IM_ERRATA 03 - Inside Macintosh: Networking Errata Page: 1

Technical Note IMERRATAO?

Inside Macintosh: Networking Errat:

CONTENTS This Technical Note discusses known errors
and omissions in Inside Macintosh:
Topics Networking .

Chapter 2 - About the AppleTalk Utilities
= . [Sep 01 1994]

Chapter 6 - AppleTalk Transaction Protocol (ATP)

Chapter 7 - Datagram Delivery Protocol (DDP)

Chapter 11 - Summary of Ethernet, TokenRing, and FDDI

References

Downloadables

Topics

Clarification to the use of the GetBridgeAddress function. Sept 94

Corrected special considerations to the use of PSetSelfSend.

Socket Listener sample code correction/modification. Sept 94

“Corrected" EParamMisc2 C interface declaration is incorrect, Chapter 11 Sept 94
ATP trans|ID transaction ID field omitted Sept 94

Back to top

Chapter 2 - About the AppleTalk Utilities

Clarification to the use of GetBridgeAddress
Page 2-6, Getting the Address of Your Node or Your Local Router

The documentation states that "to get the node ID part of a local router's address, you can call the GetBridgeAddress
function." This statement is not correct. Instead of returning the actual node ID of the router, the GetBridgeAddress
function returns a non-zero function result if a router exists on the network. A function result of zero indicates that there
is no router. To get the node ID of the router, use the PGetAppleTalkInfo function instead.

Correction to the Description for PSetSelfSend

Page 2-16, PSetSelfSend description.

The documentation states that “Sending packets between a multinode application and user node applications on the same
machine is independent of the intranode delivery feature. A multinode is treated as a virtual node distinct from the user
node...". These statements lead to the incorrect conclusion that one does not need to set the Se 1 ¥Send capability to send
packets between the user node and the multinode. To send packets between the user node and a multinode, use PSetSelfSend to
turn on intranode delivery service.

Back to top

Chapter 6 - AppleTalk Transaction Protocol (ATP)
Transaction ID field transID omitted

The translDfield should be used in place of the reqTID field as shown in the following areas:
Page 6-15

"The request transaction ID trans D that ATP assigns to this request. If you intend to respond to the request, save this
value because you will need to pass it to the PSendResponse function and the PAddResponse function to identify the
request for which the response message is intended...”

Page 6-16

“For the input address block (addrBlock) and transaction ID (trans D) parameters to PSendResponse, use the
address block (addrBlock) and request transaction ID (transID) parameter values that the PGetRequest function
returned.”

Page 6-33
PGetRequest parameter block and description should look as follows:
Parameter block

-> 1oCompletion ProcPtr A pointer to a completion routine.

<- 1oResult OSErr The function result.

<- userData LonglInt Four bytes of user data.

IM_ERRATA 03 - Inside Macintosh: Networking Errata Page: 2

-> csCode Integer Always getRequest for this function.

-> atpSocket Byte The socket number.

<- atpFlagsByte The control information.

<- addrBlock LonglInt The destination socket address.

<-> reqLength Word On input, the request buffer size. On return, the actual of the request received.

-> reqPointer Ptr A pointer to the request buffer.

<- bitMap Byte A bitmap.

<- trans1D Word The transaction ID.

Field descriptions

transID The transaction ID of the request that PGetRequest has received. ATP supplies this value.

“The PGetRequest function returns the transaction ID of the request that it receives in the trans 1D field. You should
save this value if you intend to respond to the request; this transaction ID is used as an input parameter to the
PSendResponse and PAddResponse functions. To determine that the request transaction ID specified in the trans1D

field is valid, first check the atpTIDVal idvalue bit (bit 1) of the atpFlagsfield. If this bit is set, the transiD
field value is valid.”

Page 6-37

Field descriptions

transID The transaction ID of the request for which this response is meant.
Page 6-43

Field should be an Integer, not a Byte:

-> trans|lDInteger The transaction ID of the request with which the PSendResponse function to be canceled is
associated.

Page 6-48

Add the trans D field to the GetRequestParm parameter block as follows:

GetRequestParm:

(bitMap: Byte; {bitmap}

fillerl: Byte;

transiD: Integer);

Page 6-57

Add the trans D field to the GetRequest Parameter Variant as follows:

GetRequest Parameter Variant

22 reqTIDword request transaction ID

26 csCode word command code; always getRequest

29 atpFlagsbyte control information

30 addrBlock long destination socket address

34 regLength word request size in bytes

36 regPointer long pointer to request data

44 bitMap byte current bitmap

46 trans 1D word request transaction ID

Back to top

Chapter 7 - Datagram Delivery Protocol (DDP)

Listing 7-6 Socket Listener sample code correction/modification.

Page 7-26 through 7-30, Receiving and processing a DDP packet

The sample code is provided to demonstrate a generic socket listener written in 68000 Assembler. The supplied code in this
chapter does not correctly process a packet which is received with a checksum. A BRA.S instruction bypasses the portion of
code which checks the packet for a checksum. In addition, the code for processing the checksum was not included in this
release of Inside Macintosh: Networking . There is one other correction relating to the GetNextBuffer code. Before
calling DeQueue, we must check for a nil pointer as DeQueue in some releases of System Software does not do this for us.

The following is the complete socket listener code sample, including the SL_DoChksum code. Corrections to the supplied
code for the socket listener only are presented in bold typeface.

In addition, the code has been modified to compile as a code resource which can be called using a Universal ProcPtr and
executed in mixed mode, to facilitate compilation as native Power Macintosh code. The beginning of the code resource is the
socket listener entry point, which is a JMP instruction to the actual listener code. The initialization code for the listener is
two bytes into the code resource. For an example use of this listener code, refer to the Network Watch (DMZ) v1.3
application which is available on the Developer CD (Tool Chest Edition), August 1994 or later.

IM_ERRATA 03 - Inside Macintosh: Networking Errata Page: 3

INCLUDE "QuickEqu.a*
INCLUDE “ToolEqu.a*
INCLUDE "SysEqu.a*
INCLUDE “ATalkEqu.a*
INCLUDE “"Traps.a®
INCLUDE "SysErr.a*

Record Types

Wrururu

MyQHdr RECORD 0
gFlags DS.W 1
qHead DS.L 1
qTail DS.L 1
ENDR
PacketBuffer RECORD 0
gqLink DS.L 1
qType DS.W 1
buffer_Type DS.W 1 ; DDP Type
buffer_NodelD DS.W 1 ; Destination node
buffer_Address DS.L 1 ; Source address in AddrBlock format
buffer_Hops DS.W 1 ; Hop count
buffer_ActCount DS.W 1 ; length of DDP datagram
buffer_CheckSum DS.W 1 ; Chksum error returned here
; (cksumErr or noErr)
buffer_Ticks DS.L 1 ; TickCount when handler called
buffer_Data DS.B ddpMaxData ; the DDP datagram
ENDR
THE_LISTENER PROC EXPORT
BRA.S TheListener
BRA.S SL_InitSktListener ; branch to init code

; Local Variables

free_queue DC.L 0 ; pointer to freeQ QHdr - init"d by InitSktListener
used_queue DC.L 0 ; pointer to usedQ QHdr - init"d by InitSktListener
current_gelem DC.L 0 ; pointer to current PacketBuffer record

; initialized by InitSktListener, then
; set by socket listener after every packet.
; NIL if no buffer is available.

; Function SL_InitSktListener(freeQ, usedQ: QHdrPtr): OSErr

StackFrame RECORD {A6Link},DECR ; build a stack frame record
Resultl DS.W 1 ; function®s result returned to caller
ParamBegin EQU * ; start parameters after this point
freeQ DS.L 1 ; FfreeQ parameter
usedQ DS.L 1 ; usedQ parameter
ParamSize EQU ParamBegin-* ; size of all the passed parameters
RetAddr DS.L 1 ; placeholder for return address
A6Link DS.L 1 ; placeholder for A6 link
LocalSize EQU £3 ; size of all the local variables

ENDR

SL_InitSktListener:

WITH StackFrame ,MyQHdr ; use these record types
LINK A6 ,#LocalSize ; allocate our local stack frame

; copy queue header pointers into our local storage for use in the listener

LEA used_queue, A0 ; copy usedQ into used_queue
MOVE. L usedQ(A6) , (AD)
LEA free_queue,A0 ; copy freeQ into free_queue
MOVE . L freeQ(A6) , (AD)

; dequeue the first buffer record from freeQ and set current _gelem to it

MOVEA.L freeQ(A6).AL ; Al = ~freeQ
Li=s current_gelem, AO ; copy freeQ.gHead into
; current_gelem

IM_ERRATA 03 - Inside Macintosh: Networking Errata

MOVE.L
MOVEA.L
_Dequeue
MOVE .W

@1 UNLK
MOVEA.L
ADDA.L

JMP

gHead (A1), (AD)
gHead (A1) ,A0

DO,Resultl1(A6)

A6
(SP)

+,A0

#ParamSize, SP

(A0)

; A0

= freeQ.qHead

; Return status

PR

destroy the link
pull off the return address
strip all of the caller"s

parameters
return to the caller

; SL_TheListner

; Input:

; DO (byte)
; D1 (word)
; AO points
; Al points
; A2 points
; A3 points
: A4 points

; Return:

- process packets received at the designated socket

to
to
to
to
to

the bytes to checksum
the bytes to checksum
local variables
next free byte in Read Header Area
ReadPacket and ReadRest jump table

MPP*s

; DO is modified
; D3 (word) = accumulated checksum

packet®s destination socket number
number of bytes left to read in packet

IMPORT SL_DoChksum

TheListener:

WITH PacketBuffer

: code

; get pointer to current PacketBuffer

GetBuffer:

LEA current_gelem,A3
MOVE. L (A3),A3
MOVE. L A3,D0
BEQ.S NoBuffer

; read rest of packet into PacketBuffer.

MOVE.L D1,D3

LEA buffer_data(A3),A3
JSR 2(A4)

BEQ.S ProcessPacket

BRA RcVRTS

; No buffer; ignore the packet

NoBuffer CLR D3
JSR 2(Ad)
BRA GetNextBuffer

; get the pointer to the PacketBuffer to use

; If no PacketBuffer
; then ignore packet

datagramData

; read rest of packet
; A3 = ~bufferData
; ReadRest

; If no error, continue
; there was an error, so ignore packet

; Set to ignore packet (buffer size = 0)

; ReadRest

; We missed this packet, but maybe there
; will be a buffer for the next packet...

; Process the packet you just read in.

; ReadRest has been called so registers AO-A3 and DO-D3 are free to use.
; We"ll use registers this way:
AO

current_qgelem, PktBuff

PktBuff EQU
MPPLocals EQU A2
HopCount EQU DO
DatagramLength EQU D1
SourceNetAddr EQU D2
ProcessPacket:

LEA

MOVE.L

; do everything that"s common to both long and short DDP headers

; First, clear buffer_Type and buffer_NodelD to ensure their high bytes are 0

CLR.W
CLR.W

(PKtBUfF) , PktBuFf

buffer_Type(PktBuff)
buffer_NodelD(PktBuff)

the current PacketBuffer

pointer to MPP"s local variables (still set
up from entry to socket listener)

used to get the hop count

used to determine the datagram length
used to build the source network address

; clear buffer_Type
; clear buffer_NodelD

; PktBuff = current_gelem

; clear SourceNetAddr to prepare to build network address

MOVEQ

#0,SourceNetAddr

; get the hop count

build the network address
; SourceNetAddr

Page: 4

IM_ERRATA 03 - Inside Macintosh: Networking Errata Page: 5

MOVE .W toRHA+lapHdSz+ddpLength(MPPLocals) ,HopCount ; Get hop/length

; Field
ANDI . W #DDPHopsMask , HopCount ; Mask off the hop count bits
LSR.W #2 ,HopCount ; shift hop count into low bits of
; high byte
LSR.W #8,HopCount ; shift hop count into low byte
MOVE .W HopCount,buffer_Hops(PktBuff) ; and move it into the
; PacketBuffer
; get the packet length (including the DDP header)
MOVE .W ‘toRHA+lapHdSz+ddpLength(MPPLocals) ,DatagramLength ; Get length field
ANDI W #ddpLenMask, DatagramLength ; Mask off the hop count bits

; now, find out if the DDP header is long or short

MOVE.B toRHA+lapType(MPPLocals) ,D3 ; Get LAP type

CMPI.B #shortDDP,D3 ; is this a long or short DDP
; header?

BEQ.S I1sShortHdr ; skip if short DDP header

it’s a long DDP header

MOVE.B toRHA+lapHdSz+ddpType (MPPLocals) ,buffer_Type+1(PktBuff)
; get DDP type
MOVE.B ‘toRHA+lapHdSz+ddpDstNode (MPPLocals) ,buffer_Node ID+1(PktBuff)
; get destination node from LAP
; header
MOVE. L toRHA+lapHdSz+ddpSrcNet(MPPLocals) , SourceNetAddr

; source network in hi word
; source node in lo byte
LSL.W #8,SourceNetAddr ; shift source node up to high
; byte of low word
; get source socket from DDP

; header
MOVE .B ‘toRHA+lapHdSz+ddpSrcSkt(MPPLocals) , SourceNetAddr
SUB.W #ddpType+1,DatagramLength ; DatagramLength = number of bytes

; In datagram
;BRA.S MoveToBuffer <Delete this statement>

; Determine if there is a checksum

TST.W toRHA+lapHdSz+ddpChecksum(MPPLocals) ;Does packet have checksum?
BEQ.S noChecksum
; Calculate checksum over DDP header
MOVE .W DatagramLength,-(SP) ; save DatagramLength (D1)
CLR D3 ; set checksum to zero
MOVEQ #ddphSzLong-ddpDstNet,D1 ; D1 = length of header part to

; checksum pointer to dest network
; number in DDP header

LEA ‘toRHA+lapHdSz+ddpDstNet(MPPLocals) ,Al

JSR SL_DoChksum ; checksum of DDP header part
; (D3 holds accumulated checksum)

; Calculate checksum over data portion (if any)

LEA buffer_Data(PktBuff),Al ; pointer to datagram
MOVE.W (SP)+,DatagramLength ; restore DatagramLength(D1)
MOVE .W DatagramLength,-(SP) ; save DatagramLength (D1)
; before calling SL_DoChksum
BEQ.S TestChecksum ; don"t checksum datagram if its
length = 0
JSR SL_DoChksum ; checksum of DDP datagram part
; (D3 holds accumulated checksum)
TestChecksum:
MOVE .W (SP)+,DatagramLength ; restore DatagramLength(D1)
; Now make sure the checksum is OK.
TST.W D3 ; Is the calculated value zero?
BNE.S NotZero ; no -- go and use it
SUBQ.-W #1,D3 ; it is 0; make it -1
NotZero:
CMP_W ‘toRHA+lapHdSz+ddpChecksum(MPPLocals) ,D3
BNE.S ChecksumErr ; Bad checksum
MOVE .W #0,buffer_CheckSum(A0) ; ho errors
BRA.S noChecksum
ChecksumErr:
MOVE .W #ckSumErr , buffer_CheckSum(PktBuff) ; checksum error

noChecksum:

IM_ERRATA 03 - Inside Macintosh: Networking Errata

BRA.S MoveToBuffer

it"s a short DDP header

I1sShortHdr:
; get DDP type
MOVE.B ‘toRHA+lapHdSz+sddpType(MPPLocals) ,buffer_Type+1(PktBuff)
; get destination node from LAP
; header
MOVE.B toRHA+lapDstAdr (MPPLocals) ,buffer_Node ID+1(PktBuff)
; get source node from LAP header
MOVE .B toRHA+lapSrcAdr(MPPLocals) , SourceNetAddr
LSL.W #8,SourceNetAddr ; shift src node up to high byte
; of low word
; get source socket from short DDP
; header
MOVE.B toRHA+lapHdSz+sddpSrcSkt(MPPLocals) ,SourceNetAddr
; DatagramLength = number of bytes in
; datagram
SUB.W #sddpType+1,DatagramLength
MoveToBuffer:
;move source network address into PacketBuffer
MOVE. L SourceNetAddr ,buffer_Address(PktBuff)
; move datagram length into PacketBuffer
MOVE .W DatagramLength,buffer_ActCount(PktBuff)

; Now that we"re done with the PacketBuffer, enqueue it into the usedQ and get
; another buffer from the freeQ for the next packet.

LEA used_queue,Al ; Al = ~used_queue
MOVE. L (A1) ,A1 ; Al = used_queue (pointer to usedQ)
_Enqueue ; put the PacketBuffer in the usedQ
GetNextBuffer:
LEA free_queue,Al ; Al = ~free_queue
MOVE.L (A1) ,A1 ; Al = free_queue (pointer to freeQ)
LEA current_gelem, AO ; copy freeQ.gHead into current_gelem
MOVE . L gHead (A1), (A0)
MOVEA. L gHead (A1) ,A0 ; A0 = freeQ.gHead
MOVE . L AO,DO ; check whether there is a queue element
BEQ.S RCcVvRTS ; branch if not - don"t dequeue nil ptr.
_Dequeue
RcVRTS:
RTS ; return to caller
ENDWITH
ENDP

; SL_DoChksum - accumulate ongoing checksum (from Inside Macintosh)

Input:

D1 (word) = number of bytes to checksum
; D3 (word) = current checksum
; Al points to the bytes to checksum

; Return:
; DO is modified
; D3 (word) = accumulated checksum

SL_DoChksum PROC

CLR.W DO ; Clear high byte

SUBQ-W #1,D1 ; Decrement count for DBRA
ChksumLoop:

MOVE.B (A1)+,D0 ; read a byte into DO

ADD.W DO,D3 ; accumulate checksum

ROL.W #1,D3 ; rotate left one bit

DBRA D1, ChksumLoop ; loop if more bytes

RTS

ENDP

END

Listing 7-7 sample code has logic error
Page 7-32, Testing for Available Packets

The sample code "Determining if the socket listener has processed a packet", incorrectly uses the following statement to
check whether a packet was successfully Dequeued:

Page: 6

IM_ERRATA 03 - Inside Macintosh: Networking Errata Page: 7

IF (Dequeue(QElemPtr(bufPtr), @usedQ) <> noErr) THEN

The corrected statement is:

IF (Dequeue(QElemPtr(bufPtr), @usedQ) = noErr) THEN

Back to top
Chapter 11 - Summary of Ethernet, TokenRing, and FDDI

""Corrected" EParamMisc2 C interface declaration is incorrect

Page 11-46, A corrected definition for the EParamMisc?2 variable type is presented as:

typedef struct {
EParamHeader
char eMultiAddr[5];
} EParamMisc2;

This declaration is incorrect. The eMultiAddr field is 6 bytes long. The correct structure is defined as:

typedef struct {
EParamHeader
char eMultiAddr[6];
} EParamMisc2;

Back to top
References
Inside Macintosh: Networking

Back to top

Downloadables
jﬂ Acrobat version of this Note (56K) Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

