Signals Page: 1

NOTE: This Technical Note has been retired. Please see the Technical Notes page for current documentation.

Technical Note PT34

dignals

.—\.

CONTENTS [Aug 01 1986]
Introduction

"Gotcha" summary

References

Downloadables

Introduction

Signals are a form of intra-program interrupt which can greatly aid clean, inexpensive error trapping in stack frame
intensive languages. A program may invoke the Si gnal procedure and immediately return to the last invocation of
Cat chSi gnal , including the complete stack frame state at that point.

Signals allow a program to leave off execution at one point and return control to a convenient error trap location,
regardless of how many levels of procedure nesting are in between.

The example is provided with a Pascal interface, but it is easily adapted to other languages. The only qualification is that the
language must bracket its procedures (or functions) with LI NKand UNLK instructions. This will allow the signal code to
clean up at procedure exit time by removing Cat chSi gnal entries from its internal queue.

Note:
Only procedures and/or functions that call Cat chSi gnal need to be bracketed with LI NKand UNLK
instructions.

Warning:
I ni t Si gnal s must be called from the main program so that A6 can be set up properly.

Note that there is no limit to the number of local Cat chSi gnal s which may occur within a single routine. Only the last
one executed will apply, of course, unless you call Fr eeSi gnal . Fr eeSi gnal will "pop" off the last Cat chSi gnal . If
you attempt to Si gnal with no Cat chSi gnal s pending, Si gnal will halt the program with a debugger trap.

I ni t Si gnal s creates a small relocatable block in the application heap to hold the signal queue. If Cat chSi gnal is
unable to expand this block (which it does 5 elements at a time), then it will signal back to the last successful

Cat chSi gnal with code =200. A Si gnal (0) acts as a NOP, so you may pass CSEr r s, for instance, after making File
System type calls, and, if the OSEY r is equal to NOEr r, nothing will happen.

Cat chSi gnal may not be used in an expression if the stack is used to evaluate that expression. For example, you can't
write:

Signals Page: 2

Back to top

"Gotcha" summary

1. Routines which call Cat chSi gnal must have stack frames.

2. I'nit Si gnal s must be called from the outermost (main) level.

3. Don't put the Cat chSi gnal function in an expression. Assign the result to an | NTEGER vari able; i.e.
i : =Cat chSi gnal .

4. It's safest to call a procedure to do the processing after Cat chSi gnal returns. See the Pascal example
Test Si gnal s below. This will prevent the use of a variable which may be held in a register.

Below are three separate source files. First is the Pascal interface to the signaling unit, then the assembly language which
implements it in MPW Assembler format. Finally, there is an example program which demonstrates the use of the routines
in the unit.

{File ErrSignal.p}
UNIT ErrSignal ;

| NTERFACE

{Call this right after your other initializations (InitGaf, etc.)--
in other words as early as you can in the application}
PROCEDURE | ni t Si gnal s;

{Until the procedure which encloses this call returns, it will catch
subsequent Signal calls, returning the code passed to Signal. Wen
CatchSignal is encountered initially, it returns a code of zero. These
calls may "nest”; i.e. you may have multiple CatchSignals in one procedure.
Each nested CatchSignal call uses 12 bytes of heap space }

FUNCTI ON Cat chSi gnal : | NTEGER;

{This undoes the effect of the |last CatchSignal. A Signal will then invoke

the CatchSignal prior to the |ast one.}

PROCEDURE Fr eeSi gnal ;

{Returns control to the point of the |ast CatchSignal. The programw || then behave
as though that CatchSignal had returned with the code paraneter supplied to Signal.}
PROCEDURE Si gnal (code: | NTEGER) ;

END.

Here's the assembly source for the routines themselves:

ErrSignal code w. InitSignal, CatchSignal, FreeSignal, Signal
def i ned

Version 1.0 by Rick Blair

PRI NT OFF

| NCLUDE " Traps. a'

| NCLUDE ' Tool Equ. a'

| NCLUDE ' QUi ckEqu. a'

I NCLUDE ' SysEqu. a'

PRI NT ON
Cat chSi gErr EQU 200 ;"insufficient heap" nessage
Si gChunks EQU 5 ; nunber of elenents to expand by
Fr ameRet EQU 4 ;return addr. for frame (off A6)

Si gBi gA6 EQU $FFFFFFFF ; maxi mum posi tive A6 val ue

Signals

Page: 3

; Atenmplate in MPW Assenbl er descri bes the |ayout of a collection of data
; Without actually allocating any nmenory space. A tenplate definition starts
: Wth a RECORD directive and ends with an ENDR directi ve.

; To illustrate how the tenplate type feature works, the follow ng tenpl ate
; is declared and used. By using this, the assenbl er source approxi mates very
; closely Pascal source for referencing the correspondi ng information.

;tenplate for our table el enents

Si gEl ermrent RECORD 0 ;the zero is the tenplate origin
Si gSP DS. L 1 ;the SP at the CatchSignal --(DS.L just |ike EQ)
Si gRet Addr DS. L 1 ; the address where the CatchSi gnal returned
Si gFRet DS. L 1 ;return addr. for encl. procedure
Si gEl Si ze EQU * ;just like EQU 12
ENDR

; The gl obal data used by these routines follows. It is in the formof a

; RECORD, but, unlike above, no origin is specified, which neans that nenory
; space *will* be all ocated.

; This data is referenced through a WTH statenment at the begi nning of the

; procs that need to get at this data. Since the Assenbl er knows when it is
; referencing data in a data nmodul e (since they nust be decl ared before they
; are accessed), and since such data can only be accessed based on A5, there
; 1S no need to explicitly specify A5 in any code whi ch references the data
; (unless indexing is used). Thus, in this programwe have omtted all A5

; references when referencing the data.

Si gd obal s RECORD ;no origin neans this is a data record
;not a tenpl ate(as above)
Si gEnd DS. L 1 ;current end of table
Si gNow DS. L 1 ; the MRU el enent
Si gHandl e DC L 0 ;handle to the table
ENDR
InitSignals PROC EXPORT ; PROCEDURE | ni t Si gnal s;

| MPORT Cat chSi gnal
W TH Si gEl enent , Si gd obal s

;the above statenent nmakes the tenplate SigEl enent and the gl obal data
;record Sigd obals available to this procedure
MOVE. L #Si gChunks*Si gEl Si ze, DO

_NewHandl e ;try to get a table

BNE. S forgetit ;we couldn't get that!?

MOVE. L A0, Si gHandl e ;save it

MOVE. L #- Si gEl Si ze, Si gNow ; poi nt "now' before start

MOVE. L #Si gChunks* Si gEl Si ze, Si gEnd ; save the end

MOVE. L #Si gBi gA6, A6 ;make A6 valid for Signal
forgetit RTS

ENDP
Cat chSi gnal PRCC EXPORT ; FUNCTI ON Cat chSi gnal : | NTECER;

| MPORT Si ggySet up, Si gnal , Si gDeat h
W TH Si gEl enent, Si gd obal s

MOVE. L (SP) +, A1 ;grab return address

MOVE. L Si gHandl e, DO ;handl e to tabl e

BEQ Si gDeat h ;if NIL then croak

MOVE. L D0, A0 ;put handle in A-register

MOVE. L Si gNow, DO

ADD. L #Si gEl Si ze, DO

MOVE. L DO, Si gNow ; save new position

CWP. L Si gEnd, DO ; have we reached the end?

Signals

Page: 4

BNE. S catchit ; o, proceed
ADD. L #Si gChunks* Si gEl Si ze, DO ;we'll try to expand
MOVE. L DO, Si gend save new (potential) end
_Set Handl eSi ze
BEQ S @ ;junp around if it worked!
;signals, we use 'em oursel ves
MOVE. L Si gNow, Si gEnd ;restore old endi ng of f set
MOVE. L #Si gEl Si ze, DO
SUB. L D0, Si gNow ;ditto for current position
MOVE. W #cat chSi gErr, (SP) ;we' I I signal a "coul dn't
; catch" error
JSR Si gnal ;never returns of course

@ MOVE. L Si gNow, DO

catchit MOVE. L (A0), AO ; der ef .
ADD. L DO, AO ;point to new entry
MOVE. L SP, Si gSP(A0) ;save SP in entry
MOVE. L Al, Si gRet Addr (AO) ;save return address there
CWP. L #Si gBi gA6, A6 ;are we at the outer |evel?
BEQ S @ ;yes, no frame or cl eanup needed
MOVE. L FrameRet (A6) , Si gFRet (AQ) ; save ol d frame return
; addr ess
LEA Si ggyPop, A0
MOVE. L A0, Fr ameRet (A6) ; set cl eanup code address
@ CLR W (SP) ;no error code (before its time)
JVP (A1) ; done setting the trap
Si ggyPop JSR Si ggySet up ;get pointer to el enent
MOVE. L Si gFRet (A0) , AO ;get proc's real return address
SUB. L #Si gEl Si ze, DO
MOVE. L D0, Si gNow ;"pop" the entry
JVP (A0) ; gone
ENDP
Fr eeSi gnal PRCC EXPORT ; PROCEDURE Fr eeSi gnal ;
| MPORT Si ggy Set up
W TH Si gEl enent, Si gd obal s
JSR Si ggySet up ;get pointer to current entry
MOVE. L Si gFRet (A0) , Fr aneRet (A6) ; "pop" cl eanup code
SUB. L #Si gEl Si ze, DO
MOVE. L D0, Si gNow ;"pop" the entry
RTS
ENDP
Si gnal PRCC EXPORT ; PROCEDURE Si gnal (code: | NTEGER) ;
EXPORT Si ggySet up, Si gDeat h
W TH Si gEl enent, Si gd obal s
MOVE. W 4(SP), D1 ; get code
BNE. S @ ; process the signal if code is non-zero
MOVE. L (SP), A0 ; save return address
ADDQ L #6, SP ; adj ust stack pointer
JMWP (A0) ;return to call er(code was 0)
@ JSR Si ggy Set up ;get pointer to entry
BRA. S Si gLoopl
Si gLoop UNLK A6 ;unlink stack by one frame
Si gLoopl CWP. L Si gSP(A0) , A6 ;i1s A6 beyond the saved stack?
BLO S Si gLoop ;yes, keep unlinking

MOVE. L Si gSP(AQ) , SP ; bring back our SP
MOVE. L Si gRet Addr (A0) , AO ;get return address

Signals Page: 5

MOVE. W D1, (SP) ;return code to CatchSi gnal
JvP (A0) ; Houst on, boost the Signal!
; (or Hooston if you're fromthe Negative Zone)

Si ggySet up MOVE. L Si gHandl e, AO
MOVE.

L (A0), AD ; der ef .
MOVE. L A0, DO ;to set CCR
BEQ S Si gDeat h ;ni 1 handl e nmeans troubl e
MOVE. L Si gNow, DO ;grab table offset to entry
BM .S Si gDeat h ;if no entries then give up
ADD. L DO, A0 ;point to current el ement
RTS
Si gDeat h _Debugger ;a signal sans catch is bad news
ENDP

Now for the example Pascal program:

PROGRAM Test Si gnal s;
USES Err Si gnal ;

VAR i : | NTEGER,

PROCEDURE DoCat ch(s: STR255; code: | NTEGER) ;
BEG N
| F code<>0 THEN BEQ N
Witel n(s, code);
Exi t (Test Si gnal s) ;
END;
END; {DoCat ch}

PROCEDURE Easy;
PROCEDURE Never ;
PROCEDURE DoCat ch(s: STR255; code: | NTEGER) ;
BEGA N
| F code<>0 THEN BEGA N
Witel n(s, code);
Exi t (Never);
END;
END; {DoCat ch}

BEG N { Never}
i : =Cat chSi gnal ;
DoCat ch(' Si gnal caught from Never, code ="', i);

i : =Cat chSi gnal ;
I F i<>0 THEN DoCat ch(' Shoul d never get here!',i);

FreeSignal; {"free" the |ast CatchSignal}
Signal (7); {Sighal a 7 to the | ast CatchSignal}
END; { Never }
BEG N { Easy}
Never ;
Si gnal (69); {this won't be caught in Never}
END; { Easy} {all local CatchSignals are freed when a procedure exits.}

BEG N { PROGRAM

InitSignals; {You nust call this early on!}

{catch Signals not otherw se caught by the prograni
i : =Cat chSi gnal ;

Signals Page: 6

IF i <>0 THEN
DoCat ch(' Si gnal caught frommain, code ="',i);

Easy;

The example program produces the following two lines of output:
Signal caught from Never, code = 7
Signal caught from main, code = 69

Back to top

References

Using Assembly Language (Mixing Pascal & Assembly)

Back to top
Downloadables
Ei Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

