
Getting through CUSToms Page: 1

NOTE: This Technical Note has been retired. Please see the Technical Notes page for current documentation.

CONTENTS

Note

Concepts

Template

The example

What it does

References

Downloadables

This technical note provides a way for
developers to allow sophisticated users to
add code to an off-the-shelf application. Using
this scheme, the user can easily install the
code module; the application has to know
how to call it and, optionally, be able to
respond to a set of predefined calls from the
custom package.

[Jul 01 1987]

Note

The following code makes heavy use of features of the Macintosh Programmer's Workshop. It also assumes a basic
familiarity with the standard Sample program included with MPW. The Pascal code (which is here only as an example
implementation of the mechanism) is presented as only those sections which differ from Sample.p. The assembly language
code also includes MPW-only features, such as record templates. Some of these are explained in TN.PT.Signals.

In addition, since the order in which parameters to various routines are passed is critical, special care will have to be
taken in writing interfaces for use with C. It is probably best to declare them as Pascal in the C source.

Back to top

Concepts

Basically, we create a code resource of type CUST with an entry point at the beginning which takes several parameters on
the stack; this code is reached via a dispatching routine which is written in assembly language.

The data passed on the stack to this dispatcher includes:

a selector (to specify the operation desired)
the address of a section of application globals (for communication back and forth between the application and the
module when the stack parameters are insufficient)
a handle which references the custom code resource on the stack.

Other parameters may be added (as long as they are pushed on the stack before the required ones) if desired. Since these
extra parameters would always have to be included in any calls to a given package, it might be more convenient to use the
application global space area which is accessed through the appaddr parameter.

Back to top

Template

Your application must contain the following global data and procedure declarations to support this model:

Getting through CUSToms Page: 2

VAR
 custhandle: Handle;

 {the following globals constitute the data known to the custom code}
 appdispatch: ProcPtr; {address of dispatch routine custom code can call}
 {examples of further application globals for the custom package:}
 (*
 paramptr: Ptr; {general pointer used as param. to appdispatch code}
 paramword1: INTEGER;
 paramword2: INTEGER;
 CUSTerr: INTEGER;
 *)
 {any other globals the module should get at}

 {the two assembly language glue routines which are linked into the
 application}
 PROCEDURE CustomInit(resID: INTEGER; VAR custhandle: Handle);
 EXTERNAL; {the routine used to set up the custhandle resource handle}

 PROCEDURE CustomCall({application & package-specific paramters}
 selector: INTEGER; appaddr: UNIV Ptr; ourhandle: Handle);
 EXTERNAL; {this is the code dispatcher}

 {this is called by the custom package to perform a service which is more
 easily provided by the application; since we pass a pointer to it to the
 package, CustDispatch must be at the outermost nesting level in the main
 segment }

 PROCEDURE CustDispatch(selector: INTEGER);

 BEGIN
 CASE selector OF
 {.
 .
 .}
 END; {CASE}
 END; {CustDispatch}

 {your initialization code should contain the following:}

 {Custom package initialization stuff}
 appdispatch := @CustDispatch; {put pointer where the package can see it}
 CustomInit(69,custhandle); {our CUST resource has ID = 69}

You must also assemble CustomInit and CustomCall and link them with into your application. The custom package itself can
be written in any language which can produce stand-alone code.

Back to top

The example

CustomCall is only referenced once in this example. When a variety of unrelated functions are provided, however, it is
more convenient to provide a separate interfacing procedure to invoke each one and have them make their own
CustomCall calls.

Note that this example is somewhat contrived; you probably wouldn't "externalize" the code for finding a word or sequence
of characters like this. This is an idealized situation. More realistic uses would be: to add-on special routines to a database
to perform custom calculations or the like; allow for localization when code is required (and hooks aren't already
provided); let documents carry around code which may vary among software versions, etc. so that older documents would
be able to work alongside the new ones, etc.

Back to top

What it does

We simply add a new menu to the sample program which allows Find bycharacters or word. We just pass the menu item to
the package and let it do the finding; it then calls back to the application dispatch routine to highlight text or display the
"not found" message.

The Pascal source for the example application appears first:

 {$R-}
 {$D+}
 PROGRAM P;

 USES
 {$LOAD ::PInterfaces:most.dump}
 Memtypes,Quickdraw,OSIntf,ToolIntf,PackIntf {,MacPrint}
 {$LOAD}
 , {$U ErrSignal.p} ErrSignal;

 CONST
 appleID = 128; {resource IDs/menu IDs for Apple, File and Edit menus}
 fileID = 129;
 editID = 130;
 findID = 131;

Getting through CUSToms Page: 3

 appleM = 1; {index for each menu in myMenus (array of menu handles)}
 fileM = 2;
 editM = 3;
 findM = 4;

 menuCount = 4; {total number of menus}

 windowID = 128; {resource ID for application's window}

 undoCommand = 1; {menu item numbers identifying
 commands in Edit menu}
 cutCommand = 3;
 copyCommand = 4;
 pasteCommand = 5;
 clearCommand = 6;

 findcharsCommand = 1; {menu items for Custom menu}
 findwordCommand = 2;

 aboutMeCommand = 1; {menu item in apple menu for About sample item}

 aboutMeDLOG = 128;
 findDLOG = 129;
 infoDLOG = 130;

 {application dispatching code selectors}
 hilightSel = 0;
 notifySel = 1;

 VAR
 *
 *
 *
 errCode: INTEGER;
 dlogString: Str255;
 custhandle: Handle;

 {here is the area known to the custom code}
 appdispatch: ProcPtr; {address of dispatch routine custom
 code can call}

 {examples of further application globals for the custom package}
 paramptr: Ptr; {general pointer used as param. to appdispatch code}
 paramword1: INTEGER;
 paramword2: INTEGER;
 {any other globals the module should get at}

 PROCEDURE CustomInit(resID: INTEGER; VAR custhandle: Handle);
 EXTERNAL; {the routine used to set up the custhandle resource handle}

 PROCEDURE CustomCall(
 text: Ptr;
 count: INTEGER;
 findstr: StringPtr;
 selector: INTEGER;
 appaddr: UNIV Ptr;
 ourhandle: Handle);
 EXTERNAL; {this is the code dispatcher}

 {this will do the "about" dialog and }
 {the info dialog requested by the custom pack.}

 PROCEDURE ShowADialog(meDlog: INTEGER);

 CONST
 okButton = 1;
 authorItem = 2;
 languageItem = 3;
 infoItem = 2;

 VAR
 itemHit,itemType: INTEGER;
 itemHdl: Handle;
 itemRect: Rect;
 theDialog: DialogPtr;

 BEGIN
 theDialog := GetNewDialog(meDlog,NIL,WindowPtr(- 1));

 CASE meDlog OF
 aboutMeDLOG: BEGIN
 GetDitem(theDialog,authorItem,itemType,itemHdl,itemRect);
 SetIText(itemHdl,'Ming The Vaseless');
 GetDitem(theDialog,languageItem,itemType,itemHdl,itemRect);
 SetIText(itemHdl,'Pascal et al');
 END;

 infoDLOG: BEGIN {display the message requested by the custom
 package}
 GetDitem(theDialog,infoItem,itemType,itemHdl,itemRect);
 SetIText(itemHdl,StringPtr(paramptr)^);

Getting through CUSToms Page: 4

 END;
 END; {CASE}

 REPEAT
 ModalDialog(NIL,itemHit)
 UNTIL (itemHit = okButton);

 CloseDialog(theDialog);
 END; {of ShowADialog}

 {this will put up the Find dialog to allow the user to type
 in the characters to search for}
 FUNCTION DoCustomDialog: BOOLEAN;

 CONST
 okButton = 1;
 cancelButton = 2;
 fixedItem = 3;
 editItem = 4;

 VAR
 itemHit,itemType: INTEGER;
 itemHdl: Handle;
 itemRect: Rect;
 theDialog: DialogPtr;

 BEGIN
 theDialog := GetNewDialog(findDLOG,NIL,WindowPtr(- 1));
 GetDitem(theDialog,editItem,itemType,itemHdl,itemRect);
 SetIText(itemHdl,dlogString);
 TESetSelect(0,MAXINT,DialogPeek(theDialog)^.textH);

 REPEAT
 ModalDialog(NIL,itemHit)
 UNTIL (itemHit IN [okButton,cancelButton]);
 GetIText(itemHdl,dlogString);
 DoCustomDialog := itemHit = okButton;

 CloseDialog(theDialog);
 END; {of DoCustomDialog}

 PROCEDURE DoCommand(mResult: LONGINT);
 *
 *
 *
 (* partial procedure fragment *)

 {here is one of the case sections for the DoCommand procedure}

 findID:
 IF DoCustomDialog THEN
 BEGIN
 MoveHHi(Handle(textH)); {stop it from fragmenting heap}
 WITH textH^^ DO BEGIN
 HLock(hText);
 { since we don't know what the }
 { package might be up to }

 {now call the package to find characters or words}
 CustomCall(POINTER(ORD(hText^) + selEnd),
 teLength - selEnd, @dlogString, theItem, @appdispatch,
 custhandle);
 HUnLock(textH^^.hText);
 END; {WITH}
 END;

 END; {OF menu CASE} {to indicate completion of command,}
 HiliteMenu(0); {call Menu Manager to unhighlight }
 {menu title (highlighted by }
 {MenuSelect) }
 END; {OF DoCommand}

 { this is called by the custom package to set the new selection }
 { or display a message; it must be in CODE 1 at the outermost }
 { lexical level}
 PROCEDURE CustDispatch(selector: INTEGER);

 BEGIN
 CASE selector OF
 hilightSel: {hilight the characters selected }
 {by the custom pack.}

 {paramptr=pointer to text to select, }
 { paramword1¶mword2=start,end chars}

 WITH textH^^ DO
 {we'll subtract the start of text from}
 {paramptr to get the base offset...}
 TESetSelect(ORD(paramptr)
 - StripAddress (ORD(hText^))
 + paramword1, ORD(paramptr)

Getting through CUSToms Page: 5

 - StripAddress (ORD(hText^))
 + paramword2,textH);

 notifySel: {put up message per request from custom pack.}
 {paramptr points to string to display}
 ShowADialog(infoDLOG);

 END; {CASE}
 END; {CustDispatch}

 BEGIN {main program}
 { Initialization }
 InitGraf(@thePort); {initialize QuickDraw}
 InitFonts; {initialize Font Manager}
 FlushEvents(everyEvent - diskMask,0); {call OS Event Mgr to discard
 non-disk-inserted events}
 InitWindows; {initialize Window Manager}
 InitMenus; {initialize Menu Manager}
 TEInit; {initialize TextEdit}
 InitDialogs(NIL); {initialize Dialog Manager}
 InitCursor; {call QuickDraw to make cursor (pointer) an arrow}

 InitSignals;
 errCode := CatchSignal;
 IF errCode <> 0 THEN BEGIN
 Debugger;
 Exit(P);
 END;

 SetUpMenus; {set up menus and menu bar}
 UnLoadSeg(@SetUpMenus); {remove the once-only code}

 {Custom package initialization stuff}
 appdispatch := @CustDispatch;
 CustomInit(69,custhandle); {should test custhandle for NIL
 {and alert the user}
 dlogString := '';
 ...
 {etc. with the rest of initialization and the main event loop}
 END.

 ; now for the assembly language code
 ; first, the dispatching and initializing code that must be linked
 ; into the application

; CustomCalling
; Custom packages initializing and dispatching
;
; Rick Blair May, 1987
;
; PRINT OFF
; INCLUDE 'Traps.a'
; INCLUDE 'ToolEqu.a'
; INCLUDE 'QuickEqu.a'
; INCLUDE 'SysEqu.a'
; PRINT ON

 LOAD 'most.dmp' ; from a dump of the files above

appdata EQU 12

;Initialize a custom module
; Pascal call format:
; CustomInit(resID:INTEGER;VAR custhandle:Handle);
;
; This will load the CUST module with the given resource ID, install a
; handle to it in custhandle, and set the module's appdata pointer to
; point to the address appaddr.
;
resID EQU 8
custhandle EQU 4

CustomInit PROC EXPORT
 SUBQ.L #4,A7 ;make room for handle from GetResource
 MOVE.L #'CUST',-(A7)
 MOVE.W resID+8(A7),-(A7);resource ID
 _GetResource
 MOVE.L (A7)+,A0
 MOVE.L custhandle(A7),A1
 MOVE.L A0,(A1) ;store handle in app's custhandle global
;(return with nil handle if GR failed)
 MOVE.L (A7),A0 ;get return address
 ADD.L #10,A7 ;strip everything
 JMP (A0) ;adieu

;Call a custom module
;Pascal format:
; CustomCall({parameters as desired} selector: INTEGER; appaddr: Ptr;
; module: Handle);
;

Getting through CUSToms Page: 6

;This will call the code whose handle is passed on the stack. If the
;application was written in assembly language you would just
;dereference the handle and call it directly (you wouldn't need this at
;all).
;
CustomCall PROC EXPORT
 IMPORT Signal
 MOVE.L 4(A7),A0 ;get handle
 MOVE.L (A0),D0
 BNE.S @0 ;if hasna' been purged, ga' ahead
 MOVE.L A0,-(A7) ;push handle
 _LoadResource
 MOVE.W ResErr,-(A7)
 JSR Signal ;Signal is a NOP if a zero is passed to it
 MOVE.L 4(A7),A0 ;handle again
; we don't lock the handle here (we can't save it so we can unlock it
; later), so it's up to the package to lock/unlock itself
@0 MOVE.L (A0),A0 ;dereference
 JMP (A0) ;call CUST code

 END

; here is the module for the custom package itself

; CustomPack
; Example custom code package
;
; Rick Blair May, 1987
;
; This demonstrates the recommend structure of a code module which a
; sophisticated user could add to an existing application which supported
; this mechanism. Aside from allowing for multiple routines within the
; module (via a selector), provision is made for calling a routine
; dispatcher within the application itself.

;Finding text
;We support a call to find a string anywhere within a block of text
; (selector=0), and one to find the string only as a separate "word"
; with spaces around it (selector=1).
;PROCEDURE CustomCall(text:Ptr; count:INTEGER; findstr:^STRING;
; selector:INTEGER; appaddr: UNIV Ptr; ourhandle:Handle);
;Rather than return a result indicating whether they succeeded or not,
;these routines take whatever action is appropriate (the application
;may not even know what these routines actually do).
;Once a call succeeds or fails, it then takes action by making a call to
;one of the services provided by the application. In this case the two
;functions provided are just what we need; the ability to select text and
;the ability to put up a message saying "Text not found".

 STRING ASIS

; PRINT OFF
; INCLUDE 'Traps.a'
; INCLUDE 'ToolEqu.a'
; INCLUDE 'QuickEqu.a'
; INCLUDE 'SysEqu.a'
; PRINT ON

 LOAD 'most.dmp' ; from a dump of the files above

CustPack PROC EXPORT

 BRA.S Entry ;skip header

 DC.W 0 ;flags
 DC.B 'CUST' ;custom add-on code module
 DC.W 69 ;resource ID (picked by Mr. Peabody &
 ; Sherman)
 DC.W $10 ;version 1.0

StackFrame RECORD {A6Link},DECR
paramsize EQU *-8
; call-specific parameters... (optional)
text DS.L 1 ;pointer to text block
count DS.W 1 ;word count of characters in text
findstr DS.L 1 ;pointer to p-string to find
; selector(word, optional - you might only have 1 call)
selector DS.W 1
fcharsCmd EQU 1 ; selector for "find characters"
fwordCmd EQU 2 ; selector for "find word"
; pointer to app. globals (long)
appaddr DS.L 1
; handle to this resource (long)
ourhandle DS.L 1
; TOS:return address (long)
return DS.L 1
;the stack link is built off the origin of the saved old A6 on the stack
A6Link DS.L 1
LocalSize EQU *
 ENDR

;offsets into our application globals area

Getting through CUSToms Page: 7

AppGlobals RECORD {appdispatch},DECR
appdispatch DS.L 1
paramptr DS.L 1
paramword1 DS.W 1
paramword2 DS.W 1
;CUSTerr DS.W 1 ;if we had possible errors
 ENDR

Entry
 WITH StackFrame,AppGlobals
 LINK A6,#LocalSize
; MOVEM.L ... ;we'd save any non-trashable regs here
;first lock us down...
 MOVE.L ourhandle(A6),A0
 _HLock

 MOVE.W selector(A6),D0
 CMP.W #fcharsCmd,D0
 BEQ.S charfind ;go find characters
 CMP.W #fwordCmd,D0
 BEQ.S wordfind ;go find a word
;well, M. App didn't call us with a selector we know, so...

;unlock ourselves, clean up, return
; (if we wanted to return an error code we could stuff it into the app.
; global area)
duhn MOVE.L ourhandle(A6),A0
 _HUnLock
; MOVEM.L ... ;restore any registers here
 UNLK A6
 MOVE.L (A7)+,A0 ;return address
 ADD.L #paramsize,A7;strip parameters
 JMP (A0)

;selector codes for calls to application
hilight EQU 0 ;highlight characters, please
notify EQU 1 ;beep a little

;find the string "findstr" anywhere in the block "text"
charfind
 JSR findchars ;see if findstr is anywhere in text
 BEQ.S nofind ;if not then skip
 JSR calcsels ;compute selstart and selend
didfind MOVE.L appaddr(A6),A0 ;get pointer to appl. globals area
 MOVE.L text(A6),paramptr(A0) ;setup text pointer and...
 MOVE.W D0,paramword1(A0) ;start character position,
 MOVE.W D1,paramword2(A0) ;end character position
 MOVE.W #hilight,-(A7) ;pass proper selector
goapp MOVE.L appdispatch(A0),A0 ;get dispatch address
 JSR (A0) ;call the application to select the range
 BRA.S duhn ;return to application (dejÀ vu)

nofind MOVE.L appaddr(A6),A0 ;get pointer to appl. globals area
 LEA oopstring,A1 ;get pointer to "Not found" message
 MOVE.L A1,paramptr(A0) ;put string pointer in "paramptr"
 MOVE.W #notify,-(A7) ;tell app. to display message
 BRA.S goapp

;figure selstart and selend
calcsels NEG.W D0 ; negate # characters unskipped in text
 SUBQ.W #1,D0 ;include 1st character
 ADD.W count(A6),D0 ;compute 1st character position for
 ; select
 MOVE.L findstr(A6),A1
 MOVE.B (A1),D1 ;get length of string
 EXT.W D1
 ADD.W D0,D1 ;compute last char. pos. for select
 RTS

;find the characters, but only if surrounded by space (including end or
; beg.)
;we could extend the test to check for other delimiters (";",".",etc.)
wordfind
 JSR findchars
wloop BEQ.S nofind
 MOVE.W D0,D2 ;save count of text remaining
 JSR calcsels ;figure start and end offsets
 MOVE.L text(A6),A1 ;point to text
 TST.W D0 ;start=beginning of text?
 BEQ.S @0 ;yep, so it passes
 CMP.B #' ',-1(A1,D0) ;preceded by a space?
 BNE.S @1 ;nope, keep looking
@0 CMP.W count(A6),D1 ;D1=length of text?
 BEQ.S didfind ;yep, so it passes
 CMP.B #' ',(A1,D1) ;followed by a space?
 BEQ.S didfind ;yes, so we've found it

;this wasn't paydirt, so keep panning
@1 MOVE.W D2,D0 ;restore chars remaining count
 BMI.S nofind ;forget it if we ran out of text
 JSR bigloop ;keep looking
 BRA.S wloop

Getting through CUSToms Page: 8

;this code will find the string if it lies anywhere in the text
findchars MOVE.L text(A6),A0 ;point A0 to chars to search
 MOVE.W count(A6),D0 ;size of text block
bigloop MOVE.L findstr(A6),A1;point A1 to chars to find
 MOVE.W (A1)+,D1 ;get length byte and 1st char. (skip 'em)
 CMP.W #255,D1
 BGT.S @1 ;enter loop if length<>0
 ADDQ.L #4,A7 ;strip findchar's return address
 BRA duhn ;return having done nothing

;search for first character
@0 CMP.B (A0)+,D1 ;this one match 1st character?
@1 DBEQ D0,@0 ;branch until found or done 'em all
 BNE.S cnofind ;skip out if no match on 1st character

 MOVE.B -2(A1),D1 ;length of findstr
 EXT.W D1
 SUBQ.W #1,D1 ;length sans 1st character
 BEQ.S cfound ;if Length(findstr)=1, we're done
 CMP.W D1,D0
 BLT.S cnofind ;fail if findstr is longer than text left
 MOVE.L A0,D2 ;save this character position
 CMP.W D1,D1 ;force EQuality
 BRA.S @3 ;enter loop

@2 CMP.B (A0)+,(A1)+ ;match so far?
@3 DBNE D1,@2 ;check until mismatch or end of findstr

 MOVEA.L D2,A0 ;restore position (cc's unaffected)
 BNE.S bigloop ;if no match then keep looking

cfound MOVEQ #1,D1 ;return TRUE
 RTS

cnofind SUB.W D1,D1 ;return FALSE
 RTS

 STRING PASCAL
oopstring DC.B 'Pattern not found.'

 END

#additions to the resource file

resource 'DLOG' (129, "Find dialog") {
 {72, 64, 164, 428},
 dBoxProc,
 visible,
 noGoAway,
 0x0,
 129,
 "Find"
};

resource 'DLOG' (130, "Info") {
 {66, 102, 224, 400},
 dboxproc, visible, nogoaway, 0x0, 130, ""
};

resource 'DITL' (130) {
 {
/* 1 */ {130, 205, 150, 284},
 button {
 enabled,
 "OK already"
 };
/* 2 */ {8, 32, 120, 296}, /* info */
 statictext {
 disabled,
 ""
 }
 }
};

resource 'DITL' (129) {
 { /* array DITLarray: 4 elements */
 /* [1] */
 {64, 48, 84, 121},
 Button {
 enabled,
 "OK"
 };
 /* [2] */
 {64, 231, 84, 304},
 Button {
 enabled,
 "Cancel"
 };
 /* [3] */
 {8, 8, 24, 352},
 StaticText {

Getting through CUSToms Page: 9

 disabled,
 "Find what?"
 };
 /* [4] */
 {32, 8, 48, 352},
 EditText {
 disabled,
 ""
 }
 }
};

resource 'MENU' (131, "Custom", preload) {
 131, textMenuProc, 0x3, enabled, "Custom",
 {
 "Find Chars...",
 noicon, "F", nomark, plain;
 "Find Word...",
 noicon, "W", nomark, plain
 }
};

type 'CTST' as 'STR ';

resource 'CTST' (0) {
 "Custom Application - Version 1.0"
};

include "CustomPack.code";

This makefile puts the program together incl. the CUST pack.

CustomTest [[florin]][[florin]] CustomCalling.a.o CustomTest.p.o ErrSignal.a.o
the predefined rule for assembly will build CustomCalling.a.o,
CustomPack.code
 Link CustomTest.p.o CustomCalling.a.o ErrSignal.a.o [[partialdiff]]
 "{Libraries}"Interface.o [[partialdiff]]
 "{Libraries}"Runtime.o [[partialdiff]]
 "{PLibraries}"Paslib.o [[partialdiff]]
 -o CustomTest
CustomPack.code [[florin]] CustomPack.a.o
 Link CustomPack.a.o -rt CUST=69 -o CustomPack.code
Put the resource file together (including the custom code resource)
CustomTest [[florin]][[florin]] CustomTest.r CustomPack.code

Back to top

References

M.PT.Signals

Back to top

Downloadables

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

