eBegi n to the desired center of rotation. Once you set up the rotation
parameters with Rot at eCent er and RotateBegin, you can draw the graphics objects you want to rotate.

Bad news: In order to include a QuickDraw representation of the rotated objects in case the rotation comments are not
supported, we have to assume (again) that only PostScript drivers implement these comments. The only way to hide the
QuickDraw substitute from the driver is to surround it by Post Scri pt Begi n and Post Scri pt End comments; and,
similarly to the DashedLi ne comment, we need to use the "magic pen mode" (23) to hide the unrotated drawing between
Rot at eBegi n and Rot at eEnd from QuickDraw. The following sample demonstrates this:

PROCEDURE (DRot at edRect (r: Rect; ctr: Point; angle: Integer);
BEG N
{ An exercise again - this one is easy ...
{ Rotates the four points of the rectangle by "angle"
{ around the center obtained by adding the point "ctr
{ as offset to r.topLeft, and draws the rotated Rect.
END;

)
n }
)
}

PROCEDURE PSRot at edRect (r: Rect; offset: Point; angle: Integer);

{ Does the rectangle rotation for the PostScript LaserWiter driver. }
{ Uses the RotateCenter, RotateBegin and RotateEnd picture comments, }
{ and the "magi c" pen node 23 to hide the drawi ng from Qui ckDraw. }

CONST
magi cPen = 23;

VAR
rinfo: TRotationHdl;
rCenter: TCenterHdl;
ol dPenMbde: | nt eger;

BEG N
rinfo := TRotati onHdl (NewHandl e(Si zeOrf (TRot at i onRec))) ;
rCenter := TCenterHdl (NewHandl e(Si zeOr (TCent er Rec))) ;
IF (rinfo = NIL) OR (rCenter = NIL) THEN DebugStr (' NewHandl e failed');

W TH r | nfo* DO BEG N

rFlip := 0;

rAngle := - angl e;

r Angl eFi xed : = BitShift(Longlnt(rAngle), 16);
END;

W TH r Cent er** DO BEA N
X := Long2Fi x(of fset. h);
y := Long2Fi x(of fset.v);
END;

MoveTo(r.left,r.top);

Fl ushG af Port St at e;

Pi cComment (Rot at eCent er, Si zeOX (TCent er Rec) , Handl e(r Center));
Pi cComrent (Rot at eBegi n, Si zeOr (TRot at i onRec) , Handl e(rinfo));

ol dPenMbde : = thePort”. pnMode;
PenMbde(magi cPen) ;
FrameRect (r) ;

Picture Comments - The Real Deal Page: 18

PenMode(ol dPenMode) ;
Pi cCommrent (Rot at eEnd, O, NI L) ;

Di sposeHandl e(Handl e(rinfo));
Di sposeHand! e(Handl e(r Center));
END;

PROCEDURE Rot at eDenp;

CONST
angl e = 30;

VAR
spi nRect: Rect;
del ta: Point;

BEG N
Set Rect (spi nRect, 100, 100, 300, 200) ;
W TH spi nRect DO SetPt(delta, (right - left) DIV 2,(bottom- top) DIV 2);

PenSi ze(2, 2) ;

PenPat (1t G ay) ;

FraneRect (spi nRect); { show the unrotated square }
PenNor nal ;

PSRot at edRect (spi nRect, del t a, angl e) ;

{ Qui ckDraw equi val ent of the rotated object, hidden from PostScript driver }
{ because of Post Scri ptBegi n and Post Scri pt End }

Pi cComment (Post Scri pt Begi n, 0, NI L) ;
(DRot at edRect (spi nRect , del t a, angl e) ;
Pi cComment (Post Scri pt End, O, NI L) ;

END;

Back to top

PostScript Comments
Comments: Post Scri pt Begi n, PSBegi nNoSave, Post Scri pt End, Post Scri pt Handl e

The PostScript comments tell the picture interpreter (usually the LaserWriter driver) that the application is going to
communicate with the LaserWriter directly using PostScript code instead of QuickDraw. All QuickDraw drawing
instructions between the Post Scri pt Begi n and Post Scri pt End picture comments are ignored. The driver sends the
PostScript text contained in the Post Scri pt Handl e data to the printer with no preprocessing and no error checking.
When the application is finished sending PostScript, the POost Scri pt End comment tells the printer driver to resume
normal QuickDraw mode. The driver uses the PostScript Save and I est Or € operators to preserve the state of the
PostScript interpreter across the section enclosed by Post Scri pt Begi n and Post Scri pt End. Some applications do
not want to restore the previous state of the PostScript interpreter after including their PostScript code; for these
situations, the PSBegi nNoSave comment is a replacement for Post Scri pt Begi n that does not preserve the state.
Clearly, this comment should be used with extreme caution.

Some state information may be stored in global variables, so nesting Post Scri pt Begi n (or PSBegi nNoSave) and
Post Scri pt End comments is not allowed.

The Post Scri pt Handl e comment gives developers direct access to PostScript from applications. Instead of having the
LaserWriter driver convert QuickDraw calls into the corresponding PostScript code, the application can generate its own
PostScript, and transmit it to the printer or include it in a picture through the data handle of the Pi cConment
procedure. The handle contains pure ASCII text; the valid length of the data is specified in the Pi cConment 's size

Picture Comments - The Real Deal Page: 19

parameter. Don't forget to terminate the PostScript text at least with a space character, or better with a carriage return
(ASCII $0D), so that it is separated from the following PostScript instructions (either yours, or the printer driver's).

You must still use Post Scri pt Begi n (or PSBegi nNoSave) and Post Scri pt End around Post Scri pt Handl e
comments or the LaserWriter driver will not properly save and restore the PostScript drawing environment.

As with all picture comments, the handle you pass belongs to you and you must dispose of it when you're finished with it.

PROCEDURE Post Scri pt Li ne(s: Str255);

{ Autility procedure to transmt a string of PostScript code through }
{ the Post ScriptHandl e picture conment to the PostScript printer.

{ I't should be called only between Post Scri ptBegi n and Post Scri pt End }
{ picture coments. }

VAR
h: Handl e;

BEG N
h : = NewHandl e(256) ;
IF h = NNL THEN DebugStr (' NewHandl e fail ed');
Bl ockMove(@[1], h®, Length(s));
Pi cConmment (Post Scri pt Handl e, Length(s), h);
han = 13;
Pi cComment (Post Scri ptHandl e, 1, h); { add a carriage return }
Di sposeHandl e(h) ;
END;

PROCEDURE Post Scri pt Conment s;

BEGA N
{ First, the sinple exanple: }
Pi cConment (Post Scri pt Begin, 0, NI L) ;
Post Scri pt Li ne(' 100 100 noveto O 100 rlineto 100 O rlineto ');
Post ScriptLine('0 -100 rlineto -100 O rlineto');
Post Scri pt Li ne(' stroke');
MoveTo(30, 30);
DrawsString(' This text does not appear on PostScript devices');
Pi cConment (Post Scri pt End, 0, NI L) ;

{ Now, a new PostScript definition you want to keep in the

{ userdict. If you used PostScriptBegin, the definition would
{ be | ost when PostScriptEnd is encountered, because the stat
{ previous to the PostScriptBegin commrent woul d be restored.
Pi cConment (PSBegi nNoSave, 0, NI L) ;
Post Scri pt Li ne(' userdi ct begin')

Post Scri pt Li ne(' / nyFraneRect {'

Post Scri pt Li ne(' 250 250 nmoveto O 100 rlineto');

Post ScriptLine('200 O rlineto O -100 rlineto -200 O rlineto ');
Post Scri pt Li ne(' stroke } def');

Post Scri pt Li ne(' end');

Pi cConmment (Post Scri pt End, 0, NI L) ;

}
}
e}
}

Let's test to see if the definition fromabove is still avail-}
{ able. This assunes that no font downl oadi ng has occurred. }

Pi cConment (Post Scri pt Begin, 0, NI L) ;
Post Scri pt Li ne(' //userdict /myFranmeRect get exec ');
Pi cConment (Post Scri pt End, 0, NI L) ;

END;

Caveat

Picture Comments - The Real Deal Page: 20

If you choose to use PostScript directly in your pictures, be very careful not to make assumptions about Apple's " nd"
dictionary (essentially the contents of the former LaserPrep file). Otherwise, your pictures will not print correctly with
future versions of the PostScript LaserWriter driver. Also, be aware of compatibility problems within the PostScript
world, and watch out for printers with PostScript Level 1 and PostScript Level 2 interpreters, and
"PostScript-compatible" printers (PostScript clones).

Back to top

FormsPrinting Picture Comments

Comments: FormsPrinting, EndFormsPrinting

The For nsPri nti ng comment tells the PostScript LaserWriter driver not to clear its page buffer after printing a page.
EndFor nmsPri nt i ng turns this mode off. When the page is completed, the application must erase the areas that need to
be updated and draw the new information. The graphics that make up the form are drawn only once per page, which may
improve performance. Currently, you need to write special printing code for the PostScript LaserWriter driver if you
want to use this comment.

Back to top

(More or Less) Obsolete PostScript Picture Comments
Comments: Set G ayLevel , Text | sPost Scri pt, Resour cePS, Post ScriptFile

The Set G ayLevel picture comment was designed to provide access to the PostScript Set gr ay operator while still
drawing with QuickDraw in black-and-white mode. In practice, this turned out to be not so useful, however. For most
drawing operations, the printer driver sets the gray level to match the foreground color currently stored in the printing
grafPort, and the effect of the Set G- ayLevel comment is often unpredictable. If direct access to the PostScript

set gr ay operator seems nevertheless desirable, it is easy to include the instruction in a Post Scri pt Handl e
comment.

The Text | sPost Scri pt picture comment takes all the text coming through standard QuickDraw text drawing calls
(Dr awChar, Drawst ri ng, Dr awText , and anything else that eventually calls the St dText bottleneck), and
interprets it as a PostScript program. There is no good reason to use this picture comment, but there is one important
reason not to use it: Printer drivers that do not deal with the Text | sSPost Scri pt comment will print the PostScript
text instead of interpreting it! If you need to transmit pure PostScript code directly to a printer that understands it, use
the Post Scri pt Handl e comment, and include a QuickDraw representation for all other printer drivers.

The Resour cePS picture comment loads PostScript code from a specified resource. The resource file is expected to be
open at the time that the Resour cePS comment is used. Under background printing, there are no guarantees the file will
still be open when the Printing Manager needs it. For this reason alone, you should forget about this comment. If you want
to keep PostScript instructions in a resource, it is easy to write a small routine that loads the resources and sends their
contents using the Post Scri pt Handl e comment described earlier in this Note.

Post Scri pt Fi | e has the same problems as Resour cePS described above. Basically, the Printing Manager cannot
guarantee that the file will be available when it's needed.

Back to top

Appendix: Pascal Interface for Picture Comments

(File Pi cComment s. p)

CONST
Text Begi n = 150;
Text End = 151;
StringBegin = 152;
StringEnd = 153;
Text Center = 154;

Picture Comments - The Real Deal

Li neLayout O f =

155;

Li neLayout On = 156;

d i ent Li neLayout
Pol yBegi n = 160;
Pol yEnd = 161;

= 157,

Pol yl gnore = 163;
Pol ySnoot h = 164;
Pol yd ose = 165;
DashedLi ne = 180;
DashedSt op = 181;
Set Li neWdth = 182;

Post Scri pt Begi n = 190;
Post Scri pt End = 191;
Post Scri pt Handl e = 192;

Post Scri pt Fi |

e = 193;

Text | sPost Scri pt = 194;

Resour cePS = 195;
PSBegi nNoSave = 196;
Set GayLevel = 197;
Rot at eBegi n = 200;
Rot at eEnd = 201;

Rot at eCent er = 202;

FormsPrinting = 210;
EndFor nmsPrinting = 211;

RECORD {offset fromcurrent pen |location to center of

tJusNone =
tJusLeft = 1;
tJusCenter = 2;
tJusRi ght = 3;
tJusFul | = 4;
tFl i pNone = 0;
tFlipHorizontal = 1;
tFlipVertical = 2;
TYPE
TTxtPicHdl = ATTxtPicPtr;
TTxt Pi cPtr = ~TTxt Pi cRec;
TTxt Pi cRec = PACKED RECORD
tJus : Byte;
tFlip : Byte;
t Angl e: | nteger; {
tLine : Byte; {
tOmt : Byte; {
t Angl eFi xed: Fi xed; {
END; { TTxtPi cRec }
TRot ati onHdl = ~TRotati onPtr;
TRotati onPtr = ~TRot ati on;
TRot at i onRec = RECORD
rFlip: Integer;
r Angl e: | nteger; {
r Angl eFi xed: Fi xed; {
END; { TRotationRec }
TCenterHdl = ~TCenterPtr;
TCenterPtr = ATCent er;
TCent erRec =
y: Fi xed;
x: Fi xed;

TPol yVer bHdl

END; { TCenterRec }

= ~TPol yVer bPtr;

0; { values for the tJus field of the TTxtPi cRec record }

{ values for the tFlip field of the TTxtPi cRec record }

cl ockwi se rotation in degrees 0..360 }
Unused/ | gnored }

reserved }

sane as "tAngle" in Fixed precision }

cl ockwi se rotation in degrees 0..360 }
sane as "rAngle" in Fixed precision }

rotati on}

Page: 21

Picture Comments - The Real Deal Page: 22

TPol yVer bPt r
TPol yVer bRec

~TPol yVer bRec;
PACKED RECCRD

f7,16,f5,f4, f3, { reserved }

f Pol yd ose, { TRUE = snoot hi ng across endpoint.}

fPol yFill, { TRUE = Pol ygon should be filled. }

f Pol yFrame: BOOLEAN, { TRUE = Pol ygon shoul d be framed. }
END;

TDashedLi neHdl
TDashedLi nePtr
TDashedLi neRec

ATDashedLi nePtr;
ATDashedLi neRec;
PACKED RECORD
of f set . SignedByte; { offset into pattern for first dash }
centered : SignedByte; { (Ignored) }
intervals: ARRAY [0..5] { Array of dash intervals }
OF SignedByte; { interval s[0] = nunber }

END; { of interval specs. }
TLi neW dt hHdl = ~TLi neWdt hPtr;
TLi neWdt hPtr = ~TLi neW dt h;
TLi neW dt h = Point; { v = nunerator, h = denom nator. }
TdientLLHdl = ATAientLLPtr; { used in the dientLineLayout picture coment }
TAientLLPtr = ~"Td i ent LLRec;
Td i ent LLRec = RECORD
chCount : Integer; { Apply for so many characters. }
naj or . Fi xed; { percentage of line |layout error to be }
{ distributed anong space characters. }
spcChar : Integer; { code of character that is to absorb }
{ the "mgjor" line |layout error }
m nor . Fi xed; { percentage of intercharacter distrib. }
ul Lengt h: Fi xed; { underline |ength. }
END,;
References

PostScript Language Reference Manual , Adobe Systems Inc.
Inside Macintosh , Volumes Il, V, and VI
LaserWriter Reference Manual , Addison-Wesley

Macintosh Technical Note M.IM.AppPictComments -- Every Picture [Comment] Tells Its Story, Don't It?

Macintosh Technical Note M.IM.gifAndPrinting -- Pictures and the Printing Manager

develop Issue 3, "Meet PrGeneral” by Pete "Luke" Alexander

Adobe is a trademark of Adobe Systems Incorporated. PostScript is a registered trademark of Adobe Systems Incorporated.

Back to top

Downloadables

jzi Acrobat version of this Note (K). Download

Picture Comments - The Real Deal Page: 23

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

