
ME 13 - Memory Manager Compatibility Page: 1

NOTE: This Technical Note has been retired. Please see the Technical Notes page for current documentation.

CONTENTS

Introduction

Things Not to Do

New Rules to Live By

Things It's Still OK to Do

Conclusion

References

Downloadables

The Memory Manager has been rewritten for
the PowerPC Macintosh computers. This new
Memory Manager runs native PowerPC code
and uses better algorithms. With this new
Memory Manager, there are both old and new
restrictions on it use.

[Jan 01 1991]

Introduction

The Memory Manager has been rewritten for Apple's PowerPC Macintosh computers. The new Memory Manager uses
native PowerPC code and better algorithms for faster performance. It is also not as forgiving to ruthless programmers
who break the rules defined in Inside Macintosh and Macintosh Technical Notes.

First a conceptual clarification. The Memory Manager as documented in Inside Macintosh is a storage allocator. It organizes
memory into "heaps" or "heap zones." Its architecture was not designed to support address space mapping, protection, or
interrupt time allocation.

The new Memory Manager uses the existing API that is documented in Inside Macintosh. If you code to the Macintosh API,
you will inherit benefits of the new high-performance Memory Manager.

Back to top

Things Not to Do

Here is a list of no-nos that may have appeared to work in the old Memory Manager, but may not with the new Memory
Manager.

Don't Dispose Blocks Twice

Never dispose of a memory block twice, and don't attempt to operate on a disposed memory block. Although many traps
return memWZErr (block is free), it was never a reliable feature and it will be less reliable in the future. When a client
disposes of a memory block, the Memory Manager immediately takes control of its data. This is true for both relocatable
and nonrelocatable blocks.

There are many subtle ways that a memory block can be disposed of twice. Consider the following example. Joe Ruthless
Programmer calls GetPicture to display a picture. When he is done he calls KillPicture to get rid of it. However,
since Joe did not read Inside Macintosh carefully, the 'PICT' resource is still left in the resource map. When the
application quits, the System calls CloseResFile on the file, which in turn disposes of the resource (again). Pow! You
have a handle that was disposed of twice.

Stay Out of Free Blocks

Do not modify data that exists in a free block, and don't attempt to read data or execute code out of a disposed memory block.

Don't Use Fake Handles or Fake Pointers

Call Memory Manager routines only on memory blocks that were created by the Memory Manager. Any call that operates
on a pointer block must operate on a pointer block created by the Memory Manager. Do not call DisposePtr on data that
is on your stack or in your global space. Similarly, any call that takes a handle as a parameter must be a valid handle that
was recreated by the Memory Manager. Do not manually create a pointer to a pointer and pass it to the Memory Manager as
a handle. It will fail catastrophically--or worse, it will fail subtly.

Don't Make Calls at Interrupt Time

Since all calls either move memory or set low memory global variables (except BlockMove), don't even think of calling
them at interrupt time or asychronously. In particular, do not call StackSpace at interrupt time. The Memory Manager
is not an interrupt time storage allocator. Don't use it as such. Doing so will cause many subtle bugs that are difficult to
track down.

Don't Touch the Data Structures

Do not access or modify Memory Manager data structures directly. This includes relocatable and nonrelocatable block
headers, the heap header, and unused master pointers. If there is an API available, use it. For example, there is an API for

ME 13 - Memory Manager Compatibility Page: 2

locking and unlocking a handle. If you don't use it, you will break in the future. Similarly, don't touch low memory global
variables that are maintained by the Memory Manager. Use SetApplLimit and SetGrowZone.

Keep Your Caches Coherent

Be careful with processors that have dual instruction and data caches, such as the Motorola 68040. Since many clients
manipulate code as data, the old Memory Manager flushes caches frequently for compatibility. The new Memory Manager
flushes caches only when it moves blocks around. When in doubt, call FlushInstructionCache just to make sure.

Back to top

New Rules to Live By

The new Memory Manager uses larger size block headers and a larger zone header. Clients must leave some slop space for
future versions of the Memory Manager. When calculating how large to make a heap, use the following sizes:

Overhead for heap header and trailer 256 bytes

Overhead for each Memory Manager block 32 bytes

Don't Assume Any Stack/Heap Relationships

Don't assume that memory blocks cannot be above your stack. In the future, your stack may be some other place than it is
now. However, do call SetApplLimit followed by MaxApplZone as early as possible in your program to extend your
heap to its maximum size.

Create Dynamic Heaps Inside Other Memory Manager Memory Blocks

To create subheaps, allocate a Memory Manager block and call InitZone on the beginning of it. When you are done with
the subheap, call the Memory Manager to dispose of the block that contains the heap. Do not create heaps on the stack.

Back to top

Things It's Still OK to Do

Use MoveHHi

It is recommended that you call MoveHHi to prevent fragmentation of your heap. For handles created in the system heap
you should still call MoveHHi, even though this call does nothing today.

Use Existing Tools to Your Advantage

Most popular debuggers for the Macintosh have a heap scramble feature. Use it to debug your code. This feature will ensure
that subtle bugs are caught before shipping products to your customers. Similarly, use Zap Handles, Even Better Bus
Error, and Double Trouble to ensure compatibility in the future. Although these utilities might not work with the new
Memory Manager, you can test with them today using the old one.

Back to top

Conclusion

With the new high-performance Memory Manager, your applications will run faster. However, you need to follow the
rules to be compatible in the future.

References

Inside Macintosh: Memory

Macintosh Technical Note: "OV 04 - Compatibility Why and How"

Macintosh Technical Note: "OV 11 - The Joy of Being 32-Bit Clean"

Macintosh Technical Note: "HW 06 - Cache as Cache Can"

Back to top

Downloadables

Acrobat version of this Note (K) Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

