
CONTENTS

Issuing Commands
Getting an answer
Dealing with Text
Dealing with Files
Other Concerns

Downloadables

This Technote describes basic techniques
and answers common questions for
AppleScript's command,
which was introduce in AppleScript 1.8.

do shell script

[Jan 27 2003]

Issuing Commands

Q: My command works fine in Terminal, but when I try to use it in , I get an error
about "command not found."

do shell script

A: There are two possibilities: first, always uses the shell, not your default shell, which Terminal uses.
(The default shell for new users is , so unless you've changed it, that's what it is.) While some commands are the same
between shells, others are not, and you may have used one of them. If you write your scripts in Terminal
first, always use . You can start by typing " "; type " " to get back to your normal shell.

do shell script sh
csh

do shell script
sh sh /bin/sh exit

Second, when you use just a command name, the shell uses a list of directories (known as your) to try and find the
complete path to the command. For security and portability reasons, uses its own list, which may not match
the one your default shell uses. Use the full path to the command, e.g., instead of just . To find
the full path in Terminal, say " ", e.g., " "; to see the list of places
will search, say " ".

PATH
do shell script
/sbin/ifconfig ifconfig

which command-name which ifconfig do shell script
do shell script "echo $PATH"

Q: Why doesn't work exactly like Terminal?do shell script
A: For two reasons: first, it helps guarantee that scripts will run on different systems without modification. If

 used your default shell or , your script would probably break if you gave it to someone else. Second, it matches
shell escape mechanisms in other languages, such as Perl.

do shell
script PATH

Q: How do I run my command with a shell other than ?sh
A: Include the shell you want to use explicitly in the command. There are a variety of ways to pass commands to your shell
of choice. You could write the command to a file and then execute the file like this:

do shell script "/bin/tcsh my-command-file-path"

Some shells will accept a script as a parameter, like this:

do shell script "/bin/tcsh -c 'my-command'"

And most will accept a script from standard input, like this:

do shell script "echo my-command | /bin/tcsh"

When in doubt, read the documentation for your preferred shell. When you put the command in the string,
you will probably have to the command, or will interpret special characters in the command.

do shell script
quote sh

Q: How can I use more than one command in a single ? For example, I want to to some
directory and then do some work, but it doesn't remember the working directory from one invocation
to the next.

do shell script cd

A: Each invocation of uses a new shell process, so state such as changes to variables and the working
directory is not saved from one to the next. To do several commands in a single invocation, separate the commands with

do shell script

semicolons like this:

do shell script "cd ~/Documents; ls"
-- result: "Welcome.txt"

Due to a bug in how authentication works, this does not work correctly with !– see below.with administrator privileges

Q: How do I get administrator privileges for a command?
A: Use the and parameters like this:administrator privileges password

do shell script "command" password "mypassword" with administrator privileges

If you omit the parameter, will ask for a password when it runs.password do shell script

Bear in mind that administrator privileges allow you to change any file anywhere in the system. You can render your
system unbootable or even erase the entire disk with a few well-placed commands, so exercise caution. Better yet, don't
use administrator privileges unless you absolutely have to. Unless you are doing system-level development, you should
never need to change anything in !– changing should suffice./System /Library

Because of a bug, does not work correctly with multiple commands. You must turn your command
into a single invocation of , like this:

administrator privileges
sh

set normal_command to "command1; command2"
do shell script "sh -c " & quoted form of normal_command with administrator privileges

Back to top

Getting an answer

Q: How does get the result?do shell script
A: Shell commands can write their results to one of two output streams: standard output and standard error. Standard
output is for normal output, while standard error is for error messages and diagnostics. Assuming your script completes
successfully!– if it doesn't, see the next question!– the result is whatever text was printed to standard output, possibly
with some modifications.

By default, transforms all the line endings in the result to Mac-style carriage returns (or
), and removes a single trailing line ending, if one exists. This means, for example, that the result of "

" is simply , not the that actually returned. You can suppress both of these
behaviors by adding the parameter. For dealing with non-ASCII data, see .

do shell script "\r" ASCII
character 13 do
shell script "echo foo" "foo" "foo\n" echo

without altering line endings Dealing With Text

Q: How does report errors?do shell script
A: All shell commands return an integer status when they finish: zero means success; anything else means failure. If the
script exits with a non-zero status, throws an AppleScript error with the status as the error number. (The
man page for a command should tell you what status codes it can return. Most commands simply use 1 for all errors.) If the
script printed something to the standard error stream, that text becomes the error message in AppleScript. If there was no
error text, the normal output (if any) is used as the error message.

do shell script

Q: When I run my command in Terminal, I get a bunch of output, but when using , some
of it is missing.

do shell script

A: When running in Terminal, standard output and standard error are both sent to the same place, so it's difficult to tell
them apart. , on the other hand, keeps the two streams separate. If you want to combine them, follow the
command with like this:

do shell script
2>&1

do shell script "command 2>&1"

For more details, see the man page under "Redirections."sh

Back to top

Dealing With Text

Q: My command doesn't work right when a parameter has spaces or certain punctuation!– parentheses,
$, *, etc.
A: Because the shell separates parameters with spaces, and some punctuation marks have special meanings, you must take
special steps to make the shell treat your string as one parameter with literal spaces, parentheses, etc. This is called
"quoting," and there are several ways to do it, but the simplest and most effective is to use the property of
strings.

quoted form

For example, consider this (buggy) handler, which takes a string and appends it to a file named "stuff" in your home
directory:

to append_message(s)
 do shell script "echo " & s & " >> ~/stuff"
end append_message

It works fine for most strings, but if we call it with a string like "$100", the string that ends up in the file is "00",
because the shell thinks that "$1" is a variable whose value is an empty string. (Variables in begin with a dollar sign.)
To fix the script, change it like this:

sh

do shell script "echo " & quoted form of s & " >> ~/stuff"

The property gives the string in a form that is safe from further interpretation by the shell, no matter what
its contents are. For more details on quoting, see the man page under "Quoting."

quoted form
sh

Q: I need to put double quotes and backslashes in my shell command, but AppleScript gives me a syntax
error when I try.
A: Strings in AppleScript go from an opening double quote to a closing double quote. To put a literal double quote in your
string you must "escape" it with a backslash character, like this:

"a \"quote\" mark"

The backslash means "treat the next character specially." This means that getting a literal backslash requires two
backslashes, like this:

"a back\\slash"

Putting this all together, you might have something like this:

set s to "this is a test."
do shell script "echo " & quoted form of s & " | perl -n -e 'print \"\\U$_\"'"
-- result: "THIS IS A TEST."

Despite all the extra backslashes in the script, the actual string passed to perl's -e option is

print "\U$_"

Q: Whenever my shell script returns a double quote or backslash, it comes out with an extra
backslash in front of it.
A: The result window shows you the result in "source" form, such that you could paste it into a script and compile it. This
means that string results have quotes around them, and special characters, such as double quotes and backslashes, are
escaped as described above. The extra backslash is not really part of the string, it's merely how it's displayed. If you pass
the string to or write it to a file, you'll see it without the extra backslashes.display dialog

Q: What does do with non-ASCII text (accented characters, Japanese, etc.)?do shell script
A: As of AppleScript 1.8.3, handles all its input and output as UTF-8. This works correctly with file names
and as well as possible with the commands themselves. (Before that, it used the user's primary text encoding, which made
it extremely difficult to deal with files that had non-ASCII characters in their names.)

do shell script

There is currently no support for encodings other than UTF-8, and if a command produces non-ASCII characters that are
not valid UTF-8 (e.g., -ing a text file saved with the MacRoman encoding) will return an error that it
"can't make some data into the expected type." Workarounds include writing the output to a file and then reading it using
AppleScript's command or piping through .

cat do shell script

read vis

Realize that most shell commands are completely ignorant of Unicode and UTF-8. UTF-8 looks like ASCII for ASCII
characters!– for example, is the byte 0x41 in both ASCII and UTF-8!– but any non-ASCII character is represented as
a sequence of bytes. As far as the shell commands are concerned, however, one byte equals one character, and they make no
attempt to interpret anything outside the ASCII range. This means that they will preserve UTF-8 sequences and can do exact
byte-for-byte matches: for example, will produce a trademark symbol, and will find every line with
a lowercase alpha. However, they cannot intelligently sort, alter, or compare UTF-8 sequences: for example, character-
set matching commands like or the construct in will attempt to match each byte of
the sequence independently, will sort accented characters out of order, and or will not match
against . Perl is a notable exception to this mess, but you will probably need to add to your Perl script. See the

 man page for more details.

" "A

echo "™" grep "α"

tr [] sed
sort grep -i find -iname " "é

" "É use utf8
perlunicode

Q: What are the rules for line endings?

A: There are two different line ending conventions in Mac OS X: Mac-style (lines end with return: or
) and Unix-style (lines end with line-feed: or). Shell commands typically only handle Unix-

style line endings, so giving them Mac-style text will produce less-than-useful results. For example, would consider
the entire input to have only one line, so you would get at most one match.

"\r" ASCII character
13 "\n" ASCII character 10

grep

If your data is coming from AppleScript, you can transform the line endings there or generate line feeds in the first
place!– or both yield a line feed. If your data is coming from a file, you can make the shell script
transform the line endings by using . For example, the following will find lines that contain "something" in any plain
text file. (The " " idiom is discussed under :)

"\n" ASCII character 10
tr

quoted form of POSIX path of f Dealing With Files

set f to choose file
do shell script "tr '\\r' '\\n' < " & quoted form of POSIX path of f & " | grep
something"

AppleScript itself is line ending-agnostic!– the element of and objects considers Mac, Unix,
and Windows-style line endings to be equivalent. There is generally no need to use to get the lines of
Unix-style text; or will work just as well. (However, if you wanted to consider Unix-
style line endings, would be the proper solution. Also, prior to AppleScript 1.9.1,
objects only considered return and the Unicode paragraph-separator character to be paragraph breaks.)

paragraph string Unicode text
text item delimiters

paragraph n every paragraph only
text item delimiters Unicode text

Back to top

Dealing With Files

Q: I've got an AppleScript or object; how do I pass it to a shell command?f i l e a l i a s
A: The shell specifies files using POSIX path names, which are strings with slashes separating the
path components (e.g.,). To get the POSIX path of an AppleScript or object, use the

property. (However, see the following question.) For example:
"/folder1/folder2/file" fi le alias

POSIX path

POSIX path of file "HD:Users:me:Documents:Welcome.txt"
-- result: "/Users/me/Documents/Welcome.txt"

To go the other way!– say your shell command returns a POSIX path as a result!– use the object.
with a path name evaluates to a normal object that you can then pass to other AppleScript commands. For example:

POSIX file POSIX file
fi le

set p to do shell script "echo ~"
POSIX file p
-- result: file "HD:Users:me:"

Q: doesn't work right if the file has certain characters in its name!– spaces, parentheses,
$, *, etc.

POSIX path

A: This is a special case of : you must quote the path to make the shell interpret all the punctuation literally. To do
this, use the of the path. For example, this will work with any file, no matter what its name is:

quoting
quoted form

choose file
do shell script "ls -l " & quoted form of the POSIX path of the result
-- result: "-rw-r--r-- 1 me unknown 1 Oct 25 17:48 Look! a file!"

Q: Why doesn't just quote everything for me?POSIX path
A: For two reasons: first, there are uses for POSIX paths that have nothing to do with shell parameters, and quoting the path
would be wrong in such cases. Second, is useful for things other than file paths. Therefore, there are two
orthogonal operations instead of one combined one.

quoted form

Back to top

Other Concerns

Q: How do I control an interactive tool like or with ?ftp telnet do shell script
A: The short answer is that you don't. is designed to start the command and then let it run with no interaction
until it completes, much like the backquote operator in most Unix shells or the call in awk and Perl.

do shell script
system

However, there are ways around this. You can script Terminal and send a series of commands to the same window (though
this only works in Mac OS X 10.2 and later), or you could use a Unix package designed for scripting interactive tools, such
as . Also, many interactive commands have non-interactive equivalents. For example, can substitute for
in most cases.

expect curl ftp

Q: My script will produce output over a long time. How do I read the results as they come in?
A: Again, the short answer is that you don't!– will not return until the command is done. What you can do, do shell script

however, is to put the command into the background (see the next question), send its output to a file, and then read the file
as it fills up.

Q: I want to start a background server process; how do I make not wait until the
command completes?

do shell script

A: Use " ". will return immediately with no result and your
AppleScript script will be running in parallel with your shell script. The shell script's output will go into ; if
you don't care about the output, use " ". There is no direct support for getting or manipulating the background
process from AppleScript.

do shell script "command > file_path 2>&1 &" do shell script
file_path

/dev/null

Q: I'm trying to use , but it fails saying "can't get terminal attributes" or "error opening
terminal: unknown."

top

A: in its default mode does all sorts of clever things to create a dynamically updating display, none of which work if the
output device does not support cursor control, as does not. However, has an option that makes it run in
logging mode, which works with file-like devices like . Use instead, or see the man page for
more options.

top
do shell script top

do shell script top -l1 top

This same problem will apply to any other command that assumes the presence of a terminal. Fortunately, most of them
are interactive front ends to more primitive commands that do not assume a terminal.

Q: What's the default working directory for commands?do shell script
A: inherits the working directory of its parent process. For most applications, such as Script Editor, this is
the working directory of its parent process, the Finder, which is "/". For , it's the working directory of the
shell when you launched . You should not rely on the default working directory being anything in particular. If
you need the working directory to be someplace specific, set it to that yourself.

do shell script
osascript

osascript

Back to top

Downloadables

Acrobat version of this Note (152K) Download

Back to top

Technical Notes by | | |
 | | |

Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

