
A/ROSE & MCP Card Q&As Page: 1

NOTE: This Technical Note has been retired. Please see the Technical Notes page for current documentation.

CONTENTS

Downloadables

This Technical Note contains a collection of
archived Q&As relating to a specific
topic--questions sent the Developer Support
Center (DSC) along with answers from the
DSC engineers. Current Q&A's can be found
on the Macintosh Technical Q&A's web site.

[Oct 01 1990]

A/ROSE memory requirements

How much memory is required in addition to normal application requirements for uploading A/ROSE to an MCP card? My
faceless background task was unsuccessful at booting the Apple TokenRing card until the background application partition
was increased.

With the release of A/ROSE 1.1.8, the download code is stored as a resource, instead of being linked statically with an
application. This change in download architecture allows A/ROSE to be more flexible in terms of compatibility with A/UX
and future operating system architectures. As a result, additional heap space is required for the download code resource to
be brought into memory. The 'dwnl' resource is about 9K. The memory required is about 9K + sizeof(largest segment
of the task). There are probably a few other small factors that may add an additional couple of K.

If you encounter problems in this area, you might segment your code. The A/ROSE stuff, after being segmented, has a
maximum segment size of about 14 or 15K. So, if your code is small, you may still need about 25K to download. If your
segments are greater than 15K, that will determine how much memory you need.

A/ROSE product description

Date Written: 1/4/93

Last reviewed: 6/14/93

What's A/ROSE? The extension is on my Duo, and I'm not sure what it is, or whether I need it or not.

A/ROSE is a system extension which allows communication between the Macintosh motherboard and Macintosh Coprocessor
Platform (MCP)-based NuBus cards which run the Apple Real-Time Operating System. Translated to English, this means
that specific Macintosh NuBus cards, such as the Apple TokenRing cards and the latest Apple Ethernet NB card, have their
own 68000 chip on board. A/ROSE is the driver which allows the Macintosh Operating System to communicate with the
smart card, plus A/ROSE contains the operating system used to get the smart card up and running, along with any task
information associated with the card. The only reason for having this INIT installed is to support an MCP-based card. On
the Duo, it could be that the DuoDock has an Ethernet NB card installed. When not docked, A/ROSE still loads, but isn't used
by the Duo. Other cards that require A/ROSE include the two Apple TokenRing, the Serial NB, and the Apple Coax/TwinAx
NB cards. Note that SNA*ps is a software product that may require A/ROSE in specific configurations.

If the DuoDock doesn't have one of the listed cards installed, or your Macintosh Duo is not used for SNA*ps, then you can
remove the A/ROSE startup document.

For more details, read "Inside the Macintosh Coprocessor Platform and A/ROSE" in issue #4 of develop (October 1990).

A/ROSE & MCP development questions

Date Written: 12/11/90

Last reviewed: 6/14/93

What restrictions (power, speed, and so on) does the Macintosh Coprocessor Platform (MCP) impose on the hardware
added to the platform? Can we use A/ROSE on a board that we design ourselves from scratch? If so, we have the following
questions concerning the hardware requirements for a board running A/ROSE: Must the CPU running A/ROSE be a 68000
or could it be a 68020 or 68030? Can A/ROSE handle master transfers under NuBus control between the card and main
board memory? Is the source code for A/ROSE (and specifically the InterCard Communication Manager) available if we
needed to tailor that code to our system?

To the knowledge of the A/ROSE engineer, A/ROSE requires modification in order to permit master transfers under NuBus
control between the card and main board memory. The engineer succeeded in designing a routine to perform the write
operation from A/ROSE; however, the read operation proved to be a challenge. A solution to your problem would be to
release the source code. However, at this time this isn't possible. There has been consideration on this subject but no final
decision.

In response to your other questions, MCP doesn't impose any restrictions on the hardware. There are some card
dependencies imposed by A/ROSE, described in the document, "A/ROSE Card Dependency," available on AppleLink.

I'm familiar with a couple of cards based on the MCP board. On one card in particular, the processor was swapped with a

A/ROSE & MCP Card Q&As Page: 2

68020 using A/ROSE.

gCommon addresses and downloading card-dependent routines

Date Written: 8/14/91

Last reviewed: 6/14/93

After upgrading to A/ROSE 1.1.2, when I download to my board, it doesn't call my board-specific routines in the resource
'hlta' that I installed into A/ROSE Prep.

Check the gCommon area on the card at locations gCardInit0, gCardInit1, and gCardInit2. These are the
addresses where the Download subroutine would have placed the card-dependent routines when placing the routines on the
card. You can find these addresses in the :A/ROSE:includes:arose.a header file.

If these addresses are zero, that means either the Download subroutine failed to find the card-dependent routines when
doing the downloading, or the Download subroutine is the wrong version and doesn't know about card-dependent routines,
or the application doing the downloading was not linked with a recent enough version of Download-Lib.o and contains the old
Download subroutine code. The actual code for doing downloading has been moved from the application to the A/ROSE Prep
file and glue code is now in the Download-Lib.o file, which is what the application really calls. This glue code knows how to
load the actual downloading code.

If these addresses are nonzero, A/ROSE, during its initialization, should call these routines. If A/ROSE is not calling them,
check to see where the A/ROSE kernel is coming from. Was the A/ROSE kernel linked in with the code? In this case, you
need to relink your code with a more recent version of the A/ROSE kernel.

A/ROSE NetCopy process description

Date Written: 8/30/91

Last reviewed: 6/14/93

How does the NetCopy cVirtualToReal routine work in the oscglue.a file of the Portable A/ROSE code? I'm trying to
emulate the NetCopy command in my A/ROSE code. I want the copy routine to work without requiring the user to use the
LockRealArea command on the Macintosh Operating System side, but this means that I have to worry about the
addressing being passed in as being virtual. Is the A/ROSE kernel on the board providing the virtual-to-real mapping or
does it just send a message back to A/ROSE Prep to do it and then use the results?

What cVirtualToReal() does is take as input, a transaction ID (TID), a virtual address and a size. It returns a NuBus
address and a size. If the returned size is zero, cVirtualToReal() could not find a corresponding NuBus address for
the virtual address. If the returned size is non-zero, this size is the size of the contiguous address range for the virtual
address starting at the NuBus address.

This is how cVirtualToReal() works: cVirtualToReal() examines the TID to find out the slot (call it slot s)
associated with the TID. cVirtualToReal() looks at the iccm communications area of slot s looking at MapCnt,
MapPtr, and MapChk. (Please refer to iccmDefs.h or iccmDefs.a in the iccm communications area record ca_Rec.)

If MapCnt is zero, the virtual address is assumed to be the same as the NuBus address. In this case,
cVirtualToReal() sets the returned NuBus address value to be that of the virtual address and returns the size the
same as the size on input.

If MapCnt is nonzero, the slot either has an address scheme where the virtual address that the TID on slot s uses cannot be
the same as the NuBus address (say the processor was a 68020 with no PMMU and required that local card addresses have
zero for the high address byte) or the slot has something like VM (which is what happens on the main logic board).
cVirtualToReal() will use the address map pointed to by MapPtr on slot s to try to resolve the virtual address to a
NuBus address. MapPtr is a pointer to a linked list of struct AddrMap (defined in os.h or os.a). If cVirtualToReal()
can resolve the virtual address by looking at the AddrMap entries, it will do so. If cVirtualToReal() cannot, it will
return zero for the size. The MapChk and MapCnt variables in ca_Rec are used for concurrency.
cVirtualToReal() will fetch a pointer from the MapPtr structure and then check to see if MapChk has changed.
cVirtualToReal() knows that the pointers in MapPtr and the AddrMap entry have not changed if MapChk has not
changed. cVirtualToReal() starts its search over at the beginning of the MapPtr list should MapChk change.
cVirtualToReal() knows that it can start searching the MapPtr list only when MapCnt equals MapChk.

What cLockRealArea() does is take as input a virtual address and size and returns on output the NuBus address/length
pairs associated with that virtual address and size. cLockRealArea() also returns a success/failure status indicating
if cLockRealArea() successfully "locked" the pages in memory associated with the virtual address and size.

Please note: There is a cLockRealArea() on the main logic board used to lock memory on the main logic board. There is
also a cLockRealArea() in the A/ROSE kernel on the NuBus card which WOULD lock memory on the NuBus card. The
cLockRealArea() on the NuBus card acts as a no-op at this moment and is present for compatibility reasons.

Here's a description of how cLockRealArea() works: cLockRealArea() on a NuBus card acts as a no-op.
cLockRealArea() on a NuBus card returns a NuBus address/length pair as one would expect but otherwise does
nothing.

cLockRealArea() on the main logic board is much more interesting. cLockRealArea() on the main logic board
tries to lock down the pages associated with the virtual address/size (assuming a PMMU is present and the appropriate
a_line traps are present) calling either _LockMemory or _LockMemoryContiguous. Next, if _LockMemory or
_LockMemoryContiguous works, cLockRealArea() tries to create an AddrMap entry to store the NuBus addresses
associated with the virtual address. cLockRealArea() needs to call _LockMemoryContiguous on this AddrMap
entry to lock it down as well. Finally, if cLockRealArea() has made it this far, cLockRealArea() will try to
insert the AddrMap entry into the linked list pointed to by MapPtr in the iccm communications area ca_Rec.
cLockRealArea() will change MapChk, insert the AddrMap entry, and then change MapCnt to be the same value as
MapChk.

What cNetCopy() does is take as input a source TID/source address, destination TID/destination address, and size.
cNetCopy() calls cVirtualToReal() to convert the source TID/source address and the destination TID/destination

A/ROSE & MCP Card Q&As Page: 3

address into NuBus addresses. If cVirtualToReal() can convert the addresses, cNetCopy() will perform a
blockmove() operation moving the data itself. If cVirtualToReal() cannot convert the addresses, cNetCopy() wi l l
send an A/ROSE IPC message to the NuBus slot (please note that the main logic board is NuBus slot zero) asking the iccm
(please note that iccm is built into the A/ROSE driver on the main logic board) to perform the copy. Iccm will perform the
copy and send a reply back to cNetCopy() when the copy is complete.

At this moment, the only slot that can have virtual addresses that cVirtualToReal() cannot convert to NuBus
addresses are main logic board addresses. cVirtualToReal() can always resolve virtual addresses that exist on NuBus
cards.

If the user on the Macintosh Operating System side does not use LockRealArea() and PMMU is believed to be active, an
A/ROSE IPC message is sent from the NuBus card to the iccm portion of the A/ROSE driver on the main logic board to
perform the copy. The iccm portion of the A/ROSE driver will send back a reply when it has performed the copy.

One unasked question is could the card request that memory on the main logic board be locked down from the card. The
answer to this question is NO. The LockRealArea() routine on the main logic board that does the locking down of
memory on the main logic board associates the memory that it is locking down with the TID of the main logic board process
that is calling LockRealArea().

NuBus '90 and MCP card timing

Date Written: 8/28/91

Last reviewed: 6/14/93

The Macintosh Coprocessor (MCP) card uses the NuBus 10 MHz clock for the system clock and the NuBus'90 clock is 20
MHz, so how can the cards continue to work? The 68000 isn't rated for 20 MHz. Is there a new pinout for NuBus'90 that
provides both clocks?

The NuBus'90 CLK signal (pin C32) is 10 MHz (didn't change); the 20 MHz clock signal is the CLK2X signal, which is pin
B24 (previously -5.2 Volts).

Dynamically downloaded A/ROSE task specifications

Date Written: 2/25/92

Last reviewed: 6/14/93

How does a dynamically downloaded A/ROSE task specify its stack size, heap size, execution priority?

You'll note from the description of the DynamicDownload function as described in the Macintosh Coprocessor Platform
Developer's Guide, page 8-8, that a pointer to an RSM_StartTask parameter area is required. The caller must
initialize the following fields:

 st_parmblock->stack
 st_parmblock->heap
 st_parmblock->priority

The dynamic download process uses these fields of the RSM (Remote Start Manager) parameter block when initializing an
A/ROSE task.

Dynamically downloaded A/ROSE task startup

Date Written: 2/25/92

Last reviewed: 6/14/93

When an A/ROSE task is downloaded dynamically, how and when is it started up?

The quick answer is that such a task is started before the download routine returns. A more complete answer can be made
by perusing the Portable A/ROSE code available on the Developer CD. When a dynamic download call is processed, some
preflighting work is performed by the download routine in the A/ROSE Prep file. A/ROSE first checks that a card capable
of running A/ROSE exists in the designated slot.

A/ROSE then checks via the Remote System Manager (RSM) to determine if there is sufficient memory on the target board
to process the download. The memory is allocated via RSM for the new task, and a copy of the ST_PB is made into the user
area, for processing the download. The register blocks are then initialized. A message is sent to RSM to perform the
RSM_StartTask procedure. When RSM processes the message, a call is made to NetCopy to copy the ST_PB record onto
the card. There's some more preflighting of the ST_PB, which results in a call to the StartTask Instruction Trap.
StartTask, as shown in the file ostrap.a from Portable A/ROSE, ensures that the call did not originate from an
interrupt. The task table is searched for an available entry. When one is found, memory is allocated for the process, heap,
and stack if specified. Some additional processing is performed to set up the task. Finally, the task is linked into a priority
table and the task becomes "live."

As documented, the download process returns the TID of the task, if successful. It should be noted that while the task has
been started, the task still needs time to perform initialization and any Name Manager registration before a LookupTask
call is made.

The code available on the Portable A/ROSE disk is a good source for learning the details on this function.

FreeMem and FreeMsg don't set pointers to zero

Date Written: 2/25/92

Last reviewed: 6/14/93

A/ROSE & MCP Card Q&As Page: 4

Do the A/ROSE functions FreeMem and FreeMsg set the pointers to zero or does an A/ROSE task calling these functions
have to do so explicitly?

FreeMem and FreeMsg do not set the pointers to zero upon return. Your process must do so explicitly if you plan to
check whether a message block is valid.

Net_Register_Task same as Register_Task(..., World_Visible)

Date Written: 2/25/92

Last reviewed: 6/14/93

What's the difference between the A/ROSE Net_Register_Task and Register_Task(..., World_Visible)?

There's no difference between the two calls. When A/ROSE was first being developed, a design specification under
investigation was to have NetCopy perform as its name suggests - to copy data across the network. This feature proved
difficult to implement. The functions became limited to copying data between the motherboard and installed NuBus cards.
To transmit A/ROSE messages across the network, refer to Chapter 11 in the Macintosh Coprocessor Platform
Programmer's Guide for a description of the Forwarder mechanism and a sample program demonstrating this capability.

A/ROSE mCode value isn't incremented for unknown messages

Date Written: 2/25/92

Last reviewed: 6/14/93

With an unknown A/ROSE message, is mCode incremented by 1 before sending it back to the sender (assuming, of course,
the current task is not the sender)?

For unknown messages, the mCode value is not incremented. The message code is simply OR'd with 0x8000.

Reference:

Macintosh Coprocessor Platform Programmer's Guide, page 3-15

Setting A/ROSE mCode or mStatus on receiving a message

Date Written: 2/25/92

Last reviewed: 6/14/93

Should an A/ROSE server-like task (a task that loops waiting for messages, but doesn't originate messages) switch on
mCode or mStatus when a message arrives? In other words, which should be checked first when getting a
message--mCode or mStatus? In addition, if mCode is a known code, but the status is nonzero, should the message be
discarded (ignored)?

Your program could certainly do either; however, it would seem more normal to switch on mCode first, then take a look at
the status. This style corresponds to the layout of the Programmer's Guide and would make the code easier to follow by
someone else.

As for discarding the message, the question posed is not clear. If mStatus is nonzero, some error has occurred and needs
to be dealt with. However, other processing could be performed with the same message block allocated. For example, you
might have a loop that queries the existence of the ICCM on each card. If an error is returned, the task would know that
there is no Macintosh Coprocessor Platform card in the designated slot, or that A/ROSE has not been initialized on the
installed card. The task would increment the slot counter variable and continue to query the next card. When the loop is
finished, a FreeMsg call would be made.

NetCopy & mDataPtr buffer address if A/ROSE IsLocal TRUE

Date Written: 2/25/92

Last reviewed: 6/14/93

If IsLocal returns TRUE, can a task avoid calling NetCopy and access the mDataPtr buffer address directly and at will?

How about a yes/no answer. If IsLocal returns TRUE, then your process can bypass the NetCopy procedure; however, you
cannot access the mDataPtr buffer address directly without first checking that you are dealing with a physical address on
the main logic unit. For example, your process may be running on a Macintosh IIci or IIsi, which have "interesting"
memory maps where the virtual addresses do not correspond to the physical ones. In such cases, refer to the Technote
"Coping with VM and Memory Mappings."

A/ROSE LockRealArea call

Date Written: 2/25/92

Last reviewed: 6/14/93

When does the A/ROSE LockRealArea call really need to be used? Is it compatible with virtual memory and System 7.0?

LockRealArea is provided as a Prep routine and is used by routines on the motherboard to prevent System 7 virtual
memory from paging an important buffer out from under a process like NetCopy. LockRealArea was designed for

A/ROSE & MCP Card Q&As Page: 5

compatibility with virtual memory and System 7.0.

LockRealArea performs two functions. First, it makes it possible for a NetCopy call made by any NuBus card task to
access the main logic board memory. Secondly, it calls either the Macintosh Operating System virtual memory dispatch
trap _LockMemory if LockRealArea was called with a physical address/length pair count greater than one, or
_LockMemoryContiguous if LockRealArea was called with a physical address/length pair count equal to one.

_LockMemory and _LockMemoryContiguous in turn perform two functions. Both requests ensure that the virtual
memory being locked is placed in physical memory and is not pageable. Secondly, both requests make the physical pages of
the physical memory noncacheable. This second attribute takes care of the "stale" data cache problem that can occur with
68030 and 68040 CPUs.

Unregistering A/ROSE task names

Date Written: 2/25/92

Last reviewed: 6/14/93

When an A/ROSE task quits, is it more efficient to unregister that task's names with the Name Manager, or just let the
Name Manager take care of it automatically?

For tasks running on cards, A/ROSE will automatically unregister all names associated with a given task when either
StopTask is explicitly called or your tasks main() [as specified in the StartTask call] is returned from.

For tasks running on the motherboard, A/ROSE will not automatically unregister the names. This is because the task is an
application, driver, VBL, etc., first, and an A/ROSE task second. In all cases it isn't clear when the task is finished. It's the
task's responsibility to unregister names associated with tasks running on the motherboard.

In regard to efficiency, the answer is that it is more efficient for the task to allow the Name Manager to unregister the
names for it. The Unregister function will be called in all cases at termination (even if you explicitly unregister), so a
duplicate function call can be avoided. Again, this only applies to tasks on the card! On the motherboard you must
explicitly call Unregister.

A/ROSE task interrupts

Date Written: 2/25/92

Last reviewed: 6/14/93

What can or cannot be done at interrupt time in an A/ROSE task or an A/ROSE process running on the motherboard?

On the motherboard, you must refrain from doing anything that results in memory movement or allocation. In addition,
you should not call KillReceive from an interrupt routine. A race condition could result --the KillReceive may
not get done or done at the wrong time.

On the card, you should not call StartTask, StopTask, or Receive from an interrupt routine. Please note that
RegisterTask, LookupTask, and printf call Receive in their code, and as such, cannot be done from an interrupt
routine.

Here are some additional caveats that you should be aware of with regard to ISRs (Interrupt Service Routines):

On the card, you probably do not want to call GetTID. If you call GetTID during interrupt time, you'll get the TID of the
currently executing A/ROSE task, which is probably not the TID of the A/ROSE task which installed your interrupt
routine. It is best for your task which installs your interrupt routine to save the TID in a memory location for your
interrupt routine.

On the card, you should note that if you do a GetMsg request, the mFrom field in the A/ROSE message will not be what you
expect. You might expect the mFrom field to be your task which installed the interrupt routine. The mFrom field will be
set to what GetTID() would return.

One final caveat and this one is hard to explain. This caveat concerns performance. To achieve a fast level of real-time
latency, the card's primitives, like Send and GetMsg and FreeMsg, try to disable interrupts for as short a time as
possible. However, if an interrupt routine calls Send, Send cannot lower the interrupt level below whatever called it.
For example, suppose an interrupt routine at interrupt level 2 calls Send; Send cannot lower its interrupt level below
2 to zero; an interrupt at level 1 or another interrupt at level 2 might be pending, causing confusion for the interrupt
routine. It's best for the interrupt routine to lower its interrupt level when safe before calling Send.

Should the interrupt routine need an A/ROSE message buffer, it's best for the task that installed the interrupt routine to
preallocate message buffers by calling GetMsg, refill the supply as needed, and place pointers to these message buffers in
an area for the interrupt routine to use. Normally, the interrupt routine will want to send an A/ROSE IPC message to the
task to wake it up.

DTS recommends the following logic for such a wakeup scenario:

1. Have the task do a GetMsg, set up this message so the mTo field is that of this task and this message has a
task-defined mCode, and save the address of the message buffer in a variable called messagePointer. This
effectively creates an A/ROSE IPC message that you will recognize as the wakeup message from the interrupt
routine.

2. Have the task install the interrupt routine.
3. When the interrupt routine is invoked, have it do whatever is necessary at its interrupt level. Then, have the

interrupt routine get the value from messagePointer into a register (like D1) and zero messagePointer.
Have the interrupt routine lower its interrupt level to the previous interrupt level found on the stack. If D1 is
zero, you're done. Exit the interrupt routine by doing JMP PostRTE. If D1 is nonzero, D1 contains the address of
the wakeup message; call Send to send the A/ROSE IPC message to wake up the task.

4. When the task receives the wakeup message, which it recognizes by the mCode, the task can store the address of
the wakeup message in messagePointer. Then, the task can look for information left by the interrupt routine
on what the task should do. The task must be prepared to find multiple things to do or nothing to do.

Back to top

A/ROSE & MCP Card Q&As Page: 6

Downloadables

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

