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Introduction

Generally we don't recommend that you assume the existence of specific hardware. However, if your program does proper
feature checking using _SYSENnvirons and there is a Floating-Point Unit (FPU) available, than you can use code which

will run your math intensive code much faster. This Technical Note is basically a condensed version of the Motorola
MC68881/MC68882 Floating-Point Coprocessor User's Manual. | will cover some of the basics of what the chips can do,
their differences, and how to take advantage of what they have to offer.

If _SysSEnvirons returns hasFPU = FALSE, then your code should use the routines provided by the Standard Apple
Numeric Environment (SANE). The routines which SANE provide are covered in the Apple Numerics Manual.

Back to top

So What Can These Chips Do?

The MC68881 and MC68882 are floating-point coprocessors which implement the |EEE standard for binary
floating-point arithmetic. The two chips are fully interchangeable and are primarily for use as coprocessors to the
MC68020 and MC68030 central processors. The two chips will work as peripheral processors to the MC68000,
MC68008, and MC68010 central processors.

Both chips have eight 80-bit general purpose floating-point data registers (FPO-FP7), 67-bit arithmetic units with
precision greater than the extended format, 67-bit barrel shifter, 46 instructions, trigonometric and transcendental
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functions, and 21 constants. The MC68882 also has the capability of concurrent execution of multiple floating-point
instructions.

Back to top

Internal Registers for a Higher Capacity to Think

There are eleven separate registers in these puppies: eight data registers, one control register, one status register, and
one address register.

Data Registers

There are eight 80-bit floating-point data registers labeled FPO-FP7. The extended format, which is used by these
registers, will be covered later. When using the FPU from an MPW C and Pascal application, you can us FPO-FP3 for
temporary storage without saving and restoring their values. If you wish to use FP4-FP7 in your assembly routine, then
you must save these registers at the start of your assembly code and restore them before you leave the assembly code.

Control Register (FPCR)

Below is a representation of the control register. For the most part, there is no need for you to do anything to the control
register directly. It is used internally for determining precision, rounding, and error checking.
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Figure 1 - Control Register
Status Register (FPSR)

The status register is diagrammed in Figure 2. This register is also used mostly for internal chores. The condition-code
byte is set at the end of each arithmetic instruction. The condition-code byte is translated into a data type; Table 1 shows
the relationship between condition codes and data types. The condition code is also used to determine logic equates. If you
wish to determine if two numbers are equal, than the Compare statement (FCMP) will check the condition code. Table 2
shows the relationship between the condition codes and logic equates.

The quotient byte is set at the completion of FMOD (Modulo Remainder) and FREM (IEEE Remainder). This byte can be used
before a transcendental function to determine the quadrant of a circle in which an operand resides. The FP-exception
status byte is used in conjunction with the exception-enable byte of the control register. The FP-accrued exception byte is
used to keep a history of the FP exceptions that have occurred since the last set or clear.
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Table 1-Condition Code versns Resnlt Data Type

Logic Equate Abbreviation Condition Code
Equal 1o EQ a

Hot Equal HE not =

Crreater Than GTorosT nowH or AN or 23
Hot Greater Than H3TorTGST HaMorZorH

Zrreater Than or Equal =E or OZE Z o (ot HAN or FN
Hot {Greater Than or Equall  HGOE or TGE HAM or (M and {not 2
Lesz Than LT or QLT M and (not AN or 2
Hot Lesz Than HLT or ULT HAM or (< and (oot H)
Lesz Than or Equal LE or OLE Z or ¢ and (oot HARY
Hot (Less Than or Equal HLE or ULE HAM or {not {H or 2
Creater or Lesz Than L or OGL not {HAM or 2)

Hot {Greater or Less Than) HEL oxr TTED HaAM or 2

Zreater, Less or Equal) =LE or OR not HAR

Hot {Greater, Less or Equaly HMGLE or UH HAMN

Oxx is ordered & —>= Zeio

1T iz nnopdered H —= Hegative

Table 2-Logic Equates

Address Register (FPIAR)

Page: 3
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Since the coprocessor can do concurrent processing with the MC68020 and MC68030, as well as with itself, the program
counter is not necessarily pointing to the logical address of the instruction upon which it is working. So the address
register stores the logical address of each floating-point instruction before executing it.

Back to top

Floating-Point Data Formats

There are four floating-point numeric formats: single-precision binary real format, double-precision binary real
format, eXtended-precision binary real format, and Pack decimal real format (a.k.a., BCD). | have given examples of what
the FPU will convert your numbers to. The number which | have used for the four examples is Planck’s constant (4.136 x
10[-15] eV-sec)._ Other than the size, the first three formats are very similar. The three formats all have the same
conversion method and ordering of information.

Single (S) 32 bit

Single precision is represented by 32 bits of information. The high bit (bit 31) is the sign bit (s). The next byte of
information (bits 30-23) is the exponent (e), and the last 23 bits (bits 22-0) are the fraction (f). The bits of
information are converted into a floating-point number by the following equation:

f—178 # 2012 ok (20 4 £

The fraction (f) is the strange value. Each bit in the fraction value represents a negative exponent of two. So if bit 22 and
bit 16 are high, and all the rest of the bits are low, than the fraction would equal 0.5078125 or (2[-1]+ 2[-7])._ So
when | give the FPU the number 4.136e-15, it converts the number into the hexadecimal number $04F1503DE, which,
in the above equation, looks like:

(-1)0*2(79-127)* 20+2-3+2-5+2-7+2-14+2-15+2-16+2-17+2-19+2-20+2-21+2-22

This number is than converted back to a base ten number as 4.13600004803759899e-15. As you can see, the number is
correct up to the seventh decimal place.

Double (D) 64 bit

Double precision is represented by 64 bits of information. The high bit (bit 63) is the sign bit (s), The next 11 bits of
information (bits 62-52) are the exponent (e), and the last 52 bits (bits 51-0) are the fraction (f). The bits of
information are converted into a floating-point number by the following equation:

f—13s # 20100 & (20 4 f)

When | give the FPU the number 4.136e-15 as a double, it converts the number into the hexadecimal number
$03CF2A07BBC5ED155. This number is than converted back to a base ten number as 4.13600000000000015e-15. As
you can see, the number is correct up to the fifteenth decimal place.

Extended (X) 96/80 bit

Extended precision is represented by 96 bits of information; SANE and FP data register use 80-bit extended numbers, but
the FPU extended numbers are 96 bits with 16 unused bits, so the two are basically the same. The high bit (bit 95) is the
sign bit (s), The next 15 bits of information (bits 94-81) are the exponent (e), there are 16 unused bits (bits 80-64),
and the last 64 bits (bits 63-0) are the fraction (f). The bits of information are converted into a floating-point number
by the following equation:

{_1}5 * zl:e-lﬁﬂﬁﬂ:l * {20 + f:'

When | give the FPU the number 4.136e-15 as a extended, it converts the number into the hexadecimal number
$03FCF(0000)9503DDE2F68AAG6F. This number is than converted back to a base ten number as 4.136e-15. This
number is correct to about the nineteenth decimal place.

® Pack Decimal Real (P) BCD Format 96 bits
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Pack Decimal Real is represented by 96 bits of information. The bits of these numbers are represented as follows:
bit 95 Sign of Mantissa

bit 94 Sign of Exponent

bit 93-92 used for +-infinity and NANs,otherwise zero

bits 91-81 10-bit Exponent (3 digit exponent)

bits 80-68 unused, zero

bit 67-0, 68 bit Mantissa (17 digit mantissa)

When | give the FPU the number 4.136e-15 as a PDR, it converts the number into the hexadecimal number
$401500041360000000000000. This hexadecimal number is filled into the above bit as follows:

bit 95 Sign of Mantissa O (binary)

bit 94 Sign of Exponent 1 (binary)

bit 93-92 used for +-infinity and NANs,otherwise zero 00 (binary)

bits 91-80 11-bit Exponent (3 digit exponent) 000000010101 (binary)
bits 79-68 unused, zero 000000000000 (binary )

bit 67-0 68 bit Mantissa (17 digit mantissa) 41360000000000000 (hex)

This number is than converted back to a base ten number as 4.136e-15. This number is correct to the seventeenth
decimal place.

Back to top

So What Tools Do | Have to Play With?

There are four types of opcodes which the math coprocessors support: moves, monodic, dyadic, and miscellaneous
conditions. When a coprocessor operation is executed, the first operation which the coprocessor performs is to convert the
data to the internal extended precision format, and when the operation is completed, the data is converted to the destination
data format.

Moves

The first type which | will describe are the move opcodes. Below is a list of the various formats in which the move
commands come.

Move
FMOVE .<fmt> <ea>, FPn
FMOVE.<fmt > FPm, <ea>
FMOVE.X FPm, FPn

Move Multiple
FMOVEM <ea>, FPO - FP3/FP7
FMOVEM FP2/FP4/FP6, <ea> ; the registers are always moved
; as 96 bit extended
; data without conversion
Move Register
FMOVE.L <ea>, FPCR ;move to control register
FMOVE.L FPCR, <ea> ;move from control register

Move Constants from ROM to floating-point register
FMOVECR.X #ccc, FPn ;see Table 3 for #ccc

Save and Restore Machine State
FSAVE <ea> ;virtual machine state save
FRESTORE <ea> ;virtual machine state restore

<ea> is a main processing unit (MPU) effective address operand (any 68xxx addressing mode). <fmt> is the data format
size (Byte, Word, Long, Single, Double, eXtended, Packed decimal). FPm and FPn are floating-point data registers.
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#cce Mathematical Representation Humeric Representation
F00 pi 3.1415928535589793:24

0B logfhaze 10002 0.301029995663951195
Foc e 2.718258152845904524

0D logfhaze 2yle) 1. 442695040555963410

$0E logfhase 1000 0.434294451903251 825
FOF EELD 1]

$30 Ing 2 0.693147180559945309
31 Ing 10} 2.302585092994045654
$3z 100 1

33 101 1a

$34 10z 100

335 104 14,000

$36 10g 100,000 000

337 10~16 1a DDD DDD 000,000,000
$36 1o~32 IDD..{EEJnﬂrezerns} .ag
39 1064 100.. {60 maore zexoz).. .00
34 10~125 100. . (124 mpore 2eras). . 00
3B 10256 100.. {252 more 2erosz)...00
30 10512 100. . (505 more 2eras). . 00
33D 101024 100.. {1020 more zexosz). .00
$3E 102045 100. . (2044 more 2eras). . .00
$3F 104096 100.. {4092 more 2eroz). . .00

Table 3 - Constants
Monodic

A monodic operation has one operand. The operand may be a floating-point data register or an MPU effective address. The
result is always stored in a floating-point data register. The syntax for monodic operations is listed below:

Fxxxx . <fmt> <ea>, FPn
Fxxxx . X FPm, FPn
Fxxxx. X FPn

where: <fmt> i1s (B,W,L,S,D,X,P)

xxxx is one of the Trigonometric (SIN), Transcendental (ATANH), Exponential (ETOXM1), Misc. commands (NEG)
Dyadic
A dyadic operation has two operands. The first operand can be in a floating-point data register, or an MPU effective

address. The second operand is the contents of a floating-point data register. The result of the operation is stored in the
second operand. The syntax for dyadic operations is listed below:

Fxxxx . <fmt> <ea>, FPn

Fxxxx . X FPm, FPn

where <fmt> is (B,W,L,S,D,X,P)

XxxX 1s a arithmetic (ADD), compare (CMP)

Condition operations

There are four condition operations: branch (FBcc), decrement and branch (FDBcc), set according to condition (FScc),
and trap on condition (FTRAPcc).

Back to top
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Why and How do | Program for a 688827

Any code which runs on a 68881 will run on a 68882 and vice versa. You do not need to take special care to program for
the 68882, but if the chip is available, than special care can noticeably improve the speed of your code. Figure 3
demonstrates the difference between code run on a 68881 and the same code run on a 68882. The 68882 is completely
finished running before the 68881 has even started executing the FMOVE instruction. The extra work which you need to do
to take advantage of the concurrent processing is fairly minimal.

DICH3020M | jnit- | rpans- | indt- fifle [interrupts, | trams- | indt- [idle [interrupts, bus | trams-
LIC62020 iake | fer iake s arbitrarion] | er iate |arbitration allowed] | Fer
MICH2231
FMUL | start |2 | %90 Ltoutare |round
fer mart
fraqms- |®0I-
FIMIIL shart Far yopt caleulaty rouml
R it f0D- | trams-
wert | fer
MCEHE0Z0¢ | indt- [trens- | imit- | trams- | inde- | idle (inker.,  broms{ment
LACE2030 iate [Fer | iate |fer fare |busarb]  Fer  [imsteue.
MICHERE2
FLIUL srapt | 5 0D ] e Tate r-:-\uml
fer vert
FMUL sty | IS [ SO ealenlte .».;.\MI
fer rert
FMOVE start Gt gk
wert |far

Figure 3 - Concurrent Execution versus Non-Concurrent Execution

Before you jump right in and start writing code, you need to understand that there are three different levels of
concurrency. The first level is the minimum concurrency operations. These are operations which cannot run concurrently
with other operations. Most of these operations are non-floating-point format operations. The minimum concurrency

operations are listed in Table 4.

Table 4 - Minimum Concurrency

Instructon Operand Syntax Operand Format
FIIOVE =eax, FPn EwW,LFP

FPin, <eax B W,

FPm, <ea= F

FPin, <eax F

-eax, FPor L

FPor, <ea= L
FHOVECE #coc, FPo iy
FHOVEH <>, =<list= L=

=eax, Dn =

<lizt=, <ea> LX

L, <ea= e
ETST FPin E.,%,L.P
Femonodic= <eax, FPn EWLPE
Fedvadic= =eax, FPn EW,LPE
F3IHCOS <eax, FPo.FPz BE,W,LFP

-
-
-~

The next level of operations are the operations which can share some of the FPU time with other operations, these are the
partial concurrency operations and they are listed in Table 5. The partial concurrency operations include most of the

floating-point format operations.
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Insttncton Operand Svyotax Operand Format
FTST TR a2 DX

FPim el
Femonodic= =eax, FPn 2D.X

FPim, FPi
Fedwvadic> =eax, FFn 2D.X

FPm, FPn
FSINCOS <gax, FPo:FPs 2D X

FPim, FPc.FP= el

Table 5 - Partial Concurrency

The highest level of concurrency is the fully-concurrent operations which are listed in Table 6. The only operations which
can run fully concurrently are the FMOVE operations. There are certain guidelines which you need to follow in order to
achieve full concurrency, these guidelines are outlined in Table 6. The most important rule to follow is to avoid register
conflict. There are basically two type of register conflict. The first is when the destination register of an operation is the
source register of the following operation, and the following operation is a fully-concurrent operation:

FADD . <fmt> <ea>, FPO
FMOVE . <fmt> FPO, <ea> :FPO conflicts

The second type of register conflict occurs when the destination register of an operation is the destination register of the
following operation, and the following operation is a fully-concurrent operation:

FADD . <fmt> <ea>, FPO
FMOVE . <fmt> <ea>, FPO ;:FPO conflicts
where <fmt> is S, D, or X

No Concur Partial Concur

Ho Partial
Insttncton SYLiax Format Concumaency  CONCUITERCY
FHOVE FPm, FPn el a betf
FHOVE <ga=, FPn gD bef
FIIOVE FPin, =<ea= 2D a bd.e
FHOYE FPim, <ea= et a b

QO

: Register conflict of FPm with preceding instruction’s destination FP data register

b: NAN, unnormalized or denormalized data type

(]

: Rounding Precision in FPCR set to Single or Double

d: INEX2 bit in FPCR EXC byte is enabled

e: An overflow or underflow occurs

f: Register conflict of FPn with preceding instruction's destination FP data register

Table 6-Fully Concurrent

The next most important optimization rule is to unroll loops. If you properly unroll your loops, than you will be able to
eliminate more of the register conflicts. Most loops are designed to do one iteration of a set of instructions. This means that

each iteration of the loop is accomplishing one iteration of the set of instructions. If you unroll the loop, then each
iteration of the loop can accomplish two or more iterations of the set of instructions. Figures 4 and 5 demonstrate how to
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unroll your code. The second version (Figure 5) is 25-30 percent faster than the first.

MOVE . L #count,DO
LOOPTOP FMOVE . X <ea Xi>, FP3
FNEG.X FP3

FETOX.X FP3
FMOVE . X FP3,FP4 ;conflict

FSUB.X <ea Xi>, FP3

FNEG . X FP4

FSUB._X #1, FP4

FDIV.X FP4,FP3

FNEG.X FP3

FADD.X <ea_Xi>,FP3

FMOVE . X FP3, <ea Xi> ;conflict
DBRA DO, LOOPTOP

Figure 4 - Newton-Raphson's Method Xi+1 = Xi + f(Xi)/f'(Xi) : f(X) = exp(-x) - x

MOVE.L #count,DO
FMOVE.D <ea Xi>, FPO

LOOPTOP FNEG FPO,FP3
FETOX FP3
FMOVE FP3,FP4 ;conflict
FSuB FPO,FP3
FNEG FP4
FSUB.X #1,FP4
FDIV FP4,FP3
FSUB FP3,FPO
DBRA DO, LOOPTOP
FMOVE.D FPO, <ea Xi>

Figure 5 - Newton-Raphson's Method (resister-based, unrolled) Xi+1 = Xi + f(Xi)/f'(Xi) : f(X) = exp(-x) - X
Back to top

Conclusion

The last comment which | have to make is for code which is to run during interrupt time. If you plan to use the math
coprocessor during interrupt time, you must call FSAVE at the start of your routine and FRESTORE at the end of your
routine. If you do not make these calls and you interrupt another program which is using the FPU, then the other program
will not find the FPU in the same state that it was in before the interrupt, and this causes certain death. For more
information, refer to Technical Note #235, Cooperating with the Coprocessor.

If you made it this far, and you are still awake, then you should be already to start writing assembly routines for your

code which will speed up your math-intensive programs. Just remember that before you try to use the code, you need to
check hasFPU with a call to _SySEnvirons, and if the machine does not have an FPU, then use an alternate SANE version

of the math code.

Back to top
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