
CONTENTS

What is a Kernel Panic?

Basics of PowerPC Exception Handling in Mac OS X's Darwin
Kernel

What Does a Panic Look Like?

How to Read the Panic Display

Isolating the Crash

Summary

References

Downloadables

When the kernel crashes on Mac OS X, the
system displays a panic message. At this
point the system will have to be restarted.
But before hitting the reset button, how can
one find out what caused the crash?

This technote addresses kernel panics: what
they are and how to debug the code that
caused the panic.

The foundation of Mac OS X is a core
operating system commonly known as

. Although the Darwin kernel runs on
both PowerPC and Intel x86 architectures,
this technote discusses PowerPC exception
handling only.

Darwin

This technote contains links to source files
available from the Darwin repository. Access
to these files requires a username and
password obtained by agreeing to the

.
Apple

Public Source License

[Nov 11 2002]

What is a Kernel Panic?

In UNIX, a is an unrecoverable system error detected by the kernel as opposed to similar errors detected by user space code.
It is possible for kernel code to indicate such a condition by calling the function located in the header file .
However, most panics are the result of unhandled processor exceptions in kernel code, such as references to invalid memory
addresses. These are typically indicative of a bug somewhere in the call chain leading up to the panic.

pan i c 1
panic sys/systm.h

Back to top

Basics of PowerPC Exception Handling in Mac OS X's Darwin Kernel
An is a condition encountered by the processor that requires special processing. The PowerPC microprocessor family
handles exceptions by switching to supervisor state, saving the processor state to certain registers, and then jumping to an exception
handler routine. Each major type of exception (data memory access, alignment, etc.) has its own exception vector located at an
absolute address defined in the PowerPC architecture.

exception

The most common exceptions are:

 (data storage interrupt, or data memory access) exceptions, caused by an attempt to access data at an invalid memory
address, such as dereferencing a NULL pointer.
D S I

11/11/02 3:19 PMTN 2063: Understanding and Debugging Kernel Panics

Page 1 of 9file://localhost/NOTES/localnero.apple.com/technotes/tn2002/tn2063.html

 (instruction storage interrupt) exceptions, caused by an attempt to execute an instruction at an invalid memory address,
such as branching to location zero.
I S I

Illegal instruction exceptions, caused by an attempt to execute an instruction with an invalid opcode.

Details on PowerPC exception handling can be found in Chapter 6 of the book
(hereafter referred to as) .

PowerPC Microprocessor Family: The Programming
Environments TPE

Several processor registers that are involved in exception handling are displayed when a panic is caused by an unhandled exception.
These registers are:

DSISR

Identifies the cause of DSI and alignment exceptions such as a direct-store error exception, or the operand of an integer
double-word load or store instruction is not word-aligned.

Data Access Register (DAR)

Contains the effective address of the memory element which caused a DSI or alignment exception.

Machine State Register (MSR)

Defines the state of the processor. Settings include interrupt enable, privilege level, machine check enable, and address
translation bits.

Machine Status Save/Restore Register 0 (SRR0)

Contains the address used to calculate where instruction processing should continue after the exception is handled. Depending on
the exception, this may be the effective address of the instruction which caused the exception or the next instruction in the
program flow. This register is displayed in panics as (program counter).P C

Machine Status Save/Restore Register 1 (SRR1)

Contains exception-specific information and selected bits from the MSR at the time the exception occurred. This register is
displayed in panics as .M S R

Link Register (LR)

Contains the address of the instruction following the last subroutine call (: branch then link) instruction.bl

General Purpose Register 1 (GPR1)

Used as the stack pointer to store parameters and other temporary data items. This register is displayed in panics as .R 1

Details on the PowerPC register set can be found in Chapter 2.TPE

The Darwin kernel follows this execution flow when handling a PowerPC exception:

xnu/osfmk/ppc/lowmem_vectors.s: L_handlerXXXX

(where is the exception handler vector in the range 100 to 2FFF; only 100-2000 are
currently used)

XXXX

xnu/osfmk/ppc/lowmem_vectors.s: L_exception_entry

xnu/osfmk/ppc/hw_exception.s: thandler

xnu/osfmk/ppc/trap.c: trap

xnu/osfmk/ppc/trap.c: unresolved_kernel_trap

The last function () is where panic information is displayed.unresolved_kernel_trap

Back to top

What Does a Panic Look Like?
Listing 1 is a typical panic display from a Mac OS X 10.2.1 system. Line numbers have been added for ease of reference.

11/11/02 3:19 PMTN 2063: Understanding and Debugging Kernel Panics

Page 2 of 9file://localhost/NOTES/localnero.apple.com/technotes/tn2002/tn2063.html

! Example panic dump.Listing 1.

 Unresolved kernel trap(cpu 0): 0x300 - Data access DAR=0xdeadbeef PC=0x0e692550
 Latest crash info for cpu 0:
 Exception state (sv=0x0EB5DA00)
 PC=0x0E692550; MSR=0x00009030; DAR=0xDEADBEEF; DSISR=0x42000000; LR=0x0E692530;

 R1=0x081DBC20; XCP=0x0000000C (0x300 - Data access)
 Backtrace:
 0x0E6924A8 0x00213A88 0x00213884 0x002141D4 0x00214830

 0x00204CB0 0x00204C74
 Kernel loadable modules in backtrace (with dependencies):
 com.apple.dts.driver.PanicDriver(1.0)@0xe691000
 dependency: com.apple.iokit.IOUSBFamily(1.9.2)@0xed9c000
 Proceeding back via exception chain:
 Exception state (sv=0x0EB5DA00)
 previously dumped as "Latest" state. skipping...
 Exception state (sv=0x0EB64A00)
 PC=0x00000000; MSR=0x0000D030; DAR=0x00000000;

 DSISR=0x00000000; LR=0x00000000; R1=0x00000000; XCP=0x00000000 (Unknown)

 Kernel version:
 Darwin Kernel Version 6.1:
 Fri Sep 6 23:24:34 PDT 2002; root:xnu/xnu-344.2.obj~2/RELEASE_PPC

 Memory access exception (1,0,0)
 ethernet MAC address: 00:0a:11:22:33:44
 ip address: 169.254.180.203

 Waiting for remote debugger connection.

1
2
3
4

5
6

7
8
9
10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25

Starting with Mac OS X 10.2, a panic is indicated by the multi-lingual alert shown in Figure 1. After restarting the system, a file
called should be present in . This file contains the same data as the panic dump on the screen.panic.log /Library/Logs

 Mac OS X 10.2 panic alert.Figure 1.

If remote debugging has been enabled via the parameter in , once either the panic alert or textual panic dump is
displayed, the system is waiting for a connection from a remote GDB debugger session. For more details on remote (two-machine)
debugging, please refer to the tutorial.

debug boot-args

Hello Debugger

11/11/02 3:19 PMTN 2063: Understanding and Debugging Kernel Panics

Page 3 of 9file://localhost/NOTES/localnero.apple.com/technotes/tn2002/tn2063.html

A panic log file is written if remote debugging has been enabled.
Note:

not

A list of flags affecting remote debugging is in of .Table 19-1 Inside Mac OS X: Kernel Programming

Back to top

How to Read the Panic Display
For each line of the panic display, the name of the kernel source file and function that displays that line is given, followed by an
explanation of the information on that line.

Line 1 xnu/osfmk/ppc/trap.c: unresolved_kernel_trap

: Textual description of the cause of the panic. This is the parameter passed to the
function.
Unresolved kernel trap panic

: The number of the CPU on which the exception has occurred. Useful on multiprocessor systems. Note that on a
multiprocessor system it's possible for one processor to be panicked while the other continues to run.
(cpu 0)

: trap name. This is a textual description of the exception. The trap names are found in the
array in . The hardware exception code (defined in

) is initially set by the exception handler
where is the PowerPC exception vector. The index into the array is computed by dividing

by , defined to be 4 (the size of a function pointer), also in .

0x300 - Data access
trap_type xnu/osfmk/ppc/trap.c trapno xnu/osfmk/ppc/

exception.h xnu/osfmk/ppc/lowmem_vectors.s: L_handlerXXXX
XXXX trap_type

trapno T_VECTOR_SIZE xnu/osfmk/ppc/exception.h

The at the beginning is the PowerPC exception vector. Using this value one can look up details on the specific exception
in Chapter 6.

0x300
TPE

: contents of Data Access Register
: contents of register SRR0

DAR
PC

The interpretation of DAR and PC varies depending on the definition of each exception.

Back to Listing 1

Line 2 xnu/osfmk/ppc/model_dep.c: print_backtrace

Back to Listing 1

Line 3 xnu/osfmk/ppc/model_dep.c: print_backtrace

Exception states are stored in data structures of type (see). is the address
of the for the latest exception.

savearea xnu/osfmk/ppc/exception.h sv
savearea

Back to Listing 1

Line 4 xnu/osfmk/ppc/model_dep.c: dump_savearea

: contents of SRR0
: contents of SRR1
: contents of Data Access Register

: contents of DSISR
: contents of Link Register
: contents of GPR1

: This is not a register but is the exception code stored in the corresponding to the current exception. It is
followed by the trap name (see) .

PC
MSR
DAR
DSISR
LR
R1
XCP savearea

line 1

Back to Listing 1

Line 5 xnu/osfmk/ppc/model_dep.c: dump_backtrace

Back to Listing 1

11/11/02 3:19 PMTN 2063: Understanding and Debugging Kernel Panics

Page 4 of 9file://localhost/NOTES/localnero.apple.com/technotes/tn2002/tn2063.html

Line 6 xnu/osfmk/ppc/model_dep.c: dump_backtrace

This is the actual stack backtrace. The initial stack pointer is the value of GPR1 in the . The value of LR from the
linkage area of the stack frame is printed, then the next stack frame is located using the value of GPR1 saved in the stack frame.
Up to 32 stack frames will be printed, fewer than that if a zero GPR1 is encountered or if a exists for an earlier
exception.

savearea

savearea

Details on the PowerPC stack as used on Mac OS X can be found in the section "Power PC Stack Structure" of the book
.

Inside Mac
OS X: Mach-O Runtime Architecture

The backtrace is typically the most useful information in a panic dump because it can be used to reconstruct the call chain that
led to the exception. This is discussed in the next section " ."Isolating the Crash

Back to Listing 1

Line 7 xnu/osfmk/kern/kmod.c: kmod_dump

This looks at the addresses in the backtrace and prints out the module name, version, and starting address of each kernel
loadable module in the backtrace. (A kernel loadable module is simply the executable portion of a kernel extension, or kext.) It
also prints out the same information for the dependencies of each kernel extension. The module name and version is the same as
that shown by the command (prior to Mac OS X 10.2) and is the
value of and in the Project Builder build settings. The dependencies are those specified in
the property in the Project Builder bundle settings.

kextstat kmodstat
MODULE_NAME MODULE_VERSION

OSBundleLibraries

Back to Listing 1

Line 8 xnu/osfmk/kern/kmod.c: kmod_dump

Back to Listing 1

Line 9 xnu/osfmk/kern/kmod.c: kmod_dump

Back to Listing 1

Line 10 xnu/osfmk/ppc/model_dep.c: print_backtrace

Each exception state is now dumped. The first one was already shown in lines through (note the same value of in both
locations) so is skipped.

3 6 sv

Back to Listing 1

Line 11 xnu/osfmk/ppc/model_dep.c: print_backtrace

Back to Listing 1

Line 12 xnu/osfmk/ppc/model_dep.c: print_backtrace

Back to Listing 1

Line 13 xnu/osfmk/ppc/model_dep.c: dump_savearea

Same as .line 3

Back to Listing 1

Line 14 xnu/osfmk/ppc/model_dep.c: dump_savearea

Same as .line 4

Back to Listing 1

Line 15 xnu/osfmk/ppc/model_dep.c: print_backtrace

Back to Listing 1

Line 16 xnu/osfmk/ppc/model_dep.c: print_backtrace

11/11/02 3:19 PMTN 2063: Understanding and Debugging Kernel Panics

Page 5 of 9file://localhost/NOTES/localnero.apple.com/technotes/tn2002/tn2063.html

This prints the value of the kernel global variable , set at build time. The value contains embedded newline
characters, so it wraps from line 17 to line 19.

version

The string "Fri Sep 6 23:24:34 PDT 2002" is the date and time the kernel was built. The string "xnu/xnu-344.2.obj~2/
RELEASE_PPC" is the object directory in which the kernel was built. The "xnu-344.2" part contains the same version number
as the CVS tag for the Darwin source revision used to build this kernel (in this case Apple-344-2). This would allow one to
build a custom kernel for those cases where source debugging of the kernel itself was desired.

To see the version of a running kernel, use the command as illustrated in Listing 2.sysctl

! Displaying the kernel versionListing 2.

[localhost:~] me%
kern.version = Darwin Kernel Version 6.1:
Fri Sep 6 23:24:34 PDT 2002; root:xnu/xnu-344.2.obj~2/RELEASE_PPC

[localhost:~] me%

sysctl kern.version

The steps to build a custom kernel can be found in the chapter "Building and Debugging Kernels" of the book Inside Mac OS X:
Kernel Programming.

Back to Listing 1

Line 17 xnu/osfmk/ppc/model_dep.c: print_backtrace

Back to Listing 1

Line 18 xnu/osfmk/ppc/model_dep.c: print_backtrace

Back to Listing 1

Line 19 xnu/osfmk/ppc/model_dep.c: print_backtrace

Back to Listing 1

Line 20 xnu/osfmk/ppc/model_dep.c: print_backtrace

Back to Listing 1

The next three calls do not produce any output:

xnu/osfmk/ppc/misc_asm.s: Call_Debugger
xnu/osfmk/ppc/model_dep.c: Call_DebuggerC
xnu/osfmk/kdp/ml/ppc/kdp_machdep.c: kdp_trap

Back to Listing 1

Line 21 xnu/osfmk/kdp/kdp_udp.c: kdp_raise_exception

This line contains an exception message followed by the exception number, code, and subcode in parentheses.

: The array defined in is used to convert
PowerPC-specific exception codes to the generic Mach exception codes used by KDB (kernel debugger). The Mach codes are
defined in , but this isn't generally useful because most unhandled PowerPC exceptions are
mapped to (1).

exception kdp_trap_codes xnu/osfmk/kdp/ml/ppc/kdp_machdep.c

mach/exception_type.h
EXC_BAD_ACCESS

: The Mach exception code is used to look up a text message describing the exception.
The message table is defined in .
exception_message

exception_message xnu/osfmk/kdp/kdp_udp.c

 and are not used and are always zero.code subcode

Back to Listing 1

Line 22 xnu/osfmk/kdp/kdp_udp.c: kdp_connection_wait

11/11/02 3:19 PMTN 2063: Understanding and Debugging Kernel Panics

Page 6 of 9file://localhost/NOTES/localnero.apple.com/technotes/tn2002/tn2063.html

This is the built-in Ethernet MAC address of the panicked machine. This and the IP address () are used to establish a
remote debugging session.

line 23

Back to Listing 1

Line 23 xnu/osfmk/kdp/kdp_udp.c: kdp_connection_wait

This is the IP address of the panicked machine. This and the Ethernet MAC address () are used to establish a remote
debugging session.

line 22

Back to Listing 1

Line 24 xnu/osfmk/kdp/kdp_udp.c: kdp_connection_wait

Back to Listing 1

Line 25 xnu/osfmk/kdp/kdp_udp.c: kdp_connection_wait

At this point the system is waiting for a connection from a remote debugger.

Back to Listing 1

Back to top

Isolating the Crash
Assume that one of your customers or testers had your kernel extension installed and experienced a kernel panic. Fortunately they
sent you the panic dump . How would you go about finding the cause of the crash?shown earlier

Start by running the same version of the operating system as on the panicked machine. Use the and version numbers from
the panic dump to confirm that you're running the correct versions.

kernel kext

Next, take a quick glance at the kind of crash and in which kernel extension the crash occurred. In our example, a data access exception
occurred with the containing 0x0E692550. Looking at the , the
closest match i s which is loaded starting at address 0x0E691000. Then, because this
is a data access exception, contains the address which could not be accessed. In this case, it was an attempt to access memory at
0xDEADBEEF that triggered the exception.

program counter list of loaded kernel extensions
com.apple.dts.driver.PanicDriver

DAR

The backtrace can be used to get a more precise picture of the sequence of calls that led up to the crash. To decipher the backtrace, it's
necessary to create relocated symbol files for the kernel and each kernel extension listed in the backtrace. A new set of symbol files
must be generated each time a kernel extension is loaded because the kext's load address is likely to be different each time.

Starting with Mac OS X version 10.2, generating symbol files is done via the command as illustrated in Listing 3. The
specifies the directory where to write the symbol files. The option causes to prompt for the load address of each kernel
extension and its dependencies.

kextload -s
-n kextload

! Generating the symbol file using Listing 3. kextload

[localhost:~] me%
Password:
kextload: notice: extension PanicDriver/build/PanicDriver.kext/ has debug properties set

enter the hexadecimal load addresses for these modules:
com.apple.iokit.IOUSBFamily:
com.apple.dts.driver.PanicDriver:

sudo kextload -s /tmp -n PanicDriver/build/PanicDriver.kext/

...some output elided...

0xed9c000
0xe696000

This results in a separate symbol file for each module, named <module-name>.sym

On versions of Mac OS X prior to 10.2, this is done via the command as illustrated in Listing 4. Note that it is necessary to
provide the load address of each kernel extension and its dependencies. If there are multiple dependencies, each dependency is entered
with a separate option. The option produces the verbose output also shown in Listing 4.

kmodsyms

-d -v

! Generating the symbol file using Listing 4. kmodsyms

[localhost:~] me% kmodsyms -v -k /mach_kernel \

11/11/02 3:19 PMTN 2063: Understanding and Debugging Kernel Panics

Page 7 of 9file://localhost/NOTES/localnero.apple.com/technotes/tn2002/tn2063.html

kmodsyms: Returning fake load address of 0x ed9cb10
kmodsyms: kmod name: com.apple.iokit.IOUSBFamily
kmodsyms: kmod start @ 0xedab39c
kmodsyms: kmod stop @ 0xedab408
kmodsyms: Returning fake load address of 0x e691b10
kmodsyms: kmod name: com.apple.dts.driver.PanicDriver
kmodsyms: kmod start @ 0xe692574
kmodsyms: kmod stop @ 0xe6925e0
[localhost:~] me%

-d /System/Library/Extensions/IOUSBFamily.kext/Contents/MacOS/IOUSBFamily@0xed9c000 \
-o /tmp/com.apple.dts.driver.PanicDriver.sym
PanicDriver/build/PanicDriver.kext/Contents/MacOS/PanicDriver@0xe691000

Your own kernel extensions will have full line number and function name information provided they were built using Project
Builder's Development build style. Other kernel code will contain just enough name information to link against.

Next, load the symbol files into GDB using the command as demonstrated in Listing 5.add-symbol-file

! Loading the symbol file into GDBListing 5.

[localhost:~] me%
GNU gdb 5.1-20020408 (Apple version gdb-228) (Sun Jul 14 10:07:24 GMT 2002)
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "powerpc-apple-macos10".
(gdb)
add symbol table from file "/tmp/com.apple.dts.driver.PanicDriver.sym" at
(y or n)
Reading symbols from /tmp/com.apple.dts.driver.PanicDriver.sym...done.
(gdb)

gdb /mach_kernel

add-symbol-file /tmp/com.apple.dts.driver.PanicDriver.sym

y

If you have more than one symbol file, as would be typical with Mac OS X 10.2 or later, repeat the command for
each one.

add-symbol-file

In the case of I/O Kit C++ function names, you may find it helpful to unmangle the names to make them more readable. The command
 is a handy way to do this. This command controls the demangling of C++ and Objective-C names in

disassembly listings.
set print asm-demangle on

Display the instruction located at the program counter () using the "examine memory" command . Depending on
the type of exception, this will either be the instruction that caused the exception or the one immediately following. An example is
shown in Listing 6.

PC x/i <address>

! Disassembling from the program counter.Listing 6.

(gdb)
(gdb)
0xe692550 <com_apple_dts_driver_PanicDriver::start(IOService*)+276>: stw r0,0(r9)
(gdb)

set print asm-demangle on
x/i 0xe692550

Next, for each address given in the backtrace, display the instruction located immediately prior to that
address using the command . This will yield the name of the function in which the address is located. Note that
each instruction disassembled from the backtrace should be some form of branch instruction. To understand why, recall that the
backtrace is a listing of the return addresses saved prior to executing a function call. If the disassembly shows something other than a
branch instruction, this is a clue that you may not have generated your symbol file correctly, or that the operating system version is
not the same as on the panicked machine.

x/i <address>-4

Listing 7 shows the results of decoding the backtrace shown in Listing 1.

! Decoding the backtrace.Listing 7.

11/11/02 3:19 PMTN 2063: Understanding and Debugging Kernel Panics

Page 8 of 9file://localhost/NOTES/localnero.apple.com/technotes/tn2002/tn2063.html

(gdb)
0xe6974a4 <com_apple_dts_driver_PanicDriver::start(IOService*)+104>: bl
0xeb4f5b0 <com_apple_dts_driver_PanicDriver::start(IOService*)+372>

(gdb)
0x213a84 <IOService::startCandidate(IOService*)+116>: bctrl

(gdb)
0x213880 <IOService::probeCandidates(OSOrderedSet*)+2096>: bctrl

(gdb)
0x2141d0 <IOService::doServiceMatch(unsigned long)+452>: bctrl

(gdb)
0x21482c <_IOConfigThread::main(_IOConfigThread*)+280>: bctrl

(gdb)
0x204cac <ioThreadStart+56>: bctrl

(gdb)
0x204c70 <IOLibInit+184>: blr
(gdb)

x/i 0x0e6974a8-4

x/i 0x0213a88-4

x/i 0x213884-4

x/i 0x2141d4-4

x/i 0x214830-4

x/i 0x204cb0-4

x/i 0x204c74-4

Back to top

Summary
Using the techniques discussed in this technote, it is possible to perform an effective post-mortem analysis of a kernel panic. While
the information in a panic dump may have been cryptic at first, it should now be just another debugging tool available to the Mac OS X
developer.

Back to top

References

, McKusick et al., Addison-Wesley, 1996.1The Design and Implementation of the 4.4BSD Operating System

, IBM Microelectronics document
G522-0290-01 revised 02/21/2000.
PowerPC Microprocessor Family: The Programming Environments For 32-Bit Microprocessors

, Motorola document MPCFPE32B/AD,
REV 2, revised 12/2001
Programming Environments Manual For 32-Bit Implementations of the PowerPC Architecture

Back to top

Downloadables

Acrobat version of this Note (140K) Download

PanicDriver sample code (8K) Download

Back to top

Technical Notes by | | |
 | | |

Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

11/11/02 3:19 PMTN 2063: Understanding and Debugging Kernel Panics

Page 9 of 9file://localhost/NOTES/localnero.apple.com/technotes/tn2002/tn2063.html

