
DV 14 - SCSI Bugs Page: 1

NOTE: This Technical Note has been retired. Please see the Technical Notes page for current documentation.

CONTENTS

SCSI Manager Problems

ROM boot code problems

Problems with ROM SCSI Manager routines

Problems with the SCSI Manager that haven't been fixed yet

Other SCSI Manager Issues

Hardware in the SCSI

Changes in SCSI for SE and II

To report other bugs or make suggestions

References

Downloadables

There are a number of problems in the SCSI
Manager; this note lists the ones we know
about, along with an explanation of what
we're doing about them. Changes made for
the 2/88 release are made to more accurately
reflect the state of the SCSI Manager. System
4.1 and 4.2 are very similar; one bug was
fixed in System 4.2.

Updated: [July 01 1987]

SCSI Manager Problems

There are several categories of SCSI Manager problems:

1. Those in the ROM boot code (Before the System file has been opened, and hence, before any patches could possibly
fix them.)

2. Those that have been fixed in System 3.2

3. Those that have been fixed in System 4.1/4.2

4. Those that are new in System 4.1/4.2

5. Those that have not yet been fixed.

The problems in the ROM boot code can only be fixed by changing the ROMs. Most of the bugs in the SCSI Manager itself
have been fixed by the patch code in the System 3.2 file. There are a few problems, though, that are not fixed with System
3.2 - most of these bugs have been corrected in System 4.1/4.2. Any that are not fixed will be detailed here. ROM code for
future machines will, of course, include the corrections.

Back to top

ROM boot code problems

In the process of looking for a bootable SCSI device, the boot code issues a SCSI bus reset before each attempt to read block
0 from a device. If the read fails for any reason, the boot code goes on to the next device. SCSI devices which implement the
Unit Attention condition as defined by the Revision 17B SCSI standard will fail to boot in this case. The read will fail
because the drive is attempting to report the Unit Attention condition for the first command it receives after the
SCSI bus reset. The boot code does not read the sense bytes and does not retry the failed command; it simply resets the SCSI
bus and goes on to the next device.

If no other device is bootable, the boot code will eventually cycle back to the same SCSI device ID, reset the bus (causing
Unit Attention in the drive again), and try to read block 0 (which fails for the same reason).

The `new' Macintosh Plus ROMs that are included in the platinum Macintosh Plus have only one change. The change was to
simply do a single SCSI Bus Reset after power up instead of a Reset each time through the SCSI boot loop. This was done to
allow Unit Attention drives to be bootable. It was an object code patch (affecting approximately 30 bytes) and no
other bugs were fixed. For details on the three versions of Macintosh Plus ROMs, see Technical Note #154.

We recommend that you choose an SCSI controller which does not require the Unit Attention feature--either an
older controller (most of the SCSI controllers currently available were designed before Revision 17B), or one of the
newer Revision-17B-compatible controllers which can enable/disable Unit Attention as a formatting option (such
as those from Seagate, Rodime, et al). Since the vast majority of Macintosh Plus computers have the ROMs which cannot
use Unit Attention drives, we still recommend that you choose an SCSI controller that does not require the Unit
Attention feature.

If an SCSI device goes into the Status phase after being selected by the boot code, this leads to the SCSI bus being
left in the Status phase indefinitely, and no SCSI devices can be accessed. The current Macintosh Plus boot code
does not handle this change to Status phase, which means that the presence of an SCSI device with this behavior
(as in some tape controllers we've seen) will prevent any SCSI devices from being accessed by the SCSI Manager,
even if they already had drivers loaded from them. The result is that any SCSI peripheral that is turned on at boot

DV 14 - SCSI Bugs Page: 2

time must not go into Status phase immediately after selection; otherwise, the Macintosh Plus SCSI bus will be
left hanging. Unless substantially revised ROMs are released for the Macintosh Plus (highly unlikely within the
next year or so), this problem will never be fixed on the Macintosh Plus, so you should design for old ROMs.

The Macintosh Plus would try to read 256 bytes of blocks 0 and 1, ignoring the extra data. The Macintosh SE and
Macintosh II try to read 512 bytes from blocks 0 and 1, ignoring errors if the sector size is larger (but not
smaller) than 512 bytes. Random access devices (disks, tapes, CD ROMS, etc.) can be booted as long as the blocks
are at least 512 bytes, blocks 0, 1 and other partition blocks are correctly set up, and there is a driver on it.
With the new partition layout (documented in Inside Macintosh volume V), more than 256 bytes per sector may
be required in some partition map entries. This is why we dropped support for 256-byte sectors. Disks with tag
bytes (532-byte sectors) or larger block sizes (1K, 2K, etc.) can be booted on any Macintosh with an SCSI port.
Of course, the driver has to take care of data blocking and de-blocking, since HFS likes to work with 512-byte
sectors.

Back to top

Problems with ROM SCSI Manager routines

Note that the following problems are fixed after the System file has been opened; for a device to boot properly, it must not
depend on these fixes. The sample SCSI driver contains an example of how to find out if the fixes are in place.

Prior to System file 3.2, blind transfers (both reads and writes) would not work properly with many SCSI
controllers. Since blind operation depends on the drive's ability to transfer data fast enough, it is the
responsibility of the driver writer to make sure blind operation is safe for a particular device.

Prior to System file 3.2, the SCSI Manager dropped a byte when the driver did two or more SCSIReads or
SCSIRBlinds in a row. (Each Read or RBlind has to have a Transfer Information Block (TIB) pointer passed
in.) The TIB itself can be as big and complex as you want--it is the process of returning from one SCSIRead or
SCSIRBlind and entering another one (while still on the same SCSI command) that causes the first byte for the
other SCSIReads to be lost.

Note that this precludes use of file-system tags. Apple no longer recommends that you support tags; see Technical
Note #94 for more information.

Prior to System file 3.2, SCSIStat didn't work; the new version works correctly.

Running under System file 3.2, the SCSI Manager does not check to make sure that the last byte of a write
operation (to the peripheral) was handshaked while operating in pseudo-DMA mode. The SCSI Manager writes the
final byte to the NCR 5380's one-byte buffer and then turns pseudo-DMA mode off shortly thereafter (reported to
be 10-15 microseconds). If the peripheral is somewhat slow in actually reading the last byte of data, it asserts
REQ after the Macintosh has already turned off pseudo-DMA mode and never gets an ACK. The CPU then expects to
go into the Status phase since it thinks everything went OK, but the peripheral is still waiting for ACK. Unless
the driver can recover from this somehow, the SCSI bus is `hung' in the Data Out phase. In this case, all
successive SCSI Manager calls will fail until the bus is reset.

Running under System file 4.1/4.2, the SCSI Manager waits for the last byte of a write operation to be
handshaked while operating in pseudo-DMA mode; it checks for a final DRQ (or a phase change) at the end of a
SCSIWrite or SCSIWBlind before turning off the pseudo-DMA mode. Drivers that could recover from this
problem by writing the last byte again if the bus was still in a Data Out phase will still work correctly, as long
as they were checking the bus state.

Running under System file 3.2, the SCSI Manager does not time out if the peripheral fails to finish
transferring the expected number of bytes for polled reads and writes. (Blind operation does poll for the first
byte of each requested data transfer in the Transfer Information Block.)

Running under System file 4.1/4.2, SCSIRead and SCSIWrite return an error to the caller if the
peripheral changes the bus phase in the middle of a transfer, as might happen if the peripheral fails to transfer
the expected number of bytes. The computer is no longer left in a hung state.

Running under System file 3.2, the Selection timeout value is very short (900 microseconds). Patches to
the SCSI Manager in System 4.1/4.2 ensure that this value is the recommended 250 milliseconds.

Running under System file 3.2, the SCSI Manager routine SCSIGet (which arbitrates for the bus) will fail
if the BSY line is still asserted. Some devices are a bit slow in releasing BSY after the completion of an SCSI
operation, meaning that BSY may not have been released before the driver issues a SCSIGet call to start the next
SCSI operation. A work-around for this is to call SCSIGet again if it failed the first time. (Rarely has it been
necessary to try it a third time.) This assumes, of course, that the bus has not been left `hanging' by an
improperly terminated SCSI operation before calling SCSIGet.

Running under System file 4.1/4.2, the SCSIGet function has been made more tolerant of devices that are
slow to release the BSY line after a SCSI operation. The SCSI Manager now waits up to 200 milliseconds before
returning an error.

Back to top

Problems with the SCSI Manager that haven't been fixed yet

These problems currently exist in the Macintosh Plus, SE, and II SCSI Manager. We plan to fix these problems in a future
release of the System Tools disk, but in the mean time, you should try to work around the problems (but don't "require"
the problems!).

Multiple calls to SCSIRead or SCSIRBlind after issuing a command and before calling SCSIComplete may
not work. Suppose you want to read some mode sense data from the drive. After sending the command with
SCSICmd, you might want to call SCSIRead with a TIB that reads four bytes (typically a header). After reading
the field (in the four-byte header) that tells how many remaining bytes are available, you might call SCSIRead
again with a TIB to read the remaining bytes. The problem is that the first byte of the second SCSIRead data will
be lost because of the way the SCSI Manager handles reads in pseudo-DMA mode. The work-around is to issue two
separate SCSI commands: the first to read only the four-byte header, the second to read the four-byte header plus
the remaining bytes. We recommend that you not use a clever TIB that contains two data transfers, the second of
which gets the transfer length from the first transfer's received data (the header). These two step TIBs will not
work in the future. This bug will probably not be fixed.

DV 14 - SCSI Bugs Page: 3

On read operations, some devices may be slow in de-asserting REQ after sending the last byte to the CPU. The
current SCSI Manager (all machines) will return to the caller without waiting for REQ to be de-asserted. Usually
the next call that the driver would make is SCSIComplete. On the Macintosh SE and II, the SCSIComplete call
will check the bus to be sure that it is in Status phase. If not, the SCSI Manager will return a new error code
that indicates the bus was in Data In/Data Out phase when SCSIComplete was called. The combination of the
speed of the Macintosh II and a slow peripheral can cause SCSIComplete to detect that the bus is still in Data In
phase before the peripheral has finally changed the bus to Status phase. This results in a false error being
passed back by SCSIComplete.

The scComp (compare) TIB opcode does not work in System 4.1 on the Macintosh Plus only. It returns an error
code of 4 (bad parameters). This has been fixed in System 4.2.

Back to top

Other SCSI Manager Issues

At least one third-party SCSI peripheral driver used to issue SCSI commands from a VBL task. It didn't check to
see if the bus was in the free state before sending the command! This is guaranteed to wipe out any other SCSI
command that may have been in progress, since the SCSI Manager on the Macintosh Plus does not mask out (or
use) interrupts.

We strongly recommend that you avoid calling the SCSI Manager from interrupt handlers (such as VBL tasks). If you must
send SCSI commands from a VBL task (like for a removable media system), do a SCSIStat call first to see if the bus is
currently busy. If it's free (BSY is not asserted), then it's probably safe; otherwise the VBL task should not send the
command. Note that you can't call SCSIStat before the System file fixes are in place. Since SCSI operations during VBL
are not guaranteed, you should check all errors from SCSI Manager calls.

A new SCSI Manager call will be added in the future. This will be a high-level call; it will have some kind of
parameter block in which you give a pointer to a command buffer, a pointer to your TIB, a pointer to a sense data
buffer (in case something goes wrong, the SCSI Manager will automatically read the sense bytes into the buffer for
you), and a few other fields. The SCSI Manager will take care of arbitration, selection, sending the command,
interpreting the TIB for the data transfer, and getting the status and message bytes (and the sense bytes, if there
was an error). It should make SCSI device drivers much easier to write, since the driver will no longer have to
worry about unexpected phase changes, getting the sense bytes, and so on. In the future, this will be the
recommended way to use the SCSI Manager.

The SCSI Manager (all machines) does not currently support interrupt-driven (asynchronous) operations. The
Macintosh Plus can never support it since there is no interrupt capability, although a polled scheme may be
implemented by the SCSI Manager. The Macintosh SE has a maskable interrupt for IRQ, and the Macintosh II has
maskable interrupts for both IRQ and DRQ. Apple is working on an implementation of the SCSI Manager that will
support asynchronous operations on the Macintosh II and probably on the SE as well. Because the interrupt
hardware will interact adversely with any asynchronous schemes that are polled, it is strongly recommended that
third parties do not attempt asynchronous operations until the new SCSI Manager is released. Apple will not
attempt to be compatible with any products that bypass some or all of the SCSI Manager. In order to implement
software-based (polled) asynchronous operations it is necessary to bypass the SCSI Manager.

The SCSI Manager section of the alpha draft of Inside Macintosh volume V documented the Disconnect and Reselect
routines which were intended to be used for asynchronous I/O. Those routines cannot be used. Those routines have been
removed from the manual. Any software that uses those routines will have to be revised when the SCSI Manager becomes
interrupt-driven. Drivers which send SCSI commands from VBL tasks may also have to be modified.

Back to top

Hardware in the SCSI

There is some confusion on how many terminators can be used on the bus, and the best way to use them. There can be no
more than two terminators on the bus. If you have more than one SCSI drive you must have two terminators. If you only
have one drive, you should use a single terminator. If you have more than one drive, the two terminators should be on
opposite ends of the chain. The idea is to terminate both ends of the wire that goes through all of the devices. One
terminator should be on the end of the system cable that comes out of the Macintosh. The other terminator would be on the
very end of the last device on the chain. If you have an SE or II with an internal hard disk, there is already one terminator
on the front of the chain, inside the computer.

On the Macintosh SE and II, there is additional hardware support for the SCSI bus transfers in pseudo-DMA mode. The
hardware makes it possible to handshake the data in Blind mode so that the Blind mode is safe for all transfers. On the
Macintosh Plus, the Blind transfers are heavily timing dependent and can overrun or underrun during the transfer with
no error generated. Assuring that Blind mode is safe on the Macintosh Plus depends upon the peripheral being used. On the
SE and II, the transfer is hardware assisted to prevent overruns or underruns.

Back to top

Changes in SCSI for SE and II

The changes made to the SCSI Manager found in the Macintosh SE and Macintosh II are primarily bug fixes. No new
functionality was added. The newer SCSI Manager is more robust and has more error checking. Since the Macintosh Plus
SCSI Manager only did limited error checking, it is possible to have code that would function (with bugs) on the Macintosh
Plus, but will not work correctly on the SE or II. The Macintosh Plus could mask some bugs in the caller by not checking
errors. An example of this is sending or receiving the wrong number of bytes in a blind transfer. On the Macintosh Plus,
no error would be generated since there was no way to be sure how many bytes were sent or received. On the SE and II, if
the wrong number of bytes are transferred an error will be returned to the caller. The exact timing of transfers has
changed on the SE and II as well, since the computers run at different speeds. Devices that are unwittingly dependent upon
specific timing in transfers may have problems on the newer computers. To find problems of this sort it is usually only
necessary to examine the error codes that are passed back by the SCSI Manager routines. The error codes will generally
point out where the updated SCSI Manager found errors.

Back to top

To report other bugs or make suggestions

Please send additional bug reports and suggestions to us at the address in Technical Note #0. Let us know what SCSI
controller you're using in your peripheral, and whether you've had any particularly good or bad experiences with it. We'll
add to this note as more information becomes available.

DV 14 - SCSI Bugs Page: 4

Back to top

References

The SCSI Manager

SCSI Developer's Package

Back to top

Downloadables

Acrobat version of this Note (K) Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

