Stand-Alone Code, ad nauseam Page: 1

Technical Note PT235
Stand-Alone Code, ad nauseam

CONTENTS This Technical Note discusses many of the
issues related to stand-alone code modules.
This Note is by no means a completely

Oh, I Have Slipped the Surly Bonds of the Linker . . . original work, as the author borrows freely
from the work of Keith Rollin, Mark Baumwell,
and Jim Friedlander.

How to Recognize a Stand-Alone Code When You See One

Doing the A5 Road Trip

Are We There Yet?

[Oct 01 1989]

PersistTest

Sorter

BigBro

MyWindowDef

Debugger 'FKEY'

References

Downloadables

How to Recognize a Stand-Alone Code When You See One
What Stand-Alone Code Looks Like to the Naked Eye

Stand-alone code is program code which does not enjoy the full status of an application. A stand-alone code module exists as
a single Macintosh resource and consists almost entirely of microprocessor-executable object code, and perhaps also some
header data and other constants used by the executable portion of the module. Code-type resources are most easily
identifiable in the ResEdit 2.0 resource picker. Most of these closely-related resources are indicated by an icon containing
a stylized segment of assembly-language source code.

== Code Resources =]
i
Ylemian e -
CHP D12 Fl
P
CODE DRVR FREY [
|

Figure 1. ResEdit 2.0 Icons Signifying Code-Type Resources

Stand-Alone Code, ad nauseam Page: 2

Although ' CODE' resources are not stand-alone code modules (they are segments of a larger application), they are similar
because they contain executable code and so they have the same code-type icon. Driver resources are a special case of
stand-alone code resources, and they have a different icon in the ResEdit picker, reminiscent of the Finder icon for a desk
accessory suitcase, because the code of a desk accessory is stored as a' DRVR resource. The icon for an' FKEY' is also a
bit different, resembling a function key, naturally.

Table 1 is a fairly extensive list of the currently-defined code-type resources. Many are of interest primarily at a system
software level; those stand-alone code resources most commonly created by application-level programmers are noted in
boldface. Of course, developers are always free to define new resource types for custom stand-alone modules. ' CUST" is
commonly used, as in some of the examples at the end of the discussion.

ADER adesw CACH CDEF cdev CODE demd
DRYR FEEY FMTR INIT i irl4 LDEF
MEDF MDEF Tt PACE PDEF FTCH ptch
e RO RE3C anth WDEF XCHMD XFCH

Table 1 Assorted Code Resource Types

The most common use of stand-alone code is to supplement the standard features provided by the Macintosh Toolbox and
operating system. Most of the resource types listed in Table 1 define custom windows, controls, menus, lists, and responses
to user input. In this respect, they are slaves to particular Toolbox managers or packages and very often contained within
the resource fork of an owner application. Other examples of stand-alone code are more useful as application extensions
like HyperCard ' XCMD and' XFCN extensions.

"DRVR ,'"INIT',and"' cdev' resources are more autonomous examples of stand-alone code. These allow programmers
to write code which may be executed automatically when the system starts up and code which adds special features to the
operating system or provides control of special-purpose peripherals and system functions. The temptation here is to
perform functions generally reserved for full-blown applications, such as use of QuickDraw. For a number of reasons, this
is a non-trivial endeavor, and is the subject of much of this discussion.

How Applications Are Special

Macintosh applications can be almost any size, limited mainly by disk space and RAM size. The actual program code is
generally divided up into a number of segments, each less than 32K in size so the amount of memory required to execute a
program may be less than the size of the program itself. The Segment Loader, documented in Inside Macintosh , Volume II,
controls the loading and unloading of segments. It ensures that the necessary segments of an application are read into the
application heap when needed and allows temporarily unneeded sections to be purged, making room for others.

All of this activity occurs in and depends upon a somewhat mysterious construction called an A5 world. It is so called
because the A5 register of the microprocessor points indirectly to several key data structures used by the Segment Loader
and the application itself. Most Macintosh programmers are at least vaguely aware of the significance of A5 in the
Macintosh environment. Many even know that it is a handy pointer to the application and QuickDraw global variables, or at
least points in the right general direction. Less widely known is how an A5 world is constructed, and more to the point, how
to build one from scratch if necessary.

This may become necessary because higher-level language compilers like MPW Pascal and C automatically generate
Ab-relative addressing modes to refer to global variables, including QuickDraw globals. The linker then resolves the actual
offsets. For example, the ubiquitous

compiles into something equivalent to the following:

PEA thePort (A5), - (SP) ; push a pointer to QuickDraw s thePort vari abl e

Before this is executable, the linker must determine exactly what offset represents t hePort . With this value, it patches
the object code and creates the code found in the final application. The reader may infer that an application depends on
someone else to set up A5 with a meaningful value before program execution begins. This is true, and understanding how
this process normally occurs for an application is of paramount importance when writing stand-alone code which needs
application-like functionality. Briefly, the Segment Loader allocates space for an A5 world for each application as part of
its launch process. Library code is automatically linked to the front of every application, and this sets up Ab to point to the
global variable space. The application code begins executing only after all of this preliminary setup is complete.

Stand-Alone Code, ad nauseam Page: 3

Jurnp Table

“Application Paramet ers”

pointerto GuickDraw globals
AS - Globals LS -
applklobnlVarl
applilobalVar?
¢ Stack : [see noke)
grows down appllaba 1VnrH

ApplLlimit —m=

Heap
Qrows Up

zaresnbits

randIeed

ApplZone —ia=

Mote: Application globsals may appear above ar below the GuickDraw globals.
Thiz is linker-dependent. What's impottant is that separatelHinked extemal
modules can use AS to locate an application’s GuickDraw globals.

Figure 2. A Hitchhiker's Guide to the A5 World

How Stand-Alone Code Is Different

Stand-alone code, unlike an application, is never launched. It is simply loaded then executed and possesses no A5 world of
its own. Stand-alone code therefore cannot easily define global variables. No space is allocated for globals and A5 either
belongs to a real application or is completely meaningless. References to global variables defined by the module usually
succeed without even a warning from the linker, but also generally overwrite globals defined by the current application.
References to global variables defined in the MPW libraries, like QuickDraw globals, generate fatal link errors.

Link -t INNT -c '????" -rt INNT=128 -ra =resLocked -m PLAYZQO [[partial diff]]
Sampl elNIT.p.o [[partial diff]]
-0 Sanplel NI T
Link: Error: Undefined entry, nane: (Error 28) "thePort"
Ref erenced from PLAYZOO in file: SanplelNIT.p.o
Link: Errors prevented nornal conpletion.
MPW Shel | - Execution of Sanpl el Nl T. makeout term nat ed.

That's not very helpful and not very much fun. So what if a stand-alone code resource needs to use QuickDraw or its
associated globals like SCr eenBi t S? What if a stand-alone module needs to call some “innocuous" routine in the
Macintosh Toolbox which implicitly assumes the existence of a valid A5 world? _Uni quell D, which calls the QuickDraw
_Randomtrap, falls into this category, for instance. An ' XC\VD' might be able to "borrow" HyperCard's globals, but an
"I NI'T" has no such alternative; it may need to have its own A5 world.

There are a couple more considerations. Stand-alone code resources are not applications and are not managed by the Segment
Loader, so they cannot be segmented into multiple resources like applications. Stand-alone code resources are
self-contained modules and are usually less than 32K in size. As popular belief would have it, code resources cannot be
more than 32K in size. This is not necessarily true, and although some linkers, especially older ones, enforce the limit all
the same, the absolute limitation is that the original Motorola MC68000 microprocessor is not capable of expressing
relative offsets which span more than 32K.

A code segment for a 68000-based Macintosh may be any reasonable length, so long as no relative offsets exceed 32K. There

Stand-Alone Code, ad nauseam Page: 4

are ways to get around this limit even on 68000-based machines, while the MC68020 and later members of the 680x0
family have the ability to specify 32-bit offsets, dissolving the 32K barrier completely as long as the compiler is
agreeable. To remain compatible with 68000-based machines, however, and to maintain manageable-sized code segments
the 32K "limit" is a good rule of thumb. If a stand-alone code module gets much larger than this, it is often because it's
trying to do too much. Remember that stand-alone code should only perform simple and specific tasks.

Writing Your First Stand-Alone Module

Each type of stand-alone code has its own idiosyncrasies. It is difficult to say which type is the easiest to construct. It is
best to address each major type individually, but a simple ' | NI T' may be the best place to start. Most programmers are
pretty familiar with the concept of whatan' | NI T' is and how it is used, and its autonomy is a big plus--it is not
necessary to write and debug a separate piece of code or a HyperCard stack in which to test the stand-alone module. (This
would be necessary for a' CDEF' or an' XCVD , for example.) Stand-alone code is often written in assembly language, but
high-level languages usually serve just as well. This first example is written in MPW Pascal, in keeping with the
precedent set by Inside Macintosh .

SamplelINIT is a very simple " | NI T' which plays each of the sounds (resources of type ' snd ') in the System file while
the Macintosh boots. It's kind of fun, not too obnoxious, and also not particularly robust. All' snd ' resources should be
unlocked, purgeable, Format 1 sounds like the four default system sounds. Also be sure to name this file SampleINIT.p to
work with the SampleINIT.make file which follows. The main subroutine is Pl ayZ00, in honor of the monkey and dogcow
sounds in the author's System file.

UNI T Sanpl el NI T; {Pascal stand-alone code is witten as a UN T}
| NTERFACE
USES
Types, Resources, Sound;
{ VAR
cannot define any globals...well, not yet anyway}

PROCEDURE Pl ayZoo;
I MPLEMENTATI ON

PROCEDURE Pl ayZoo;
VAR
nunBnds, i : | NTEGER
t heSnd : Handl e;
pl ayStatus : OSErr;
BEGA N
nuntnds : = Count Resources('snd ');
FORi := 1 TO nuntSnds DO BEGA N
theSnd : = CGetlndResource('snd ',i);
|F theSnd <> NIL THEN
pl ayStatus : = SndPl ay(N L, t heSnd, FALSE) ;
END;
END;

Following is the file SampleINIT.make to control the build process:

Stand-Alone Code, ad nauseam Page: 5

File: Sanpl el NI T. make
Target: Sanpl el NI T
Sources: Sanpl el NI T. p
Sampl el NIT [[florin]][[florin]] Sanplel NIT. make Sanpl el NI T. p. o
Link -t INIT -c '????" -rt INNT=128 -ra =resLocked [[partial diff]]
-m PLAYZOO
SanplelNIT.p.o [[partial diff]]
-0 SamplelNI' T

Sampl el NI T.p.o [[florin]] Sanplel NI T. make Sanpl el NI T. p

That's all there is to it, but even in such a simple example as this, there are a number of extremely important points to
highlight. By understanding every nuance of this example, one moves a long way toward understanding everything there is
to know about stand-alone code.

Consider first the form of the ' | NI T' code itself. It is defined as a UNI T rather than a PROGRAM This is important,
because Pascal programs are applications and require the Segment Loader, preinitialization of A5, and all the things which
make an application special. A Pascal unit, like a stand-alone code resource, is simply a collection of subroutines. A similar
assembly-language ' | NI T' would define and export a PROC In C, this particular ' | Nl T' would be a single function in a
source file with no mai n() function.

Pascal programmers may recognize that a unit allows the definition of global variables (as between the USES and
PROCEDURE clauses in the | NTERFACE section previously documented). Typically, when a unit's object code is linked
with a host application, the linker allocates storage for these globals along with the application globals and resolves all
necessary A5 references. Stand-alone code modules are never linked with an application, however, and the linker has no
way to resolve these references. This makes the linker very unhappy. The easiest way to make the linker happy is to follow
the example and define no globals. If globals are really necessary, and they may well be, read on.

Next examine how SamplelNIT is linked. To be recognized as a startup document, a "system extension” (asan' | NI T' is
called in System 7.0 parlance) must have the file type "INIT". The options -t and-r a respectively specify that the code
resource is of type ' | NI T' (ID=128), and that the resource itself is locked. This is a very important idiosyncrasy of the
"I NN T" because it is not automatically locked when loaded by the system and might otherwise attempt to move during
execution. Hint: this would be very bad.

Finally, Pl ayZoo is specified as the main entry point by the - m option. When written in Pascal, the entry point of a
module is the first compiled instruction. C is a little pickier and demands the main entry point option to override the default
entry point (which performs run-time initialization for applications). It is important to remember that the linker does
not move the entry point specified by - mto the front of the object file--that is the programmer's responsibility.
Specification of this option primarily helps the linker remove dead, unused code from the final object module. In short,
don't leave home without it. Note that the linker is case sensitive with respect to identifiers, while the Pascal compiler
converts them to all uppercase. It is necessary therefore (in this example) to specify the name of the entry point to the
linker in all uppercase characters. If Pl ayZ0o were written in C, which is also case-sensitive, the identifier would be
passed to the linker exactly as it appeared in the source code.

For additional examples of stand-alone code, refer to the end of this Note. There are currently a few examples of types of
stand-alone code, some of which illustrate the advanced topics discussed in the following sections.

The next area to investigate is how to get around the restrictions on globals in stand-alone code. The first and simplest
solution easily conforms to all compatibility guidelines, and that is to avoid using globals altogether. There often comes a
time, however, when the use of a global seems unavoidable. The global variable requirements of stand-alone code segments

vary, naturally, and there are a number of possible scenarios. Some involve creating an A5 world and others do not. It's
best to start with the simplest cases, which do not.

Back to top

Oh, | Have Slipped the Surly Bonds of the Linker . . .

. . . And Have Hung Like a Leach on My Host Application

Stand-Alone Code, ad nauseam Page: 6

Often a stand-alone code segment needs the QuickDraw globals of the current application, for whom it is performing a
service. A control definition function (' CDEF') is an example. Its drawing operations assume a properly-initialized
QuickDraw world, which is graciously provided by the application. Most QuickDraw calls are supported and no special
effort is required. One limitation, however, is that explicit references to QuickDraw globals like t hePor t and
screenBi t s are not allowed. The linker cannot resolve the offsets to these variables because it does not process a

' CDEF' (or any other stand-alone module) along with a particular application. Fortunately the solution is simple, if not
entirely straightforward.

Since the structure of the QuickDraw global data is known, as is its location relative to AS, stand-alone code executing as a
servant to an application can reference any desired QuickDraw global indirectly. The following code is an example of how a
stand-alone unit can make local copies of all the application QuickDraw globals. It uses A5 to locate the variables
indirectly, rather than making explicit symbolic references which the linker is not capable of resolving. Figure 2,
presented earlier, may be helpful in understanding how this code works.

UNI T Get QDG obs;

| NTERFACE
USES
Types, QuickDraw, OSUil s;
TYPE
Dvar RecPtr = ~QDVar Rec;
Q@varRec = RECORD
randSeed : Longint;
screenBits : BitMp;
arrow . CQursor;
dkG ay : Pattern;
It Gay . Pattern;
gray . Pattern;
bl ack . Pattern;
whi t e : Pattern;
t hePor t . Gafbtr;
END;

PROCEDURE Get My@Vars (VAR qdVars: QVar Rec);
| MPLEMENTATI ON
PROCEDURE Get My@Vars (VAR qgdVars: QDVar Rec);

TYPE

LongPtr = “~Longi nt;
BEG N

{ Algorithm

1. Get current value of A5 with SetCurrentA5.
2. Dereference to get address of thePort.
3. Performarithmetic to determ ne address of randSeed.
4., By assignment, copy the QD globals into a | ocal
data structure. }
gdvars := QDVar RecPtr(LongPtr(Set Current A5)~ - (Si zeO (QVar Rec) -
Si zeOf (t hePort)))”;
END;

Extensible Applications

Some applications are intended to be extensible and provide special support for stand-alone code segments. ResEdit for
instance, uses' RSSC code resources to provide support for custom resource pickers and editors. If a graphical editor is
needed to edit a custom resource type, such as an 8 x 64-pixel icon, separately compiled and linked extension code can be
pasted directly into the application's resource fork. ResEdit defines interfaces through which it communicates with these
resources. In many cases, this degree of support and message passing can preempt the need to declare global variables at all.

Stand-Alone Code, ad nauseam Page: 7
The ResEdit interfaces are part of the official ResEdit package available from APDA. The MacsBug ' dcnd' is another

instance of extension code with support for globals built in. A" dcnd' specifies in its header how much space it needs for
global variables and MacsBug makes room for them.

HyperCard provides high-level support for its ' XCVD' and' XFCN' extension resources. Callback routines like

Set A obal and Get Q obal provide extension code with a convenient mechanism for defining variables which are global
in scope, yet without requiring the deadly AS-relative references normally associated with global variables. The
HyperCard interfaces are included with MPW and are called HyperXCmd.p in the Pascal world, or HyperXCmd.h for C
programmers.

In cases where an application provides special support for extensions, the extension writer should take advantage of this
support as much as possible. Things can get complicated quickly when no support for globals is provided or when built-in
support is not used, and there's really no reason to be a masochist. The A5-world techniques described later in this Note
usually are not necessary and should be considered extraordinary. Also, when writing an application, it is probably worth
considering whether extensibility is useful or desirable. With the move toward object-oriented programming and reusable
code, demand for extension module support is growing. Support for extension modules can rarely be tacked on as an
afterthought, and it is worth looking at how ResEdit, HyperCard, and Apple File Exchange support modular code when
considering similar features. Foresight and planning are indispensable.

Calling Stand-Alone Code from Pascal
Before moving on it may be helpful to look at how one extensible application calls stand-alone code, using HyperCard as an

example. The first thing to do is establish some standard means of communication. HyperCard uses a clearly-defined
parameter block, as defined in HyperXCmd.p.

XCndPtr = AXCndBl ock;

XCmdBl ock = RECORD
par anCount : | NTECER;
par ans: ARRAY [1..16] OF Handl e;
ret ur nvVal ue: Handl e;
passFl ag: BOCOLEAN,;
entryPoint: ProcPtr; {to call back to Hyper Card}
request : | NTECER,
result: | NTEGER;
i NAr gs: ARRAY [1..8] OF LONG NT;
out Ar gs: ARRAY [1..4] OF LONG NT;

An' XCMD' procedure, like an' | NI T' | is written, compiled, and linked as a separate unit. Its prototype may be imagined

something like this:

PROCEDURE MyXC\VD (pb: XCVDPtr) ;

Since My XCMD is not linked with HyperCard, however, the example declaration does not appear in the HyperCard source
code. The prototype only defines how the external module expects to receive its parameters. The host application,
HyperCard, is responsible for loading the module and implementing the proper calling conventions.

When calling an ' XCMD' , HyperCard first loads the resource into memory and locks it down. It then fills in the parameter
block and invokes the ' XCVD' . Notice that the extension module is loaded by its resource name. This is common for
extensible applications, since it avoids resource numbering conflicts. Since HyperCard is written in Pascal, the sequence

might look something like this.

Stand-Alone Code, ad nauseam Page: 8

t heHandl e : = Get 1NanmedResour ce(' XCVD , ' MYXCVD) ;
HLock(t heHandl e) ;
W TH par anBl ock DO
BEG N
{ fill it in}
END,
Cal | XCvD(@ar anBl ock, theHandl e);

This also looks a little unwieldy. To fully understand a high-level calling sequence for stand-alone code, a working
knowledge of parameter passing conventions and the ability to read code at the assembly-language level is very helpful.
Some amount of glue code is almost always required, as illustrated by Cal | XCVD. After Pascal places a pointer to the
parameter block and a handle to the ' XC\VD' on the stack, it executes some assembly-language glue represented by three
inline opcodes. The glue code finds the ' XCVD' in memory and jumps to it using the handle on the stack. To accomplish this,
it pulls the handle off of the stack, dereferences it to obtain a pointer to the ' XCMD and performs a JSR to the indicated
address. The pointer to the parameter block is left on the stack for the ' XCVD' .

PROCEDURE Cal | XC\VD (pb: XCMDPtr; xcnd: Handl e);

| NLI NE $205F, { MOVEA. L (A7)+ A0 pop handl e of f stack }
$2050, { MOVEA.L (A0), AO dereference to get address of XCWD }
$4E90; { JSR (A0) call XCMD, |eaving pb on stack }

Figure 3 illustrates the state of the A5 world at four critical phases of the ' XCVD' calling sequence. Boldface indicates
approximately where the program counter is pointing, or what code is executing at that moment. The easiest way to read the
diagram is to look for features which change from one state to the next. Note in the last state the ' XC\VD knows how to find
its parameter block because the stack pointer (A7) initially points to the return address and a pointer to the parameter
block is located four bytes above that. If the ' XCVD' is written in a high-level language according to the procedure
prototype My XC\VD, as shown above, this procedure is handled automatically by the compiler.

The process is essentially the same when calling stand-alone code from assembly language, but it is not so unnatural. The
assembly-language programmer never has to leave his element and generally has a better low-level view of where certain
data structures reside and how to access them efficiently. Since the entry point of the stand-alone module can be determined
directly, there is no exact parallel to the Cal | XCVD procedure, and it is not necessary to push a copy of the resource
handle on the stack as an intermediate step.

Stand-Alone Code, ad nauseam

: :
paramflock paramblock paramflock
stack stack
ptr o ph pirto ph
copy of b returmn address
Application Application " Application
CODE CODE CODE

KChD

RChD

XCHD

Page: 9

rnasker ptr rnasker plr rnasker ple
-
Inikizal Stake with Get1NamedResource loads CallXCND pushes some Glue code removes handle
paramBlock and b as "HENDY resource into stuff on the stack forthe from stack and does JSR b
global warisbles application heap glue code address in master pointer

Figure 3. Calling an 'XCMD" from Pascal

Interestingly enough, the Cal | XC\VD procedure can be easily modified to call almost any stand-alone module whose entry
point is at the beginning of the code resource. To determine the proper calling interface for a particular code module,
simply duplicate the function prototype of the module and add a handle at the end of the argument list. The inline glue does
not have to change at all. This works equally well for Pascal procedures or functions, and for any number of arguments
including VAR parameters.

Back to top

Doing the A5 Road Trip

There comes a time and place where construction of an A5 world is a "necessary" evil. Usually it's not necessary at all, but
sometimes the world really needs just one more Orwellian security ' | NI T' to present a dialog at startup. DTS discourages
such things, but they happen. Although there is nothing fundamentally or philosophically wrong with constructing a custom
A5 world, doing so can create significant technical hassles, and unfortunately, globals make possible a number of user
interface atrocities. Generally a different solution, if available, results in simpler and more maintainable code, and reduces
the likelihood that your code will go the way of the dinosaur and the passenger pigeon. Furthermore, to make the process of
constructing an A5 world as straightforward as possible, yet consistent with normal applications, extensive use is made of
two undocumented routines in the MPW run-time libraries. The dangers here are obvious. There are accepted uses,
nonetheless. External modules may need to create some global storage or hold data which persists across multiple calls to a
routine in the module. All uses shall henceforth be considered fair game, for as it is written in Clarus' memoirs:

Yea, and if It will be done, even in spite,

Then lend Thine hand to the masses,

Lest It be done incorrectly or woefully worse
By those not versed the the ways of the Dogcow.

Who's Got the Map?

The ensuing discussion on how to construct an A5 world is geared primarily to programmers using MPW. There are a
couple of reasons for this. First, looking back, the stated problem originated with an error generated by the MPW linker.
Other development systems may handle this situation differently and often offer different solutions. Symantec products, for
instance, offer Ad-relative globals and avoid the globals conflict from the outset. Secondly, this document would resemble a
Russian novel if it addressed all the permutations of potential solutions for each development system. MPW Pascal is the de
facto standard Macintosh programming environment for illustrative and educational purposes. It may not be fair, but at

Stand-Alone Code, ad nauseam Page: 10
least it's consistent.

As already described, there are basically three reasons why stand-alone code might need to reserve space for its own global
variables. Consider the following three scenarios as a basis, but understand that various arbitrary combinations are also
possible:

® A stand-alone module consists of two functions. There is one main entry point and one function calls another
function in the process of calculating its final result. Instead of passing a formal parameter to the subordinate
function, the programmer chooses to pass a global.

® A stand-alone module consists of one function. The module is loaded into memory once and invoked multiple times by
the host application. The module requires its own private storage to persist across multiple invocations.

® Acomplex' | NI T' uses QuickDraw, or a' cdev' is complex enough to require an application-like set of globals
to accomplish its self-contained task. A module may need to access data in a Toolbox callback (like a dialog hook)
where the interface is fixed, for instance.

® Each of the demonstration units is a working example. There is source code at the end of the discussion for simple
applications which can play host to these modules and demonstrate how a complete product fits together.

The first instance is relatively easy to implement. When the module is executed, it creates an A5 world, does its job, and
then tears down the A5 world, making sure to restore the host application's world. Such a module may look something like

the following example. Pay special attention to the items in boldface. These are specific to the use of globals in stand-alone
code.

LazyPass.p

UNI T LazyPass;

{ This is a stand-al one nodul e whi ch inplenents the function }
{ of determining a circle's area fromits circunference. }

I NTERFACE

USES
Types, SAd obal s;

FUNCTION G rcleArea (circunference: Real) : Real;
| MPLEMENTATI ON

{ Define a variable global to all }
{ of the routines in this unit. }
VAR radi us : Real;

FUNCTI ON Radi usSquared : Real ;
FORWARD;

{ CGrcleArea is defined first so that the entry point is }
{ conveniently |ocated at the begi nning of the nodul e. }

FUNCTION G rcleArea (circunference: Real) : Real;
VAR

A5Ref : AbRef Type;

ol dA5: Longint;

BEGA N
ol dA5 : = QpenA5Wr | d(ASRef);
radius := circunference / (2.0 * Pi);

CrcleArea := Pi * Radi usSquar ed;
C oseA5Wr | d(ol dAS5, ASRef);

END;
FUNCTI ON Radi usSquar ed : Real ;
BEGA N
Radi usSquared : = radi us * radi us;

END;

Stand-Alone Code, ad nauseam Page: 11

LazyPass.make

This is the makefile for the LazyPass module.

File: LazyPass. nake
Target: LazyPass
Sour ces: LazyPass. p

OBJECTS = LazyPass.p.o

LazyPass [[florln]][[florln]] LazyPass. make { CBJECTS}

Link -w -t '?2?2??" - ?2?2?2?" -rt CUST=128 -m Cl RCLEAREA [[partial di ff]]
-sg LazyPass {CBJECHEH [[partial diff]
"{Libraries}"Runtine.o [[partialdiff]
"{Libraries}"Interface.o [[partialdiff]]
"{PLi braries}"SANELi b.o [[partial diff
"{PLi braries}"PasLib.o [[partial diff]
"{M/Li brari es}"SAd obal s.o [[partial diff]]

-0 LazyPass

LazyPass.p.o [[florin]] LazyPass. make LazyPass. p

]
]
f]
1]
]

i f

The second instance is a little trickier and requires the cooperation of the host application. The module needs the ability to
pass a reference to its global variable storage (A5 world) back to the application so that it can be easily restored the next

time the module is invoked. In addition, there must be some way to notify the module the first time and the last time it is to
be called. This kind of module is exemplified by the following:

Persist.p

Stand-Alone Code, ad nauseam Page: 12

UNI T Persi st;

{ This is a stand-al one nodul e which nmaintains a running total }
{ of the squares of the paraneters it receives. This requires }
{ the cooperation of a host application. The host nust use }
{ nmessages to tell the nodule when to initialize and when to }
{ tear down. The host al so nust maintain a handle to the }
{ nodul e's A5 worl d between invocations. }
| NTERFACE

USES

Types, SAd obal s;

CONST
kAccumul ate = 0; {These are the control nessages.}
kFirstTime = 1;
kLast Tine = 2;

FUNCTI ON AccSquares (parm Longint; message: |nteger;
VAR ASRef: A5Ref Type) : Longint;

| MPLEMENTATI ON
{ Define global storage to retain a running }
{ total over multiple calls to the nodule. }
VAR accumul ation : Longint;

FUNCTI ON AccSquares (parm Longint; message: |nteger;
VAR ASRef: A5Ref Type) : Longint;
VAR
ol dA5: Longi nt;
BEGA N
| F nessage = kFirstTime THEN MakeA5Wor | d(ASRef) ;
ol dA5 : = Set ASWr | d(ASRef) ;

| F nessage = kFirstTime THEN accumul ation : = O;
accumul ati on : = accunul ation + (parm?* parnj;
AccSquar es : = accumul ati on;

Rest or eA5Wr | d(ol dA5, A5Ref);
| F nessage = kLast Ti ne THEN D sposeA5Wr | d(ASRef) ;
END,

Persist.make

This is the makefile for the Per si st module:

Stand-Alone Code, ad nauseam Page: 13

File: Per si st . make
Target: Per si st
Sources: Persist.p

OBJECTS = Persist.p.o

Per si st [[rorln]][[rorln]] Per si st . nake { OBJECTS}

Link -w -t '??2??" -c '????" -rt CUST=129 -m ACCSQUARES [[partial diff]]
-sg Persi st {OBJECTS} [[partial diff
"{Libraries}"Runtinme.o [[partial dif
"{Libraries}"Interface.o [[partial d]
"{PLi brari es}"SANELi b.o [[parti al di
"{PLi braries}"PasLib.o [[partial dif
"{M/Li brari es}"SAd obal s.o0 [[partia f1]

-0 Persi st

Persist.p.o [[florin]] Persist.nake Persist.p

1]
f1]
i 1]
ff]l
f1]
| di f

BigBro; FORWARD;

The third case is illustrated by an ' | NI T' using arbitrary Toolbox managers to present a user interface. A working
example is too long to present here, but an example is included at the end of the discussion. The process, however, is no
more difficult than the examples previously given; there is simply more intervening code to accomplish an interesting task.
An' I NI T" may simply call QpenA5Wor | d upon entry and CI 0se A5Wor | d before exiting. Everything between can then
be just like an application: _I nit G af, I nitWndows,andsoon. An' I NI T' should be careful, though, to restore the
G af Port to its initial value before exiting.

Dashing Aside the Curtain, or Revealing the Wizard

Building an A5 world would seem to be fairly complicated, but most of the necessary code is already written. Much of it is
in the MPW library called Runtime.o. Actually, this makes sense, since applications have A5 worlds and the programmer
doesn't have to do anything special to set them up. Only in the case of stand-alone modules does this become the
responsibility of the programmer. What's not in the MPW library is the initial allocation of space for an A5 world. For an
application, this is done by the Segment Loader. A stand-alone module can emulate the entire process by using bit of glue
code around calls to the appropriate routines in Runtime.o. This is the entire point of the SAA obal s unit. SAQ obal s
makes it very easy to use globals in stand-alone code because it automates the process of allocating space for globals and
initializes them the same way an application would. The Pascal source code for SAG obal s is published here. DTS can also
provide the source code in C, as well as simplified Pascal and C headers and the compiled object library.

{ Stand-al one code nodul es whi ch need to use gl obal vari abl es
may include the interfaces in this unit. Such code nodul es
must al so be linked with Runtine.o and SAd obal s. 0. }

UNI T SAd obal s;
| NTERFACE

USES
Types, Menory, OSUil s;

TYPE
A5Ref Type = Handl e;

{ MakeA5Wrl d al |l ocates space for an A5 world based on the
size of the gl obal variables defined by the nodule and its
units. If sufficient space is not avail able, MkeA5Wrld
returns NNL for AS5Ref and further initialization is aborted. }
PROCEDURE MakeA5Wr |l d (VAR ASRef: A5Ref Type);

{ Set A5SWorld | ocks down a previously-allocated handl e contai ni ng
an A5 world and sets the A5 register appropriately. The return

Stand-Alone Code, ad nauseam Page: 14

value is the old value of A5 and the client should save it for
use by RestoreAs5Wrl d.
FUNCTI ON Set ASWor| d (A5Ref: ASRef Type) : Longint;

{ RestoreA5World restores A5 to its original value (which the
client should have saved) and unl ocks the A5 world to avoid
heap fragnentation in cases where the world is used again. }

PROCEDURE Rest or eA5Wor | d (ol dA5: Longi nt; A5Ref: ASRef Type);

{ D sposeA5Worl d sinply di sposes of the A5 world handle. }
PROCEDURE Di sposeA5Wir| d (A5Ref: AS5Ref Type);

{ OpenA5Wrl d conbi nes MakeA5World and Set ASWrld for the majority
of cases in which these two routines are called consecutively. An
exception is when a single A5 world is invoked many tines. In this
case, the world is only created once with MakeA5Wrld and it is
i nvoked each tinme by Set ASWorld. Most devel opers will find it easier
just to call OpenA5Wrld and O oseA5World at the end. If the nenory
al | ocation request fails, QpenA5Wirld returns NIL for ASRef and zero
in the function result.

FUNCTI ON OpenA5Wor | d (VAR ASRef: ASRef Type) : Longint;

{ AoseA5Wrld is the dual of QpenA5Wrld. It conbi nes RestoreA5Wrld
and D sposeA5World. Again, in certain cases it may be necessary to
call those two routines explicitly, but nmost of the tine O oseA5Wrld
is all that is required. }

PROCEDURE O oseA5Worl d (ol dA5: Longi nt; AbSRef: AbRef Type);

| MPLEMENTATI ON

CONST
kAppPar nsSi ze = 32;

FUNCTI ON A5Si ze : Longint;
C, EXTERNAL; { in MPMWs Runtine.o }

PROCEDURE A5l nit (myA5: Ptr);
C, EXTERNAL; { in MPWs Runtine.o }

PROCEDURE MakeA5Wr |l d (VAR ASRef: A5Ref Type);
BEG N
A5Ref = NewHandl e(A5Si ze) ;
{ The calling routine nust check ASRef for NL! }
| F ASRef <> NIL THEN
BEG N
HLock(ASRef) ;
A51 ni t (Ptr(Longint (ASRef) + A5Size - kAppParnsSi ze));
HUnl ock(ASRef) ;
END;
END;

FUNCTI ON Set A5SWor| d (A5Ref: ASRef Type) : Longint;
BEG N

HLock(ASRef) ;

Set ASWorl d : = Set A5(Longi nt (A5Ref*) + A5Si ze - kAppParnsSi ze) ;
END,

PROCEDURE Rest or eA5Wor | d (ol dA5: Longi nt; A5Ref: A5Ref Type);
BEG N
| F Bool ean (Set A5(ol dA5)) THEN; { side effect only }
HUnl ock(ASRef) ;
END;

PROCEDURE Di sposeA5Wor | d (A5Ref: AS5Ref Type);

Stand-Alone Code, ad nauseam Page: 15

BEA N
Di sposHandl e(A5Ref) ;
END;

FUNCTI ON OpenA5Wor |l d (VAR AS5Ref: ASRef Type) : Longint;
BEG N
MakeASWr | d(ASRef) ;
| F ASRef <> NIL THEN
penASWrl d : = Set ASWor | d(ASRef)
ELSE
QoenA5SWor 1l d : = 0;
END;

PROCEDURE Cl oseA5Worl d (ol dA5: Longint; A5Ref: A5Ref Type);
BEG N

Rest or eA5Wor | d(ol dA5, Ab5Ref);

Di sposeA5Wor | d(ASRef) ;
END;

It is tempting to reduce the entire globals issue to this cookbook recipe. The preceding examples may tend to reinforce this
view, but a solid theoretical understanding may be indispensable depending on what sort of code goes between

MakeASWor | d and Di sposeAS5Wbr | d. In the Sorter example at the end of this discussion, for instance, an ' XC\VD
makes callbacks to HyperCard. There is a similar mechanism between Apple File Exchange and custom translators. When
making these callbacks, it is necessary to temporarily restore the host's A5 world. Otherwise, the host application bombs
when it finds a different set of variables referenced by A5. Calling Set A5 before and after a callback solves the problem,
but neither the problem nor the solution is exactly part of the SAG obal s recipe. Hence, if a programmer chooses to use
the SAA obal s unit without understanding how and why it works, he most likely gets in a lot of trouble and ends up
writing to Apple to ask why it doesn't work right. As the best mathematics and physics students generally attest: don't just
memorize formulas--know the concepts behind them.

A5Si ze and A5l ni t are the MPW library routines necessary to set up and initialize an A5 world. A5Si ze determines
how much memory is required for the A5 world. This memory consists of two parts: memory for globals and memory for
application parameters. A5l ni t takes a pointer to the A5 globals and initializes them to the appropriate values. How this
works needs a little explaining.

When MPW links an application together, it has to describe what the globals area should look like. At the very least, it needs
to keep track of how large the globals section should be. In addition, it may need to specify what values to put into the globals
area. Normally, this means setting everything to zero, but some languages like C allow specification of preinitialized
globals. The linker normally creates a packed data block that describes all of this and places it into a segment called

%51 ni t . Also included in this segment are the routines called by the MPW run-time initialization package to act upon

this data. A5Si ze and A5l ni t are two such routines. A5Si ze looks at the field that holds the unpacked size of the data and
returns it to the caller. A5l ni t is responsible for unpacking the data into the globals section. In the case of a stand-alone
module, all code and data needs to be packed into a single segment or resource, so %A5I ni t is not used. The linker option

- SQ is used to make sure that everything is in the same resource. The MPW Commando interface to CreateMake is very good
about specifying this automatically, but the programmer must remember to specify this if he creates his own makefiles.

The rest of the SAQ obal s unit is mostly self-explanatory. The Memory Manager calls straightforwardly allocate the
amount of space indicated by A5Si ze, and lock the handle down when in use by the module. If the math performed by

Make ASWor | d and Set ASWWr | d seems just a little too cosmic in nature, don't be alarmed. It's really quite simple.
Referring back to Figure 2, A5 needs to point to the boundary between the global variables and the application parameters.
Since the application parameters, including the pointer to QuickDraw globals, are 32 bytes long, the formula should become
clear. It's just starting address + block [ength - 32.

As demonstrated in the examples, a module can simply call MakeASWbr | d to begin building its own A5 world, and it can
call Set A5S\Wor | d to invoke it and make it active. What is not demonstrated particularly well in the examples is that the
module should check ASRef to see if it is Nl L. If so, there is not space to allocate the A5 world, and the module needs to
abort gracefully or find another way of getting its job done. Also, the programmer should be aware that ASRef is not an
actual A5 value. It is a reference to an A5 world as its name implies. The actual value of A5 is calculated whenever that
world is invoked, as described in the preceding paragraph.

Stand-Alone Code, ad nauseam Page: 16

Back to top

Are We There Yet?

As the preceding sections indicate, stand-alone code is one of the more esoteric areas of Macintosh programming. Many more
pages could be devoted to the subject, and they probably will be eventually, but there should be enough information here to
get most developers past the initial hurdles of creating stand-alone modules and interfacing with an environment biased
toward full-blown applications. As always, suggestions for additional topics are welcome and will be incorporated as demand
requires and resources permit.

Party on, Dudes.

Back to top

LazyTest

LazyTest.p

This is a very simple program to demonstrate use of the LazyPass module documented earlier. Things to watch out for are
standard 170 (ReadLn and Wi t eLn) and error checking (or lack thereof). This is a bare-bones example of how to load
and call a stand-alone module. Don't expect anything more.

PROGRAM LazyTest ;
USES
Types, Resources, Menory, OSUils;

VAR
a, c: Real;
hl: Handl e;
FUNCTI ON Cal | Modul e (parm Real ; nodHandl e: Handle) : Real;
| NLI NE $205F, { MOVEA. L (A7)+ A0 pop handl e of f stack }
$2050, { MOVEA. L (A0), A0 dereference to get address of XCWD }
$4E90; { ISR (A0) call XCWD, |eaving pb on stack }
BEG N
Wite(' Grcunference:');
ReadLn(c);
hl : = CGet Resource(' CUST', 128);
HLock(hl);
a := Call Modul e(c, hl);
Hunl ock(hl);

WitelLn(' Area: ', a);

LazyTest.make

The accompanying makefile is pretty basic, the kind of thing one expects from CreateMake. The only notable addition is a
directive to include the LazyPass module in the final application. This avoids the need to paste LazyPass into the
application manually with ResEdit. It is also an example of a very powerful feature of the MPW scripting language, which
allows the output of one command to be "piped" into the input of another.

Stand-Alone Code, ad nauseam Page: 17

File: LazyTest . make
Target: LazyTest
Sour ces: LazyTest. p

OBJECTS = LazyTest.p.o

LazyTest [[florin]][[florin]] LazyTest.nake LazyPass
Echo 'Include "LazyPass";' | Rez -o LazyTest

LazyTest [[fI orln]][[fl orin]] LazyTest.nmake { OBJECTS}
Link -w -t APPL ?2?2??" [[partialdiff]]

{ OBJECTS} [[partlaldlff]
“{Libraries}"Runtine.o [[partial diff
“{Libraries}"Interface.o [[parti al di
"{PLi braries}"SANELi b.o [[partial dif
"{PLi braries}"PasLib.o [[partial diff
-0 LazyTest

LazyTest.p.o [[florin]] LazyTest.make LazyTest.p

1]
f1]1
f11
1]

Back to top

PersistTest
PersistTest.p

Per si st Test is an equally minimal application to demonstrate the Per si st module, also documented earlier.

PROGRAM Per si st Test ;

USES
Types, Resources, Menory, OSUtils
CONST
N = 5;
kAccumul ate = 0; {These are the control nessages.}

kFirstTine = 1;
kLast Ti ne = 2;

VAR
i : Integer;
acc : Longint;
hl, ot herA5: Handl e;

FUNCTI ON Cal | Modul e (parm Longi nt; message: |nteger; VAR otherA5: Handl e;
nodHandl e: Handl e) : Longint;

| NLI NE $205F, { MOVEA. L (A7)+, A0 pop handl e of f stack }
$2050, { MOVEA.L (A0),A0 dereference to get address of XC\WD }
$4E90; { JSR (A0) call XCMD, |eaving pb on stack }

BEG N

hl : = Get Resource(' CUST', 129);

MoveHH (hl);

HLock(hl);

FORi := 1 TO N DO

BEG N
CASE i OF

1. acc := Call Modul e(i, kFirstTine, ot her A5, hl);
N: acc := Cal | Modul e(i, kLast Ti ne, ot her A5, hl);
OTHERW SE

Stand-Alone Code, ad nauseam Page: 18

acc : = Call Modul e(i, kAccumul at e, ot her A5, hl);
END;
WitelLn(' SunBquares after ',i,' ="', acc);
END;
Hunl ock(h1);

PersistTest.make

This makefile presents nothing new and is provided for the sake of completeness.

File: Per si st Test . nake
Target: Per si st Test
Sources: Persi st Test. p

OBJECTS = PersistTest.p.o

PersistTest [[florin]][[florin]] PersistTest.nmake Persi st

Echo 'Include "Persist";' | Rez -o PersistTest
PersistTest [[florin]][[florin]] PersistTest.make {OBJECTS}
Link -w -t APPL -c "????" [[partialdiff]]
{OBJECTS} [[partialdiff]]
"“{Libraries}"Runtinme.o [[partial diff]]
"{Libraries}"Interface.o [[partialdiff]]
"{PLi brari es}"SANELi b.o [[partial diff]]
"{PLi braries}"PasLib.o [[partial diff]]

-0 Persi st Test
PersistTest.p.o [[florin]] PersistTest.nake PersistTest.p

Back to top

Sorter

Sorter.p

Sorter is an example ' XCMD' which demonstrates the concept of persistent globals across multiple invocations. It also
illustrates how stand-alone modules must handle callbacks to a host application. This is evidenced by the Set A5

instructions bracketing HyperCard callback routines, such as Zer oToPas, Set G obal , or user routines incorporating
such calls.

{$z+} { This allows the Linker to find "ENTRYPO NT" without our having to
put it in the | NTERFACE section }

UNI T Fred;
| NTERFACE

USES
Types, Menory, OSUils, HyperXCrd, SAd obal s;

| MPLEMENTATI ON

TYPE

LongArray = ARRAY [0..0] OF Longint; { These define our list of entries }
LongPoi nter = ~LongArray;
LongHandl e = “LongPoi nt er;

CONST
kFirstTine = 1, { being called for the first tine. Initialize. }

Stand-Alone Code, ad nauseam Page: 19

kLast Ti me = 2, { being called for the last tinme. G ean up. }
kAddEntry = 3; { being called to add an entry to our list to sort. }
kSortEntries = 4; { being called to sort and display our list. }
kCommandl ndex = 1; { Paraneter 1 holds our command nunber. }
kASRef | ndex = 2; { Paraneter 2 holds our A5 world reference. }

KEntryl ndex = 3; { Paraneter 3 holds a nunber to add to our list. }

VAR
gHost A5: Longi nt; { The saved val ue of our host's (HyperCard's) A5. }
gNuntX Entries: Longint; { The nunber of entries in our list. }
gEntries: LongHandle; { Qur list of entries. Gets expanded as needed. }

{ Forward reference to the main procedure. This is so we can junp to
it from ENTRYPA NT, which represents the begi nning of the XCMD, and is
what HyperCard calls when it calls us. }

PROCEDURE Sorter(paranPtr: XCndPtr);
FORWARD;

PROCEDURE ENTRYPO NT(paranPtr: XCrdPtr);

BEG N
Sorter(paranPtr);
END;

{ Wility routines for using the HyperCard cal |l backs. There are sone
functions that we need to performmany tinmes, or would like to
encapsul ate into little routines for clarity:

Val uer Expression - given an index from1l to 16, this eval uates the
expression of that paraneter. This is used to scoop out the val ue
of the command sel ector, our A5 pointer, and the val ue of the
nunber we are to stick into our list of nunbers to sort.

LongToZero - Convert a LONGNT into a C (zero delimted) string.
Returns a handl e that contains that string.

Set d obal At - given the index to one of the 16 paraneters and a
LONG NT, this routines sets the global found in that paraneter to
t he LONG NT.

}

FUNCTI ON Val ueO Expr essi on(paranPtr: XOrdPtr;
i ndex: integer): Longint;

VAR
tenpStr: Str255;
t empHandl e: Handl e;

BEG N
Zer oToPas(paranPtr, paranPtr”. parans[index]”, tenpStr);
tempHandl e : = Eval Expr(paranPtr, tenpStr);
Zer oToPas(paranPtr, tenpHandl e®, tenpStr);
Di sposHandl e(t enpHandl e) ;
Val ue Expressi on : = StrTolLong(paranPtr, tenpStr);
END;

FUNCTI ON LongToZer o(paranPtr: XCrdPtr;
I ong: Longint): Handl e;

VAR
tenmpStr: Str255;

BEG N

Stand-Alone Code, ad nauseam

LongToStr(paranPtr, long, tenpStr);
LongToZero : = PasToZero(paranPtr, tenmpStr);
END;

PROCEDURE Set d obal At (paranPtr: XOrdPtr;
i ndex: integer;
| ong: Longint);

VAR
gl obal Nanme: Str255;
hLong: Handl e;

BEG N
Zer oToPas(paranPtr, paranPtr”. parans[index]”, gl obal Nane);
hLong : = LongToZero(paranPtr, |ong);
Set d obal (paranPtr, gl obal Name, hLong);
D sposHandl e(hLong) ;
END;

{ These 4 routines are called according to the command passed to the XCVD:

Initialize - used to initialize our globals area. Aslnit will clear
our globals to zero, and set up any pre-initialized variables if we
wote our programin C or Assenbly, but it can't do everything. For
instance, in this XCVMD, we need to create a handle to hold our Iist
of entries.

AddAnEntry - Takes the val ue represented by the 3 paraneters passed to
us by HyperCard and adds it to our I|ist.

SortEntries - Sorts the entries we have so far. Converts theminto a
string and tells HyperCard to display themin the nessage box.

FreeData - W just receive the nmessage saying that we are never going
to be called again. Therefore, we nust get rid of any nenory we
have al | ocated for our own use.

}
PROCEDURE | nitialize;

BEG N
gEntries : = LongHandl e(NewHandl e(0));
gNunmX Entries := 0O;

END,;

PROCEDURE AddAnEntry(paranPtr: XCrdPtr);

VAR
our A5: Longi nt;
tenpStr: Str255;
tenmp: Longint;

BEG N
our A5 : = Set A5(gHost A5) ;
temp : = Val ue* Expressi on(paranPtr, KEntryl ndex);
our A5 : = Set A5(our A5) ;

Set Handl eSi ze(Handl e(gEntries), (gNunCEntries + 1) * 4);

{$PUSH {3$R-}

gEntri es[gNunCf Entries] := tenp;

{$PCP}

gNunCfEntries := gNunOXEntries + 1;
END;

PROCEDURE Sort Entri es(paranPtr: XCndPtr);
VAR

Page: 20

Stand-Alone Code, ad nauseam

our A5: Longi nt;
i, j: integer;
full Str: Str255;
tempStr: Str255;
tenmp: Longint;

BEG N
I|F gNumXX Entries > 1 THEN
BEG N
{$PUSH {$R-}
FORi := 0 TO gNuntOXEntries - 2 DO
BEG N
FOR|j :=i + 1 TOgNunOfEntries - 1 DO
BEG N
IF gEntries™[i] > gEntries”*[j] THEN
BEG N
tenp := gEntries®[i];
gEntries™[i] := gEntries™[j];
gEntries™j] t enp;
END;
END;
END;
{ $PCP}
END;

I|F gNunX Entries > 0 THEN

BEG N

full Str :="";

FORi := 0 TO gNuntOX*Entries - 1 DO
BEG N
{$PUSH {$R-}
temp := gEntries?i];
{ $PCP}
our A5 : = Set A5(gHost A5) ;
NunifoSt r (paranPtr, tenp, tempStr);
our A5 : = Set A5(our AS) ;

full Str := concat(full Str, ', ', tenpStr);
END;
delete(full Str, 1, 2); { renove the first ", " }
our A5 : = Set A5(gHost A5) ;
SendHCMVessage(paranPtr, concat (' put "', fullStr, """));
our A5 : = Set A5(our AS) ;
END;

END;
PROCEDURE Fr eeDat a;
BEA N

D sposHandl e(Handl e(gEntries));
END;

{ Main routine. Big Cheese. Head Honcho. The Boss. The Man with all
noves. You get the idea. This is the controlling routine. It first
checks to see if we have the correct nunber of paraneters (sort of).

If that's OK then it either creates a new A5 world and initializes it,
or it sets up one that we've previously created. It then dispatches to
the appropriate routine, dependi ng on what comrand was passed to us.
Finally, it restores the host application's A5 world, and di sposes of

ours if this is the last tinme we are being called. }
PROCEDURE Sorter(paranPtr: XCndPtr);

VAR
conmand: i nteger;

Page: 21

Stand-Alone Code, ad nauseam Page: 22

ASRef : A5Ref Type;
errStr: Str255;
ASNane: Str255;

BEG N { Mai n}

W TH paranPtr”® DO
| F (paramCount < 2) OR (paramCount > 3) THEN

BEG N
errStr =
'Correct usage is: "Sorter <function> <A5> [<entry>]"";
paranPtr”. returnVal ue : = PasToZero(paranPtr, errStr);
EXI T(Sorter); {leave the XCVD}
END;
command : = Val ueO Expr essi on(paranPtr, kComrandl ndex) ;

| F command = kFirstTi me THEN
BEG N
MakeA5Wor | d(ASRef) ;
Set d obal At (paranPtr, kASRefl ndex, Longint(A5Ref));

END
ELSE
BEG N
AS5Ref : = ASRef Type(Val ueX Expr essi on(paranPtr, kA5Ref | ndex));
END;
|F (ASRef = NIL) THEN
BEG N
errStr := 'Could not get an A5 World!!!";
paranPtr”. returnVal ue : = PasToZero(paranPtr, errStr);
EXI T(Sorter); {leave the XCVD}
END;

gHost A5 : = Set ASWor | d(ASRef) ;

CASE conmand OF
kFirstTinme: Initialize;
kAddEntry: AddAnEntry(paranPtr);
kSortEntries: SortEntries(paranPtr);
kLast Ti ne: FreeDat a;

END;

Rest or eA5Wor | d(gHost A5, A5Ref) ;

| F command = kLast Ti mre THEN Di sposeA5Wor | d(A5Ref)
END; {mai n}

Sorter.make

The makefile for Sort er is fairly straightforward, but CreateMake cannot generate all of it automatically. Be sure to link
with both HyperXLib.o and SAGlobals.o, and account for any custom directories to search for interfaces. In most of the
examples, there are two MPW Shell variables, Myl nt er f aces and MyLi br ar i es which represent the directories
containing the SAQ obal s headers and library, respectively. Someone following along with these examples would need to
define these Shell variables, possibly in his UserStartup file, or replace the occurrences with the name of whatever
directory actually contains the necessary SAQ obal s files.

Stand-Alone Code, ad nauseam Page: 23

File: Sort er. nake
Target: Sorter
Sour ces: Sorter.p

OBJECTS = Sorter.p.o

Sorter [[florin]][[florin]] Sorter.mke { OBJECTS}
Link -w -t "'??2?2?" -c '???2?" -rt XCVD=256 -m ENTRYPQO NT [[partial diff]]

-sg Sorter {OBJECTS} [[partialdiff]]
"{Libraries}"Runtine.o [[partialdiff]]
"{Libraries}"Interface.o [[partialdiff]]
"{PLi braries}"SANELi b.o [[partial diff]]

"{PLi braries}"PasLib.o [[partial diff]]

'{ Li brari es}"Hyper XLib.o [[partial diff]]
" als.o [[partialdiff]]
-0 Sorter

M/Li brari es}" SAA obal
So
p-

Sorter.p.o [[florin]] Sorter.make Sorter.p

A Sample HyperCard Script Using Sorter
To test SOr t er , it is necessary to create a simple HyperCard stack. After creating a new stack under HyperCard's File

menu, use the button tool to create a new button and associate it with the following script. Now use ResEdit to paste the
' XCMD' resource "Sorter" into the stack and it's ready for experimentation.

on nouseUp

gl obal A5
Sorter 1, "Ab" -- Initialize that puppy
if the result is enpty then
Sorter 3, A5, 6 -- Add sone nunbers to the |i st
Sorter 3, A5, 2
Sorter 3, A5, 9
Sorter 3, A5, 12
Sorter 3, A5, 7
Sorter 4, A5 -- sort themand print them
Sorter 2, A5 -- D spose of our data
el se
put the result
end if
Back to top
BigBro

BigBro.p

Bi gBr o may look a bit familiar because it performs the same function as the sample INIT offered early in the preceding
discussion. However, it has the added feature of providing a user interface, or a dialog at least, during the startup sequence.
This tends to make it very obnoxious, and DTS discourages this sort of thing on human interface grounds. Nonetheless, it is
an interesting case study. It is also the first example in which a stand-alone code resource uses other resources.

Stand-Alone Code, ad nauseam Page: 24

UNI T Bi gBro;
| NTERFACE

USES
Types, SAd obals, OSUil s,
Qui ckDraw, Fonts, Wndows, Menus, TextEdit, D al ogs,
Resour ces, Sound, Tool Util s;

PRCCEDURE BeAPest ;

| MPLEMENTATI ON

PRCCEDURE BeAPest ;
CONST
kBi gBr oDLOG = 128;
VAR
A5Ref : AbRef Type;
ol dA5: Longint;
nunSnds, i, itenH t: I|nteger;
t heSnd: Handl e;
pl aySt at us: CSErr;
orwell: Dial ogPtr;

BEG N
I F NOT Button THEN BEG N
ol dA5 : = QpenA5Wir | d(ASRef);
IF ASRef <> NIL THEN BEGA N
InitGaf (@hePort);
I nitFonts;
| ni t Wndows;
I ni t Menus;
TEl ni t;
InitD al ogs(N L) ;
I nit Cursor;
orwel I := Get NewDi al og(kBi gBroDLOG N L, WndowPtr(-1));
nunmbnds : = Count Resources('snd ');
FORi := 1 TO nuntnds DO BEG N
theSnd : = GetlndResource('snd ',i);
IF theSnd <> NI L THEN
pl ayStatus : = SndPl ay(N L, t heSnd, FALSE) ;
END;
REPEAT
Modal Di al og(NIL, itenHit);
UNTIL itenH t = 1;
Di sposDi al og(orwel I);
C oseA5Wr | d(ol dA5, A5Ref);
END;
END;
END;

BigBro.r

This is the Rez input file necessary to create the 'DLOG' and 'DITL' resources used by Bi gBr 0.

Stand-Alone Code, ad nauseam

resource 'DLOG (128) {
{84, 124, 192, 388},
dBoxPr oc,
vi si bl e,
noGoAway,
0x0,
128,

i
resource 'DITL" (128) {

{ [/* array DI TLarray: 2 elenents */

[* [1] */
{72, 55, 93, 207},
Button {

enabl ed,

"Conti nue Booting"

* [2] */

13, 30, 63, 237},
StaticText {

di sabl ed,

}
/
{

"This is an exaggerated case of the type
"of INIT which bothers me nore than anyth"

"ing else."

BigBro.make

The makefile for Bi gBr 0 is a little simpler than that of Sor t er, but includes an extra directive to include the dialog

Page: 25

resources using Rez. Refer to the Sor t er example for notes on the Myl nt er f aces and MyLi br ar i es Shell variables.

File: Bi gBr 0. nake
Target: Bi gBro
Sour ces: Bi gBro. p

OBJECTS = BigBro.p.o
BigBro [[florin]][[florin]]

BigBro [[florin]][[florin]]
Link -w-t INT -c ' 2?2?27

-0 BigBro

BigBro.p.o [[florin]] BigBro.nake BigBro.p

Back to top

MyWindowDef

Bi gBro. make Bi gBro.r
Rez -0 BigBro "{Rl ncludes}"Types.r BigBro.r

Bi gBro. make { OBJECTS}

I Nl T=128 -ra =reslLocked [[partial diff]]
-m BEAPEST -sg BigBro {OBJECTS} [[partial diff]]
"{Libraries}"Runtinme.o [[parti al dif
"{Libraries}"Interface.o [[partiald
"{PLi braries}"SANELi b.o [[partiald
"{PLi braries}"PasLib.o [[partial di
"{M/Libraries}"SAd obal s.o [[parti

Stand-Alone Code, ad nauseam Page: 26
MyWindowDef.a

Writing a ' WDEF' is like writing an ' | NI T' , except that ' WDEF' resources have standard headers that are incorporated
into the code. In this example, the ' WDEF' is the Pascal MyW ndowDef . To create the header, use an assembly language
stub:

St dVWDEF MAI N EXPORT ; this will be the entry point

MPORT MyW ndowDef nane of Pascal FUNCTION that is the WDEF
we | MPORT externally referenced routines
fromPascal (in this case, just this one)

BRA. S @ branch around the header to the actual code
DC. W 0 ; flags word
DC. B ' \WDEF ; type
DC. W 3 ;| D nunber
DC. W 0 ; version
@ JWP MyW ndowDef : this calls the Pascal WDEF

MyWindowDef.p

Now for the Pascal source for the ' WDEF' . Only the shell of what needs to be done is listed, the actual code is left as an
exercise for the reader (for further information about writing a ' WDEF' , see Inside Macintosh , Volume |, The Window
Manager (pp. 297-302) and Volume V, The Window Manager (pp. 205-206).

UNI T WDef ;
| NTERFACE
USES MenTypes, QuickDraw, OSlntf, ToolIntf;

{this is the only external routine}
FUNCTI ON MyW ndowDef (var Code: | nteger; theWndow W ndowPtr;
nessage: |nteger;
param Longlint): Longlnt; {As defined in IMp. |-299}

| MPLEMENTATI ON

FUNCTI ON MyW ndowDef (var Code: | nteger; theWndow W ndowPtr;
nessage: |nteger;
param Longlnt): Longlnt;

TYPE
Rect Ptr = ~Rect;

VAR
aRectPtr : RectPtr;

{here are the routines that are dispatched to by M/W ndowDef }

PROCEDURE DoDr awm t heW nd: W ndowPtr; DrawParam Longlnt);
BEG N { DoDr aw}
{Fill in the code!}
END;, {DoDr aw}

FUNCTI ON DoHi t (t heW nd: WndowPtr; theParam Longlnt): Longlnt;
BEG N {DoHi t}
{Code for this FUNCTI ON goes here}
END, {DoHit}

PROCEDURE DoCal cRgns(t heW nd: W ndowPtr);
BEG N { DoCal cRgns}
{Code for this PROCEDURE goes here}

Stand-Alone Code, ad nauseam Page: 27
END; { DoCal cRgns}

PROCEDURE DoG ow(t heW nd: W ndowPtr; theG owRect: Rect);
BEA N { DoG ow}
{Code for this PROCEDURE goes here}
END, {DoG ow}

PROCEDURE DoDr awSi ze(t heW nd: W ndowPtr);
BEG N { DoDr awsSi ze}
{Code for this PROCEDURE goes here}
END;, {DoDr awSi ze}

{now for the main body to MyW ndowDef}

BEG N { MyWndowDef }

{case out on the nessage and junp to the appropriate routine}
M/W ndowDef := 0; {initialize the function result}

CASE nessage OF
wDraw. { draw w ndow frane}
DoDr aw(t heW ndow, par an) ;

WHi t: { tell what region the nouse was pressed in}
M/W ndowDef := DoHi t (t heW ndow, paranj;

wCal cRgns: { cal cul ate struct Rgn and cont Rgn}
DoCal cRgns(t heW ndow) ;

wWiNew: { do any additional initialization}
{ we don't need to do any}

wDi spose: { do any additional disposal actions}
{ we don't need to do any}

w@ow. { draw w ndow s grow i nage}
BEG N
aRectPtr := RectPtr(param;
DoG ow(t heW ndow, aRect Pt r) ;
END; {CASE wG ow}

wDr awd con: { draw Si ze box in content region}
DoDr awSi ze(t heW ndow) ;

END, {CASE}
END; { MyW ndowDef }

MyWindowDef.make (Pascal Version)

Stand-Alone Code, ad nauseam

#
#
#

File: M/W ndowDef . make
Tar get : M/W ndowDef
Sour ces: M/W ndowDef . a MyW ndowDef . p

OBJECTS = MYW ndowDef . a. 0 MyW ndowDef . p. o

MW ndowDef [[florln]][[florln]] MyW ndowDef . make { OBJECTS}
Link -w -t "?2?2?2?" - ?2?' -rt WDEF=3 -m STDWDEF [[partial diff]]

-sg M/WndowDef {(BJECTS} [[partial diff]]
-0 MyW ndowDef

M/W ndowDef . a. o0 [[florin]] M/W ndowDef.nmake MyW ndowDef. a

Asm M/W ndowDef . a

M/W ndowDef . p.o [[florin]] M/W ndowDef.make MyW ndowDef. p

That's all there is to it.

MyWindowDef.c

Writing a ' V\DEF'

Page: 28

in MPW C is very similar to writing one in Pascal. You can use the same assembly language header, and

all you need to make sure of is that the main dispatch routine (in this case: MyW ndowDef) is first in your source file.
Here's the same ' WDEF' shell in MPW C:

/* first, the mandatory includes */
ncl ude <types. h>

ncl ude <qui ckdr aw. h>

ncl ude <resources. h>

ncl ude <fonts. h>

ncl ude <w ndows. h>

ncl ude <nenus. h>

ncl ude <textedit.h>

ncl ude <events. h>

#i
#i
#i
#i
#i
#i
#i
#i

/* declarations */
voi d DoDrawsSi ze() ;
voi d DoGow);
voi d DoCal cRgns();
long int DoHit();
voi d DoDr aw() ;

A Main Proc within WDEF ------------------ */
pascal |ong int M/W ndowDef (var Code, t heW ndow, message, par am

short int var Code;

W ndowPt r t heW ndow;

short int nessage,;

| ong i nt par am

{ [* MyW ndowDef */

Rect *aRect Ptr;

[*this is what the function
returns, init to 0 */

ong int t heResul t =0;

switch (nmessage)

{

case wDr aw. /* draw wi ndow frane*/
DoDr aw(t heW ndow, par anj ;
br eak;

case wHit: /* tell what region the nmouse was pressed in*/
theResult = DoHi t (t heW ndow, par anj ;
br eak;

case wCal cRgns: /* cal cul ate structRgn and cont Rgn*/

Stand-Alone Code, ad nauseam

DoCal cRgns(t heW ndow) ;

Page: 29

br eak;
case WNew /[* do any additional initialization*/
br eak; /* nothing here */
case wDi spose: /* do any additional disposal actions*/
br eak; /* we don't need to do any*/
case W& ow. [* draw wi ndow s grow i nage*/

aRectPtr = (Rect *)param
DoG ow(t heW ndow, *aRect Ptr) ;
br eak;
case wDr awd con: /* draw Si ze box in

DoDr awSi ze(t heW ndow) ;
br eak;

} /* switch */

return theResult;

} [* MyW ndowDef */

/* here are the routines that are di spatched to by

R DoDx aw function -----

voi d DoDr aw(W ndToDr aw, Dr awPar am
W ndowPt r W ndToDr aw;
| ong i nt Dr awPar am

{ [/* DoDraw */
[* code for DoDraw goes here */
} [/* DoDraw */

R DoHt function ------

long int DoH t (WndToTest, t heParam
W ndowPt r W ndToTest ;
| ong i nt t hePar am

{ /* DoHit */
/* code for DoH't goes here */
} [/* DoHit */

R e P DoCal cRgns procedure ---

voi d DoCal cRgns(W ndToCal c)
W ndowPt r W ndToCal c;

{ [/* DoCal cRgns */
/* code for DoCal cRgns goes here */
} /* DoCal cRgns */

A T P DoG ow procedure -----

voi d DoG ow(W ndToG ow, t heG owRect)
W ndowPt r W ndToG ow,
Rect t heG owRect ;

{ [/* DoGow */
/* code for DoG ow goes here */
} /* DoGow */

R DoDr awSi ze procedure ---

voi d DoDrawSi ze(W ndToDr aw)
W ndowPt r W ndToDr aw,

{ [/* DoDrawSi ze */
/* code for DoDrawSi ze goes here */

MyWindowDef.make (C Version)

content regi on*/

Stand-Alone Code, ad nauseam

Back to top

File: M/W ndowDef . make
Target: MyW ndowDef
Sources: M/W ndowDef . a MyW ndowDef . ¢

CBJECTS = MyW ndowDef . a. 0 MyW ndowDef . c. o

M/W ndowDef [[florln]][[florln]] M/W ndowDef . make { OBJECTS}
Link -w -t '?2?2??" -c ??" -rt WDEF=3 [[partial diff]]
- m STDWDEF —sg M/WndowDef {OBJECTS} [[partialdiff]]
-0 MyW ndowDef
M/W ndowDef.a.o [[florin]] M/W ndowDef. make MyW ndowDef. a
Asm M/W ndowDef . a
M/W ndowDef.c.o [[florin]] M/W ndowDef. make MyW ndowDef. c

Debugger "FKEY"

DebugKey.a

DebugKey a very simple assembly-language example of how to write an ' FKEY' code resource, which traps to the

Page: 30

debugger. With this ' FKEY' , you can enter the debugger using the keyboard rather than pressing the interrupt switch on
your Macintosh.

The build process is a little different for this example, as it links the ' FKEY' directly into the System file. Another script
can remove the ' FKEY' resource. If the prospect of turning MPW tools loose on the System file is just too much to bear,

the ' FKEY' can be linked into a separate file and pasted into the System file with a more mainstream tool like ResEdit.

; File: DebugKey.a

; An FKEY to invoke the debugger via conmand-shift-8
Debugkey ~ MAIN

BRA. S Cal | DB ; | nvoke the debugger
: st andard header
DC. W $0000 ; flags
DC. L ' FKEY' ' FKEY' is 464B4559 hex
DC. W $0008 : FKEY Nunber
DC. W $0000 : Ver si on nunber
Cal | DB DC. W $AIFF ; Debugger trap
RTS

InstallDBFKEY (An MPW Installation Script)

Back to top

DebugKey Installer Script

Place this file in the current directory and type
"I nstal | DBFKEY <Enter>" to install the debugger FKEY
in your Systemfile.

ST T T

Asm DebugKey. a

Stand-Alone Code, ad nauseam Page: 31

References

Inside Macintosh , Volumes | & V, The Window Manager

Inside Macintosh , Volume I, The Memory Manager & The Segment Loader
Inside Macintosh , Volume V, The Start Manager

MPW Reference Manual

Technical Note #208, Setting and Restoring A5

Technical Note #240, Using MPW for Non-Macintosh 68000 Systems

Back to top

Downloadables

Ei Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

