
IM_ERRATA 02 - Inside Macintosh: Memory Errata Page: 1

CONTENTS

Topics

About This Book

Chapter 1 - Introduction to Memory Management

Chapter 2 - Memory Manager

Chapter 3 - Virtual Memory Manager

Chapter 4 - Memory Management Utilities

References

Downloadables

This Technote discusses known errors and
omissions in Inside Macintosh: Memory.

[Aug 01 1998]

Topics

Inside Macintosh:Memory doesn't apply to 64K ROM Macintoshes, August 1998
TickCount vs. Ticks, August 1998
Correction to Description of Figure 1-7, October 1994
Correction to Documented Default Stack Sizes, October 1994
Addendum to Description of SetApplLimit, October 1994
Correction to Return Value Type, October 1994
Correction to NewPtr Description, October 1994
Correction to Temporary Memory Locking Requirements, August 1998
Correction to Listing for Checking for Temporary Memory Routines, October 1994
Clarification of 'sysz' Resources and System Extensions, August 1998
Clarification of Block Alignment Boundaries, October 1994
Clarification of Block Header Diagrams, October 1994
Clarification of PtrToHand description, August 1998
Calling conventions for PtrToHand, PtrToXHand, and PtrAndHand, August 1998
Correction to HandToHand description, August 1998
HandAndHand warning no longer needed, August 1998
Correction to PtrAndHand Assembly-Language Information, August 1998
Addendum to StackSpace Special Considerations, August 1998
Addendum to MemError Warning, August 1998
Addition to MyGrowZone and MyPurgeProc Special Considerations, August 1998
Correction to LockMemoryContiguous Description, October 1994
Correction to DebuggerGetMax Description, October 1994
Correction to DebuggerLockMemory Description, October 1994
Correction to DebuggerUnlockMemory Description, October 1994
Finding QuickDraw globals, August 1998

Back to top

About This Book

Inside Macintosh:Memory doesn't apply to 64K ROM Macintoshes

Page xi

This note should be added to the introduction:

The intent of Inside Macintosh:Memory is to cover all Macintosh models existing or foreseeable at
time of print, except for a few early models with the 64K ROMs, which are no longer supported:

The original Macintosh (64KB ROM, 128KB, or 512KB RAM)
Macintosh XL (Lisa hardware emulating an original Macintosh)

Inside Macintosh:Memory does apply to the Macintosh 512K enhanced (featuring the same 128K
ROM as the Macintosh Plus) and all Macintoshes at time of print, including Performa, PowerBook,
Power Macintosh, and Mac OS-compatible PowerPC machines.

Back to top

Chapter 1 - Introduction to Memory Management

TickCount vs. Ticks

Pages 1-6 and 2-7

IM_ERRATA 02 - Inside Macintosh: Memory Errata Page: 2

This is a bad example. A better example is MemError vs. MemErr.

The paragraph on page 1-6 should read:

In general, it is best to avoid reading or writing low-memory system global variables. Most of these
variables are undocumented, and the results of changing their values can be unpredictable. Usually,
when the value of a low-memory global variable is likely to be useful to applications, the system
software provides a routine that you can use to read or write that value. For example, you can get the
current value of the MemErr global variable by calling the MemError function.

The paragraph on page 2-7 should read:

Even when Inside Macintosh does document a particular system global variable, you should use any
available routines to access that variable's value instead of examining it directly. For example, you
should use the MemError function to find the last error returned by the Memory Manager instead of
examining the MemErr global variable directly.

Correction to Description of Figure 1-7

Page 1-14

The description of Figure 1-7 is incorrect. The paragraph immediately following Figure 1-7 should
read: "In Figure 1-7, Application 2 has almost exhausted its application heap. As a result, it has
requested and received a large block of temporary memory. Application 2 can use the temporary
memory in whatever manner it desires."

Correction to Documented Default Stack Sizes

Pages 1-39 through 1-40, Changing the Size of the Stack

The documentation states that by default the stack can grow to "32KB on computers with Color
QuickDraw" (page 1-40). The actual default stack size on machines with Color QuickDraw is 24KB.
In addition, the default stack size for a background-only application (or a "faceless background
process") is 2KB, not 8KB as claimed on page 1-40.

However, the default stack size may change in the future and should never be assumed.

Addendum to Description of SetApplLimit

Pages 1-39, 1-52, and 2-84.

The description of the SetApplLimit routine should mention that SetApplLimit enforces a
minimum stack size equal to DefltStack. For example, calling SetApplLimit on a
background-only application running on a Color QuickDraw machine will result in a minimum stack
size of 24KB, regardless of the value passed to SetApplLimit. The partition of the
background-only application must be large enough to accommodate a stack of that size.

Correction to Return Value Type

Page 1-45, Allocating Blocks of Memory

The application-defined function NewPtrCushion (defined in Listing 1-7) should return a value
of type Ptr, not of type Handle.

Correction to NewPtr Description

Pages 1-58 through 1-59, and 2-36.

The Assembly-Language Information for the NewPtr function states that on entry register A0
contains the number of logical bytes requested. In fact, register D0 should contain the number of
logical bytes requested.

Addition to SetCurrentA5 Description

Pages 1-79 and 1-81

There is a problem introduced with MultiFinder. It is well documented in Technote ME14-The New
Memory Manager and You, under A5 World Problems and Heap Callback Procedures (but the
workaround suggested in this technote is unusable).

The problem: when a heap is low on memory or a Handle is going the be purged, the GrowZone or
PurgeProc function is called without an A5 world switch. This means that the GrowZone or
PurgeProc function is called with CurrentA5 set, according to the A5 world of the application
that did the call generating the low-memory or Handle purge condition, rather than the value of A5
for which the application the GrowZone or PurgeProc function belongs. As the Technote says,
this "[will] cause all hell to break loose". This may occur, for example, when the active and
frontmost application closes a window. The update region of windows belonging to other applications
need to be updated, which often involves extending the update region Handle, which can cause a
GrowZone procedure to be called, but since the window being updated is in the background, the
value of A5 is wrong with respect to the GrowZone or PurgeProc function.

The safe workaround, which is needed only in 680x0 code, involves saving A5 explicitly, and
recovering it using PC-relative addressing. Going forward to Mac OS X and Carbon, GrowZone and
PurgeProc functions will not be needed, so this problem will gradually go away.

Back to top

Chapter 2 - Memory Manager

Correction to Temporary Memory Locking Requirement

IM_ERRATA 02 - Inside Macintosh: Memory Errata Page: 3

Page 2-10, Extending an Application's Memory

The phrase:

[...] you must never lock temporary memory across calls to GetNextEvent or
WaitNextEvent [...]

should read:

[...] you should avoid locking temporary memory across calls to GetNextEvent or
WaitNextEvent [...]

See Q&A ME08-Temporary Memory for details.

Correction to Listing for Checking for Temporary Memory Routines

Page 2-12

Listing 2-3 on page 2-12 contains an error. The line:

TempMemCallsAvailable := BAND(myRsp, gestaltTempMemSupport) <> 0;

should be replaced by the line:

TempMemCallsAvailable := BTst(myRsp, gestaltTempMemSupport);

Clarification of 'sysz' Resources and System Extensions

Page 2-13, Allocating Memory at Startup Time

The documentation implies (page 2-13) that system extensions running under System 7.0 and later
do not need to have 'sysz' resources to indicate their system heap memory requirements. This
statement is misleading. 'sysz' resources are effective on all versions of system software.

Furthermore, the generic term "system extension" is ambiguous in this context. Many items in the
Extensions folder, such as components and native drivers ('ndrv's), are labeled as "system
extensions" by the Finder. However, 'sysz' resources are only applicable to files that may contain
'INIT' resources. This includes control panels, system extensions of file type 'INIT', and
application extensions with an 'INIT' resource. [Radar ID 1245268]

Before executing an 'INIT' resource from a file, the Start Manager first checks to see whether the
system heap has X bytes of free space, where X is the maximum of 16KB or the value in the file's
'sysz' resource. If less than X bytes of free space is available, the Start Manager grows the
system heap such that X bytes are available for the 'INIT's use.

Note that in System 7.0 and later, the system heap can grow after the startup process has completed.
The 'sysz' resource only controls the system heap expansion at startup time.

Clarification of Block Alignment Boundaries

Page 2-22, Block Headers

The documentation states that "on computers containing the MC68020, MC68030, or MC68040
microprocessors, blocks are padded to 4-byte boundaries." This is incorrect for 68040 and
PowerPC machines, where blocks are always aligned on 16-byte boundaries.

Starting with Mac OS 7.5, all memory blocks, regardless of the runtime CPU, are aligned to 16-byte
boundaries.

Clarification of Block Header Diagrams

Pages 2-22 through 2-23, Block Headers

Figures 2-1 (page 2-22) and 2-2 (page 2-23) might be misleading. Remember that Inside
Macintosh typically draws memory diagrams with the low-memory addresses nearest to the bottom
of the diagram. (Compare Figure 1-1 on page 1-5, where the low-memory end of the diagram is
explicitly labeled.) The long word containing the block type and size correction is the first long word
in the 24-bit zone header. Similarly, the long word containing the block type and unused space is the
first long word in the 32-bit zone header.

Figure 2-2 (page 2-23) claims that a block type of "11" signifies a relocatable block. This is
incorrect. The correct type indicator for a relocatable block is "10".

Clarification to PtrToHand Description

Page 2-61

The dstHndl parameter is not an input parameter; therefore, the statement "The dstHndl
parameter must be a handle variable that is not empty and is not a handle to an allocated block of size
0" is misleading in that it implies that you may have to allocate the handle yourself. This is not the
case. PtrToHand will allocate a handle of the requested size and return it to you in the dstHndl
parameter. If no error occurs, on exit dstHndl is an unlocked, non-purgeable Handle of the
requested size, allocated from the current heap zone.

Correction to HandToHand description

IM_ERRATA 02 - Inside Macintosh: Memory Errata Page: 4

Page 2-63

The statement:

"The new relocatable block is created in the same heap zone as the original block
(which might not be the current heap zone)."

is incorrect.

The correct description is that the new relocatable block is created in the current heap zone,
regardless of the zone of the original relocatable block. During HandToHand, the original Handle
is made non-purgeable while the new one is allocated. The original Handle is then returned to its
original state. It is safe to call HandToHand on purgeable handles, but not on a purged handle.

HandAndHand warning no longer needed

Page 2-64

The warning is no longer needed and only applied to Macs which use the original 64K ROMs.

It is safe to call HandAndHand on purgeable handles, but not on handles that have been purged.

Correction to PtrAndHand Assembly-Language Information

Page 2-65

The description for A1's value should read "Handle to relocatable block to which the data will be
appended."

size, the "Number of bytes to append", is passed in D0, not A2.

Calling conventions for PtrToHand, PtrToXHand, and PtrAndHand

Page 2-66

Before Assessing Memory Conditions, there should be this note:

In the description of PtrToHand, PtrToXHand, and PtrAndHand, Ptr or "pointer" refers to a
memory address, not necessarily to a Memory Manager Ptr as returned by NewPtr. Handle does
refer to a Memory Manager Handle, allocated by routines such as NewHandle or
NewEmptyHandle.

Addendum to StackSpace Special Considerations

Page 2-70

You should not call StackSpace at interrupt time, because it sets the value returned by
MemError and therefore may cause the interrupted application to fail.

Addendum to MemError Warning

Page 2-70

In 680x0 code, calling a function in an unloaded segment will zero MemErr when the segment loader
loads the segment into memory, causing MemError to return noErr. Therefore, you should always
call MemError right after the Memory Manager function that may have caused an error.

Addition to MyGrowZone and MyPurgeProc Special Considerations

Page 2-90 and 2-91

There is a problem introduced with MultiFinder. It is well documented in Technote ME14-The New
Memory Manager and You, under A5 World Problems and Heap Callback Procedures (but the
workaround suggested in this technote is unusable).

The problem: when a heap is low on memory or a Handle is going the be purged, the GrowZone or
PurgeProc function is called without an A5 world switch. This means that the GrowZone or
PurgeProc function is called with CurrentA5 set according to the A5 world of the application
that did the call generating the low-memory or Handle purge condition, rather than the value of A5
for which the application the GrowZone or PurgeProc function belongs. As the Technote says,
this "[will] cause all hell to break loose". This may occur, for example, when the active and
frontmost application closes a window. The update region of windows belonging to other applications
need to be updated, which often involves extending the update region Handle, which can cause a
GrowZone procedure to be called, but since the window being updated is in the background, the
value of A5 is wrong with respect to the GrowZone or PurgeProc function.

The safe workaround, which is needed only in 680x0 code, involves saving A5 explicitly, and
recovering it using PC-relative addressing. Going forward to Mac OS X and Carbon, GrowZone and
PurgeProc functions will not be needed, so this problem will gradually go away.

Back to top

Chapter 3 - Virtual Memory Manager

Correction to LockMemoryContiguous Description

IM_ERRATA 02 - Inside Macintosh: Memory Errata Page: 5

Pages 3-29 through 3-30

The Assembly-Language Information for the LockMemoryContiguous function states that on
entry register A1 contains the "number of bytes to unlock." In fact, register A1 contains the number
of bytes to lock.

Correction to DebuggerGetMax Description

Page 3-34

The description of DebuggerGetMax states (page 3-34): "Of course, you should use the Gestalt
function to check whether virtual memory is available at all before you call the DebuggerGetMax
function." To see if virtual memory is available from a debugger, it is preferable to check to see
whether the _DebugUtil trap is available rather than call Gestalt.

Correction to DebuggerLockMemory Description

Page 3-37

The Assembly-Language Information for the DebuggerLockMemory function (page 3-37) lists
the trap macro as _DebuggerLockMemory. The correct trap macro should be _DebugUtil.
Furthermore, the Assembly-Language Information for the DebuggerLockMemory function states
that on entry register A1 contains the "number of bytes to hold." In fact, register A1 contains the
number of bytes to lock.

Correction to DebuggerUnlockMemory Description

Page 3-38

The Assembly-Language Information for the DebuggerUnlockMemory function (page 3-38)
states that on entry register A1 contains the "number of bytes to hold." In fact, register A1 contains
the number of bytes to unlock.

Back to top

Chapter 4 - Memory Management Utilities

Finding QuickDraw globals

Page 4-18

The sentence:

"However, the A5 register always points to the last of these global variables, thePort."

should read:

"However, the A5 register always contains the address of a pointer to the last of these global
variables, thePort."

Back to top

References

Inside Macintosh: Memory

Back to top

Downloadables

Acrobat version of this Note (K) Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

