
NW 03 - AppleTalk Phase 2 on the Macintosh Page: 1

NOTE: This Technical Note has been retired. Please see the Technical Notes page for current documentation.

CONTENTS

Introduction

What is AppleTalk Phase 2?

Are AppleTalk Phase 2 Drivers Present?

Calls to the .ATP Driver

Name Binding Protocol (NBP) Change: Wildcard Lookup

Obtaining Zone Information Using the New .XPP Driver Calls

Potential Nastiness

The AppleTalk Transition Queue

Making a LAP Manager Call

The AppleTalk Transition Queue LAP Calls

The Transitions

Potential Compatibility Problems

References

Downloadables

This Technical Note discusses the new
features and calls available with AppleTalk
Phase 2.

[Aug 01 1989]

Introduction

AppleTalk Phase 2 is only available on Macintosh Plus or later Macintosh platforms, and it requires the installation of
AppleTalk file V53, or greater. Both EtherTalk 2.0 and TokenTalk 2.0 automatically install this AppleTalk file. Developer
Technical Support can supply the Phase 2 drivers for development use; however, if you need to include the Phase 2 drivers
in your product, you must license them from Software Licensing. For more information, contact:

Apple Software Licensing
Apple Computer, Inc.,
20525 Mariani Avenue, M/S 38-I
Cupertino, CA, 95014
(408) 974-4667
AppleLink: SW.LICENSE

Back to top

What is AppleTalk Phase 2?

AppleTalk Phase 2 contains enhancements to the routing and naming services of AppleTalk. Among these enhancements is the
ability to create AppleTalk networks which support more than 254 nodes, and to do so in a manner that is, to the greatest
extent possible, compatible with current AppleTalk implementations and applications. Multiple zones per network are now
supported, and users can choose their machine's zone. Benefits include improved network traffic and better router
selection. New calls and features have been implemented with this enhancement and are documented in this Note.

Back to top

Are AppleTalk Phase 2 Drivers Present?

So you want to use these new calls and features, but can you? First, one needs to check to see if the node is running
AppleTalk Phase 2. There are two ways this can be accomplished. The easiest way is to make a _SysEnvirons call and
check the returned atDrvrVersNum field. If this byte is greater than or equal to 53, then AppleTalk Phase 2 drivers are
present. If, for some reason, a _SysEnvirons call is not practical or otherwise not possible, one can check 7 bytes off
the device control entry for the .MPP driver for a single byte, which is the driver version (actually the low byte of the
qFlags field of DCtlQHdr in the DCE). Again, if this byte is 53 or greater, AppleTalk Phase 2 is present, and the calls
and features outlined in this Note may be used.

AppleTalk Phase 2 on the Macintosh

Technical Note NW03

NW 03 - AppleTalk Phase 2 on the Macintosh Page: 2

Calls to the .MPP Driver

AppleTalk Phase 2 introduces many new variables, and we highly recommend that you use the new GetAppleTalkInfo
call instead of looking at MPP globals directly. In addition, on a Macintosh running the AppleTalk Internet Router software,
there may be more than one .MPP driver present. These additional drivers can be found by walking through the unit table
(UTableBase $11C) and looking for drivers named .MPP other than at unit slot 9. Generally, the only port of interest to
you is the user port, reflected in this call as PortID 0 with a refnum of -10.

GetAppleTalkInfo

Parameter Block
 --> 26 csCode word ; always GetAppleTalkInfo (258)
 --> 28 Version word ; requested info version
 <-- 30 VarsPtr pointer ; pointer to well known MPP vars
 <-- 34 DCEPtr pointer ; pointer to MPP DCE
 <-- 38 PortID word ; port number [0..7]
 <-- 40 Configuration long ; 32-bit configuration word
 <-- 44 SelfSend word ; non zero if SelfSend enabled
 <-- 46 NetLo word ; low value of network range
 <-- 48 NetHi word ; high value of network range
 <-- 50 OurAddr long ; our 24-bit AppleTalk address
 <-- 54 RouterAddr long ; 24-bit address of (last) router
 <-- 58 NumOfPHs word ; max. number of protocol handlers
 <-- 60 NumOfSkts word ; max. number of static sockets
 <-- 62 NumNBPEs word ; max. concurrent NBP requests
 <-- 64 NTQueue pointer ; pointer to registered name queue
 <-> 68 *LAlength word ; length in bytes of data link addr
 --> 70 *LinkAddr pointer ; data link address returned
 --> 74 *ZoneName pointer ; zone name returned

This call is provided to simplify the task of obtaining details about the current AppleTalk network connection. The following
are the parameters which this call returns:

Version is passed by the caller. The concept is similar to one used by _SysEnvirons, where a version ID is passed to
the function to return a requested level of information. If the driver cannot respond because this number is too high,
paramErr is returned. The current version number is 1.

VarsPtr is the pointer to AppleTalk variables. This points to the well known sysLapAddr and read header area or RHA..
This pointer may not be equal to $2D8 (ABusVars) for other than port 0.

DCEPtr is a pointer to the driver's device control entry. See the Device Manager chapters of Inside Macintosh for details.

PortID is the port number, and it is always zero, unless a router is active and a driver refnum other than -10 is used.

Configuration is a 32-bit word of configuration flags. Currently only the following bits are returned:

31 (SrvAdrBit) is true if server node-ID was requested at open time. Note that even if server address is requested, it
may be ignored by those ADEVs which do not honor it (i.e., EtherTalk, TokenTalk, etc.).

30 (RouterBit) is true if an AppleTalk Internet Router was loaded at system startup. Note that a router may be loaded,
but not active.

7 (BadZoneHintBit) is true if the node's zone name hint is invalid, thus causing a default zone to be selected.

6 (OneZoneBit) is true if only one zone is assigned to an extended network.

SelfSend (the ability for a node to send packets to itself) is non-zero if this feature is currently enabled.

NetLo is the low value of the network range. Non-extended networks always have a range of exactly one network, if the
network number is known.

NetHi is the high value of the network range.

OurAddr is the 24-bit AppleTalk network address of the node. The most significant byte is always zero.

RouterAddr is the 24-bit AppleTalk address of the router from which we last heard. Users should always use this
address when attempting to communicate directly with a router.

NumOfPHs, are maximum capacities for the driver. They are number of protocol

NumOfSkts, and handlers, number of static sockets, and number of concurrent NBP

NumNBPEs requests allowed, respectively.

NTQueue is a pointer to the registered names table queue. See Inside Macintosh , Volume II, The AppleTalk Manager, for NT
Queue details.

LALength is passed by the caller to indicate how much (if any) of the data link address is to be copied to a user-supplied
buffer (pointed to by LinkAddr). The actual length is returned by the driver. If the caller requests more bytes than the
actual number, then data in the buffer after the address is undefined. The caller is responsible for providing sufficient
buffer space.

NW 03 - AppleTalk Phase 2 on the Macintosh Page: 3

LinkAddr is a pointer to a user-supplied buffer into which the data link address data is copied. If the pointer is NIL, no
data is copied.

ZoneName is a pointer to a user-supplied buffer into which the node's stored zone name is copied. If the pointer is NIL, no
data is copied. The user buffer must be 33 bytes or more in size.

Back to top

Calls to the .ATP Driver

KillAllGetReq

Parameter Block
 --> 26 csCode word ; always KillAllGetReq (259)
 --> 28 atpSocket byte ; socket on which to kill all pending

KillAllGetReq aborts all outstanding GetRequest calls on the specified socket and completes them with
reqAborted errors (it does not close the specified socket, it only kills all pending GetRequest calls on that socket). To
kill all the GetRequest calls, simply pass the desired socket number in the atpSocket field.

cbNotFound control block not found (-1102)

Setting the TRel Timer in SendRequest Calls

It is now possible to set the TRel timer in SendRequest or NSendRequest calls with ATP XO (exactly once) service so
as not to be locked into the pre-AppleTalk Phase 2 time of 30 seconds. This is done by setting bit 2 in the atpFlags field
to indicate to the driver that an extended parameter block is being used. Make a standard SendRequest call, but add the
timeout constant desired in the new TRelTime field byte of the parameter block. Both nodes must be running AppleTalk
Phase 2 for this feature to be supported.

The timeout constants are enumerated as follows in the lower three bits of the TRelTime ($32 offset) byte:

000 $0 TRel timer set to 30 seconds
001 $1 TRel timer set to one minute
010 $2 TRel timer set to two minutes
011 $3 TRel timer set to four minutes
100 $4 TRel timer set to eight minutes

All other values are reserved.

 Parameter Block

Back to top

Name Binding Protocol (NBP) Change: Wildcard Lookup

In AppleTalk Phase 2, NBP is enhanced to provide additional wildcard support. The double tilde (~), $C5, is now reserved
in the object name and type strings and used in a lookup to mean a match of zero or more characters. Thus "~cliff" matches
"cliff," "the cliff," "grazing off the cliff," etc., and "123~456" matches "123456," "123zz456," etc. At most one ~ is
allowed in any string. A single ~ has the same meaning as a single =, which also must continue to be accepted. The ~ has no
special meaning in zone names. Clients of NBP must be aware that "old" (pre-AppleTalk Phase 2) nodes may not process
this new wildcard feature correctly. This feature should probably only be used when it is known that the responding devices
are running Phase 2 drivers as well.

Back to top

Obtaining Zone Information Using the New .XPP Driver Calls

Previously, Zone Information Protocol (ZIP) functions were accomplished via direct ATP calls to the local router. It was
rather nasty business, having to mess with the ATPUserData on subsequent calls to retain state information. We now
recommend the use of the following XPP driver calls to access ZIP. Old ATP calls will continue to be supported for
compatibility. It should also be noted that with Phase 2 drivers present, the .XPP driver is automatically opened by MPP.

GetZoneList

Parameter Block
 --> 26 csCode word ; always xCall (246)
 --> 28 xppSubCode word ; always zipGetZoneList (6)
 --> 30 xppTimeout byte ; retry interval (seconds)
 --> 31 xppRetry byte ; retry count
 32 <unused> word ; word space for rent. see the super.
 --> 34 zipBuffPtr pointer ; pointer to buffer (must be 578 bytes)
 <-- 38 zipNumZones word ; no. of zone names in this response
 <-- 40 zipLastFlag byte ; non-zero if no more zones
 41 <unused> byte ; filler
 --> 42 ziplnfoField 70 bytes ; on initial call, set first word to zero

NW 03 - AppleTalk Phase 2 on the Macintosh Page: 4

GetZoneList is used to obtain a complete list of zones on the internet. ZipBuffPtr points to a buffer that.must be 578
bytes (ATPMaxData) in length. The actual number of zone names returned in the buffer is returned in zipNumZones.
The fields xppTimeout and xppRetry contain the ATP retry interval (in seconds) and count, respectively.

The first time this call is made, the first word of the ziplnfoField should be set to zero. When the call completes,
zipLastFlag is non-zero if all the zone names fit into the buffer. If not, the call should be made again immediately,
without changing zipInfoField (it contains state information needed to get the next part of the list). The call should be
repeated until zipLastFlag is non-zero. The 70-byte zipInfoField must always be allocated at the end of the
parameter block.

Result codes noErr No Error (0)

noBridgeErr No router is available (-93)

ReqFailed SendRequest failed; retry count exceeded (-1096)

Following are short examples of using GetZoneList.

Pascal

 const
{ csCodes for new .XPP driver calls }
 xCall = 246;

{ xppSubCodes }
 zipGetLocalZones = 5;
 zipGetZoneList = 6;
 zipGetMyZone = 7;

 type
{ offsets for xCall queue elements }
 xCallParam = packed record
 qLink: QElemPtr;
 qType: INTEGER;
 ioTrap: INTEGER;
 ioCmdAddr: Ptr;
 ioCompletion: ProcPtr;
 ioResult: OsErr;
 ioNamePtr: StringPtr;
 ioVRefNum: INTEGER;
 ioRefNum: INTEGER;
 csCode: INTEGER;
 xppSubCode: INTEGER;
 xppTimeOut: Byte;
 xppRetry: Byte;
 filler: INTEGER;
 zipBuffPtr: Ptr;
 zipNumZones: INTEGER;
 zipLastFlag: INTEGER;
 zipInfoField: packed array[1..70] of Byte;
 end;

procedure doGetZoneListPhs2;

type
 XCallParamPtr = ^XCallParam;
var
 xpb: XCallParamPtr;
 resultCode: OSErr;
 zoneBuffer, theBufferPtr: Ptr;
 totalZones: integer;
begin
 xpb := XCallParamPtr(NewPtr(sizeof(XCallParam)));

 zoneBuffer := NewPtr(33 * 100); { size of maxstring * 100 zones }

 theBufferPtr := NewPtr(578); { size of atpMaxData }

 xpb^.zipInfoField[1] := 0; { ALWAYS 0 on first call. contains state info
 on subsequent calls }

 xpb^.zipInfoField[2] := 0; { ALWAYS 0 on first call. contains state info
 on subsequent calls }

 xpb^.ioRefNum := XPPRefNum; { driver refNum -41 }

 xpb^.csCode := xCall;
 xpb^.xppSubCode := zipGetZoneList;
 xpb^.xppTimeOut := 3;

NW 03 - AppleTalk Phase 2 on the Macintosh Page: 5

 xpb^.xppRetry := 4;
 xpb^.zipBuffPtr := Ptr(theBufferPtr); { this buffer will be filled with }
 (packed zone names }

{ initialization for loop }
 xpb^.zipLastFlag := 0;
 totalZones := 0;
 resultCode := 0;

{ loop until zipLastFlag is non-zero or an error occurs }
 while ((xpb^.zipLastFlag = 0) and (resultCode = 0)) do
 begin
 resultCode := PBControl(ParmBlkPtr(xpb), false);

 if (resultCode = noErr) then
 begin
 totalZones := xpb^.zipNumZones + totalZones;
 { you can now copy the zone names into the zoneBuffer }
 end;
 end;
 DisposPtr(theBufferPtr);
 DisposPtr(zoneBuffer);
 DisposPtr(Ptr(xpb));

C

/*
csCodes for new .XPP driver calls
*/
#define xCall 246

/*
xppSubCodes
*/
#define zipGetLocalZones 5
#define zipGetZoneList 6
#define zipGetMyZone 7

/*
offsets for xCall queue elements
*/
typedef struct
 {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 ProcPtr ioCompletion;
 OsErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioRefNum;
 short csCode;
 short xppSubCode;
 unsigned char xppTimeOut;
 unsigned char xppRetry;
 short filler;
 Ptr zipBuffPtr;
 short zipNumZones;
 short zipLastFlag;
 unsigned char zipInfoField[70];
} xCallParam;

doGetZoneListPhs2()
{
 xCallParam xpb;
 OSErr resultCode = 0;
 Ptr zoneBuffer, theBufferPtr;
 short totalZones = 0;

 zoneBuffer = NewPtr(33*100); /* size of maxstring * 100 zones */

 theBufferPtr = NewPtr(578); /* size of atpMaxData */

 xpb.zipInfoField[0] = 0; /* ALWAYS 0 on first call. contains
state info on subsequent calls */

NW 03 - AppleTalk Phase 2 on the Macintosh Page: 6

 xpb.zipInfoField[1] = 0; /* ALWAYS 0 on first call. contains
state info on subsequent calls */

 /* initialization for loop */
 xpb.zipLastFlag = 0;

 xpb.ioCRefNum = XPPRefNum; /* driver refNum -41 */
 xpb.csCode = xCall;
 xpb.xppSubCode = zipGetZoneList;
 xpb.xppTimeOut = 3;
 xpb.xppRetry = 4;
 xpb.zipBuffPtr = (Ptr) theBufferPtr; /* this buffer will be filled with
 the packed zone names */

 /* loop until zipLastFlag is non-zero or an error occurs */
 while(xpb.zipLastFlag == 0 && resultCode == 0) {

 resultCode = PBControl(&xpb, false);

 if(resultCode == noErr) {
 totalZones += xpb.zipNumZones;
 /* you can now copy the zone names into the zoneBuffer */
 }
 DisposPtr(theBufferPtr);
 DisposPtr(zoneBuffer);
 }
}

GetLocalZones

Parameter Block
 --> 26 csCode word ; always xCall (246)
 --> 28 xppSubCode word ; always zipGetLocalZones (5)
 --> 30 xppTimeout byte ; retry interval (seconds)
 --> 31 xppRetry byte ; retry count
 32 <unused> word ; filler
 --> 34 zipBuffPtr pointer ; pointer to buffer (must be 578 bytes)
 <-- 38 zipNumZones word ; no. of zone names in this response
 <-- 40 zipLastFlag byte ; non-zero if no more zones
 41 <unused> byte ; filler
 --> 42 ziplnfoField 70 bytes ; on initial call, set first word to zero

This call has the same format and procedures as GetZoneList, the difference being that GetLocalZones returns a list
of zone names currently defined only on the node's network cable rather than the entire network. The 70-byte
zipInfoField must always be allocated at the end of the parameter block.

Result codes noErr No Error (0)

noBridgeErr No router is available (-93)

ReqFailed SendRequest failed; retry count exceeded (-1096)

Note:
The examples for GetZoneList will also work for GetLocalZones if you substitute the xppSubCode.

GetMyZone

Parameter Block
 --> 26 csCode word ; always xCall (246)
 --> 28 xppSubCode word ; always zipGetMyZone (7)
 --> 34 zipBuffPtr pointer ; pointer to buffer (must be 33 bytes)
 --> 42 ziplnfoField 70 bytes ; first word must be set to zero on every
call

GetMyZone returns the node's AppleTalk zone name. This is the zone in which all of the node's network visible entities are
registered. ZipBuffPtr points to a buffer that must be 33 bytes in length. If noBridgeErr is returned by the call,
there is no internet, and the zone name is effectively an asterisk (*). The 70-byte zipInfoField must always be
allocated at the end of the parameter block.

Result codes noErr No Error (0)

ReqFailed SendRequest failed; retry count exceeded (-1096)

Following are short examples of using GetMyZone.

NW 03 - AppleTalk Phase 2 on the Macintosh Page: 7

Pascal

procedure getMyZonePhs2;
var
 xpb:xCallParam;
 resultCode :OSErr;
 myZoneNameBuffer:Ptr;
begin
 myZoneNameBuffer := NewPtr(33);

 xpb.ioCRefNum := xppRefNum;
 xpb.csCode := xCall;
 xpb.xppSubCode := zipGetMyZone;
 xpb.zipBuffPtr := myZoneNameBuffer;
 xpb.zipInfoField[1] := 0; { ALWAYS 0 }
 xpb.zipInfoField[2] := 0; { ALWAYS 0 }
 resultCode := PBControl(@xpb, false);

C

getMyZonePhs2()
{
 xCallParam xpb;
 OSErr resultCode;
 Ptr myZoneNameBuffer;

 myZoneNameBuffer := NewPtr(33);

 xpb.ioCRefNum = xppRefNum;
 xpb.csCode = xCall;
 xpb.xppSubCode = zipGetMyZone;
 xpb.zipBuffPtr = (Ptr) myZoneNameBuffer;
 xpb.zipInfoField[0] = 0; /* ALWAYS 0 */
 xpb.zipInfoField[1] = 0; /* ALWAYS 0 */
 resultCode = PBControl(&xpb, false);

Back to top

Potential Nastiness

When running on a node with Phase 2 compatible drivers, we always recommend using the .XPP calls outlined in the
previous section. Care was taken to keep backward compatibility with the already existing ATP ZIP calls (they are being
trapped out with the Phase 2 drivers), but there are problems about which you should be aware.

Do not rely on checking the TID (transaction ID validity bit) or other bits in the atpFlags, as some of you have
been doing. The atpFlags are not guaranteed to be correct on an ATP ZIP call with a Phase 2 driver present.
Do not repeatedly stuff the router address back into the ATPParamBlock on subsequent ATP ZIP GetZoneList
calls. There exists the possibility of concurrent GetZoneList calls being made by other tasks and wrong router
addresses being used (a small possibility yes, but it does exist).

Back to top

The AppleTalk Transition Queue

To keep applications and other resident processes on the Macintosh informed of AppleTalk events, such as the opening and
closing of AppleTalk drivers, a new transition queue has been implemented. Processes can register themselves with the
AppleTalk Transition Queue, and when a significant event occurs, they will be notified of this fact. Each transition queue
element has the following MPW assembly-language format:

AeQentry RECORD 0
QLink DS.L 1 ; link to next record
QType DS.W 1 ; unused
CallAddr DS.L 1 ; pointer to task record

Three calls have been provided in the LAP Manager to add an entry, remove an entry, and return a pointer to the AppleTalk
event queue header. The method for making calls to the LAP Manager is explained in the following section. The queue is
maintained by the LAP Manager, so it can be active even when AppleTalk (MPP) is not.

Back to top

Making a LAP Manager Call

The LAP Manager is installed in the system heap at startup time, before the AppleTalk Manager opens the .MPP driver
(hence, the inclusion of the AppleTalk Transition Queue in LAP Manager rather than under .MPP). Calls are made to the LAP

NW 03 - AppleTalk Phase 2 on the Macintosh Page: 8

Manager by jumping through a low-memory location, with register D0 equal to a dispatch code that identifies the function.
The exact sequence is:

 MOVEQ #Code,D0 ; D0 = ID code of wanted LAP call
 MOVE.L LAPMgrPtr,An ; An -> start of LAP manager (from $B18)
 JSR LAPMgrCall(An) ; Call the LAP manager at entry point

LAPMgrPtr EQU $B18 ; This points to our start (more
 ; commonly known as ATalkHk2)
LAPMgrCall EQU 2 ; Offset to make LAP manager

Back to top

The AppleTalk Transition Queue LAP Calls

LAddAEQ (D0=23)

Call: A0--> Entry to be added to the AppleTalk event queue.

The LAddAEQ call adds an entry, pointed to by A0, to the AppleTalk event queue.

 MOVEQ #LAddAEQ,D0 ; D0 = 23 code of LAddAEQ LAP call
 MOVE.L LAPMgrPtr,An ; An -> start of LAP manager (from $B18)

LRmvAEQ (D0=24)

Call: A0--> Entry to be removed from the AppleTalk event queue.

The LRmvAEQ call removes an entry, pointed to by A0, from the AppleTalk event queue.

MOVEQ #LRmvAEQ,D0 ; D0 = 24 code of LRmvAEQ LAP call MOVE.L LAPMgrPtr,An ; An -> start
of LAP manager (from $B18) JSR LAPMgrCall(An) ; Call the LAP manager at entry point

LGetAEQ (D0=25)

Return: A1--> Pointer to the AppleTalk event queue header.

The LGetAEQ call returns a pointer in A1 to the AppleTalk event queue header, previously described.

MOVEQ #LGetAEQ,D0 ; D0 = 25 code of LGetAEQ LAP call MOVE.L LAPMgrPtr,An ; An -> start
of LAP manager (from $B18) JSR LAPMgrCall(An) ; Call the LAP manager at entry point

Back to top

The Transitions

Each process is called at CallAddr when any significant transitions occur. A value is passed in, which indicates the nature
of the event. Additional parameters may also be passed and a pointer to the task's queue element is also passed. This is
provided so processes may append their own data structures (e.g., a globals pointer) at the end of the task record, which can
be referenced when they are called. Processes should follow the MPW C register conventions. Registers D0, D1, D2, A0,
and A1 are scratch registers that are not preserved by C functions. The arguments passed to the process should be left on
the stack, since the calling routine removes them. All other registers should be preserved.

The Open Transition

For AppleTalk open transitions, the process has the following interface:

From assembly language, the stack upon calling looks as follows:

OpenEvent RECORD 0 ReturnAddr DS.L 1 ; address of caller theEvent DS.L 1 ; = 0 ; ID of
Open transaction aqe DS.L 1 ; pointer to task record SlotDevParam DS.L 1 ; pointer to
Open parameter block ENDR

This routine is called only when the open routine for .MPP executes successfully. Every entry in the transition queue is
called in the same order that the entries were added to the queue. If AppleTalk is already open and an _Open call is made, no
process is called. The process should return a function result in D0, which is currently ignored.

A pointer to the open request parameter block is passed to the open event process for information only (i.e., the event
process may not prevent AppleTalk open calls). Those fields which are of interest are OpenPB->ioPermssn, passed by
the caller, and OpenPB->ioMix, which is both passed by the caller and updated by the .MPP open (see Inside Macintosh ,
Volume V, The AppleTalk Manager).

The Close Transition

For AppleTalk close transitions, the process has the following interface:

From assembly language, the stack upon calling looks as follows:

CloseEvent RECORD 0 ReturnAddr DS.L 1 ; address of caller theEvent DS.L 1 ; = 2 ; ID
of Close transaction aqe DS.L 1 ; pointer to task record ENDR

NW 03 - AppleTalk Phase 2 on the Macintosh Page: 9

The process is being told that AppleTalk is closing, which gives the process an opportunity to close gracefully. Every entry
in the event queue is called, one after the other, in the same order that the entries were added to the queue. The close action
cannot be cancelled. The process should return a function result in D0, which is currently ignored.

The ClosePrep and CancelClosePrep Transitions

The AtalkClosePrep and the CancelAtalkClosePrep control calls are used by various elements of the System,
such as the Chooser, to inform or query AppleTalk clients of the closing of network drivers. For example, on a machine
equipped to go to sleep or to wake up, the _Sleep trap is used by such entities as sleeptimer, Finder, and Shutdown to
inform AppleTalk clients that it is desirable for the network driver (.MPP) to be closed. The _Sleep trap may be trying
to do any of the following three things: request permission for sleep, alert for impending sleep, or inform that wake up is
underway. The sleep request calls the following two .MPP control calls; these calls are made before sleep queue procedures
are called.

The first control call, AtalkClosePrep, is used to inform or query AppleTalk clients that the network driver might be
closed in the very near future. The call has the following interface:

AtalkClosePrep (csCode = 259)

Parameter Block --> 26 csCode word ;always AtalkClosePrep <-- 28 clientName pointer
;-> name of client using driver

Result codes

noErr The AppleTalk network driver (.MPP) may be closed

closeErr The AppleTalk network driver (.MPP) may not be closed

clientName is a pointer to an identifying string that is returned only if the result is closeErr. Note that the pointer
may be NIL in this case, while the pointer is always NIL if the return code is noErr.

All tasks in the AppleTalk Transition Queue are called with the event ClosePrep. The tasks can prevent driver closure
with a negative response to the event call. Each task is called with the following interface:

From assembly language, the stack upon calling looks as follows:

ClosePrep RECORD 0 ;top of the stack ReturnAddr DS.L 1 ;addr of caller theEvent DS.L 1
;=3 aqe DS.L 1 ;->task rec. clientName DS.L 1 ;ptr. to ptr. to name of client ENDR

For this event, theEvent = 3, and the task is being both informed and asked if closing the network driver is acceptable.
If driver closure is acceptable, the task need only to reply affirmative (D0 = 0), or if not acceptable, deny the request
(D0 != 0). The task may use the event as an opportunity to "prepare to die" or may simply respond. For example, a task
may prevent further sessions from forming while waiting for the actual close event.

clientName is a pointer to a field in the .MPP control call parameter block where the task may optionally store a string
address. This string identifies the client who has AppleTalk in use and is denying the request to close it. This string may be
used in a dialog to inform the user to take appropriate action or explain why the requested action could not be performed.

If any task responds negatively, no subsequent tasks are called. Any tasks called prior to the one that denied a query are
recalled with another event, CancelClosePrep (described below), enabling them to "undo preparations to die," and the
control call then completes with a closeErr error.

From assembly language, the stack upon calling looks as follows:

CancelClosePrep RECORD 0 ;top of the stack ReturnAddr DS.L 1 ;addr of caller theEvent
DS.L 1 ;=4 aqe DS.L 1 ;->task rec. ENDR

For this event, theEvent = 4, and the task is being informed that although it has recently approved a request to close the
network driver, a subsequent task in the AppleTalk Transition Queue has denied permission. This event permits the task to
undo any processing that may have been performed in anticipation of the network driver being closed. The process should
return a function result in D0, which is currently ignored.

The second new control call, CancelAtalkClosePrep, is used to undo the effects of a successful AtalkClosePrep
control call. Even though all queried tasks in the AppleTalk Transition Queue approved of network driver closure, other
conditions may exist after making the AtalkClosePrep control call which prohibit network driver closure. In this case,
it is necessary to recall all tasks to undo any processing that may have been performed in anticipation of the network driver
being closed. The control call to do this has the following interface:

CancelAtalkClosePrep (csCode = 260)

Parameter Block --> 26 csCode word ;always CancelAtalkClosePrep

Result codes noErr Nothing could possibly go wrong

All tasks in the AppleTalk Transition Queue are called with the event CancelClosePrep as described above.

Note:
The use of the low-memory global ChooserBits ($946) is no longer an acceptable means of preventing
AppleTalk from closing when AppleTalk Phase 2 is present. Transitions other than defined above must be
ignored and are reserved for future implementation. In the future transitions may be defined for notifying
processes when a change in zone name occurs.

NW 03 - AppleTalk Phase 2 on the Macintosh Page: 10

Back to top

Potential Compatibility Problems

Using DDP and Talking to Routers

If, for some reason, you need to talk to any router via DDP, always use the GetAppleTalkInfo call outlined in this Note
to get the router's actual 24-bit address.

The WriteLAP function (csCode = 243) to the .MPP driver is no longer supported, since a node is no longer identified
only by its eight-bit (LAP) node ID.

On a Macintosh running the AppleTalk Internet Router software, the SelfSend flag is always set, so if you try to clear
this flag using the PSetSelfSend call (Inside Macintosh, Volume V-514), you will get an error.

Back to top

References

Inside AppleTalk

Inside Macintosh, Volume II, The AppleTalk Manager

Inside Macintosh, Volume V, The AppleTalk Manager

EtherTalk and Alternate AppleTalk Connections Reference, May 5, 1989--Draft (DTS)

AppleTalk Phase 2 Protocol Specification (DTS)

Macintosh Portable Developer Notes (DTS)

Back to top

Change History

01-August-1989
Incorporated the ClosePrep and CancelClosePrep transitions and the new
control calls to the .MPP driver.

Downloadables

Acrobat version of this Note (K) Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

