MacApp Segmentation llluminations Page: 1

NOTE: This Technical Note has been retired. Please see the Technical Notes page for current documentation.

Technical Note PT21

MacApp Segmentation [lluminations

CONTENTS This Technical Note describes MacApp
segmentation strategies and guidelines. It also
Introduction describes performance, runtime, and

development tools issues related to
segmentation. Some of the discussion is also
Jump Tables and Performance relevant to general segmentation strategies
with non-MacApp-based applications. The
MacApp techniques are based on MacApp
How to Segment MacApp Code 3.0; however, many of the issues are also
relevant to MacApp 2.0.

The Need for Segmentation

Strategies

'res!" and 'seg!' Resources Explained

UnloadAllSegments Explained [Dec 01 1992]

Development Tools, ModelFar Support

Segments and Fragmentation

Linker Problems and Errors
Resident Segment Dangers
Conclusion
References

Downloadables

Introduction

Some people consider defining a segmentation strategy for a Macintosh application a black art. Well, it is a form of
programming art. Like many problems in software development, defining a segmentation strategy for a Macintosh
application requires choosing between a number of conflicting tradeoffs to meet the performance criteria of a given
application. Segmentation strategies that are optimized for speed generally require a larger footprint in memory, while
strategies that are optimized for memory usage come with a performance hit. Unfortunately, there are no tools available
for automatically segmenting applications.

There are few tools available that help define segmentation strategies. Also the information on how to do this is not fully
documented.

This Technical Note will try to cover the most important issues of segmentation with MacApp programs and to help
developers create their own segmentation strategies.

Back to top

The Need for Segmentation

Inside Macintosh describes how the Segment Loader works, and why there's a need to create segments that are loaded into
memory on demand. The syntax for creating a segment name is:

C++: Specify a #pragma segment SegmentName in front of the member function
Object Pascal: Specify a {$S SegmentName} in front of the method

If you forget to place the segment compiler directives in your method, it will inherit the earlier directive (in C++ as well
as in Object Pascal) all the way to the end of the file, so suddenly you'll find many methods inside one of your segments.
Methods without any defined segment will go into the Main segment, which could get really crowded after a while. So,
check your segmentation directive for each method. For instance MacBrowse has a function for doing this that shows what
each segment contains. Also, the Link -map (or the MABuild -LinkMap) flag creates a link map with information

MacApp Segmentation llluminations Page: 2
about what functions belong to what segments.

Segments are really CODE resources in disguise, so MacApp is able to control the purge and lock bits on segments just as
it does on handles or objects (as in TObject's Lock and UnLock methods). A locked handle is also unpurgeable, so you
don't need to worry about purging once you have locked the object in memory. MacApp marks all code segments as
nonpurgeable so that the MacApp memory manager can control when and which segments it purges in low memory
conditions.

Methods are the actual routines stored in the CODE resources; data is stored either on the stack, in the application heap,
or in the specific part of the heap that is the A5-world. In many cases, calling a method whose segment is not currently
stored in memory causes a segment load to occur, which might cause heap blocks to be moved in order to locate a place to
put the new segment.

Note:
This is one reason calling a new class method can suddenly trigger memory dereferencing bugs.

Back to top

Jump Tables and Performance

There is a known relation between jump table sizes and segmentation. For normal procedures and functions, we don't need
a jump table entry if all calls to the routine are from the same segment (intrasegment call). However, we need jump table
entries if there are calls to other segments from the routine (intersegment calls). Examine the segmentation of your code;
you might find places where a change in segmentation would eliminate jump table entries. With some effort you may
shrink big jump tables and improve the performance of your application.

Note:
Object-oriented code relying on polymorphism makes this approach nearly impossible. This is because we will
never know what function is finally called via the virtual or method table dispatch.

Some programmers worry that many C++ accessor (Get...) and mutator (Set...) methods will increase the jump table
entries considerably, but you can avoid this by using C++ inl ine functions. Anyway, if your classes have too many field

change and access methods, perhaps it is time to examine the object. Is it really a structure in disguise?

Caching of member field values inside the class (for instance keeping track of field values using temp variables) decreases
the need for Get and Set calls. This design is, however, not purely object-oriented, because the class then needs to know
about the internal implementation of an object. For instance it needs to know when the cached value is invalid, and it also
assumes too much about the internal fields. In addition, we could place the major parts of an object inside one single
segment for further performance improvements. This helps mostly if the accessors are providing information to other
objects that reside in the same segment, as in the case where we use accessors internally in the same object. You can use
dumpobj to dump the object file and find information about each segment.

The Segment Loader has to fill the jump table with the right addresses when the segments are loaded in. When the segment
is unloaded, the environment has to reset the jump table with information about the missing segment. MacApp has to make
sure that memory is always available for data and unloaded segments. All this takes time, so clever segmentation does
improve performance. Also, PowerBook owners don't like applications that spend a lot if time starting the hard disk--for
instance for fetching CODE resources frequently! For example, if we place functions that call each other in the same
segment, we will eliminate other segment loading events.

Back to top

Strategies

One strategy for organizing segments is based on functionality--functions that work together should be placed in the same
segment (see reason defined earlier). For example, we need certain routines during an application’s initialization phase,
but after initialization is complete they can reside on disk until the next launch of the application.

Another strategy is to organize segments so they are as small as possible . This means that the application heap will contain
only those segments that we need, increasing the amount of application heap available. The problem with this segmentation
strategy has to do with all the Segment Loader calls that we trigger every time a function is not available in memory. This
happens only if the segment itself is not initially loaded. Once a segment is loaded, it is marked purgeable when not used by
MacApp, and unless we have a full application heap, the segment is still present in memory. Still, if we need to load a lot of
segments from a hard disk, it will cause a lot of disk spinning in the case of portables. And end users don't like disks that
spin, because they decrease the battery lifetime.

Back to top

How to Segment MacApp Code

The strategy presented below is a guideline to MacApp application segmentation, but it should not be taken as a prime
directive. However, as this is the current MacApp strategy it is not really feasible to use any other alternate segmentation
strategies with MacApp applications, because MacApp will be a big part of the application code. However, feel free to
experiment and test with the other alternative--small CODE segments--in code that you control.

The MacApp strategy is based on functional groupings, where functions related to each other (they call each other) are
placed in the same segment. The functional grouping is:

MacApp Segmentation llluminations

SEGMEHNT HAME USE

frin Main resident segment, will combain common 2ods
[Libraries usually].

RRas Routines you eall often, or resident voutines.
Dodetuplknus

Defetlursor

Taldle

Drzw

TokeyCommaonds [if typing]

AR Forroutings you rarely call, or nonresident routines.

Debugging code.

et Fynetions used only ones inthe program.
ITourAppliontion

Initinlize

IoFostCreate

AToemdenr fa Funetions used only when you quit the applization.
AL S ommeeny Forselecting commands [TCommand].
DoMenuCommand

DIoMouseCommand

DokeyCommaond [not byping]
TiourPasteCommand

ITourComrmnd

Aol ommeny For perorming commands, like TCommand abjeats.
ThecoloxCmd: :Doit

T2ketaher : :TraokMouse

TTypingCrd :Commit

H FoBmenT Faor Clipboard noneommands.
MokeViewlorAlienClipbonrd

Givelnstelntan

WriteTolleskScorap

Heloan Opening documents and data structures.
DoMakeViews

DoMokeWindows

ITourDocument

IoMokeDlocument

ITourWiew

A ma Closing docsuments and data struatures.

ARy Reading Erom disk.

DIoRend

Tolnitinldtate

A fay Eaving Eiles to disk.

ToHeedllisk3pnas

ToWirite

A s TT i le based functions, rarelyrused.

L fens fopas Empty construators [those that are mot uzed by Macdpp.
Stack bazed claszes that have working eonstructors zhould
be placed in the same segment as the T<metbod: or the
Initinlize method,

farag foeflas MacApyp iteratars.

i s el e SR Machpp debugging eode [eode generated by glebug,
qifsexFlag[1-3]].

MacApp has far more segments. We recommend that you do a search of the "pragma segment” string in the MacApp
library sources to get the whole picture of what function groupings MacApp uses. Or use MacBrowse or a similar browser
that shows segmentation information for each method in the framework. For instance, if you write TAppleEvent-based

member functions, check the UAppleEvents . cp file to see where various TAppleEvent member functions are
placed. If you override any of them, make sure that you place the overridden method in the same segment as the original
one. For instance some of the Apple event-related functions and methods should be placed in resident segments; otherwise
you could get into trouble. Here MacBrowse also gives good support for a quick lookup of segment names.

Other Issues:

Unsure about the placement?

Place the method in the same segment as other methods that call it.

Stack-based C++ classes?

Place the member functions of these classes in the same segment that corresponds to the functionality (in the same
segment as the routine or member function that use them).

WDEFs, CDEFs, and similar code segments--should they be part of the class segment?

Place these CODE segments into the Maiin segment. This is because we want these to be always resident in memory for fast
access.

Note: :
Monitor the size of the Main segment.

Back to top

'res!” and "seg!" Resources Explained

MacApp programmers sometimes will get puzzled concerning the use of "res! " and "seg! " resources. The "seg!”

resource defines those segments that are loaded into memory when the program is making maximum use of memory.
MacApp uses this information when keeping track of the code reserve to ensure there is room for the "seg! " code

Page: 3

MacApp Segmentation llluminations Page: 4

segments at the maximum point of memory use. See Chapter 6 of the Guide to MacApp Tools concerning discussion of
maximum use of memory.

The "res! " resource defines those segments that are always resident in the heap. (Segments are made permanently
resident via a global function called SetResidentSegment.)

One use for making segments permanently resident is for time-critical functions grouped together in a special segment.
Thus, loading the segment doesn't require overhead if the method is suddenly needed. For example, we could use this
technique to reduce overhead for time-critical communication methods. Also, we might have functions that are called
during interrupt time that always need to be resident.

Here's an example of a "res! " resource defined in the resource file:

resource "res!® (kMyMacApp, purgeable) {
{ "AWriteConn';
"AReadConn™';
“"APoll";
#if qlnspector && !gDebug
"'GDebugConn**;
#endif
#if gPerform
"'"GPerformanceComms"';
#endif

};

MacApp will also place internal trap patching code in resident segments, to avoid runtime problems with patches that some
entity might suddenly unload. This is also true with programmer-provided trap patches.

Back to top

UnloadAllSegments Explained

The MacApp programmer should be aware that segments live a dangerous life inside the MacApp framework. Unless they
are resident, or needed, they are purged out. This happens both at initialization time, as well as during the lifetime of the
application. We don't want to have segments floating around in memory that we need only during the initialization phase of
the application. Likewise, we don't want to have segments in memory that we trigger very few times during the application
lifetime.

So who is taking care of the segmentation cleanup? Your mother? No, it's a global function called UnloadAl ISegments

that is called both during the initialization phase and during the idle time of the application. It is also triggered when the
application starts to have little memory space. UnloadAl ISegments purges code segments from the memory unless

they are locked, in use, or resident (specified in the res! resource).

However, we might have situations where we have written code by mistake so that UnloadAl ISegments wants

suddenly to purge the segment that is currently in use. This function could unload a segment containing a method that you
will return to later. Your stack currently references a method contained in the segment that UnloadAl ISegments
wants to unload. Danger, danger.

Now, if you have SourceBug running in the background, and have the warning flag in the Debug menu entry set for
unloading segments, you will get a nice little warning from UnloadAl 1Segments before you get into the binary
Armageddon...

Back to top

Development Tools, ModelFar Support

For a long time, segments were restricted to 32K sizes due to the A5-relative data referencing with 16-bit offsets, but
MPW 3.2 eliminates this 32K limit on segment size via new switches to the compilers and the linker.

The 68020 introduced 32-bit PC-relative branching (BSR. L statements), but that didn't help the Classic and other
68000-based Macintosh computers. Instead, MPW 3.2 makes use of branch islands. This simple, elegant idea is based on
the implementation of PC-relative code-to-code references. The linker splits a large code segment up into smaller 32K
areas by inserting branch islands. These branch islands serve as intermediate points that are within range of PC-relative
jumps, thus making it possible to make a call across a segment that would otherwise result in a larger-than-32K jump.

Another new feature is "32-bit everything,"” which transparently removes the limitations on code segment and jump table
sizes and the size of the global data areas. The drawback is a larger code size footprint and some slowdown due to increased
load time for the larger code segments. But hey, look what you get!

We activate 32-bit everything code generation and linking by using the MABui Id -ModelFar flag (supported from with
MacApp 3.0 forward).The new MPW 3.2 documentation on the runtime architecture explains the implementation. The
trick is that the compilers generate instructions with 32-bit addresses (instead of the normal 16-bit offsets), and that
these 32-bit addresses are relocated at load time by the segment load address or by the contents of A5, as appropriate.

Finally, one can generate larger than 32K jump tables using the —wrap option. This uses unused space in the global data

area for additional jump table entries when it starts to get crowded inside the 32K segment. However, at best this utility
doubles the jump table size, and if your global data area is already filled with data, you're out of luck.

MacApp Segmentation llluminations Page: 5

Note:
You can't use both the -wrap and the Mode I Far flags in order to cheat and create a large global data segment
with jump table entries as well. Use either flag only.

See MPW documentation for more information about Mode I Far and runtime issues.

Also, the MacApp debugger has support for monitoring segment loading and unloading. Please consult the current MacApp
documentation for more information.

Back to top

Segments and Fragmentation

Sometimes we want to move a separate segment back into the Main segment, to avoid too many segments--a condition that

can lead to heap fragmentation. This could be the case with libraries that we use with the MacApp application. For instance
functions from libraries might reside in small segments, and we would like to remap them back to a resident segment,
such as Main. The MPW Linkand Lib tools can remap the segmentation with routines to other segment names. The
syntax looks like this:

Link [options...] objectfile... >= progress.file
-sn=oldSegNamel=newSegNamel

Note that fragmentation is not a problem for MacApp applications. All resident segments are preloaded and locked high in
memory. Nonresident segments that are in use are also locked high. Segments that are not in use but still present are not
locked. This means they can be moved by the Memory Manager (which does not contribute any fragmentation).

Another solution is to use the linker to mark code resources from the libraries as locked. These segments will then be
loaded into memory as resident segments, avoiding fragmentation problems. To do this, for instance modify the user
variable OtherLinkOptions in the MAMake file:

OtherLinkOptions = [[partialdiff]]
-ra FOOSEGMENT=resLocked [[partialdiff]]

Yet again in the case of MacApp this is not necessary. The MacApp way is to define these segments in the "res! " resource,
and MacApp will lock the resources at application startup.

Finally, you can use the linker to merge old segments into new segments with the —Sg option:
Back to top

Linker Problems and Errors

A very typical Link error with huge MacApp projects looks like:

#Ht Link: Error: 16-bit reference offset out of range.[....]
##+t While reading file "Work:Sources:FooBar SuperApp:[----]

#Ht Link: Error: 16-bit reference offset out of range. [.-.-..]
Link: Error: 16-bit reference offset out of range. [....]

This means that the linker can't create 16-bit offset references within the same code segment, or that we can't do 16-bit
PC-relative jumps. The way to go is to start using Mode l Far support.

Sometimes even if we compile and link using ~Mode IFar, we will still see these problems. This has to do with
Runtime.o and all other standard libraries in MPW that are not compiled with Mode IFar. Sometimes the placement of
link modules helps, where the module with the main stub is the first one, Runtime.o is the second one (usually
Runtime.o and Main talk with each other a lot), then most standard libraries and all the other modules last. If you
suspect this is the case, modify the "'‘Bui ld Rules and Definitions" MacApp file, and move the Runtime.o

link instruction nearer the libraries or object files that contain Main segments.

Another trick is to use the -sortsg link flag. The linker will move the most frequently called routines to the first 32K

part of the segment, and in some cases this will solve the offset problem. Finally if you have a lot of string literals, if you
use the —b2 link flag the strings will be embedded in e.

Back to top
Resident Segment Dangers
Here's an important note to remember. If you make a segment resident (for instance including it in the 'res! ” resource),

then the MacApp memory management code will call GetNamedResource to load the segment, and also lock it. However,
the jump table still has this segment defined in an unloaded state.

MacApp Segmentation llluminations Page: 6

So the first time you call a routine in the segment, the code will trigger a LoadSeg call. Now the jump table has the
segment defined to be in a loaded state (no more need for LoadSeg calls).

This works fine during a safe period of segment loading. However, if you call the routine during a critical time when it's
not safe to call LoadSeg (for instance from a VBL task), you might get into trouble.

One workaround is to make sure to call the first routine from this resident segment during a safe time. For instance you

could call the function itself from another segment (as in the initialization phase, from Main). This will cause the

Segment Loader to convert the function's jump table entry, so this function could be used at more dangerous times. You
need to define a specific way to inform your function that it's only been called to load its entry, and not to do any useful
work (until later).

Back to top

Conclusion

It is hoped that these suggestions will improve the segmentation strategies in your application. Future new runtime models
(the Shared Library Manager, PowerPC runtime environments, Bedrock) might radically change the way developers
segment code. Stay tuned for more news.

Back to top

References

Inside Macintosh, Volume Il, Chapter 2 (Segment Loader)

MPW Command Reference (forthcoming)

Building and Managing Programs in MPW (forthcoming)

MPW 3.2 Release Notes

Guide to MacApp Tools (MacApp 3.0)

MADA 92 Orlando Conference CD, Presentation on the MacApp 3.0

Memory Manager

Back to top
Downloadables
Ei Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

