
MacApp 'View' Adventure Game Page: 1

CONTENTS

Introduction

Issues Related to the 'View' Resource Use

Instructions

Overall Structure of the 'View' Resource Template

'View' Resource Fields Described

View Header: 'View' General Information

View Component Level

View Component Level: 'wind' Subcomponent

'wind' Subcomponent : TStream Metainformation

'wind' Subcomponent : TEventHandler Information

TView Data

TView Data: Adorner Resources

TView Data: Drawing Environment Resources

TEventHandler Data: Behavior Resources

Other Resources

Conclusion

References

Downloadables

This Technical Note describes the new
MacApp 3.0 'View' resource.

[Sep 01 1992]

Introduction

The new MacApp 3.0 'View' format is defined in the ViewTypes.r file ({MacApp}Includes:RIncludes folder).
However, this file is hard to understand the first time. This Technical Note explains how the new 'View' format is
constructed and how to write and modify these view resources. A good resource editor should produce 'View' resources in
most cases. However, there are cases when the programmer can't avoid reading and modifying text-based 'View'
resources.

An intelligent reader might figure out all the fields by reading ViewTypes.r. Consider this Technote to be a document
that you can read in ten minutes to quickly understand the new 'View' format. For more information, please consult the
MacApp samples that have resource files containing 'View' resources (our walk through example is based on these
samples).

Back to top

Issues Related to the 'View' Resource Use

The 'Read Me' file in the ViewPromoter folder, MacApp 3.0 distribution, provides information about how to convert
MacApp 2.0 'view' resources to the new 'View' resource format.

Include "ViewTypes.r" in your resource file if you want to include the new 'View' resource templates.

Back to top

MacApp 'View' Adventure Game Page: 2

Instructions

Do a walk through of the 'View' resource, starting from the top and slowly penetrating step by step into the finer
substructures.

Back to top

Overall Structure of the 'View' Resource Template

Usually the typical outline of the 'View' structures added to the MacApp 3.0 project looks like this:

Back to top

'View' Resource Fields Described

Here's a field-by-field description of the 'View' format using an example, including comments about the use of the field.

Back to top

View Header: 'View' General Information

MacApp 'View' Adventure Game Page: 3

The top of the 'View' definition specifies the view ID, and whether the 'View' resource is purgeable or not.

resource 'View' (1000,
#if qNames
"Spreadsheet",
#endif
purgeable)

MAThreeOh is the 'View' template version number, the main release in the upper byte, and the dot release in the
lower byte. For instance, MacApp 3.0 has a constant kMAThreeOhTemplateVersion that has the hex value 0x0300.
We should not change this field unless we know what we are doing (sort of).

...
purgeable)
{MAThreeOh,
 {
...

Back to top

View Component Level

This view block contains an array of view components, window, dialog, static text, and similar building blocks.

Back to top

View Component Level: 'wind' Subcomponent

MacApp 'View' Adventure Game Page: 4

Now we are diving into the subcomponent level, in this case into the 'wind' subcomponent.

Back to top

'wind' Subcomponent : TStream Metainformation

The first field inside this subcomponent is a special TStream metainformation field, used with MacApp stream handling.

The first field defines the view type:

...
{MAThreeOh,
 {
 ViewSignatureAndClassname
...

We could have various labels here, such as:

ViewSignatureAndClassname defines the 'View' type, if it's a:

NullObject null/unused view

LocalObject local object

ViewSignatureAndClassname view that has a signature and class name (most typical case)

The first field is a ViewSignatureAndClassname type view, so the next fields deal with this type. 'wind' defines
the template signature , which MacApp uses when it creates and accesses the view from various other MacApp member
functions:

...{
 ViewSignatureAndClassname
 {'wind',
...

The following field defines the size of the view :

... {'wind', 1402, ...

The following field is a Pascal string that defines the class name of the view object. This name is used when creating the
object using ViewServer, so it is important to have the right name when a basic class is inherited and a new subclass is
doing most of the work.

..., 1402, "TCalcWindow", 'WIND',...

The following field corresponds to the fIdentifier field, used with adorners, behaviors, and other classes to
distinguish the instance of the object from other instances.

..."TCalcWindow", 'WIND', enabled,...

Back to top

'wind' Subcomponent : TEventHandler Information

The next major subcomponent field describes the TEventHandler view information.

MacApp 'View' Adventure Game Page: 5

... 'WIND', enabled, noIdle,...

The following field corresponds to the fIdleFreq field in the TEventHandler class. fIdleFreq defines how often
MacApp will call DoIdle (idle frequency). The default value (noIdle) corresponds to kMaxIdleTime (call every
fIdleFreq tick).

..., enabled, noIdle, {},...

The next field defines behaviors attached to the 'View' resources. In this case we don't have any behaviors attached to the
'View' so it's empty. See section "TEventHandler Data: Behavior Resources" for more information about how behaviors
are defined in the 'View' resource.

..., noIdle, {}, MAThreeOh, ...

Back to top

TView Data

The following fields define the general view information related to coordinates, target management, and general view
handling.

The next field yet again defines the version number for the view.

...{}, MAThreeOh, {40, 10},...

The next two fields deal with the coordinates. The first one is a VPoint that defines the view placement inside the parent
view. The second pair is also a VPoint that defines the size of the view.

..., MAThreeOh, {40, 10}, {288, 447},...

The two following fields define the vertical and horizontal view determiners .

...{288, 447}, sizeVariable, sizeVariable, shown,...

They might have the following values:

sizeSuperView view is the same size as superview

sizeRelSuperView view is relative to the superview

sizePage view is to be the size of one page

sizeFillPages view fills an exact number of pages

sizeVariable size criteria are application specific

sizeFixed no default handling of size

The next field defines whether the view is initially shown or not, corresponding to the fShown field (TView).

...sizeVariable, shown, doesntWantToBeTarget, ...

The next field defines whether the view wants to act as a target or not. The two values it could contain are
wantsToBeTarget and doesntWantToBeTarget.

MacApp 'View' Adventure Game Page: 6

...shown,doesntWantToBeTarget, handlesCursor,
letsSubViewsHandleCursor,...

The following fields are used for cursor handling. The first one specifies whether the view should handle a cursor or not. It
can have the values handlesCursor or doesntHandleCursor. The following field specifies whether the subview is
able to handle the cursor. It could contain the values letsSubViewHandleCursor and
doesntLetSubViewsHandleCursor. The third field defines the cursor ID . Define the ID and place a cursor resource
with the same ID into the resource fork, which makes it possible to switch to this cursor when the mouse moves over the
specified view.

...doesntWantToBeTarget, handlesCursor, letsSubViewsHandleCursor,
noCursorID,

The following fields are used for System 7 Help support. The first field defines whether the view will show a balloon--the
two values are handlesHelp and doesntHandleHelp. The following one defines whether the subview will also show a
balloon--the two values are letsSubViewHandleHelp and doesnLetSubViewHandleHelp. The third field is the
help ID number. noHelpID signals no balloon resource. The last help field is the help index number .

...noCursorID, handlesHelp, letsSubViewsHandleHelp, noHelpID,
1,...

The next field defines the drawing environment for the view. See the section "TView Data: DrawingEnvironment Resources"
concerning this field. In this case we don't have a drawing environment.

...1, NoDrawingEnvironment {}, AdornerListSignatureAndClassname...

Back to top

TView Data: Adorner Resources

The special adorner fields will define the adorner resources allocated to the special view object.

The AdornerListSignatureAndClassname will signal that the following fields are related to an adorner that is
part of the enclosed object ('view', 'wind', other components . . .).

AdornerListSignatureAndClassname {NoIdentifier, AdornerList,

We might have the following labels:

NoAdorners,

AdornerListLocalObject,

AdornerListClassIDAndClassname

AdornerListSignatureAndClassname.

The next field defines the signature, usually NoIdentifier.

AdornerListSignatureAndClassname {NoIdentifier, AdornerList,

The following fields define the adorner list itself, the size, size shift, and allocation increment. Most of these values are
already hardcoded so there's seldom any need to modify these.

{NoIdentifier,AdornerList,AdornerElementSize,AdornerElementSizeShift,
DynamicArrayAllocationIncrement, {

Following this we have the adorner list. Specify as many adorners as needed in the following closure.

MacApp 'View' Adventure Game Page: 7

 DynamicArrayAllocationIncrement, {
AdornFirst, AdornerLocalObject {EraseAdorner},

The first field inside this closure defines how and when the adorner will trigger. The following list describes the order of
adorner execution, from the first adorner to the last:

AdornFirst - AdornBefore - DrawView - AdornAfter - AdornLast

The following fields define the adorner itself. You might either have a MacApp-defined adorner
(AdornerLocalObject), or an adorner that is registered from the application code
(AdornerClassIDandClassname or AdornerSignatureAndClassname).

AdornFirst, AdornerLocalObject {EraseAdorner},

In this case we have a MacApp-provided adorner called EraseAdorner that will erase the contents of the specified
resource first (see earlier statement). The following MacApp 3.0-provided adorners are available:

EraseAdorner erase the contents of the adorner

DrawAdorner draw the contents of the resource

DimAdorner dim the contents

HiliteAdorner highlight the contents

PrintAdorner print the contents

ResizeIconAdorner resize icon drawing

SelectionAdorner highlight selection in window when window not active

Here's a typical list of adorners:

 AdornFirst, AdornerLocalObject {EraseAdorner},
 DrawView, AdornerLocalObject {DrawAdorner},
 AdornLast, AdornerLocalObject {ResizeIconAdorner}}}

Here's an example of a TFrameAdorner that is defined used an external signature and a possible class name:

AdornAfter, AdornerSignatureAndClassname {"fram", "", 'fram',
freeOnDeletion, $""}

AdornerSignatureAndClassname specifies that the following adorner will be created using an external registered
signature (and possible class name). Inside this closure the first field defines the signature ('fram' as in
TFrameAdorner), used when creating the adorner from the resource information. The second field should define the
class name. The third field is another signature field that is the actual signature for the adorner. The fourth field defines
whether the adorner should free on deletion. For instance, whether we have one single global adorner it does not make
sense to delete it when the view is destructed. The two values are freeOnDeletion and dontFreeOnDeletion. The
final field defines optional data that a developer could use.

Finally the last field is a userArea , usually defined empty (0). This field is four bytes. Examples of use are for instance
separation of globally propagated views using this field as the label field.

AdornerLocalObject {ResizeIconAdorner}}}, 0,

Back to top

TView Data: Drawing Environment Resources

The Drawing environment closure is very simple. It is used for defining the QuickDraw pen modes and colors. Here's an
example of a Drawing environment:

MacApp 'View' Adventure Game Page: 8

DrawingEnvironmentClassIDAndClassname {74, DrawingEnvironment, {3,
3}, 8, $"FFFF FFFF FFFF FFFF", {0, 0, 0}, {65535, 65535, 65535}}

As with other 'View' components we could have:

NoDrawingEnvironment,
DrawingEnvironmentLocalObject,
DrawingEnvironmentClassIDAndClassname
DrawingEnvironmentSignatureAndClassname

In this case we have a drawing environment with class ID and a name.

The first field is the Class ID , and the following field is the name of the class, the default case
"TDrawingEnvironment".

DrawingEnvironmentClassIDAndClassname {74,
DrawingEnvironment, {3, 3}, 8, $"FFFF FFFF FFFF FFFF", {0, 0, 0},
{65535, 65535, 65535}}

The first two fields in the actual drawing environment define the pen size (fPenSize) and the pen mode (fPenMode):

DrawingEnvironmentClassIDAndClassname {74, DrawingEnvironment, {3,
3}, 8, $"FFFF FFFF FFFF FFFF", {0, 0, 0}, {65535, 65535,
65535}}

The following field defines the pen pattern (fPenPattern):

DrawingEnvironmentClassIDAndClassname {74, DrawingEnvironment, {3, 3}, 8,
$"FFFF FFFF FFFF FFFF", {0, 0, 0}, {65535, 65535, 65535}}

The final two fields will define the foreground (fForegroundColor) and the background color
(fBackgroundColor) of the drawing environment.

DrawingEnvironmentClassIDAndClassname {74, DrawingEnvironment, {3, 3}, 8,
$"FFFF FFFF FFFF FFFF", {0, 0, 0}, {65535, 65535, 65535}}

Back to top

TEventHandler Data: Behavior Resources

As with other 'View'-based resources, you could define the behaviors attached to the main view by using the following
constructs:

BehaviorNullObject
BehaviorLocalObject
BehaviorClassIDAndClassname
BehaviorSignatureAndClassname

Here's an example, in which we have BehaviorSignatureAndClassname as the template:

BehaviorSignatureAndClassname{kSectionBehavior,"TSECTIONBEHAVIOR",
Behavior {enabled, noIdle}}

MacApp 'View' Adventure Game Page: 9

The signature is defined, as well as the name of the class.

BehaviorSignatureAndClassname{kSectionBehavior,"TSECTIONBEHAVIOR",
Behavior {enabled, noIdle}}

Finally the behavior itself is defined. The behavior label is tested, and if, for instance, we defined a TDialogBehavior
we would use a separate closure for the data that is part of the specified behavior. In this case we have a general behavior,
so the only two data fields are the standard enabled / notEnabled and the fIdleFreq field, in this cased defined as
noIdle.

BehaviorSignatureAndClassname{kSectionBehavior,"TSECTIONBEHAVIOR",
Behavior {enabled, noIdle}}

Back to top

Other Resources

MacApp provides many other resource components (buttons, checkboxes, radio buttons . . .). Please consult the files in the
{RIncludes} folder for more information.

Back to top

Conclusion

This walk through of the 'View' resource descriptions provided a short guided tour, and there are more exotic
structures for the brave MacApp adventure to explore. "You are in a maze of twisty little passages, all alike."

Back to top

References

MacApp 3.0 documentation

DemoDialogs MacApp 3.0 sample code

Back to top

Downloadables

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

