
IC 01 - SendToSelf:..in Touch..Via the Apple Events Page: 1

CONTENTS

Introduction

Knowing Yourself

Keeping Yourself in Suspense

Getting Back to Business

References

Downloadables

If an application suspends handling of an
Apple event which it sent to itself, the Apple
Event Manager will return errAETimeout as the
result of the AESend call. The event was still
sent correctly, however, and the answer (if
any) should appear later in the reply
descriptor. However, a problem in system
software versions 7.0 and 7.0.1 prevents
applications from getting the reply data.

Since MacApp 3.0 suspends handling of the
events it receives, the information in this note
is relevant to applications developed with that
framework.

[Oct 01 1992]

Introduction

Modern Macintosh applications frequently need to send Apple events to themselves. To take full advantage of AppleScript,
an application should be "factored." A factored application handles a user command by sending itself an Apple event, and
then performs the action in response to the Apple event. This allows the system to watch and record the actions being
performed.

Picture 1. Factored applications using Apple events

It is easy for an application to send an Apple event to itself by using an address descriptor of type
typeProcessSerialNumber with the lowLongOfPSN field set to kCurrentProcess and the highLongOfPSN
set to 0. Events delivered this way are directly dispatched: The Apple Event Manager processes these events immediately,

IC 01 - SendToSelf:..in Touch..Via the Apple Events Page: 2

bypassing the event queue and executing the handler routine directly. This speeds up delivery of the event by evading the
Event Manager overhead, and it avoids situations in which an Apple event sent in response to user interaction might arrive
in the event queue after some event that really occurred later than the user interaction. For example, if the user chooses
Cut from the Edit menu and then clicks in another window, and the Cut event were to end up in the queue behind the window
activate event, a selection in the wrong window might be cut.

An application can send events to itself using other forms of addressing, such as the true process serial number (as
returned by GetCurrentProcess.) Because direct dispatching will avoid event sequence problems, applications should
generally send events to themselves only by using a typeProcessSerialNumber address descriptor and the
kCurrentProcess constant, not by using a true process serial number or an application signature.

Back to top

Knowing Yourself

The handling of Apple events that are directly dispatched is the same whether the AESend specifies the mode as
kAEQueueReply or kAEWaitReply. Neither the event nor the reply will be delivered through the event queue. Replies
to directly dispatched events always appear in the reply descriptor.

The event source attribute of an event (a short) can be examined to determine the kind of dispatch that was used.

 pascal OSErr EventDirectFromSelf(AppleEvent * theAppleEventPtr, Boolean
 directFlagPtr)
 // Extract the event source attribute and check if it indicates that
 // the event was directly dispatched.
 {
 short theEventSource;
 DescType actualType;
 Size actualSize;
 OSErr retCode;

 retCode = AEGetAttributePtr(theAppleEventPtr, keyEventSourceAttr,
 typeShortInteger, &actualType, (Ptr) &theEventSource, sizeof(short),
 &actualSize);

 if (retCode == noErr && theEventSource == (short) kAEDirectCall)
 *directFlagPtr = true;
 else *directFlagPtr = false;

 return retCode;
 }

Back to top

Keeping Yourself in Suspense

If the handling of an Apple event sent by an application to itself is suspended by a call to
AESuspendTheCurrentEvent, the Apple Event Manager will immediately return from the AESend call with the error
code errAETimeout. This will happen whether the event was sent with the mode kAEQueueReply, kAEWaitReply,
or kAENoReply, even if the timeout parameter is set to kNoTimeOut. The routine calling AESend should take the
timeout error as confirmation that the event was sent.

IC 01 - SendToSelf:..in Touch..Via the Apple Events Page: 3

Picture 2. AESend and suspension of AE handling

As happens with other AESend calls that return with a timeout error, processing of the event by the handler will
nevertheless proceed. The handler's reply, if any, will be made available to the application in the reply event when the
handling has completed. There will be no notification that the reply is ready. If no data has yet been placed into the reply
event, the Apple Event Manager will return errAEReplyNotArrived when the application attempts to extract data
from the reply.

Unfortunately, the version of the Apple Event Manager present in system software versions 7.0 and 7.1 does not allow the
reply to be extracted from the reply record, and continues to return errAEReplyNotArrived. This should be fixed in
a future release of the Apple Event Manager. For now, applications suspending directly dispatched events cannot retrieve
the reply message.

Back to top

Getting Back to Business

Apple event handlers that suspend an event should not immediately call AEResumeTheCurrentEvent. Instead, a
handler should just return after suspending the event.

When AEResumeTheCurrentEvent is called for an event that was not directly dispatched, the event and reply will be
disposed (just as AEProcessAppleEvent usually does when a handler returns.) Be certain that all processing
involving the event or the reply has completed before calling AEResumeTheCurrentEvent. Do not call
AEResumeTheCurrentEvent for an event that was not suspended.

Back to top

References

Inside Macintosh , Volume VI, Apple Event Manager

Back to top

Downloadables

Acrobat version of this Note (112K) Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

