Bugs In MacApp? Yes, But | Love It! Page: 1

NOTE: This Technical Note has been retired. Please see the Technical Notes page for current documentation.

Techrucal Note PT04

Bugs In MacApp? Yes, But I Love It!

CONTENTS

Introduction

MacApp.Lib Bugs

MABuild Bugs

Bugs Only In Debug Mode

MPW 3.2 Compatibility

SADE Compatibility

THINK Pascal Compatibility

MacApp Samples Bugs

Other

Downloadables

This Technical Note describes the latest
information about bugs or unexpected
"features" in MacApp. Where possible,
solutions and fixes are noted. DTS intends
this Note to be a complete list of all known
bugs in MacApp and will update it as old bugs
are fixed or new ones appear. If you have
encountered a bug or unexpected feature
which is not described here, be sure to let
DTS know. Specific code examples and
suggested fixes are useful.

This version of the Note reflects the state of
MacApp 2.0.1. The latest version of this Note
can always be found on AppleLink in the
Developer Services Bulletin Board.

[Aug 01 1990]

Introduction

The MacApp Management would like to note that MacApp is a high velocity ride with many twists and turns (all alike).

Please keep your hands inside at all times.

There are 107,744 lines of Object Pascal, C++, Assembly, and Rez code that go into the MacApp Library and Build system.
As such, it is inevitable that a few bugs creep in. The purpose of this Note is to inform you of these bugs, not to scare you
away from MacApp. There are dozens of commercially available programs that lead normal everyday lives which are built
on top of MacApp as it stands today. Most of the bugs listed here do not show up in regular use (at least, they don't in our
test programs), so they may not affect you. If they do, you can use the fixes or solutions identified here ("Fixes" are
intended to be applied directly to the MacApp source, while "solutions" identify techniques to override or avoid a method

the problem).

Back to top

MacApp.Lib Bugs

TApplication

Bugs In MacApp? Yes, But | Love It! Page: 2

1. When being suspended in MultiFinder, MacApp commits command objects which affect the clipboard, rather than
checking if the scrap has changed when switching back in.

Solution:
Not yet determined. This is an area of serious consideration for the next version of MacApp.

2. MacApp should hide the clipboard window on a suspend event and redisplay it on a resume event.
Solution:

Override the TAppl i cat i on methods About ToLoseCont r ol and Regai nCont r ol . About ToLoseCont r ol
should remember whether or not the clipboard window is currently open and call gCl i pW ndow. O ose if it is.
Regai nCont r ol should look at the state of the clipboard window saved by About ToLoseCont r ol , and call

gd i pW ndow. Qpen if the window needs to be reshown.

3. There are problems with the value of the nouseDi dMbve parameter to TConmand when called by

TAppl i cati on. TrackMouse. When the Tr ackPhase is t r ackPr ess, TCommand. Tr ackMouse is called
with nouseDi dMove set to TRUE even though the mouse hasn't had a chance to move. When the Tr ackPhase is
t rackMove, nouseDi dMove is FALSE whenever the mouse moves back inside the hysteresis range. When the
TrackPhase is t r ackRel ease, nouseDi dMVbve is TRUE even if the mouse never moved.

Fix:

In TAppl i cati on. TrackMouse (file UMacApp.TApplication.p):

* The first call to Tr ackOnce should read:

* The assignment of di dMove should read:

di dMbve : = novedOnce &
(NOT Equal VPt (previ ousPoi nt, theMuse)).

* The last call to Tr ackOnce should read:

TrackOnce(trackRel ease, di dMvbve);

Once those changes have been applied, the parts of MacApp that assume nouseDi dMove = TRUE when aTr ackPhase
= TrackPr ess need to be updated. In the methods TCel | Sel ect Command. Tr ackMbuse and
TRCSel ect Command. Tr ackMouse (file UGridView.inc1.p), replace:

| F nouseD dMove THEN

With:

| F mouseDi dMbve | (aTrackPhase = TrackPress) THEN

You should also make similar changes to your application's source, if applicable. For instance, in UCalc.incl.p,
TCol umSel ect or. Tr ackMouse and TRowSel ect or . Tr ackMbuse need to check for aTr ackPhase =
Tr ackPr ess.

4. With these changes, it is possible to experience some feedback problems. For example, when resizing the column
widths in a spreadsheet, Cal ¢ draws the initial vertical line, waits until the mouse moved outside the hysteresis
range, and then, before drawing the vertical line in its new location, erases the old vertical line in the wrong

Bugs In MacApp? Yes, But | Love It! Page: 3
place. This leaves two vertical lines on the screen as garbage.
Fix:
In UMacApp.TApplication.p, replace the fourth occurrence of:

previ ousPoi nt : = t heMouse;

With:

| F di dvbve THEN
previ ousPoi nt : = t heMouse;

5. The solution that previously occupied this spot caused more problems that it fixed. We removed it until we can get
our act together.

TCommand (including subclasses)

1. Fixed in MacApp 2.0.1.

2. If a failure occurs in TDocunent . Revert, TRevert DocConmmand. Dol t tries to show the reverted
document. This is the correct thing to do if the user canceled out of the revert if a silent failure is signaled (this
could happen in Di skFi | eChanged). However if a real error occurred, you cannot leave the document open;
you definitely must close it. Otherwise the application may bomb in the next operation involving the document
(e.g., the next screen refresh).

We have to distinguish three classes of errors:

1. the user canceled out of the operation in CheckDi skFi | e,
2. areal error was discovered in CheckDi skFi |l e,
3. areal error occurred during rebuilding the document in Dol ni ti al St at e or ReadFr onFi | e.

In the first and second cases, the memory-resident version of the document has not been changed when you reach
Hdl Rever t Cnd. In the third case, the document may be severely damaged. Therefore, in the first two cases there is no
need to call ShowRevert ed (it doesn't hurt either), while in the third case you must close the document.

Case one is easy to recognize (er r or = 0), but for the second and third cases, err or <> 0. To distinguish between
them, you can pull a trick: you know that the Revert menu item is only enabled if f Docunent . f ChangeCount is
greater than zero. Therefore, you move Set ChangeCount (0) in TDocument . Revert before any operation that can
clobber the document (i.e., before the call to Fr eeDat a). This way, you can distinguish between the second and third
cases in Hdl Rever t Ord by checking f ChangeCount .

Fix:

Change the failure handling procedure in TRever t DocConmand. Dol t (file UMacApp.TDocument.p) to:

PROCEDURE Hdl Revert Crd(error: OSErr; message: LONG NT);
BEG N
{Check whet her the docunent has al ready been cl obbered }
| F f ChangedDocunent . Get ChangeCount = 0 THEN
f ChangedDocunent . 0 ose {renove the debris
| eft by fChangedDocunent}
END;

In TDocumnent . Rever t , movetheline
Set ChangeCount (0) ;

Bugs In MacApp? Yes, But | Love It! Page: 4

beforetheline
Fr eeDat a;

3. It is potentially problematic having Page Setup as an undoable command, since the view and printer driver context
can change. An example of this is shown with the following steps:

1. Launch any MacApp application.

2. Access the Page Setup dialog box from the File menu.

3. Take notice of which printer driver is currently being used and make a change to the dialog box (i.e., switch to
"landscape™ printing), click on the OK button.

4. Access the Chooser desk accessory and change to a different printer driver.

5. Now select Redo Page Setup Changes from the Edit menu, then select Undo Page Setup Changes.

6. Open the Page Setup dialog box from the File menu and notice that the "landscape" printing icon is no longer

highlighted.
7. Although the Page Setup dialog box is unaffected by Undo and Redo, the document itself is affected, as it prints out
in landscape mode, while the Page Setup dialog box shows it is in non-landscape mode.
Solution:

Apple does not yet have a complete solution to this. If it bothers you, you could modify | Pri nt St yl eChangeConmmrand
to make page setup non-undoable.

TControl

1. MacApp's subclasses of TCont r ol (defined in the file UDialog.inc1.p) don't pass on their i t SDocumnment
parameter to the | NHERI TED | Res method. This causes the f Documnent field to get initialized with NI L
rather than the TDocunent reference.

Solution:

You can override the | Res method of your own controls to do an | NHERI TED | Res and then set the f Docunent field to
i t sDocunent :

PROCEDURE TMyButton. | Res(itsDocurment: TDocumnent;
i tsSuper Vi ew. TVi ew,
VAR itsParanms: Ptr); OVERRI DE;

BEG N
| NHERI TED | Res(i t sDocunent ,

i tsSuper Vi ew, itsParans);
f Docunent : = itsDocunent;

Then register your class in your | Your Appl i cat i on method so that all Button references in your ' Vi €W resources
result in TMyBut t ons being created, rather than TBut t ons:

Regi ster St dType(' TM/Button', kStdButton);

However, this solution does not work if you depend on these views appearing in the document's f Vi ewLi st .
Fix:

Replace the calls to | NHERI TED | Res in the | Res methods of subclasses of TCont r ol :

I NHERI TED | Res(NI L, itsSuperView, itsParans);

Bugs In MacApp? Yes, But | Love It! Page: 5

With:

| NHERI TED | Res(i t sDocunent, itsSuperView, itsParans);

2. Printing disabled controls, especially buttons, results in a gray pattern being printed over the control. This is not
a bug in MacApp, but rather a limitation of the LaserWriter. The LaserWriter driver doesn't respect all
QuickDraw transfer modes, including the one used to draw the grey text.
Solution:
Not yet determined. It may involve imaging the button into an off-screen bitmap, and then copying it to its destination.

TCtiMgr

1. Fixed in MacApp 2.0.1.
2. Fixed in MacApp 2.0.1.

TDeskScrapView
1. Fixed in MacApp 2.0.1.
TDialogView

1. TDi al ogVi ew calls DoChoi ce on a disabled button as the result of a key press. If one disables the default
button and presses Return, for example, the button's DoChoi ce method still gets called.

Fix:

The following lines of code appear in TDi al ogVi ew. DoConmrandKey and in TDi al ogVi ew. DoKeyConmrand (file
UDialog.inc1.p):

| F cancel Vi ew. | sVi enEnabl ed THEN
TCont r ol (cancel Vi ew) . Fl ash;
TCont r ol (cancel Vi ew) . DoChoi ce(cancel Vi ew,
TCont r ol (cancel Vi ew) . f Def Choi ce) ;

Replace them with:

| F cancel Vi ew. | sVi ewEnabl ed THEN BEG N
TCont r ol (cancel Vi ew) . Fl ash;
TCont r ol (cancel Vi ew) . DoChoi ce(cancel Vi ew,
TCont r ol (cancel Vi ew) . f Def Choi ce) ;
END,

Additiondly, in TDi al ogVi ew. DoKey Conmand, replace:

| F def aul t Vi ew. | sVi ewEnabl ed THEN
TCont rol (defaul t Vi ew) . Fl ash;
TCont r ol (def aul t Vi ew) . DoChoi ce(def aul t Vi ew,
TCont r ol (def aul t Vi ew) . f Def Choi ce) ;

Replace them

With:

Bugs In MacApp? Yes, But | Love It! Page: 6

| F defaul t Vi ew. | sVi ewEnabl ed THEN BEG N
TCont rol (defaul t Vi ew). Fl ash
TCont r ol (def aul t Vi ew) . DoChoi ce(def aul t Vi ew,
TCont r ol (def aul t Vi ew) . f Def Choi ce) ;
END;

Solution:
You can do this as an OVERRI DE if you hesitate to change MacApp.
TDocument

1. TDocunent . Save fails if you lock a file after opening it with read and write access and then try to save. The file
is closed and f Dat aRef Numand f Rsr cRef Numcontain their old (and now invalid) values.

Solution:
Not yet determined.

1. If Get Fi | el nf 0 returns a result other than NOEr r, TDocunent . Di skFi | eChanged maps it to
err Fi | eChanged, because there is no check for (err = NnoOErr) in the ELSE | F branch. The resulting
alert is misleading, as the file may also have been renamed, deleted, or the file server may have gone offline.

Fix:

The error checking code in TDocumnent . Di skFi | eChanged (file UMacApp.TDocument.p) should look like:

err := CGetFilelnfo(fTitler”, fVol Ref Num pb);

IF (err = noErr) THEN
| F checkType
& (pb.ioFl Fndrlnfo. fdType <> fFil eType) THEN
err := errFTypeChanged
ELSE | F pb.i oFl MiDat <> f ModDate THEN
err := errFil eChanged;
D skFi |l eChanged : = err;

3. It is not possible to use the Pascal built-in filing function Cl 0se from within a TDocunent method because the
Object Pascal scoping rules always associate the name Cl ose with TDocunent . C ose.

Solution:

It is likely that Apple will change the name in the future. After all, there are three distinct objects that implement a

Cl ose method, none of which have any relation to another; something like that needs to be cleaned up. In the meantime,

you could make a global routine M/Cl 0se that would be a wrapper for the Cl 0Se routine.

TEditText

1. If the first or only TEdi t Text in a dialog has auto-wrap turned on and is not initially selected, tabbing to it

after opening the window selects it, but the selection is not visible until the window is refreshed. This does not
occur if auto-wrap is turned off for that TEdi t Text .

Solution:

Not yet determined.

2. TEdi t Text items in TDi al ogVi ews no longer get the first crack at events, as they used to in MacApp 2.0b9.
The event handler chain is now gTar get -> TDi al ogTEVi ew-> TScrol | er -> TEdi t Text ->

Bugs In MacApp? Yes, But | Love It! Page: 7

TDi al ogVi ew-> etc., so all events in which a subclass of TEdi t Text might be interested are caught by
TDi al ogTEVI ew.

Solution:

Create your own subclass of TDi al ogTEVi ew that handles the interesting characters by overriding
TDi al ogVi ew. MakeTEVi ewand returning your own subclass of TDi al ogTEVI ew.

Fix:

A clean fix to this problem might be to rearrange the event handler chain to gTar get -> TEdi t Text ->
TDi al ogTEVIi ew-> TScrol | er -> TDi al ogVi ew -> etc. However, this approach is more work for
TDi al ogTEVi ew. | nst al | Edi t Text , and the effects of rearranging the target chain are currently untested.

TEvtHandler
1. TEvt Handl er . DoCr eat eVi ews now calls TVi ew. Adj ust Si ze on the root view it just created. This change
was made to give views an early chance to make sure they are correctly sized. However, the change can cause your
application to break if you override routines that perform Adj ust Si ze calls (like TVi ew. Cal cM nSi ze)

and those routines rely on information that is not initialized until after DoCr eat eVi ews returns to
TYour Docunent . DoMakeVi ews.

Solution:

Simply be aware of this change. If you initialize fields of your views in your DoMakeVi ews method, then overrides of
methods such as TVi ew. Resi ze, TVi ew. Conput eSi ze, and TVi ew. Cal cM nSi ze should take into account that
these fields may not yet be initialized. At the very least, TYour Vi ew. | Res should set these fields to NI L.

TGridView

1. Attempting to selecta TG i dVi ewcel | for which CanSel ect Cel | returns FALSE causes the current
selection to be deselected.

Solution:

Override TG i dVi ew. DoMbuseConmrand t o call | dent i f yPoi nt . If a valid cell is returned, call
CanSel ect Cel | . If it returns TRUE, call | NHERI TED DoMbuseConmand. This inhibits all tracking if the user
initially clicks in a disabled cell.

Fix:

Replace the following line in TCel | Sel ect Command. Tr ackMouse (file UGridView.inc1.p):

IF LONG NT(clickedCell) <> LONGA NT(fPrevCel l)

With:

IF (LONG NT(clickedCell) <> LONG NT(fPrevCell))
& fGidView CanSel ect Cel | (clickedCell)

2. Fixed in MacApp 2.0.1.

3. TGi dVi ew. DrawCel | is called with the clip region set wide open, which allows any override of Dr awCel | to
draw anywhere within the TG i dVi ew. It is likely that this is not desired, and the responsibility for clipping
could be added to TG i dVi ew.

Fix:

In TG i dVi ew. Dr awRangeO Cel | s (file UGridView.inc1.p), add a local RgnHandl e called ol dC i p. Initialize

Bugs In MacApp? Yes, But | Love It! Page: 8

ol dd i p with the following lines at the beginning of the method:

olddip := MakeNewRgn;
CGetdip(olddip);

Next, clip to the current cell by adding the follow ng
lines before the line that says aCell.h :=i:

{$!l FC gDebug}
UseTempRgn(' TG i dVi ew. Dr awRangeCOf Cel | s') ;
{ SENDC}
Rect Rgn(gTenpRgn, aQDRect) ;
Sect Rgn(ol dd i p, gTenpRgn, gTenpRgn);
Setd i p(gTenpRgn);
{$!l FC gDebug}
DoneWt hTenmpRgn;
{ SENDC}

Finally, add the following lines at the end of the method:

Setdip(olddip);
D sposeRgn(ol dd i p);

Tlcon
1. Fixed in MacApp 2.0.1.
TList

1. If you have a TLi St subclass with a St r i ng instance variable, it is not possible to use the Pascal string built-in
function Del et e on it because the Object Pascal scoping rules always associate the name Delete with
TLi st . Del et e.

Solution:

Apple will change the name in the future. In the meantime, you could make a global routine MyDel et e that would be a
wrapper for the string Del et e routine.

TNumberText

1. When the length of the text in a TNunber Text instance is 0, Get Val ue returns 0, and Val i dat e returns
kVal i dVal ue. The value is not checked against f M ni mumor f Maxi num so your application may be fed with a
value it is not prepared to handle.

Fix:

Ideas for solutions or fixes are outlined in the comment in TNunber Text . Val i dat e (file UDialog.inc1.p).
TPopup

Fixed in MacApp 2.0.1.

Fixed in MacApp 2.0.1.

Fixed in MacApp 2.0.1. .
TPopup no longer calls DoChoi ce if the same item is reselected.

PoNPE

Fix:

In TPopup. DoMouseComand (file UDialog.inc1.p) is the following line:

Bugs In MacApp? Yes, But | Love It!

IF (H Wrd(result) <> 0)
& (newChoi ce <> fCurrentltem THEN

Remove the "& (hewChoi ce <> fCurrent!temn) " part.

TPopup. Set Curr ent | t emneither restores the port colors correctly nor uses the right rectangle to obtain the menu

colors for the popup box.

Fix:

In TPopup. Set Cur r ent | t em(file UDialog.inc1.p), declare the following two new local variables:

Then, replace;
IF redraw & Focus & |IsVisible THEN BEG N

With:

TScroller

Fix:

Addan | NHERI TED Reveal Rect call to TScrol | er. Reveal Rect (file UMacApp.TScroller.p):

newFCol or: RGBCol or;
newBkCol or: RGBCol or;

Cet QDEXt ent (nenuRect) ;
Get MenuCol or s(menuRect, f Menul D,
item newrCol or, newBkCol or);
Set | f Col or (newFCol or); Set|fBkCol or (newBkCol or) ;
Dr awPopupBox(nenuRect) ;
END,

IF redraw & Focus & |IsVisible THEN BEG N

Get | f Col or (ol dFCol or); CetlfBkCol or (ol dBkCol or) ;
Cal cMenuRect (menuRect) ;

CGet MenuCol or s(nmenuRect, fMenul D, fCurrentltem
newFCol or, newBkCol or) ;
Set | f Col or (newFCol or); Setl fBkCol or (newBkCol or) ;
Dr awPopupBox(nenuRect) ;
Reset colors to their original state }
Set | f Col or (ol dFCol or); Set|fBkCol or (ol dBkCol or);

1. TScrol | er. Reveal Rect doesn't call | NHERI TED Reveal Rect . This has implications in situations where
you have nested scrollers. If, for example, you run DemoDialogs, select the first menu item, press the Tab key,
then begin typing, the TEdi t Text item you are modifying is not scrolled into view. This is because while your
selection is revealed within the context of the TEdi t Text , the TEdi t Text item itself is not scrolled into view.

Bugs In MacApp? Yes, But | Love It! Page: 10

PROCEDURE TScrol | er. Reveal Rect(...);
BEA N

Scrol | By(delta. h, delta.v, redraw);
O fset VRect (rect ToReveal , -fTransl ati on. h,
-fTransl ati on. v);
| NHERI TED Reveal Rect (rect ToReveal ,
m nToSee, redraw); { add this call }
END;

TStdPrintHandler

1. An extra blank page is printed if TSt dPri nt Handl er . f Fi xedSi zePages = FALSE and
fSi zeDet erm ner = sizeFil | Pages. This is because TVi ew. Conput eSi ze computes the view's size
as a multiple of the printable page size for Si zeFi | | Pages, ignoring that the view need not use the full size of
each page.

Solution:

Always set both Boolean components of f Fi xedSi zePages to TRUE These are initialized from the last two parameters
you pass to | St dPri nt Handl er.

Solution:
Usef Si zeDeterm ner = sizeVari abl e.

2. Simply using the naked DI V operator for scaling t heMar gi ns in TSt dPri nt Handl er. CheckPri nter
introduces rounding errors. These errors may be disturbing if you need precise control over the margins used for
printing.

Fix:

Insert the following local procedure in TSt dPri nt Handl er. CheckPri nt er (file UPrinting.inc1.p):

FUNCTI ON Scal el nt eger (t heVal ue, theMiltiplier,
theDi visor: Integer): Integer;

VAR
i nt ermedi ate: Longint;
BEG N
intermediate := IntMiltiply(theValue, theMultiplier);
IF intermedi ate >= 0 THEN
intermediate := internediate + ABS(theDivisor) div 2
ELSE
intermediate := internediate - ABS(theD visor) div 2;
Scal el nteger := internediate DV t heD visor;
END;

In the implementation of TSt dPri nt Handl er . CheckPri nt er, replace the lines:

i ply(theMargins.left, h) DV ol dMargi nRes. h,

i (theMargins.top, v) DV ol dMargi nRes. v,
(theMargins.right, h) DV ol dvargi nRes. h,
(theMar gi ns. bottom v) DIV ol dMar gi nRes. V) ;

Set Rect ('t heMar gi ns,
I
I
I
I

iply
iply
iply

With:

Bugs In MacApp? Yes, But | Love It! Page: 11

Set Rect (t heMar gi ns,
Scal el nt eger (theMargi ns. | eft, fMargi nRes. h, ol dvargi nRes. h),
Scal el nt eger (t heMar gi ns. top, fMargi nRes. v, ol dvargi nRes. V),
Scal el nt eger (t heMargi ns. right, fMrgi nRes. h, ol dMargi nRes. h),
Scal el nt eger (t heMar gi ns. bott om f Margi nRes. v, ol dvargi nRes. Vv));

3. TSt dPri nt Handl er. CheckPri nt er calculates f Mar gi nRes incorrectly for scaled printing. It does not
take into account any scaling factors imposed by the user in the _Pr St | Di al og dialog box.

Fix:

Use the following until Apple can come up with something better. Note that this fix relies on the undocumented fields
prStl.iPageVandprStl.i PageH. Additionally, it implements a dubious technique that gets around the assumption
that any printer supporting landscape printing also supports _Pr Gener al , which is not always the case; therefore, this
fix is considered temporary. You should already have applied the fix to the second bug in the TSt dPr i nt Handl er

section.

Insert the following local procedure after Scal el nt eger in TSt dPri nt Handl er. CheckPri nt er (file
UPrinting.inc1.p):

PROCEDURE Adj ust Mar gi nRes;
PROCEDURE DoAdj ust Mar gi nRes;

VAR
get Rot at i onBl ock: TGCet Rot nBl k;

BEA N
W TH get Rot ati onBl ock DO BEG N
i QpCode : = get Rot nQp;
| Reserved : = 0;
hPrint := THPrint(fHPrint);
bXtra : = 0;
END;
Pr Gener al (@et Rot ati onBl ock) ;
IF (PrError <> noErr)
| (getRotationBlock.iError <> noErr) THEN BEGA N
W TH f PageAr eas. t hePaper DO
get Rot at i onBl ock. f Landscape := right - left >
bottom - top;
PrSetError(noErr); { clear print error - Printing
Manager won't do it }
END;
W TH
f PageAr eas. t hePaper,
f Mar gi nRes,
THPri nt (f HPri nt) A~
DO BEG N
{$PUSH} {$H} { shut up, dunb conpiler! }
{ The undocunented fields prStl.iPageH &
prStl.i PageH seem unaffected by rotation, so
we have to rotate them}
| F get Rot ati onBl ock. f Landscape THEN BEG N
f Margi nRes. h : = Scal el nt eger (i PrPgFr act
right - left,
prStl.iPageV);
f Mar gi nRes. v : = Scal el nt eger (i PrPgFract,
bottom - top,
prStl.iPageH);
END ELSE BEG N
f Mar gi nRes. h : = Scal el nt eger (i PrPgFract,

Bugs In MacApp? Yes, But | Love It! Page: 12

right - left,
prStl.iPageH);
f Margi nRes. v : = Scal el nt eger (i PrPgFract ,

bottom - top,
prStl.iPageV);

END;

{ $PCP}

END;, { WTH }
END;
END;

BEG N

Dol nMacPri nt (DoAdj ust Mar gi nRes) ;
END;

In TSt dPri nt Handl er . CheckPri nt er, replace everything after f PageAr eas. t hePaper : = rPaper and up
to, but not including, the statement f Pri nt er Dev : = i Dev; with the following lines:

Adj ust Mar gi nRes;
W TH prlnfo DO BEG N

Next, you have to take into account the fact that CheckPr i nt er can open and close the print driver. This can be bad when
you are in the middle of printing because you are closing a driver that needs to stay open.

An ideal solution would include some sort of mechanism to keep track of whether the printer was already open when you
open it again, or maintain a reference count on the number of nested calls to DoMacl nPr i nt . However, for now, we can

put in a simple check to avoid the one place where nesting occurs. First, add the following line to the beginning of
CheckPrinter:

if fPPrPort = nil then begin

Then, insert the following statement just before the end of CheckPri nt er:

end;

Finally, you need to set f PPr Port to NI L when not printing. In TSt dPri nt Handl er . OneSubJob, replace:

Prd oseDoc(fPPrPort);{ This will close the port! }

With:

Prd oseDoc(fPPrPort); { This will close the port! }
fPPrPort := NL; { Lose the reference }

4. Fixed in MacApp 2.0.1.
TTEView
1. Fixed in MacApp 2.0.1.

2. Fixed in MacApp 2.0.1.
3. Ina TTEVIi ewwith non-zero bottom inset, only part of the second is displayed when text wraps to a new line.

Bugs In MacApp? Yes, But | Love It! Page: 13

Solution:
Always have a bottom inset of zero.
Fix:

Modify TTEViI ew. St uf f TERect s (file UTEView.TTEView.p) to give the TERecor d a bottomless dest Rect and
vi ewRect . Replace:

With:
BEG N
right := MAX(right, left + aFontl nfo.w dVax);
bott om : = MAXI NT; { give us a bottonl ess destrect }

4. TTEVI ew. SynchVi ewonly updates the text if the line heights have changed. It calls Cal cReal Hei ght , and if
it has not changed, it doesn't do anything. If a program modifies the text directly, it must call For ceRedr aw. For
instance, say that you have a class TM/ TEVi ew has the following routine:

PROCEDURE TMYTEVI ew. TweekText ;
VAR
nyText : Text Handl e;
BEA N
myText := Extract Text,;
{ do some mungi ng of the text (e.g., search and repl ace) }
{ make TTEVi ew di spl ay changed text }
Recal cText ;
SynchVi ew(kRedr aw) ;
I''l W shouldn't have to force a conplete redraw !!! }
For ceRedr aw;

Solution:

call For ceRedr awas above, until Apple has a solution. It could be that removing the f Last Hei ght <> t heHei ght
comparison in SynchVi ewdoes the trick, but it may also result in unnecessary updates and flashing.

5. You may find it useful to use a TTEVi ewas a Read-Only view. To do this, disable the view and set
f Accept sChanges to FALSE However, with these settings, the Select All menu item is still enabled.

Fix:

In TTEVi ew. DoSet upMenus (file UTEView.TTEView.p), replace the line:

Enabl e(cSel ect All, (fHTEM.telLength > 0));

With:

Enabl e(cSel ect Al l, |sVi enEnabl ed & (f HTE*. telLength > 0));

6. Fixed in MacApp 2.0.1.
7. TTEVi ewsometimes leaves the image of a caret behind as it scrolls. This is usually experienced when scrolling a

Bugs In MacApp? Yes, But | Love It! Page: 14
left-justified TEdi t Text item for the first time.
Fix:

Modify TTEViI ew. St uf f TERect s (file UTEView.TTEView.p) to give the TERecor d a little more room on the left or
right. Replace:

right := MAX(right, left + aFontlnfo.w dMax);

With:
IF (fSizeDeterminer[h] = sizeVariable) &
NOT fStyl eType & NOT f Aut oW ap THEN
BEG N
CASE Get Actual Justification(fJustification) OF
teJustLeft, teForceLeft:
right := right + aFontlnfo.w dMax;
teJustRight: left :=1left - aFontlnfo.w dMax;
teJustCenter: right :=
MAX(right, left + aFontl nfo.w dWVax);
END;
END
ELSE
right := MAX(right, left + aFontlnfo.w dMax);
Note:

You should make this modification only after making the changes described in TTEVI ew #3.

Because the size of vi ewRect and dest Rect of the TERecor d are now dependant on the justification being used,
TTEViI ew. Set Justi fi cati on needs to call St uf f TERect s. Add a local Rect variable called r . Then, after the line
thatsays f Justification : = newJust, add:

r.topLeft := flnset.topLeft;
r.right := fSize.h - flnset.right;
r.bottom:= fSize.v - flnset.bottom
St uf f TERect s(r);

8. Fixed in MacApp 2.0.1.
9. Scrolling a TTEVI ew quickly via cursor keys or by pasting new text does not immediately update the newly
revealed regions, which can lead to unpleasant cosmetic artifacts.

Fix:

In TTEVi ew. Scr ol | Sel ecti onl nt oVi ew (file UTTEView.TTEView.p), add a call to Updat e after the call to
Reveal Rect .

TView

1. TEvt Handl er . DoCr eat eVi ews doesn't work right if you build your view tree in the "wrong" order (i.e.,
breadth-first order). If you declare them as a hierarchy of levels, like this:

Bugs In MacApp? Yes, But | Love It! Page: 15

Vi ewA
Vi ewB
SubVi ewA- 1
SubVi ewA- 2
SubVi ewB- 1
SubVi ewA- 1-1

DoCreateViews cannot find SubViewA-1 when creating SubViewA-1-1.
Solution:

Declare your views in this order (walking the tree) in the Rez file:

Vi ewA
SubVi ewA- 1
SubVi ewA- 1- 1
SubVi ewA- 1- 2
SubVi ewA- 2
Vi ewB

2. TVi ew. Focus does not always work correctly in long coordinate situations. When dealing with view systems that
stay entirely within QuickDraw's 16-bit coordinate plane, focusing works correctly. However, when dealing with
larger view systems, TVi ew. FOCuUS does not always correctly switch over to MacApp's 32-bit coordinate
system.

Fix:

In TVi ew. Focus (file UMacApp.TView.p), replace:

| F fSize.vh[vhs] > kMaxCoord THEN

With:

I F (fSize.vh[vhs] > kMaxCoor d)
| (ABS(fLocation.vh[vhs]) > kiMaxCoord)

Daring Fix:

You can try taking out short coordinate focussing altogether. This solution has not yet been fully tested, so there may be
some side effects of which Apple is unaware. In TVi ew. Focus (file UMacApp.TView.p), replace:

FOR vhs := v TO h DO
| F fSize.vh[vhs] > kMaxCoord THEN BEG N
tempLongXf fset : = gLongOffset.vh[vhs] - flLocation.vh[vhs];
rel Oigin.vh[vhs] := tenpLongCffset MOD kMaxQri gi nFi xup;
gLongO fset. vh[vhs] := tenmpLongOifset - rel Oigin.vh[vhs];
END ELSE BEG N
rel Oigin.vh[vhs] := gLongOfset.vh[vhs] -
f Locati on. vh[vhs];
gLongO fset. vh[vhs] := 0;
END,

With:

Bugs In MacApp? Yes, But | Love It! Page: 16

FOR vhs := v TO h DO BEG N
tenmpLongOF fset : = gLongOifset.vh[vhs] - flLocation.vh[vhs];
rel Oigin.vh[vhs] := tenpLongOffset MOD kMaxQri gi nFi xup;
gLongO fset. vh[vhs] := tenpLongOfset - rel Oigin.vh[vhs];
END,

3. TVi ewcalls _| nval Rect and_Val i dRect directly. These are Window Manager calls which assume that the
current port (t hePort) is a window. If t hePor t is not a window and these calls are made, all sorts of nasty
fireworks happen. This bug only appears when a TVi ewis placed in something other than a TW ndowand the
view calls TVi ew. | nval i dRect, TVi ew. | nval i dRect, or TVi ew. Val i dVRect .

For example, when using a TG i dVi ewas a subview of a TMenu, | G'i dVi ewresults in a call to
TVi ew. | nval i dRect . Since TMenu carries its own & af Port , the | nval Rect onthe TMenu G af Port fails.

Fix:

In the file UMacApp.TView.p, modify the methods TVi ew. | nval i dRect, TVi ew. | nval i dVRect, and
TVi ew. Val i dVRect to UMacApp.TView.p, as shown.

{$S MAViI ewRes}
PROCEDURE TVi ew. | nval i dRect (r: Rect);

BEG N
I F | sShown & Focus THEN
BEGA N

Vi si bl eRect (r);
| F NOT EnptyRect(r) THEN
I nval i dat eFocusedRect (r);
END;
END;

{$S MAVI ewRes}
PROCEDURE TVi ew. | nval i dVRect (vi ewRect: VRect);

VAR
r: Rect ;

BEG N
| F | sShown & Focus THEN
BEG N
Vi ewToQ@Rect (vi ewRect, r);
Vi si bl eRect (r);
| F NOT EnptyRect(r) THEN
I nval i dat eFocusedRect (r);
END;
END;

{$S MAViI ewRes}
PROCEDURE TVi ew. Val i dVRect (vi ewRect: VRect);

VAR
r. Rect ;

BEG N
I F | sShown & Focus THEN
BEG N
Vi ewToQDRect (vi ewRect, r);

Bugs In MacApp? Yes, But | Love It! Page: 17

Vi si bl eRect (r);

| F NOT EnptyRect(r) THEN
Val i dat eFocusedRect (r);

END;

Next, in UMacApp.TView.p, add TVi ewl nval i dat eFocusedRect and TVi ewVal i dat eFocusedRect . These are
the routines that forward up the view hierarchy until finding a TW ndow. You also take this opportunity to add
TVi ew. Val i dat eRect --a QuickDraw version of TVi ew. Val i dVRect --for completeness.

{$S MAViI ewRes}
PROCEDURE TVi ew. | nval i dat eFocusedRect (r: Rect);

BEG N
| F f SuperView <> NI L THEN
f Super Vi ew. | nval i dat eFocusedRect (r);
END;
{$S MAViI ewRes}

PROCEDURE TVi ew. Val i dat eRect (r: Rect);

BEG N
I F | sShown & Focus THEN
BEGA N

Vi si bl eRect (r);
| F NOT EnptyRect(r) THEN
Val i dat eFocusedRect (r);
END;
END;

{$S MAVi ewRes}

PROCEDURE TVi ew. Val i dat eFocusedRect (r: Rect);
BEG N
| F f SuperView <> NI L THEN

f Super Vi ew. Val i dat eFocusedRect (r);
END;

In TW ndow, you then override TVi ew. | nval i dat eFocusedRect and TVi ew. Val i dat eFocusedRect in
UMacApp.TWindow.p to call the Window Manager routines.

{$S MAW ndowRes}
PROCEDURE TW ndow. | nval i dat eFocusedRect (r: Rect); OVERR DE;

BEG N
I nval Rect (r); { Call the Tool Box routine. }

{$S MAW ndowRes}
PROCEDURE TW ndow. Val i dat eFocusedRect (r: Rect); OVERRI DE;
BEGA N

Val i dRect (r); { Call the Tool Box routine. }
END;

Bugs In MacApp? Yes, But | Love It! Page: 18

Finally, in UMacApp.p add the following declarations for the new routines:

PROCEDURE TVi ew. | nval i dat eFocusedRect (r: Rect);
PROCEDURE TVi ew. Val i dat eRect (r: Rect);
PROCEDURE TVi ew. Val i dat eFocusedRect (r: Rect);
PROCEDURE TW ndow. | nval i dat eFocusedRect (r: Rect); OVERR DE;
PROCEDURE TW ndow. Val i dat eFocusedRect (r: Rect); OVERRI DE;

With those changes in place, all calls to _Val i dRect in the rest of MacApp should now be calls to
TVi ew. Val i dat eRect . The only methods this affects are TSScr ol | bar . Acti vat e and TDeskScr apVi ew. Dr aw.

4. When the focus is invalidated during printing, MacApp is not able to restore it properly. For example, you could
move a subview during printing because you don't know where it's supposed to go until you need it. When MacApp
tries to refocus, the clip region is set to an empty region, and nothing gets printed from that point on.

Solution:
Not yet determined. It's not clear whether MacApp should handle such odd things as moving subviews during printing.

5. Fixed in MacApp 2.0.1.
6. When the call to FocusOnSuper Vi ewin TVi ew. Focus returns FALSE, Focus tries to invalidate all focus
information with the statements:

C i pRect (gZer oRect) ;

The problem with these statements is that | nval i dat eFocus sets gFocusedVi ewto Nl L only if the focus is on some
view in the subview hierarchy of SELF. Thus, if the focus is on some completely unrelated view in the same port, the clip
region of the port of that view is set to gZer oRect , but gFocusedVi ewis unaffected. If the FOCUS method of
gFocusedVi ewis called later, its call to | SFocused returns TRUE, but drawing does not work because the clip region
is empty.

Fix:

In TView.Focus (file UMacApp.TView.p), remove the call to _C i pRect . It might also be a good idea to do the same in
TW ndow. Focus since the _Cl i pRect call is being made on an essentially random port.

TWindow

1. Fixed in MacApp 2.0.1.
2. Fixed in MacApp 2.0.1.
3. TW ndow. Cent er can sometimes move large windows with title bars under the menu bar.

Fix:

In TW ndow. Cent er (file UMacApp.TWindow.p), replace the following lines:

|F forD al og THEN
{ Put it inthe top third of the screen }
top := ((screenSize.v - contentSize.v
+ fContRgnlnset.v) DV 3) + 20
ELSE
top := ((screenSize.v - contentSize.v

With:

Bugs In MacApp? Yes, But | Love It! Page: 19

I F forD al og THEN
{ Put it inthe top third of the screen }
top := ((screenSize.v - w ndowsi ze.v) DIV 3)
{ calculate spare area }
+ gMBar Hei ght
{ add nenu bar }
{ calculate the right offset of
content inside the w ndow }
+ ((wi ndowsi ze.v - contentsize.v
+ fCont Rgnl nset.v) DV 2)
ELSE
top := ((screenSize.v - w ndowsize.v) DV 2)
{ calcul ate spare area }
+ gMBar Hei ght
{ add nenu bar
{ calculate the right offset of content
i nsi de the wi ndow }
+ ((wW ndowsi ze.v - contentsize.v
+ fContRgnlnset.v) DV 2);

Assorted Problems Due to a New TView.Focus Definition

The next items address a class of problems related to the fact that TVi ew. Focus is defined to return TRUE if a drawing
environment can be obtained (e.g., a G af Port). Thus it now returns TRUE even if the view is invisible. The various
problems are: 1) invisible controls in dialog boxes accepting mouse-down events and doing things; 2) children of

invisible controls being asked to draw or handle a mouse-down event; 3) scroll bars of hidden scrollers appearing; 4)
hidden scroll bars of scrollers not appearing; and 5) calls to | SShown for an arbitrary view returning incorrect results.

1. TVi ew. | sShown contains the following line:

It turns out that the answer to this question is yes. There are many problems that occur in MacApp that are caused by
views who are themselves not hidden, but whose superviews are. For instance, it is possible for a click to be registered on
a view whose superview is hidden. This can cause the previously hidden control to appear.

Fix:

In TVi ew. | sShown (file UMacApp.TView.p), replace the line above with the following:

| F f SuperView <> NI L THEN
| sShown : = f Shown &
f Super Vi ew. | sShown { By definition, a view cannot be
shown if its superviewisn't.}
ELSE | sShown : = f Shown;

2. Having TVi ew. | sShown reflect the willingness of all its superviews to be shown causes one problem in MacApp.
When aTScr ol | er creates its scroll bars, it sets the f Shown field of the TSScr ol | Bar to the result of
TScrol | er. | sShown. However, at the time a scroller creates its scroll bars, the window they are in is
invisible. Its | sShown method returns FALSE, which is propagated down to the TScr ol | er, causing
TScrol | er. Creat eTenpl at eScrol | Bar to initialize TSScr ol | Bar . f Shown to FALSE

Fix:

Cause the TSScr ol | Bar to inherit the f Shown field of its TScr ol | er only. In
TScrol | er. Creat eTenpl at eScr ol | Bar (file UMacApp.TScroller.p), replace:

anSScrol | Bar . f Shown : = | sShown;

Bugs In MacApp? Yes, But | Love It! Page: 20

With:

anSScrol | Bar . f Shown : = f Shown;

3. Thereis no TQt | Myr . Showto control the setting of f CMgr Cont r ol A, cont r| Vi S. Neglecting to do so
results in certain silly things happening, like an activate event triggering the drawing of your invisible scroll
bars.

Fix:
Override TVi ew. Show with the following version of TCt | Mgr . Show (file UMacApp.TControls.p). Don't forget to also
update the declaration of TCt | Mgr in UMacApp.p:
PROCEDURE TCt | Myr. Show(state, redraw. BOOLEAN);
BEG N

SetCMyrVisibility(state);
| NHERI TED Show(state, redraw);

Additionally, TScr ol | Bar needs to override Showto implement its special appearance when shown in an inactive
window. Add the following method to UMacApp.TControls, and add the appropriate declaration to UMacApp.p:

PROCEDURE TScrol | Bar. Show(state, redraw. BOOLEAN);

VAR
i tsWndow. TW ndow,

BEG N

| NHERI TED Show(state, redraw;

i tsWndow : = Get W ndow;

SetCMyrVisibility(state & (itsWndow <> N L)
& itsWndow. flsActive);

4. TControl . Cont ai nsMouse needs to call TCt | Mgr . | sShown. Otherwise, it's possible for those controls to
receive mouse clicks.

Fix:

Use the following version of TCont r ol . Cont ai nsMouse (file UMacApp.TControls.p):

FUNCTI ON TCont r ol . Cont ai nsMouse(t heMouse: VPoi nt): BOOLEAN, OVERRI DE;

VAR
aRect: Rect;
BEG N
| F | sShown THEN
BEG N

Cont r ol Area(aRect) ;
Cont ai nsMouse : = PtlnRect (VPt ToPt (t heMbuse), aRect);
END
ELSE
Cont ai nshMbuse : = FALSE;

5. TVi ew. Focus used to return FALSE if the view was invisible. It no longer does this, and many routines in
MacApp relying on this behavior now need to check this explicitly:

Bugs In MacApp? Yes, But | Love It! Page: 21

Fix:

The following routines should be modified to check | SShown before calling FOCus. Note that the changes to
TVi ew. | nval i dVRect, TVi ew. | nval i dVRect, and TVi ew. Val i dRect need not be made if the modifications to
the third bug in the TVi ewsection have been made.

TVi ew. | sVi ewkEnabl ed (file UMacApp. TVi ew. p)
| sVi ewkEnabl ed : = f Vi ewEnabl ed & | sShown;

TGidView HghlightCells (file UGidViewincl.p)
IF (fromHL <> toHL) & I sShown & Focus THEN

TC | Myr. Wi | eFocused (file UvacApp. TControl s. p)
TTEVi ew. SynchVi ew (file UTEVi ew. TTEVi ew. p)
| F redraw & | sShown & Focus THEN

TVi ew. | nval i dRect (see above comment) (

TVi ew. | nval i dVRect (see above comment)

TVi ew. Val i dVRect (see above comment) (fi

TG idView I nval i dateSel ection (file UGid

TScrol l er. Scrol | Draw (file UvacApp. TScrol
| F I sShown & Focus THEN

| e UMacApp. TVi ew. p)
ile UMacApp. TView. p)
e UMacApp. TView.p)
ew. i ncl. p)

er.p)

fi
(f

il
Vi
| e

TSScrol | Bar. Activate (file UvacApp. TControl s. p)
add this check before Wil eFocused:

6. With the changes from bug five in place, a problem appears when a TScr ol | er is resized. The scroller hides its
scroll bars, resizes itself, adjusts its scroll bars, and shows them again. Adj ust Scr ol | bar s potentially asks a
scroll bar to invalidate itself. However, at that time, the scroll bar is invisible, thus its contents cannot possibly
be wrong, as they have yet to be drawn. It is the scroll bar itself that is wrong, and therefore the contents of its
superview (in that rectangle) that must be invalidated.

Fix:

To patch the bug, modify the final few lines of TScr ol | er . Resi ze (file UMacApp.TScroller.p):

FOR vhs := v TO h DO
| F sBar WAsVi si bl e[vhs] THEN
BEG N
fScrol | Bars[vhs]. Set CMyr Vi si bi lity(TRUE) ;
fScrol | Bars[vhs]. ForceRedraw, { this is new }
END;

This is not a real fix, this is only a patch. The final fix probably requires modification to TVi ew. Locat e and
TControl . Resi ze.

7. Fixed in MacApp 2.0.1.

8. Assorted TVi ew. Focus fixes #1 and #5 together have ramifications on
TDi al ogTEVi ew. | nst al | Edi t Text . Because a view is now considered invisible if any of its superviews are
invisible, and a view is now considered disabled if it is invisible, all views are effectively disabled in an invisible
window. The effect of this is that | nst al | Edi t Text disables the floating TDi al ogTEVi ew and its scroller if
called before the window is opened.

Fix:

You can most likely experience the problem when calling TDi al ogVi ew. Sel ect Edi t Text before the window is
opened. Thus, modify Sel ect Edi t Text to check if the window is shown or not. If so, call

Bugs In MacApp? Yes, But | Love It! Page: 22

TDi al ogVi ew. DoSel ect Edi t Text as normal (which eventually calls | nst al | Edi t Text). If the window is not
open, simply set the specified view as the window's target, to be selected when the window is eventually opened. Thus, in
TDi al ogVi ew. Sel ect Edi t Text (file UDialog.inc1.p), add the following local variable:

Then, replace:

With:

| F | sShown THEN
DoSel ect Edi t Text (TEdi t Text (aSubVi ew), sel ect Chars)
ELSE
BEG N
i tsWndow : = Get Wndow,
I F itsWndow <> NIL THEN
i t SWndow. Set Tar get (aSubVi ew)
ELSE
ProgranBreak(' found no way to select the edit text');

Global Routines and Interfaces

Fixed in MacApp 2.0.1.
Fixed in MacApp 2.0.1.
Fixed in MacApp 2.0.1.
Fixed in MacApp 2.0.1.
Fixed in MacApp 2.0.1. Wt hAppl i cat i onResFi | eDo needs a failure handler. Since the method's

apwhPE

normal

behavior is to preserve the current resource file, in case of a failure it should do the same thing. The problem is
that if Wt hAppl i cati onResFi | eDo contains a failure handler, it must be moved to another unit;
UMacAppUti liti es cannotaccess UFai | ur e without introducing a circular reference.

Fix:

Move Wt hAppl i cati onResFi | eDo to the file UMenuSetup.incl.p and change it to the following:

PROCEDURE Wt hAppl i cati onResFi | eDo(PROCEDURE DoW't hResFi | e) ;

VAR
fi: Fai | | nf o;
ol dResFi | e: | NTEGER;

PROCEDURE Hdl Fai l ure(error: CSErr; nessage: LONG NT);

BEGA N
UseResFi | e(ol dResFi |l e) ;
END;

BEG N

ol dResFil e := CurResFil e;

Cat chFai l ures(fi, Hdl Failure);
UseResFi | e(gAppl i cati onRef Nunj ;
DoW t hResFi | e;

Success(fi);

UseResFi | e(ol dResFi | e);

7. Vi si bl eRect returns the intersection of the specified rectangle along with the bounding boxes of the Vi SRgn
and cl i pRgn. When called during a window update, however, the Vi SRgn can be smaller than expected. This
difference can cause Vi Si bl eRect to return different sized rectangles when called inside or outside of an update

Bugs In MacApp? Yes, But | Love It! Page: 23
event.
Fix:

The final fix has not yet been determined; however, you may be able to kludge things by modifying TW ndow. Updat € in
the file UMacApp.TWindow.p. Just before _Begi nUpdat e, add the following line:

Next, add the following line immediately after both calls to _EndUpdat e:

Then, in Vi si bl eRect (file UMacApp.Globals.p), change:
I F NOT gPrinting THEN

To:
IF NOT (gPrinting | gUpdating) THEN

Finally, add gUpdat i ng to the file UMacApp.p, and initialize it to FALSE in | ni t UMacApp. Or you can just live
dangerously and take out the _Sect Rgn call altogether.

8. Patching a trap with the routines in UPat ch can cause a crash under the Finder (when MultiFinder is not
present) if that trap is already patched by MacApp, because the O eanUpMacApp routine incorrectly restores
that trap to point at the MacApp patch, rather than at the original routine.

Solution:

Do not patch traps that MacApp patches (currently: _ExitToShell, _InitCursor, _SetCursor, _SetCCursor, _GetNextEvent,
__EventAvail, _StillDown, and _WaitMouseUp).

Fix:

Rewrite Unpat chTr ap (file UPatch.incl1.p) as follows, so it does the right thing when unpatching traps that have
"newer" patches:

PROCEDURE Unpat chTr ap(VAR t hePat ch: Tr apPat ch);

VAR
aPat chPtr: Tr apPat chPtr;
newer Pat chPtr: TrapPat chPtr;

FUNCTI ON Get Previ ousPat chPtr (t hePat chPtr: TrapPatchPtr):
Tr apPat chPtr;
{ Walks the patch list backwards to return the patch record
just prior to thePatchPtr” in the patch list }

VAR
t empPat chPtr: Tr apPat chPtr;

BEG N
t enpPat chPtr := pPat chLi st;
VWH LE (tenpPatchPtr <> NL)
& (tenpPat chPtr”. next Patch <>

t hePat chPtr) DO

tempPat chPtr := tenpPatchPtr”. next Pat ch;

Get Previ ousPat chPtr : = tenpPat chPtr;
END;

FUNCTI ON Get Newer Pat chPtr: TrapPatchPtr;
{ returns a newer patch record in the patch |ist which has
the sane trapNum as thePatch }

Bugs In MacApp? Yes, But | Love It! Page: 24

BEG N
aPat chPtr := Get Previ ousPat chPtr (@ hePat ch) ;
VWH LE (aPatchPtr <> NIL) & (aPatchPtr”.trapNum <>
t hePat ch. t rapNum) DO
aPat chPtr := GetPreviousPat chPtr(aPatchPtr);
Cet Newer Pat chPtr : = aPatchPtr;
END;

BEA N

{ If this trap has a newer patch than the patch we're renoving,
then we have to take sone extra special precautions. W have
to muck with that patch's ol dTrapAddr to point to this patch
record' s ol dTrapAddr (for both the patch record and the
junpPtr code). W can pretty well ignore the case of an
ol der patch on this sane trap since the trap address in our
patch record will be correct. }

newer Pat chPtr : = Get Newer Pat chPtr;
| F (newer PatchPtr = NI L) THEN
W TH t hePat ch DO
NSet Tr apAddr ess(A dTrapAddr, trapNum
Cet TrapType(trapNuny)
ELSE
BEA N
{ set up newerPatchPtr patch record so that it points to
thePat ch's d dTr apAddr }
newer Pat chPtr”. ol dTr apAddr : = t hePat ch. ol dTr apAddr ;

{ set up newerPatchPtr”™.jnmpPtr so that it junps to where
thePatch's code junps to }
I F (newerPatchPtr™. jnmpPtr <> NIL) THEN
BEG N
| F Longl nt Pt r (newer Pat chPtr”. jnpPtr)” = $2F2F0004 THEN
T1PBl ockPtr (newer Pat chPtr”. j npPtr)”. A dTr apAddr : =
t hePat ch. ol dTr apAddr
ELSE | F I ntegerPtr(newerPatchPtr”.jnpPtr)~ = $2F3C THEN
TPBI ockPt r (newer Pat chPtr”. jnpPtr)”. A dTrapAddr : =
t hePat ch. ol dTr apAddr
ELSE
BEG N
{$! FC gDebug}
Witel n(" ##l n UnpatchTrap: can''t figure out ',
'what kind of patch ', ORD(newerPatchPtr),

sl
DebugStr(' Can''t unpatch trap.');
{ $SENDC}
END;
END;

END;

{ Unlink the patch fromthe linked list of patches }
| F @hePat ch = pPat chLi st THEN
pPat chLi st : = t hePat ch. next Pat ch
ELSE
BEA N
aPat chPtr := pPat chLi st;
VWH LE (aPatchPtr <> NIL) & (aPatchPtr”. nextPatch <>
@ hePat ch) DO
aPat chPtr := aPatchPtr”. next Pat ch;
{ Couldn't find thePatch, so don't try to unpatch it. }
| F aPatchPtr = NIL THEN
EXI T(Unpat chTr ap) ;
aPat chPtr . next Pat ch : = t hePat ch. next Pat ch;

Bugs In MacApp? Yes, But | Love It!

END;

Page: 25

{ If the patch allocated a block in the system heap

deal l ocate it }
W TH t hePat ch DO

jmpPtr := Disposel fPtr(jmPtr);

9. Fixed in MacApp 2.0.1.

10. | sd assl| DMvenber O ass does not range check for negative class IDs. This could result in some extremely
rare cases where a handle appears to be an object when it really is not.

Solution:

In the file UObject.a, replace:

make sure class IDis in range

; make sure class IDis in range

. make

;. make

. make

;. make

. make

;. make

Cmp. W (A0), DO ;
Bge. S i SFALSE
Cmp. W (A0), D1
With:

Cmp. W (A0), DO

Bge. i SFALSE

Tst. W DO

Blt.S i SFALSE

Move. W DO, D2

And #1, D2

Tst. W D2

Bnz. S i SFALSE

Cmp. W (A0), D1

Bge. i SFALSE

Tst. W D1

Blt.S i SFALSE

Move. W D1, D2

And #1, D2

Tst. W D2

sure

sure

sure

sure

sure

sure

cl ass

cl ass

cl ass

cl ass

cl ass

cl ass

is

is

is

is

is

is

in range

non- negati ve

even

in range

non- negati ve

even

11. Discipline signals a problem on a _CGet 1NanmedResour ce call when it tries to load CCDE(" GVai n") . This
segment is listed in ' seg!' and'res!', butit does not exist.

Fix:

This bug is ultra-benign, but can be fixed by removing the reference to GVRi n in the file MacApp.r

12. The number of calls to Regi st er St dType has increased from 17 to 25 since the MacApp 2.0b9 release;
however, the limit (kMaxSi gnat ur es, defined in the file UMacApp.p) remains at 32. This difference means
your application can only register seven additional types instead of the 15 previously allowed.

Fix:

Recompiling MacApp with a limit of 40 should suffice for now. Future versions of MacApp will implement a dynamic list

so that no limits would be imposed.

Bugs In MacApp? Yes, But | Love It! Page: 26

13. Fixed in MacApp 2.0.1.

14. Fixed in MacApp 2.0.1.

15. Fixed in MacApp 2.0.1.

16. MAText Box may have problems if you are drawing with a wide font into a small box in a right-justified script
system.

Fix:

In UMacAppUtilities.inc1.p, add a local | nt eger variable called m nW dt h. Then, replace:

W TH dest Rect DO

With:
W TH dest Rect DO
BEG N
mnWdth : = Max(Max(right - left, w dvax), 20);
CASE Cet Actual Justification(itsJust) OF
t eJust Lef t,
teForceLeft: right :=left + m nWdth;
teJustRight: left :=right - mnWdth;
teJust Center:
BEA N
left := (right+left-mnWdth) DV 2;
right :=left + m nwi dth;
END;
END;
Back to top

MABuild Bugs

13. MABuiIld does not support both AppName.r and AppName.rsrc files as part of a MacApp project. Actually, the
problem is a more general one: the file Build Rules and Dependencies defines the default dependency ".rsrc
[[florin]] .r". Therefore, if AnyFile.rsrc is mentioned either in the file Basic Definitions or your own .MAMake
file, Make produces a command that compiles AnyFile.r into AnyFile.rsrc, or complains if AnyFile.r does not exist.

Solution:

Avoid the .rsrc suffix for files that are not compiled from .r files.

Fix:

Globally replace ".rsrc" with ".r.0" in the files {MATools}Basic Definitions and {MATools}Build Rules and Dependencies.
This change causes Make to create Anyfile.r.o files instead of AnyFile.rsrc files, removing the conflict and preserving any

.rsrc files that you may have created with ResEdit or ViewEdit. Be sure to update your .MAMake file similarly.

2. MABuild doesn't support spaces or multiple files in the Ot her Vi ewTypesSr ¢ Make variable, because of the
following line in the file Build Rules and Dependencies:

Assuming O her Vi ewTypesSr C is set to something like "My Hard Di sk: My Fol der: My Fil e.r", that line gets
expanded to:

The double quotes on either end cancel each other out, and any pathname with spaces is treated as separate items.
Compounding the problem is the fact that "OtherViewTypesSrc" is the name of both a Make variable and a Shell variable.

Fix:

Support for spaces in & her Vi ewTypesSr ¢ can be easily added. In {MATools}Basic Definitions, replace:

Bugs In MacApp? Yes, But | Love It! Page: 27

With:

In {MATools}Build Rules and Dependencies, replace:

I|F "{CQ her Vi ewTypesSrc}" !=""
SET O her Vi ewTypesSrc "{Q her Vi ewlypesSrc}”
SET Xl ncl udeQ her Vi ewTypes 1

With:

| F {OQ her Vi ewlTypesSrc} !'=""
SET XO her Vi ewTypesSrc { O her Vi ewTypesSr c}
SET Xl ncl udeQt her Vi ewTypes 1

This stuff occurs three times, replace it in all three locations. Next, in {MARIncludes}ViewTypes.r, replace the line:

#l ncl ude $$Shel | (" C her Vi ewTypesSrc");
/] let end users extend the view
Il type

With:

#l ncl ude $$Shel | (" XX her Vi ewTypesSrc") ;
Il let end users extend the view
/Il type

3. MABuild doesn't support more than one user library.
Solution:
Not yet determined. Requires a change to MABuildTool.p.

4. Creating an application with JNeeds ROML28K set to TRUE and running it on a 512KE under System 3.2 causes it
to bomb with an ID = 12 error, because the traps that MacApp needs are not present. However, the application
runs properly under System 3.4, as the traps are implemented under that system.

Fix:

Tell MacApp to use the set of glue routines that check for the presence of the needed trap before it is called. In
{MAPInterfaces}UPrinting.p, replace the following lines:

{$lI FC NOT gNeedsROML28K}

{$l FC UNDEFI NED Usi ngPrinting} {$l Printing.p} {$ENDC}

{ SELSEC}

{$l FC UNDEFI NED Usi ngPri nt Traps} {$! PrintTraps.p} {$ENDC}

With:

Bugs In MacApp? Yes, But | Love It! Page: 28

{$l FC UNDEFI NED Usi ngPrinting} {$l Printing.p} {$ENDC}
In {MALi brari es}Privatelnterfaces: UPrinting.p, replace:

{$l FC NOT gqNeedsROML28K}

Printing,

{ $ELSEC}
Print Tr aps,

With:

5. At the top of the file UMacAppUltilities.inc1l.p are the following compiler options:

E $I FC gNanes}
{ $D+}

The intent here is that these routines should not have debugger probes (% BP, % EP, % EX) inserted into them, allowing
them to run at full speed. Unfortunately, if you compile with something like MABUi | d - NoDebug - Tr ace, the
debugger probes are inserted.

Fix:
Add {$D-} before {$IFC gNames}

6. The Commando dialog box for MABUI | d is out of date. For example, - Needs Sy st enb and - NoDebug are now the
MABUI | d default and cannot be turned off through the Commando dialog box.

7. The help button in the debug options dialog box in the MABUI | d Commando interface is partially obscured.

8. The Commando dialog has a three-state button "Show Times", that sets the flag "-T". The help text for this is "Have
all tools show elapsed time." Actually, "-T" tells only MABUI | dTool to show elapsed time; to have all tools do
this, you need the "-TT" flag.

9. There is a small problem in the file {MAPInterfaces}UTEView.p that causes your compiles to be imperceptibly
slower than you would expect. Several references to __ TEVIi ew___ at the top of the file should really be
__UTEVi ew__, thus:

{$| FC UNDEFI NED __ UTEVi ew_}
{$SETC __ UTEVi ew__ : = FALSE}
{ SENDC}

{$| FC NOT __ UTEView }

10. In the file UViewCoords.h, #ifndef __ UVIEWCOORDS___ should be #ifndef ___UViewCoords__.
Fix:

Change the header file.

11. MacApp uses CPlusLib instead of CPlusLib881 when compiling for C++ and FPU support.
Fix:

In the file Basic Definitions, remove "{ CLi brari es} CPl usLi b. 0" from the definition of 31CPl usSupport, add it
to 31CPl usNonFPUSANEL b, and add " { CLi brari es} CPl usLi b881. 0" to 31CPl usFPUSANELI b. Thus, replace:

Bugs In MacApp? Yes, But | Love It! Page: 29

i s s

For MVPW3.0, 3.1

i s

31CPl usSupport = [[partialdiff]]
"{ClLibraries}CRruntime.o" [[partialdiff]]
"{CLibraries}Clnterface.o" [[partialdiff]]
"{CLi braries}CPlusLib.o" [[partialdiff]]
"{CLibraries}StdCLib.o" [[partialdiff]]
"{PLi brari es}PasLi b. o"

31CPl usNonFPUSANELi b = [[partial di ff]]
"{CLi brari es} CSANELI b. 0" [[partialdiff]]
"{PLi braries}SANEl i b. 0" [[partialdiff]]
"{CLibraries}Math.o" [[partialdiff]]
"{CLi brari es} Conpl ex. 0"

31CPl usFPUSANELi b = [[partial diff]]
"{CLi braries}CLi b881.0" [[partialdiff]]
"{CLi brari es} CSANELi b881. 0" [[partial diff]]
"{PLi brari es} SANELi b881. 0" [[partial diff]]
"{CLi braries}Math881. 0" [[partialdiff]]

With:

HHHHH R AHH

For MPW 3.0, 3.1

HHHHH AR AT

31CPl usSupport = [[partial diff]]
{CLi braries}CRuntine.o" [[partialdi
"{ClLibraries}Cnterface.o" [[partia
"{CLibraries}StdCLi b. 0" [[parti al di

ff]]
diff]]
! _ : f1]
"{PLi brari es}PasLi b. o"

[
I
f

31CPl usNonFPUSANELi b = [[partial diff]]
"{CLi braries}CPlusLib.o" [[partialdiff]]
"{CLi brari es} CSANELi b. 0" [[partialdiff]]
"{PLi braries}SANEl i b. 0" [[partialdiff]]
"{CLi braries}Math.o" [[partialdiff]]
"{CLi brari es} Conpl ex. 0"

31CPl usFPUSANELi b = [[partial diff]]
"{CLibraries}CPIusLib881 o" [[partialdiff]]
"{CLibraries}CLi b881. 0" [[partialdiff]]
"{Clerarles}CSANEL|b881 o" [[partialdiff]]
"{PLi braries} SANELi b881. 0" [[partialdiff]]
"{CLi braries}Mat h881. 0" [[partialdiff]]

12. "MABuild's mechanism for handling C++ Load/Dump is sort of lame. Why not support FPU and Load/Dump
simultaneously? It's not that hard to get working."

Fix:
Yeah, but it used to be. So there. MABuUIld is trying to work around a problem that exists in CFront 3.1b3 and earlier. If

you are using a later version, you can remove the safety check. Go into the file MABuildTool.p, remove the following lines,
then rebuild MABUIi | dTool .

Bugs In MacApp? Yes, But | Love It! Page: 30

{ C++ external synbol table files support }
| F fCPl usLoad & fNeedsFPU THEN
BEG N
Echo(''' ###' ' MABui |l d: Warning: CPlusLoad and NeedsFPU
are inconpatible. Using NoCPl usLoad."');
f CPl usLoad : = FALSE;

13. This is not a bug with MABuild, but this change belongs in the MABuild section. With all the changes and fixes
suggested here, one of MacApp's segments--GRes--becomes uncomfortably close to 32K.
Fix:

Move the routines originally mapped to MACont r ol Res and MADocumnent Res into GReS 2 by opening the file
{MATools}Basic Definitions. Change the occurrence of MACont r ol Res=GRes to MACont r ol Res=GRes?2 and
MADocument Res=CGRes to MADocumnent Res=CRes?2.

Back to top

Bugs Only In Debug Mode

These bugs occur only in debug versions of your program, and do not affect the final production version.

13. Di sposel f Handl e fails if called with a valid, but purged, handle:

h : = NewHandl e(20) ;
IF h <> NL THEN
BEG N
Enpt yHandl e(h) ;
Di sposl f Handl e(h); {<--PBreak: 'handle is so
bad, couldn't get handle bits'}

Fix:

In Di sposel f Handl e (file UMacAppUtilities), add:

| F | sHandl ePur ged(aHandl) THEN
{ h mght have been purged }
BEG N
Di sposHandl e(aHandl e) ;
EXI T(D sposel f Handl e) ;

Just before: Thisfix is not the cleanest, but it is the easiest.

2. Doctor, doctor. My application hangs if Print... is chosen while stopped in the debugger.
Solution:

Don't do that.

3. With adesk accessory open in the application heap (e.g., Option-Alarm Clock), you can enter the MacA pp debugger, but it
does not accept any keystrokes.

Solution:
Click in the Debug Transcript window to jumpstart it.

4. If the performance tools are on, you must turn them off with "T"oggle before "E"nding. Failure to do so leaves the

Bugs In MacApp? Yes, But | Love It! Page: 31
performance tools active, although their data has been disposed.
Solution:
Always "T"oggle the performance tools off before "E"nding.
Fix:
Modify Per f Cnd to turn off the performance tools when "E"nding.
5. TTranscri pt Vi ewdoes not initialize f Font | nf o in Cormonl ni t
Fix:
Before the {$Pop} statement in TTr anscri pt Vi ew. Cormonl ni t (file UTranscriptView.inc1.p), add:

6. TLi st . Get Sanel t enNo fails in debug if looking for NI L. With previous versions of MacApp, it was perfectly
acceptable to check for a NI L object in a list. Get Sanel t eniNo would return zero, as expected. With MacApp
2.0, there is an explicit check in debug mode that the object is valid, so passing NI L does not work.

Solution:

Call Get Samnrel t enNo with the following wrapper:

IF obj = NIL then
index :=0
ELSE

Fix:
Modify TLi st . Get Sanel t emNo (file TList.inc1.p) to make the same check.
7. If a failure occurs in | Appl i cat i on, the debugger incorrectly issues the following warning:
"You're leaving a routine without calling Success for a handler that will be destroyed."
This message occurs because the routine MADebugger Mai nEnt ry checks gTopHandl er to see if the Fai | | nf o
record it points to is below the stack. However, this test doesn't work properly if gTopHandl er is NI L, as it is in
| Application.
Fix:

Add a check for (gTopHandl er = NIL) in MADebugger Mai nEnt ry (file UDebug.inc1.p). Replace the line:

f or got Success ((which = tEnd) | (which = tExit))

& (StripLong(LonglntPtr(pLink)?) >=

With:

forgot Success := ((which = tEnd) | (which = tExit))
& (gTopHandl er <> nil)
& (StripLong(Longl ntPtr(pLink)?) >=

8. Fixed in MacApp 2.0.1.
9. Fixed in MacApp 2.0.1.
10. There are two problems with DebugGet Act i veW ndow. These affect you only if you try to inspect the labels

Bugs In MacApp? Yes, But | Love It! Page: 32
CGet Acti veW ndowor Get Act i veDocunent .
Fix:
In UDebug.inc1.p, replace the following lines in DebugCet Act i veW ndow:
pDebugW ndow. f Fl oat s : = FALSE;

{ so the debugger w ndow doesn't get reported }
DebugCet Act i veW ndow : = gAppl i cati on. Get Acti veW ndow;

With:
pDebugW ndow. f Fl oats : = TRUE;
{ so the debugger wi ndow doesn't get reported }
DebugCet Acti veW ndow : = pSavedSt at e. gAppl | cati on. Get Act i veW ndow;
Back to top

MPW 3.2 Compatibility

This section describes problems that occur when trying to build MacApp 2.0 under MPW 3.2. MacApp 2.0 was developed
under MPW 3.0 and 3.1 and could not take into account changes made to MPW 3.2.

Note:

Even at the time of this writing, it is unclear which of the following items will be compatibility problems. For example,
item four is a problem with MPW 3.1al, but not with MPW 3.2b1. On the other hand, item three is a problem with MPW
3.2b1, but not with MPW 3.2al. Apple will update the status of these items when MPW 3.2 is final.

8. The file {MALibraries}Privatelnterfaces:UDebug.p needs symbol information from the file Packages.p. Under
MPW 3.1, this file was automatically included when the file UDebug.p included the file Script.p in its USES
statement. Under MPW 3.2, this is no longer the case, and UDebug does not compile.

Fix:

Add a reference to Packages before Scri pt in the file UDebug.p:

USES
<etc.>
Desk, Disklnit, Tool Wils, Retrace,
Menory, Resources, FixMath, Packages,
Script, PasLiblntf, OSEvents, Traps,

2. The file UDebug.incl.p contains the definition for the following procedure:

PROCEDURE JTOF f Proc(ASJTO fset: UNV | NTEGER;

Di sAsntt r 80 is declared in the file {PInterfaces}DisAsmLookup.p under MPW 3.1. It is no longer used under MPW 3.2.
Fix:
Change Di SAsnt r 80 to St r 255.

3. In the NMRec record defined in the files Notification.c and Notification.p, NS| con has been changed to the

Bugs In MacApp? Yes, But | Love It! Page: 33
infinitely clearer nm con.
Fix:
In UDebug.inc1.p, change the occurrence of NnSI con to n con.
4. At the bottom of the file UDebug.a, there is a line that looks like the following:
Tl OFLUSH is not supported under MPW 3.2al, and the Assembler aborts with an error when it gets to this line.
Fix:
Comment out or remove the reference to TI OFLUSH:

Back to top

SADE Compatibility

3. In the SADEScripts folder (part of the SADE product) is a file called StepMethod. This file contains the definition
of a procedure called st epl nt oMet hod, which includes the following lines:

break 9% NEWVETHOD020. CacheCQut
break % NEWVETHODO20. Tabl eQut

go
unbr eak % NEWVETHOD020. CacheCQut

MacApp 2.0 no longer defines the symbol % NEWVETHODO20 and SADE is not able to find it when you attempt to step into
an overridden method.

Fix:
Replace those lines with the following:

break % NEWVETHOD. CacheCut
break % NEWVETHOD. Tabl eCut

go
unbr eak % NEWVETHOD. CacheQut

Back to top

THINK Pascal Compatibility

3. Fixed in MacApp 2.0.1.

4. This isn't really a bug, but you might incorporate the following: in the file UMacAppUtilities.p, place a {$PUSH}
{$D-} in front the BlockSet routine and a {$Pop} after it. This change speeds up the execution of programs which
are compiled with the MacApp debugger when running under the THINK Pascal environment. (Doing this may not
be necessary if you incorporate the fix to problem #5 in the MABuild section.)

Back to top

MacApp Samples Bugs

3. In the C++ version of DemoText, strings which normally appear in the About box show up in the color picker,
because KPr onpt St ri ngsl Dis declared differently between the Rez file and the C++ file.

4. In the file UlconEdit.inc1.p, the procedure Tl conBi t Map. Fr ee does not call | NHERI TED Fr ee. It should call
| NHERI TED Fr ee or the space in the heap used for the object never gets freed.

5. Instead of referring to @ Showl nvi si bl es, TTabTEVi ew. Fi el ds actually refers to @how nvi si bl es.

Bugs In MacApp? Yes, But | Love It!

Back to top

Other

3. The script {MATools}CleanupDeRezzedViews misses a situation where it needs to quote a Shell variable. This
problem causes the script to abort if the file you are processing contains a space in it.

Fix:
Replace the second line of the script:
With:

2. Fixed in MacApp 2.0.1.

THINK Pascal is a trademark of Symantec Corporation.

Back to top
Downloadables
E‘ Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

Page: 34

