
CONTENTS

Introduction

Features of the SystemUIMode API

Replacing the Finder

Enabling the Open Firmware Password

Top 20 Commonly asked Kiosk Questions

Summary

References

Downloadables

Developers working in certain markets need
to add kiosk features to their applications.
That is the ability to lock the user into a
certain application or disable certain
functionality normally available in the
operating system.

This technote shows several techniques for
building kiosks or incorporating kiosk-like
behavior into an application. This technote
focuses on Mac OS X 10.2 and later because
that system introduced key APIs to support
kiosk development. The text describes which
system versions are required for each
technique.

[Feb 24 2003]

The techniques discussed in this technote is intended only for developers who are working with a vertical
market which requires kiosk behavior. These techniques should not be used by developers targeting the mass
market of regular Mac OS X users.

IMPORTANT:

Introduction
Developers working in vertical markets (for example Education) have been creating kiosks or adding kiosk behavior to
their applications for quite some time. Specifically, this means the ability to lock the user into a certain application or
disable certain operating system functionality normally available. Developers requiring kiosk behavior on computer
systems have often been forced to use "jury-rigged" solutions which often were quite hard to maintain in the long term.
With the advent of Mac OS X 10.2, creating kiosks and adding kiosk functionality to an existing application has become much
easier to implement and support.

This technote will cover several techniques required by kiosk developers as well as answer commonly asked questions by
developers of kiosk solutions.

Features of the SystemUIMode API
In Mac OS X 10.2 two important kiosk-related APIs were added to the system and

. Overall the SystemUIMode API provides the following abilities:
SetSystemUIMode

GetSystemUIMode

control Dock show/hide behavior

2/24/03 7:13 PMTN2062 - Guide to Creating Kiosks on Mac OS X

Page 1 of 13file://localhost/Volumes/TNQA/webdata/master/technotes/tn2002/tn2062.html

control menu bar show/hide behavior

control which Apple menu elements are active

disable process switching through Command-Tab and Command-Shift-Tab keyboard equivalents

disable Force Quit window available via Command-Option-Escape key equivalents or via the Apple menu

disable the PowerKey window which is displayed when the Power button is pressed

Previous to Mac OS X 10.2 and the SystemUIMode API, getting much of this behavior on Mac OS X was not possible or was
very difficult to accomplish.

The API lets you specify the user interface mode for the calling application as well as additional user
interface mode options for particular features you want to enable. The functions prototype is listed below as
well as i n within the framework.

SetSystemUIMode

MacApplication.h HIToolbox

OSStatus SetSystemUIMode(
 SystemUIMode inMode,
 SystemUIOptions inOptions);

When controlling or disabling features of Mac OS X system using the
. That is, if another application

becomes frontmost after is called, the user interface mode requested will no longer be in effect. Also,
if the application which called does at some later time become frontmost again, the user interface
mode previously established will come back into effect.

SetSystemUIMode requested behaviors are
only in effect while the process which called SetSystemUIMode is frontmost

SetSystemUIMode
SetSystemUIMode

Available User Interface Modes

The table below outlines the user interface modes which you would pass as
the parameter to . Each mode is given along with discussion of if its effect on the system.inMode SetSystemUIMode

SystemUIMode Descr ipt ion

kUIModeNormal This is the normal or default mode for all applications on Mac OS X.
In this mode, all standard system UI elements are enabled and
visible.

kUIModeContentSuppressed In this mode, system user interface elements which cover the
content area of the screen (the area other than the menubar) are
hidden. However, these elements may automatically show themselves
in response to mouse movements or other user activity. An example
of this is the dock will be hidden in this mode but will automatically
show itself when the mouse enters into the Dock's auto-show region.

kUIModeContentHidden In this mode, system user interface elements which cover the
content area of the screen are hidden. Unlike

, in this mode user interface
elements will not automatically show themselves.
kUIModeContentSuppressed

kUIModeAllHidden In this mode, all system user interface elements, including the
menubar, are hidden. System user interface elements will not
automatically show themselves in this mode.

2/24/03 7:13 PMTN2062 - Guide to Creating Kiosks on Mac OS X

Page 2 of 13file://localhost/Volumes/TNQA/webdata/master/technotes/tn2002/tn2062.html

As of the publishing of this technote (Mac OS X 10.2.x) the and
 modes are not recognized by the Dock. This is due to a bug in Mac OS X (r.

2973242). The end result
i s that, i n modes and , the Dock operates the
same as in the . This problem will be fixed in a future release of Mac OS X.

IMPORTANT:
kUIModeContentHidden

kUIModeContentSuppressed

kUIModeContentHidden kUIModeContentSuppressed
kUIModeNormalMode

Available User Interface Options

Along with the user interface modes listed above, you can also specify . allow
enabling or disabling of specific features while the user interface mode is in effect. The available are
listed in the table below. Some are only valid for certain user interface modes as indicated. The
constants given in the table below are what you would pass as the argument to API. As
mentioned earlier the and specified are

.

SystemUIOptions SystemUIOptions
SystemUIOptions

SystemUIOptions
inOptions SetSystemUIMode

SystemUIMode SystemUIOptions only in effect while the process
which called is frontmostSetSystemUIMode

SystemUIOption Descr ipt ion Valid SystemUIModes

kUIOptionAutoShowMenuBar The menubar will
automatically show
itself when the user
moves the mouse into
the screen area that
would ordinarily be
occupied by the menubar.

.kUIModeAllHidden

kUIOptionDisableAppleMenu Disables all items in the
Apple menu.

All user interface modes.

kUIOptionDisableProcessSwitch Disables process
switching using
Command-Tab and
Command-Shift-Tab
keyboard equivalents.
Window rotation keys
selected in the keyboard
preference will also be
disabled.

,

, and .

kUIModeContentHidden
kUIModeContentSuppressed

kUIModeAllHidden

kUIOptionDisableForceQuit Disables the Force Quit
window normally
available via Command-
Option-Escape keyboard
equivalent or the Force
Quit menu item in the
Apple menu.

,

, and .

kUIModeContentHidden
kUIModeContentSuppressed

kUIModeAllHidden

kUIOptionDisableSessionTerminate Disables the Power key
window that comes up
when the power key is
pressed. Also disables
Restart, Shut Down, and
Log Out menu items in
the Apple menu.

,

, and .

kUIModeContentHidden
kUIModeContentSuppressed

kUIModeAllHidden

2/24/03 7:13 PMTN2062 - Guide to Creating Kiosks on Mac OS X

Page 3 of 13file://localhost/Volumes/TNQA/webdata/master/technotes/tn2002/tn2062.html

Note If you attempt to use a user interface option which isn't valid with a particular user interface mode then the user
interface option passed will be ignored.

In the case of where you want to use multiple together you can bitwise OR the
constants. An example of calling the with multiple is shown below. In the
example the Dock and menu bar will be hidden. Also, Command-Tab and Command-Shift-Tab keyboard equivalents along
with the Force Quit window will be disabled.

SystemUIOptions SystemUIOptions
SetSystemUIMode SystemUIOptions

error = SetSystemUIMode(kUIModeAllHidden,
 kUIOptionDisableAppleMenu
 | kUIOptionDisableProcessSwitch
 | kUIOptionDisableForceQuit);

Note you can have multiple as shown above but you can only have selected.SystemUIOptions one SystemUIMode

A demonstration application is available which demonstrates the abilities of the
API. A screen shot of the demonstration application is shown below. Select various and

 to see how they affect your system. Note the application only works in OS X 10.2 and later.

UsingSystemUIMode SetSystemUIMode
SystemUIModes

SystemUIOptions

. Screen shot of demo applicationFigure 1

Using the call various behaviors of the system can be disabled. A kiosk developer using a combination
of and should be able to obtain a configuration which suits their needs.

SetSystemUIMode
SystemUIModes SystemUIOptions

Back to top

2/24/03 7:13 PMTN2062 - Guide to Creating Kiosks on Mac OS X

Page 4 of 13file://localhost/Volumes/TNQA/webdata/master/technotes/tn2002/tn2062.html

Replacing the Finder
Since Mac OS X 10.0.x the system has supported the ability to launch programs other than Finder as the main system
application upon login. This feature offers kiosk developers the ability of replacing the Finder application with another
application. For example, a kiosk developer could launch their kiosk application as the main system application instead of
Finder at login. Any application launched as the Finder application also gets the added benefit of being automatically
relaunched if the application should quit unexpectedly (quit with a non-zero error code). The technique used to replace the
Finder is discussed in detail in the section of .Replacing the Finder Inside Mac OS X: System Overview

A installer can programatically replace the Finder by calling and then the command-line tool using
the techniques . More information on the call can be found by typing

 into . Note you only have to set the Finder setting and the preferences will be retained for the
system even after a reboot.

system defaults
described in System Overview system "man

system" Terminal once

An installer will be replacing the individual user's Finder setting if is called under the logged in user. On the
other hand, if is called as root then the Finder setting for all users will be set. An individual user's Finder
setting will override the setting for all users if both have been set.

defaults
defaults

Back to top

Enabling Open Firmware Password
The Open Firmware password is a security feature available on modern Macintosh systems. If you enable the Open
Firmware password, the computer will execute a secure boot sequence. Specifically, enabling the Open Firmware password
prevents users from starting up the computer from a volume other than the chosen as the startup disk (chosen in the
Startup Disk preference panel within the System Preferences.) Also, enabling the Open Firmware Password prevents users
from booting into single user mode using Command-S key combination at boot time.

There is currently no public programmatic solution to setting the Open Firmware password (r. 3075615). This means
this setting can not be set by an installer. However, an administrator can enable the Open Firmware password using the
"Open Firmware Password" application located at: http://www.apple.com/downloads/macosx/apple/
openfirmwarepassword.html

The Open Firmware Password will be reset if a user changes the amount of the physical memory in the machine
and reboots. Systems which require Open Firmware Password level security need to be protected from users
gaining physical access to the internals of the computer.

IMPORTANT:

Back to top

Top 20 Commonly asked Kiosk questions

1) How do I disable Force Quit?

This can be accomplished using the call with the
 set. This technique is described in more detail in the . A code

snippet below also demonstrates the technique:

SetSystemUIMode kUIOptionDisableForceQuit
SystemUIOption SystemUIMode section of this technote

2/24/03 7:13 PMTN2062 - Guide to Creating Kiosks on Mac OS X

Page 5 of 13file://localhost/Volumes/TNQA/webdata/master/technotes/tn2002/tn2062.html

error = SetSystemUIMode(
 kUIModeContentHidden,
 kUIOptionDisableForceQuit);

Note disabling Force Quit using will only disable Force Quit so long as the calling application is
frontmost. There is an alternative to disabling the Force Quit completely. An application can also avoid showing up in the
Force Quit window using techniques described in

SetSystemUIMode

"How do I prevent my application from being Force Quit?"

2) How do I disable/suppress the Dock?

The dock can be disabled/suppressed using the API. By selecting specific user interface modes a
developer can control exactly how the Dock is disabled. Please consult the for more
details. If a developer just wants the Dock completely suppressed while still showing the menubar they can use the code
snippet shown below.

SetSystemUIMode
SystemUIMode section of this technote

error = SetSystemUIMode(kUIModeAllHidden, NULL);
ShowMenuBar(); //shows the menu bar.

Note disabling the Dock using this technique will only disable the Dock long as the calling application is frontmost.

3) How do I disable the Command-Tab or Command-Shift-Tab process switching keyboard equivalents?

These keyboard equivalents can be disabled using the call with the
 set. This technique was described in more

detail i n the . A code snippet below also demonstrates the technique.

SetSystemUIMode
kUIOptionDisableProcessSwitch SystemUIOption

SystemUIMode section of this technote

error = SetSystemUIMode(
 kUIModeContentHidden,
 kUIOptionDisableProcessSwitch);

Note disabling process switching keyboard equivalents using will only disable the keyboard
equivalents so long as the calling application is frontmost.

SetSystemUIMode

4) How do I disable the Apple menu (or certain portions of it)?

One can disable the entire Apple menu using the call with the
 set. This technique was described in more detail in the . Note

SetSystemUIMode kUIOptionDisableAppleMenu
SystemUIOption SystemUIMode section of this technote

2/24/03 7:13 PMTN2062 - Guide to Creating Kiosks on Mac OS X

Page 6 of 13file://localhost/Volumes/TNQA/webdata/master/technotes/tn2002/tn2062.html

disabling the Apple menu using this technique will only disable the Apple menu so long as the calling application is
frontmost. A code snippet below also demonstrates this technique.

error = SetSystemUIMode(kUIModeNormal, kUIOptionDisableAppleMenu);

The above technique disables the entire Apple menu. For disabling more specific portions of the Apple menu please consult
the SystemUIMode section of this technote.

5) How do I prevent my application from being Force Quit?

One can use the technique described section to completely disable Force Quit. This will
prevent Force Quit from activating so long as the calling application is frontmost. There is another alternative available if
one isn't capturing the display using the CGDisplayCapture APIs described in . The
alternative is to not have an application show up in the Force Quit menu at all. Thus, when a user invokes the Force Quit
menu the application will not show up in the list. This can be done by adding the key to the application's
Info.plist. The precise setting required to enable this is (string) as illustrated in the
PropertyListEditor screen shot below.

"How do I disable Force Quit?"

How to Create a Full-Screen Context

LSUIElement
LSUIElement = 1

. for an application which won't show up in the Force Quit menu.Figure 2 Info.plist

An application using the property in its Info.plist should use the .
Also, setting the property prevents the application from showing up in the Dock.

IMPORTANT:
LSUIElement not SetSystemUIMode API

LSUIElement

2/24/03 7:13 PMTN2062 - Guide to Creating Kiosks on Mac OS X

Page 7 of 13file://localhost/Volumes/TNQA/webdata/master/technotes/tn2002/tn2062.html

6) How do I disable single user mode (Command-S on boot)?

The most effective way to disable single user mode is by enabling the Open Firmware Password of the system. This can be
done using the technique described in the section of this technote.Enabling Open Firmware Password

7) How do I disable the Eject Key?

There is currently no supported way to disable the Eject Key. You can however, prevent any new inserted media from being
mounted. See the section:

for more details
"How do I prevent new media (e.g. CDs, DVDs, iPods, USB/Firewire hard drives, etc.) from

becoming mounted?"

8) How do I prevent users from booting off alternative media (bootable CDs, external hard drives,
e tc .)?

You can prevent booting from other system disks by enabling the Open Firmware Password of the system. This can be done
using the technique described in the section of this technote.Enabling Open Firmware password

9) How do I prevent new media (CDs, DVDs, iPods, USB/Firewire hard drives, etc.) from becoming
mounted?

There is currently no public programmatic solution to this problem (r. 2824118). For the present time administrators
can disable new media from becoming active using the Mac Manager application located at: http://www.info.apple.com/
usen/mm/

10) How do I disable Command-Control-Power (force reboot)?

There is currently no supported way to disable this keyboard equivalent. Also, the technique of preventing normal reboot
discussed in does not work for preventing a force reboot.
Though, a developer can secure the computer during a boot process using the techniques discussed in:

 and

"How do I disable Command-Control-Eject (normal reboot)?"
"How do I prevent

users from booting off alternative media?" "How do I disable single user mode?"

11) How do I make my application full screen so it takes over the screen?

A commonly used technique is to use the CGDisplay Capture routines as described in in
the OpenGL documentation. A simpler solution is to edit the main window of the kiosk application's GUI so it fills the screen.
This way as long as other elements of the operating system have been disabled the application will remain frontmost. Note
if you wish to have movable windows you may want to disable desktop switching using the technique described in:

How to Create a Full-Screen Context

"How do I
prevent users from clicking on the desktop to switch out of my application?"

12) How do I prevent users from clicking on the desktop to switch out of my application?

One technique is to not allow users access to the desktop at all. This can be achieved by making a full screen application.
Techniques to create a full screen application are described in "How do I make my application full screen so it takes over
the screen?"

If one needs to disable "desktop switching" this can be accomplished by disabling the Finder since the Finder provides the
"desktop switching" services along with any hard drives which show up on the desktop. One technique of disabling the

2/24/03 7:13 PMTN2062 - Guide to Creating Kiosks on Mac OS X

Page 8 of 13file://localhost/Volumes/TNQA/webdata/master/technotes/tn2002/tn2062.html

Finder is to replace the Finder using the technique described in the section of this technote. Another
method of disabling the Finder is to send it a Apple event. The below code demonstrates how to
quit the Finder using an Apple event.

"Replacing The Finder"
kAEQuitApplication

. Programmatically quitting Finder using an Apple Event.Listing 2

OSErr QuitFinder()
{
 int kFinderProcessSignature = 'MACS';
 OSErr anErr = paramErr;
 AppleEvent tAppleEvent = {typeNull,nil};
 AppleEvent tReply;
 AEBuildError tAEBuildError;

 anErr = AEBuildAppleEvent(
 kCoreEventClass, kAEQuitApplication,
 typeApplSignature, &kFinderProcessSignature,
 sizeof(OSType), kAutoGenerateReturnID,
 kAnyTransactionID, &tAppleEvent,
 &tAEBuildError,"");

 if (noErr == anErr)
 {
 anErr = AESend(&tAppleEvent, &tReply, kAENoReply |
 kAENeverInteract, kAENormalPriority,
 kNoTimeOut, nil, nil);

 (void) AEDisposeDesc(&tAppleEvent);
 }
 return anErr;
}

int main(int argc, char *argv[])
{
 OSErr error = QuitFinder();

 if (error != noErr)
 {printf("Finder quit successfully!\n");}
 else
 {printf("Finder wouldn't quit!\n");}

 return 0;
}

The above code is also available via the downloadable QuitFinder sample

13) How do I disable Command-H (Hide) and Command-Q (Quit)?

These keyboard equivalents sometimes catch kiosk developers new to Mac OS X. The method to remove these keyboard
equivalents differs based on if a developer is using Carbon or Cocoa. Complete descriptions of how to override these
keyboard equivalents are listed below.

Disabling behavior in Carbon:
Within Carbon one method of disabling the keyboard equivalents is to delete the menu items providing the keyboard
equivalents. That is deleting the Quit and Hide menu items completely will disable the keyboard equivalents. Deleting these
menu items programmatically can be done by first locating the menu items using GetIndMenuItemWithCommandID

2/24/03 7:13 PMTN2062 - Guide to Creating Kiosks on Mac OS X

Page 9 of 13file://localhost/Volumes/TNQA/webdata/master/technotes/tn2002/tn2062.html

passing or as the argument. Once located a menu item can be
removed by calling . An alternative to removing the menu item completely is to simply remove the
keyboard equivalent while still retaining the menu item. This can be accomplished by calling passing zero
for the argument, once you have already located the appropriate
menu item with . A code snippet below demonstrates both techniques.

kHICommandHide kHICommandQuit inCommandID
DeleteMenuItem

SetItemCmd
cmdChar

GetIndMenuItemWithCommandID

//Completely remove the Quit menu item
error = GetIndMenuItemWithCommandID(
 NULL, kHICommandQuit, 1,
 &applicationMenu, &outIndex);
DeleteMenuItem(applicationMenu, outIndex);

//Disable Command-H keyboard equivalent on the Hide menu
error = GetIndMenuItemWithCommandID(
 NULL, kHICommandHide, 1,
 &applicationMenu, &outIndex);
SetItemCmd(applicationMenu, outIndex,0);

Disabling behavior in Cocoa:
Within Cocoa, a developer can simply edit their program's nib file to remove the Command-Q and Command-H keyboard
equivalents from the Quit and Hide menu items. Another alternative available is to simply remove the Quit and Hide menu
items from the program.

Another technique available to both Carbon and Cocoa is to assign another menu item with a Command-H keyboard
equivalent. If a program has another menu item with a Command-H keyboard equivalent, then that menu item will override
the default application hiding behavior of Command-H. Note this only works for Command-H (hide) and not Command-Q
(quit).

14) How do I disable the window that pops up when Power key or the Control-Eject keyboard
equivalent is pressed?

This can be accomplished using the call with the
 set. This technique was described in more detail in the . A code

snippet below also demonstrates the technique:

SetSystemUIMode kUIOptionDisableSessionTerminate
SystemUIOption SystemUIMode section of this technote

error = SetSystemUIMode(kUIModeContentHidden,
 kUIOptionDisableSessionTerminate);

Note that disabling the Power key window using will only disable this keyboard equivalent as long as
the calling application is frontmost.

SetSystemUIMode

15) How do I disable Command-Option-Eject (sleep)?

A kiosk developer can disable system sleep using the I/O Kit APIs. This can be done by calling
after receiving a power change notification for system sleep. This technique is illustrated in more detail at:

 in the I/O Kit documentation. Note this technique does not work in "demand power change"
situations such as when the lid of a laptop computer is closed.

IOCancelPowerChange
Receiving

Notification of Power Events

2/24/03 7:13 PMTN2062 - Guide to Creating Kiosks on Mac OS X

Page 10 of 13file://localhost/Volumes/TNQA/webdata/master/technotes/tn2002/tn2062.html

16) How do I disable Command-Control-Option-Eject (normal shutdown)?

There is currently no supported way to disable this keyboard equivalent. However, a kiosk developer can prevent the
reboot from occurring by returning to the Apple event. This technique is
discussed in

userCanceledErr kAEQuitApplication
"How do I disable Command-Control-Eject (normal reboot)?"

17) How do I disable Command-Control-Eject (normal reboot)?

There is currently no supported way to disable this keyboard equivalent. However, a kiosk developer can prevent the
reboot from occurring by registering for the Apple Event and returning to
the event. The technique is shown in the downloadable and in the following code snippet.

kAEQuitApplication userCanceledErr
PreventLogoutRestartShutdown

. Programmatically preventing Logout/Restart/Shutdown.Listing 3

OSErr QuitAppleEventHandler(const AppleEvent *appleEvt,
 AppleEvent* reply, UInt32 refcon)
{
 //returning userCanceledErr to cancel logout
 return userCanceledErr;
}

int main(int argc, char *argv[])
{
 OSErr err;

 //Installing quit event handler
 err = AEInstallEventHandler(kCoreEventClass,
 kAEQuitApplication, NewAEEventHandlerUPP(
 (AEEventHandlerProcPtr)QuitAppleEventHandler),
 0, false);

 if (err != noErr)
 ExitToShell();

 EventLoop();

 return 0;
}

Note when you disable logout/restart/shutdown using this technique a dialog will be presented to the user indicating your
application cancelled the operation. This technique is also described in in System Overview. Terminating Processes

18) How do I disable the screen capture keys: Command-Shift-3 and Command-Shift-4?

There is currently no supported way to disable these keyboard equivalents. (r. 3085384)

2/24/03 7:13 PMTN2062 - Guide to Creating Kiosks on Mac OS X

Page 11 of 13file://localhost/Volumes/TNQA/webdata/master/technotes/tn2002/tn2062.html

19) How do I disable the video brightness keys available on some keyboards?

There is currently no supported way to disable these keys.

20) How do I disable the sound volume keys available on some keyboards?

There is currently no supported way to disable these keys.

Back to top

Summary
Creating kiosks or adding kiosk-like behavior to an application has historically been very difficult. However, with the new
features available on Mac OS X this process has become much simpler. One final note: If your kiosk behavior
which is not covered in any of the above sections of this technote (or is currently listed as unsupported) let us know by
sending an email to dts@apple.com.

r equ i r e s

Back to top

References

 Contains a high level overview of Mac OS X. This is a good starting point with
developing for Mac OS X.
Mac OS X System Overview

 contains information on getting a "snapshot" of the BSD
process l ist
QA 1123: Getting List of All Processes on Mac OS X

 contains information and code on getting notifications
when a process launches or terminates.
TN 2050: Observing Process Lifetimes Without Polling

Back to top

Downloadables

Acrobat version of this Note (500K) Download

Demonstration Application for SetSystemUIMode API. (56K) Download

Sample demonstrating quitting Finder. (8K) Download

Sample demonstrating how to programmatically prevent logout. (8K) Download

Back to top

2/24/03 7:13 PMTN2062 - Guide to Creating Kiosks on Mac OS X

Page 12 of 13file://localhost/Volumes/TNQA/webdata/master/technotes/tn2002/tn2062.html

Technical Notes by | | |
 | | |

Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

2/24/03 7:13 PMTN2062 - Guide to Creating Kiosks on Mac OS X

Page 13 of 13file://localhost/Volumes/TNQA/webdata/master/technotes/tn2002/tn2062.html

