
Signals Page: 1

NOTE: This Technical Note has been retired. Please see the Technical Notes page for current documentation.

CONTENTS

Introduction

"Gotcha" summary

References

Downloadables

[Aug 01 1986]

Introduction

Signals are a form of intra-program interrupt which can greatly aid clean, inexpensive error trapping in stack frame
intensive languages. A program may invoke the Signal procedure and immediately return to the last invocation of
CatchSignal, including the complete stack frame state at that point.

Signals allow a program to leave off execution at one point and return control to a convenient error trap location,
regardless of how many levels of procedure nesting are in between.

The example is provided with a Pascal interface, but it is easily adapted to other languages. The only qualification is that the
language must bracket its procedures (or functions) with LINK and UNLK instructions. This will allow the signal code to
clean up at procedure exit time by removing CatchSignal entries from its internal queue.

Note:
Only procedures and/or functions that call CatchSignal need to be bracketed with LINK and UNLK
instructions.

Warning:
InitSignals must be called from the main program so that A6 can be set up properly.

Note that there is no limit to the number of local CatchSignals which may occur within a single routine. Only the last
one executed will apply, of course, unless you call FreeSignal. FreeSignal will "pop" off the last CatchSignal. If
you attempt to Signal with no CatchSignals pending, Signal will halt the program with a debugger trap.

InitSignals creates a small relocatable block in the application heap to hold the signal queue. If CatchSignal is
unable to expand this block (which it does 5 elements at a time), then it will signal back to the last successful
CatchSignal with code = 200. A Signal(0) acts as a NOP, so you may pass OSErrs, for instance, after making File
System type calls, and, if the OSErr is equal to NoErr, nothing will happen.

CatchSignal may not be used in an expression if the stack is used to evaluate that expression. For example, you can't
write:

Signals Page: 2

Back to top

"Gotcha" summary

1. Routines which call CatchSignal must have stack frames.
2. InitSignals must be called from the outermost (main) level.
3. Don't put the CatchSignal function in an expression. Assign the result to an INTEGER variable; i.e.

i:=CatchSignal.
4. It's safest to call a procedure to do the processing after CatchSignal returns. See the Pascal example

TestSignals below. This will prevent the use of a variable which may be held in a register.

Below are three separate source files. First is the Pascal interface to the signaling unit, then the assembly language which
implements it in MPW Assembler format. Finally, there is an example program which demonstrates the use of the routines
in the unit.

{File ErrSignal.p}
UNIT ErrSignal;

INTERFACE

{Call this right after your other initializations (InitGraf, etc.)--
in other words as early as you can in the application}
PROCEDURE InitSignals;

{Until the procedure which encloses this call returns, it will catch
subsequent Signal calls, returning the code passed to Signal. When
CatchSignal is encountered initially, it returns a code of zero. These
calls may "nest"; i.e. you may have multiple CatchSignals in one procedure.
Each nested CatchSignal call uses 12 bytes of heap space }
FUNCTION CatchSignal:INTEGER;

{This undoes the effect of the last CatchSignal. A Signal will then invoke
the CatchSignal prior to the last one.}
PROCEDURE FreeSignal;

{Returns control to the point of the last CatchSignal. The program will then behave
as though that CatchSignal had returned with the code parameter supplied to Signal.}
PROCEDURE Signal(code:INTEGER);

END.

Here's the assembly source for the routines themselves:

; ErrSignal code w. InitSignal, CatchSignal,FreeSignal, Signal
; defined
;
; Version 1.0 by Rick Blair

 PRINT OFF
 INCLUDE 'Traps.a'
 INCLUDE 'ToolEqu.a'
 INCLUDE 'QuickEqu.a'
 INCLUDE 'SysEqu.a'
 PRINT ON

CatchSigErr EQU 200 ;"insufficient heap" message
SigChunks EQU 5 ;number of elements to expand by
FrameRet EQU 4 ;return addr. for frame (off A6)
SigBigA6 EQU $FFFFFFFF ;maximum positive A6 value

Signals Page: 3

; A template in MPW Assembler describes the layout of a collection of data
; without actually allocating any memory space. A template definition starts
; with a RECORD directive and ends with an ENDR directive.

; To illustrate how the template type feature works, the following template
; is declared and used. By using this, the assembler source approximates very
; closely Pascal source for referencing the corresponding information.

;template for our table elements
SigElement RECORD 0 ;the zero is the template origin
SigSP DS.L 1 ;the SP at the CatchSignal--(DS.L just like EQU)
SigRetAddr DS.L 1 ;the address where the CatchSignal returned
SigFRet DS.L 1 ;return addr. for encl. procedure
SigElSize EQU * ;just like EQU 12
 ENDR

; The global data used by these routines follows. It is in the form of a
; RECORD, but, unlike above, no origin is specified, which means that memory
; space *will* be allocated.
; This data is referenced through a WITH statement at the beginning of the
; procs that need to get at this data. Since the Assembler knows when it is
; referencing data in a data module (since they must be declared before they
; are accessed), and since such data can only be accessed based on A5, there
; is no need to explicitly specify A5 in any code which references the data
; (unless indexing is used). Thus, in this program we have omitted all A5
; references when referencing the data.

SigGlobals RECORD ;no origin means this is a data record
 ;not a template(as above)
SigEnd DS.L 1 ;current end of table
SigNow DS.L 1 ;the MRU element
SigHandle DC.L 0 ;handle to the table
 ENDR
InitSignals PROC EXPORT ;PROCEDURE InitSignals;
 IMPORT CatchSignal
 WITH SigElement,SigGlobals

;the above statement makes the template SigElement and the global data
;record SigGlobals available to this procedure
 MOVE.L #SigChunks*SigElSize,D0
 _NewHandle ;try to get a table
 BNE.S forgetit ;we couldn't get that!?

 MOVE.L A0,SigHandle ;save it
 MOVE.L #-SigElSize,SigNow ;point "now" before start
 MOVE.L #SigChunks*SigElSize,SigEnd ;save the end
 MOVE.L #SigBigA6,A6 ;make A6 valid for Signal
forgetit RTS
 ENDP

CatchSignal PROC EXPORT ;FUNCTION CatchSignal:INTEGER;
 IMPORT SiggySetup,Signal,SigDeath
 WITH SigElement,SigGlobals
 MOVE.L (SP)+,A1 ;grab return address
 MOVE.L SigHandle,D0 ;handle to table
 BEQ SigDeath ;if NIL then croak
 MOVE.L D0,A0 ;put handle in A-register
 MOVE.L SigNow,D0
 ADD.L #SigElSize,D0
 MOVE.L D0,SigNow ;save new position
 CMP.L SigEnd,D0 ;have we reached the end?

Signals Page: 4

 BNE.S catchit ;no, proceed
 ADD.L #SigChunks*SigElSize,D0 ;we'll try to expand
 MOVE.L D0,SigEnd save new (potential) end
 _SetHandleSize
 BEQ.S @0 ;jump around if it worked!

;signals, we use 'em ourselves
 MOVE.L SigNow,SigEnd ;restore old ending offset
 MOVE.L #SigElSize,D0
 SUB.L D0,SigNow ;ditto for current position
 MOVE.W #catchSigErr,(SP) ;we'll signal a "couldn't
 ; catch" error
 JSR Signal ;never returns of course

@0 MOVE.L SigNow,D0

catchit MOVE.L (A0),A0 ;deref.
 ADD.L D0,A0 ;point to new entry
 MOVE.L SP,SigSP(A0) ;save SP in entry
 MOVE.L A1,SigRetAddr(A0) ;save return address there
 CMP.L #SigBigA6,A6 ;are we at the outer level?
 BEQ.S @0 ;yes, no frame or cleanup needed
 MOVE.L FrameRet(A6),SigFRet(A0);save old frame return
 ; address
 LEA SiggyPop,A0
 MOVE.L A0,FrameRet(A6) ;set cleanup code address
@0 CLR.W (SP) ;no error code (before its time)
 JMP (A1) ;done setting the trap

SiggyPop JSR SiggySetup ;get pointer to element
 MOVE.L SigFRet(A0),A0 ;get proc's real return address
 SUB.L #SigElSize,D0
 MOVE.L D0,SigNow ;"pop" the entry
 JMP (A0) ;gone
 ENDP

FreeSignal PROC EXPORT ;PROCEDURE FreeSignal;
 IMPORT SiggySetup
 WITH SigElement,SigGlobals
 JSR SiggySetup ;get pointer to current entry
 MOVE.L SigFRet(A0),FrameRet(A6) ;"pop" cleanup code
 SUB.L #SigElSize,D0
 MOVE.L D0,SigNow ;"pop" the entry
 RTS
 ENDP

Signal PROC EXPORT ;PROCEDURE Signal(code:INTEGER);
 EXPORT SiggySetup,SigDeath
 WITH SigElement,SigGlobals
 MOVE.W 4(SP),D1 ;get code
 BNE.S @0 ;process the signal if code is non-zero
 MOVE.L (SP),A0 ;save return address
 ADDQ.L #6,SP ;adjust stack pointer
 JMP (A0) ;return to caller(code was 0)

@0 JSR SiggySetup ;get pointer to entry
 BRA.S SigLoop1

SigLoop UNLK A6 ;unlink stack by one frame
SigLoop1 CMP.L SigSP(A0),A6 ;is A6 beyond the saved stack?
 BLO.S SigLoop ;yes, keep unlinking
 MOVE.L SigSP(A0),SP ;bring back our SP
 MOVE.L SigRetAddr(A0),A0 ;get return address

Signals Page: 5

 MOVE.W D1,(SP) ;return code to CatchSignal
 JMP (A0) ;Houston, boost the Signal!
 ;(or Hooston if you're from the Negative Zone)

SiggySetup MOVE.L SigHandle,A0
 MOVE.L (A0),A0 ;deref.
 MOVE.L A0,D0 ;to set CCR
 BEQ.S SigDeath ;nil handle means trouble
 MOVE.L SigNow,D0 ;grab table offset to entry
 BMI.S SigDeath ;if no entries then give up
 ADD.L D0,A0 ;point to current element
 RTS

SigDeath _Debugger ;a signal sans catch is bad news

 ENDP

Now for the example Pascal program:

PROGRAM TestSignals;
USES ErrSignal;

VAR i:INTEGER;

PROCEDURE DoCatch(s:STR255; code:INTEGER);
BEGIN
 IF code<>0 THEN BEGIN
 Writeln(s,code);
 Exit(TestSignals);
 END;
END; {DoCatch}

PROCEDURE Easy;
 PROCEDURE Never;
 PROCEDURE DoCatch(s:STR255; code:INTEGER);
 BEGIN
 IF code<>0 THEN BEGIN
 Writeln(s,code);
 Exit(Never);
 END;
 END; {DoCatch}

 BEGIN {Never}
 i:=CatchSignal;
 DoCatch('Signal caught from Never, code = ', i);

 i:=CatchSignal;
 IF i<>0 THEN DoCatch('Should never get here!',i);

 FreeSignal; {"free" the last CatchSignal}
 Signal(7); {Signal a 7 to the last CatchSignal}
 END;{Never}
BEGIN {Easy}
Never;
Signal(69); {this won't be caught in Never}
END;{Easy} {all local CatchSignals are freed when a procedure exits.}

BEGIN {PROGRAM}
InitSignals; {You must call this early on!}

{catch Signals not otherwise caught by the program}
i:=CatchSignal;

Signals Page: 6

IF i<>0 THEN
 DoCatch('Signal caught from main, code = ',i);

Easy;

The example program produces the following two lines of output:

Signal caught from Never, code = 7

Signal caught from main, code = 69

Back to top

References

Using Assembly Language (Mixing Pascal & Assembly)

Back to top

Downloadables

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

