
Bugs In MacApp? Yes, But I Love It! Page: 1

NOTE: This Technical Note has been retired. Please see the Technical Notes page for current documentation.

CONTENTS

Introduction

MacApp.Lib Bugs

MABuild Bugs

Bugs Only In Debug Mode

MPW 3.2 Compatibility

SADE Compatibility

THINK Pascal Compatibility

MacApp Samples Bugs

Other

Downloadables

This Technical Note describes the latest
information about bugs or unexpected
"features" in MacApp. Where possible,
solutions and fixes are noted. DTS intends
this Note to be a complete list of all known
bugs in MacApp and will update it as old bugs
are fixed or new ones appear. If you have
encountered a bug or unexpected feature
which is not described here, be sure to let
DTS know. Specific code examples and
suggested fixes are useful.

This version of the Note reflects the state of
MacApp 2.0.1. The latest version of this Note
can always be found on AppleLink in the
Developer Services Bulletin Board.

[Aug 01 1990]

Introduction

The MacApp Management would like to note that MacApp is a high velocity ride with many twists and turns (all alike).
Please keep your hands inside at all times.

There are 107,744 lines of Object Pascal, C++, Assembly, and Rez code that go into the MacApp Library and Build system.
As such, it is inevitable that a few bugs creep in. The purpose of this Note is to inform you of these bugs, not to scare you
away from MacApp. There are dozens of commercially available programs that lead normal everyday lives which are built
on top of MacApp as it stands today. Most of the bugs listed here do not show up in regular use (at least, they don't in our
test programs), so they may not affect you. If they do, you can use the fixes or solutions identified here ("Fixes" are
intended to be applied directly to the MacApp source, while "solutions" identify techniques to override or avoid a method
the problem).

Back to top

MacApp.Lib Bugs

TApplication

Bugs In MacApp? Yes, But I Love It! Page: 2

1. When being suspended in MultiFinder, MacApp commits command objects which affect the clipboard, rather than
checking if the scrap has changed when switching back in.

Solution:

Not yet determined. This is an area of serious consideration for the next version of MacApp.

2. MacApp should hide the clipboard window on a suspend event and redisplay it on a resume event.

Solution:

Override the TApplication methods AboutToLoseControl and RegainControl. AboutToLoseControl
should remember whether or not the clipboard window is currently open and call gClipWindow.Close if it is.
RegainControl should look at the state of the clipboard window saved by AboutToLoseControl, and call
gClipWindow.Open if the window needs to be reshown.

3. There are problems with the value of the mouseDidMove parameter to TCommand when called by
TApplication.TrackMouse. When the TrackPhase is trackPress, TCommand.TrackMouse is called
with mouseDidMove set to TRUE even though the mouse hasn't had a chance to move. When the TrackPhase is
trackMove, mouseDidMove is FALSE whenever the mouse moves back inside the hysteresis range. When the
TrackPhase is trackRelease, mouseDidMove is TRUE even if the mouse never moved.

Fix:

In TApplication.TrackMouse (file UMacApp.TApplication.p):

* The first call to TrackOnce should read:

* The assignment of didMove should read:

 didMove := movedOnce &
 (NOT EqualVPt(previousPoint, theMouse)).

* The last call to TrackOnce should read:

 TrackOnce(trackRelease, didMove);

Once those changes have been applied, the parts of MacApp that assume mouseDidMove = TRUE when aTrackPhase
= TrackPress need to be updated. In the methods TCellSelectCommand.TrackMouse and
TRCSelectCommand.TrackMouse (file UGridView.inc1.p), replace:

 IF mouseDidMove THEN

With:

 IF mouseDidMove | (aTrackPhase = TrackPress) THEN

You should also make similar changes to your application's source, if applicable. For instance, in UCalc.inc1.p,
TColumnSelector.TrackMouse and TRowSelector.TrackMouse need to check for aTrackPhase =
TrackPress.

4. With these changes, it is possible to experience some feedback problems. For example, when resizing the column
widths in a spreadsheet, Calc draws the initial vertical line, waits until the mouse moved outside the hysteresis
range, and then, before drawing the vertical line in its new location, erases the old vertical line in the wrong

Bugs In MacApp? Yes, But I Love It! Page: 3

place. This leaves two vertical lines on the screen as garbage.

Fix:

In UMacApp.TApplication.p, replace the fourth occurrence of:

 previousPoint := theMouse;

With:

 IF didMove THEN
 previousPoint := theMouse;

5. The solution that previously occupied this spot caused more problems that it fixed. We removed it until we can get
our act together.

TCommand (including subclasses)

1. Fixed in MacApp 2.0.1.
2. If a failure occurs in TDocument.Revert, TRevertDocCommand.DoIt tries to show the reverted

document. This is the correct thing to do if the user canceled out of the revert if a silent failure is signaled (this
could happen in DiskFileChanged). However if a real error occurred, you cannot leave the document open;
you definitely must close it. Otherwise the application may bomb in the next operation involving the document
(e.g., the next screen refresh).

We have to distinguish three classes of errors:

1. the user canceled out of the operation in CheckDiskFile,
2. a real error was discovered in CheckDiskFile,
3. a real error occurred during rebuilding the document in DoInitialState or ReadFromFile.

In the first and second cases, the memory-resident version of the document has not been changed when you reach
HdlRevertCmd. In the third case, the document may be severely damaged. Therefore, in the first two cases there is no
need to call ShowReverted (it doesn't hurt either), while in the third case you must close the document.

Case one is easy to recognize (error = 0), but for the second and third cases, error <> 0. To distinguish between
them, you can pull a trick: you know that the Revert menu item is only enabled if fDocument.fChangeCount is
greater than zero. Therefore, you move SetChangeCount(0) in TDocument.Revert before any operation that can
clobber the document (i.e., before the call to FreeData). This way, you can distinguish between the second and third
cases in HdlRevertCmd by checking fChangeCount.

Fix:

Change the failure handling procedure in TRevertDocCommand.DoIt (file UMacApp.TDocument.p) to:

PROCEDURE HdlRevertCmd(error: OSErr; message: LONGINT);
BEGIN
 {Check whether the document has already been clobbered }
 IF fChangedDocument.GetChangeCount = 0 THEN
 fChangedDocument.Close {remove the debris
 left by fChangedDocument}
END;

In TDocument.Revert, move the line

 SetChangeCount(0);

Bugs In MacApp? Yes, But I Love It! Page: 4

before the line

 FreeData;

3. It is potentially problematic having Page Setup as an undoable command, since the view and printer driver context
can change. An example of this is shown with the following steps:

1. Launch any MacApp application.
2. Access the Page Setup dialog box from the File menu.
3. Take notice of which printer driver is currently being used and make a change to the dialog box (i.e., switch to

"landscape" printing), click on the OK button.
4. Access the Chooser desk accessory and change to a different printer driver.
5. Now select Redo Page Setup Changes from the Edit menu, then select Undo Page Setup Changes.
6. Open the Page Setup dialog box from the File menu and notice that the "landscape" printing icon is no longer

highlighted.
7. Although the Page Setup dialog box is unaffected by Undo and Redo, the document itself is affected, as it prints out

in landscape mode, while the Page Setup dialog box shows it is in non-landscape mode.

Solution:

Apple does not yet have a complete solution to this. If it bothers you, you could modify IPrintStyleChangeCommand
to make page setup non-undoable.

TControl

1. MacApp's subclasses of TControl (defined in the file UDialog.inc1.p) don't pass on their itsDocument
parameter to the INHERITED IRes method. This causes the fDocument field to get initialized with NIL
rather than the TDocument reference.

Solution:

You can override the IRes method of your own controls to do an INHERITED IRes and then set the fDocument field to
itsDocument:

PROCEDURE TMyButton.IRes(itsDocument: TDocument;
 itsSuperView: TView;
 VAR itsParams: Ptr); OVERRIDE;

BEGIN
 INHERITED IRes(itsDocument,
 itsSuperView, itsParams);
 fDocument := itsDocument;

Then register your class in your IYourApplication method so that all Button references in your 'view' resources
result in TMyButtons being created, rather than TButtons:

 RegisterStdType('TMyButton', kStdButton);

However, this solution does not work if you depend on these views appearing in the document's fViewList.

Fix:

Replace the calls to INHERITED IRes in the IRes methods of subclasses of TControl:

 INHERITED IRes(NIL, itsSuperView, itsParams);

Bugs In MacApp? Yes, But I Love It! Page: 5

With:

 INHERITED IRes(itsDocument, itsSuperView, itsParams);

2. Printing disabled controls, especially buttons, results in a gray pattern being printed over the control. This is not
a bug in MacApp, but rather a limitation of the LaserWriter. The LaserWriter driver doesn't respect all
QuickDraw transfer modes, including the one used to draw the grey text.

Solution:

Not yet determined. It may involve imaging the button into an off-screen bitmap, and then copying it to its destination.

TCtlMgr

1. Fixed in MacApp 2.0.1.
2. Fixed in MacApp 2.0.1.

TDeskScrapView

1. Fixed in MacApp 2.0.1.

TDialogView

1. TDialogView calls DoChoice on a disabled button as the result of a key press. If one disables the default
button and presses Return, for example, the button's DoChoice method still gets called.

Fix:

The following lines of code appear in TDialogView.DoCommandKey and in TDialogView.DoKeyCommand (file
UDialog.inc1.p):

 IF cancelView.IsViewEnabled THEN
 TControl(cancelView).Flash;
 TControl(cancelView).DoChoice(cancelView,
 TControl(cancelView).fDefChoice);

Replace them with:

 IF cancelView.IsViewEnabled THEN BEGIN
 TControl(cancelView).Flash;
 TControl(cancelView).DoChoice(cancelView,
 TControl(cancelView).fDefChoice);
 END;

Additionally, in TDialogView.DoKeyCommand, replace:

 IF defaultView.IsViewEnabled THEN
 TControl(defaultView).Flash;
 TControl(defaultView).DoChoice(defaultView,
 TControl(defaultView).fDefChoice);

Replace them

With:

Bugs In MacApp? Yes, But I Love It! Page: 6

 IF defaultView.IsViewEnabled THEN BEGIN
 TControl(defaultView).Flash;
 TControl(defaultView).DoChoice(defaultView,
 TControl(defaultView).fDefChoice);
 END;

Solution:

You can do this as an OVERRIDE if you hesitate to change MacApp.

TDocument

1. TDocument.Save fails if you lock a file after opening it with read and write access and then try to save. The file
is closed and fDataRefNum and fRsrcRefNum contain their old (and now invalid) values.

Solution:

Not yet determined.

1. If GetFileInfo returns a result other than noErr, TDocument.DiskFileChanged maps it to
errFileChanged, because there is no check for (err = noErr) in the ELSE IF branch. The resulting
alert is misleading, as the file may also have been renamed, deleted, or the file server may have gone offline.

Fix:

The error checking code in TDocument.DiskFileChanged (file UMacApp.TDocument.p) should look like:

 err := GetFileInfo(fTitle^^, fVolRefNum, pb);
 ...
 IF (err = noErr) THEN
 IF checkType
 & (pb.ioFlFndrInfo.fdType <> fFileType) THEN
 err := errFTypeChanged
 ELSE IF pb.ioFlMdDat <> fModDate THEN
 err := errFileChanged;
 DiskFileChanged := err;

3. It is not possible to use the Pascal built-in filing function Close from within a TDocument method because the
Object Pascal scoping rules always associate the name Close with TDocument.Close.

Solution:

It is likely that Apple will change the name in the future. After all, there are three distinct objects that implement a
Close method, none of which have any relation to another; something like that needs to be cleaned up. In the meantime,
you could make a global routine MyClose that would be a wrapper for the Close routine.

TEditText

1. If the first or only TEditText in a dialog has auto-wrap turned on and is not initially selected, tabbing to it
after opening the window selects it, but the selection is not visible until the window is refreshed. This does not
occur if auto-wrap is turned off for that TEditText.

Solution:

Not yet determined.

2. TEditText items in TDialogViews no longer get the first crack at events, as they used to in MacApp 2.0b9.
The event handler chain is now gTarget -> TDialogTEView -> TScroller -> TEditText ->

Bugs In MacApp? Yes, But I Love It! Page: 7

TDialogView -> etc., so all events in which a subclass of TEditText might be interested are caught by
TDialogTEView.

Solution:

Create your own subclass of TDialogTEView that handles the interesting characters by overriding
TDialogView.MakeTEView and returning your own subclass of TDialogTEView.

Fix:

A clean fix to this problem might be to rearrange the event handler chain to gTarget -> TEditText ->
TDialogTEView -> TScroller -> TDialogView -> etc. However, this approach is more work for
TDialogTEView.InstallEditText, and the effects of rearranging the target chain are currently untested.

TEvtHandler

1. TEvtHandler.DoCreateViews now calls TView.AdjustSize on the root view it just created. This change
was made to give views an early chance to make sure they are correctly sized. However, the change can cause your
application to break if you override routines that perform AdjustSize calls (like TView.CalcMinSize)
and those routines rely on information that is not initialized until after DoCreateViews returns to
TYourDocument.DoMakeViews.

Solution:

Simply be aware of this change. If you initialize fields of your views in your DoMakeViews method, then overrides of
methods such as TView.Resize, TView.ComputeSize, and TView.CalcMinSize should take into account that
these fields may not yet be initialized. At the very least, TYourView.IRes should set these fields to NIL.

TGridView

1. Attempting to select a TGridViewcell for which CanSelectCell returns FALSE causes the current
selection to be deselected.

Solution:

Override TGridView.DoMouseCommand to call IdentifyPoint. If a valid cell is returned, call
CanSelectCell. If it returns TRUE, call INHERITED DoMouseCommand. This inhibits all tracking if the user
initially clicks in a disabled cell.

Fix:

Replace the following line in TCellSelectCommand.TrackMouse (file UGridView.inc1.p):

 IF LONGINT(clickedCell) <> LONGINT(fPrevCell)

With:

 IF (LONGINT(clickedCell) <> LONGINT(fPrevCell))
 & fGridView.CanSelectCell(clickedCell)

2. Fixed in MacApp 2.0.1.
3. TGridView.DrawCell is called with the clip region set wide open, which allows any override of DrawCell to

draw anywhere within the TGridView. It is likely that this is not desired, and the responsibility for clipping
could be added to TGridView.

Fix:

In TGridView.DrawRangeOfCells (file UGridView.inc1.p), add a local RgnHandle called oldClip. Initialize

Bugs In MacApp? Yes, But I Love It! Page: 8

oldClip with the following lines at the beginning of the method:

 oldClip := MakeNewRgn;
 GetClip(oldClip);

 Next, clip to the current cell by adding the following
 lines before the line that says aCell.h := i:

 {$IFC qDebug}
 UseTempRgn('TGridView.DrawRangeOfCells');
 {$ENDC}
 RectRgn(gTempRgn, aQDRect);
 SectRgn(oldClip, gTempRgn, gTempRgn);
 SetClip(gTempRgn);
 {$IFC qDebug}
 DoneWithTempRgn;
 {$ENDC}

Finally, add the following lines at the end of the method:

 SetClip(oldClip);
 DisposeRgn(oldClip);

TIcon

1. Fixed in MacApp 2.0.1.

TList

1. If you have a TList subclass with a String instance variable, it is not possible to use the Pascal string built-in
function Delete on it because the Object Pascal scoping rules always associate the name Delete with
TList.Delete.

Solution:

Apple will change the name in the future. In the meantime, you could make a global routine MyDelete that would be a
wrapper for the string Delete routine.

TNumberText

1. When the length of the text in a TNumberText instance is 0, GetValue returns 0, and Validate returns
kValidValue. The value is not checked against fMinimum or fMaximum, so your application may be fed with a
value it is not prepared to handle.

Fix:

Ideas for solutions or fixes are outlined in the comment in TNumberText.Validate (file UDialog.inc1.p).

TPopup

1. Fixed in MacApp 2.0.1.
2. Fixed in MacApp 2.0.1.
3. Fixed in MacApp 2.0.1.
4. TPopup no longer calls DoChoice if the same item is reselected.

Fix:

In TPopup.DoMouseCommand (file UDialog.inc1.p) is the following line:

Bugs In MacApp? Yes, But I Love It! Page: 9

 IF (HiWord(result) <> 0)
 & (newChoice <> fCurrentItem) THEN

Remove the "& (newChoice <> fCurrentItem)" part.

TPopup.SetCurrentItem neither restores the port colors correctly nor uses the right rectangle to obtain the menu
colors for the popup box.

Fix:

In TPopup.SetCurrentItem (file UDialog.inc1.p), declare the following two new local variables:

 newFColor: RGBColor;
 newBkColor: RGBColor;

Then, replace:

 IF redraw & Focus & IsVisible THEN BEGIN
 GetQDExtent(menuRect);
 GetMenuColors(menuRect, fMenuID,
 item, newFColor, newBkColor);
 SetIfColor(newFColor); SetIfBkColor(newBkColor);
 DrawPopupBox(menuRect);
 END;

With:

 IF redraw & Focus & IsVisible THEN BEGIN
 GetIfColor(oldFColor); GetIfBkColor(oldBkColor);
 CalcMenuRect(menuRect);

 GetMenuColors(menuRect, fMenuID, fCurrentItem,
 newFColor, newBkColor);
 SetIfColor(newFColor); SetIfBkColor(newBkColor);
 DrawPopupBox(menuRect);
 { Reset colors to their original state }
 SetIfColor(oldFColor); SetIfBkColor(oldBkColor);
 END;

TScroller

1. TScroller.RevealRect doesn't call INHERITED RevealRect. This has implications in situations where
you have nested scrollers. If, for example, you run DemoDialogs, select the first menu item, press the Tab key,
then begin typing, the TEditText item you are modifying is not scrolled into view. This is because while your
selection is revealed within the context of the TEditText, the TEditText item itself is not scrolled into view.

Fix:

Add an INHERITED RevealRect call to TScroller.RevealRect (file UMacApp.TScroller.p):

Bugs In MacApp? Yes, But I Love It! Page: 10

 PROCEDURE TScroller.RevealRect(...);
 BEGIN
 ...
 ScrollBy(delta.h, delta.v, redraw);
 OffsetVRect(rectToReveal, -fTranslation.h,
 -fTranslation.v);
 INHERITED RevealRect(rectToReveal,
 minToSee, redraw); { add this call }
 END;

TStdPrintHandler

1. An extra blank page is printed if TStdPrintHandler.fFixedSizePages = FALSE and
fSizeDeterminer = sizeFillPages. This is because TView.ComputeSize computes the view's size
as a multiple of the printable page size for sizeFillPages, ignoring that the view need not use the full size of
each page.

Solution:

Always set both Boolean components of fFixedSizePages to TRUE. These are initialized from the last two parameters
you pass to IStdPrintHandler.

Solution:

Use fSizeDeterminer = sizeVariable.

2. Simply using the naked DIV operator for scaling theMargins in TStdPrintHandler.CheckPrinter
introduces rounding errors. These errors may be disturbing if you need precise control over the margins used for
printing.

Fix:

Insert the following local procedure in TStdPrintHandler.CheckPrinter (file UPrinting.inc1.p):

FUNCTION ScaleInteger(theValue, theMultiplier,
 theDivisor: Integer): Integer;
VAR
 intermediate: Longint;
BEGIN
 intermediate := IntMultiply(theValue, theMultiplier);
 IF intermediate >= 0 THEN
 intermediate := intermediate + ABS(theDivisor) div 2
 ELSE
 intermediate := intermediate - ABS(theDivisor) div 2;
 ScaleInteger := intermediate DIV theDivisor;
END;

In the implementation of TStdPrintHandler.CheckPrinter, replace the lines:

SetRect(theMargins,
 IntMultiply(theMargins.left, h) DIV oldMarginRes.h,
 IntMultiply(theMargins.top, v) DIV oldMarginRes.v,
 IntMultiply(theMargins.right, h) DIV oldMarginRes.h,
 IntMultiply(theMargins.bottom, v) DIV oldMarginRes.v);

With:

Bugs In MacApp? Yes, But I Love It! Page: 11

SetRect(theMargins,
 ScaleInteger(theMargins.left, fMarginRes.h, oldMarginRes.h),
 ScaleInteger(theMargins.top, fMarginRes.v, oldMarginRes.v),
 ScaleInteger(theMargins.right, fMarginRes.h, oldMarginRes.h),
 ScaleInteger(theMargins.bottom, fMarginRes.v, oldMarginRes.v));

3. TStdPrintHandler.CheckPrinter calculates fMarginRes incorrectly for scaled printing. It does not
take into account any scaling factors imposed by the user in the _PrStlDialog dialog box.

Fix:

Use the following until Apple can come up with something better. Note that this fix relies on the undocumented fields
prStl.iPageV and prStl.iPageH. Additionally, it implements a dubious technique that gets around the assumption
that any printer supporting landscape printing also supports _PrGeneral, which is not always the case; therefore, this
fix is considered temporary. You should already have applied the fix to the second bug in the TStdPrintHandler
section.

Insert the following local procedure after ScaleInteger in TStdPrintHandler.CheckPrinter (file
UPrinting.inc1.p):

PROCEDURE AdjustMarginRes;

PROCEDURE DoAdjustMarginRes;

VAR
 getRotationBlock: TGetRotnBlk;

 BEGIN
 WITH getRotationBlock DO BEGIN
 iOpCode := getRotnOp;
 lReserved := 0;
 hPrint := THPrint(fHPrint);
 bXtra := 0;
 END;
 PrGeneral(@getRotationBlock);
 IF (PrError <> noErr)
 | (getRotationBlock.iError <> noErr) THEN BEGIN
 WITH fPageAreas.thePaper DO
 getRotationBlock.fLandscape := right - left >
 bottom - top;
 PrSetError(noErr); { clear print error - Printing
 Manager won't do it }
 END;
 WITH
 fPageAreas.thePaper,
 fMarginRes,
 THPrint(fHPrint)^^
 DO BEGIN
 {$PUSH} {$H-} { shut up, dumb compiler! }
 { The undocumented fields prStl.iPageH &
 prStl.iPageH seem unaffected by rotation, so
 we have to rotate them }
 IF getRotationBlock.fLandscape THEN BEGIN
 fMarginRes.h := ScaleInteger(iPrPgFract,
 right - left,
 prStl.iPageV);
 fMarginRes.v := ScaleInteger(iPrPgFract,
 bottom - top,
 prStl.iPageH);
 END ELSE BEGIN
 fMarginRes.h := ScaleInteger(iPrPgFract,

Bugs In MacApp? Yes, But I Love It! Page: 12

 right - left,
 prStl.iPageH);
 fMarginRes.v := ScaleInteger(iPrPgFract,
 bottom - top,
 prStl.iPageV);
 END;
 {$POP}
 END; { WITH }
 END;
 END;

BEGIN
 DoInMacPrint(DoAdjustMarginRes);
END;

In TStdPrintHandler.CheckPrinter, replace everything after fPageAreas.thePaper := rPaper and up
to, but not including, the statement fPrinterDev := iDev; with the following lines:

 AdjustMarginRes;
 WITH prInfo DO BEGIN

Next, you have to take into account the fact that CheckPrinter can open and close the print driver. This can be bad when
you are in the middle of printing because you are closing a driver that needs to stay open.

An ideal solution would include some sort of mechanism to keep track of whether the printer was already open when you
open it again, or maintain a reference count on the number of nested calls to DoMacInPrint. However, for now, we can
put in a simple check to avoid the one place where nesting occurs. First, add the following line to the beginning of
CheckPrinter:

 if fPPrPort = nil then begin

Then, insert the following statement just before the end of CheckPrinter:

end;

Finally, you need to set fPPrPort to NIL when not printing. In TStdPrintHandler.OneSubJob, replace:

 PrCloseDoc(fPPrPort);{ This will close the port! }

With:

 PrCloseDoc(fPPrPort); { This will close the port! }
 fPPrPort := NIL; { Lose the reference }

4. Fixed in MacApp 2.0.1.

TTEView

1. Fixed in MacApp 2.0.1.
2. Fixed in MacApp 2.0.1.
3. In a TTEView with non-zero bottom inset, only part of the second is displayed when text wraps to a new line.

Bugs In MacApp? Yes, But I Love It! Page: 13

Solution:

Always have a bottom inset of zero.

Fix:

Modify TTEView.StuffTERects (file UTEView.TTEView.p) to give the TERecord a bottomless destRect and
viewRect. Replace:

With:

 BEGIN
 right := MAX(right, left + aFontInfo.widMax);
 bottom := MAXINT; { give us a bottomless destrect }

4. TTEView.SynchView only updates the text if the line heights have changed. It calls CalcRealHeight, and if
it has not changed, it doesn't do anything. If a program modifies the text directly, it must call ForceRedraw. For
instance, say that you have a class TMyTEView has the following routine:

 PROCEDURE TMyTEView.TweekText;
 VAR
 myText : TextHandle;
 BEGIN
 myText := ExtractText;
 { do some munging of the text (e.g., search and replace) }
 { make TTEView display changed text }
 RecalcText;
 SynchView(kRedraw);
 { !!! We shouldn't have to force a complete redraw !!! }
 ForceRedraw;

Solution:

Call ForceRedraw as above, until Apple has a solution. It could be that removing the fLastHeight <> theHeight
comparison in SynchView does the trick, but it may also result in unnecessary updates and flashing.

5. You may find it useful to use a TTEView as a Read-Only view. To do this, disable the view and set
fAcceptsChanges to FALSE. However, with these settings, the Select All menu item is still enabled.

Fix:

In TTEView.DoSetupMenus (file UTEView.TTEView.p), replace the line:

 Enable(cSelectAll, (fHTE^^.teLength > 0));

With:

 Enable(cSelectAll, IsViewEnabled & (fHTE^^.teLength > 0));

6. Fixed in MacApp 2.0.1.
7. TTEView sometimes leaves the image of a caret behind as it scrolls. This is usually experienced when scrolling a

Bugs In MacApp? Yes, But I Love It! Page: 14

left-justified TEditText item for the first time.

Fix:

Modify TTEView.StuffTERects (file UTEView.TTEView.p) to give the TERecord a little more room on the left or
right. Replace:

 right := MAX(right, left + aFontInfo.widMax);

With:

 IF (fSizeDeterminer[h] = sizeVariable) &
 NOT fStyleType & NOT fAutoWrap THEN
 BEGIN
 CASE GetActualJustification(fJustification) OF
 teJustLeft, teForceLeft:
 right := right + aFontInfo.widMax;
 teJustRight: left := left - aFontInfo.widMax;
 teJustCenter: right :=
 MAX(right, left + aFontInfo.widMax);
 END;
 END
 ELSE
 right := MAX(right, left + aFontInfo.widMax);

Note:

You should make this modification only after making the changes described in TTEView #3.

Because the size of viewRect and destRect of the TERecord are now dependant on the justification being used,
TTEView.SetJustification needs to call StuffTERects. Add a local Rect variable called r. Then, after the line
that says fJustification := newJust, add:

 r.topLeft := fInset.topLeft;
 r.right := fSize.h - fInset.right;
 r.bottom := fSize.v - fInset.bottom;
 StuffTERects(r);

8. Fixed in MacApp 2.0.1.
9. Scrolling a TTEView quickly via cursor keys or by pasting new text does not immediately update the newly

revealed regions, which can lead to unpleasant cosmetic artifacts.

Fix:

In TTEView.ScrollSelectionIntoView (file UTTEView.TTEView.p), add a call to Update after the call to
RevealRect.

TView

1. TEvtHandler.DoCreateViews doesn't work right if you build your view tree in the "wrong" order (i.e.,
breadth-first order). If you declare them as a hierarchy of levels, like this:

Bugs In MacApp? Yes, But I Love It! Page: 15

 ViewA
 ViewB
 SubViewA-1
 SubViewA-2
 SubViewB-1
 SubViewA-1-1

DoCreateViews cannot find SubViewA-1 when creating SubViewA-1-1.

Solution:

Declare your views in this order (walking the tree) in the Rez file:

 ViewA
 SubViewA-1
 SubViewA-1-1
 SubViewA-1-2
 SubViewA-2
 ViewB

2. TView.Focus does not always work correctly in long coordinate situations. When dealing with view systems that
stay entirely within QuickDraw's 16-bit coordinate plane, focusing works correctly. However, when dealing with
larger view systems, TView.Focus does not always correctly switch over to MacApp's 32-bit coordinate
system.

Fix:

In TView.Focus (file UMacApp.TView.p), replace:

 IF fSize.vh[vhs] > kMaxCoord THEN

With:

 IF (fSize.vh[vhs] > kMaxCoord)
 | (ABS(fLocation.vh[vhs]) > kMaxCoord)

Daring Fix:

You can try taking out short coordinate focussing altogether. This solution has not yet been fully tested, so there may be
some side effects of which Apple is unaware. In TView.Focus (file UMacApp.TView.p), replace:

 FOR vhs := v TO h DO
 IF fSize.vh[vhs] > kMaxCoord THEN BEGIN
 tempLongOffset := gLongOffset.vh[vhs] - fLocation.vh[vhs];
 relOrigin.vh[vhs] := tempLongOffset MOD kMaxOriginFixup;
 gLongOffset.vh[vhs] := tempLongOffset - relOrigin.vh[vhs];
 END ELSE BEGIN
 relOrigin.vh[vhs] := gLongOffset.vh[vhs] -
 fLocation.vh[vhs];
 gLongOffset.vh[vhs] := 0;
 END;

With:

Bugs In MacApp? Yes, But I Love It! Page: 16

 FOR vhs := v TO h DO BEGIN
 tempLongOffset := gLongOffset.vh[vhs] - fLocation.vh[vhs];
 relOrigin.vh[vhs] := tempLongOffset MOD kMaxOriginFixup;
 gLongOffset.vh[vhs] := tempLongOffset - relOrigin.vh[vhs];
 END;

3. TView calls _InvalRect and _ValidRect directly. These are Window Manager calls which assume that the
current port (thePort) is a window. If thePort is not a window and these calls are made, all sorts of nasty
fireworks happen. This bug only appears when a TView is placed in something other than a TWindow and the
view calls TView.InvalidRect, TView.InvalidRect, or TView.ValidVRect.

For example, when using a TGridView as a subview of a TMenu, IGridView results in a call to
TView.InvalidRect. Since TMenu carries its own GrafPort, the InvalRect on the TMenu GrafPort fails.

Fix:

In the file UMacApp.TView.p, modify the methods TView.InvalidRect, TView.InvalidVRect, and
TView.ValidVRect to UMacApp.TView.p, as shown.

 {$S MAViewRes}

 PROCEDURE TView.InvalidRect(r: Rect);

 BEGIN
 IF IsShown & Focus THEN
 BEGIN
 VisibleRect(r);
 IF NOT EmptyRect(r) THEN
 InvalidateFocusedRect(r);
 END;
 END;

 {$S MAViewRes}

 PROCEDURE TView.InvalidVRect(viewRect: VRect);

 VAR
 r: Rect;

 BEGIN
 IF IsShown & Focus THEN
 BEGIN
 ViewToQDRect(viewRect, r);
 VisibleRect(r);
 IF NOT EmptyRect(r) THEN
 InvalidateFocusedRect(r);
 END;
 END;

 {$S MAViewRes}

 PROCEDURE TView.ValidVRect(viewRect: VRect);

 VAR
 r: Rect;

 BEGIN
 IF IsShown & Focus THEN
 BEGIN
 ViewToQDRect(viewRect, r);

Bugs In MacApp? Yes, But I Love It! Page: 17

 VisibleRect(r);
 IF NOT EmptyRect(r) THEN
 ValidateFocusedRect(r);
 END;

Next, in UMacApp.TView.p, add TView.InvalidateFocusedRect and TView.ValidateFocusedRect. These are
the routines that forward up the view hierarchy until finding a TWindow. You also take this opportunity to add
TView.ValidateRect--a QuickDraw version of TView.ValidVRect--for completeness.

 {$S MAViewRes}
 PROCEDURE TView.InvalidateFocusedRect(r: Rect);

 BEGIN
 IF fSuperView <> NIL THEN
 fSuperView.InvalidateFocusedRect(r);
 END;

 {$S MAViewRes}

 PROCEDURE TView.ValidateRect(r: Rect);

 BEGIN
 IF IsShown & Focus THEN
 BEGIN
 VisibleRect(r);
 IF NOT EmptyRect(r) THEN
 ValidateFocusedRect(r);
 END;
 END;

 {$S MAViewRes}

 PROCEDURE TView.ValidateFocusedRect(r: Rect);

 BEGIN
 IF fSuperView <> NIL THEN
 fSuperView.ValidateFocusedRect(r);
 END;

In TWindow, you then override TView.InvalidateFocusedRect and TView.ValidateFocusedRect in
UMacApp.TWindow.p to call the Window Manager routines.

 {$S MAWindowRes}

 PROCEDURE TWindow.InvalidateFocusedRect(r: Rect); OVERRIDE;

 BEGIN
 InvalRect(r); { Call the ToolBox routine. }
 END;

 {$S MAWindowRes}

 PROCEDURE TWindow.ValidateFocusedRect(r: Rect); OVERRIDE;

 BEGIN
 ValidRect(r); { Call the ToolBox routine. }
 END;

Bugs In MacApp? Yes, But I Love It! Page: 18

Finally, in UMacApp.p add the following declarations for the new routines:

 PROCEDURE TView.InvalidateFocusedRect(r: Rect);
 PROCEDURE TView.ValidateRect(r: Rect);
 PROCEDURE TView.ValidateFocusedRect(r: Rect);
 PROCEDURE TWindow.InvalidateFocusedRect(r: Rect); OVERRIDE;
 PROCEDURE TWindow.ValidateFocusedRect(r: Rect); OVERRIDE;

With those changes in place, all calls to _ValidRect in the rest of MacApp should now be calls to
TView.ValidateRect. The only methods this affects are TSScrollbar.Activate and TDeskScrapView.Draw.

4. When the focus is invalidated during printing, MacApp is not able to restore it properly. For example, you could
move a subview during printing because you don't know where it's supposed to go until you need it. When MacApp
tries to refocus, the clip region is set to an empty region, and nothing gets printed from that point on.

Solution:

Not yet determined. It's not clear whether MacApp should handle such odd things as moving subviews during printing.

5. Fixed in MacApp 2.0.1.
6. When the call to FocusOnSuperView in TView.Focus returns FALSE, Focus tries to invalidate all focus

information with the statements:

 ClipRect(gZeroRect);

The problem with these statements is that InvalidateFocus sets gFocusedView to NIL only if the focus is on some
view in the subview hierarchy of SELF. Thus, if the focus is on some completely unrelated view in the same port, the clip
region of the port of that view is set to gZeroRect, but gFocusedView is unaffected. If the Focus method of
gFocusedView is called later, its call to IsFocused returns TRUE, but drawing does not work because the clip region
is empty.

Fix:

In TView.Focus (file UMacApp.TView.p), remove the call to _ClipRect. It might also be a good idea to do the same in
TWindow.Focus since the _ClipRect call is being made on an essentially random port.

TWindow

1. Fixed in MacApp 2.0.1.
2. Fixed in MacApp 2.0.1.
3. TWindow.Center can sometimes move large windows with title bars under the menu bar.

Fix:

In TWindow.Center (file UMacApp.TWindow.p), replace the following lines:

 IF forDialog THEN
 { Put it in the top third of the screen }
 top := ((screenSize.v - contentSize.v
 + fContRgnInset.v) DIV 3) + 20
 ELSE
 top := ((screenSize.v - contentSize.v

With:

Bugs In MacApp? Yes, But I Love It! Page: 19

 IF forDialog THEN
 { Put it in the top third of the screen }
 top := ((screenSize.v - windowsize.v) DIV 3)
 { calculate spare area }
 + gMBarHeight
 { add menu bar }
 { calculate the right offset of
 content inside the window }
 + ((windowsize.v - contentsize.v
 + fContRgnInset.v) DIV 2)
 ELSE
 top := ((screenSize.v - windowsize.v) DIV 2)
 { calculate spare area }
 + gMBarHeight
 { add menu bar }
 { calculate the right offset of content
 inside the window }
 + ((windowsize.v - contentsize.v
 + fContRgnInset.v) DIV 2);

Assorted Problems Due to a New TView.Focus Definition

The next items address a class of problems related to the fact that TView.Focus is defined to return TRUE if a drawing
environment can be obtained (e.g., a GrafPort). Thus it now returns TRUE even if the view is invisible. The various
problems are: 1) invisible controls in dialog boxes accepting mouse-down events and doing things; 2) children of
invisible controls being asked to draw or handle a mouse-down event; 3) scroll bars of hidden scrollers appearing; 4)
hidden scroll bars of scrollers not appearing; and 5) calls to IsShown for an arbitrary view returning incorrect results.

1. TView.IsShown contains the following line:

It turns out that the answer to this question is yes. There are many problems that occur in MacApp that are caused by
views who are themselves not hidden, but whose superviews are. For instance, it is possible for a click to be registered on
a view whose superview is hidden. This can cause the previously hidden control to appear.

Fix:

In TView.IsShown (file UMacApp.TView.p), replace the line above with the following:

 IF fSuperView <> NIL THEN
 IsShown := fShown &
 fSuperView.IsShown { By definition, a view cannot be
 shown if its superview isn't.}
 ELSE IsShown := fShown;

2. Having TView.IsShown reflect the willingness of all its superviews to be shown causes one problem in MacApp.
When a TScroller creates its scroll bars, it sets the fShown field of the TSScrollBar to the result of
TScroller.IsShown. However, at the time a scroller creates its scroll bars, the window they are in is
invisible. Its IsShown method returns FALSE, which is propagated down to the TScroller, causing
TScroller.CreateTemplateScrollBar to initialize TSScrollBar.fShown to FALSE.

Fix:

Cause the TSScrollBar to inherit the fShown field of its TScroller only . In
TScroller.CreateTemplateScrollBar (file UMacApp.TScroller.p), replace:

 anSScrollBar.fShown := IsShown;

Bugs In MacApp? Yes, But I Love It! Page: 20

With:

 anSScrollBar.fShown := fShown;

3. There is no TCtlMgr.Show to control the setting of fCMgrControl^^.contrlVis. Neglecting to do so
results in certain silly things happening, like an activate event triggering the drawing of your invisible scroll
bars.

Fix:

Override TView.Show with the following version of TCtlMgr.Show (file UMacApp.TControls.p). Don't forget to also
update the declaration of TCtlMgr in UMacApp.p:

 PROCEDURE TCtlMgr.Show(state, redraw: BOOLEAN);

 BEGIN
 SetCMgrVisibility(state);
 INHERITED Show(state, redraw);

Additionally, TScrollBar needs to override Show to implement its special appearance when shown in an inactive
window. Add the following method to UMacApp.TControls, and add the appropriate declaration to UMacApp.p:

 PROCEDURE TScrollBar.Show(state, redraw: BOOLEAN);

 VAR
 itsWindow: TWindow;

 BEGIN
 INHERITED Show(state, redraw);
 itsWindow := GetWindow;
 SetCMgrVisibility(state & (itsWindow <> NIL)
 & itsWindow.fIsActive);

4. TControl.ContainsMouse needs to call TCtlMgr.IsShown. Otherwise, it's possible for those controls to
receive mouse clicks.

Fix:

Use the following version of TControl.ContainsMouse (file UMacApp.TControls.p):

 FUNCTION TControl.ContainsMouse(theMouse: VPoint): BOOLEAN; OVERRIDE;
 VAR
 aRect: Rect;
 BEGIN
 IF IsShown THEN
 BEGIN
 ControlArea(aRect);
 ContainsMouse := PtInRect(VPtToPt(theMouse), aRect);
 END
 ELSE
 ContainsMouse := FALSE;

5. TView.Focus used to return FALSE if the view was invisible. It no longer does this, and many routines in
MacApp relying on this behavior now need to check this explicitly:

Bugs In MacApp? Yes, But I Love It! Page: 21

Fix:

The following routines should be modified to check IsShown before calling Focus. Note that the changes to
TView.InvalidVRect, TView.InvalidVRect, and TView.ValidRect need not be made if the modifications to
the third bug in the TView section have been made.

 TView.IsViewEnabled (file UMacApp.TView.p)
 IsViewEnabled := fViewEnabled & IsShown;

 TGridView.HighlightCells (file UGridView.inc1.p)
 IF (fromHL <> toHL) & IsShown & Focus THEN

 TCtlMgr.WhileFocused (file UMacApp.TControls.p)
 TTEView.SynchView (file UTEView.TTEView.p)
 IF redraw & IsShown & Focus THEN

 TView.InvalidRect (see above comment) (file UMacApp.TView.p)
 TView.InvalidVRect (see above comment) (file UMacApp.TView.p)
 TView.ValidVRect (see above comment) (file UMacApp.TView.p)
 TGridView.InvalidateSelection (file UGridView.inc1.p)
 TScroller.ScrollDraw (file UMacApp.TScroller.p)
 IF IsShown & Focus THEN

 TSScrollBar.Activate (file UMacApp.TControls.p)
 add this check before WhileFocused:

6. With the changes from bug five in place, a problem appears when a TScroller is resized. The scroller hides its
scroll bars, resizes itself, adjusts its scroll bars, and shows them again. AdjustScrollbars potentially asks a
scroll bar to invalidate itself. However, at that time, the scroll bar is invisible, thus its contents cannot possibly
be wrong, as they have yet to be drawn. It is the scroll bar itself that is wrong, and therefore the contents of its
superview (in that rectangle) that must be invalidated.

Fix:

To patch the bug, modify the final few lines of TScroller.Resize (file UMacApp.TScroller.p):

 FOR vhs := v TO h DO
 IF sBarWasVisible[vhs] THEN
 BEGIN
 fScrollBars[vhs].SetCMgrVisibility(TRUE);
 fScrollBars[vhs].ForceRedraw; { this is new }
 END;

This is not a real fix, this is only a patch. The final fix probably requires modification to TView.Locate and
TControl.Resize.

7. Fixed in MacApp 2.0.1.
8. Assorted TView.Focus fixes #1 and #5 together have ramifications on

TDialogTEView.InstallEditText. Because a view is now considered invisible if any of its superviews are
invisible, and a view is now considered disabled if it is invisible, all views are effectively disabled in an invisible
window. The effect of this is that InstallEditText disables the floating TDialogTEView and its scroller if
called before the window is opened.

Fix:

You can most likely experience the problem when calling TDialogView.SelectEditText before the window is
opened. Thus, modify SelectEditText to check if the window is shown or not. If so, call

Bugs In MacApp? Yes, But I Love It! Page: 22

TDialogView.DoSelectEditText as normal (which eventually calls InstallEditText). If the window is not
open, simply set the specified view as the window's target, to be selected when the window is eventually opened. Thus, in
TDialogView.SelectEditText (file UDialog.inc1.p), add the following local variable:

Then, replace:

With:

 IF IsShown THEN
 DoSelectEditText(TEditText(aSubView), selectChars)
 ELSE
 BEGIN
 itsWindow := GetWindow;
 IF itsWindow <> NIL THEN
 itsWindow.SetTarget(aSubView)
 ELSE
 ProgramBreak('found no way to select the edit text');

Global Routines and Interfaces

1. Fixed in MacApp 2.0.1.
2. Fixed in MacApp 2.0.1.
3. Fixed in MacApp 2.0.1.
4. Fixed in MacApp 2.0.1.
5. Fixed in MacApp 2.0.1. WithApplicationResFileDo needs a failure handler. Since the method's

normal

behavior is to preserve the current resource file, in case of a failure it should do the same thing. The problem is
that if WithApplicationResFileDo contains a failure handler, it must be moved to another unit;
UMacAppUtilities cannot access UFailure without introducing a circular reference.

Fix:

Move WithApplicationResFileDo to the file UMenuSetup.inc1.p and change it to the following:

 PROCEDURE WithApplicationResFileDo(PROCEDURE DoWithResFile);

 VAR
 fi: FailInfo;
 oldResFile: INTEGER;

 PROCEDURE HdlFailure(error: OSErr; message: LONGINT);

 BEGIN
 UseResFile(oldResFile);
 END;

 BEGIN
 oldResFile := CurResFile;
 CatchFailures(fi, HdlFailure);
 UseResFile(gApplicationRefNum);
 DoWithResFile;
 Success(fi);
 UseResFile(oldResFile);

7. VisibleRect returns the intersection of the specified rectangle along with the bounding boxes of the visRgn
and clipRgn. When called during a window update, however, the visRgn can be smaller than expected. This
difference can cause VisibleRect to return different sized rectangles when called inside or outside of an update

Bugs In MacApp? Yes, But I Love It! Page: 23

event.

Fix:

The final fix has not yet been determined; however, you may be able to kludge things by modifying TWindow.Update in
the file UMacApp.TWindow.p. Just before _BeginUpdate, add the following line:

Next, add the following line immediately after both calls to _EndUpdate:

Then, in VisibleRect (file UMacApp.Globals.p), change:

 IF NOT gPrinting THEN

To:

 IF NOT (gPrinting | gUpdating) THEN

Finally, add gUpdating to the file UMacApp.p, and initialize it to FALSE in InitUMacApp. Or you can just live
dangerously and take out the _SectRgn call altogether.

8. Patching a trap with the routines in UPatch can cause a crash under the Finder (when MultiFinder is not
present) if that trap is already patched by MacApp, because the CleanUpMacApp routine incorrectly restores
that trap to point at the MacApp patch, rather than at the original routine.

Solution:

Do not patch traps that MacApp patches (currently: _ExitToShell, _InitCursor, _SetCursor, _SetCCursor, _GetNextEvent,
_EventAvail, _StillDown, and _WaitMouseUp).

Fix:

Rewrite UnpatchTrap (file UPatch.inc1.p) as follows, so it does the right thing when unpatching traps that have
"newer" patches:

 PROCEDURE UnpatchTrap(VAR thePatch: TrapPatch);

 VAR
 aPatchPtr: TrapPatchPtr;
 newerPatchPtr: TrapPatchPtr;

 FUNCTION GetPreviousPatchPtr(thePatchPtr: TrapPatchPtr):
 TrapPatchPtr;
 { Walks the patch list backwards to return the patch record
 just prior to thePatchPtr^ in the patch list }

 VAR
 tempPatchPtr: TrapPatchPtr;

 BEGIN
 tempPatchPtr := pPatchList;
 WHILE (tempPatchPtr <> NIL)
 & (tempPatchPtr^.nextPatch <>
 thePatchPtr) DO
 tempPatchPtr := tempPatchPtr^.nextPatch;
 GetPreviousPatchPtr := tempPatchPtr;
 END;

 FUNCTION GetNewerPatchPtr: TrapPatchPtr;
 { returns a newer patch record in the patch list which has
 the same trapNum as thePatch }

Bugs In MacApp? Yes, But I Love It! Page: 24

 BEGIN
 aPatchPtr := GetPreviousPatchPtr(@thePatch);
 WHILE (aPatchPtr <> NIL) & (aPatchPtr^.trapNum <>
 thePatch.trapNum) DO
 aPatchPtr := GetPreviousPatchPtr(aPatchPtr);
 GetNewerPatchPtr := aPatchPtr;
 END;

 BEGIN
 { If this trap has a newer patch than the patch we're removing,
 then we have to take some extra special precautions. We have
 to muck with that patch's oldTrapAddr to point to this patch
 record's oldTrapAddr (for both the patch record and the
 jumpPtr code). We can pretty well ignore the case of an
 older patch on this same trap since the trap address in our
 patch record will be correct. }

 newerPatchPtr := GetNewerPatchPtr;
 IF (newerPatchPtr = NIL) THEN
 WITH thePatch DO
 NSetTrapAddress(OldTrapAddr, trapNum,
 GetTrapType(trapNum))
 ELSE
 BEGIN
 { set up newerPatchPtr patch record so that it points to
 thePatch's OldTrapAddr }
 newerPatchPtr^.oldTrapAddr := thePatch.oldTrapAddr;

 { set up newerPatchPtr^.jmpPtr so that it jumps to where
 thePatch's code jumps to }
 IF (newerPatchPtr^.jmpPtr <> NIL) THEN
 BEGIN
 IF LongIntPtr(newerPatchPtr^.jmpPtr)^ = $2F2F0004 THEN
 T1PBlockPtr(newerPatchPtr^.jmpPtr)^.OldTrapAddr :=
 thePatch.oldTrapAddr
 ELSE IF IntegerPtr(newerPatchPtr^.jmpPtr)^ = $2F3C THEN
 TPBlockPtr(newerPatchPtr^.jmpPtr)^.OldTrapAddr :=
 thePatch.oldTrapAddr
 ELSE
 BEGIN
 {$IFC qDebug}
 Writeln('###In UnpatchTrap: can''t figure out ',
 'what kind of patch ', ORD(newerPatchPtr),
 ' is!');
 DebugStr('Can''t unpatch trap.');
 {$ENDC}
 END;
 END;
 END;

 { Unlink the patch from the linked list of patches }
 IF @thePatch = pPatchList THEN
 pPatchList := thePatch.nextPatch
 ELSE
 BEGIN
 aPatchPtr := pPatchList;
 WHILE (aPatchPtr <> NIL) & (aPatchPtr^.nextPatch <>
 @thePatch) DO
 aPatchPtr := aPatchPtr^.nextPatch;
 { Couldn't find thePatch, so don't try to unpatch it. }
 IF aPatchPtr = NIL THEN
 EXIT(UnpatchTrap);
 aPatchPtr^.nextPatch := thePatch.nextPatch;

Bugs In MacApp? Yes, But I Love It! Page: 25

 END;

 { If the patch allocated a block in the system heap,
 deallocate it }
 WITH thePatch DO
 jmpPtr := DisposeIfPtr(jmpPtr);

9. Fixed in MacApp 2.0.1.
10. IsClassIDMemberClass does not range check for negative class IDs. This could result in some extremely
rare cases where a handle appears to be an object when it really is not.

Solution:

In the file UObject.a, replace:

 Cmp.W (A0),D0 ; make sure class ID is in range
 Bge.S isFALSE
 Cmp.W (A0),D1 ; make sure class ID is in range

With:

 Cmp.W (A0),D0 ; make sure class ID is in range
 Bge.S isFALSE

 Tst.W D0 ; make sure class ID is non-negative
 Blt.S isFALSE

 Move.W D0,D2 ; make sure class ID is even
 And #1,D2
 Tst.W D2
 Bnz.S isFALSE

 Cmp.W (A0),D1 ; make sure class ID is in range
 Bge.S isFALSE

 Tst.W D1 ; make sure class ID is non-negative
 Blt.S isFALSE

 Move.W D1,D2 ; make sure class ID is even
 And #1,D2
 Tst.W D2

11. Discipline signals a problem on a _Get1NamedResource call when it tries to load CODE("GMain"). This
segment is listed in 'seg!' and 'res!', but it does not exist.

Fix:

This bug is ultra-benign, but can be fixed by removing the reference to GMain in the file MacApp.r

12. The number of calls to RegisterStdType has increased from 17 to 25 since the MacApp 2.0b9 release;
however, the limit (kMaxSignatures, defined in the file UMacApp.p) remains at 32. This difference means
your application can only register seven additional types instead of the 15 previously allowed.

Fix:

Recompiling MacApp with a limit of 40 should suffice for now. Future versions of MacApp will implement a dynamic list
so that no limits would be imposed.

Bugs In MacApp? Yes, But I Love It! Page: 26

13. Fixed in MacApp 2.0.1.
14. Fixed in MacApp 2.0.1.
15. Fixed in MacApp 2.0.1.
16. MATextBox may have problems if you are drawing with a wide font into a small box in a right-justified script

system.

Fix:

In UMacAppUtilities.inc1.p, add a local Integer variable called minWidth. Then, replace:

 WITH destRect DO

With:

 WITH destRect DO
 BEGIN
 minWidth := Max(Max(right - left, widMax), 20);
 CASE GetActualJustification(itsJust) OF
 teJustLeft,
 teForceLeft: right := left + minWidth;
 teJustRight: left := right - minWidth;
 teJustCenter:
 BEGIN
 left := (right+left-minWidth) DIV 2;
 right := left + minwidth;
 END;
 END;

Back to top

MABuild Bugs

13. MABuild does not support both AppName.r and AppName.rsrc files as part of a MacApp project. Actually, the
problem is a more general one: the file Build Rules and Dependencies defines the default dependency ".rsrc
[[florin]] .r". Therefore, if AnyFile.rsrc is mentioned either in the file Basic Definitions or your own .MAMake
file, Make produces a command that compiles AnyFile.r into AnyFile.rsrc, or complains if AnyFile.r does not exist.

Solution:

Avoid the .rsrc suffix for files that are not compiled from .r files.

Fix:

Globally replace ".rsrc" with ".r.o" in the files {MATools}Basic Definitions and {MATools}Build Rules and Dependencies.
This change causes Make to create Anyfile.r.o files instead of AnyFile.rsrc files, removing the conflict and preserving any
.rsrc files that you may have created with ResEdit or ViewEdit. Be sure to update your .MAMake file similarly.

2. MABuild doesn't support spaces or multiple files in the OtherViewTypesSrc Make variable, because of the
following line in the file Build Rules and Dependencies:

Assuming OtherViewTypesSrc is set to something like "My Hard Disk:My Folder:My File.r", that line gets
expanded to:

The double quotes on either end cancel each other out, and any pathname with spaces is treated as separate items.
Compounding the problem is the fact that "OtherViewTypesSrc" is the name of both a Make variable and a Shell variable.

Fix:

Support for spaces in OtherViewTypesSrc can be easily added. In {MATools}Basic Definitions, replace:

Bugs In MacApp? Yes, But I Love It! Page: 27

With:

In {MATools}Build Rules and Dependencies, replace:

 IF "{OtherViewTypesSrc}" != ""
 SET OtherViewTypesSrc "{OtherViewTypesSrc}"
 SET XIncludeOtherViewTypes 1

With:

 IF {OtherViewTypesSrc} != ""
 SET XOtherViewTypesSrc {OtherViewTypesSrc}
 SET XIncludeOtherViewTypes 1

This stuff occurs three times, replace it in all three locations. Next, in {MARIncludes}ViewTypes.r, replace the line:

 #Include $$Shell("OtherViewTypesSrc");
 // let end users extend the view
 // type

With:

 #Include $$Shell("XOtherViewTypesSrc");
 // let end users extend the view
 // type

3. MABuild doesn't support more than one user library.

Solution:

Not yet determined. Requires a change to MABuildTool.p.

4. Creating an application with qNeedsROM128K set to TRUE and running it on a 512KE under System 3.2 causes it
to bomb with an ID = 12 error, because the traps that MacApp needs are not present. However, the application
runs properly under System 3.4, as the traps are implemented under that system.

Fix:

Tell MacApp to use the set of glue routines that check for the presence of the needed trap before it is called. In
{MAPInterfaces}UPrinting.p, replace the following lines:

 {$IFC NOT qNeedsROM128K}
 {$IFC UNDEFINED UsingPrinting} {$I Printing.p} {$ENDC}
 {$ELSEC}
 {$IFC UNDEFINED UsingPrintTraps} {$I PrintTraps.p} {$ENDC}

With:

Bugs In MacApp? Yes, But I Love It! Page: 28

 {$IFC UNDEFINED UsingPrinting} {$I Printing.p} {$ENDC}

 In {MALibraries}PrivateInterfaces:UPrinting.p, replace:

 {$IFC NOT qNeedsROM128K}
 Printing,
 {$ELSEC}
 PrintTraps,

With:

5. At the top of the file UMacAppUtilities.inc1.p are the following compiler options:

 {$W+}
 {$R-}
 {$Init-}
 {$OV-}
 {$IFC qNames}
 {$D+}

The intent here is that these routines should not have debugger probes (%_BP, %_EP, %_EX) inserted into them, allowing
them to run at full speed. Unfortunately, if you compile with something like MABuild -NoDebug -Trace, the
debugger probes are inserted.

Fix:

Add {$D-} before {$IFC qNames}

6. The Commando dialog box for MABuild is out of date. For example, -NeedsSystem6 and -NoDebug are now the
MABuild default and cannot be turned off through the Commando dialog box.

7. The help button in the debug options dialog box in the MABuild Commando interface is partially obscured.
8. The Commando dialog has a three-state button "Show Times", that sets the flag "-T". The help text for this is "Have

all tools show elapsed time." Actually, "-T" tells only MABuildTool to show elapsed time; to have all tools do
this, you need the "-TT" flag.

9. There is a small problem in the file {MAPInterfaces}UTEView.p that causes your compiles to be imperceptibly
slower than you would expect. Several references to __TEView__ at the top of the file should really be
__UTEView__, thus:

 {$IFC UNDEFINED __UTEView__}
 {$SETC __UTEView__ := FALSE}
 {$ENDC}

 {$IFC NOT __UTEView__}

10. In the file UViewCoords.h, #ifndef __UVIEWCOORDS__ should be #ifndef __UViewCoords__.

Fix:

Change the header file.

11. MacApp uses CPlusLib instead of CPlusLib881 when compiling for C++ and FPU support.

Fix:

In the file Basic Definitions, remove "{CLibraries}CPlusLib.o" from the definition of 31CPlusSupport, add it
to 31CPlusNonFPUSANELib, and add "{CLibraries}CPlusLib881.o" to 31CPlusFPUSANELib. Thus, replace:

Bugs In MacApp? Yes, But I Love It! Page: 29

 #############
 # For MPW 3.0, 3.1
 #############
 31CPlusSupport = [[partialdiff]]
 "{CLibraries}CRuntime.o" [[partialdiff]]
 "{CLibraries}CInterface.o" [[partialdiff]]
 "{CLibraries}CPlusLib.o" [[partialdiff]]
 "{CLibraries}StdCLib.o" [[partialdiff]]
 "{PLibraries}PasLib.o"

 31CPlusNonFPUSANELib = [[partialdiff]]
 "{CLibraries}CSANELib.o" [[partialdiff]]
 "{PLibraries}SANElib.o" [[partialdiff]]
 "{CLibraries}Math.o" [[partialdiff]]
 "{CLibraries}Complex.o"

 31CPlusFPUSANELib = [[partialdiff]]
 "{CLibraries}CLib881.o" [[partialdiff]]
 "{CLibraries}CSANELib881.o" [[partialdiff]]
 "{PLibraries}SANELib881.o" [[partialdiff]]
 "{CLibraries}Math881.o" [[partialdiff]]

With:

 #############
 # For MPW 3.0, 3.1
 #############
 31CPlusSupport = [[partialdiff]]
 "{CLibraries}CRuntime.o" [[partialdiff]]
 "{CLibraries}CInterface.o" [[partialdiff]]
 "{CLibraries}StdCLib.o" [[partialdiff]]
 "{PLibraries}PasLib.o"

 31CPlusNonFPUSANELib = [[partialdiff]]
 "{CLibraries}CPlusLib.o" [[partialdiff]]
 "{CLibraries}CSANELib.o" [[partialdiff]]
 "{PLibraries}SANElib.o" [[partialdiff]]
 "{CLibraries}Math.o" [[partialdiff]]
 "{CLibraries}Complex.o"

 31CPlusFPUSANELib = [[partialdiff]]
 "{CLibraries}CPlusLib881.o" [[partialdiff]]
 "{CLibraries}CLib881.o" [[partialdiff]]
 "{CLibraries}CSANELib881.o" [[partialdiff]]
 "{PLibraries}SANELib881.o" [[partialdiff]]
 "{CLibraries}Math881.o" [[partialdiff]]

12. "MABuild's mechanism for handling C++ Load/Dump is sort of lame. Why not support FPU and Load/Dump
simultaneously? It's not that hard to get working."

Fix:

Yeah, but it used to be. So there. MABuild is trying to work around a problem that exists in CFront 3.1b3 and earlier. If
you are using a later version, you can remove the safety check. Go into the file MABuildTool.p, remove the following lines,
then rebuild MABuildTool.

Bugs In MacApp? Yes, But I Love It! Page: 30

 { C++ external symbol table files support }
 IF fCPlusLoad & fNeedsFPU THEN
 BEGIN
 Echo('''###'' MABuild: Warning: CPlusLoad and NeedsFPU
 are incompatible. Using NoCPlusLoad.');
 fCPlusLoad := FALSE;

13. This is not a bug with MABuild, but this change belongs in the MABuild section. With all the changes and fixes
suggested here, one of MacApp's segments--GRes--becomes uncomfortably close to 32K.

Fix:

Move the routines originally mapped to MAControlRes and MADocumentRes into GRes2 by opening the file
{MATools}Basic Definitions. Change the occurrence of MAControlRes=GRes to MAControlRes=GRes2 and
MADocumentRes=GRes to MADocumentRes=GRes2.

Back to top

Bugs Only In Debug Mode

These bugs occur only in debug versions of your program, and do not affect the final production version.

13. DisposeIfHandle fails if called with a valid, but purged, handle:

 h := NewHandle(20);
 IF h <> NIL THEN
 BEGIN
 EmptyHandle(h);
 DisposIfHandle(h); {<--PBreak: 'handle is so
 bad, couldn't get handle bits'}

Fix:

In DisposeIfHandle (file UMacAppUtilities), add:

 IF IsHandlePurged(aHandle) THEN
 { h might have been purged }
 BEGIN
 DisposHandle(aHandle);
 EXIT(DisposeIfHandle);

Just before: This fix is not the cleanest, but it is the easiest.

2. Doctor, doctor. My application hangs if Print... is chosen while stopped in the debugger.

Solution:

Don't do that.

3. With a desk accessory open in the application heap (e.g., Option-Alarm Clock), you can enter the MacApp debugger, but it
does not accept any keystrokes.

Solution:

Click in the Debug Transcript window to jumpstart it.

4. If the performance tools are on, you must turn them off with "T"oggle before "E"nding. Failure to do so leaves the

Bugs In MacApp? Yes, But I Love It! Page: 31

performance tools active, although their data has been disposed.

Solution:

Always "T"oggle the performance tools off before "E"nding.

Fix:

Modify PerfCmd to turn off the performance tools when "E"nding.

5. TTranscriptView does not initialize fFontInfo in CommonInit.

Fix:

Before the {$Pop} statement in TTranscriptView.CommonInit (file UTranscriptView.inc1.p), add:

6. TList.GetSameItemNo fails in debug if looking for NIL. With previous versions of MacApp, it was perfectly
acceptable to check for a NIL object in a list. GetSameItemNo would return zero, as expected. With MacApp
2.0, there is an explicit check in debug mode that the object is valid, so passing NIL does not work.

Solution:

Call GetSameItemNo with the following wrapper:

 IF obj = NIL then
 index := 0
 ELSE

Fix:

Modify TList.GetSameItemNo (file TList.inc1.p) to make the same check.

7. If a failure occurs in IApplication, the debugger incorrectly issues the following warning:

"You're leaving a routine without calling Success for a handler that will be destroyed."

This message occurs because the routine MADebuggerMainEntry checks gTopHandler to see if the FailInfo
record it points to is below the stack. However, this test doesn't work properly if gTopHandler is NIL, as it is in
IApplication.

Fix:

Add a check for (gTopHandler = NIL) in MADebuggerMainEntry (file UDebug.inc1.p). Replace the line:

 forgotSuccess := ((which = tEnd) | (which = tExit))
 & (StripLong(LongIntPtr(pLink)^) >=

With:

 forgotSuccess := ((which = tEnd) | (which = tExit))
 & (gTopHandler <> nil)
 & (StripLong(LongIntPtr(pLink)^) >=

8. Fixed in MacApp 2.0.1.
9. Fixed in MacApp 2.0.1.

10. There are two problems with DebugGetActiveWindow. These affect you only if you try to inspect the labels

Bugs In MacApp? Yes, But I Love It! Page: 32

GetActiveWindow or GetActiveDocument.

Fix:

In UDebug.inc1.p, replace the following lines in DebugGetActiveWindow:

 pDebugWindow.fFloats := FALSE;
 { so the debugger window doesn't get reported }
 DebugGetActiveWindow := gApplication.GetActiveWindow;

With:

 pDebugWindow.fFloats := TRUE;
 { so the debugger window doesn't get reported }
 DebugGetActiveWindow := pSavedState.gApplication.GetActiveWindow;

Back to top

MPW 3.2 Compatibility

This section describes problems that occur when trying to build MacApp 2.0 under MPW 3.2. MacApp 2.0 was developed
under MPW 3.0 and 3.1 and could not take into account changes made to MPW 3.2.

Note:

Even at the time of this writing, it is unclear which of the following items will be compatibility problems. For example,
item four is a problem with MPW 3.1a1, but not with MPW 3.2b1. On the other hand, item three is a problem with MPW
3.2b1, but not with MPW 3.2a1. Apple will update the status of these items when MPW 3.2 is final.

8. The file {MALibraries}PrivateInterfaces:UDebug.p needs symbol information from the file Packages.p. Under
MPW 3.1, this file was automatically included when the file UDebug.p included the file Script.p in its USES
statement. Under MPW 3.2, this is no longer the case, and UDebug does not compile.

Fix:

Add a reference to Packages before Script in the file UDebug.p:

 USES
 <etc.>
 Desk, DiskInit, ToolUtils, Retrace,
 Memory, Resources, FixMath, Packages,
 Script, PasLibIntf, OSEvents, Traps,

2. The file UDebug.inc1.p contains the definition for the following procedure:

 PROCEDURE JTOffProc(A5JTOffset: UNIV INTEGER;

DisAsmStr80 is declared in the file {PInterfaces}DisAsmLookup.p under MPW 3.1. It is no longer used under MPW 3.2.

Fix:

Change DisAsmStr80 to Str255.

3. In the NMRec record defined in the files Notification.c and Notification.p, nmSIcon has been changed to the

Bugs In MacApp? Yes, But I Love It! Page: 33

infinitely clearer nmIcon.

Fix:

In UDebug.inc1.p, change the occurrence of nmSIcon to nmIcon.

4. At the bottom of the file UDebug.a, there is a line that looks like the following:

TIOFLUSH is not supported under MPW 3.2a1, and the Assembler aborts with an error when it gets to this line.

Fix:

Comment out or remove the reference to TIOFLUSH:

Back to top

SADE Compatibility

3. In the SADEScripts folder (part of the SADE product) is a file called StepMethod. This file contains the definition
of a procedure called stepIntoMethod, which includes the following lines:

 break %_NEWMETHOD020.CacheOut
 break %_NEWMETHOD020.TableOut
 go
 unbreak %_NEWMETHOD020.CacheOut

MacApp 2.0 no longer defines the symbol %_NEWMETHOD020 and SADE is not able to find it when you attempt to step into
an overridden method.

Fix:

Replace those lines with the following:

 break %_NEWMETHOD.CacheOut
 break %_NEWMETHOD.TableOut
 go
 unbreak %_NEWMETHOD.CacheOut

Back to top

THINK Pascal Compatibility

3. Fixed in MacApp 2.0.1.
4. This isn't really a bug, but you might incorporate the following: in the file UMacAppUtilities.p, place a {$PUSH}

{$D-} in front the BlockSet routine and a {$Pop} after it. This change speeds up the execution of programs which
are compiled with the MacApp debugger when running under the THINK Pascal environment. (Doing this may not
be necessary if you incorporate the fix to problem #5 in the MABuild section.)

Back to top

MacApp Samples Bugs

3. In the C++ version of DemoText, strings which normally appear in the About box show up in the color picker,
because kPromptStringsID is declared differently between the Rez file and the C++ file.

4. In the file UIconEdit.inc1.p, the procedure TIconBitMap.Free does not call INHERITED Free. It should call
INHERITED Free or the space in the heap used for the object never gets freed.

5. Instead of referring to @fShowInvisibles, TTabTEView.Fields actually refers to @ShowInvisibles.

Bugs In MacApp? Yes, But I Love It! Page: 34

Back to top

Other

3. The script {MATools}CleanupDeRezzedViews misses a situation where it needs to quote a Shell variable. This
problem causes the script to abort if the file you are processing contains a space in it.

Fix:

Replace the second line of the script:

With:

2. Fixed in MacApp 2.0.1.

THINK Pascal is a trademark of Symantec Corporation.

Back to top

Downloadables

Acrobat version of this Note (K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

