
CONTENTS

Introduction

Why Should I Care?

References

Downloadables

This technote discusses why you should
always fill in the size field of the
ICMPixelFormatInfo structure before calling
ICMGetPixelFormatInfo.

[Jul 17 2002]

Introduction

The Image Compression Manager routine ICMGetPixelFormatInfo takes a PixelFormat code and a pointer to a
ICMPixelFormatInfo structure you provide, and fills in this structure with information about a given pixel format.

 OSErr ICMGetPixelFormatInfo(OSType PixelFormat,
 ICMPixelFormatInfoPtr theInfo);

PixelFormat - A number or four character code identifying the pixel format.

ICMPixelFormatInfoPtr - A pointer to a ICMPixelFormatInfo structure in which the pixel format
information is returned.

It is very important for code calling ICMGetPixelFormatInfo to fill in the size field of the ICMPixelFormatInfo
structure first. Initialize this field with sizeof(ICMPixelFormatInfo). In C, the following syntax does this and
also sets the rest of the structure to zero:

ICMPixelFormatInfo myICMPixelFormatInfo = {sizeof(ICMPixelFormatInfo), 0};

If you call ICMGetPixelFormatInfo multiple times, reset the size field to sizeof(ICMPixelFormatInfo)
before each call.

Back to top

Why should I care?

From time to time, new fields are added to the end of the ICMPixelFormatInfo structure -- in QuickTime 4.1,
defaultGammaLevel was added, and for QuickTime 6.0 horizontalSubsampling and verticalSubsampling
have been added.

The Image Compression Manager is careful to not write more bytes than the size field indicates and on return, the size
field will contain the number of valid bytes in the data structure.

By filling in the size field you guarantee that the Image Compression Manager won't write past the end of the structure
(and corrupt the stack) if your application and the Image Compression Manager were compiled with different versions of
the structure.

Fill in the size field before calling ICMGetPixelFormatInfo

Technical Note TN2057

// QuickTime 6.0
struct ICMPixelFormatInfo {
 long size;
 unsigned long formatFlags;
 short bitsPerPixel[14]; /* list each plane's bits per
 pixel separately if planar */
 /* new field for QuickTime 4.1 */
 Fixed defaultGammaLevel;
 /* new fields for QuickTime 6.0 */
 short horizontalSubsampling[14]; /* per plane; use
 1 if plane is
 not subsampled */
 short verticalSubsampling[14]; /* per plane; use
 1 if plane is
 not subsampled */
};
typedef struct ICMPixelFormatInfo ICMPixelFormatInfo;
typedef ICMPixelFormatInfo * ICMPixelFormatInfoPtr;

size - The size of this structure. On entry to ICMGetPixelFormatInfo, this indicates how much memory
is available to receive the structure; on return it indicates how much data was filled in. On entry to
ICMSetPixelFormatInfo, this indicates how much valid data is in the structure. Fields after those
labelled as valid should be interpreted as containing zero.

formatFlags - A constant (see below) indicating information about the pixel format.

bitsPerPixel - An array that defines the number of bits for each component of a pixel. The element
bitsPerPixel[0] contains the number of bits for the first component, bitsPerPixel[1] the number of
bits for the second component, etc. The meaning of this parameter depends on the format flag (see
below).

defaultGammaLevel - Defines the default gamma level for newly created GWorlds of this pixel
format. Pixel formats for video often have defaultGammaLevel set to 2.2
(kQTCCIR601VideoGammaLevel). Zero means to use the platform's standard gamma level. This field
was introduced in QuickTime 4.1.

horizontalSubsampling, verticalSubsampling - For planar pixel formats, these arrays
indicate the component subsampling for each component. For example, planar YUV 4:2:0 has one Y
sample per pixel (subsampling 1,1), and one U and one V sample per square group of four pixels
(subsampling 2,2 and 2,2 respectively). Hence the horizontalSubsampling and
verticalSubsampling fields for kYUV420PixelFormat will both contain [1,2,2]. Set unused
fields to zero. This information enables QuickTime to allocate GWorlds for planar pixel formats and set
up planar component headers correctly. This field and functionality was introduced in QuickTime 6.

formatFlags Constants

kICMPixelFormatIsPlanarMask - This mask constant covers the four least-significant bits
(0x0000000F). If these bits of formatFlags contain 2 or more, the pixel format is planar and
bitsPerPixel[] represents the bits for each pixel component. Otherwise, the pixel format is chunky
(not planar) and bitsPerPixel[0] represents the bits per pixel. (Set these bits to zero when
defining chunky pixel formats.) Chunky pixel formats pack the different components together. For
example, 3 pixels of 32-bit ARGB is represented in memory as ARGBARGBARGB. Planar formats pack
the different components separately.

kICMPixelFormatIsIndexed - If the pixel format is indexed (which, by definition, means that
there are no individual components) then this flag is set. Generally, color modes of 8 bit per pixel or
less are indexed.

kICMPixelFormatIsSupportedByQD - If this flag is set, you can call QuickDraw on PixMap
structures that store this kind of pixel data. On Macintosh, the classic QD pixel formats have this flag
set, but not any of the YUV pixel formats. On Windows, more formats have this flag set, because the
Windows implementation of QuickDraw needs to support more pixel formats.

kICMPixelFormatIsMonochrome - If this flag is set, the pixel format is not color. This flag was
introduced in QuickTime 6.

kICMPixelFormatHasAlphaChannel - If this flag is set, the pixel format contains an alpha
channel. This flag was introduced in QuickTime 6.

Here's an example routine that calls ICMGetPixelFormatInfo to determine if a given pixel format is planar.

Boolean IsPixelFormatPlanar(OSType inPixelFormat)
{
 OSErr err;
 ICMPixelFormatInfo outInfo = {sizeof(ICMPixelFormatInfo), 0};

 err = ICMGetPixelFormatInfo(inPixelFormat, &outInfo);

 if (noErr != err)
 return false; // unknown pixel formats are not planar

 if ((outInfo.formatFlags & kICMPixelFormatIsPlanarMask) < 2)
 return false; // zero means pixel format is chunky; one plane is silly

 return true; // pixel format is planar
}

Back to top

References

ICMGetPixelFormatInfo

Pixel Formats

ICMPixelFormatInfo structure

Back to top

Downloadables

Acrobat version of this Note (52K) Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

