
ORB 3.0
Developer Guide



© 1997-1999 ObjectSpace, Inc. All rights reserved.

ObjectSpace, Inc., has used its best efforts in preparing this book. These efforts 
include the development, research, and testing of the theories and programs to 
determine their effectiveness. ObjectSpace, Inc., makes no warranties of any kind, 
expressed or implied, with regard to these programs or the documentation contained in 
this book. ObjectSpace, Inc., shall not be liable in any event for incidental or 
consequential damages in connection with, or arising from, the furnishing, 
performance, or use of these programs.

Voyager, Space, and Dynamic Aggregation are trademarks of ObjectSpace, Inc.

Java is a trademark of Sun Microsystems.

All other brand or product names are trademarks or registered trademarks of their 
respective holders.

RESTRICTED RIGHTS LEGEND

Voyager ORB and Voyager ORB Professional are furnished under a license and 
may not be used, copied, disclosed, and/or distributed except in accordance with 
the terms of said license. No classes, hierarchies, methods, binaries, or code may 
be copied for implementation in other systems.

This document and all online system documentation are copyrighted 1997-1999 by 
ObjectSpace, Inc. All rights reserved. No portion of this document may be copied, 
photocopied, reproduced, transcribed, translated, or reduced into any language, in any 
form, or by any means, without the prior written consent of ObjectSpace, Inc.

This document is subject to change without notice.

Software Version 3.0

First Edition

Printed in the United States of America



iii

Preface

Voyager™ is a family of products that includes a high performance, 
state-of-the-art Object Request Broker (ORB). This guide assumes a basic 
working knowledge of Java and explains the power and simplicity of Voyager 
for developing network Java applications.

This preface covers the following topics:

® reviewing Voyager requirements

® accessing Voyager documents

® setting your CLASSPATH for the Voyager utilities

® obtaining technical support

® submitting problem reports and suggestions

® requesting information about product updates



iv Preface

Reviewing Voyager Requirements

Before you install Voyager, ensure that you are set up to use the product. You need:

® A Java developer kit (JDK) installed on your computer. Voyager requires JDK 1.1 or 
later. You can download the latest release of JDK from www.javasoft.com at no charge.

® A working knowledge of the Java programming language.

® Approximately 2.5MB of available space on your hard drive to install Voyager.

Accessing Voyager Documentation

The directory structure of Voyager follows:

You can access the following documentation by opening a browser on 
voyager\doc\index.html:

® Voyager API Guide – An online manual containing a complete API listing of Voyager 
public classes and methods.

® Voyager ORB Developer Guide – This manual is in .pdf format. You need Adobe 
Acrobat Reader 3.0 to view this document. If you are a Voyager ORB Professional 
user, a hardcopy of this manual is included with the shipped product.

You can also access these documents and others from the ObjectSpace web site at 
www.objectspace.com. 

voyager
\bin Voyager utilities
\doc Documentation files

\examples Example files
\lib voyager.jar file (Voyager .class files)



Voyager ORB Developer Guide v

Setting your CLASSPATH for the 
Voyager Utilities

When executed, the Voyager utilities search for both your source code and your object 
code via CLASSPATH. The search is successful when your source files and object files 
reside in the same directory. If your source files and object files reside in different 
directories, ensure that the directory structure leading to source files mirrors the 
directory structure leading to object files. Add the root of each path to CLASSPATH. 

For example, if the source code and object code for the com.foobar package is organized 
as follows, the CLASSPATH must include both \root and \root\src:

Obtaining Technical Support

The ObjectSpace web site contains information about ObjectSpace products. Visit 
www.objectspace.com and select the appropriate product to view answers to frequently 
asked questions (FAQ), read about known problems, review technical white papers, or 
download new versions of software. Several forums, such as discussion lists, news 
groups, and notification mailing lists, are available for selected products.

\root
\com

\foobar .class files (object code)
\src

\com
\foobar .java files (source code)



vi Preface

Submitting Problems and Suggestions

ObjectSpace welcomes problem reports and suggestions for improving Voyager. Send 
your valuable feedback to voyager@objectspace.com.

Requesting Product Updates

To receive automatic e-mail notification of new Voyager releases and other 
Voyager-related news items, join the Voyager discussion list. you automatically receive 
e-mail notification of new Voyager releases and other Voyager-related news items when 
you download Voyager from the ObjectSpace web site, unless you explicitly decline 
automatic notification. You can join the Voyager discussion list at any time by visiting 
www.objectspace.com.



vii

Contents

Preface ................................................................................................................ iii
Reviewing Voyager Requirements ............................................................... iv

Accessing Voyager Documentation.............................................................. iv
Setting your CLASSPATH for the Voyager Utilities.................................... v

Obtaining Technical Support ......................................................................... v
Submitting Problems and Suggestions ......................................................... vi

Requesting Product Updates......................................................................... vi

1 Overview ....................................................................................................... 1
Voyager ORB Benefits .................................................................................. 2

Voyager ORB Features.................................................................................. 7

2 Basics........................................................................................................... 11
Starting and Stopping a Voyager Program .................................................. 12

Starting a Voyager Server from the Command Line ................................... 13
Using Interfaces for Distributed Computing ............................................... 14

Creating a Remote Object............................................................................ 15
Sending Messages and Handling Exceptions .............................................. 16

Logging Information to the Console............................................................ 17
Understanding Distributed Garbage Collection........................................... 18

Using Naming Services ............................................................................... 18
Working with Proxies .................................................................................. 19



viii Contents

Exporting Objects.........................................................................................21
Loading Classes............................................................................................22

Serving Classes ............................................................................................23
Remote-Enabling a Class that has No Interface...........................................23

Using Threads ..............................................................................................24
Persistence ....................................................................................................25

3 Dynamic Aggregation™ ............................................................................27

Working with Dynamic Aggregation ...........................................................28
Accessing and Adding Facets ......................................................................29

Selecting a Facet Implementation ................................................................31
Packaging Facets ..........................................................................................32

Creating Facet-Aware Classes......................................................................32

4 Advanced Messaging ..................................................................................33
Invoking Messages Dynamically .................................................................34

Retrieving Remote Results by Reference.....................................................38
Using Multicast and Publish/Subscribe........................................................39

5 Mobility and Agents ...................................................................................45
Moving an Object to a New Location ..........................................................46

Obtaining Move Notification .......................................................................48
Understanding the Uses for Mobile Agents .................................................49

Creating Mobile Agents ...............................................................................50
Code Mobility ..............................................................................................51

6 Naming Service ...........................................................................................53

Using a Namespace ......................................................................................54
Working with Federated Directory Services ................................................55

Using the Default Name Service ..................................................................57
Using JNDI...................................................................................................58

Using PersistentDirectory ............................................................................59

7 Activation ....................................................................................................61
Enabling an Object for Activation ...............................................................62



Voyager ORB Developer Guide ix

Activating an Object .................................................................................... 64
Writing an Activator .................................................................................... 65

8 Security ....................................................................................................... 67

Installing a Security Manager ...................................................................... 68
Identifying Object Authority ....................................................................... 69

9 Ultra-Light Client, Applets and Servlets ................................................. 71

Implementing Voyager Ultra-Light Client .................................................. 72
Understanding Ultra-Light Client Limitations ............................................ 73

Packaging Voyager Ultra-Light Client ........................................................ 73
Using Voyager with Servlets ....................................................................... 74

Using Voyager with Applets ....................................................................... 74

10 CORBA ....................................................................................................... 77

Building an Application............................................................................... 79
Struct ............................................................................................................ 90

Holders......................................................................................................... 92
Typedef ........................................................................................................ 94

Const ............................................................................................................ 95
Constant Expressions................................................................................... 96

Arrays and Sequences.................................................................................. 98
Modules and Interfaces................................................................................ 99

Inheritance ................................................................................................. 102
Scoping ...................................................................................................... 103

Enum.......................................................................................................... 105
Union ......................................................................................................... 107

TypeCode and Any .................................................................................... 109
Attributes ................................................................................................... 110

User Exceptions ......................................................................................... 111
System Exceptions..................................................................................... 113

Standard Object Methods .......................................................................... 113
Narrowing .................................................................................................. 114

Java to IDL ................................................................................................ 114



x Contents

Prefixes, Versions, and Repository IDs .....................................................118
Repackaging ...............................................................................................119

Naming Service ..........................................................................................123
Transactions ...............................................................................................124

11 RMI............................................................................................................125

Using Voyager as an RMI Client ...............................................................126
Using Voyager as an RMI Server...............................................................126

Using Universal Directory Integration .......................................................127

12 Timers........................................................................................................129
Clocking Time Intervals .............................................................................130

Using Timers and TimerEvents..................................................................131

13 Configuration and Management .............................................................135

Understanding Voyager Properties ............................................................136
Specifying a Properties File .......................................................................139

Specifying Multiple Values........................................................................139
Using the Voyager Management Framework ............................................140

Working with the ObjectSpace Workshop Framework .............................141
Using the Voyager Management Console..................................................142

A Utilities ......................................................................................................147

voyager .......................................................................................................148
igen .............................................................................................................150

cgen ............................................................................................................152
pgen ............................................................................................................154

B Examples ..................................................................................................157

Running the Examples ...............................................................................158
Basics .........................................................................................................159

Dynamic Aggregation ................................................................................166
Advanced Messaging .................................................................................181

Multicast and Publish/Subscribe ................................................................196
Mobility ......................................................................................................208



Voyager ORB Developer Guide xi

Agents ........................................................................................................ 214
Naming Service ......................................................................................... 218

Activation .................................................................................................. 226
Security ...................................................................................................... 236

Applets and Servlets .................................................................................. 241
CORBA...................................................................................................... 249

RMI............................................................................................................ 261
Ultra-Light Client ...................................................................................... 270

Timers ........................................................................................................ 274
Configuration and Management ................................................................ 282

Configuration ............................................................................................. 301
Universal Gateway..................................................................................... 309



xii Contents



1

Overview

Voyager is ObjectSpace's product family for distributed computing that 
simplifies and unifies the most common industry standards. Voyager helps 
organizations produce high-impact, distributed systems quickly. Voyager 
includes the following products:

® Voyager ORB is a high-performance, full-featured object request broker 
that simultaneously supports CORBA, RMI, and, shortly, DCOM. Its 
innovative dynamic proxy generation removes the need for stub generators. 
Voyager ORB includes a universal naming service, activation framework, 
publish/subscribe and mobile agent technology.

® Voyager ORB Professional builds on the Voyager ORB foundation with a 
graphical management console, configuration framework, JNDI 
integration, persistent directory, CORBA naming service, and support for 
ultra-light clients. 

® Voyager Security includes a flexible security framework, lightweight 
security implementation, support for secure network communications via 
SSL adapters, and firewall tunneling using the SOCKS protocol. 

® Voyager Transactions delivers full OTS-compliant distributed transactions 
support, including two-phase commit and a one-phase commit JDBC 
adapter. 

® Voyager Application Server offers a true EJB development environment 
that decouples application logic from systems programming logic. 

1



2 Chapter 1 • Overview

Voyager ORB Benefits

The Voyager ORB offers many benefits, including: 

Universality 

The Voyager ORB simplifies and unifies access to the most common industry standards. 
There are several aspects of Voyager that are universal:

® Communications

The universal communications architecture allows Voyager programs to be both a 
universal client and a universal server by supporting simultaneous bi-directional 
communication with other CORBA, RMI, and DCOM programs. 

® Messaging

The universal messaging layer allows different types of messages such as 
synchronous, oneway, and futures to be sent to an object regardless of its location or 
object model.

® Naming

The universal naming service allows access to the many commercially available 
naming services through a single API. 

® Directory

The universal directory is a single directory that can be accessed and shared by all 
clients. for example, an RMI server can bind an object into a universal directory 
using the native RMI registry API and a CORBA client can lookup up the same 
object using the CORBA naming service API.

® Gateway (Voyager ORB Professional Only)

The universal gateway allows voyager to automatically bridge protocols between 
clients and servers that are not written using Voyager. For example, this allows a 
native RMI client to send messages to an object in a native CORBA server, even 
though RMI does not support IIOP.



Voyager ORB Developer Guide 3

Ease of Development 

Voyager greatly simplifies the creation of distributed systems. For example, Java classes 
do not have to be modified in order to be remote enabled. In addition, Voyager generates 
the glue needed for distributed computing at runtime, removing the need for stub 
generators, skeletons, and helper classes.

Architectural Flexibility 

Since it is difficult to anticipate each customer's unique requirements, Voyager has been 
built from components that can be extended or replaced to integrate into a customer's 
existing computing infrastructure. For example, some of our customers modify the 
transport layer so they can use an internally developed network.

The following diagrams illustrate these features:

Universal Architecture

Voyager offers a universal architecture that isolates user code from the intricacies of 
communications and messaging protocols. The following figure depicts Voyager’s 
universal architecture.



4 Chapter 1 • Overview

NameSpace

Proxy

Messaging

Object Model

Transport

CORBA VDIR RMI JNDI
archive

directory

dynamic static (pgen)

sync oneway future
publish/

subscribe
distributed

event

CORBA RMI VNM DCOM

TCP UDP

Voyager Universal Architecture



Voyager ORB Developer Guide 5

Universal Naming Service

In addition to a universal architecture, Voyager offers users a universal naming service. 
The following figure depicts this universal naming service.

Voyager Universal Naming Service

N
a
m
e
s
p
a
c
e

COS

RMI

VDIR

local
universal
directory

lookup()
bind()
API

COS naming

RMI registry

VDIR

JNDI
JNDI



6 Chapter 1 • Overview

Universal Communications Infrastructure

In addition to a universal architecture, Voyager offers users a universal communications 
infrastructure. The following figure depicts this universal communications 
infrastructure.

Voyager Universal Communications Infrastructure

CORBA

RMI

VNM

Java
object

CORBA

RMI

VNM

DCOMDCOM

Port

M
e
s
s
a
g
i
n
g



Voyager ORB Developer Guide 7

Voyager ORB Features

Voyager offers developers multiple, robust features, including:

Remote-Enabling a Class. Java classes are remote-enabled classes at runtime. A class 
does not have to be modified in any way, and no additional files are created.

Remote Construction. You can create a remote instance of any class and obtain a proxy 
to the newly created object. The proxy implements the same interfaces as the created 
object, and the proxy class is generated dynamically if it doesn’t already exist.

Dynamic Class Loading. Classes can be dynamically loaded from one or more 
locations when necessary. This allows you to easily set up class repositories that serve 
your corporate Java applications.

Remote Messaging. Method calls made to a proxy are forwarded to its object. If the 
object is in a remote program, the arguments are serialized using the standard Java 
serialization mechanism and deserialized at the destination. The morphology of the 
arguments is maintained. By default, parameters are passed by value. However, if an 
object’s class implements IRemote or java.rmi.Remote, the object is passed by reference 
instead.

Exception Handling. If a remote exception occurs, it is caught at the remote site and 
rethrown locally. If the appropriate logging level is selected, a complete stack trace from 
the remote site is displayed to the console.

Distributed Garbage Collection. The distributed garbage collector reclaims objects 
when there are no more local or remote references to them. It uses an efficient “delta 
pinging” algorithm that keeps the traffic required for garbage collection to a minimum.

Dynamic Aggregation™. This feature allows you to add secondary objects (termed 
facets) to a primary object at runtime. For example, you can dynamically add hobbies to 
an employee, a repair history to a car, or a payment record to a customer. Dynamic 
aggregation represents a fundamental step forward for object modeling and 
complements the traditional mechanisms of inheritance and polymorphism.

CORBA. There is full native support for IDL, IIOP, and bidirectional IDL<->Java 
translation. No stub generators or helper classes are required.

RMI. Voyager provides full RMI support. This means that you can easily use classes in 
Voyager that were originally designed for use with RMI.



8 Chapter 1 • Overview

Mobility. You can move any serializable object between programs at runtime. If a 
message is sent from a proxy to an object’s old location, the proxy is automatically 
updated with the new location and the message is resent. Mobility is often useful when 
optimizing message traffic in a distributed system.

Autonomous Mobile Agents. You can create mobile autonomous agents that move 
themselves between programs and continue to execute upon arrival. It is easy to build 
agents that utilize movement to more efficiently satisfy their goals.

JNDI (Voyager ORB Professional only). Certain client processes may need to access 
named objects using the Java Naming and Directory Interface (JNDI). Voyager 
implements JNDI as a wrapper around its Federated Directory Service. 

Persistent Naming Service (Voyager ORB Professional only). Voyager supports 
persistent naming service, allowing you to store the contents of the PersistentDirectory in a 
file in the local file system.

Activation. The activation framework allows objects to be persisted to any kind of 
database and automatically re-activated in the case that the program is restarted. An 
object does not have to be modified in any way to be activatable.

Ultra-Light Client (Voyager ORB Professional only). Voyager supports an ultra-light 
client with a footprint of approximately 15K, making it an ideal candidate for applet and 
small-footprint clients. Voyager Ultra-Light Client provides a mechanism for 
developing a 100% pure Java client with minimal client-code overhead by allowing 
applications to communicate with remote object implementations in the same fashion as 
if they were local. 

Applets and Servlets. It is easy to create Voyager-enabled applets and servlets. Because 
applets cannot open network connections to any machine except their server, Voyager 
allows you to set up a server-side hub that can perform message routing and dynamic 
proxy generation on the applet’s behalf.

Naming Service. The naming service provides a single, simple interface that unifies the 
many commercially available naming services. New naming services can be 
dynamically plugged into Voyager’s naming service.

Multicast. You can multicast a Java message to a distributed group of objects without 
requiring the sender or receiver to be modified in any way.

Publish-Subscribe. You can publish a Java event on a specified topic to a distributed 
group of subscribers. The publish-subscribe facility supports server-side filtering and 
wildcard matching of topics.



Voyager ORB Developer Guide 9

Management Console (Voyager ORB Professional only). You can configure and 
manage multiple Voyager servers and Voyager services from a centralized, customizable 
graphical user interface.

Timers. A Stopwatch and Timer class facilitate common timing chores. Timer events can 
be distributed and multicast if necessary.

Thread Pooling. A thread pool is used when allocating and deallocating threads, 
resulting in higher performance.

Advanced Messaging. You can send oneway, sync, and future messages. Oneway 
messages return immediately and discard the return value. Future messages immediately 
return a placeholder to the result, which may then be polled or read in a blocking 
fashion.

Security. An enhanced security manager is included, as well as hooks for installing 
custom sockets such as SSL.

This manual focuses on detailed information on these features of the Voyager ORB and 
Voyager ORB Professional products.



10 Chapter 1 • Overview



11

Basics

This chapter covers all the features of Voyager that are required to build a 
simple distributed application.

In this chapter, you will learn to: 

® start and stop a Voyager program 

® start a Voyager server from the command line

® use interfaces for distributed computing

® create a remote object 

® send messages and handle exceptions

® understand distributed garbage collection

® use the naming service

® work with proxies

® export objects

® load classes

® serve classes

® remote-enable a class that has no interface

® use threads

2



12 Chapter 2 • Basics

Starting and Stopping a Voyager 
Program

A program must invoke one of the following variations of Voyager.startup() before it can 
use any Voyager features:

® startup() 

Starts Voyager as a client that initially does not accept incoming messages.

® startup( String url ) 

Starts Voyager as a server that accepts incoming messages, either on the specified 
URL or on a random unused port when the URL is null.

® startup( Object object, String url )

Required by Voyager-enabled Applets and Servlets, as described in the "Ultra-Light 
Client, Applets and Servlets" chapter.

The general format of a URL (uniform resource locator) follows:

protocol://host:port/file#reference;argument

Voyager extends the URL syntax by allowing nested protocols such as ssl:tcp:. Each part 
is optional. During startup, you only need to specify the port. Using Voyager on 
multi-homed systems can be done one of two ways. First you can explicitly export a 
proxy on a URL. Second, you can call transport.Transport.acquireServer( XURL ) to start a 
server on that URL. If your machine is multi-homed with multiple host names, you can 
either explicitly specify the host or omit it and allow your operating system to choose 
the primary host. The special host "localhost" is interpreted as your local host. Examples 
follow:

Voyager.startup(); // startup as a client
Voyager.startup( null ); // startup as a server on a random unassigned port
Voyager.startup( "8000" );  // startup as a server on port 8000
Voyager.startup( "//dallas:7000" ); // startup as server on port dallas:7000

To shutdown a Voyager program, invoke Voyager.shutdown(). This method kills the 
Voyager internal non-daemon threads and allows the main program to terminate. 



Voyager ORB Developer Guide 13

The startup and shutdown methods generate SystemEvents that you may listen to using 
Voyager.addSystemListener().

Starting a Voyager Server from the 
Command Line

To start a Voyager server from the command line, use the voyager utility. This utility 
starts an empty Voyager program that accepts objects and messages from other Voyager 
programs until it is explicitly terminated from the command line using Control-C.

For example, to start an empty Voyager program that accepts connections on port 8000, 
type:

The voyager utility has several options. For more information, refer to Appendix A, 
"Utilities".

>voyager 8000
voyager orb 3.0, copyright 1997-1999 objectspace



14 Chapter 2 • Basics

Using Interfaces for Distributed 
Computing

The Java language supports interfaces. An interface contains no code. It defines a set of 
method signatures that must be defined by the class that implements the interface. A 
variable whose type is an interface may refer to any object whose class implements the 
interface. By convention, Voyager interfaces begin with “I”, although your code is 
exempt from this rule. An example of an interface follows:

public interface IStockmarket
  {
  int quote( String symbol );
  int buy( int shares, String symbol );
  int sell( int shares, String symbol );
  void news( String announcement );
  }

If the class Stockmarket implements IStockmarket, it is legal to write:

IStockmarket market = new Stockmarket(); // market refers to local object 

A remote object is represented by a special proxy object that implements the same 
interfaces as its remote counterpart. A variable whose type is an interface may refer to a 
remote object via a proxy, because both the remote object and its proxy implement the 
same interfaces.

See the section "Remote-Enabling a Class that has No Interface" for information about 
remote-enabling a class that does not implement an interface.



Voyager ORB Developer Guide 15

Creating a Remote Object

To create an object at a specified location, use Factory.create(). This method returns a 
proxy to the newly created object and creates the proxy class dynamically if it does not 
already exist. 

There are several variations of create(), depending on whether the object is to be created 
locally and whether the class constructor takes arguments. You must always fully 
qualify the name of the class. For example, use java.util.Vector instead of Vector. To create 
a default instance of Stockmarket in the local program and another in the program running 
on port 8000 of the machine “dallas”, type:

IStockmarket market1 = (IStockmarket) Factory.create( "Stockmarket" ); // created locally
IStockmarket market2 = (IStockmarket) Factory.create( "Stockmarket", "//dallas:8000" ); // created remotely

To create an instance of Stockmarket and use the constructor that takes a String and an int, 
type:

Object[] args = new Object[] { "NASDAQ", new Integer( 42 ) };
IStockmarket market3 = (IStockmarket) Factory.create( "Stockmarket", args, "//dallas:8000" ); 

Note that primitive arguments must be wrapped in their Object equivalents.



16 Chapter 2 • Basics

Sending Messages and Handling 
Exceptions

A message sent via a proxy is executed according to the following rules:

® If the destination object is in the same program, the message is delivered just like a 
regular Java message. The arguments are not serialized or copied, resulting in very 
high performance.

® If the destination object is in a different program, the arguments and return value must 
be sent across the network. If an argument implements com.objectspace.voyager.IRemote 
or java.rmi.Remote, a proxy to the argument is sent (pass by reference), otherwise a copy 
of the argument is sent using standard Java serialization (pass by value). Morphology 
of the arguments is maintained—an object that is an argument or part of an argument 
is copied exactly once, and an argument or part of an argument that shares an object 
in the local program also shares a copy of the object in the remote program. Rules for 
an argument also apply to a return value.

The following figure shows how a remote message is processed:

If a remote method throws an exception, it is caught and re-thrown in the local program. 
If a Voyager-related exception, such as a network error, argument serialization error, 
etc., occurs and the interface method explicitly throws java.rmi.RemoteException†, the 
exception is thrown wrapped in a RemoteException, otherwise it is thrown wrapped in a 
com.objectspace.voyager.RuntimeRemoteException. RuntimeRemoteException is also thrown if a 
method invoked on an object via a proxy throws an exception that is not declared in the 
throws clause for that method. In each case, the public detail field contains the original 
exception. Voyager's exception handling policy allows you to select between checked 

†Microsoft developers can download the Java RMI API from the Microsoft website.

dallas:8000london:7000

quote ("SUN")

return value

proxy to
stockmarket

stockmarket
object

quote ("SUN")

return value



Voyager ORB Developer Guide 17

and unchecked exceptions. If you prefer checked exceptions, add “throws 
java.rmi.RemoteException” to every method in an interface.

The example on page 159 demonstrates basic messaging and remote 
construction.

Logging Information to the Console

The Console class allows you to log information, including stack traces of remote 
exceptions, to the console. Use Console.setLogLevel() to select a logging level:

® Console.SILENT

Displays no output to the console.

® Console.EXCEPTIONS

Displays stack traces of remote exceptions and unhandled exceptions to the console.

® Console.VERBOSE

Displays stack traces of remote exceptions, unhandled exceptions, and internal debug 
information to the console.

To set the logging level from the command line, use the voyager -l option with the silent, 
exceptions, or verbose argument.

Example



18 Chapter 2 • Basics

Understanding Distributed Garbage 
Collection

Voyager's distributed garbage collector (DGC) reclaims objects when they are no longer 
pointed to by any local or remote references. 

Voyager uses an efficient “delta pinging” scheme to reduce DGC network traffic. Each 
program notes when references to remote objects are created and destroyed. In each 
DGC cycle, which is 2 minutes by default, the program sends each referenced remote 
program a single message containing a summary of the references to its objects that 
were added/removed since the last DGC cycle. By tracking this information as it 
changes over time, each program can tell when no remote references exist to an exported 
object.

Using Naming Services

The Voyager integrated naming service provides unified access to a variety of 
commercial naming services. This section shows how to use the naming service to bind 
names to objects for later lookup. For more detailed information, including examples 
and information on how to rebind and unbind names, refer to the "Naming Service" 
chapter. 

To bind a name to an object, invoke Namespace.bind() with the name expressed as an 
URL. The following code segment creates a Stockmarket on the host //dallas:8000 and then 
binds it to the name “NASDAQ” for later lookup:

IStockmarket market = (IStockmarket) Factory.create( "Stockmarket", "//dallas:8000" );
Namespace.bind( "//dallas:8000/NASDAQ", market );

The construction and binding step may be combined as follows:

IStockmarket market = (IStockmarket) Factory.create( "Stockmarket", "//dallas:8000/NASDAQ" );

To obtain a proxy to a named object, invoke Namespace.lookup(). The following example 
obtains a proxy to the object that was created and named by the previous code segment:

IStockmarket market = (IStockmarket) Namespace.lookup( "//dallas:8000/NASDAQ" );



Voyager ORB Developer Guide 19

Working with Proxies

All proxy classes extend Proxy. If a proxy class does not already exist, the Voyager class 
loading system generates it dynamically. Use any of the following to get a proxy to an 
object:

® Factory.create( String classname, String url )

Returns a proxy to a newly created object, where classname is the name of the class 
that you are creating an instance of, and url and url specifies where the object should 
be created.

® Namespace.lookup( String name )

Returns a proxy to the object with a particular name.

® Proxy.of( Object object ) 

If the specified object is already a proxy, returns the object; otherwise returns a proxy 
to the object.

A method call on a proxy is forwarded to its associated object unless it is one of the 
following special methods:

® getClass(), notify(), notifyAll(), wait()

These methods are all final methods in Object and are executed directly by the proxy.

® hashCode() 

Returns the hash code of the proxy itself. Use remoteHashCode() to obtain the hash 
code of a proxy's associated object. Two proxies return the same hash code if they 
refer to the same object.

® equals()

Returns true if the argument is a proxy that refers to the same object as the receiver. 
Use remoteEquals() to compare the proxy's associated object with another object.

Additional methods in Proxy follow:

® isLocal() 

Returns true if the proxy is in the same VM as its associated object.

® getLocal() 



20 Chapter 2 • Basics

If the proxy is in the same VM as its associated object, returns a direct reference to 
the object; otherwise returns null

® getURL() 

Returns the URL of the proxy's associated object.

® toExternalForm() 

Returns a string that, when passed to Namespace.lookup(), returns a proxy to this 
proxy’s object. This method is useful if you need to transmit a reference to an object 
via a medium like e-mail.

To pass an object by reference, either explicitly pass a proxy obtained using Proxy.of(), or 
implicitly pass a proxy by ensuring that the object class implements 
com.objectspace.voyager.IRemote or java.rmi.Remote. 



Voyager ORB Developer Guide 21

Exporting Objects

To receive remote messages, an object must be exported to exactly one local URL. After 
it is exported, all remote messages to an object arrive via its export URL.

If a proxy to an unexported object is passed to a remote program, Voyager automatically 
exports the object to the default URL. If Voyager was started on an explicit URL, the 
default URL is the startup URL, otherwise the default URL is initialized to a random 
unassigned local URL.

The automatic export mechanism is sufficient for most applications. However, there are 
times where it is useful to partition objects between more than one URL. For example, 
security reasons might dictate to associate one group of objects with a URL that is 
connected to an intranet, while associating another group of objects with a URL 
connected to the Internet via SSL. Because programs on the Internet can only 
communicate via the SSL URL, they can only send messages to the group of objects that 
are exported on that URL.

To explicitly export an object, use one of the following static methods in Proxy:

® export( Object object, String url )

Exports the object to the specific URL. If connections are not already being accepted 
on the specified URL, automatically starts a new connection thread on the URL.

® export( Object object )

Exports the object to the default URL.

® unexport( Object object )

Unexports the object.

The example on page 163 binds a name to an object exported on an 
explicit port.

Note: An exported object can receive messages on exactly one transport protocol 
(TCP, SSL, etc.).

Example



22 Chapter 2 • Basics

Loading Classes

A Voyager program attempts to load new resources, usually classes, according to the 
following sequence:

1. Search the CLASSPATH.

2. Search the installed resource loaders from highest priority to lowest priority.

By default, a Voyager program has a single pre-installed ProxyResourceLoader at priority 
level 5. This loader can dynamically generate and load a proxy class from its original 
class. 

To enable a program to load resources from remote sources, such as a web server or an 
SQL database, you must add more resource loaders using 
VoyagerClassLoader.addResourceLoader(). 

For example, to enable class loading from a specific URL, add a URLResourceLoader 
constructed on a URL as follows:

® for classes in a directory not in the CLASSPATH, use file:///full/directory/path/ (three 
forward slashes are intentional)

® for classes on a web server, use http://host:port/root/ 

® for classes on an HTTP-enabled Voyager program, described in "Serving Classes", 
use http://host:port

To disable Voyager's use of resource loaders (including the dynamic proxy generator), 
and rely solely on Java's class loader, invoke 
VoyagerClassLoader.setResourceLoadingEnabled( false ).

If Voyager is started from the command line, use -c URL to add an URLResourceLoader on 
the specified URL. The -c option may be specified many times on the same command 
line. For example, to start a Voyager server that can load classes from the directory 
/bin/classes/ and from an HTTP server running on //dallas:8000, type:

voyager 8000 -c file:///bin/classes/ -c http://dallas:8000

To manually load a class using Voyager’s class loading machinery, use 
ClassManager.getClass( classname ) instead of Class.forName( classname ).



Voyager ORB Developer Guide 23

Serving Classes

A Voyager program can serve other programs with any resource that it can load. This is 
made possible by Voyager's built-in HTTP capability, which is disabled by default for 
security reasons. To HTTP-enable a Voyager program, invoke 
ClassManager.enableResourceServer().

If Voyager is started from the command line, use the -r option to enable its HTTP server.

The security example on page 236 demonstrates a Voyager client capable 
of loading classes from a remote Voyager server that is HTTP-enabled. It 
also demonstrates some of the security consequences that you may want 
to address when using this form of classloading.

Remote-Enabling a Class that has No 
Interface

Voyager allows an object to be constructed remotely and sent messages even if its class 
does not implement an appropriate interface.

The igen utility generates a default interface from a class. A default interface has the 
public methods of the original class and is named using “I” followed by the name of the 
original class. If the original class is in the java.* package, the default interface is placed 
in the com.objectspace.java.* package, otherwise it is placed in the same package as the 
original class. 

For example, to generate the default interface com.objectspace.java.util.IVector from a 
java.util.Vector, type:

igen java.util.Vector

When a proxy class is dynamically generated from a class that does not implement 
java.rmi.Remote, com.objectspace.voyager.IRemote, or its default interface, the default 
interface is automatically generated and added to the list of classes that the proxy class 

Example



24 Chapter 2 • Basics

implements. An instance of the proxy class implements the default interface even 
though its associated object does not.

To construct a remote java.util.Vector and send it messages, write:

import com.objectspace.java.util.IVector;

IVector vector = (IVector) Factory.create( "java.util.Vector", "//dallas:8000" );
// note that the proxy implements IVector even though Vector does not
vector.addElement( "hi" ); 

For more information about igen, see Appendix A, "Utilities".

Using Threads

To reduce the significant overhead of creating and destroying threads, Voyager uses a 
thread pool. If Voyager needs a thread, it only creates a new Thread object when it 
cannot reuse a thread from the pool. When the thread finishes, it is added to the pool 
unless the maximum pool size has been reached, in which case the Thread object is 
destroyed. Although there is a maximum pool size, there is no limit to the number of 
threads that Voyager can allocate.

The pool is initially empty and has an infinite maximum size. To change the maximum 
pool size, invoke ThreadManager.setPoolSize(), or use the -t option when using the voyager 
utility. 

To include thread pools in your own applications, use 
com.objectspace.lib.thread.ThreadPool.



Voyager ORB Developer Guide 25

Persistence

Voyager does not include any kind of persistent storage, which is handled by database 
products. Instead, Voyager includes an activation framework, described in Chapter 7, 
"Activation", that allows objects to be automatically loaded on demand from any kind of 
database. How and when objects are actually committed to the database is determined 
by the application developer.

Facilities like the activation framework that save and restore objects need to access the 
complete state of an object, including its facets described in Chapter 3, "Dynamic 
Aggregation™" and Voyager-related properties, such as the object’s export URL. The 
Snapshot class provides this functionality. 

To persist an object and all of its state to a database, obtain a Snapshot of the object and 
then either store the Snapshot directly into the database or store its parts individually. To 
obtain a Snapshot of an object, use Snapshot.of( object ). The fields are set to each part of 
the object’s state and can be accessed using the following methods:

® getObject()

Returns the object.

® getProperties()

Returns an instance of Properties containing the object’s Voyager-related properties.

® getFacets()

Returns an array of the object’s facets.

To load an object and its associated state back into memory, first recreate the original 
Snapshot either by loading it directly from the database or by loading the individual parts 
and then using Snapshot.from( object, properties, facets ). Then invoke Snapshot.restore(), 
which recreates the original object state from the individual fields of the Snapshot and 
returns a proxy to the newly created object.

The activation framework example on page 226 illustrates Snapshot.
Example



26 Chapter 2 • Basics



27

Dynamic Aggregation™

Voyager supports dynamic aggregation, which allows you to attach new code 
and data to an object at runtime.

This feature resolves the following problems that commonly occur during the 
construction of an object-oriented system:

® Adding behavior to a third-party component whose source is not available.

® Customizing an object in a subsystem-specific way, so it can be used by 
multiple subsystems.

® Extending an object's behavior at runtime, perhaps in unforeseen ways.

Dynamic aggregation represents a fundamental step forward for object 
modeling and complements the mechanisms of inheritance and 
polymorphism. 

In this chapter you will learn to:

® work with dynamic aggregation

® access and add facets

® select a facet implementation

® create facet-aware classes

3



28 Chapter 3 • Dynamic Aggregation™

Working with Dynamic Aggregation

Dynamic aggregation allows you to attach secondary objects, or facets, to a primary 
object at runtime. A primary object and its facets form an aggregate that is typically 
persisted, moved, and garbage-collected as a single unit.

The following diagram illustrates a primary object and its facets.

There are several rules associated with facets:

® A class does not have to be modified in any way for its instances to play the role of a 
primary object and/or facet.

® The class of a facet does not have to be related in any way to the class of a primary 
object. An instance of a class can be added as a facet to any kind of primary object.

® Facets cannot be nested. In other words, a facet cannot have a facet.

® Facets cannot be removed. After a facet is added, it remains for the life span of the 
aggregate.

® A primary object and its facets have the same life span and are garbage-collected only 
when there are no references to either the primary object or any of its facets.

There are many uses for dynamic aggregation. For example, you can dynamically add a 
bonus plan facet to an employee, a repair history facet to a car, a payment record facet to 
a customer, or a hyperlinks facet to a generic object.

aggregate

primary
object

facet

facet facet



Voyager ORB Developer Guide 29

Accessing and Adding Facets

A primary object’s facets are represented by an instance of Facets that is initially set to 
null. To access an object's Facets, use one of the following static Facets methods:

® get( Object object ) 

Returns the object's Facets, which may be null.

® of( Object object ) 

Returns the object's Facets, setting it to an initialized instance of Facets when it is 
currently equal to null.

Because a facet is part of an aggregation, invoking Facets.get() or Facets.of() on a facet 
returns the Facets instance of the facet’s primary object. 

To manipulate an object's facets, use the following instance methods defined in Facets:

® get( String interfacename ) 

Returns a proxy to a facet that implements the specified interface or null if no match 
is found. The interface name must be fully qualified.

® of( String interfacename ) 

Returns a proxy to a facet that implements the specified interface, adding one 
automatically if no match is found. If the interface name starts with an “I”, the class 
without the “I” prefix is used as the default facet implementation. The interface name 
must be fully qualified.

® getPrimary()

Returns a proxy to the primary object.

® getFacets()

Returns an array of proxies to the primary object's facets.

The example on page 166 demonstrates facets by adding an Account facet 
to an Employee and later accessing the facet from a remote program.Example



30 Chapter 3 • Dynamic Aggregation™

Two additional static helper methods in Facets that simplify facet manipulation follow:

® get( Object object, Class type )

Returns the objects when the specified object is an instance of the specified interface. 
Otherwise, returns a proxy to the facet when the specified object has a facet that is an 
instance of the specified interface. Returns null when neither rule applies.

® of( Object object, Class type ) 

Returns the object when the specified object is an instance of the specified interface. 
Otherwise, returns a proxy to the facet when the specified object has a facet that is an 
instance of the specified interface. Adds and returns a proxy to a facet that 
implements the specified type when neither rule applies.

Provide static get() and of() methods to further simplify access to facets. For example, 
assuming that the name of the facet interface is IRepairHistory, add static get() and of() 
helpers methods to RepairHistory. For example: 

static public IRepairHistory get( Object object )
  {
  return (IRepairHistory) com.objectspace.voyager.Facets.get( object, IRepairHistory.class );
  }

static public IRepairHistory of( Object object ) throws ClassCastException
  {
  return (IRepairHistory) com.objectspace.voyager.Facets.of( object, IRepairHistory.class );
  }

These methods then allow you to write code, an example of which follows:

// return the car's repair history facet or null if it does not have one
IRepairHistory history1 = RepairHistory.get( car1 );

// return the car’s repair history facet, adding one if it does not already exist
IRepairHistory history2 = RepairHistory.of( car2 );

The example on page 170 demonstrates use of the of() and get() methods to 
add and access a Security facet on an Employee.Example



Voyager ORB Developer Guide 31

Selecting a Facet Implementation

A facet implementation varies based on the class of primary object. For example, 
BonusPlan.of() may need to attach a different kind of bonus plan facet to a Programmer than 
to a Manager. Voyager uses a simple scheme for selecting the class of facet that is added 
during an of( object ) operation. 

Assuming that the class of object is MyClass, MyFacet.of( object ) attempts to attach a facet 
that implements IMyFacet and is called xxxMyFacet, where the search starts with 
xxx="MyClass" and moves up MyClass's superclass chain to xxx=”Object”. Classes that match 
the name without implementing IMyFacet are ignored. If the head of the superclass chain 
is reached and there is no match for ObjectMyFacet, a last chance match is attempted using 
xxx="". 

During each search cycle, the candidate class is first looked for in the package of 
MyClass and then in the package of MyFacet.

For example, assume that company.Programmer extends company.Employee which in turn 
extends java.lang.Object. Assume also that the full path of BonusPlan is incentive.BonusPlan. 
If the statement BonusPlan.of( object ) is executed where object is an instance of 
Programmer, the search process picks the first class in the following series that exists and 
implements IBonusPlan:

1. company.ProgrammerBonusPlan

2. incentive.ProgrammerBonusPlan

3. company.EmployeeBonusPlan

4. incentive.EmployeeBonusPlan

5. company.ObjectBonusPlan

6. incentive.ObjectBonusPlan

7. company.BonusPlan

8. incentive.BonusPlan

After the class is selected, the facet is instantiated using the default constructor.

The example on page 174 illustrates facet selection.
Example



32 Chapter 3 • Dynamic Aggregation™

Packaging Facets

Use the following guidelines when packaging facet classes:

® Begin the name of your facet interface with “I”.

® Create a class whose name corresponds to the interface name and omits the “I” prefix, 
and populate it with the of() and get() static helper methods.

® Place the default facet implementation in the same package as the facet interface, and 
prefix its name with the name of the most general class to which the facet applies. For 
example, if the default facet applies to all objects, use the Object prefix.

® Place specialized facet implementations into the same package as their associated 
class.

Creating Facet-Aware Classes

To make a class facet-aware, implement com.objectspace.lib.facets.IFacet, which declares 
the following method:

® isTransient() - If this method returns true, override the regular rule for garbage 
collection of facets and reclaim the facet immediately when there are no more 
references to it. Choose this feature when a facet is stateless and does not need to be 
associated with the primary object after its work is complete. The Voyager Mobility 
facet is an example of a transient facet. See the "Mobility and Agents" chapter for 
more information.

In addition, any class that implements IFacet can provide a constructor that takes a single 
IFacets parameter. If provided, this constructor is invoked instead of the default 
constructor whenever an instance of the class is added as a facet. The IFacets argument is 
set to the Facets instance of the primary object.

The example on page 178 illustrates facet-aware classes by defining a 
transient BonusPlan facet for a Manager.Example



33

Advanced Messaging

You can send synchronous messages in Voyager using regular Java syntax. 
However, many applications need greater flexibility, so Voyager provides a 
message abstraction layer that supports more sophisticated messaging 
features.

In this chapter, you will learn to: 

® invoke messages dynamically

® retrieve remote results by reference

® use multicast and publish/subscribe

4



34 Chapter 4 • Advanced Messaging

Invoking Messages Dynamically

You can dynamically invoke messages either synchronously or asynchronously.

Synchronous Messages

By default, Voyager messages are synchronous. When a caller sends a synchronous 
message, the caller blocks until the message completes and the return value, if any, is 
received. For example, the following line of code sends a synchronous quote() message 
to an instance of Stockmarket:

int price = market.buy( 42, "SUN" );

You can send a synchronous message dynamically using the static Sync.invoke() method, 
which returns a Result object when the message has completed. You can then query the 
Result object to get the return value/exception. To send a synchronous message, call 
Sync.invoke(), passing the following parameters:

® target object

® name of the method you want to call on the target object

® parameters to the dynamically invoked method in an object array

For example, the following line of code uses Sync to dynamically invoke a buy() message 
on an instance of Stockmarket:

Result result = Sync.invoke( market, "buy", new Object[] { new Integer( 42 ), "SUN" } );
int price = result.readInt();

Primitive arguments must be sent as their Object equivalents.

In most cases, the simple name of the method suffices. However, if there is more than 
one method with the same name in the target object, the method name must be specified 
with argument types using the syntax method( type1, type2 ). Spaces in the signature are 
ignored, and the return type must not be specified. A version of the previous example 
that uses the longer version of the signature follows:

Result result = Sync.invoke( market,"buy(int, java.lang.String)",new Object[]{new Integer( 42 ),"SUN" });
int price = result.readInt(); 



Voyager ORB Developer Guide 35

You can query a Result object using the following methods. In the case of synchronous 
methods, the reply value is always available by the time these methods are called. Future 
messages allow the methods to be called before the reply value is received. 

® isAvailable()

Returns true if the Result received its return value.

® readXXX(), where XXX = Boolean, Byte, Char, Short, Int, Long, Float, Double, Object

Returns the value of Result, blocking until either the value is received or the timeout 
period of Result elapses. If the value is not received within the timeout period, a 
TimeoutException is thrown. See the "Future Messages" section on page 36 for 
information about timeouts. The timeout countdown starts when readXXX() is called, 
not when the message is actually sent. If a remote exception occurs during a future 
message invocation and you attempt to call readXXX() on Result, the exception is 
automatically rethrown. See the "Basics" chapter for information about exceptions.

® isException()

Waits for a reply and then returns true if Result contains an exception.

® getException()

Waits for a reply and then returns the exception contained in Result or null when no 
exception occurred.

The example on page 181 demonstrates invoking a synchronous instance 
method and static method using Voyager’s dynamic invocation feature.

One-Way Messages

A one-way message does not return a result. When a caller sends a one-way message, 
the caller does not block while the message completes, so sending a one-way message is 
fast. You can send a one-way message dynamically using OneWay, which performs 
“fire-and-forget” messaging.

To send a one-way message dynamically, call the static OneWay.invoke() method, passing 
the following parameters:

® target object

® name of the method you want to call on the target object

® parameters to the dynamically invoked method in an object array

Example



36 Chapter 4 • Advanced Messaging

For example, the following line of code uses OneWay to dynamically invoke a one-way 
buy() message on an instance of Stockmarket:

Result result = OneWay.invoke( market, "buy", newObject[] { new Integer( 42 ), "SUN" } );

The Result never holds a value, and only holds an exception when an error occurs during 
the client-side transmission of the message. For example, if the client cannot contact the 
remote server during the message send, the result object holds the resultant IOException. 

The example on page 183 demonstrates sending a one-way message.

Future Messages

A future message immediately returns a Result object, which is a placeholder to the 
return value. When a caller sends a future message, the caller does not block while the 
message completes. You can use Result to retrieve the return value at any time by 
polling, blocking, or waiting for a callback.

To send a future message, call the static Future.invoke() method, passing the following 
parameters:

® target object

® name of the method you want to call on the target object

® parameters to the dynamically invoked method in an object array

For example, the following code uses Future to dynamically invoke a quote() message on 
a Stockmarket object and then reads the return value at a later time. 

Result result = Future.invoke( market, "quote", newObject[] { "SUN" } );
// perform other operations here

int price = result.readInt(); // block for price, if necessary

The example on page 185 demonstrates sending a future message and 
reading the return value with a blocking call. This example also 
demonstrates blocking reads when the placeholder result of the future 
invocation is a thrown exception.

You can be notified when a future return value arrives through the standard Java 
event/listener mechanism. When a return value arrives, Result sends resultReceived() with 
a ResultEvent object to every ResultListener that either was specified in the full version of 
Future.invoke() or was added to the Result object after the message was sent.

Example

Example



Voyager ORB Developer Guide 37

The example on page 187 demonstrates receiving an event notification of 
the arrival of the return value to a future invocation.

More than one thread can invoke readObject() on a Result. When Result receives the return 
value, all blocked threads are awakened and receive that value. 

The example on page 190 demonstrates Voyager’s ability for multiple 
threads to block while waiting for the return value to a single future 
invocation.

By default, Voyager messages are synchronous and never time out. However, you can 
set a timeout for a future message by using the full version of Future.invoke(). For 
example, the following line of code creates a Result with a timeout period of 10,000 
milliseconds:

Result result = Future.invoke( market, "quote", newObject[] { "SUN" }, false, 10000, null );

The timeout period does not begin until Result is read.

Voyager also allows you to change the timeout value for a Result generated by a future 
message. Use the following Result methods to work with timeouts:

® setTimeout( long timeout )

Changes the timeout value for a Result. When Result is read, the timeout period 
begins. Reads that take longer to complete than the specified timeout period cause a 
TimeoutException to be thrown. See the "Basics" chapter for information about 
exceptions.

® getTimeout()

Returns the current timeout value for a Result. The default value, zero, indicates the 
Result never times out.

The example on page 192 demonstrates Voyager’s support of method 
invocations that time out.

Example

Example

Example



38 Chapter 4 • Advanced Messaging

Retrieving Remote Results by 
Reference

By default, Future.invoke() and Sync.invoke() return a copy of a remote method result. If a 
result is large, undesirable network traffic occurs. With Voyager, you can tell Future or 
Sync to return a proxy to a result instead, thereby greatly reducing network traffic. If the 
result is not serializable, returning a proxy eliminates the need for serialization and 
allows the method to be invoked successfully. As expected, a proxy to a result keeps the 
remote result alive. To request that Future or Sync return a proxy to a result, use the full 
version of invoke() and set the returnProxy parameter to true.

The example on page 193 demonstrates Voyager’s support for remote 
method invocations that return results by reference.Example



Voyager ORB Developer Guide 39

Using Multicast and Publish/Subscribe

Distributed systems require features for communicating with groups of objects. For 
example:

® Stock quote systems use a distributed event feature to send stock price events to 
customers around the world.

® Voting systems use a distributed messaging feature (multicast) to poll voters around 
the world for their views on a particular matter.

® News services use a distributed publish/subscribe feature to send news events only to 
readers who are interested in the broadcast topic.

Most traditional systems use a single repeater object to replicate a message or event to 
each object in the target group. This approach is appropriate when the number of objects 
in the target group is small, but does not scale well when large numbers of objects are 
involved. Voyager uses scalable architecture for message/event replication called Space. 

Understanding the Space Architecture

A Space is a distributed container that can span VMs. A Subspace is a container that 
cannot span VMs. A Space is created by linking together one or more Subspaces, and its 
contents are the union of its linked Subspaces. 

A message/event sent via a multicast proxy into a Subspace is cloned to each of its 
neighboring Subspaces before being delivered to every object in the local Subspace, 
resulting in a rapid, parallel fan-out of the message to every object in the Space. As the 
message propagates, it leaves behind a marker unique to that message that is 
remembered by the Subspace for a period of five minutes. If a clone of that message 
re-enters the Subspace, the clone detects the marker and self-destructs. The marker 
allows you to connect Subspaces to form arbitrary topologies without the possibility of 
multiple message delivery. The more interconnected the Subspaces are, the more 
fault-tolerant they become in the face of individual network failures.



40 Chapter 4 • Advanced Messaging

The following diagram illustrates sending a message to a Subspace in a Space.

Creating and Populating a Space

To create a logical Space and populate it with objects, follow these steps:

1. Construct one or more Subspace objects.

Each Subspace can reside anywhere in the network, allowing a single Space to span 
multiple programs.

2. Use the subspace1.connect( subspace2 ) method to connect the Subspaces in a logical 
Space.

Connection is symmetric; that is, if you connect subspace1 to subspace2, you need 
not connect subspace2 to subspace1. If you do, the connection will be ignored.

3. Use the subspace1.add( object ) method to add one or more objects to each Subspace.

You can add different types of objects, including proxies, into a Subspace.

Note: Steps 2 and 3 can be done in any sequence.

london:7000 dallas:8000

tokyo:9000 perth:10000

message
multicast

proxy

Subspace Link

Cloned message

Subspace

Message being delivered
to local objects

Space

Object



Voyager ORB Developer Guide 41

You can manipulate Subspaces using additional methods defined in Subspace, including:

® disconnect( ISubspace subspace )

Disconnects two Subspaces. Like the connect() method, disconnect() is symmetric.

® getNeighbors()

Returns an array of proxies to all neighboring Subspaces.

® isNeighbor( ISubspace subspace )

Returns true when the specified Subspace is a neighboring Subspace.

® remove( Object object )

Removes the specified object from a Subspace.

® getContents()

Returns an array of all objects in a Subspace.

® contains( Object object )

Returns true when the specified object is in the Subspace.

Nested Spaces

You can nest Spaces by adding a proxy to a Subspace as an element of another Subspace. 
Operations on the containing Space, such as multicasting and publish/subscribe, are 
propagated automatically to the contained Spaces, allowing you to group smaller Spaces 
into a single logical Space.

The example on page 196 demonstrates creating and populating a 
distributed Space.

Multicasting

You can multicast a Java message to a group of objects in a Space using either of two 
methods in Subspace:

® multicast( String signature, Object[] args, String classname )

Sends a one-way message to every object in the Space that is an instance of the 
specified class or interface.

® getMulticastProxy( String classname ) 

Example



42 Chapter 4 • Advanced Messaging

Returns a multicast proxy that is type-compatible with the specified class or 
interface. Messages sent to this proxy are multicast to every object in the Space that is 
an instance of the specified class or interface. Multicast messages return false, '\0', 0, 
or null depending on the return type. You can create any number of multicast proxies 
with different types to the same logical Space, even to the same Subspace within a 
Space.

Multicast messages are always automatically propagated to nested Subspaces.

The example on page 199 demonstrates typesafe multicasting of 
messages and JavaBeans events to objects in a Space.

Publishing and Subscribing Events

To publish an event associated with a topic to every object that implements 
PublishedEventListener in a Space, use Subspace.publish( EventObject event, Topic topic).

PublishedEventListener defines a single method publishedEvent( event, topic ) that receives 
every published event in the Space. The listener must handle the event in the appropriate 
manner.

A topic is specified hierarchically with fields separated by periods, like sports.bulls and 
books.fiction.mystery. The asterisk (*) wild card matches the next field, and the left angle 
bracket (<) matches all remaining fields. For example, “games.soccer.goals” matches 
“games.soccer.*”, “games.*.goals”, and “games.<“. Both publishers and subscribers can 
use wildcards to match against a range of topics.

An object can to subscribe to events in three ways:

® An object can implement PublishedEventListener and add itself to a Space. It then 
receives every event that is published to the Space and must perform additional 
filtering and processing as necessary. 

® An object can use an instance of Subscriber to listen to the Space on its behalf and 
perform event filtering/forwarding. A Subscriber implements PublishedEventListener and 
has methods for subscribing/unsubscribing to topics. It also contains a reference to 
another PublishedEventListener. When a Subscriber is added to a Space, it forwards any 
published event that matches a topic to its associated PublishedEventListener. The 
PublishedEventListener does not have to be in the same program as the Subscriber. for 
example, to perform server-side filtering, set the Subscriber's PublishedEventListener to a 
local intermediary object that performs additional processing and then forwards the 
event, if appropriate, to its final remote destination.

Example



Voyager ORB Developer Guide 43

® An object can use dynamic aggregation, add a Subscriber facet, and then add the facet 
to the Space. The Subscriber facet forwards all selected events to the primary object, 
which must implement PublishedEventListener.

Published events are always automatically propagated to nested Subspaces.

The example on page 203 demonstrates publishing events to subscribers 
in a Space.

Administering a Space
By default, a Subspace does nothing when its objects and neighbors are disconnected or 
killed. You can instruct a Subspace to purge itself of disconnected or dead objects and 
neighbors by using the following Subspace methods:

® setPurgePolicy( byte policy )

Sets a Subspace’s purge policy. Four policies are available:

§ Subspace.DIED removes proxies to objects and neighboring Subspaces that have 
been garbage-collected. A Subspace knows an object is dead when an 
ObjectNotFoundException is thrown as a result of sending a message to the object.

§ Subspace.DISCONNECTED removes proxies to objects and neighboring Subspaces 
that are not reachable. A Subspace knows an object is disconnected when an 
IOException is thrown as a result of sending a message to the object

§ Subspace.ALL removes proxies to dead and disconnected objects and neighbors. 

§ Subspace.NONE, the default policy, ignores dead and disconnected proxies. 

® getPurgePolicy()

Returns the purge policy assigned to a Subspace.

® purge( byte policy )

Forces a Subspace to be purged immediately.

A Subspace automatically purges itself according to its purge policy every 5 minutes or 
10,000 messages, whichever comes first.

Example



44 Chapter 4 • Advanced Messaging



45

Mobility and Agents

Mobility allows you to move objects that exchange large numbers of 
messages closer to each other to reduce network traffic and increase 
throughput. A local message is often at least 1,000 times faster than its remote 
equivalent. This technique is known as locality optimization. In addition, a 
program can move objects into a mobile device so that the program can 
remain with the device after the device has been disconnected from the 
network.

In addition to standard mobility support, Voyager also supports mobile 
autonomous agents, which are objects that move themselves in order to 
achieve their goals. 

In this chapter, you will learn to:

® move an object to a new location

® obtain move notification

® understand uses for mobile agents

® create mobile agents

5



46 Chapter 5 • Mobility and Agents

Moving an Object to a New Location

To move an object to new location, use Mobility.of() to obtain the object’s mobility facet 
(see the "Dynamic Aggregation™" chapter) and then use the methods defined in 
IMobility:

® moveTo( String url ) 

Moves to the program with the specified URL.

® moveTo( Object object )

Moves to the program that contains the specified object. The object is usually 
specified as a proxy.

For example, the following code creates a StockMarket at //dallas:8000 and then moves it to 
//tokyo:9000:

IStockMarket market = (IStockMarket) Factory.create( “StockMarket”, “//dallas:8000” );
market.news( “at first location” ); // send message to initial location
IMobility mobility = Mobility.of( market ); // obtain mobility facet
mobility.moveTo( “//tokyo:9000” ); // move the object to a new location
// the last two lines could be written as Mobility.of( market ).moveTo( “//tokyo:9000” )
market.news( “at second location” ); // message is delivered to new location

The moveTo() method causes the following sequence of events to occur:

1. Any messages that the object is currently processing are allowed to complete and any 
new messages that arrive at the object are suspended. The code can only detect 
method calls that are synchronized, so do not attempt to move an object that might be 
executing non-synchronized methods.

2. The object and all of its non-transient parts are copied to the new location using Java 
serialization, ignoring pass-by-reference tags like java.rmi.Remote and 
com.objectspace.voyager.IRemote. An exception is thrown when any part of the object is 
not serializable or when a network error occurs. To avoid copying a particular part as 
an object, store a proxy to the part instead.

3. The new addresses of the object and all of its non-transient parts are cached at the old 
location.

4. The old object is destroyed.

5. Suspended messages sent to the old object are resumed.



Voyager ORB Developer Guide 47

6. When a message sent via a proxy arrives at the old address of a moved object, a special 
exception containing the object’s new address is thrown back to the stale proxy. The 
proxy traps this exception, rebinds to the new address, and then resends the message 
to the updated address. If the program at the old location crashes before a stale proxy 
is updated, the stale proxy is unable to successfully rebind and a message sent via the 
proxy generates an ObjectNotFoundException.

7. The moveTo() returns after the object is successfully moved or when a mobility 
exception occurs. If an exception occurs, the old object is restored to its original 
condition, suspended messages are resumed, and the exception is rethrown wrapped 
in a MobilityException.

The rules for garbage collection are not affected by mobility. A moved object is 
reclaimed when there are no more local or remote references to it. The new addresses 
cached at the old location are not treated as references by the garbage collection system.

It is unsafe to move an object when local Java references point to it from outside the 
context of Voyager or when the object has one or more threads not associated with a 
remote message.

The example on page 208 creates a Drone object and then moves it 
between programs.Example



48 Chapter 5 • Mobility and Agents

Obtaining Move Notification

Sometimes an object needs to know that it is about to move or has just been moved. For 
example, a persistent mobile object may need to remove itself from the origin's 
persistent store and add itself to the destination's persistent store. Voyager provides this 
capability through the IMobile interface. If an object or any of its parts implements the 
IMobile interface, they will receive callbacks during a move in the following order:

1. preDeparture( String source, String destination )

This method executes on the original object at the source. If the method throws a 
MobilityException, the move aborts and no more IMobile callbacks occur.

2. preArrival()

This method is executed on the copy of the object at the destination. If the method 
throws a MobilityException, the move is aborted and no more IMobile callbacks occur.

3. postArrival()

At this point, the copy of the object becomes the real object, the object at the source 
becomes the stale object, and the move is deemed successful and cannot be aborted. 
This method executes on the copy of object at the destination immediately prior to 
the user-supplied callback. It is typically defined to perform activities such as adding 
the new object into persistent storage.

4. postDeparture()

This method executes on the original stale object at the source. It is typically defined 
to perform activities such as removing the stale object from persistence. Messages 
sent to the stale object via a proxy are redirected to the new object, so postDeparture() 
should not use proxies to the original object or any of its facets. Because the 
user-supplied callback on the new object is executed using a fresh thread, it is 
possible for this postDeparture() to be executing concurrently with the user-supplied 
callback. 

The example on page 210 creates a mobility-aware Drone2 object and then 
moves it between programs. Also see the "Understanding the Uses for 
Mobile Agents" section starting on page 49 for another example.

Example



Voyager ORB Developer Guide 49

Understanding the Uses for Mobile 
Agents

A mobile autonomous agent is an object that moves itself around the network in order to 
achieve its goals. You can use mobile agents as follows:

® If a task must be performed independently of the computer that launches the task, a 
mobile agent can be created to perform this task. Once constructed, the agent can 
move into the network and complete the task in a remote program.

® If a program needs to send a large number of messages to objects in remote programs, 
an agent can be constructed to visit each program in turn and send the messages 
locally. Local messages are often between 1,000 and 100,000 times faster than remote 
messages.

® If you want to partition your programs to execute in parallel, you can distribute the 
processing to several agents, which migrate to remote programs and communicate 
with each other to achieve the final goal.

® If periodic monitoring of a remote object is required, creating an agent that moves to 
the remote object and monitors it locally is more efficient that monitoring the object 
across the network.

® If a series of operations must be performed inside a consumer device that is only 
occasionally connected to a network, such as a Java phone or Java pager, then an agent 
can move into the device, perform its task, and move back into the network only when 
necessary.

It is important to avoid “force-fitting” agent technology into a program. Voyager’s 
remote messages are adequate for many applications, and simple object mobility is often 
enough to close the gap between two objects communicating on a network. However, as 
you become familiar with the power of agents, you may find many ways to 
agent-enhance your current and future programs.



50 Chapter 5 • Mobility and Agents

Creating Mobile Agents

To make an object a mobile autonomous agent, use Agent.of() to obtain the object’s agent 
facet (see the "Dynamic Aggregation™" chapter) and then use the methods defined in 
IAgent:

® moveTo( String url, String callback [, Object[] args ] )

Moves to the program with the specified URL and then restarts by executing a 
oneway callback with optional arguments. A MobilityException is thrown when the 
callback method is not found or is not public.

® moveTo( Object object, String callback [, Object[] args ] )

Moves to the program containing the specified object and then restarts by executing 
a oneway callback with a proxy to the object as the first argument and the optional 
arguments as the remaining arguments. A MobilityException is thrown when the 
callback method is not found or is not public.

® setAutonomous( boolean flag )

If the flag is true, become autonomous. An autonomous agent is not reclaimed by the 
garbage collector even if there are no more local or remote references to it. An agent 
is initially autonomous by default, and typically executes setAutonomous( false ) when 
it has achieved its goal and wishes to be garbage collected.

® isAutonomous()

Return true if this agent is autonomous.

® getHome()

Return the home of this agent, which is defined to be the URL of the agent when its 
agent facet was first accessed.

For example, an object can move itself to //dallas:8000 and restart using atDallas() by 
executing:

Agent.of( this ).moveTo( “//dallas:8000”, “atDallas” );

A successful call to moveTo() conceptually causes the thread of control to stop in the 
agent before it moves and to resume from the callback method in the agent after it 
moves. Therefore, only exception-handling code should follow a moveTo().



Voyager ORB Developer Guide 51

The example on page 214 constructs a Trader agent that works on the 
stockmarket from a remote location and then moves itself to the 
stockmarket to work locally.

Code Mobility

There are three ways to make an agent’s class files available to a host to which the agent 
may be traveling:

® Pre-install all the class files in the remote host’s CLASSPATH. In a large system, this 
method requires dealing with maintenance issues. 

® Keep all system classes in a single repository. This method requires that all remote 
hosts bootstrap the location of the resource repository at startup. See the "Loading 
Classes" and "Serving Classes" sections in the "Basics" chapter for additional 
information on resource loaders. In most cases, this option is preferred when 
managing a homogeneous system. 

® Have an agent register a resource loader before it arrives. This method allows an agent 
to carry its class files and resources as it moves through the network.

The Voyager class library ships with two IResourceLoader implementations:

® URLResourceLoader

This resource loader takes a java.net.URL class on the constructor. The URL instance 
may reference the host that the agent is being launched from or a simple repository. 
For example, http://classes.home.com:8000/. 

® ArchiveResourceLoader

This resource loader is similar to the URLResourceLoader, except the URL expected on 
the constructor must point to a .jar or .zip file. For example, http://classes.home.com: 
/8000/jars/networkagent.jar. The ArchiveResourceLoader does not retrieve the remote jar 
until the jar itself or its resources holder is requested. This reduces network traffic in 
case an instance of this resource loader is already installed on the remote host.

To set and retrieve an agent’s resource loader, invoke the following methods on IAgent:

® setResourceLoader( IResourceLoader resourceLoader )

Example



52 Chapter 5 • Mobility and Agents

Indicates to the agent to use the given IResourceLoader instance when loading its 
resources.

® getResourceLoader()

Returns the registered IResourceLoader instance used by the agent. If additional 
resources are stored in a resource loader other than class files, such as certificates or 
sound files, the agent can access them directly using the IResourceLoader interface.

When an agent leaves a host, it always removes the resource loader it installed before it 
arrived. The VoyagerClassLoader maintains a reference count on each IResourceLoader 
instance installed at a given priority. When the count reaches zero, the given resource 
loader is removed from the system.



53

Naming Service

Voyager’s naming service allows you to bind names to an object and lookup 
objects by name. 

In this chapter, you will learn to: 

® use a namespace

® work with federated directory services

® use the default naming service

® use JNDI

® use PersistentDirectory

6



54 Chapter 6 • Naming Service

Using a Namespace

A naming service allows names to be associated with an object for later lookup. You can 
use many different implementations of naming services, including:

® Voyager federated directory service 

® CORBA naming service

® JNDI

® Microsoft Active Directory

® RMI registry

When a naming service is used to bind a name to an object, it adds a unique prefix so 
that the type of naming service can later be determined directly from the name. For 
example, the Voyager federated directory service uses the prefix vdir:, and the CORBA 
naming service uses the prefix IOR:.

The Voyager Namespace class takes advantage of these prefix codes to provide a single, 
simple interface that unifies access to one or more of these naming services. New 
naming services can be dynamically plugged into Namespace. 

Each of the following static methods uses the name's prefix to determine which 
underlying naming service to access.

® lookup( String name )

Returns a proxy to the object associated with the specified name, or null when no such 
object is found.

® bind( String name, Object object )

Associates the specified name with the object, or throws an exception when the name 
already has an association.

® rebind( String name, Object object )

Associates the specified name with the object, replacing any previous association 
when present.

® unbind( String name )

Disassociates the specified name.  



Voyager ORB Developer Guide 55

The default naming service is the Voyager federated directory service. If a prefix is 
missing from a name, it is assumed to be vdir:. Voyager automatically installs several 
naming services, as shown in the following table:

For an example of accessing the CORBA IOR resolution service via the Namespace 
class, see the "CORBA" chapter.

Working with Federated Directory 
Services

The Voyager federated directory service allows you to register an object in a distributed 
hierarchical directory structure. You can associate objects with path names comprised of 
simple strings separated by slashes, such as fruit/citrus/lemon or animal/mammal/cat. The 
building block of the directory service is a Directory, which has the following interface:

® put( String key, Object value )

Associates a key with a value. If key is a simple string, associates it with the 
specified value in the local directory. If key is a path, looks up the Directory associated 
with the head of the path name and then forwards the put() message with the 
remaining tail of the path name. Returns the value previously associated with the key 
or null when there was none.

® get( String key )

Returns the value associated with a particular key. If key is a simple string, return its 
associated value in the local directory or null when there is none. If key is a path, 
looks up the Directory associated with the head of the path name and then forwards the 
get() message with the remaining tail of the path name. 

® remove( String key )

Voyager ORB Voyager ORB Professional

Voyager federated directory service CORBA naming service

CORA IOR resolution JNDI

RMI registry



56 Chapter 6 • Naming Service

Removes the directory entry with the specified key. If key is a simple string, removes 
its entry from the local directory. If key is a path, looks up the Directory associated 
with the head of the path name and then forwards the remove() message with the 
remaining tail of the path name. Returns the value that was associated with the key or 
null when there was none.

® getValues()

Returns an array of the values in the local directory.

® getKeys()

Returns an array of the keys in the local directory.

® clear()

Removes every entry from the local directory. Removing the entries has no effect on 
the directories that the local directory used to reference.

® size()

Returns the number of keys in the local Directory.

To create a simple directory of local objects, create a Directory object and send it the put() 
message with a string key and a local object.

Directory symbols = new Directory();
symbols.put( “CA”, “calcium” );
symbols.put( “AU”, “gold” );
// symbols.get( “CA” ) would return “calcium”

To create a chained directory structure, a Directory that refers to another Directory, send 
put() to a Directory object with another directory or a proxy to a remote Directory as the 
second parameter.

Directory root = new Directory();
root.put( “symbols”, symbols ); // associate “symbols” with the symbols directory
// root.get( “symbols/CA” ) would return “calcium”

Because Directory implements IRemote, you can pass a local directory as a parameter to a 
remote directory and it is automatically sent as a proxy.

The example on page 218 sets up a simple federated directory service.
Example



Voyager ORB Developer Guide 57

Using the Default Name Service

The Voyager federated directory system is the default naming service employed by 
Namespace. You can use Namespace to bind, rebind, and unbind remote objects without 
directly accessing a Directory object.

When a Voyager program starts up, it automatically exports a single Directory object for 
use by Namespace. When you execute a lookup() operation on Namespace and the name 
has no prefix, Namespace interprets the name as an URL, obtains a proxy to the 
Namespace Directory in the corresponding program, and then executes a remote get() on 
the Directory with the remainder of the URL as the key. For example:

bind(), rebind(), and unbind() are processed in a similar manner:

For convenience, Factory.create() is integrated with Namespace. If the host location is 
followed by a name, this name is used automatically to perform a bind() to the Namespace 
at the host location. For example, instead of typing the following:

IStockmarket market = (IStockmarket) Factory.create( "Stockmarket", "//dallas:8000" );
Namespace.bind( "//dallas:8000/NASDAQ", market );

You can type:

IStockmarket market = (IStockmarket) Factory.create( "Stockmarket", "//dallas:8000/NASDAQ" );

The example on page 220 illustrates the default naming service.

Namespace Format Directory Equivalent

Namespace.lookup( "Fred" ) <Directory @ local program>.get( "Fred" )

Namespace.lookup( "8000/Fred" ) <Directory @ //localhost:8000>.get( "Fred" )

Namespace.lookup( "//dallas:8000/Fred" ) <Directory @ //dallas:8000>.get( "Fred" )

Namespace.lookup( "//dallas:8000/Fred/Bloggs" ) <Directory @ //dallas:8000>.get( "Fred/Bloggs" )

Namespace Format Directory Equivalent

Namespace.bind( "Fred", object ) <Directory @ local program>.put( "Fred", object )

Namespace.unbind( "8000/Fred/Bloggs" ) <Directory @ //localhost:8000>.remove( "Fred/Bloggs" )

Example



58 Chapter 6 • Naming Service

Using JNDI

Certain client processes may need to access named objects using the Java Naming and 
Directory Interface (JNDI). Voyager implements JNDI as a wrapper around its 
Federated Directory Service. 

To create InitialContexts, you can use either a local Properties object or set Java system 
properties.

Properties environment = new Properties();
environment.put( “java.naming.factory.initial”, 
         “com.objectspace.voyager.jndi.spi.VoyagerContextFactory” );
environment.put( “java.naming.provider.url”, “//dallas:8000/dir” );
Context context = new InitialContext( environment );

This code sets the JNDI initial context factory to be Voyager’s and requests the initial 
context that represents the directory at //dallas:8000/dir. You must set the initial context 
factory as shown. There are other optional properties that can be set. See the JNDI 
documentation available from Sun for more information. 

All of Voyager’s Namespace functionality can be accessed through a valid JNDI context. 
Refer to the following examples, in which ctx is assumed to be a valid JNDI context that 
represents the directory at //dallas:8000/dir:

The example on page 222 illustrates the JNDI naming service.

Namespace Format JNDI Equivalent

Namespace.lookup( “//dallas:8000/dir/Fred” ); ctx.lookup( “Fred” );

Namespace.bind( “//dallas:8000/dir/Bloggs”, object ); ctx.bind( “Bloggs”, object );

Namespace.unbind( “//dallas:8000/dir/Bloggs” ); ctx.unbind( “Bloggs” );

Pro
Only

Example



Voyager ORB Developer Guide 59

Using PersistentDirectory

PersistentDirectory is a specialization of Directory. A PersistentDirectory stores its contents in 
a file in the local file system. To create a directory of persistent objects, create a 
PersistentDirectory passing a filename to the constructor.

PersistentDirectory symbols = new PersistentDirectory( “symbols.db” );
symbols.put( “CA”, “calcium” );

The contents of this directory can be accessed as long as the file “symbols.db” exists in 
the local file system, regardless of whether the program that created these entries still 
exists. To create a new PersistentDirectory using an existing file, use the same constructor.

PersistentDirectory oldSymbols = new PersistentDirectory( “symbols.db” );
// symbols.get( “CA” ) will still return “calcium”

Pro
Only



60 Chapter 6 • Naming Service



61

Activation

By default, a message sent to an object that was in a terminated and restarted 
program will throw an ObjectNotFoundException. Voyager’s activation 
framework allows an object to survive program restarts and to receive 
messages as if the program had never shut down.

In this chapter, you will learn to: 

® enable an object for activation

® activate an object

® write an activator

7



62 Chapter 7 • Activation

Enabling an Object for Activation

Every Voyager program contains a single activation manager that manages zero or more 
activators. Each activator is typically associated with a database and is registered using 
Activation.register() by the application program at startup.

The following diagram illustrates a typical activator setup.

An activator must implement IActivator, defined as follows:

® getMemento( Proxy proxy )

Returns a memento string, typically a database key, that can later be used to 
reactivate the proxy’s object using activate(). If the activator was not designed to 
handle the object, returns null.

® activate( String memento ) 

Loads the object associated with the memento, and returns a proxy to the activated 
object. The memento was generated by a previous call to getMemento().

An activator is typically written by an applications programmer to activate a particular 
class of object, although more powerful generic activators can certainly be built. A 
carefully designed activator can be reused by other applications.

activation
manager

activatorA

activatorB

activatorC

databases
associated with
each activator

activators registered with
activation manager



Voyager ORB Developer Guide 63

An object’s class does not have to be modified in any way to take advantage of the 
activation framework. To enable an object for activation, pass the object or proxy to 
Activation.enable(), which causes the following to occur:

® The activation manager in the object’s program cycles through its activators, sending 
each getMemento() with a proxy to the object until one of the activators successfully 
returns a memento. If every activator returns null, the object could not be enabled for 
activation, and an ActivationException is thrown. If a memento is obtained, it is cached 
in the program, and every new proxy to the object is tagged with activation 
information including the program’s URL, the memento, and the class of activator that 
created the memento. Such proxies are termed activating proxies. 

® Activation.enable() returns an activating proxy to the object. If a proxy was passed to 
Activation.enable(), it is automatically turned into an activating proxy.

An activation-enabled object remains enabled for its lifetime, even if its program is 
restarted.

The following diagram illustrates the series of events that occurs when an object is 
enabled for activation.

Program X Program Y

Q

activatorA

activatorB

activatorC

activation
managerproxy P

to Q

enable(P)

activation information

Q is found in
the database

object being
activated

getMemento(P)

memento for Q

getMemento(P)

null



64 Chapter 7 • Activation

Activating an Object

If a message is sent to a remote object whose program has been restarted, an 
ObjectNotFoundException is thrown. An activating proxy catches this exception and 
attempts to rebind to the object by using its activation information. 

The proxy passes the activation information to the activation manager in the object’s 
program, which in turn uses the activator class name to locate the object’s activator. If an 
instance of the activator class is not already registered, Voyager automatically constructs 
one using its default constructor and registers it with the activation manager.

Once located, the activation manager sends activate( memento ) to the object’s activator. 
The activator loads the object into memory and returns a proxy to the newly restored 
object. Information in this proxy is used to complete the rebind process, and the original 
message is resent to the activated object.

The entire activation/rebind process is transparent to the user of an activating proxy. 

The following diagram illustrates the sequence of events that occurs when an object is 
activated following an ObjectNotFoundException.

Program X Program Y

Q

activatorB
activation
managerproxy P

to Q

activate(information)

new location of Q

Q is loaded from
the database

using the
memento

activate(memento)
message



Voyager ORB Developer Guide 65

Writing an Activator

Guidelines for the implementation of each method in IActivator follow:

® getMemento( Proxy proxy )

§ Uses Snapshot.of( proxy ) to obtain a Snapshot of the proxy’s object.

§ Uses Snapshot.getObject() to obtain the object. If the activator was not designed to 
activate the object, returns null, which allows the activation manager to skip to the 
next activator

§ Locates the object in the activator’s database. If the object is found, returns a string 
memento that will allow activate() to retrieve the object from the database.

§ If the object is not already in the database, an activator can choose to either 
automatically store the object or to throw an ActivationException. To store the object, 
either save the Snapshot object directly or save its parts individually. 

® activate( String memento )

§ If a Snapshot of the object was stored directly into the database, loads the Snapshot 
using the memento key. If parts of the object’s state were stored into the database, 
loads each part separately and recreates the original Snapshot using Snapshot.from().

§ Returns the result of sending restore() to the Snapshot.

See the "Basics" chapter for more information about Snapshots.

The example on page 226 illustrates the activation framework.
Example



66 Chapter 7 • Activation



67

Security

Voyager includes support for the standard Java security manager system. Java 
applets and servlets are automatically initialized with a very restrictive 
security manager called AppletSecurityManager, so Voyager applets abide by 
these settings. See the "Ultra-Light Client, Applets and Servlets" chapter to 
learn to use applets and servlets with Voyager.

Java applications, however, have no security manager by default, so objects 
may perform any type of operation. Voyager includes a security manager 
called VoyagerSecurityManager, which you can install at the start of a program to 
restrict operations. 

In this chapter, you will learn to:

® install a security manager

® identify object authority

Note: The Voyager Security product offers additional security functionality. 
For more information on Voyager Security, refer to the Voyager 
Security Developer Guide.

8



68 Chapter 8 • Security

Installing a Security Manager

You have the option of installing a security manager in a Voyager program. After it is 
installed, the security manager is active for the duration of the program, and it cannot be 
uninstalled or replaced. Each time an object attempts to execute an operation that could 
compromise security, the Java run-time machinery checks with the program’s security 
manager to determine whether the operation is permitted. The following section lists 
legal operations by environment. If the program has no security manager, or if the 
security manager permits the operation, Voyager proceeds as normal. If the operation is 
disallowed, a run-time security exception is thrown.

The Voyager security manager distinguishes between native and foreign objects:

® Native objects are objects whose class resides in the program’s CLASSPATH.

® Foreign objects are objects whose class was loaded across the network from another 
program.

The Voyager security manager allows native objects to perform any operation but 
selectively restricts foreign objects by operation.

You can install a Voyager security manager in one of two ways:

® To start a Voyager server with a Voyager security manager, execute voyager with the -s 
(security) option. 

® To install a Voyager security manager in a Voyager program, create a new instance of 
the security manager, and install it with the System.setSecurityManager( manager ) 
method, where manager is your security manager.

The example on page 236 demonstrates using Voyager’s security 
manager to restrict operations by foreign objects.

Note: You can modify or extend the Voyager security manager behavior by extending 
the VoyagerSecurityManager class.

Example



Voyager ORB Developer Guide 69

Identifying Object Authority

The following table lists the operations allowed by the JDK SecurityManager and 
indicates those that VoyagerSecurityManager, which extends SecurityManager, allows an 
object to perform as an object in an applet, as a native object, and as a foreign object.

Operation
Object in 

Applet
Native 
Object

Foreign 
Object

Accept connections from any host 4
server only

4 4

Connect to any host 4
server only

4 4

Listen on any port 4 4

Perform multicast operations 4 4

Set factories 4

Manipulate threads 4 4

Manipulate thread groups 4 4

Execute a process 4

Exit the program 4

Access AWT event queue 4 4 4

Access the system clipboard 4

Create windows 4 4 4

Create class loader 4

Delete files 4

Read files, excluding socket file descriptors 4

Write files, excluding socket file 
descriptors

4

Access security APIs 4

Link to a dynamic library 4



70 Chapter 8 • Security

The VoyagerSecurityManager defines a checkMethodAccess() method not included in its 
parent JDK class, SecurityManager. The checkMethodAccess() method prevents a foreign 
object from calling the following Voyager methods:

To change the methods disallowed by checkMethodAccess(), refer to the online Voyager 
API Guide.

Access private/protected data and methods 4

Access packages 4 4

Define classes in packages 4 4

Print 4

Manipulate properties 4
limited

4 4

Class Method

Voyager shutdown()
addSystemListener()
removeSystemListener

ClassManager setParentClassLoader()
enableResourceServer()
resetClassLoader()

VoyagerClassLoader addResourceLoader()
removeResourceLoader()
setResourceLoadingEnabled()

Operation
Object in 

Applet
Native 
Object

Foreign 
Object



71

Ultra-Light Client, Applets
and Servlets

Voyager supports the creation of an ultra-light client that can bind and send 
messages to any object in a universal namespace. This facility is useful for 
building fast-downloading applets or for clients that must fit into a small 
memory footprint. Voyager also supports regular servlets and applets.

In this chapter, you will learn to: 

® implement Voyager Ultra-Light Client

® understand Voyager Ultra-Light Client limitations

® package Voyager Ultra-Light Client

® use Voyager with servlets

® use Voyager with applets

9



72 Chapter 9 • Ultra-Light Client, Applets and Servlets

Implementing Voyager Ultra-Light 
Client

Voyager Ultra-Light Client is ideal for creating applets that must download fast and 
work with any Java-compatible browser. Voyager Ultra-Light Client uses the 
Namespace class to perform naming service operations. See the "Using a Namespace" 
section in the "Naming Service" chapter.

To import the Ultra-Light Client code into an application or applet, use the lightclient.jar 
file included in the Voyager package. 

When a light client is communicating with a Voyager server, it uses the URL class 
loading mechanism. The Voyager server must have resource serving enabled. To enable 
resource serving, use the –r option when starting Voyager or invoke the 
ClassManager.enableResourceServer() method in the server’s code.

Depending on the type of implementation, the light client may run as an application or 
applet.

Using Ultra-Light Client from an Application

To import the light client classes, the CLASSPATH of the importing application must 
contain a fully qualified path to lightclient.jar. There are no prerequisite method 
invocations required to initialize the ultra-light client code.

Using Ultra-Light Client from an Applet

To use the ultra-light client code in an applet, lightclient.jar must be specified in the 
archive tag of the applet. The value of the applet’s codebase tag must contain a URL 
pointing to a Voyager server responsible for the class loading. An applet using the 
Ultra-Light Client must call Namespace.setServerURL( Applet applet ), with an instance of 
the applet as a parameter. This action allows the Ultra-Light Client code to properly 
initialize itself and read in the codebase value.

Pro
Only



Voyager ORB Developer Guide 73

Understanding Ultra-Light Client 
Limitations

The only limitation of the ultra-light client is that it cannot pass objects by reference. 
This means that objects passed as arguments in the remote invocations must implement 
java.io.Serializable and must not implement java.rmi.Remote or 
com.objectspace.Voyager.IRemote; otherwise a RuntimeException is thrown. It also means 
there is no way for remote objects to message objects in an ultra-light client.

Packaging Voyager Ultra-Light Client

Depending on the implementation needs, you may consider using the following client 
archives for packaging:

® lightclient.jar contains the minimum functionality to perform simple naming 
operations, such as lookup(), bind(), rebind(), unbind().

® lightjndiclient.jar provides the JNDI implementation along with the Namespace API.

Pro
Only

Pro
Only



74 Chapter 9 • Ultra-Light Client, Applets and Servlets

Using Voyager with Servlets

For class loading to work correctly, Voyager must be given access to a servlet's class 
loader at startup. For access, start Voyager using Voyager.startup( Object object, String 
address ) and pass the servlet as the first argument. The second argument can either be a 
port number or null when a random port is desired.

The example on page 245 demonstrates a Voyager-enabled servlet.

Using Voyager with Applets

Like servlets, an applet must start Voyager using Voyager.startup( Object object, String 
address ) and pass the applet as the first argument. The second argument can either be a 
port number or null when a random port is desired. 

Unlike servlets, most applets are prevented from forming a network connection to any 
machine except their Web server, and from accepting the regular Voyager class loader 
that enables pluggable resource loading and dynamic proxy generation. Voyager works 
around these restrictions by allowing a program on the web server to act as a hub for an 
untrusted applet and perform messaging routing and Voyager class loading for the 
applet's behalf.

Use the following rules to determine how best to set up your web server and HTML file:

1. If the applet needs routing and Voyager class loading, set the applet’s CODEBASE to 
the address of a Voyager hub. The hub can be any Voyager program whose HTTP 
server is enabled. To start an HTTP-enabled server from the command line, use the 
voyager utility with the -r option. To enable the internal HTTP server from within a 
program, invoke ClassManager.enableResourceServer(). Ensure that the applet's classes 
are accessible to the hub via its CLASSPATH and/or its optional resource loaders. See 
the "Basics" chapter for more information on resource loaders. For example, 
assuming that an HTTP-enabled hub is running on myhost.com:8000:

<APPLET CODEBASE="http://myhost.com:8000" CODE="MyApplet.class" WIDTH=300 HEIGHT=50>
</APPLET>

Example



Voyager ORB Developer Guide 75

2. If the applet needs routing but not Voyager class loading, set the HTML routerAddress 
parameter to the port number of a Voyager hub on the same machine as the applet’s 
CODEBASE. The hub can be any Voyager program, and does not to have its internal 
HTTP server enabled. For example, assuming a hub is running on port 8000 of the 
applet’s server:

<APPLET CODE="MyApplet.class" WIDTH=300 HEIGHT=50>
<PARAM name="routerAddress" value="8000"> 
</APPLET>

3. If the applet does not need routing or Voyager class loading, set the HTML 
disableRouting parameter to true. This setting is most often used for Voyager-enabled 
trusted applets. For example:

<APPLET CODE="MyApplet.class" ARCHIVE="MyApplet.jar" WIDTH=300 HEIGHT=50>
<PARAM name="disableRouting" value="true"> 
</APPLET>

If necessary, a Voyager program can manually force routing by invoking 
Routing.setRouterAddress().

When Voyager is not used as a resource server, you must use the pgen utility to generate 
proxy classes.

The examples on page 241 demonstrates two Voyager-enabled applets.
Example



76 Chapter 9 • Ultra-Light Client, Applets and Servlets



77

CORBA

Common Object Request Broker Architecture (CORBA) is a widely 
supported standard that allows objects to advertise their interfaces using 
Interface Definition Language (IDL) and communicate across networks using 
a language-neutral protocol called Internet Inter-Orb Protocol (IIOP). For 
example, CORBA allows a C++ client running on Windows NT to 
communicate with a Java object located on a UNIX server.

Traditional CORBA implementations use a proxy class on the client to 
forward the request to the server, a skeleton class on the server to accept the 
request, and a helper class on each side to facilitate the IIOP 
encoding/decoding process. Vendors of these traditional implementations 
typically provide tools to automatically generate these classes from IDL.

Voyager offers the most productive implementation for building CORBA 
applications:

® Its universal communications architecture simultaneously supports 
Voyager Native Messaging (VNM), RMI, CORBA, and, shortly, DCOM, 
so there is no need for additional bridging products. 

® The RMI and VNM modules provide distributed garbage collection and 
dynamic class loading for Java-centric development. 

® The CORBA module supports the full IDL specification, automatically 
CORBA-enables objects at runtime, and generates proxies dynamically so 
that no stub generators, skeletons, or helper classes are required.

10



78 Chapter 10 • CORBA

In this chapter, you will learn to:

® build an application

® map IDL between Java using the cgen utility

® import/export objects

® pass references between CORBA programs

® raise/catch CORBA exceptions

® use holders to support out and in out arguments

® use IDL types such as struct, union, enum, arrays, sequences, any, and typecode

® use the CORBA naming service



Voyager ORB Developer Guide 79

Building an Application

In this example of building a simple client-server CORBA banking application, a server 
hosts a bank object that clients can contact in order to open an account. After an account 
is opened, a client can deposit and withdraw money. Any attempt to withdraw more 
money than is in the account causes an exception to be thrown.

The application is built using the following six steps:

1. write IDL definition files for each CORBA entity

2. generate the Java language bindings from IDL

3. write implementations of each Java interface

4. write the server program

5. write the client program

6. run the server and client programs

In this example, the IDL files, the server program, and the client program are developed 
in different subdirectories of examples\corba:

examples
\corba

\common -- used to store IDL definition files and share object references
\server -- server program
\client -- client program

Step 1: Write the IDL

IDL describes the interface to an object in a language-neutral way. In addition to the 
familiar Java constructs like primitive data types, interfaces, and exceptions, IDL 
supports additional data types like structs, unions, and enums. 



80 Chapter 10 • CORBA

A list of the IDL keywords follows:

This example only uses a small subset of these keywords. The remaining keywords are 
covered later in this chapter.

Three entities are defined in IDL as follows:

// thrown when an account is overdrawn
exception OverdrawnException
  {
  string message;
  long amount; // amount overdrawn
  };

// defines the interface to an account
interface IAccount
  {
  long deposit( in long arg1 );
  long getBalance();
  void withdraw( in long arg1 ) raises( OverdrawnException );
  };

// defines the interface to a bank
interface IBank
  {
  IAccount openAccount();

® any ® attribute ® boolean
® case ® char ® const

® context ® default ® double
® enum ® exception ® FALSE

® fixed ® float ® in
® inout ® interface ® long

® module ® Object ® octet
® oneway ® out ® raises

® readonly ® sequence ® short
® string ® struct ® switch

® TRUE ® typedef ® unsigned
® union ® void ® wchar

® wstring



Voyager ORB Developer Guide 81

  };

The definitions illustrate a few differences between IDL and Java:

® Each parameter must be qualified by in, out, or inout. In parameters are pass-by-value, 
and transfer a copy of the argument during a remote method call. Out and inout 
parameters are described in the "Holders" section on page 92.

® IDL uses the keyword raises to denote that an exception can be thrown.

® IDL items scoped within curly braces are terminated with a semicolon.

® All items in IDL are public.

® Interface names are not required to begin with “I”, but it is a common convention.

You can store all of the IDL definitions in a single file; however, it is common to place 
each IDL definition in its own file. IDL supports the full C++ preprocessor 
specification, allowing IDL files to refer to each other and protect themselves from 
multiple inclusion. The preprocessor directives are #include, #ifdef, #ifndef, #if, #else, #elif, 
#endif, #define, #undef, #error, and #pragma.

Typically, OverdrawnException.idl and IAccount.idl are written as follows:

OverdrawnException.idl

#ifndef _OverdrawnException_idl // protect against multiple inclusion
#define _OverdrawnException_idl

exception OverdrawnException
  {
  string message;
  long amount;
  };

#endif // corresponds to first line #ifndef

IAccount.idl

#ifndef _IAccount_idl 
#define _IAccount_idl

#include "OverdrawnException.idl" // read IDL definition

interface IAccount
  {



82 Chapter 10 • CORBA

  long deposit( in long arg1 );
  long getBalance();
  void withdraw( in long arg1 ) raises( OverdrawnException );
  };

#endif 

As with C++, you can forward declare interfaces to avoid cases of mutual inclusion or to 
decrease the number of #includes. Repeated forward declaration of the same interface is 
legal.

IBank.idl

#ifndef _IBank_idl
#define _IBank_idl

interface IAccount; // forward declare IAccount

interface IBank
  {
  IAccount openAccount();
  };

#endif

In this example, all of the IDL files are stored in examples\corba\common.



Voyager ORB Developer Guide 83

Step 2: Generate Java from IDL

Before you can write the server or client programs, you must convert the IDL into its 
Java equivalent. The cgen utility implements the standard IDL-to-Java mapping and 
generates Java automatically from IDL. The mapping is defined in the OMG 
IDL-to-java specification and follows:

IDL
Java 

Equivalent
Notes

interface interface Like Java, IDL supports multiple interface 
inheritance

exception exception Unlike Java, IDL does not support exception 
inheritance

operation method

void void

char char

wchar char Voyager does not currently support wide 
characters

octet byte

short short

unsigned short short

long int

unsigned long int

long long long

unsigned long long long

float float

double double

long double double

string String

wstring String Voyager does not currently support wide strings

Object Object



84 Chapter 10 • CORBA

To create Java from IDL, type cgen followed by a list of the IDL files to process. To 
suppress the generation of holder classes that are only required when using out and inout 
parameters, use the –h option. The -v option generates a verbose description of activities.

A Java interface generated by cgen extends IRemote by default. You can use the cgen –r 
flag to make the interface extend java.rmi.Remote instead. Because IRemote and Remote are 
treated identically by Voyager, and Microsoft does not currently support RMI, we 
recommend that you use the default setting.

To generate Java from the banking IDL files for the server program, type:

% cd \voyager\examples\corba\server
% copy ..\common\*.idl .
% cgen OverdrawnException.idl IAccount.idl IBank.idl –h -v
cgen 3.0, copyright objectspace 1997-1999

reading files...
  read OverdrawnException.idl
    got ::OverdrawnException
  read IAccount.idl
    got ::IAccount
  read IBank.idl
    got ::IBank

writing files...
  write OverdrawnException.java
  write IAccount.java
  write IBank.java
% 

The Java bindings for the client program are generated in the same way.

The following Java files are generated by cgen from the banking application IDL 
files.The runtime support code that cgen embeds in the generated Java is omitted in the 
listings for clarity

OverdrawnException.java

public final class OverdrawnException extends Exception
  {
  public java.lang.String message;
  public int amount;
  
  public OverdrawnException()



Voyager ORB Developer Guide 85

    {
    }
  
  public OverdrawnException( java.lang.String message, int amount )
    {
    super( message );
    this.message = message;
    this.amount = amount;
    }
  
  public String toString()
    {
    return "OverdrawnException( " + message + ", " + amount + " )";
    }
  }

IAccount.java

public interface IAccount extends com.objectspace.voyager.IRemote
  {
  public int deposit( int arg1 );
  public int getBalance();
  public void withdraw( int arg1 ) throws OverdrawnException;
  }

IBank.java

public interface IBank extends com.objectspace.voyager.IRemote
  {
  public IAccount openAccount();
  }

Step 3: Write implementations for each Java interface

Because only the server program needs implementations of the interfaces, Account.java 
and Bank.java can reside in the examples\corba\server directory. None of the code contains 
anything special or unique to CORBA. Voyager’s universal communications 
architecture allows instances of these classes to simultaneously process messages from 
any common standard.

The code for the implementation classes Account and Bank follows:



86 Chapter 10 • CORBA

Account.java

public class Account implements IAccount
  {
  private int balance;

  public int deposit( int amount )
    {
    balance += amount;
    return amount;
    }
  
  public int getBalance()
    {
    return balance;
    }

  public void withdraw( int amount ) throws OverdrawnException
    {
    if( amount > balance ) 
      throw new OverdrawnException( "only have $" + amount, amount - balance );

    balance -= amount;
    }
  }

Bank.java

import java.util.Vector;

public class Bank implements IBank
  {
  Vector accounts = new Vector();

  public IAccount openAccount()
    {
    System.out.println( "open account" );
    Account account = new Account();
    accounts.addElement( account ); 
    return account;
    }
  }



Voyager ORB Developer Guide 87

Step 4: Write the Server

The server program creates a local Bank object, starts up Voyager, exports the object for 
use by another CORBA ORB, and then accepts incoming messages.

You can transfer an object reference between ORBS as follows:

® Pass it as a method argument or return value.

If you pass a proxy to an object as a remote method argument or return value, it is 
automatically transferred as a standard IIOP object reference. If you pass a regular 
object, Voyager automatically exports the object and then passes a proxy to the 
newly exported object. Because CORBA does not support distributed garbage 
collection, Voyager include a facility called anchoring. If enabled, which is the 
default, anchoring prevents the exported local object from being garbage collected. 
The anchoring feature is illustrated by the banking example when Bank.openAccount() 
is called by a remote CORBA ORB. The Account object is anchored in the local 
program, and then a proxy to the anchored object is returned. To toggle 
auto-anchoring, use Corba.setAnchoring().

® Register it with a CORBA naming service.

Voyager ORB Professional includes a persistent federated CORBA naming service. 
Information about how to use this naming service is described in the "Naming 
Service" section on page 123.

® Obtain its Interoperable Object Reference (IOR).

An IOR is a string that encodes the host name, port number, type, and key of a single 
CORBA object. To obtain an object’s IOR, pass the object or a proxy to 
Corba.asIOR(). If the argument is not already a proxy, it is converted into a proxy using 
Proxy.of() and anchored when anchoring is enabled. By default, the IOR type field is 
set to the first remote interface of the object. To override this setting, use the 
variation of Corba.asIOR() that allows you to specify the type field explicitly. A server 
can export an object to a client by writing its IOR to a file so that the client can read 
the IOR and bind to it using Namespace.lookup(). In the example, a reference to the 
bank object is shared with the client by storing its IOR into a shared file 
..\common\Bank.IOR.



88 Chapter 10 • CORBA

The server program follows:

Server.java

import java.io.RandomAccessFile;
import com.objectspace.voyager.*;
import com.objectspace.voyager.corba.*;

public class Server
  {
  static IBank bank = new Bank(); // holds onto local Bank object

  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();
      String ior = Corba.asIOR( bank ); // get IOR for object
      System.out.println( "bank IOR = " + ior ); // display IOR
      RandomAccessFile file = new RandomAccessFile( "..\\common\\Bank.IOR", "rw" );
      file.writeUTF( ior ); // write IOR to file
      file.close();
      System.out.println( "CORBA server is ready" );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }
    }
  }

Step 5: Write the Client

The client program starts up Voyager, obtains a proxy to the remote bank by passing its 
IOR to Namespace.lookup(), opens an account, and then deposits or withdraws money.

When the client sends openAccount(), the Account is created in the remote ORB and a 
proxy to the Account is passed back to the client. The anchoring feature prevents the 
Account from being garbage collected. Voyager creates proxy classes dynamically at 
runtime.



Voyager ORB Developer Guide 89

The client program follows:

Client.java

import java.io.RandomAccessFile;
import com.objectspace.voyager.*;
import com.objectspace.voyager.corba.*;

public class Client
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();
      RandomAccessFile file = new RandomAccessFile( "..\\common\\Bank.IOR", "r" );
      String ior = file.readUTF(); // read IOR from file
      file.close();
      System.out.println( "Bank IOR = " + ior ); // display IOR
      IBank bank = (IBank) Namespace.lookup( ior );
      IAccount account = bank.openAccount();
      account.deposit( 1000 );
      System.out.println( "account balance = " + account.getBalance() );
      account.withdraw( 500 );
      System.out.println( "account balance = " + account.getBalance() );
      account.withdraw( 2000 );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }



90 Chapter 10 • CORBA

Step 6: Run the Application

To run the application, start the Server program first and wait for its initial screen output. 
Then run the Client program. Output displays as follows:

% java Server
bank IOR = IOR:000000000000000e4944…0000
CORBA server is ready
open account

% java Client
bank IOR = IOR:000000000000000e4944…0000
account balance = 1000
account balance = 500
OverdrawnException( only have $2000, 1500 )

Struct

An IDL struct contains one or more fields and is used to pass groups of data by value 
between method invocations. An example follows:

Person.idl

struct Person
  {
  string name;
  long age;
  };

The cgen utility generates the Java equivalent of a struct as follows:

® the class has the same name as the IDL struct and is public final.

® each member in the IDL struct is declared as a public data member.

® the class has a default constructor and a constructor that accepts a value for each 
member.

The code that cgen generates from Person.idl follows:



Voyager ORB Developer Guide 91

Person.java

public final class Person
  {
  public java.lang.String name;
  public int age;
  
  public Person()
    {
    }
  
  public Person( java.lang.String name, int age )
    {
    this.name = name;
    this.age = age;
    }
  
  public String toString()
    {
    return "Person( " + name + ", " + age + " )";
    }
  
  public boolean equals( Object object )
    {
    if( !( object instanceof Person ) )
      return false;
  
    Person other = (Person) object;
    return com.objectspace.voyager.corba.TypeCode.__equals( name, other.name ) 
      && (age == other.age); // __equals is a helper method in TypeCode
    }
  }

The example on page 251 illustrates how you can use an IDL struct to 
pass groups of data by value between CORBA ORBs.Example



92 Chapter 10 • CORBA

Holders

The IDL parameter passing modes are as follows:

® in

Passes a copy of the input parameter to the remote server. Changes made to the 
parameter on the remote server are not propagated back to the client.

® out

No input parameter is passed. Changes made to the parameter on the remote server 
are propagated back to the client.

® inout

Sends a copy of the input parameter to the remote server. Changes made to the 
parameter on the remote server are propagated back to the client.

Out and inout parameters are often used when a method needs to return more than one 
value. Voyager supports out and inout modes by supporting the industry standard holder 
mechanism. A method can send out or inout parameters by using a corresponding holder 
object for each parameter to be passed. A holder object wraps the parameter value, 
carries it to the remote server for the method call, and carries the final value back to the 
client.

The com.objectspace.lib.holder package contains pre-built holder classes for all Java 
primitives, String class, and Object class. When cgen converts an IDL interface, struct, 
enum, union, typedef sequence or typedef array to Java, it automatically emits its holder 
class. You can suppress generation of holder classes using the –h option.

The cgen utility generates a holder for type XXX as follows:

® The class is named XXXHolder and is public final.

® There is a single public data member called “value” of type XXX.

® There is a default constructor used for sending out parameters.

® There is a constructor that takes an initial value of type XXX for sending inout 
parameters.

® If XXX is declared inside an interface YYY, the holder class is placed into the package 
YYYPackage.



Voyager ORB Developer Guide 93

® If XXX is declared outside an interface, the holder class is placed into the same package 
as XXX.

An example IDL class and its cgen-generated holder class follows:

Ticket.idl

struct Ticket
  {
  long x;
  long y;
  long z;
  };

TicketHolder.java

final public class TicketHolder
  {
  public Ticket value;

  public TicketHolder()
    {
    }

  public TicketHolder( Ticket value )
    {
    this.value = value;
    }

  public String toString()
    {
    return String.valueOf( value );
    }
  }

The example on page 249 illustrates the use of out and inout parameters.
Example



94 Chapter 10 • CORBA

Typedef

The IDL typedef facility allows you to create convenient aliases for type definitions. In 
most cases, typedef is optional. However, in some cases, use of a typedef is mandatory. 
An example of this is shown in the "Arrays and Sequences" section on page 98.To make 
<id> an alias for <type>, write:

typedef <type> <id>;

Two examples of typedef from the CORBA naming service IDL follow:

CosNaming.idl

module CosNaming
  {
  typedef string Istring; // placeholder for international string type
  
  struct NameComponent 
    {
    Istring id;
    Istring kind;
    };
  typedef sequence< NameComponent > Name;
  
  enum BindingType{ nobject, ncontext };
  
  struct Binding
    {
    Name binding_name;
    BindingType binding_type;
    };
  
  // rest of CosNaming.idl 
  };



Voyager ORB Developer Guide 95

Const

An IDL const is a symbolic representation of the value of a constant expression. The 
constant expression must evaluate to a boolean, integer, floating point number, or 
enumerator. If the IDL const is declared in an IDL interface, cgen translates it into a 
public static final field in the generated Java interface.

IFoo.idl

interface Foo
  {
  const float PI = 3.14;
  };

IFoo.java

public interface IFoo extends com.objectspace.voyager.IRemote
  {
  public static final float PI = ( float ) 3.14;
  }

If declared outside of an interface, cgen converts the const into a Java interface with the 
same name that contains a single, public-static final field called value.

Math.idl

module Math
  {
  const float PI = 3.14;
  };

Math\PI.java 

package Math;

public interface PI
  {
  public static final float value = ( float ) 3.14;
  }



96 Chapter 10 • CORBA

Constant Expressions

IDL allows you to use constant expressions for const values, array dimensions, sequence 
dimensions, string dimensions, and case labels. A constant expression is built by 
combining one or more literals with one or more operators.

The valid literals follow:

® The boolean literals are TRUE and FALSE.

® An integer literal beginning with a zero and an uppercase or lowercase x (0x or 0X) 
is treated as a hexadecimal number. An integer literal beginning with only a zero (0) 
is treated as an octal number. Examples of integer literals are 42, 0x3A, 0X4C, and 
0342.

® A floating point literal contains a decimal point and a fractional part. A floating point 
literal might have an optional signed exponent. Examples of floating point literals are 
3.14, 9.8e7, and 4.3e-12.

® A character literal is placed between single quotes and can either be a letter, like ‘r’, 
or a predefined escape sequence, like ‘\f’. The valid escape sequences are \n (new 
line), \t (horizontal tab), \v (vertical tab), \b (backspace), \r (carriage return), \f (form 
feed), \a (alert), \\ (backslash), \? (question mark), \’ (single quote), \” (double quote), 
\ooo (octal number), and \xhh (hex number).

® A string literal is a sequence of zero or more characters between double quotes. The 
characters may include any of the predefined character escape sequences. Examples 
of string literals are “string”, “”, and “who\?”. Voyager does not currently support 
concatenation of adjacent string literals.



Voyager ORB Developer Guide 97

A description of each IDL operator follows, in order of precedence:

Examples of valid IDL const expressions include:

const long X = 42;
const short Z = (13 * 4) << 2;
const boolean B = FALSE;
const char C = ‘\n’;
const float PI = 3.14;
const double D = 34.22e-13;
const string S = “hi there\n”;

Operator Description Operand Types

| Logical bitwise OR Integer only

^ Logical bitwise XOR Integer only

& Logical bitwise AND Integer only

>> and << Shift a bit right and left Integer only

+ and – Add and subtract Integer or floating point

*, /, and % Multiply, divide, and calculate a modulus. Integer or floating point

+, -, and ~ Unary plus, unary minus, and unary bitwise 
NOT

Integer or floating point

( ) Force evaluation of a sub-expression N/A



98 Chapter 10 • CORBA

Arrays and Sequences

An IDL array is an N-dimensional fixed-size container. An IDL sequence is an 
N-dimensional, variable-size container. A sequence may be either bounded or 
unbounded.

Any argument or return type that is an array or sequence must be specified using a 
typedef. For example:

IMath.idl

typedef sequence< long, 10 > LongSequence; // bounded
typedef long LongArray[ 3 ];
typedef sequence< sequence< long > > LongMatrix; // unbounded
  
interface IMath
  {
  long addLongSequence( in LongSequence numbers );
  long addLongArray( in LongArray numbers );
  void multiMatrix( inout LongMatrix matrix, in long n );
  };

The cgen utility and Voyager runtime processes arrays and sequences as follows:

® An IDL array is mapped to a Java array of the same dimension. An exception occurs 
when you try to set an array to null or to an array of the wrong size. 

® An IDL sequence is mapped to a Java array of the same dimension. An exception 
occurs when you try to set a bounded sequence to an array that exceeds the bounds.

The code that cgen generates from IMath.idl follows:

IMath.java

public interface IMath extends com.objectspace.voyager.IRemote
  {
  public int addLongSequence( int[] numbers );
  public int addLongArray( int[] numbers );
  public void multiMatrix( LongMatrixHolder matrix, int n );
  }



Voyager ORB Developer Guide 99

LongMatrixHolder.java

final public class LongMatrixHolder
  {
  public int[][] value;

  public LongMatrixHolder()
    {
    }

  public LongMatrixHolder( int[][] value )
    {
    this.value = value;
    }

  public String toString()
    {
    return String.valueOf( value );
    }
  }

The example on page 250 illustrates the use of arrays and sequences.

Modules and Interfaces

An IDL module is analogous to a Java package and can define one or more of the 
following IDL type definitions: module, interface, exception, struct, union, enum, const, or 
typedef. You may add new items to a module after an existing module definition by 
re-opening the module and declaring the extra items. An example follows.

Containers.idl

module Containers
  {
  interface IQueue
    {
    struct Element
      {
      Object object;

Example



100 Chapter 10 • CORBA

      long count;
      };
      
    void add( in Containers.IQueuePackage.Element object );
    Containers.IQueuePackage.Element remove();
    };
    
  interface IStack
    {
    void push( in Object object );
    Object pop();
    };
  };
  
module Containers // re-open module, add some more stuff…
  {
  interface IArray
    {
    Object elementAt( in long index );
    void setElementAt( in long index, in Object object );
    };
  };

The cgen utility packages IDL items according to the following rules:

® If the item is a struct, union, exception, or enum in the interface XXX, its Java code is 
placed into a subpackage XXXPackage within the interface’s package.

® If the item is not declared in a module, its Java code is not in a package.

® If neither of the above scenarios is true, the item is placed into the package associated 
with its module.

The code that cgen generates from Containers.idl follows:

Containers\IQueue.java

package Containers;

public interface IQueue extends com.objectspace.voyager.IRemote
  {
  public void add(Containers.IQueuePackage.Element object );
  publicContainers.IQueuePackage.Element remove();
  }



Voyager ORB Developer Guide 101

Containers\IQueuePackage\Element.java

package Containers.IQueuePackage;

public final class Element
  {
  public java.lang.Object object;
  public int count;
  
  public Element()
    {
    }
  
  public Element( java.lang.Object object, int count )
    {
    this.object = object;
    this.count = count;
    }
  
  public String toString()
    {
    return "Element( " + object + ", " + count + " )";
    }

Containers\IStack.java

package Containers;

public interface IStack extends com.objectspace.voyager.IRemote
  {
  public void push( java.lang.Object object );
  public java.lang.Object pop();
  }

Containers\IArray.java

package Containers;

public interface IArray extends com.objectspace.voyager.IRemote
  {
  public java.lang.Object elementAt( int index );
  public void setElementAt( int index, java.lang.Object object );
  }



102 Chapter 10 • CORBA

Inheritance

An IDL interface is analogous to a Java interface and can contain zero or more of the 
following IDL type definitions: operation, exception, struct, union, enum, const, attribute, or 
typedef. An IDL interface can inherit from zero or more interfaces. An example follows.

Inheritance.idl

interface IA
  {
  };
  
interface IB : IA
  {
  };
  
interface IC : IA
  {
  };
  
interface ID : IB, IC
  {
  };

The cgen utility generates the Java equivalent of an interface as follows:

® An IDL interface maps to a Java interface that implements IRemote.

® IDL inheritance maps directly to Java inheritance.

To extend an interface from java.rmi.Remote instead of IRemote, use the cgen –r option.

The code that cgen generates from Inheritance.idl follows:

IA.java

public interface IA extends com.objectspace.voyager.IRemote
  {
  }

IB.java

public interface IB extends IA, com.objectspace.voyager.IRemote



Voyager ORB Developer Guide 103

  {
  }

IC.java

public interface IC extends IA, com.objectspace.voyager.IRemote
  {
  }

ID.java

public interface ID extends IB, IC, com.objectspace.voyager.IRemote
  {
  }

Scoping

The IDL scoping rules are similar to those of Java. The IDL items that scope their 
elements are modules, interfaces, structs, unions, and exceptions.The IDL item Operations also 
scopes its argument names. 

There are three ways to name an IDL item:

1. A fully qualified name is “::” followed by a list of one or more tokens separated by 
“::”. The fully qualified name “::A::B::C” is resolved as “the item C declared within 
the item B declared within the item A declared in global scope, that is, outside any 
module.”

2. An unqualified name is a single token. The unqualified name “C” is resolved as “the 
first item called C that is found by starting in the current scope and searching upwards 
towards the global scope.” In the case of multiple interface inheritance, it is an error 
when more than one item satisfies this criterion. 

3. A partially qualified name is a list of one or more tokens separated by “::”. The 
partially qualified name “A::B::C” is resolved as “the item C declared within the item 
B declared within the item whose unqualified name is A”.

An example IDL file that contains numerous examples of each type of name and the 
value to which each resolves follows:



104 Chapter 10 • CORBA

Scoping.idl

module Scoping
  {
  const long X = 10;
  
  interface IA
    {
    const long X = 20;
    const long A = X; // 20
    const long B = Scoping::X; // 10
    const long C = ::Scoping::X; // 10
    };
    
  interface IB : IA
    {
    const long X = 30;
    const long A = X; // 30
    const long B = Scoping::X; // 10
    const long C = ::Scoping::IA::X; // 20
    const long D = IA::X; // 20
    const long E = ::Scoping::IB::X; // 30
    };
  };

The code that cgen generates from Scoping.idl follows:

X.java

package Scoping;

public interface X
  {
  public static final int value = ( int ) 10;
  }

IA.java

package Scoping;

public interface IA extends com.objectspace.voyager.IRemote
  {
  public static final int X = ( int ) 20;
  public static final int A = ( int ) 20;



Voyager ORB Developer Guide 105

  public static final int B = ( int ) 10;
  public static final int C = ( int ) 10;
  }

IB.java

package Scoping;

public interface IB extends Scoping.IA, com.objectspace.voyager.IRemote
  {
  public static final int X = ( int ) 30;
  public static final int A = ( int ) 30;
  public static final int B = ( int ) 10;
  public static final int C = ( int ) 20;
  public static final int D = ( int ) 20;
  public static final int E = ( int ) 30;
  }

Enum

An IDL enum is a typesafe way to represent one or more enumerations. An example 
follows:

Color.idl

enum Color
  {
  red, green, blue
  };

The cgen utility generates the Java equivalent of an enum in the following way:

® The class has the same name as the IDL enum and is public final.

® Each label is allocated an int value, starting at zero and incremented by one.

® Each label has a public static final field for its int value.

® Each label has a public static final field for its symbolic value.

® The class has a static method from_int() that maps an int to an instance of the enum.



106 Chapter 10 • CORBA

® The class has a method value() that returns the int value of an enum.

The code that cgen generates from Color.idl follows:

Color.java

public final class Color
  {
  public static final int _red = 0;
  public static final Color red = new Color( _red );
  public static final int _green = 1;
  public static final Color green = new Color( _green );
  public static final int _blue = 2;
  public static final Color blue = new Color( _blue );
  private static final Color[] values = new Color[]{ red, green, blue };
  private static final String[] names = new String[]{ "red", "green", "blue" };
  
  public static Color from_int( int value )
    {
    return values[ value ];
    }
  
  private int value;
  
  public String toString()
    {
    return "Color( " + names[ value ] + " )";
    }
  
  private Color( int value )
    {
    this.value = value;
    }
  
  public int value()
    {
    return value;
    }
  }

The example on page 251 illustrates the use of enums.
Example



Voyager ORB Developer Guide 107

Union

An IDL union is an entity that can represent one of several kinds of element, depending 
on the value of a discriminator field. The discriminator must be a boolean, short, long, 
enum, or char. An example follows:

Winnings.idl

union Winnings switch( short )
  {
  case 1:
  case 2: 
    short regular;
    
  case 3:
    long jackpot;
    
  default:
    octet booby;
  };

The cgen utility generates the Java equivalent of a union as follows:

® The class has the same name as the IDL union, is public final, and has a default 
constructor.

® The discriminator is stored as a public field of the appropriate type.

® The discriminator has an accessor called discriminator().

® The actual value is always stored as an Object in a public field called value.

® each possible element has an accessor and mutator.

® If an element has more than one case, the default mutator sets the discriminator to the 
lowest value.

® If an element has more than one case, a mutator that takes an additional explicit value 
is added.

® If an explicit default is not provided and one is possible, a method called _default() is 
added.

The code that cgen generates from Winnings.idl follows:



108 Chapter 10 • CORBA

Winnings.java

public final class Winnings
  {
  public short discriminator;
  public java.lang.Object value;
  
  public Winnings()
    {
    }
  
  public String toString()
    {
    return "Winnings( " + value + " )";
    }
  
  public boolean equals( Object object )
    {
    return object instanceof Winnings && ((Winnings) object).value.equals( value );
    }
  
  public short discriminator()
    {
    return discriminator;
    }
  
  public short regular()
    {
    return ((Short) value).shortValue();
    }
  
  public void regular( short value )
    {
    this.value = new Short( value );
    this.discriminator = 1;
    }
  
  public void regular( short discriminator, short value )
    {
    this.value = new Short( value );
    this.discriminator = discriminator;
    }



Voyager ORB Developer Guide 109

  
  public int jackpot()
    {
    return ((Integer) value).intValue();
    }
  
  public void jackpot( int value )
    {
    this.value = new Integer( value );
    this.discriminator = 3;
    }
  
  public byte booby()
    {
    return ((Byte) value).byteValue();
    }
  
  public void booby( byte value )
    {
    this.value = new Byte( value );
    this.discriminator = 0;
    }
  }

The example on page 252 illustrates the use of unions.

TypeCode and Any

Every IDL type has an associated typecode that describes the type name, repository id, 
fields, and other information. Typecodes are a form of a language-neutral reflection 
mechanism.

To obtain the TypeCode of a specific object or class, use TypeCode.getTypeCode(). TypeCode 
contains accessors like kind(), id(), name(), and memberCount() which allow you to access 
information about a type. The kind() method returns an int that indicates the type category. 
For example, tk_long (3) represents the long type, tk_string (18) represents a string type, and 
tk_struct (15) represents a struct type. The full range of tk_xxx constants is defined in 
IConstants.

Example



110 Chapter 10 • CORBA

Not all of the TypeCode accessors are legal for every type. For example, memberCount() is 
an illegal operation when the typecode represents a long. In these cases, a 
TypeCodeException is thrown.

Typecodes are represented in IDL by CORBA::TypeCode and can be used as arguments and 
return types.

An IDL any holds an encoded object and its associated typecode. The Any.setXXX() family 
of methods encoded their argument and store it in the any. The Any.getXXX() family of 
methods return the object in a decoded state, and Any.type() returns its encoded object’s 
typecode. Because an any holds an object in an encoded state, it may be passed into an 
ORB that knows nothing of the object’s type as long as the ORB does not attempt to 
invoke Any.getXXX(). 

An example of some operations that accept any and TypeCode arguments follows:

IPrinter.idl

interface IPrinter
  {
  void printAny( in any x );
  void printTypeCode( in CORBA::TypeCode x );
  };

The Java code generated by cgen from IPrinter.idl follows:

IPrinter.java

public interface IPrinter extends com.objectspace.voyager.IRemote
  {
  public void printAny( com.objectspace.voyager.corba.Any x );
  public void printTypeCode( com.objectspace.voyager.corba.TypeCode x );
  }

The example on page 253 illustrates the use of anys and typecodes.

Attributes

An IDL attribute allows you to specify that an interface provides accessors to a typed 
value. An example follows:

Example



Voyager ORB Developer Guide 111

ICar.idl

interface ICar
  {
  readonly attribute string make;
  attribute long speed;
  };

The cgen utility generates the Java equivalent of an attribute as follows:

® A readonly attribute is mapped to an accessor with the same name.

® A writable attribute is mapped to an accessor and a mutator with the same name.

The code that cgen generates from ICar.idl follows:

ICar.java

public interface ICar extends com.objectspace.voyager.IRemote
  {
  public java.lang.String make();
  public int speed();
  public void speed( int value );
  }
 

The example on page 254 illustrates the use of attributes.

User Exceptions

An IDL exception is raised when an error occurs within an operation. An example 
declaration of an IDL exception follows:

OverdrawnException.idl

exception OverdrawnException
  {
  string message;

Note: The standard OMG naming does not correspond to the industry-standard 
JavaBeans convention of setXXX() and getXXX().

Example



112 Chapter 10 • CORBA

  long amount;
  };

The cgen utility generates the Java equivalent of an exception as follows:

® The class has the same name as the IDL exception and is public final.

® The class extends java.lang.Exception.

® Every field in the IDL exception is declared as a public data member.

® The class has a default constructor and a constructor that takes a value for each field.

® If the first field is a string, it is passed to the java.lang.Exception constructor.

The code that cgen generates from OverdrawnException.idl follows:

OverdrawnException.java

public final class OverdrawnException extends Exception
  {
  public java.lang.String message;
  public int amount;
  
  public OverdrawnException()
    {
    }
  
  public OverdrawnException( java.lang.String message, int amount )
    {
    super( message );
    this.message = message;
    this.amount = amount;
    }
  
  public String toString()
    {
    return "OverdrawnException( " + message + ", " + amount + " )";
    }
  }



Voyager ORB Developer Guide 113

System Exceptions

If a CORBA ORB generates an exception, it is thrown as a SystemException that extends 
RuntimeException and contains a reason message, minor code, and status code. 

The valid values of the status code are COMPLETED_YES, COMPLETED_NO, and 
COMPLETED_MAYBE, defined in IConstants.

Voyager converts its own internal exceptions into SystemExceptions as follows:

Voyager converts its own internal exceptions into SystemExceptions as follows:

Voyager always sets the minor code to 0 and the status to COMPLETED_NO.

Standard Object Methods

Standard methods defined in the CORBA version of Object follow:

® boolean _is_nil()

® boolean _is_a( String identifier )

® boolean _is_equivalent( Object that )

® boolean _non_existent()

® int _hash( int maximum )

Voyager Exception CORBA SystemException reason

IOException IDL:omg.org/CORBA/MARSHAL:1.0

ClassNotFoundException IDL:omg.org/CORBA/MARSHAL:1.0

MethodNotFoundException IDL:omg.org/CORBA/NO_IMPLEMENT:1.0

NoSuchObjectException IDL:omg.org/CORBA/OBJECT_NOT_EXIST:1.0

ObjectNotFoundException IDL:omg.org/CORBA/OBJECT_NOT_EXIST:1.0

RemoteException IDL:omg.org/CORBA/UNKNOWN:1.0

RuntimeRemoteException IDL:omg.org/CORBA/UNKNOWN:1.0



114 Chapter 10 • CORBA

® Object _duplicate()

® void _release()

These methods act locally on the object or proxy and never generate any network traffic. 

To execute one of these methods on an object or proxy, use CorbaObject.of() to obtain a 
CorbaObject wrapper and then execute the required method. CorbaObject makes the object 
that it wraps behave as if it inherited from CORBA::Object. 

For example:

IX x = (IX) Namespace.lookup( ior );
System.out.println( CorbaObject.of( x )._is_nil() );
System.out.println( CorbaObject.of( x )._is_a( “IDL:IX:1.0” ) );
System.out.println( CorbaObject.of( x )._hash( 100 ) );

Narrowing

To navigate between unrelated interfaces on a remote object, use Corba.narrow() instead 
of a regular Java cast. For example, if x is a remote reference of type IX to an object that 
implements the unrelated interfaces IX and IY, the following code returns a remote 
reference of type IY to the same object. 

IX x = (IX) Namespace.lookup( ior );
IY y = (IY) Corba.narrow( x, IY.class );

The example on page 255 illustrates the use of narrowing.

Java to IDL

The Java to IDL facility allows a regular Java application to export a subset of its objects 
to CORBA without requiring modification of any of the original source code. Use cgen 
to generate IDL for the objects you want to export, and share references to the objects 
using a naming service, IORs, or by passing them as arguments to remote CORBA 
method invocations.

Example



Voyager ORB Developer Guide 115

To generate IDL from Java, invoke cgen with a list of the .java/.class files whose IDL you 
require. cgen translates Java interfaces, methods, and exceptions using the following 
rules:

Interfaces

® A Java interface can only be translated when it directly or indirectly extends IRemote 
or Remote. 

® A Java interface is placed into the IDL module that corresponds to its Java package. 

® Java inheritance maps to IDL inheritance, and non-remote interfaces are ignored.

Methods

® All Java parameters are mapped to an IDL in argument.

® Parameter types that are primitives, Strings, Objects, or remote interfaces can be mapped 
to IDL.

® Arrays of mappable types are mapped to IDL unbound sequences.

® Any method that contains a parameter type that cannot be mapped to IDL is ignored.

® If two or more methods have the same name, their names are mangled based on their 
parameter types.

® Incoming mangled IDL invocations are automatically unmangled by the Voyager 
CORBA runtime.

Exceptions

® A Java exception is mapped to an IDL exception containing all the public non-static 
fields.

® If the exception does not extend Exception, the IDL contains a union of all the inherited 
fields.

The following example illustrates the Java to IDL mapping:

IAccount.java

public interface IAccount extends com.objectspace.voyager.IRemote
  {
  public int deposit( int amount );
  public int getBalance();
  public void withdraw( int amount ) throws OverdrawnException;



116 Chapter 10 • CORBA

  public void withdraw( int[] amounts ) throws BatchException;
  }

OverdrawnException.java

public class OverdrawnException extends Exception
  {
  public int amount;
  
  public OverdrawnException()
    {
    }
  
  public OverdrawnException( String message, int amount )
    {
    super( message );
    this.amount = amount;
    }
  
  public String toString()
    {
    return "OverdrawnException( " + getMessage() + ", " + amount + " )";
    }
  }

BatchException.java

public class BatchException extends OverdrawnException
  {
  public int count;
  
  public BatchException()
    {
    }
  
  public BatchException( String message, int amount, int count )
    {
    super( message, amount );
    this.count = count;
    }
  
  public String toString()
    {



Voyager ORB Developer Guide 117

    return "BatchException( " + getMessage() + ", " + amount + ", " + count + " )";
    }
  }

The IDL that cgen generates from these files follows:

IAccount.idl

#ifndef _IAccount_idl
#define _IAccount_idl

#include "OverdrawnException.idl"
#include "BatchException.idl"

interface IAccount
  {
  typedef sequence< long > tmp1;
  long deposit( in long arg1 );
  long getBalance();
  void withdraw__long( in long arg1 ) raises( ::OverdrawnException );
  void withdraw__sequence_long( in tmp1 arg1 ) raises( ::BatchException );
  };

#endif

OverdrawnException.idl

#ifndef _OverdrawnException_idl
#define _OverdrawnException_idl

exception OverdrawnException
  {
  string _message;
  long amount;
  };

#endif

BatchException.idl

#ifndef _BatchException_idl
#define _BatchException_idl

exception BatchException



118 Chapter 10 • CORBA

  {
  string _message;
  long amount;
  long count;
  };

#endif

The example on page 257 illustrates the use of the cgen to generate Java 
from IDL.

Prefixes, Versions, and Repository IDs

By default, the repository ID for an IDL type is equal to “IDL:”, followed by the full 
IDL type converted from “::” format to “/” format, followed by version number “:1.0”. 
There are a few preprocessor directives that modify an IDL type’s repository ID:

® pragma prefix “<prefix>” appends the specified prefix to the repository id of every IDL 
type from the occurrence of the #pragma until the #pragma goes out of scope. 

® pragma version <identifier> major.minor sets the repository id version number of the 
specified IDL type to be major.minor.

® pragma ID <identifier> “<repositoryID>” sets the repository id of the specified IDL type to 
be the specified string. You must use -m for resolution.

These pragmas only modify on-the-wire encoding of object references and do not affect 
the cgen Java mapping. An example of these #pragmas in action follows:

X.idl

#pragma prefix "p.q"

module X
  {
  interface IA
    {
    };
    
  #pragma prefix "s.t"

Example



Voyager ORB Developer Guide 119

  interface IB
    {
    #pragma version IB 2.0
    };
    
  interface IC
    {
    #pragma ID IC "IDL:x.y/IZ:3.0"
    };
  };

The effect of these #pragmas follows:

The example on page 257 illustrates the use of #pragmas.

Repackaging

By default, cgen places IDL entities into Java packages based on their IDL module. For 
example, if you run cgen on CosNaming.idl, the Java classes are placed into the package 
CosNaming, which is the IDL module that defines NameComponent, Binding, and the other 
CORBA name service items.

To override the default mapping rule at compile, use cgen –m <repository-id> <java-name> as 
follows:

® If the <repository-id> has no prefix, use the format A/B/C.

® If the <repository-id> has the prefix X.Y, use the format [X.Y]A/B/C.

® The <java-name> should be in the format A.B.C.

IDL type
Repository ID without 

#pragmas
Repository ID with #pragmas

::X::IA IDL:X/IA:1.0 IDL:p.q/X/IA:1.0

::X::IB IDL:X/IB:1.0 IDL:s.t/X/IB:2.0

::X::IC IDL:X/IC:1.0 IDL:x.y/IZ:3.0

Example



120 Chapter 10 • CORBA

® If the <repository-id> resolves to an individual item, only that item is mapped.

® If the <repository-id> resolves to a module, all items within that module are mapped 
recursively.

For example, map the CosNaming module to com.objectspace.voyager.corba.naming by 
typing:

cgen CosNaming.idl –d \voyager –m [omg.org]CosNaming com.objectspace.voyager.corba.naming

If you have a set of several mapping options, it is recommended that you store them into 
a text file and use the cgen –a option to read the options. For example:

Mapping.txt

-m [omg.org]CosNaming com.objectspace.voyager.corba.naming
-m foo.bar Foo.MyBar
-m gaia.rocks voyager.version5

cgen –a Mapping.txt MyFile.idl

The table following the module definition illustrates how the module definition is 
mapped by different –m commands.

module A
  {
  module B
    {
    interface C
      {
      };

    interface D
      {
      };
    };
  };

Cgen argument maps A/B/C to… and maps A/B/D to…

<none> A.B.C A.B.D

-m A/B/C X.Y.Z X.Y.Z A.B.D



Voyager ORB Developer Guide 121

The CORBA runtime system must be informed of the mappings used by cgen in order to 
dynamically map repository ids to their corresponding Java classes. You can supply this 
information in one of two ways.

1. The voyager –m and –a options work exactly like their cgen counterparts; therefore, you 
can start a Voyager server with the appropriate mappings.

2. The Corba.bindIdToJava( String id, String java ) method allows you to add mappings from 
a Voyager application. The id and java strings should be formatted exactly like their 
cgen counterparts. For example, the voyager CORBA naming service adds its 
mapping rule by executing Corba.bindIdToJava( “[omg.org]CosNaming”, 
“com.objectspace.voyager.corba.naming” ) at startup.

The following table shows the run-time bindIdToJava() mappings that correspond to the 
compile-time cgen mappings previously described.

Dynamic Method Invocation

The Voyager OneWay, Sync, and Future classes work with the CORBA subsystem. To 
dynamically invoke a remote CORBA operation, pass the reference, method name, and 
argument array to the appropriate static invoke() method. Primitive values must be 
wrapped in their Object equivalents.

For example, ITimer.idl is defined as follows:

interface ITimer
  {
  long wait( in long delay );

-m A/B X.Y X.Y.C X.Y.D

-m A X X.B.C X.B.D

bindIdToJava() 
arguments

maps A/B/C to… and maps A/B/D to…

<none> A.B.C A.B.D

( “A/B/C”,”X.Y.Z” ) X.Y.Z A.B.D

( “A/B”,”X.Y” ) X.Y.C X.Y.D

( “A”, “X” ) X.B.C X.B.D



122 Chapter 10 • CORBA

  };

Code to execute a oneway wait( 6000 ) operation when timerIOR is the IOR of a Timer 
implementation follows:

ITimer timer = (ITimer) Namespace.lookup( timerIOR );
Object[] args = new Object[]{ new Integer( 6000 ) };
OneWay.invoke( timer, "wait", args );

The cgen utility ignores the IDL oneway keyword, so this is the only way to execute 
CORBA operations asynchronously. 

The example on page 256 illustrates the use of dynamic method 
invocation.Example



Voyager ORB Developer Guide 123

Naming Service

The CORBA naming service allows objects to be bound to names in a hierarchical and 
federated fashion. 

Voyager supports the CORBA naming service as follows:

® It allows access to any CORBA naming service via the universal Namespace API. 

® It includes all of the standard classes for low-level access to a CORBA naming 
service. These classes were automatically generated by cgen from CosNaming.idl and 
placed into the com.objectspace.voyager.corba.naming package.

® It wraps the Voyager naming service with an adapter that makes it 
interface-compatible with a traditional implementation of a CORBA naming service. 
This approach is also adopted by Voyager’s RMI subsystem and allows a Voyager 
naming service to simultaneously appear like an RMI registry to an RMI client and a 
CORBA naming service to a CORBA client.

Accessing a CORBA Naming Service via the Namespace 
API

Namespace interprets a URL that begins with “cos:” as a reference to a CORBA naming 
service. Operations like bind(), unbind(), and lookup() are automatically converted into their 
equivalent CosNaming operations and sent to the target naming service. This method is 
the simplest way to access a CORBA naming service because it does not require any 
knowledge of the CosNaming classes. 

If the URL refers to a Voyager program, it will access the program’s default naming 
service via the special CORBA adaptation layer. If the URL refers to the location of 
another vendor’s CORBA ORB, it will access the CORBA naming service inside that 
ORB. Because there is no standardized way to obtain the NamingContext for an ORB’s 
naming service, you must have previously associated that URL with a NamingContext 
using CorbaNamingService.bindURLToNamingContext(). 

Pro
Only



124 Chapter 10 • CORBA

Accessing a CORBA Naming Service via the 
IDL-Generated Classes

You can access a CORBA naming service via the Namespace API or the IDL-generated 
class.

All of the CosNaming operations require you to first obtain a NamingContext. To obtain the 
NamingContext of your local Voyager naming service, use 
CorbaNamingService.getDefaultNamingContext(). To obtain the NamingContext of a remote 
CORBA naming service, use CorbaNamingService.getNamingContext( String url ). The URL is 
resolved to a CORBA naming service using the same rules as Namespace.

After a NamingContext is obtained, you can apply all of the CosNaming operations such as 
bind(), resolve(), and list().

The example on page 259 illustrates the use of the CORBA naming 
service.

Transactions

The Voyager CORBA system supports transaction propagation for integration with 
OTS-compliant systems. See the Voyager Transactions Developer Guide for more 
information. Also see the cgen -t option in the "Utilities" appendix.

Example



125

RMI

The universal communications architecture allows Voyager programs to be 
both a universal client and a universal server by supporting simultaneous 
bi-directional communication with other CORBA, RMI, and DCOM† 
programs. 

In this chapter, you will learn to:

® use Voyager as an RMI client

® use Voyager as an RMI server

® use the universal directory as an RMI Registry

†  Voyager 4, due later in 1999

11



126 Chapter 11 • RMI

Using Voyager as an RMI Client

Namespace interprets a URL that begins with “rmi:” as a reference to an RMI registry. 
For example, the following line returns a proxy to the object called “MyFoo” located in 
the RMI registry running on port 8000 of the host “dallas”. If the RMI registry is running 
on the default port (1099), the port number can be omitted.

IFoo foo = (IFoo) Namespace.lookup( “rmi://dallas:8000/MyFoo” );

The example on page 261 shows a Voyager RMI client looking up an 
object placed into an RMI registry by a SunSoft RMI server. The SunSoft 
RMI server must set its codebase property to a path containing the 
examples.rmi package.

Using Voyager as an RMI Server

To bind an object into an RMI registry, use the following format:

Namespace.bind( “rmi://dallas:8000/MyFoo”, foo );

If the port number is omitted, it defaults to 1099. Voyager does not currently 
allow the class of foo to extend UnicastRemoteObject.

During the binding process, the RMI registry needs to resolve the class of the 
object that is being bound. Because this class is not available to the RMI registry 
through its local CLASSPATH, Voyager annotates it with the URL of an HTTP 
server that can serve up the class. This URL is set using 
RmiRegistry.setServerCodeBase( String url ) and usually refers to an HTTP-enabled 
Voyager server. Start the server using the –r option or use 
ClassManager.enableResourceServer().

The example on page 263 shows a SunSoft RMI client looking up an 
object placed into an RMI registry by a Voyager RMI server.

Example

Example



Voyager ORB Developer Guide 127

Using Universal Directory Integration

The universal directory can act as an RMI registry. Any Namespace or Naming 
binding/lookup operation that starts with “rmi:” and refers to a Voyager program is 
routed to that program’s universal directory.

The example on page 266 shows a SunSoft RMI client looking up an 
object placed into a Voyager universal directory.Example



128 Chapter 11 • RMI



129

Timers

Voyager’s timer Services include the Stopwatch and Timer classes. You can use 
a Stopwatch object to clock time intervals and print time measurement 
statistics. You can use a Timer object to generate timer events and add listeners 
to timers. 

In this chapter, you will learn to: 

® clock time intervals

® use timers and timer events

12



130 Chapter 12 • Timers

Clocking Time Intervals

Use Voyager’s Stopwatch class to clock time intervals. You can start and stop a Stopwatch 
object an unlimited number of times before resetting it; every start/stop cycle is called a 
lap. You can access the cumulative lap time, average lap time, and last lap time, and you 
can record individual lap times.

Use the following methods defined in Stopwatch to clock time intervals:

® getDate()

Returns the current date.

® getMilliseconds()

Returns the current time in milliseconds since January 1, 1970, 00:00:00 GMT.

® reset()

Resets the stopwatch, clears lap times, and sets the lap count to zero.

® start()

Starts a stopwatch.

® stop()

Stops a stopwatch, increments the lap count, and, when enabled, records the lap time.

® lap()

Stops the stopwatch temporarily to record the lap time and immediately restart it.

® setRecordLapTimes( boolean flag )

Enables or disables the recording of lap times.

® isRecordLapTimes()

Returns a boolean indicating whether lap-time recording is enabled.

® getLapCount()

Returns the current completed lap count.

® getLapTime()

Returns the last completed lap time.



Voyager ORB Developer Guide 131

® getLapTimes()

Returns a long array of recorded lap times. If lap-time recording is disabled, an 
empty array is returned.

® getTotalTime()

Returns the sum of all completed lap times.

® getAverageLapTime()

Returns the average lap time.

The example on page 274 starts and stops a Stopwatch object and prints 
various time measurement statistics.

Using Timers and TimerEvents

Voyager’s Timer class acts like an alarm clock. You can set a Timer object to send a 
TimerEvent to one or more listeners. Upon receiving an event, a listener performs an 
action. When the action is complete, the timer can continue by sending a TimerEvent to its 
next listener. To set up a timer and listeners, follow these steps:

1. Construct a timer and one or more listeners.

2. Set the timer to generate one-shot or periodic events.

3. Add the listeners to the timer.

Constructing a Timer

When you construct a timer, it is placed in a TimerGroup. Each TimerGroup has its own 
thread, and all timers in a TimerGroup share its thread to generate events. Unless specified 
otherwise, a timer is placed in the default TimerGroup and its thread priority is set to 
normal (Thread.NORM_PRIORITY).

You can make a group of timers use a separate thread by assigning the timers to a 
discrete TimerGroup at construction. First, construct a new TimerGroup, optionally 
supplying a thread priority as a parameter, and then construct timers with the new 
TimerGroup as a parameter:

Example



132 Chapter 12 • Timers

TimerGroup newgroup = new TimerGroup( Thread.MIN_PRIORITY );
Timer timer1 = new Timer( newgroup );
Timer timer2 = new Timer( newgroup );

Setting a Timer

You can set a timer to generate an event at a particular point in time, after a specified 
period of time, or periodically with the following methods defined in Timer:

® alarmAt( Date date )

Sets the timer to generate an event at the specified time.

® alarmAfter( long milliseconds )

Sets the timer to generate an event after the specified number of milliseconds.

® alarmEvery( long period ) 

Sets the timer to generate an event every time the specified period of time (in 
milliseconds) elapses.

Other Timer methods used to work with timer events include:

® clearAlarm()

Cancels the generation of the timer’s event.

® getAlarm()

Returns the time that the timer is scheduled to generate its next event.

® getPeriodicity()

Returns the number of milliseconds between the timer’s events.

Adding a Listener to a Timer

A timer generates an event only if it has a listener. Add an object to a timer as a listener 
using these steps:

1. Ensure that the object’s class implements the TimerListener interface.

2. Send addTimerListener() to the timer with an instance of the object as a parameter.

To remove a listener from a timer, call removeTimerListener( TimerListener listener ) on the 
timer.



Voyager ORB Developer Guide 133

Multiple listeners to a timer use a single thread, the timer’s TimerGroup thread, to perform 
actions upon receiving events. You can override this default behavior by wrapping a 
listener with a TimerListenerThread; that is, you can construct a TimerListenerThread object 
with an instance of the listener as a parameter. TimerListenerThread implements 
TimerListener.

For example, suppose a listener1 object listens to a timer1 timer. The following code 
wraps listener1 with a TimerListenerThread and then adds the wrapped listener to timer1.

TimerListener timerListener1 = new TimerListenerThread( listener1 );
timer1.addTimerListener( timerListener1 );

A listener wrapped with a TimerListenerThread is dynamically allocated a new thread from 
a thread pool when it receives an event. In this way, the timer can use its TimerGroup 
thread to continue delivering events to other listeners without waiting for the wrapped 
listener to perform its action.

By default, the priority of a new thread allocated by TimerListenerThread is equal to the 
priority of the current thread. To override the default, specify the desired priority when 
you construct the TimerListenerThread object:

new TimerListenerThread( listener1, Thread.MAX_PRIORITY )

The example on page 276 demonstrates a ramification of Voyager’s 
default thread behavior, that is, sharing a TimerGroup thread. Two listeners 
receive TimerEvent events via the same thread, so the second listener does 
not receive a TimerEvent until the first listener completes its timerExpired() 
method.

The example on page 277 demonstrates creating a new TimerGroup. A 
timer1 listener receives an event from the default TimerGroup’s thread, and a 
timer2 listener receives an event from the new TimerGroup’s thread.

The example on page 279 demonstrates allocating listeners separate 
threads to perform actions upon receiving TimerEvent events. The second 
listener receives a TimerEvent before the first listener’s timerExpired() 
method completes.

Example



134 Chapter 12 • Timers



135

Configuration and
Management

Several of Voyager’s internal settings can be modified at runtime using static 
methods. For example, you can change the maximum thread pool size at 
runtime by using ThreadManager.setPoolSize(). 

The same settings can also be set using standard Java property files, which are 
read at startup. This approach allows values to be set and changed without 
modification of the application source code.

You can extend Voyager’s configuration and management capabilities to fit 
the specific needs of your system. With the management framework, objects, 
services, and entire subsystems can be outfitted for remote configuration and 
management. Then with the workshop framework, objects can be viewed and 
manipulated using ObjectSpace’s Workshop framework.

In this chapter, you will learn to:

® understand Voyager properties

® specify a properties file

® specify multiple values

® use the Voyager management framework

® work with the ObjectSpace workshop framework

13



136 Chapter 13 • Configuration and Management

® use the Voyager Management Console

Understanding Voyager Properties

The following table summarizes Voyager’s user-customizable properties. Each property 
is case sensitive.

voyager.ClassManager.enableResourceServer

This property allows a Voyager server to be able to serve resources, typically classes, 
via HTTP. It is equivalent to the ClassManager.enableResourceServer() method. The default 
value is false. For example:

voyager.ClassManager.enableResourceServer=true

Note: The configuration and configuration frameworks features are only available with 
Voyager ORB Professional.

Property Value

voyager.ClassManager.enableResourceServer true | false

voyager.ThreadManager.setMaxIdleThreads <int>

voyager.activation.Activation.register #<classname>

voyager.loader.VoyagerClassLoader.addResourceLoader #<classname>

voyager.loader.VoyagerClassLoader.addURLResource <URL>

voyager.loader.VoyagerClassLoader.setResourceLoadingEnabled true | false

voyager.router.Routing.setRouterAddress <XURL>

voyager.tcp.TcpTransport.setServerListenBacklog <int>

voyager.transport.Transport.register #<classname>

voyager.transport.Transport.setDefaultTransport <transport id>

lib.util.Console.setLogLevel exceptions | silent | verbose



Voyager ORB Developer Guide 137

voyager.ThreadManager.setMaxIdleThreads

This property allows users to specify the maximum number of threads Voyager will 
cache. Higher numbers are useful for servers with more memory, while lower numbers 
are often useful when memory resources are limited or must be shared with other 
applications. This property is equivalent to the ThreadManager.setMaxIdleThreads() method. 
The default value is Integer.MAX_VALUE. For example:

voyager.ThreadManager.setMaxIdleThreads=50

voyager.activation.Activation.register

This property allows activators to be plugged into the activation framework. It is 
equivalent to the Activation.register() method. The classname provided must resolve to a 
public class that implements IActivator and has a public no-argument constructor. For 
example:

voyager.activation.Activation.register=#com.acme.AcmeActivator

voyager.loader.VoyagerClassLoader.addResourceLoader

This property allows resource loaders to be added to Voyager’s classloading 
mechanism. A custom resource loader allows Voyager to retrieve resources, including 
Java classes, from custom sources. The property is equivalent to the 
VoyagerClassLoader.addResourceLoader() method. The classname provided must resolve to 
a public class that implements IResourceLoader and has a public no-argument constructor. 
For example: 

voyager.loader.VoyagerClassLoader.addResourceLoader=#com.acme.AcmeLoader

voyager.loader.VoyagerClassLoader.addURLResource

This property allows the Voyager server to load classes from the specified URL. If the 
URL is an HTTP URL, it must map to an HTTP server, such as a remote Voyager that 
has resource serving enabled. This property is equivalent to the 
VoyagerClassLoader.addURLResource() method. For example:

voyager.loader.VoyagerClassLoader.addURLResource=http://acme.com:8000

voyager.loader.VoyagerClassLoader.setResourceLoadingEnabled

This property enables or disables resource loading. It is primarily used to disable 
resource loading, which includes dynamic proxy generation, loading from a remote 
URL, etc. It is equivalent to the VoyagerClassLoader.setResourceLoadingEnabled() method 
and has a default value of true. All proxies, including those for select Voyager classes, 



138 Chapter 13 • Configuration and Management

must be generated manually with the pgen utility. For example:

voyager.loader.VoyagerClassLoader.setResourceLoadingEnabled=false

voyager.router.Routing.setRouterAddress

This property allows a routing address to be specified. If an application specifies a 
router, all remote messages are automatically sent to the router for redirection to their 
final destination. It is equivalent to the Routing.setRouterAddress() method. For example:

voyager.router.Routing.setRouterAddress=//10.2.15.194:8000

voyager.tcp.TcpTransport.setServerListenBacklog

This property can be used to set the listen backlog for all TCP server sockets used by 
Voyager. It is equivalent to the TcpTransport.setServerListenBacklog() method. The default 
value is 50. For example:

voyager.tcp.TcpTransport.setServerListenBacklog=20

voyager.transport.Transport.register

This property allows a custom transport mechanism to be registered with Voyager’s 
pluggable transport system. It is equivalent to the Transport.register() method. By default, 
a TCP transport mechanism is registered with Voyager. The classname provided must 
resolve to a public class that implements ITransport and has a public no-argument 
constructor. For example:

voyager.transport.Transport.register=#com.acme.SSLTransport 

voyager.transport.Transport.setDefaultTransport

This property allows users to set the default transport used by Voyager. It is equivalent 
to the Transport.setDefaultTransport() mechanism. By default, all remote messaging is 
handled by the TCP transport. If a custom transport is set to the default, an instance of 
the transport must be registered with Transport. For example: 

voyager.transport.Transport.setDefaultTransport=ssl

lib.util.Console.setLogLevel

This property allows the Console log level to be set. It is equivalent to the 
Console.setLogLevel() method. Available options are silent, exceptions, and verbose. For 
example:

lib.util.Console.setLogLevel=exceptions



Voyager ORB Developer Guide 139

Specifying a Properties File

Voyager servers are started with the voyager utility. The voyager utility included with 
Voyager ORB Professional has an extra flag, the –p flag, for specifying a properties file. 
For example, the following code will start a Voyager server on port 8000 with the 
properties file acme.properties. Once all flags have been processed, Voyager will read in 
the properties file and configure itself as specified in the properties file. Voyager will 
then startup.

voyager 8000 –p acme.properties

The example on page 301 demonstrates custom configuration of a Voyager 
server.

For custom applications in which the voyager utility is not used to start up a server, a 
Voyager properties file can be loaded using a PropertyLoader.

The example on page 304 demonstrates custom configuration of a user 
application.

Specifying Multiple Values

Some Voyager properties can be specified more than once. For instance, an application 
may need to be able to load classes from several URLs. Therefore, Voyager allows the 
addURLResource property to be specified more than once using an indexing syntax. For 
example, the following code will install URL resource loaders for two different remote 
HTTP servers.

voyager.loader.VoyagerClassLoader.addURLResource[1]=http://acme.com:8000
voyager.loader.VoyagerClassLoader.addURLResource[2]=http://acme2.com:8000

The example on page 307 demonstrates specifying multiple Voyager 
properties.

Example

Example

Example



140 Chapter 13 • Configuration and Management

Using the Voyager Management 
Framework

Voyager’s Management Framework provides interfaces that allow services to be 
configured and administered remotely. Any service, subsystem, or object can potentially 
be fitted with the necessary interfaces to allow it to be managed from the Voyager 
Management Console or another management tool.

IConfiguration

Implement the IConfiguration interface to allow an object to configure some aspect of a 
Voyager server or service when that server starts up. For instance, if your application 
has an e-mail service, you may want to configure that service with the address of an 
SMTP server elsewhere on the network. The install() method will be called by Voyager 
when that server starts up. install() should set any necessary startup information on the 
service. This method is also responsible for creating a Management Agent for its service 
or object, if necessary. The URL passed to the install() method indicates the location in 
the Voyager Directory Server where this IConfiguration object was found. It can, 
therefore, be used to bind a Management Agent back to the same place using an Installer. 
See the "Installer" section on page 141.

The example on page 282 demonstrates the use of Configuration objects.

IManagementAgent

Implement the IManagementAgent interface to allow objects within your server to be 
manipulated at runtime. A Management Agent is an object residing on your server that 
an outside entity can communicate with to request information about or act upon your 
system’s objects. 

The getManagedObjects() method returns the objects that the Management Agent is 
responsible for or authorized to act upon. getActions() returns a list of possible actions that 
can be taken by this agent. performAction() executes one of these actions. getEventTypes() 
returns an array of Strings that describe arbitrary events. addEventListener() adds a listener. 
See the "Listeners and Events" section for more information.

Pro
Only

Example



Voyager ORB Developer Guide 141

The example on page 282 demonstrates use of management agents.

Listeners and Events

Management events are, for the most part, left for you to define. Management Agents 
can generate events, and instances of IEventListener can be added as listeners to those 
events. Nothing distinguishes an event except the String that identifies it. The 
CompositeListener class helps organize listeners.

The example on page 282 demonstrates use of events and listeners.

Installer

The Installer is a utility class that allows an instance of IConfiguration or IManagementAgent 
to be bound into the Voyager Directory Server at a later time than when it was created. 
For instance, in the case of a service, the configuration object might handle the 
instantiation of a Management Agent. Then it creates an Installer to pass to the service, so 
that when the service finally comes online, it runs the installer that binds its 
Management Agent back into the Voyager Directory Server. 

The example on page 282 demonstrates use of the Installer class.

Working with the ObjectSpace 
Workshop Framework

The Workshop framework offers a way of representing hierarchical data to the user. 
Hierarchical data structures, such as directories and file systems, can be represented in 
any number of ways. The Workshop framework provides abstractions for data and 
views that are independent of representation. 

Example

Example

Example



142 Chapter 13 • Configuration and Management

Nodes, Tools, and the ToolBox

Each data element is considered to be a node. Nodes may have child nodes that 
represent sub-data structures. Interface INode should be implemented by any data 
element, or wrapper, that will be displayed by your system. Tools are classes that 
implement the ITool interface and know how to represent particular nodes. The ToolBox 
implements IToolBox and is responsible for associating tools and other resources with 
given nodes. 

The example on page 282 provides a sample implementation of the ITool 
interface.

Workshop, WorkSession, and WorkContext

The Workshop is an abstraction of your representation to the user. WorkSession allows the 
Workshop to question its user, such as whether the session is dead or whether the 
application can be closed. WorkContext allows the user or the tools to make requests of 
the Workshop, such as refreshing the screen or showing a status message.

Using the Voyager Management 
Console

The Voyager Management Console (VMC) is an implementation of the Workshop 
framework. It is capable of traversing a JNDI directory, discovering its contents, and 
displaying and manipulating data elements. Any object in the directory that has a Tool 
class defined for it may be viewed using the VMC. 

Directory Structure

A specific directory structure is used with the VMC. Certain conventions are followed 
so that, as much as possible, even the VMC can be configured from the directory server. 
These conventions follow:

® Objects bound with names beginning in “__” (double underscore) are not visible.

® The name __AGENT is reserved for instances or proxies of type IManagementAgent.

Example

Pro
Only



Voyager ORB Developer Guide 143

® In the root context, the directory called __Resources contains all of the configuration 
information for the VMC and the server profile template for configuring Voyager 
servers.

® Mappings between object class names and class names of the tools that are capable of 
representing them are in the directory __Resources/Tools in the following format: 
objectClassName/1.0 is bound to a String, toolClassName. If there is more than one tool 
class for a given object, use 2.0, 3.0, etc. For instance, two tools for the class MyObject 
would be bound to __Resources/Tools/MyObject/1.0 ◊ MyObjectToolA and 
__Resources/Tools/MyObject/2.0 ◊ MyObjectToolB.

® Icons are stored by arbitrary name in the __Resources/Icons directory as byte arrays.

® The server profile template is at __Resources/ConfigTemplate. It contains a binding for 
the server configuration, in this case __Resources/ConfigTemplate/1.0 ◊ 
com.objectspace.voyager.system.VoyagerServerConfiguration. ConfigTemplate also has a 
subdirectory for each installed service, which in turn has its configuration class names 
bound the same way.

Server profiles may be grouped arbitrarily within the directory. 

Service Configuration

Services are added to the server profile template in the Voyager Directory Server using 
serialized instances of IConfiguration. These serialized objects are found either in the .jar 
file that the service was distributed in or in some other file in the distribution. When a 
user installs a service via the VMC, the configuration object is retrieved from the .jar file 
or other file, and its install() method is invoked. This, in turn, populates the server profile 
template with configuration class names and also enters information specific to that 
particular service, such as Tool class mappings and icons, in the “__Resources” directory.

Console Behavior

VMC’s ToolBox implementation refers to the directory’s “__Resources” directory for tool 
mappings and icons. The console first checks whether the “__Resources” directory exists, 
prompting the user to create it if it does not exist. Then, the console locates the visible 
entries in the directory. For every object that is bound into the directory, the console 
attempts to create a Tool for it, referring to the Tool mappings. If no mapping exists, a 
message will be displayed. “__AGENT” is a special case. This binding is reserved for a 
proxy to a management agent. If this proxy points to an object on a server that no longer 



144 Chapter 13 • Configuration and Management

exists, the binding is removed. Otherwise, the management agent is queried for its 
managed objects, and Tools are created for them.



Appendices





147

Utilities

In this chapter, you will learn to:

® use the voyager utility to start a Voyager server from the command line

® use the igen utility to generate a default interface from a class

® use the cgen utility to translate IDL to and from Java

® use the pgen utility to generate the source or bytecode form of a proxy for a 
given class

A



148 Appendix A • Utilities

voyager

The voyager utility starts a Voyager server from the command line. To see usage 
information, type voyager with no arguments. A description of each argument follows:

® xurl

Include the URL that Voyager should use as one of the arguments. This is equivalent 
to Voyager.startup( xurl ).

® -a (arguments) option

Use -a filename to process lines in the given file as if they were additional 
command-line parameters.

® -b (bootstrap) classname

Use -b classname to load the specified class using the Voyager class loader and then 
execute its static main( String[] args ) method. All subsequent class loading will occur 
via the Voyager class loader and will leverage Voyager’s remote class loading 
capabilities. By default, args is equal to an empty array. To supply args to the method 
call, supply, specify the class within quotes followed by the individual arguments. 
For example, voyager -b “mypackage.MyClass 42 hi”.

® -c (class loading) option

Use -c url to enable network class loading from the specified URL. you can specify 
this option multiple times.

® -d (directory configuration) option

Use -d url to configure this Voyager server from the profile at the given directory 
URL.

® -f (file)

Use -f file with the -j option to specify a file in which directory information will be 
stored.

® -i (interpreter) option

By default, voyager is executed by java. To override this default, use the -i option 
followed by the name of the required interpreter. For example, if you are using the 
Microsoft development system, you can specify voyager -i jview.

Pro
Only

Pro
Only



Voyager ORB Developer Guide 149

® -j (jndi directory server)

Use -j root to configure this server as a JNDI Voyager directory server. This argument 
must be used in conjunction with the -f argument.

® -l (log) level

Use -l loglevel (silent, exceptions, verbose) to turn on log output at the specified level. 

® -m (map) option

Use -m idlClass javaClass to map an IDL entity to a Java class.

® -p (properties) option

Use -p filename to configure Voyager using the specified properties file after all the 
other command line options are processed.

® -q (quiet) option

By default, voyager displays a copyright notice. Use the -q option to disable this 
notice.

® -r (resource loading) option

Use -r to enable Voyager’s built-in HTTP server and allow it to serve classes to other 
remote Voyager servers. This option is equivalent to 
ClassManager.enableResourceServer().

® -s (security manager) option

Use this option to install a Voyager security manager. This option is equivalent to 
System.setSecurityManager( new VoyagerSecurityManager() ).

® -t (thread pool size) option

Use -t <int> to set the maximum number of idle threads in Voyager’s thread pool.

® -v (version) option

Use -v to print version information and exit.

® -x (extra parameters) option

Use -x to pass the remaining command line arguments through to the Java interpreter.

Pro
Only

Pro
Only



150 Appendix A • Utilities

igen

The igen utility creates a default interface from a class. The interface has all the public 
methods of the original class, and is named to the original class name prefixed with “I.” 
For a list of the igen run-time options, run igen from the command line with no 
parameters.

To use the igen utility, specify the class name without the .class or .java extension. igen 
searches the directories, .zip files, and .jar files in the CLASSPATH for the specified file and 
generates an interface for the class. If the current directory contains the source or object 
code of the original class, typing the full class name is optional. You can generate 
interfaces for multiple classes by naming the classes separated by a space on the 
command line.

By default, igen places interfaces created from java.* classes into the related 
com.objectspace.java.* package. The igen utility reminds you of this behavior with a note 
each time you run igen on a java.* class.

For example, to create the interface .\IVector from java.util.Vector, execute the igen utility as 
shown:

The igen utility generates an interface for all classes in the class’s hierarchy. For 
example, when igen is run on Hashtable, it generates IHashtable and IDictionary because 
Hashtable extends Dictionary.

A description of each igen argument follows:

® -d (directory) option

By default, igen places interfaces into the current working directory. To specify a root 
directory for igen to store the interfaces, use the -d option followed by the path of the 
directory you want to use. This option is analogous to the -d option of javac. 

>igen java.util.Vector 
igen 3.0, copyright objectspace 1997-1999
note: java.* interfaces are placed into com.objectspace.java.*
>_



Voyager ORB Developer Guide 151

For example, to create the interface \voyager\com\objectspace\java\util\IVector from 
java.util.Vector, execute the igen utility as shown:

® -i (interpreter) option

By default, igen is executed by java. To override this default, use the -i option followed 
by the name of the required interpreter. For example, if you are using the Microsoft 
development system, you can specify igen -i jview.

® -q (quiet) option

By default, igen displays a copyright notice. Use the -q option to disable this notice.

® -r (remote exception) option

Voyager supports two exception handling policies. It can throw Voyager-related 
exceptions, including network and class loading errors, as runtime exceptions 
(com.objectspace.voyager.RuntimeRemoteException) or as checked exceptions 
(java.rmi.RemoteException).

By default, igen generates each method to throw a runtime exception unless the 
original method explicitly throws a java.rmi.RemoteException or the -r option is 
specified.

® -v (verbose) option

By default, no status is printed as igen operates. Use the -v option to view status 
output.

® -x (extra parameters) option

Use -x to pass the remaining command line arguments through to the Java interpreter.

>igen java.util.Vector -d \voyager
igen 3.0, copyright objectspace 1997-1999
note: java.* interfaces are placed into com.objectspace.java.*
>_



152 Appendix A • Utilities

cgen

The cgen utility can translate IDL files to and from Java. For detailed information about 
this translation, consult the "Java to IDL" section in Appendix B.

For a list of the cgen run-time options, run cgen from the command line with no 
parameters.

To translate an IDL file to Java, execute cgen with a list of the IDL files. The file names 
should end with a .idl extension.

To translate a Java file into IDL, execute cgen with a list of .java and/or .class files, 
omitting any extension. The cgen utility searches the directories, .zip files, and .jar files in 
the CLASSPATH for the specified file and generates IDL for the class. If the current 
directory contains the source or object code of the original class, typing the full class 
name is optional. 

A description of each cgen option follows:

® -a (argument) option

Use -a filename to process lines in the given file as if they were additional 
command-line parameters.

® -d (directory) option

By default, cgen places interfaces created from .java files into the current working 
directory. The -d path option allows you to specify a different root directory in which 
to store the holder classes. This option is analogous to the -d option of javac.

® -f (flat) option

By default, cgen outputs IDL #include statements to match their module structure. Use 
the -f option to force a flat #include structure. For example, the IDL interface 
MyModule.MyInterface would be included using #include “MyInterface.idl” instead of 
#include “MyModule\MyInterface.idl”.

® -h (holder) option

By default, cgen creates holders for enums, structs, unions, interfaces, and typedefs 
of sequences and arrays. Use the -h option to disable automatic holder creation.

® -i (interpreter) option



Voyager ORB Developer Guide 153

By default, cgen is executed by java. To override this default, use the -i option 
followed by the name of the required interpreter. For example, if you are using the 
Microsoft development system, you can specify cgen -i jview.

® -I (Include) option

Use the -I path option to add the specified path to the list of directories that cgen 
searches when looking for #include files that are relative. By default, cgen only 
searches relative to the current directory.

® -m (map) option

Use -m idlClass javaClass to map an IDL entity to and from a Java class.

® -q (quiet) option

By default, cgen displays a copyright notice. Use the -q option to disable this notice.

® -r (remote) option

Use the -r option to use java.rmi.Remote instead of IRemote for pass-by-reference.

® -t (transaction) option

Use -t to make the IDL interface extend CosTransactions::TransactionalObject.

® -v (verbose) option

By default, no status is printed as cgen operates. Use the -v option to view status 
output.

® -x (extra parameters) option

Use -x to pass the remaining command line arguments through to the Java interpreter.



154 Appendix A • Utilities

pgen

The pgen utility generates the source or bytecode form of a proxy for a given class.

Manual Proxy Class Generation

Dynamic proxy generation is most useful as an aid to development. Eliminating manual 
proxy class generation, and the associated class synchronization problems, results in a 
significant increase in development speed. Use manual proxy generation when 
performance is critical and when proxy classes need to be post-processed.

Performance

Generation of the average proxy class typically takes about 250 milliseconds. After the 
proxy class for a given class has been generated, it never needs to be generated again for 
the lifetime of the VM process. Though this one-time hit is rarely noticeable over the 
lifetime of a proxy class, it can have a noticeable impact on the perceived system 
performance at proxy generation time, particularly when many classes are processed at 
once, such as in system startup. By generating proxy classes manually, proxy class 
loading becomes equivalent to loading of any class, and is unnoticeable. 

Typically, you should use automatic proxy class generation during development, and 
manual proxy class generation for system deployment.

Post-Processing

Some designs require modifications of each proxy class to allow custom functionality. 
For example, you can modify each proxy method to print to a log when invoked. These 
modifications are impossible to make to proxies generated on the fly. By generating 
proxy source code, you can substitute your own logic for the default proxy logic, 
compile the proxy, and allow each Voyager application to load the custom proxy class.

pgen Utility Options

Use the pgen utility to generate the source or bytecode form of a proxy for a given class. 
For a list of the pgen run-time options, run pgen from the command line with no 
parameters.

To create the proxy class for java.util.Vector, execute the pgen utility as shown:

Pro
Only



Voyager ORB Developer Guide 155

You can generate the proxy classes for multiple classes by naming the classes separated 
by a space on the command line.

® -d (directory) option

By default, pgen places proxy classes into the current working directory. The -d 
option allows you to specify a different directory in which to store the proxy class. 
This option is analogous to the -d option of javac.

® -i (interpreter) option

By default, pgen is executed by java. To override this default, use the -i option 
followed by the name of the required interpreter. For example, if you are using the 
Microsoft development system, you can specify pgen -i jview.

® -q (quiet) option

By default, pgen displays a copyright notice. Use the -q option to disable this notice.

® -v (verbose) option

By default, no status is displayed as pgen operates. Use the -v option to view status 
output.

® -s (source) option

By default, pgen generates executable Java .class files. However, to facilitate manual 
post-processing of proxies, pgen allows Java source code to be generated instead. Use 
-s option to generate the proxy classes in source form.

>pgen java.util.Vector
pgen 3.0, copyright objectspace 1997-1999
note: java.* proxy classes are placed into com.objectspace.java.*
>_



156 Appendix A • Utilities



157

Examples

This section contains an explanation, source code, and output for the 
examples in this manual.

B



158 Appendix B • Examples

Running the Examples

After you install Voyager, the source code for these examples is located in the examples 
directories. Each example description specifies the directory in which the example 
resides. The CLASSPATH must include voyage to run the examples.

Each example is presented as follows:

1. The command(s) used to prepare the example program for execution are presented. 
Commands that generate interfaces, generate holders, and compile Java source code 
belong in this category.

2. The command(s) used to run the example program are presented, followed by the 
program output.

3. The source code for the example programs is listed.

Commands the user types and the resulting output displayed are presented in a window 
as shown:.

Sometimes, not all output from a command displays to the screen at once. When 
subsequent output is presented in a window, the original command and output text are 
shaded gray, and new output is presented in bold. For example:

>Command typed at prompt
Resulting output displayed to screen
>

>Command typed at prompt
Resulting output displayed to screen
More output displayed to screen
>



Voyager ORB Developer Guide 159

Basics

The examples in this section demonstrate basic Voyager functions like messaging, 
remote construction, naming and lookup, and remote class loading.

Basics1 Example 

The Basics1 example uses Voyager’s remote construction mechanism to construct a 
Stockmarket object in a remote Voyager server. It then sends the object messages. The last 
message demonstrates how exceptions thrown on the server are transparently 
propagated to the client. 

From examples\stockmarket, compile the stock market files:

javac IStockmarket.java Stockmarket.java

From examples\basics, compile the example program:

javac Basics1.java

Start a Voyager server on port 8000 in one window. Run Basics1 in a second window.

Window1

Note: The remote server does not terminate automatically. A Voyager server must be 
terminated explicitly, preferably by using Voyager.shutdown().

>voyager 8000
voyager 3.0, copyright objectspace 1997-1999
construct stockmarket
news: Sun releases Java



160 Appendix B • Examples

Window2

The source code for IStockmarket.java, Stockmarket.java, and Basics1.java follows. 
IStockmarket and Stockmarket are used in other examples throughout the guide, but their 
source is only listed here.

Interface examples\stockmarket\IStockmarket.java
// copyright 1997, 1998 objectspace

package examples.stockmarket;

public interface IStockmarket
  {
  int quote( String symbol );
  int buy( int shares, String symbol );
  int sell( int shares, String symbol );
  void news( String announcement );
  }

Class examples\stockmarket\Stockmarket.java
// copyright 1997, 1998 objectspace

package examples.stockmarket;

import java.util.*;
import java.io.*;

public class Stockmarket implements IStockmarket, Serializable
  {
  static Random random = new Random();
  private Hashtable prices = new Hashtable(); // symbol -> price

 >java examples.basics.Basics1
sun share price = 103
bought 10 shares of SUN for 960
java.lang.IllegalArgumentException: share count < 0

>



Voyager ORB Developer Guide 161

  public Stockmarket()
    {
    System.out.println( “construct stockmarket” );
    }

  public int quote( String symbol )
    {
    Integer price = (Integer) prices.get( symbol ); // current price

    if( price == null )
      {
      // calculate random initial price 20..120
      price = new Integer( Math.abs( random.nextInt() ) % 100 + 20 );
      }
    else
      {
      // raise or lower the price by up to 20%
      double factor = 1.0 + (random.nextInt() % 20) / 100.0;
      price = new Integer( (int) (price.intValue() * factor) );
      }

    prices.put( symbol, price ); // store new price
    return price.intValue(); // return new price of stock
    }

  public int sell( int shares, String symbol )
    {
    if( shares < 0 )
      throw new IllegalArgumentException( “share count < 0” );

    return shares * quote( symbol ); // return total 
    }

  public int buy( int shares, String symbol )
    {
    if( shares < 0 )
      throw new IllegalArgumentException( “share count < 0” );

    return shares * quote( symbol ); // return total
    }

  public void news( String announcement )



162 Appendix B • Examples

    {
    System.out.println( “news: “ + announcement ); // display news
    }
  }

Program examples\basics\Basics1.java
// copyright 1997-1999 objectspace

package examples.basics;

import examples.stockmarket.*;
import com.objectspace.voyager.*;

public class Basics1
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup(); // startup as client
      // create a remote stockmarket
      final String classname = “examples.stockmarket.Stockmarket”;
      IStockmarket market = (IStockmarket) Factory.create( classname, “//localhost:8000” );
      // send messages to the remote object
      market.news( “Sun releases Java” );
      System.out.println( “sun share price = “ + market.quote( “SUN” ) );
      int buyprice = market.buy( 10, “SUN” );
      System.out.println( “bought 10 shares of SUN for “ + buyprice );
      market.sell( -4, “SUN” ); // cause an exception
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }



Voyager ORB Developer Guide 163

Basics2A and Basics2B Examples 

The Basics2A and Basics2B examples demonstrate sending a remote message to a proxy 
obtained by a Namespace lookup. The Basics2A program exports the object to a specified 
port and binds the associated proxy into the NameSpace. Basics2B looks up the object and 
sends it a message.

From examples\basics, compile the example program:

javac Basics2A.java Basics2B.java

Run Basics2A in one window. Run Basics2B in a second window.

Window1

Window2

The source code for Basics2A.java and Basics2B.java follows: 

Program examples\basics\Basics2A.java
// copyright 1997-1999 objectspace

package examples.basics;

import examples.stockmarket.*;
import com.objectspace.voyager.*;

public class Basics2A

>java examples.basics.Basics2A
construct stockmarket
news: Sun releases Java

>java examples.basics.Basics2B

>



164 Appendix B • Examples

  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();
      // export a stockmarket on port 9000
      IStockmarket market = (IStockmarket) Proxy.export( new Stockmarket(), “9000” );
      // bind “NASDAQ” to the stockmarket
      Namespace.bind( “9000/NASDAQ”, market );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }
    }
  }

Program examples\basics\Basics2B.java
// copyright 1997-1999 objectspace

package examples.basics;

import examples.stockmarket.*;
import com.objectspace.voyager.*;

public class Basics2B
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();
      // obtain a proxy to the object on port 9000 with symbol “NASDAQ”
      IStockmarket market = (IStockmarket) Namespace.lookup( “//localhost:9000/NASDAQ” );
      // send a message to the remote object
      market.news( “Sun releases Java” );
      }
    catch( Exception exception )
      {



Voyager ORB Developer Guide 165

      System.err.println( exception );
      }
    }
  }



166 Appendix B • Examples

Dynamic Aggregation

The examples in this section explain Voyager’s dynamic aggregation framework. 

Aggregation1A and Aggregation1B Examples 

These examples demonstrate facet creation and remote access of facets. An Account 
facet is added to an Employee object in Aggregation1A. It is then accessed remotely in 
Aggregation1B.

Compile all .java files in examples\aggregation:

javac *.java

Run the Aggregation1A example in one window. Run Aggregation1B in a second window.

Window1

Window2

The source code for IEmployee.java, Employee.java, IAccount.java, Account.java, 
Aggregation1A.java, and Aggregation1B.java follows:

Interface examples\aggregation\IEmployee.java
// copyright 1997-1999 objectspace

>java examples.aggregation.Aggregation1A
primary = Employee( joe, 234-44-2678 )
facet 0 = Account( 2000 )

>java examples.aggregation.Aggregation1B
account = Account( 2000 )

>



Voyager ORB Developer Guide 167

package examples.aggregation;

public interface IEmployee
  {
  String getName();
  String getSSN();
  }

Class examples\aggregation\Employee.java
// copyright 1997-1999 objectspace

package examples.aggregation;

public class Employee implements IEmployee, com.objectspace.voyager.IRemote
  {
  String name;
  String ssn;

  public Employee( String name, String ssn )
    {
    this.name = name;
    this.ssn = ssn;
    }

  public String toString()
    {
    return “Employee( “ + name + “, “ + ssn + “ )”;
    }

  public String getName()
    {
    return name;
    }

  public String getSSN()
    {
    return ssn;
    }
  }



168 Appendix B • Examples

Interface examples\aggregation\IAccount.java
// copyright 1997-1999 objectspace

package examples.aggregation;

public interface IAccount
  {
  void deposit( int amount );
  void withdraw( int amount );
  int getBalance();
  }

Class examples\aggregation\Account.java 
// copyright 1997-1999 objectspace

package examples.aggregation;

public class Account implements IAccount
  {
  int balance;

  public String toString()
    {
    return “Account( “ + balance + “ )”;
    }

  public void deposit( int amount )
    {
    balance += amount;
    }

  public void withdraw( int amount )
    {
    if( amount > balance ) 
      throw new IllegalArgumentException( “only have $” + amount );

    balance -= amount;
    }

  public int getBalance()



Voyager ORB Developer Guide 169

    {
    return balance;
    }
  }

Program examples\aggregation\Aggregation1A.java
// copyright 1997-1999 objectspace

package examples.aggregation;

import com.objectspace.lib.facets.*;
import com.objectspace.voyager.*;

public class Aggregation1A
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup( “8000” );
      IEmployee employee = new Employee( “joe”, “234-44-2678” );
      IFacets facets = Facets.of( employee );
      IAccount account = (IAccount) facets.of( “examples.aggregation.IAccount” );
      account.deposit( 2000 );
      System.out.println( “primary = “ + facets.getPrimary() );
      Object[] array = facets.getFacets();

      for( int i = 0; i < array.length; i++ )
        System.out.println( “facet “ + i + “ = “ + array[ i ] );

      Namespace.bind( “Joe”, employee );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }
    }
  }



170 Appendix B • Examples

Program examples\aggregation\Aggregation1B.java
// copyright 1997-1999 objectspace

package examples.aggregation;

import com.objectspace.lib.facets.*;
import com.objectspace.voyager.*;

public class Aggregation1B
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();
      IEmployee employee = (IEmployee) Namespace.lookup( “//localhost:8000/Joe” );
      IAccount account = (IAccount) Facets.of( employee ).of( “examples.aggregation.IAccount” );
      System.out.println( “account = “ + account );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }

Aggregation2A and Aggregation2B Examples 

These examples differ from the "Aggregation1A and Aggregation1B Examples" 
because they demonstrate the use of the of() and get() convenience methods. Not only do 
they present a cleaner API for frequently used aggregation operations, they also ensure 
compile-time checking of facet class types, as opposed to run-time parsing of String 
names.

Assuming the files have been compiled for the previous example, run the Aggregation2A 
example in one window. Run Aggregation2B in a second window.



Voyager ORB Developer Guide 171

Window1

Window2

The source code for ISecurity.java, Security.java, Aggregation2A.java and Aggregation2B.java 
follows: 

Interface examples\aggregation\ISecurity.java
// copyright 1997-1999 objectspace

package examples.aggregation;

public interface ISecurity
  {
  int getClearance();
  void setClearance( int clearance );
  String getCode();
  void setCode( String code );
  }

Class examples\aggregation\Security.java
// copyright 1997-1999 objectspace

package examples.aggregation;

public class Security implements ISecurity

>java examples.aggregation.Aggregation2A
employee = Employee( ted, 224-55-1567 )
security = Security( 1, putty )

 >java examples.aggregation.Aggregation2B
security = Security( 1, putty )

 >



172 Appendix B • Examples

  {
  int clearance;
  String code;

  public int getClearance()
    {
    return clearance;
    }

  public void setClearance( int clearance )
    {
    this.clearance = clearance;
    }

  public String getCode()
    {
    return code;
    }

  public void setCode( String code )
    {
    this.code = code;
    }

  public String toString()
    {
    return “Security( “ + clearance + “, “ + code + “ )”;
    }

  static public ISecurity get( Object object )
    {
    // convenience method
    return (ISecurity) com.objectspace.voyager.Facets.get( object, ISecurity.class );
    }

  static public ISecurity of( Object object ) throws ClassCastException
    {
    // convenience method
    return (ISecurity) com.objectspace.voyager.Facets.of( object, ISecurity.class );
    }
  }



Voyager ORB Developer Guide 173

Program examples\aggregation\Aggregation2A.java
// copyright 1997-1999 objectspace

package examples.aggregation;

import com.objectspace.lib.facets.*;
import com.objectspace.voyager.*;

public class Aggregation2A
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup( “8000” );
      IEmployee employee = new Employee( “ted”, “224-55-1567” );
      ISecurity security = Security.of( employee );
      security.setClearance( 1 );
      security.setCode( “putty” );
      System.out.println( “employee = “ + employee );
      System.out.println( “security = “ + security );
      Namespace.bind( “Ted”, employee );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }
    }
  }

Program examples\aggregation\Aggregation2B.java
// copyright 1997-1999 objectspace

package examples.aggregation;

import com.objectspace.voyager.*;

public class Aggregation2B
  {
  public static void main( String[] args )



174 Appendix B • Examples

    {
    try
      {
      Voyager.startup();
      IEmployee employee = (IEmployee) Namespace.lookup( “//localhost:8000/Ted” );
      ISecurity security = Security.of( employee );
      System.out.println( “security = “ + security );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }

Aggregation3 Example 

This example demonstrates custom facet to class mapping. In the example, instances of 
class Employee get a custom facet of type EmployeeBonusPlan, whereas instances of 
Programmer get a custom facet of type ProgrammerBonusPlan. An attempt is made to get a 
BonusPlan facet for an instance of String. Because no custom facet class is found using the 
class-matching rules, and there is no default BonusPlan facet class, an exception is 
thrown. 

Assuming the files have been compiled for the first aggregation example, run the 
Aggregation3 example.

Window1

>java examples.aggregation.Aggregation3
plan1 = examples.aggregation.EmployeeBonusPlan@1f4585
plan2 = examples.aggregation.ProgrammerBonusPlan@1f3a24
java.lang.ClassCastException: java.lang.ClassNotFoundException: 
examples.aggregation.BonusPlan



Voyager ORB Developer Guide 175

The source code for IProgrammer.java, Programmer.java, IBonusPlan.java, BonusPlan.java, 
EmployeeBonusPlan.java, ProgrammerBonusPlan.java, and Aggregation3.java follows:

Interface examples\aggregation\IProgrammer.java
// copyright 1997-1999 objectspace

package examples.aggregation;

public interface IProgrammer extends IEmployee
  {
  String getLanguage();
  }

Class examples\aggregation\Programmer.java
// copyright 1997-1999 objectspace

package examples.aggregation;

public class Programmer extends Employee implements IProgrammer
  {
  String language;

  public Programmer( String name, String ssn, String language )
    {
    super( name, ssn );
    this.language = language;
    }

  public String getLanguage()
    {
    return language;
    }
  }

Interface examples\aggregation\IBonusPlan.java
// copyright 1997-1999 objectspace

package examples.aggregation;

public interface IBonusPlan
  {
  int getBonus();



176 Appendix B • Examples

  }

Class examples\aggregation\BonusPlan.java
// copyright 1997-1999 objectspace

package examples.aggregation;

public class BonusPlan
  {
  static public IBonusPlan get( Object object )
    {
    // convenience method
    return (IBonusPlan) com.objectspace.voyager.Facets.get( object, IBonusPlan.class );
    }

  static public IBonusPlan of( Object object ) throws ClassCastException
    {
    // convenience method
    return (IBonusPlan) com.objectspace.voyager.Facets.of( object, IBonusPlan.class );
    }
  }

Class examples\aggregation\EmployeeBonusPlan.java
// copyright 1997-1999 objectspace

package examples.aggregation;

public class EmployeeBonusPlan implements IBonusPlan
  {
  int bonus = 1000; // starting bonus

  public int getBonus()
    {
    int tmp = bonus;
    bonus += 1000; // bump by 1000 for next time
    return tmp;
    }
  }

Class examples\aggregation\ProgrammerBonusPlan.java
// copyright 1997-1999 objectspace



Voyager ORB Developer Guide 177

package examples.aggregation;

public class ProgrammerBonusPlan implements IBonusPlan
  {
  int bonus = 500; // initial bonus

  public int getBonus()
    {
    int tmp = bonus;
    bonus *= 2; // double for next time
    return tmp;
    }
  }

Program examples\aggregation\Aggregation3.java
// copyright 1997-1999 objectspace

package examples.aggregation;

import com.objectspace.voyager.*;

public class Aggregation3
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();
      IEmployee employee = new Employee( “sandra”, “234-33-7812” );
      IProgrammer programmer = new Programmer( “jeff”, “211-45-1458”, “java” );
      // get/add the appropriate facet for each employee
      IBonusPlan plan1 = BonusPlan.of( employee );
      System.out.println( “plan1 = “ + plan1 );
      IBonusPlan plan2 = BonusPlan.of( programmer );
      System.out.println( “plan2 = “ + plan2 );
      // exception since there is no matching facet type
      IBonusPlan plan3 = BonusPlan.of( “hi” );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }



178 Appendix B • Examples

    Voyager.shutdown();
    }
  }

Aggregation4 Example 

This example demonstrates the facet-aware facet class ManagerBonusPlan. When an 
instance of BonusPlan is aggregated with an instance of Manager, the ManagerBonusPlan 
class is chosen. Because it implements IFacet and provides the correct constructor, it is 
constructed with the Facets object of the Manager primary object.

Assuming the files have been compiled for the first aggregation example, run the 
Aggregation4 example.

Window1

The source code for IManager.java, Manager.java, ManagerBonusPlan.java, and 
Aggregation4.java follows:

Interface examples\aggregation\IManager.java
// copyright 1997-1999 objectspace

package examples.aggregation;

import java.util.Vector;

public interface IManager extends IEmployee
  {
  void addEmployee( IEmployee employee );
  Vector getEmployees();
  }

>java examples.aggregation.Aggregation4
create manager bonus plan facet
primary = Employee( deborah, 622-45-8711 )
plan = examples.aggregation.ManagerBonusPlan@1f46f4



Voyager ORB Developer Guide 179

Class examples\aggregation\Manager.java
// copyright 1997-1999 objectspace

package examples.aggregation;

import java.util.Vector;

public class Manager extends Employee implements IManager
  {
  Vector employees = new Vector();

  public Manager( String name, String ssn )
    {
    super( name, ssn );
    }

  public void addEmployee( IEmployee employee )
    {
    employees.addElement( employee );
    }

  public Vector getEmployees()
    {
    return employees;
    }
  }

Class examples\aggregation\ManagerBonusPlan.java
// copyright 1997-1999 objectspace

package examples.aggregation;

import com.objectspace.lib.facets.*;

public class ManagerBonusPlan implements IBonusPlan, IFacet
  {
  public ManagerBonusPlan( IFacets facets )
    {
    System.out.println( “create manager bonus plan facet” );
    System.out.println( “primary = “ + facets.getPrimary() );
    }



180 Appendix B • Examples

  public int getBonus()
    {
    return 0; // heh, heh!
    }

  public boolean isTransient()
    {
    return true; // facet is stateless, so can discard
    }
  }

Program examples\aggregation\Aggregation4.java
// copyright 1997-1999 objectspace

package examples.aggregation;

import com.objectspace.voyager.*;

public class Aggregation4
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();
      IManager manager = new Manager( “deborah”, “622-45-8711” );
      IBonusPlan plan = BonusPlan.of( manager );
      System.out.println( “plan = “ + plan );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }



Voyager ORB Developer Guide 181

Advanced Messaging

The examples in this section demonstrate more advanced forms of remote messaging 
such as one-way, future, remote static, and dynamic synchronous invocation.

Message1 Example 

The Message1 example demonstrates dynamic invocation for remote static and instance 
method invocation. It creates an Alarm object in a remote Voyager server. It then invokes 
an instance method synchronously. Next, it invokes a static method on the Alarm class in 
the remote Voyager server.

From examples\message, compile the example program:

javac IAlarm.java Alarm.java Message1.java

Start a Voyager server on port 8000 in one window. Run Message1 in a second window.

Window1

Window2

The source code for IAlarm.java, Alarm.java, and Message1.java follows:

>voyager 8000
voyager 3.0, copyright objectspace 1997-1999
delay( 5000 )
done!
wakeup( 5000 )
done!

>java examples.message.Message1
result1 = 5000
result2 = 5000

>



182 Appendix B • Examples

Interface examples\message\IAlarm.java
// copyright 1997-1999 objectspace

package examples.message;

public interface IAlarm
  {
  int delay( int milliseconds );
  }

Class examples\message\Alarm.java
// copyright 1997-1999 objectspace

package examples.message;

public class Alarm implements IAlarm
  {
  public int delay( int milliseconds )
    {
    System.out.println( “delay( “ + milliseconds + “ )” );

    if( milliseconds < 0 )
      throw new IllegalArgumentException( “delay < 0” );

    try{ Thread.sleep( milliseconds ); } catch( InterruptedException exception ) {}
    System.out.println( “done!” );
    return milliseconds;
    }

  public static int wakeup( int milliseconds )
    {
    System.out.println( “wakeup( “ + milliseconds + “ )” );
    try{ Thread.sleep( milliseconds ); } catch( InterruptedException exception ) {}
    System.out.println( “done!” );
    return milliseconds;
    }

  public static Alarm newAlarm()
    {
    return new Alarm();
    }



Voyager ORB Developer Guide 183

  }

Program examples\message\Message1.java
// copyright 1997-1999 objectspace

package examples.message;

import com.objectspace.voyager.*;
import com.objectspace.voyager.message.*;

public class Message1
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();
      // create a remote alarm
      IAlarm alarm = (IAlarm) Factory.create( “examples.message.Alarm”, “//localhost:8000” );

      // invoke sync instance method
      Object[] delay = new Object[]{ new Integer( 5000 ) };
      Result result1 = Sync.invoke( alarm, “delay”, delay );
      System.out.println( “result1 = “ + result1.readInt() );
      // invoke sync class method
      Result result2 = Sync.invoke( “examples.message.Alarm”, “wakeup”, delay, “//localhost:8000” );
      System.out.println( “result2 = “ + result2.readInt() );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }

Message2 Example 

The Message2 example demonstrates invocation of a one-way message. It creates an 
Alarm object in a remote Voyager server. It then invokes a one-way instance method on 



184 Appendix B • Examples

the alarm. The example pauses one second to delay shutdown to allow time for the 
one-way invocation to fully flush from the program.

From examples\message, compile the example program:

javac Message2.java

Start a Voyager server on port 8000 in one window. Run Message2 in a second window.

Window1

Window2

The source code for Message2.java follows: 

Program examples\message\Message2.java
// copyright 1997-1999 objectspace

package examples.message;

import com.objectspace.voyager.*;
import com.objectspace.voyager.message.*;

public class Message2
  {
  public static void main( String[] args )
    {
    try

>voyager 8000
voyager 3.0, copyright objectspace 1997-1999
delay( 5000 )
done!

>java examples.message.Message2

 >



Voyager ORB Developer Guide 185

      {
      Voyager.startup();
      // create remote alarn
      IAlarm alarm = (IAlarm) Factory.create( “examples.message.Alarm”, “//localhost:8000” );
      // invoke oneway instance method
      OneWay.invoke( alarm, “delay”, new Object[]{ new Integer( 5000 ) } );
      Thread.sleep( 1000 ); // allow message to flush
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }

Message3 Example 

The Message3 example demonstrates invocation of a future message. It creates an Alarm 
object in a remote Voyager server. It then invokes a future instance method on the alarm. 
Because the future invocation is asynchronous, the program can to execute other code 
while the message is being delivered. It then executes a blocking read on the result. 
Next, the program demonstrates how reading a result from a future can re-throw any 
exception that occurs during delivery or execution of the future message.

From examples\message, compile the example program:

javac Message3.java

Start a Voyager server on port 8000 in one window. Run Message3 in a second window.

Window1

 >voyager 8000
voyager 3.0, copyright objectspace 1997-1999
delay( 5000 )
done!
delay( -1 )



186 Appendix B • Examples

Window2

The source code for Message3.java follows: 

Program examples\message\Message3.java
// copyright 1997-1999 objectspace

package examples.message;

import com.objectspace.voyager.*;
import com.objectspace.voyager.message.*;

public class Message3
  {
  public static void main( String args[] )
    {
    try
      {
      Voyager.startup();
      IAlarm alarm = (IAlarm) Factory.create( “examples.message.Alarm”, “//localhost:8000” );

      // demonstrate blocking reads
      try
        {
        System.out.println( “about to send delay( 5000 )” );
        Result result = Future.invoke( alarm, “delay”, new Object[]{ new Integer( 5000 ) } );

        // check to see if the return value is available
        System.out.println( “available = “ + result.isAvailable() );

>java examples.message.Message3
about to send delay( 5000 )
available = false
result = 5000
available = true
exception = false
about to send delay( -1 )
alarm.delay( -1 ) -> java.lang.IllegalArgumentException: delay < 0

>



Voyager ORB Developer Guide 187

        // execute a blocking read for the return value
        int value = result.readInt();

        // display the return value and the current status of the result
        System.out.println( “result = “ + value );
        System.out.println( “available = “ + result.isAvailable() );
        System.out.println( “exception = “ + result.isException() );
        }
      catch( Exception exception )
        {
        System.err.println( “alarm.delay( 5000 ) -> “ + exception );
        }

      // demonstrate a thrown exception
      try
        {
        System.out.println( “about to send delay( -1 )” );
        Result result = Future.invoke( alarm, “delay”, new Object[]{ new Integer( -1 ) } );
        int value = result.readInt();
        System.out.println( “result = “ + value );
        }
      catch( Exception exception )
        {
        System.err.println( “alarm.delay( -1 ) -> “ + exception );
        }
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }

Message4 Example 

The Message4 example demonstrates invocation of a future message with listeners. It 
creates an Alarm object in a remote Voyager server. It then invokes a future instance 



188 Appendix B • Examples

method on the alarm, passing in an array of listeners. These listeners receive a callback 
when the result of the future invocation is received.

From examples\message, compile the example program:

javac Message4.java

Start a Voyager server on port 8000 in one window. Run Message4 in a second window.

Window1

Window2

The source code for Message4.java follows: 

Program examples\message\Message4.java
// copyright 1997-1999 objectspace

package examples.message;

 >voyager 8000
voyager 3.0, copyright objectspace 1997-1999
delay( 5000 )
done!

>java examples.message.Message4
send delay( 5000 )
listener gets result event
event source = Result( 5000 )
object = 5000
exception = false
listener gets result event
event source = Result( 5000 )
object = 5000
exception = false
value = 5000

>



Voyager ORB Developer Guide 189

import com.objectspace.voyager.*;
import com.objectspace.voyager.message.*;

public class Message4
  {
  public static void main( String args[] )
    {
    try
      {
Voyager.startup();
      IAlarm alarm = (IAlarm) Factory.create( “examples.message.Alarm”, “//localhost:8000” );

      // create two listeners capable of getting a callback when the invocation completes
      ResultListener[] listeners = new ResultListener[ 2 ];
      listeners[ 0 ] = new MyResultListener();
      listeners[ 1 ] = new MyResultListener();
      
      // add as a listener to the result of the future invocation
      System.out.println( “send delay( 5000 )” );
      Result result = Future.invoke( alarm, “delay”, new Object[]{ new Integer( 5000 ) }, false, 0, listeners );
      System.out.println( “value = “ + result.readInt() );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }

class MyResultListener implements ResultListener
  {
  public void resultReceived( ResultEvent event )
    {
    System.out.println( “listener gets result event” );
    System.out.println( “event source = “ + event.getSource() );
    System.out.println( “object = “ + event.getObject() );
    System.out.println( “exception = “ + event.isException() );
    }
  }



190 Appendix B • Examples

Message5 Example 

The Message5 example demonstrates invocation of a future message with two threads 
blocking on the result. When the result of the future invocation is received, both 
blocking threads read the return value.

From examples\message, compile the example program:

javac Message5.java

Start a Voyager server on port 8000 in one window. Run Message5 in a second window.

Window1

Window2

The source code for Message5.java follows: 

Program examples\message\Message5.java
// copyright 1997-1999 objectspace

package examples.message;

import com.objectspace.voyager.*;
import com.objectspace.voyager.message.*;

 >voyager 8000
voyager 3.0, copyright objectspace 1997-1999
delay( 5000 )
done!

>java examples.message.Message5
about to send delay( 5000 )
waiting...
waiting...
reader thread gets 5000
reader thread gets 5000

>



Voyager ORB Developer Guide 191

public class Message5
  {
  public static void main( String args[] )
    {
    try
      {
      Voyager.startup();
      IAlarm alarm = (IAlarm) Factory.create( “examples.message.Alarm”, “//localhost:8000” );
      System.out.println( “about to send delay( 5000 )” );
      Result result = Future.invoke( alarm, “delay”, new Object[] { new Integer( 5000 ) } );
      
      // simulate two different application threads blocking on the same future invocation
      Thread thread1 = new ReaderThread( result );
      thread1.start();
      Thread thread2 = new ReaderThread( result );
      thread2.start();
      thread1.join();
      thread2.join();
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }

class ReaderThread extends Thread
  {
  Result result;

  ReaderThread( Result result )
    {
    this.result = result;
    }

  public void run()
    {
    try
      {



192 Appendix B • Examples

      System.out.println( “waiting...” );
      int value = result.readInt();
      System.out.println( “reader thread gets “ + value );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }
    }
  }

Message6 Example 

The Message6 example demonstrates invocation of a future message with a timeout. The 
message is designed to take longer than the timeout value. Consequently, a 
TimeoutException is thrown.

From examples\message, compile the example program:

javac Message6.java

Start a Voyager server on port 8000 in one window. Run Message6 in a second window.

Window1

Window2

The source code for Message6.java follows:

 >voyager 8000
voyager 3.0, copyright objectspace 1997-1999
delay( 5000 )
done!

>java examples.message.Message6
send delay( 5000 )
com.objectspace.voyager.message.TimeoutException: future timed out after 3000ms

>



Voyager ORB Developer Guide 193

Program examples\message\Message6.java
// copyright 1997-1999 objectspace

package examples.message;

import com.objectspace.voyager.*;
import com.objectspace.voyager.message.*;

public class Message6
  {
  public static void main( String args[] )
    {
    try
      {
      Voyager.startup();
      IAlarm alarm = (IAlarm) Factory.create( “examples.message.Alarm”, “//localhost:8000” );
      System.out.println( “send delay( 5000 )” );
      // invoke method with 3 second timeout
      Result result = Future.invoke( alarm, “delay”, new Object[] { new Integer( 5000 ) }, false, 3000, null );
      int value = result.readInt();
      System.out.println( “value = “ + value );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }

Message7 Example 

The Message7 example demonstrates a special form of dynamic invocation that returns 
results by reference instead of by value. The program invokes a static method on the 
Alarm class in a remote Voyager server. This method returns a new Alarm object; however, 
the invocation uses return by reference, so the client receives a proxy to the remote 
alarm object instead of the alarm object itself.

From examples\message, compile the example program:



194 Appendix B • Examples

javac Message7.java

Start a Voyager server on port 8000 in one window. Run Message7 in a second window.

Window1

Window2

The source code for Message7.java follows: 

Program examples\message\Message7.java
// copyright 1997-1999 objectspace

package examples.message;

import com.objectspace.voyager.*;
import com.objectspace.voyager.message.*;

public class Message7
  {
  public static void main( String args[] )
    {
    try
      {
      Voyager.startup();
      // request a proxy to the result
      Result result = Sync.invoke( “examples.message.Alarm”, “newAlarm”, null, “//localhost:8000”, true );

 >voyager 8000
voyager 3.0, copyright objectspace 1997-1999
delay( 5000 )
done!

>java examples.message.Message7

>



Voyager ORB Developer Guide 195

      // read the proxy to the return result
      IAlarm alarm = (IAlarm) result.readObject();
      // alarm is a proxy to the remote result
      alarm.delay( 5000 );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }



196 Appendix B • Examples

Multicast and Publish/Subscribe

The examples in this section demonstrate Voyager’s multicast and publish/subscribe 
features.

Space1 Example 

The Space1 example demonstrates constructing and populating a space. It first constructs 
a subspace in a remote Voyager server on port 8000 and populates it with Consumer 
objects constructed in the same server. It then constructs another subspace in a remote 
Voyager server on port 9000 and populates it with Consumer objects. Finally, the two 
subspaces are connected to form a single distributed space.

Compile all .java files in examples\space:

javac *.java

Start a Voyager server on port 8000 in one window and a Voyager server on port 9000 in 
a second window. Run Space1 in a third window.

Window1

Window2

>voyager 8000
voyager 3.0, copyright objectspace 1997-1999
created Consumer( jack )
created Consumer( sasha )

 >voyager 9000
voyager 3.0, copyright objectspace 1997-1999
created Consumer( simon )
created Consumer( galina )



Voyager ORB Developer Guide 197

Window3

The source code for IConsumer.java, Consumer.java, and Space1.java follows. See the 
"Space2 Example" for the NewsListener source code.

Interface examples\space\IConsumer.java
// copyright 1997-1999 objectspace

package examples.space;

public interface IConsumer extends NewsListener
  {
  void news( NewsEvent event );
  void news( String string );
  }

Class examples\space\Consumer.java
// copyright 1997-1999 objectspace

package examples.space;

public class Consumer implements IConsumer
  {
  String name;

  public Consumer( String name )
    {
    this.name = name;
    System.out.println( “created “ + this );
    }

  public String toString()
    {

>java examples.space.Space1

>



198 Appendix B • Examples

    return “Consumer( “ + name + “ )”;
    }

  public void news( NewsEvent event )
    {
    System.out.println( this + “ gets news “ + event );
    }

  public void news( String string )
    {
    System.out.println( this + “ gets news “ + string );
    }
  }

Program examples\space\Space1.java
// copyright 1997-1999 objectspace

package examples.space;

import com.objectspace.voyager.*;
import com.objectspace.voyager.space.*;

public class Space1
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();

      ISubspace subspace1 = (ISubspace) Factory.create( “com.objectspace.voyager.space.Subspace”, 
“//localhost:8000/Subspace1” );
      IConsumer consumer1 = (IConsumer) Factory.create( “examples.space.Consumer”, new Object[]{ 
“jack” }, “//localhost:8000/Jack” );
      IConsumer consumer2 = (IConsumer) Factory.create( “examples.space.Consumer”, new Object[]{ 
“sasha” }, “//localhost:8000/Sasha” );
      subspace1.add( consumer1 );
      subspace1.add( consumer2 );

      ISubspace subspace2 = (ISubspace) Factory.create( “com.objectspace.voyager.space.Subspace”, 
“//localhost:9000/Subspace2” );



Voyager ORB Developer Guide 199

      IConsumer consumer3 = (IConsumer) Factory.create( “examples.space.Consumer”, new Object[]{ 
“simon” }, “//localhost:9000/Simon” );
      IConsumer consumer4 = (IConsumer) Factory.create( “examples.space.Consumer”, new Object[]{ 
“galina” }, “//localhost:9000/Galina” );
      subspace2.add( consumer3 );
      subspace2.add( consumer4 );

      subspace1.connect( subspace2 );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }

Space2 Example 

The Space2 example demonstrates two forms of distributed multicast. The first form 
demonstrates multicast of standard Java method invocations. The second form 
demonstrates distributed JavaBeans-style event multicasting. Both multicasts are sent 
into the space constructed in Space1 by using one of the subspaces as a gateway.

Compile all .java files in examples\space:

javac *.java

Start a Voyager server on port 8000 in one window and a Voyager server on port 9000 in 
a second window. Run Space1 in a third window. Leave the two Voyager servers 
running. Then run Space2 in the third window.



200 Appendix B • Examples

Window1

Window2

Window3

>voyager 8000
voyager 3.0, copyright objectspace 1997-1999
created Consumer( jack )
created Consumer( sasha ) 
Consumer( jack ) gets news newsflash 2!
Consumer( sasha ) gets news newsflash 2!
Consumer( jack ) gets news newsflash 1!
Consumer( sasha ) gets news newsflash 1!
Consumer( jack ) gets news NewsEvent( newsflash 3! )
Consumer( sasha ) gets news NewsEvent( newsflash 3! )

 >voyager 9000
voyager 3.0, copyright objectspace 1997-1999
created Consumer( simon )
created Consumer( galina ) 
Consumer( simon ) gets news newsflash 2!
Consumer( simon ) gets news newsflash 1!
Consumer( galina ) gets news newsflash 1!
Consumer( galina ) gets news newsflash 2!
Consumer( simon ) gets news NewsEvent( newsflash 3! )
Consumer( galina ) gets news NewsEvent( newsflash 3! )

>java examples.space.Space1

>java examples.space.Space2

>



Voyager ORB Developer Guide 201

The source code for NewsEvent.java, NewsListener.java, Reporter.java, and Space2.java 
follows: 

Class examples\space\NewsEvent.java
// copyright 1997-1999 objectspace

package examples.space;

import java.util.EventObject;

public class NewsEvent extends EventObject
  {
  String news;

  public NewsEvent( String news )
    {
    super( news );
    this.news = news;
    }

  public NewsEvent( Object source, String news )
    {
    super( source );
    this.news = news;
    }

  public String toString()
    {
    return “NewsEvent( “ + news + “ )”;
    }
  }

Interface examples\space\NewsListener.java
// copyright 1997-1999 objectspace

package examples.space;

import java.util.EventListener;

public interface NewsListener extends EventListener
  {



202 Appendix B • Examples

  void news( NewsEvent event );
  }

Class examples\space\Reporter.java
// copyright 1997-1999 objectspace

package examples.space;

import java.util.Vector;

public class Reporter
  {
  Vector listeners = new Vector();

  synchronized public void addNewsListener( NewsListener listener )
    {
    listeners.addElement( listener );
    }

  synchronized public void news( String message )
    {
    NewsEvent event = new NewsEvent( this, message );

    for( int i = 0; i < listeners.size(); i++ )
      ((NewsListener) listeners.elementAt( i )).news( event );
    }
  }

Program examples\space\Space2.java
// copyright 1997-1999 objectspace

package examples.space;

import com.objectspace.voyager.*;
import com.objectspace.voyager.space.*;
import com.objectspace.voyager.space.multicasting.*;

public class Space2
  {
  public static void main( String[] args )



Voyager ORB Developer Guide 203

    {
    try
      {
      Voyager.startup();
      ISubspace subspace1 = (ISubspace) Namespace.lookup( “//localhost:8000/Subspace1” );
      IConsumer consumer1 = (IConsumer) subspace1.getMulticastProxy( “examples.space.IConsumer” );
      consumer1.news( “newsflash 1!” );
      Multicast.invoke( subspace1, “news”, new Object[] { “newsflash 2!” }, “examples.space.IConsumer” );
      Reporter reporter = new Reporter();
      NewsListener listener = (NewsListener) subspace1.getMulticastProxy( “examples.space.NewsListener” 
);
      reporter.addNewsListener( listener );
      reporter.news( “newsflash 3!” );
      try{ Thread.sleep( 2000 ); } catch( Exception exception ) {} // allow oneway messages to drain
      }
    catch( Exception exception )
      {
      exception.printStackTrace();
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }

Space3 Example 

The Space3 example demonstrates Voyager’s publish/subscribe mechanism. It uses the 
space that is built by the Space1 example. The program creates a subscriber for three of 
the consumers created in Space1 and subscribes each to a given topic. The subscriber for 
a given consumer is added to the subspace local to the consumer. It can therefore receive 
messages that are published to that subspace. The program uses a ConsumerAdapter to 
allow filtering of published events without coupling the Consumer class to the details of 
the publish/subscribe mechanism. Next, the program publishes messages to each of the 
three topics. 

Compile all .java files in examples\space:

javac *.java



204 Appendix B • Examples

Start a Voyager server on port 8000 in one window and a Voyager server on port 9000 in 
a second window. Run Space1 in a third window. Leave the two Voyager servers 
running. Then run Space3 in the third window.

Window1

Window2

>voyager 8000 
voyager 3.0, copyright objectspace 1997-1999
created Consumer( jack )
created Consumer( sasha )
adapter gets NewsEvent( news flash 4! ) on news.general
Consumer( jack ) gets news NewsEvent( news flash 4! )
adapter gets NewsEvent( news flash 5! ) on news.special
Consumer( jack ) gets news NewsEvent( news flash 5! )
adapter gets NewsEvent( news flash 5! ) on news.special
Consumer( sasha ) gets news NewsEvent( news flash 5! )
adapter gets NewsEvent( news flash 6! ) on news.*
Consumer( jack ) gets news NewsEvent( news flash 6! )
adapter gets NewsEvent( news flash 6! ) on news.*
Consumer( sasha ) gets news NewsEvent( news flash 6! )

 >voyager 9000 
voyager 3.0, copyright objectspace 1997-1999
created Consumer( simon )
created Consumer( galina )
adapter gets NewsEvent( news flash 4! ) on news.general
Consumer( galina ) gets news NewsEvent( news flash 4! )
adapter gets NewsEvent( news flash 6! ) on news.*
Consumer( galina ) gets news NewsEvent( news flash 6! )



Voyager ORB Developer Guide 205

Window3

The source code for ConsumerAdapter.java and Space3.java follows: 

Class examples\space\ConsumerAdapter.java
// copyright 1997-1999 objectspace

package examples.space;

import java.io.Serializable;
import java.util.EventObject;
import com.objectspace.voyager.space.publishing.*;

public class ConsumerAdapter implements PublishedEventListener, Serializable
  {
  IConsumer consumer;

  public ConsumerAdapter( IConsumer consumer )
    {
    this.consumer = consumer;
    }

  public void publishedEvent( EventObject event, Topic topic )
    {
    System.out.println( “adapter gets “ + event + “ on “ + topic );

    if( event instanceof NewsEvent )
      consumer.news( (NewsEvent) event ); // forward to consumer
    }
  }

Program examples\space\Space3.java
// copyright 1997-1999 objectspace

>java examples.space.Space1

>java examples.space.Space3

>



206 Appendix B • Examples

package examples.space;

import com.objectspace.voyager.*;
import com.objectspace.voyager.space.*;
import com.objectspace.voyager.space.publishing.*;

public class Space3
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();
      final String subscriberclass = “com.objectspace.voyager.space.publishing.Subscriber”;
      ISubspace subspace1 = (ISubspace) Namespace.lookup( “//localhost:8000/Subspace1” );
      IConsumer jack = (IConsumer) Namespace.lookup( “//localhost:8000/Jack” );
      ISubscriber subscriber1 = (ISubscriber) Factory.create( subscriberclass, “//localhost:8000” );
      subscriber1.subscribe( new Topic( “news.*” ) );
      subscriber1.setListener( new ConsumerAdapter( jack ) );
      subspace1.add( subscriber1 );

      IConsumer sasha = (IConsumer) Namespace.lookup( “//localhost:8000/Sasha” );
      ISubscriber subscriber2 = (ISubscriber) Factory.create( subscriberclass, “//localhost:8000” );
      subscriber2.subscribe( new Topic( “news.special” ) );
      subscriber2.setListener( new ConsumerAdapter( sasha ) );
      subspace1.add( subscriber2 );

      ISubspace subspace2 = (ISubspace) Namespace.lookup( “//localhost:9000/Subspace2” );
      IConsumer galina = (IConsumer) Namespace.lookup( “//localhost:9000/Galina” );
      ISubscriber subscriber3 = (ISubscriber) Factory.create( subscriberclass, “//localhost:9000” );
      subscriber3.subscribe( new Topic( “news.general” ) );
      subscriber3.setListener( new ConsumerAdapter( galina ) );
      subspace2.add( subscriber3 );

      Publish.invoke( subspace1, new NewsEvent( “news flash 4!” ), new Topic( “news.general” ) );
      Publish.invoke( subspace1, new NewsEvent( “news flash 5!” ), new Topic( “news.special” ) );
      Publish.invoke( subspace1, new NewsEvent( “news flash 6!” ), new Topic( “news.*” ) );

      try{ Thread.sleep( 2000 ); } catch( Exception exception ) {} // allow oneway messages to drain
      }
    catch( Exception exception )



Voyager ORB Developer Guide 207

      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }



208 Appendix B • Examples

Mobility

The examples in this section demonstrate how any serializable object can be moved 
around the network.

Mobility1 Example

The Mobility1 example demonstrates mobility and messaging. An object is constructed, 
moved, and sent messages. The movement of the object is transparent to the client. The 
client’s reference to the moving object is valid whether the object is local, remote, or in 
the process of moving.

From examples\mobility, compile the example program:

javac IDrone.java Drone1.java Mobility1.java

Start a Voyager server on port 8000 in one window. Run Mobility1 in a second window.

Window1

Window2

The source code for IDrone.java, Drone1.java, and Mobility1.java follows:

>voyager 8000
voyager 3.0, copyright objectspace 1997-1999
drone prints 1
drone prints 3

 >java examples.mobility.Mobility1
drone prints 0
drone prints 2
>



Voyager ORB Developer Guide 209

Interface examples\mobility\IDrone.java
// copyright 1997-1999 objectspace

package examples.mobility;

public interface IDrone
  {
  void print( int i );
  }

Class examples\mobility\Drone1.java
// copyright 1997-1999 objectspace

package examples.mobility;

import java.io.*;

public class Drone1 implements IDrone, Serializable
  {
  public void print( int i )
    {
    System.out.println( “drone prints “ + i );
    }
  }

Program examples\mobility\Mobility1.java
// copyright 1997-1999 objectspace

package examples.mobility;

import com.objectspace.voyager.*;
import com.objectspace.voyager.mobility.*;
import com.objectspace.lib.util.*;

public class Mobility1
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup( “7000” );



210 Appendix B • Examples

      // create a local drone
      IDrone drone = (IDrone) Factory.create( “examples.mobility.Drone1” );
      // get/add mobility facet
      IMobility mobility = Mobility.of( drone );

      // move the drone to and from the remote program
      for( int i = 0; i < 4; i++ )
        {
        drone.print( i ); // display integer at current location

        if( i % 2 == 0 )
          mobility.moveTo( “//localhost:8000” ); // move remote
        else
          mobility.moveTo( “//localhost:7000” ); // move local
        }
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }

Mobility2 Example 

The Mobility2 example demonstrates receiving mobility callbacks using the IMobile 
interface. An object is constructed and moved around. The various move callbacks are 
executed on the object throughout the operation.

From examples\mobility, compile the example program:

javac Drone2.java Mobility2.java

Start a Voyager server on port 8000 in one window. Run Mobility2 in a second window. 



Voyager ORB Developer Guide 211

Window1

Window2

The source code for Drone2.java and Mobility2.java follows: 

Class examples\mobility\Drone2.java
// copyright 1997-1999 objectspace

package examples.mobility;

import java.io.*;

>voyager 8000
voyager 3.0, copyright objectspace 1997-1999
0 preArrival()
0 postArrival()
drone prints 1
1 preDeparture( tcp://homer1:8000, //localhost:7000 )
1 postDeparture()
2 preArrival()
2 postArrival()
drone prints 3
3 preDeparture( tcp://homer1:8000, //localhost:7000 )
3 postDeparture()

>java examples.mobility.Mobility2
drone prints 0
0 preDeparture( tcp://homer1:7000, //localhost:8000 )
0 postDeparture()
1 preArrival()
1 postArrival()
drone prints 2
2 preDeparture( tcp://homer1:7000, //localhost:8000 )
2 postDeparture()
3 preArrival()
3 postArrival()

>



212 Appendix B • Examples

import com.objectspace.voyager.mobility.*;

public class Drone2 implements IDrone, IMobile, Serializable
  {
  int n;

  public void print( int i )
    {
    n = i;
    System.out.println( “drone prints “ + i );
    }

  public void preDeparture( String source, String destination )
    {
    System.out.println( n + “ preDeparture( “ + source + “, “ + destination + “ )” );
    }

  public void preArrival()
    {
    System.out.println( n + “ preArrival()” );
    }

  public void postArrival()
    {
    System.out.println( n + “ postArrival()” );
    }

  public void postDeparture()
    {
    System.out.println( n + “ postDeparture()” );
    }
  }

Program examples\mobility\Mobility2.java
// copyright 1997-1999 objectspace

package examples.mobility;

import com.objectspace.voyager.*;
import com.objectspace.voyager.mobility.*;

public class Mobility2



Voyager ORB Developer Guide 213

  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup( “7000” );
      // create a local drone
      IDrone drone = (IDrone) Factory.create( “examples.mobility.Drone2” );
      // get/add mobility facet
      IMobility mobility = Mobility.of( drone );

      // move the drone to and from the remote program
      for( int i = 0; i < 4; i++ )
        {
        drone.print( i ); // display integer at current location

        if( i % 2 == 0 )
          mobility.moveTo( “//localhost:8000” ); // move remote
        else
          mobility.moveTo( “//localhost:7000” ); // move local
        }
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }



214 Appendix B • Examples

Agents

The example in this section demonstrates how any serializable object can use Voyager’s 
dynamic aggregation feature to become a mobile, autonomous agent.

Agents1 Example

The Agents1 example demonstrates mobile autonomous agents. An object uses dynamic 
aggregation to access its Agent facet. This allows the object to move itself around the 
network. When the agent has completed its tasks, it disables its autonomy, allowing the 
agent to be garbage collected.

Note that messaging speeds are greatly improved after the agent co-locates itself with its 
target.

If the Stockmarket example classes from the Basics1 example have not already been 
compiled, do so now. From examples\agents, compile the example program:

javac ITrader.java Trader.java Agents1.java

Start a Voyager server on port 8000 in one window. Run Agents1 in a second window.

Window1

>voyager 8000
voyager 3.0, copyright objectspace 1997-1999
construct stockmarket
at remote market
start trade
stop trade
time = 380ms



Voyager ORB Developer Guide 215

Window2

The source code for ITrader.java, Trader.java, and Agents1.java follows: 

Interface examples\agents\ITrader.java
// copyright 1997-1999 objectspace

package examples.agents;

import examples.stockmarket.*;

public interface ITrader
  {
  void work( IStockmarket market );
  }

Class examples\agents\Trader.java
// copyright 1997-1999 objectspace

package examples.agents;

import java.io.*;
import com.objectspace.lib.timer.*;
import com.objectspace.voyager.*;
import com.objectspace.voyager.agent.*;
import examples.stockmarket.*;

public class Trader implements ITrader, Serializable
  {

 >java examples.agents.Agents1
construct trader
remote trade
start trade
stop trade
time = 4917ms
local trade

>



216 Appendix B • Examples

  public Trader()
    {
    System.out.println( “construct trader” );
    }

  public void finalize()
    {
    System.out.println( “finalize trader” );
    }

  public void work( IStockmarket market )
    {
    System.out.println( “remote trade” );
    tradeAt( market ); // trade with remote market
    System.out.println( “local trade” );

    try
      {
      Agent.of( this ).moveTo( market, “atMarket” ); // move to market
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }
    }

  public void atMarket( IStockmarket market )
    {
    System.out.println( “at remote market, home = “ + Agent.of( this ).getHome() );
    tradeAt( market ); // trade with local market
    Agent.of( this ).setAutonomous( false ); // allow myself to be gc’ed
    }

  private void tradeAt( IStockmarket market )
    {
    System.out.println( “start trade” );
    Stopwatch watch = new Stopwatch();
    watch.start();

    for( int i = 0; i < 1000; i++ ) // do 1000 trades
      market.buy( 100, “SUN” );



Voyager ORB Developer Guide 217

    watch.stop();
    System.out.println( “stop trade” );
    System.out.println( “time = “ + watch.getTotalTime() + “ms” );
    }
  }

Program examples\agents\Agents1.java
// copyright 1997-1999 objectspace

package examples.agents;

import examples.stockmarket.*;
import com.objectspace.voyager.*;

public class Agents1
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();
      // create remote stockmarket
      String marketClass = Stockmarket.class.getName();
      IStockmarket market = (IStockmarket) Factory.create( marketClass, “//localhost:8000” );
      // create trader agent
      ITrader trader = (ITrader) Factory.create( Trader.class.getName() );
      // trade from local machine, then trade on remote machine
      trader.work( market );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }



218 Appendix B • Examples

Naming Service

The examples in this section demonstrate Voyager’s federated directory system and 
pluggable naming service.

Naming1 Example 

The Naming1 example demonstrates the federated directory system. It first creates a 
directory in a remote Voyager server into which it places a few items. It then creates 
another directory on a different remote Voyager server and binds the first into the 
second. Next, it demonstrates traversal of names across the federated directory service.

From examples\naming, compile the example program:

javac Naming1.java

Start a Voyager server on port 8000 in one window and a Voyager server on port 9000 in 
a second window. Run Naming1 in a third window.

Window1

Window2

>voyager 8000
voyager 3.0, copyright objectspace 1997-1999

 >voyager 9000 
voyager 3.0, copyright objectspace 1997-1999



Voyager ORB Developer Guide 219

Window3

The source code for Naming1.java follows: 

Program examples\naming\Naming1.java
// copyright 1997-1999 objectspace

package examples.naming;

import com.objectspace.voyager.*;
import com.objectspace.voyager.directory.*;

public class Naming1
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();

      // create and populate a remote directory of chemical symbols
      String dirClass = Directory.class.getName();
      IDirectory symbols = (IDirectory) Factory.create( dirClass, “//localhost:8000” );
      symbols.put( “CA”, “calcium” );
      symbols.put( “AU”, “gold” );

      // link a root directory in a different program to the symbols
      IDirectory root = (IDirectory) Factory.create( dirClass, “//localhost:9000” );
      root.put( “symbols”, symbols );

      // access the symbols from the root directory
      System.out.println( “CA -> “ + root.get( “symbols/CA” ) );
      System.out.println( “AU -> “ + root.get( “symbols/AU” ) );
      root.remove( “symbols/AU” );

 >java examples.naming.Naming1
CA -> calcium
AU -> gold
AU -> null

 >



220 Appendix B • Examples

      System.out.println( “AU -> “ + root.get( “symbols/AU” ) );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }

Naming2 Example 

The Naming2 example demonstrates Voyager’s naming service. It first creates an object 
in a remote Voyager server. It then binds that object to a name in that server’s name 
space. After the object is bound to a name, the program is able to look up that object by 
name. The program then unbinds the object and demonstrates that lookup with the old 
name will no longer succeed.

Compile the Stockmarket example classes from the Basics1 example. From 
examples\naming, compile the example program:

javac Naming2.java

Start a Voyager server on port 8000 in one window. Run Naming2 in a second window.

Window1

>voyager 8000
voyager 3.0, copyright objectspace 1997-1999
construct stockmarket



Voyager ORB Developer Guide 221

Window2

The source code for Naming2.java follows:

Program examples\naming\Naming2.java
// copyright 1997-1999 objectspace

package examples.naming;

import examples.stockmarket.*;
import com.objectspace.voyager.*;

public class Naming2
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();
      // create a remote stockmarket
      String marketClass = Stockmarket.class.getName();
      String marketName = “//localhost:8000/NASDAQ”;
      IStockmarket market1 = (IStockmarket) Factory.create( marketClass, “//localhost:8000” );
      // bind the stockmarket to the symbol “NASDAQ”
      Namespace.bind( marketName, market1 );
      // lookup the stockmarket
      IStockmarket market2 = (IStockmarket) Namespace.lookup( marketName );
      System.out.println( marketName + “ -> “ + market2 );
      // unbind the symbol
      Namespace.unbind( marketName );
      // lookup the stockmarket again
      IStockmarket market3 = (IStockmarket) Namespace.lookup( marketName );
      System.out.println( marketName + “ -> “ + market3 );
      }
    catch( Exception exception )

>java examples.naming.Naming2
//localhost:8000/NASDAQ -> examples.stockmarket.Stockmarket@1f3587
com.objectspace.voyager.NamespaceException: no object bound to the name
vdir://localhost:8000/NASDAQ; 



222 Appendix B • Examples

      {
      System.err.println( exception );
      }

    Voyager.shutdown();
    }
  }

Naming3 Example

The Naming3 example demonstrates the use of JNDI to access objects in a Voyager 
server. First, an initial context is created with the service provider URL 
“//localhost:8000/state”. After it populates the context by binding names to string objects, 
the program is able to look up a string object by name. Then it lists the contents of the 
context which will be the name and string objects added to the context. The program 
then overwrites the binding with name “CA” using the rebind method and remove 
binding with name “IL” using the unbind method. The updated contents of the context is 
listed again to show the effect of the rebind and unbind. The program then creates a 
subcontext under the initial context and populates the subcontext. After showing the 
bindings of the subcontext, the subcontext is destroyed.

From Voyager\examples\naming, compile the example program:

Javac Naming3.java

Start a Voyager server on port 8000 in one window, specify the root and storage file for 
the directory server, and enable resource serving. Run Naming3 in a second window.

Window 1

C:\>voyager 8000 –r -j state -f  c:\store
voyager orb professional (directory server) 3.0, copyright objectspace 1997-1999



Voyager ORB Developer Guide 223

Window 2

The source code for Naming3.java follows:

Program examples\naming\Naming3.java 
// copyright 1997-1999 objectspace

package examples.naming;

import javax.naming.*;
import java.util.Properties;

public class Naming3
  {
  public static void main( String[] args )
    {
    try
      {
      // create initial context
      Properties env = new Properties();
      env.put( “java.naming.factory.initial”, 
               “com.objectspace.voyager.jndi.spi.VoyagerContextFactory” );
      env.put( “java.naming.provider.url”, “//localhost:8000/state” );
      Context ctx = new InitialContext( env );

C:\>java examples.naming.Naming3
TX -> Texas
context listing:
IL: java.lang.String:Illinois
TX: java.lang.String:Texas
CA: java.lang.String:California
ON: java.lang.String:Ontario
updated context listing:
TX: java.lang.String:Texas
CA: java.lang.String:New California
ON: java.lang.String:Ontario
subcontext bindings:
DAL: Dallas
TOR: Toronto



224 Appendix B • Examples

      // populate the context
      ctx.bind( “TX”, “Texas” );
      ctx.bind( “CA”, “California” );
      ctx.bind( “IL”, “Illinois” );
      ctx.bind( “ON”, “Ontario” );

      // lookup the string object “Texas”
      String tx = (String)ctx.lookup( “TX” );
      System.out.println( “TX -> “ + tx );

      // list the contents of the context
      System.out.println( “context listing:” );
      NamingEnumeration list = ctx.list( ““ );

      while( list.hasMore() ) 
        {
        NameClassPair nc = (NameClassPair)list.next();
        System.out.println( nc );
        }

      // overwrite “CA” binding
      ctx.rebind( “CA”, “New California” );

      // remove “IL” binding
      ctx.unbind( “IL” );

      // list the contents of the updated context
      System.out.println( “updated context listing:” );
      NamingEnumeration updatedList = ctx.list( ““ );

      while( updatedList.hasMore() ) 
        {
        NameClassPair nc = (NameClassPair)updatedList.next();
        System.out.println( nc );
        }

      // create and populate subcontext “city”
      Context cityctx = ctx.createSubcontext( “city” );
      cityctx.bind( “DAL”, “Dallas” );
      cityctx.bind( “TOR”, “Toronto” );



Voyager ORB Developer Guide 225

      // list the bindings in the “city” context
      System.out.println( “subcontext bindings:” );
      NamingEnumeration bindinglist = ctx.listBindings( “city” );

      while( bindinglist.hasMore() ) 
        {
        Binding bd = (Binding)bindinglist.next();
        System.out.println( bd.getName() + “: “ + bd.getObject() );
        }      

      // destroy subcontext “city” 
      ctx.destroySubcontext( “city” );
      } 
    catch( Exception exception )
      {
        exception.printStackTrace();
      }
    }
  }



226 Appendix B • Examples

Activation

The examples in this section explain Voyager’s activation framework. they also 
demonstrate a Library service capable of looking up activatable Book objects. 

This example provides a file-based activator that uses serialization. you can replace this 
persistent store with custom implementations. Refer to the Voyager website for 
implementations that use PSE and JBDC that you can plug in this example to 
demonstrate how to adapt the activation framework to any persistent store. 

Activation1A and Activation1B Example 

The Activation1A and Activation 1B examples demonstrate how activating proxies are able to 
fault in their associated remote objects. First, the library server is started with a 
FileLibrary. Then, an activatable proxy is obtained to a remote book object. The server is 
then restarted, which removes the book object from memory. Then the client messages 
the book, which activates the book back into memory on the server. These examples 
illustrate the server restart. However, activation can also occur if the client persists the 
proxy, or its external form, and the distributed garbage collector removes the book from 
memory. In this case, if the client’s reference is restored and messaged, the book will 
also be activated on the server.

Compile all .java files in examples\activation:

javac *.java

Run the library service, which is started from Activation1A. The extra flag instructs the 
program to populate the database. After the Activation1A is running, run Activation1B in a 
second window from the examples\activation directory. Cycle Activation1A as instructed, but 
do not specify the startup flag when restarting.



Voyager ORB Developer Guide 227

Window1

Window2

The source code for IBook.java, Book.java, ILibrary.java, FileLibrary.java, BookActivator.java, 
Activation1A.java, and Activation1B.java follows. 

Interface examples\activation\IBook.java
// copyright 1997-1999 objectspace

package examples.activation;

public interface IBook
  {
  String getISBN();
  String getTitle();
  String getAuthor();
  }

>java examples.activation.Activation1A examples.activation.FileLibrary startup
library service online
press enter to kill the library service
get memento of Book( Two Heads are Better Than One )

>java examples.activation.Activation1A examples.activation.FileLibrary
library service online
press enter to kill the library service
activating 0-201-63452-X from File Library

>java examples.activation.Activation1B
book = Book( Two Heads are Better Than One ), ISBN = 0-201-63452-X
enabling book for activation...
sleeping for 20 seconds. please cycle Activation1A
display the book again
book = Book( Two Heads are Better Than One ), ISBN = 0-201-63452-X

>



228 Appendix B • Examples

Class examples\activation\Book.java
// copyright 1997-1999 objectspace

package examples.activation;

import java.io.Serializable;
import com.objectspace.voyager.IRemote;

/**
 * Book object that has a title, an author, and an ISBN.
 */

public class Book implements Serializable, IRemote, IBook
  {
  String title;
  String author;
  String isbn;

  public Book( String title, String author, String isbn )
    {
    this.title = title;
    this.author = author;
    this.isbn = isbn;
    }

  public String getISBN()
    {
    return isbn;
    }

  public String getTitle()
    {
    return title;
    }

  public String getAuthor()
    {
    return author;
    }

  public int hashCode()



Voyager ORB Developer Guide 229

    {
    return isbn.hashCode();
    }

  public boolean equals( Object object )
    {
    return ( object.getClass() == getClass() ) ? ((Book) object).isbn.equals( isbn ) : false;
    }

  public String toString()
    {
    return “Book( “ + title + “ )”;
    }
  }

Interface examples\activation\ILibrary.java
// copyright 1997-1999 objectspace

package examples.activation;

import java.io.IOException;

public interface ILibrary
  {
  void addBook( IBook book ) throws IOException;
  IBook getBook( String isbn ) throws IOException;
  void close();
  }

Class examples\activation\FileLibrary.java
// copyright 1997-1999 objectspace

package examples.activation;

import java.io.*;
import java.util.*;

/**
 * Simple Library implementation that serializes the book to a 
 * file named after the ISBN of the book.
 */



230 Appendix B • Examples

public class FileLibrary implements ILibrary, com.objectspace.voyager.IRemote
  {
  Hashtable cache = new Hashtable();

  public FileLibrary()
    {
    }

  public void addBook( IBook book ) throws IOException
    {
    String filename = book.getISBN() + “.dat”;
    ObjectOutputStream out = new ObjectOutputStream( new FileOutputStream( filename ) );
    
    try
      {
      out.writeObject( book );
      }
    finally
      {
      out.close();
      }
    }

  /**
   * Note that since Book implements IRemote, this method will return the
   * book “by reference”. That is, a proxy to the book is returned.  Therefore,
   * this book object remains on the server, and the client actually receives a proxy.
   */
  public IBook getBook( String isbn ) throws IOException
    {
    IBook book = (IBook) cache.get( isbn );

    if( book != null )
      return book;

    ObjectInputStream in = new ObjectInputStream( new FileInputStream( isbn + “.dat” ) );
    
    try
      {
      book = (IBook) in.readObject();
      cache.put( isbn, book );



Voyager ORB Developer Guide 231

      return book;
      }
    catch( ClassNotFoundException exception )
      {
      throw new IOException( exception.toString() );
      }
    finally
      {
      in.close();
      }
    }

  public void close()
    {
    // do nothing
    }

  public String toString()
    {
    return “File Library”;
    }
  }

Class examples\activation\BookActivator.java
// copyright 1997-1999 objectspace

package examples.activation;

import java.io.IOException;
import java.util.Hashtable;
import com.objectspace.voyager.*;
import com.objectspace.voyager.activation.*;

/**
 * Simple activator capable of activating instances of Book. Note that this activator
 * is in no way coupled to the persistence mechanism.  Any persistence mechanism can be 
 * plugged in by specifying a custom implementation of ILibrary.
 */

public class BookActivator implements IActivator
  {
  ILibrary library;



232 Appendix B • Examples

  BookActivator( ILibrary library )
    {
    this.library = library;
    }

  /**
   * If this method returns null, then the activation manager will ask the remaining 
   * Activators registered with it (if any) for the memento.  If this method 
   * returns a string value, then the activation manager will assume this Activator
   * is handling the object to memento conversion and the string will be used 
   * in the activating proxy.
   *
   * This method can use any heuristic to determine whether or not to handle
   * the object to memento conversion. This simple example merely shows one
   * such heuristic: handle the conversion if the object is an instance of Book
   * that is in the library.
   */    
  public String getMemento( Proxy proxy ) throws ActivationException
    {
    try
      {
      System.out.println( “get memento of “ + proxy );
      Object object = Snapshot.of( proxy ).getObject();
      return object instanceof Book ? ((IBook) object).getISBN() : null;
      }
    catch( Exception exception )
      {
      throw new ActivationException( exception );
      }
    }

  /**
   * This example uses no aggregation or custom exportation and therefore ignores the 
   * facets and properties of the Snapshot object. More sophisticated 
   * applications may need to persist all of the Snapshot’s data. This data would be
   * used in this method to fully reconstruct the Snapshot.
   */
  public Proxy activate( String memento ) throws ActivationException
    { 
    try
      {



Voyager ORB Developer Guide 233

      System.out.println( “activating “ + memento + “ from “ + library );
      IBook book = library.getBook( memento );
      return Snapshot.from( book, null, null ).restore();
      }
    catch( Exception exception )
      {
      throw new ActivationException( exception );
      }
    }
  }

Program examples\activation\Activation1A.java
// copyright 1997-1999 objectspace

package examples.activation;

import java.io.*;
import com.objectspace.voyager.*;
import com.objectspace.voyager.activation.*;

public class Activation1A
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup( “8000” );
      ILibrary library = (ILibrary) Class.forName( args[ 0 ] ).newInstance();

      if( args.length > 1 ) // stock the library
        {
        IBook book1 = new Book( “Know Where Your Towel Is”, “Ford Prefect”, “0-201-63451-1” );
        library.addBook( book1 );
        IBook book2 = new Book( “Two Heads are Better Than One”, “Zaphod Beeblebrox”, “0-201-63452-X” );
        library.addBook( book2 );
        }

      BookActivator activator = new BookActivator( library );
      Activation.register( activator );
      Namespace.bind( “Library”, library );
      System.out.println( “library service online” );
      System.out.println( “press enter to kill the library server” );



234 Appendix B • Examples

      System.in.read(); // block for <Enter> key
      library.close(); // allow the library to do any cleanup necessary
      Voyager.shutdown();
      }
    catch( Exception exception )
      {
      exception.printStackTrace();
      }
    }
  }

Program examples\activation\Activation1B.java
// copyright 1997-1999 objectspace

package examples.activation;

import java.io.*;
import com.objectspace.voyager.*;
import com.objectspace.voyager.activation.*;

public class Activation1B
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();
      ILibrary library = (ILibrary) Namespace.lookup( “//localhost:8000/Library” );
      IBook book = library.getBook( “0-201-63452-X” );
      System.out.println( “book = “ + book + “, ISBN = “ + book.getISBN() );
      System.out.println( “enabling book for activation...” );
      Activation.enable( book );
      System.out.println( “sleeping for 20 seconds. please cycle Activation1A” );
      try{ Thread.sleep( 20000 ); } catch( Exception exception ) {}
      System.out.println( “display the book again” );
      System.out.println( “book = “ + book + “, ISBN = “ + book.getISBN() );
      }
    catch( Exception exception )
      {
      exception.printStackTrace();
      }



Voyager ORB Developer Guide 235

    Voyager.shutdown();
    }
  }



236 Appendix B • Examples

Security

The example in this section demonstrates how Voyager’s security mechanism can 
restrict the actions of objects whose classes have been loaded from a remote source.

Security1 Example 

The Security1 program sends a Visitor object to two remote locations: the server started in 
the Native program and the server started in the Foreign. The Native program is in the same 
directory as the Security1 program. Because ‘.’ is in the CLASSPATH, the classloader in the 
Native program can load the Visitor class without using a resource loader, and any Visitor 
objects will be trusted. However, because the Foreign program is in a different directory, 
it must use a resource loader to load the Visitor class and will therefore not trust instances 
of Visitor. Though both remote programs have security managers installed, only the 
Foreign program will disallow the Visitor’s thread manipulations.

From examples\security\native, compile the example program:

javac IVisitor.java Visitor.java Native.java Security1.java

From examples\security\foreign, compile the example program:

javac Foreign.java

From examples\security\foreign, run the Foreign program. Run the Native program in a 
second window from examples\security\native. Finally, run Security1 in a third window from 
examples\security\native.

Window1

>java Foreign
creating thread



Voyager ORB Developer Guide 237

Window2

Window3

The source code for IVisitor.java, Visitor.java, Library.java, Foreign.java, Native.java, and 
Security1.java follows: 

Interface examples\security\native\IVisitor.java
// Copyright (c) 1997, 1998 ObjectSpace, Inc.

import java.io.Serializable;

public interface IVisitor
  {
  void loopUsingThread();
  }

Program examples\security\native\Visitor.java
// Copyright (c) 1997, 1998 ObjectSpace, Inc.

import java.io.Serializable;
import com.objectspace.voyager.*;

>java Native
creating thread
thread created.  starting
thread started
new thread is counting...
0
1
2
3

>java Security1
java.lang.SecurityException: foreign objects/messages may not manipulate a thread group



238 Appendix B • Examples

public class Visitor implements IVisitor, Serializable, Runnable
  {
  public synchronized void loopUsingThread()
    {
    System.out.println( “creating thread” );
    Thread thread = new Thread( this );
    System.out.println( “thread created.  starting” );
    thread.start();
    System.out.println( “thread started” );

    try
      {
      wait(); // wait for thread to complete
      }
    catch( InterruptedException exception )
      {
      }
    }

  public synchronized void run()
    {
    System.out.println( “new thread is counting...” );

    for( int i = 0; i < 4; i++ )
      System.out.println( i );

    notify(); // notify that thread has completed
    }
  }

Program examples\security\foreign\Foreign.java
// Copyright (c) 1997, 1998 ObjectSpace, Inc.

import com.objectspace.voyager.*;
import com.objectspace.voyager.loader.*;
import com.objectspace.voyager.security.*;

public class Foreign
  {
  public static void main( String args[] )
    {



Voyager ORB Developer Guide 239

    try
      {
      System.setSecurityManager( new VoyagerSecurityManager() );
      Voyager.startup( “7000” );      
      // load class bytes from this server if not local
      VoyagerClassLoader.addURLResource( “http://localhost:9000/” );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }
    }
  }

Program examples\security\native\Native.java
// Copyright (c) 1997, 1998 ObjectSpace, Inc.

import com.objectspace.voyager.*;
import com.objectspace.voyager.security.*;

public class Native
  {
  public static void main( String args[] )
    {
    try
      {
      System.setSecurityManager( new VoyagerSecurityManager() );
      Voyager.startup( “8000” );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }
    }
  }

Program examples\security\native\Security1.java
// Copyright (c) 1997, 1998 ObjectSpace, Inc.

import com.objectspace.voyager.*;

public class Security1



240 Appendix B • Examples

  {
  public static void main( String args[] )
    {
    try
      {
      ClassManager.enableResourceServer(); // allow remote vm’s to load class bytes from local classpath
      Voyager.startup( “9000” );

      IVisitor visitor1 = (IVisitor)Factory.create( “Visitor”, “8000” ); // Visitor in remote vm classpath
      visitor1.loopUsingThread();
      
      IVisitor visitor2 = (IVisitor)Factory.create( “Visitor”, “7000” ); // Visitor not in remote vm classpath
      visitor2.loopUsingThread();
      
      Voyager.shutdown();
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }
    }
  }



Voyager ORB Developer Guide 241

Applets and Servlets

The examples in this section demonstrate how Voyager works with applets and servlets.

CalcApplet Example 

The CalcApplet example demonstrates an applet that uses Voyager. The CalcServer 
program merely exports a calculator object capable of adding two numbers. The applet 
receives a reference to this calculator object and uses it to add numbers entered by the 
user.

From examples\calculator, compile the Calculator utility classes program:

javac ICalculator.java Calculator.java CalcServer.java 

From examples\applets, compile the example program:

javac CalcApplet.java 

Run the CalcServer program in one window from examples\calculator. Run appletviewer with 
the HTML file in a second window from examples\applet.

Window1

Window2

>java examples.calculator.CalcServer
4 + 5 = 9

>appletviewer Calculator.html



242 Appendix B • Examples

The source code for ICalculator.java, Calculator.java, CalcServer.java, CalcApplet.java and 
Calculator.html follows: 

Interface examples\calculator \ICalculator.java
// copyright 1997-1999 objectspace

package examples.calculator;

public interface ICalculator
  {
  int add( int x, int y );
  }

Class examples\ calculator \Calculator.java
// copyright 1997-1999 objectspace

package examples.calculator;

public class Calculator implements ICalculator
  {
  public int add( int x, int y )
    {
    int result = x + y;
    System.out.println( x + “ + “ + y + “ = “ + result );
    return result;
    }
  }

Program examples\ calculator \CalcServer.java
// copyright 1997-1999 objectspace

package examples.calculator;



Voyager ORB Developer Guide 243

import com.objectspace.voyager.*;

public class CalcServer
  {
  static ICalculator calculator;

  public static void main( String args[] )
    {
    try
      {
      // enables remote classloading from this program
      ClassManager.enableResourceServer();
      
      // starts Voyager on port 8000
      Voyager.startup( “8000” );

      // construct the calculator
      calculator = (ICalculator) Factory.create( “examples.calculator.Calculator” );
      Namespace.rebind( “MyCalculator”, calculator );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }
    }
  }

Applet examples\applets\CalcApplet.java
// copyright 1997-1999 objectspace

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import com.objectspace.voyager.*;
import com.objectspace.voyager.router.*;
import examples.calculator.*;

public class CalcApplet extends Applet
  {
  TextField operand1 = new TextField( ““, 3 );
  Label plus = new Label( “+” );
  TextField operand2 = new TextField( ““, 3 );



244 Appendix B • Examples

  Button add = new Button( “=” );
  TextField result = new TextField( ““, 3 );
  ICalculator calculator;

  public void init()
    {
    setLayout( new FlowLayout() );
    add( operand1 );
    add( plus );
    add( operand2 );
    add( add );
    add( result );
    add.addActionListener( new ActionListener() 
    { public void actionPerformed( ActionEvent event ) { add(); } } );
    }

  public void start()
    {
    try
      {
      // initialize voyager using the current security sandbox boundaries
      Voyager.startup( this, null ); 

      // connect to remote calculator in server
      calculator = (ICalculator) Namespace.lookup( Routing.getRouterAddress() + “/MyCalculator” );
      }
    catch( Exception exception )
      {
      System.err.println( exception );
      }
    }

  public void stop()
    {
    try
      {
      Voyager.shutdown();
      }
    catch( Exception exception )
      {
      }
    }



Voyager ORB Developer Guide 245

  void add()
    {
    int x = Integer.parseInt( operand1.getText() );
    int y = Integer.parseInt( operand2.getText() );

    try
      { 
      result.setText( Integer.toString( calculator.add( x, y ) ) ); 
      }
    catch( Exception exception ) 
      { 
      result.setText(“Error”);
      }
    }
  }

HTML examples\applets\Calculator.html
<html>
<head><title>Calculator Applet</title></head>
<body><hr><p>
<applet code=”CalcApplet” align=”baseline” width=”300” height=”50”>
<param name=”routerAddress” value=”8000”>
</applet>
</p><hr></body>
</html>

CalcServlet Example 

The CalcServlet example demonstrates using servlets with Voyager. This example 
requires that install the Servlets SDK before compiling the example. You can download 
the Servlets SDK from Sun’s Java website http://java.sun.com. It also requires that you 
have a Servlet compatible webserver to run the example. Sun’s Java website also has 
pointers to Servlet compatible webservers.

Compile the CalcServer program from the CalcApplet example now if not compiled. From 
examples\servlets, compile the example program:

javac CalcServlet.java 

The source code for CalcServlet.java and Calculator.html follows: 



246 Appendix B • Examples

HTML examples\servlets\Calculator.html
<html>
<head><title>Calculator Servlet</title></head>
<body><hr><p>
<form method=”get” action=”/Calculator” >
<input type=text size=5 name=”lhs”> + <input type=text size=5 name=”rhs”> <input type=submit value=” = 
“>
</form>
</p><hr></body>
</html>

Servlet examples\servlets\CalcServlet.java
// copyright 1997-1999 objectspace

package examples.servlet;

import java.io.*;
import java.util.*;

import javax.servlet.*; // requires servlet developers kit from javasoft
import javax.servlet.http.*;

import com.objectspace.voyager.*;

import examples.calculator.*;

public class CalcServlet extends HttpServlet 
  { 

  protected ICalculator calculator;

  public void init( ServletConfig config ) throws ServletException
    {
    super.init( config );
    
    try
      {
      if( !Voyager.isStarted() )
        Voyager.startup( this, null ); // start voyager with current classloader
      }
    catch( Exception exception )



Voyager ORB Developer Guide 247

      {
      System.out.println( exception.toString() );
      }
    }
  
  public void doGet ( HttpServletRequest request, HttpServletResponse response )
    throws ServletException, IOException
    {
    ServletOutputStream out = response.getOutputStream(); // output stream to write response
    String message; // outgoing message
    String queryString = request.getQueryString(); // the data to calculate

    if( queryString == null )
      {
      message = “<p><h2>no data</h2>”;
      }
    else
      {
      Hashtable parameters = HttpUtils.parseQueryString( queryString );
      String[] lhs = (String[]) parameters.get( “lhs” );
      String[] rhs = (String[]) parameters.get( “rhs” );
      
      try
        {
        calculator = (ICalculator) Namespace.lookup( “//localhost:8000/MyCalculator” );
        int value = calculator.add( Integer.parseInt( lhs[0] ), Integer.parseInt( rhs[0] ) );
        message = “<P><hr><b>” + lhs[0] + “</b> + <b>” + rhs[0] + “</b> = <b><i>” + value + “</b></i><hr>”;
        }
      catch( Exception exception )
        {
        System.out.println( exception.toString() );
        message = “<h2>an error occured: <i>” + exception + “</i></h2>”;
        }
      }

   // set content type and other response header fields first
    response.setContentType( “text/html” );

  // then write the data of the response
    out.println( “<HTML><HEAD><TITLE> CalcServlet Output </TITLE></HEAD><BODY>” );
  out.println( “<h1> CalcServlet Output </h1>” );
  out.println( message );



248 Appendix B • Examples

  out.println( “</BODY></HTML>” );
  out.close();
    }

  public String getServletInfo() 
    {
    return “A simple calculator servlet”;
    }
  }



Voyager ORB Developer Guide 249

CORBA

The examples in this section demonstrate Voyager’s CORBA features.

Holders

Files

® ILottery.idl

® Lotter.java

® Person.idl

® Ticket.idl

® Server.java

® Client.java

To compile the example, change to \voyager\examples\corba\holder, and type:

cgen ILottery.idl Person.idl Ticket.idl -v
javac *.java

Window1

% java Server
lottery IOR = IOR:000000000000001149444c3a494c6f7474657279
CORBA server is ready
money before purchase = 30
money after $10 purchase = 20
set ticket to Ticket( 23, 42, 11 )



250 Appendix B • Examples

Window2

Arrays

Files

® IMath.idl

® Math.java

® Server.java

® Client.java

To compile the example, change to \voyager\examples\corba\array, and type:

cgen IMath.idl -v
javac *.java

Window1

% java Client
bank IOR = IOR:000000000000001149444c3a494c6f747465727
money before purchase = 30
money after purchase = 20
ticket = Ticket( 23, 42, 11 )

% java Server
math IOR = IOR:000000000000000e49444c3a494d6174683a312
CORBA server is ready
INVOKE addLongArray
INVOKE addLongSequence
INVOKE multiMatrix
multiply 2 by 3 array



Voyager ORB Developer Guide 251

Window1

Enums

Files

® Color.idl

® Enum.java

To compile the example, change to \voyager\examples\corba\enum, and type:

cgen Color.idl -v
javac *.java

Window1

Structs

Files

® Address.idl

® Person.idl

® IPostOffice.idl

% java Client
math IOR = IOR:000000000000000e49444c3a494d6174683a312e3000000
2 + 6 + 8 = 16
1 + 5 + 6 + 8 = 20
matrix before = { 2 3 1 }{ 4 6 7 }
matrix after = { 4 6 2 }{ 8 12 14 }

% java Enum
Color( red ), Color( green ), Color( blue )
Color._blue = 2
Color.blue.value() = 2
Color.from_int( 2 ) = Color( blue )



252 Appendix B • Examples

® PostOffice.java

® Server.java

® Client.java

To compile the example, change to \voyager\examples\corba\struct, and type:

cgen Address.idl Person.idl IPostOffice.idl -h -v
javac *.java

Window1

Window2

Unions

Files

® Winnings.idl

® Union.java

To compile the example, change to \voyager\examples\corba\union, and type:

cgen Winnings.idl -v
javac *.java

% java Client
post office IOR = IOR:000000000000001449444c3a49506f73744f66666963653a312e3000
Address of Person( Graham, 36 ) is Address( 123 arkwright road, TX, 75248 )

% java Server
postoffice IOR = IOR:000000000000001449444c3a49506f73744f666
CORBA server is ready
INVOKE getAddress
getAddress( Person( Graham, 36 ) )
name = Graham
age = 36
return Address( 123 arkwright road, TX, 75248 )



Voyager ORB Developer Guide 253

Window1

TypeCodes

Files

® Name.idl

® IPrinter.idl

® Printer.java

® Server.java

® Client.java

To compile the example, change to \voyager\examples\corba\typecode, and type:

cgen IPrinter.idl Name.idl -v
javac *.java

Window1

% java Union
regular winnings = 200
jackpot winnings = 420000
booby winnings = 0

% java Client
printer IOR = IOR:000000000000001149444c3a495072696e7465723a312



254 Appendix B • Examples

Window2

Attributes

Files

® ICar.idl

® Car.java

® Server.java

® Client.java

To compile the example, change to \voyager\examples\corba\attribute, and type:

cgen ICar.idl -v
javac *.java

% java Server
printer IOR = IOR:000000000000001149444c3a495072696e7465723a312e
CORBA server is ready
any.getObject() = 146
typecode.kind() = 3
long
any.getObject() = voyager
typecode.kind() = 18
string, max length = 0
any.getObject() = Name( james, t, kirk )
typecode.kind() = 15
struct Name
id = IDL:Name:1.0
member 0 name = "first" type = string, max length = 0
member 1 name = "middle" type = char
member 2 name = "last" type = string, max length = 0



Voyager ORB Developer Guide 255

Window1

Window2

Narrowing

Files

® IX.idl

® IY.idl

® ILibrary.idl

® Library.java

® Server.java

® Client.java

To compile the example, change to \voyager\examples\corba\narrow, and type:

cgen IX.idl IY.idl ILibrary.idl -v
javac *.java

% java Server
car IOR = IOR:000000000000000d49444c3a494361723a312e3000000
CORBA server is ready

% java Client
car IOR = IOR:000000000000000d49444c3a494361723a312e30000
make = lotus esprit
speed = 0
speed = 140



256 Appendix B • Examples

Window1

Window2

Dynamic

Files

® ITimer.idl

® Timer.java

® Server.java

® Client.java

To compile the example, change to \voyager\examples\corba\dynamic, and type:

cgen ITimer.idl -v
javac *.java

Window1

% java Server
library IOR = IOR:000000000000001149444c3a494c6962726172
CORBA server is ready
printX()
printY()

% java Client
library IOR = IOR:000000000000001149444c3a494c6962726172793a3

% java Server
timer IOR = IOR:000000000000000f49444c3a4954696d65723a3
CORBA server is ready
wait( 6000 )
wait( 6000 )



Voyager ORB Developer Guide 257

Window2

Pragma

Files

® X.idl

® Pragma.java

To compile the example, change to \voyager\examples\corba\pragma, and type:

cgen X.idl -d . -v
javac *.java

Window1

Java to IDL

Files in \voyager\examples\corba\bank

® IAccount.java

® IBank.java

% java Client
timer IOR = IOR:000000000000000f49444c3a4954696d65723a312e3000
invoke OneWay wait( 6000 )
invoke Sync wait( 6000 )
result = 6000
invoke Future wait( 6000 )
result = false
result = 6000

% java Pragma
A id = IDL:p.q/X/IA:1.0
B id = IDL:s.t/X/IB:3.0
C id = IDL:x.y/IZ:3.0



258 Appendix B • Examples

® Account.java

® Bank.java

® OverdrawnException.java

® BatchException.java

® Server.java

® Client.java

Files in \voyager\examples\corba\javatoidl

® IBank.idl

® IAccount.idl

® OverdrawnException.idl

® BatchException.idl

® IBank.java

® IAccount.java

® Client.java

® OverdrawnException.java

® BatchException.java

To compile the non-CORBA part of the example, change to \voyager\examples\corba\bank, 
and type:

javac *.java
cgen IBank IAccount OverdrawnException BatchException -v -d ..\javatoidl

To compile the CORBA part of the example, change to \voyager\examples\corba\javatoidl, 
and type:

cgen IBank.idl IAccount.idl OverdrawnException.idl BatchException.idl -v
javac *.java



Voyager ORB Developer Guide 259

Window1

Window2

Window3

Naming Service

Files

® IElement.java

® Element.java

® Client.java

% cd \voyager\examples\corba\bank
% java Server
bank IOR = IOR:000000000000000e49444c3a4942616e6b3a31
server is ready
open account

% cd \voyager\examples\corba\bank
% java Client
start REGULAR client
account balance = 1000
account balance = 500
OverdrawnException( only have $500, 1500 )

% cd \voyager\examples\corba\javatoidl
% java Client
start CORBA client
bank IOR = IOR:000000000000000e49444c3a4942616e6b3a312e3000000000000001
account balance = 1000
account balance = 500
BatchException( only have $500, 400, 2 )



260 Appendix B • Examples

® Server.java

To compile the example, change to \voyager\examples\corba\naming, and type:

javac *.java

Window1

Window2

Window3

% voyager 8000
voyager orb professional 3.0b1, copyright objectspace 1997-1999

% java Server
server ready

% java Client
Elements/CA -> Calcium
Elements/AU -> Gold
got 2 bindings
binding 0: NameComponent( ZN,  )
binding 1: NameComponent( AU,  )
iterator returns: NameComponent( AG,  )
iterator returns: NameComponent( CA,  )



Voyager ORB Developer Guide 261

RMI

The examples in this section demonstrate Voyager’s RMI features.

RMI Example 1

An object is registered by RMI with an rmiregistry. A Voyager client is able to lookup the 
object and invoke a method on it.

Start rmiregistry running on port 8000 in one window. In a second window, start 
RmiServer1. It will register a stockmarket with the rmiregistry on port 8000. In a third 
window, run VoyagerClient1. It will look up the registered stockmarket and interact with 
it.

Window 1

Window 2

Note: Examples 1 and 2 will require that RMI stubs be generated for the Stockmarket 
classes from the first examples. If this has not yet been done, run rmic 
examples.stockmarket.RmiStockmarket at the command line and make sure that the 
resulting stub and skeleton file are placed in the same directory as the 
RmiStockmarket class.

> rmiregistry 8000

> java examples.rmi.RmiServer1
construct stockmarket, export the object with UnicastRemoteObject
Buying 200 of SUNW
news: Voyager can be an RMI client!
Selling 200 of CSCO



262 Appendix B • Examples

Window 3

The source code for RmiServer1.java and VoyagerClient1.java follows.

Interface examples\rmi\RmiServer1.java
// copyright 1997 - 1999 objectspace

package examples.rmi;

import java.util.*;
import java.rmi.*;
import examples.stockmarket.RmiStockmarket;

public class RmiServer1
  {
  public static void main( String[] args )
    {
    try
      {
      // true => export the object through UnicastRemoteObject
      Naming.bind( “rmi://:8000/NASDAQ”, new RmiStockmarket( true ) );
      }
    catch( Exception exception )
      {
      exception.printStackTrace();
      }
    }
  }

Interface examples\rmi\VoyagerClient1.java
// copyright 1997 - 1999 objectspace
package examples.rmi;

import com.objectspace.voyager.*;
import examples.stockmarket.IRmiStockmarket;

public class VoyagerClient1

> java examples.rmi.VoyagerClient1



Voyager ORB Developer Guide 263

  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();
      
      // lookup the object in the RMI registry running on port 8000
      IRmiStockmarket market = (IRmiStockmarket) Namespace.lookup( “rmi://localhost:8000/NASDAQ” );
      
      market.buy( 200, “SUNW” );
      market.news( “Voyager can be an RMI client!” );
      market.sell( 200, “CSCO” );
      
      Voyager.shutdown();      
      }
    catch( Exception exception )
      {
      exception.printStackTrace();
      }
    }
  }

RMI Example 2

In this example, Voyager will export a stockmarket to an external rmiregistry. A pure-RMI 
client looks up the stockmarket and interacts with it.

In one window, start rmiregistry on its default port (1099). In a second window, start 
VoyagerServer1. It will register a Stockmarket object with the rmiregistry. In a third window, 
start RmiClient1. The client will look up the Stockmarket object in the registry and invoke 
some of its methods.

Note: If you are using Java2 (JDK 1.2) to run this example, then you will have to set 
up your .java.policy file to allow the Voyager classes and the example classes 
permission to run this code. Refer to the documentation for Java2 Security for 
more detail.



264 Appendix B • Examples

Window 1

Window 2

Window 3

The source code for VoyagerServer1.java and RmiClient1.java follows.

Interface examples\rmi\VoyagerServer1.java
// copyright 1997 - 1999 objectspace
package examples.rmi;

import com.objectspace.voyager.*;
import com.objectspace.voyager.rmi.*;
import examples.stockmarket.RmiStockmarket;

public class VoyagerServer1
  {
  public static void main( String[] args )
    {
    try

> rmiregistry

> java examples.rmi.VoyagerServer1
construct stockmarket
BOUND!
Buying 200 of SUNW
news: Voyager can be an RMI server!
Selling 200 of CSCO

> java examples.rmi.RmiClient1
BINDING...
BOUND!



Voyager ORB Developer Guide 265

      {
      Voyager.startup( “8000” );
      
      // enable the resource server, so this instance of Voyager 
      // can serve the classes to the RMI registry
      ClassManager.enableResourceServer();
      
      // set the server’s codebase to point to this instance of Voyager.
      RmiRegistry.setServerCodebase( “http://localhost:8000” );
      
      // bind stockmarket to RMI registry running on port 1099.
      // voyager generates the stubs dynamically so rmic never has to be run.
      // false => do not export object through UnicastRemoteObject
      Namespace.bind( “rmi:NASDAQ”, new RmiStockmarket( false ) );
      
      System.out.println( “BOUND!” );
      }
    catch( Exception exception )
      {
      exception.printStackTrace();
      }
    }
  }

Interface examples\rmi\RmiClient1.java
// copyright 1997 - 1999 objectspace

package examples.rmi;

import java.rmi.*;
import examples.stockmarket.IRmiStockmarket;

public class RmiClient1
  {
  public static void main( String[] args )
    {
    try
      {      
      // install RMI security manager
      System.setSecurityManager( new RMISecurityManager() );
      
      // lookup object in the RMI registry running on port 1099



266 Appendix B • Examples

      System.out.println( “BINDING...” );
      IRmiStockmarket market = (IRmiStockmarket) Naming.lookup( “rmi:NASDAQ” );
      System.out.println( “BOUND!” );
      
      market.buy( 200, “SUNW” );
      market.news( “Voyager can be an RMI server!” );
      market.sell( 200, “CSCO” );
      }
    catch( Exception exception )
      {
      exception.printStackTrace();
      }
    }
  }

RMI Example 3

In this example, the Voyager server takes on the duties of rmiregistry itself. It creates and 
exports a Stockmarket object. A pure-RMI client is able to query the Voyager server using 
standard RMI lookups, access the Stockmarket object, and invoke methods on it. Best of 
all, the Voyager server is capable of generating the RMI stub classes when needed, so 
rmic is not required to generate the stub and skeleton classes beforehand.

In one window, run VoyagerServer2. The server will provide rmiregistry behavior on port 
8000, and it will create a Stockmarket object bound in that registry. In a second window, 
RmiCient2 will look up that object through pure RMI calls and invoke methods on the 
Stockmarket object.

Note: If you are using Java2 (JDK 1.2) to run this example, then you will have to set 
up your .java.policy file to allow the Voyager classes and the example classes 
permission to run this code. Refer to the documentation for Java2 Security for 
more detail.



Voyager ORB Developer Guide 267

Window 1

Window 2

The source code for VoyagerServer2.java and RmiClient2.java follows.

Interface examples\rmi\VoyagerServer2.java
// copyright 1997 - 1999 objectspace
package examples.rmi;

import com.objectspace.voyager.*;
import com.objectspace.voyager.rmi.*;
import examples.stockmarket.RmiStockmarket;

public class VoyagerServer2
  {
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup( “8000” );
      
      com.objectspace.lib.util.Console.setLogLevel( “verbose” );
      // enable the resource server, so this instance of Voyager 
      // can serve the classes to the RMI registry
      ClassManager.enableResourceServer();

> java examples.rmi.VoyagerServer2
construct stockmarket
BOUND!
Buying 200 of SUNW
news: Voyager can host an RMI registry!
Selling 200 of CSCO

> java examples.rmi.RmiClient2
BINDING...
BOUND!



268 Appendix B • Examples

      
      // set the server’s codebase to point to this instance of Voyager
      RmiRegistry.setServerCodebase( “http://gglass1.objectspace.com:8000” );
      
      // bind stockmarket to RMI registry running on port 8000.
      // Voyager generates the stubs dynamically so rmic never has to be run.
      // false => do not export object through UnicastRemoteObject
      Namespace.bind( “rmi://localhost:8000/NASDAQ”, new RmiStockmarket( false ) );
      
      System.out.println( “BOUND!” );
      }
    catch( Exception exception )
      {
      exception.printStackTrace();
      }
    }
  }

Interface examples\rmi\RmiClient2.java
// copyright 1997 - 1999 objectspace

package examples.rmi;

import java.rmi.*;
import examples.stockmarket.IRmiStockmarket;

public class RmiClient2
  {
  public static void main( String[] args )
    {
    try
      {      
      // install RMI security manager
      System.setSecurityManager( new RMISecurityManager() );
      
      // lookup object in the RMI registry running on port 8000
      System.out.println( “BINDING...” );
      IRmiStockmarket market = (IRmiStockmarket) Naming.lookup( “rmi://:8000/NASDAQ” );
      System.out.println( “BOUND!” );
      
      market.buy( 200, “SUNW” );
      market.news( “Voyager can host an RMI registry!” );



Voyager ORB Developer Guide 269

      market.sell( 200, “CSCO” );
      }
    catch( Exception exception )
      {
      exception.printStackTrace();
      }
    }
  }



270 Appendix B • Examples

Ultra-Light Client

The examples in this section demonstrate how Voyager works with ultra-light clients.

Ultra-Light Client Example 

The LightCalcClient example is a simple example of an applet that uses Voyager. The 
CalcServer program exports a calculator object capable of adding two numbers. The 
applet receives a reference to this calculator object and uses it to add numbers entered by 
the user.

From examples\calculator, compile the Calculator utility classes program:

javac ICalculator.java Calculator.java CalcServer.java 

From examples\applets, compile the example program:

javac LightCalcApplet.java 

Run an instance of Voyager server with enabled resource server on port 9000 in a second 
window. Modify LightCalculator.html so the codebase tag points to the Voyager server you 
just started. Make sure lightclient.jar is available in the directory where LightCalculator.html 
is located. Start a web browser, and load LightCalculator.html.

Window1

Note: The codebase tag in LightCalculator.html must contain the URL pointing to the 
CalcServer. For example, if CalcServer is running on host dallas:8000 then the URL 
should be http://dallas:8000/. In addition, lightclient.jar should be in the classpath of 
CalcServer.

Pro
Only

>java examples.calculator.CalcServer
4 + 5 = 9



Voyager ORB Developer Guide 271

Window2

The source code for ICalculator.java, Calculator.java, CalcServer.java, CalcApplet.java and 
Calculator.html follows: 

Applet examples\applets\LightCalcApplet.java
// copyright 1997-1999 objectspace

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import com.objectspace.voyager.*;
import examples.calculator.*;

public class LightCalcApplet extends Applet
  {
  TextField operand1 = new TextField( ““, 3 );
  Label plus = new Label( “+” );
  TextField operand2 = new TextField( ““, 3 );
  Button add = new Button( “=” );
  TextField result = new TextField( ““, 3 );
  ICalculator calculator;

  public void init()
    {
    setLayout( new FlowLayout() );
    add( operand1 );
    add( plus );
    add( operand2 );
    add( add );
    add( result );
    add.addActionListener( new ActionListener() 
    { 
      public void actionPerformed( ActionEvent event ) 

>appletviewer Calculator.html



272 Appendix B • Examples

      { 
      add(); 
      }       
    });
    }

  public void start()
    {
    try
      {
      Namespace.setServerURL( this );
      calculator = (ICalculator) Namespace.lookup( “MyCalculator” );
      }
    catch( Exception exception )
      {
      exception.printStackTrace();
      }
    }

  void add()
    {
    int x = Integer.parseInt( operand1.getText() );
    int y = Integer.parseInt( operand2.getText() );

    try
      { 
      result.setText( Integer.toString( calculator.add( x, y ) ) ); 
      }
    catch( Exception exception ) 
      { 
      result.setText(“Error”);
      }
    }
  }

HTML examples\applets\LightCalculator.html
<html>
<head><title>Calculator Applet</title></head>
<body><hr><p>
<applet codebase=”http://<address of the Voyager server goes here>” code=”CalcApplet” align=”baseline” 
width=”300” height=”50” archive=”lightclient.jar” VIEWASTEXT>
</applet>



Voyager ORB Developer Guide 273

</p><hr></body>
</html>



274 Appendix B • Examples

Timers

The examples in this section demonstrate Voyager’s Timing services.

Stopwatch1 Example

The Stopwatch1 example demonstrates use of the Stopwatch class to clock time intervals.

From examples\timer, compile the program:

javac Stopwatch1.java 

Run the Stopwatch1 program from examples\timer. 

Window1

The source code for Stopwatch1.java follows: 

Program examples\timer\Stopwatch1.java
// copyright 1997-1999 objectspace

package examples.timer;

 >java examples.timer.Stopwatch1
start the stopwatch and then sleep for 2 seconds
stop the stopwatch
lap count = 1
lap time = 2022
total time = 2022
pause for 4 seconds
start the stopwatch and then sleep for 3 seconds
stop the stopwatch
lap count = 2
lap time = 3004
total time = 5037
average lap time = 2518.5
lap times = [ 2023 3014 ]

>



Voyager ORB Developer Guide 275

import com.objectspace.lib.timer.*;

public class Stopwatch1
  {
  public static void main( String args[] )
    {
    Stopwatch stopwatch = new Stopwatch();
    stopwatch.setRecordLapTimes( true ); // record individual lap times

    System.out.println( “start the stopwatch and then sleep for 2 seconds” );
    stopwatch.start();
    try{ Thread.sleep( 2000 ); } catch( InterruptedException exception ) {}
    System.out.println( “stop the stopwatch” );
    stopwatch.stop();
    System.out.println( “lap count = “ + stopwatch.getLapCount() );
    System.out.println( “lap time = “ + stopwatch.getLapTime() );
    System.out.println( “total time = “ + stopwatch.getTotalTime() );

    System.out.println( “pause for 4 seconds” );
    try{ Thread.sleep( 4000 ); } catch( InterruptedException exception ) {}

    System.out.println( “start the stopwatch and then sleep for 3 seconds” );
    stopwatch.start();
    try{ Thread.sleep( 3000 ); } catch( InterruptedException exception ) {}
    System.out.println( “stop the stopwatch” );
    stopwatch.stop();
    System.out.println( “lap count = “ + stopwatch.getLapCount() );
    System.out.println( “lap time = “ + stopwatch.getLapTime() );
    System.out.println( “total time = “ + stopwatch.getTotalTime() );
    System.out.println( “average lap time = “ + stopwatch.getAverageLapTime() );
    long[] times = stopwatch.getLapTimes();
    System.out.print( “lap times = [ “ );
    for( int i = 0; i < times.length; i++ )
      System.out.print( times[ i ] + “ “ );
    System.out.println( “]” );
    }
  }



276 Appendix B • Examples

Timer1 Example

The Timer1 example demonstrates TimerListeners listening for an alarm using shared 
thread notification. The first listener’s event notification completes before the second 
listener’s event notification begins.

From examples\timer, compile the program:

javac SleepyHead.java Timer1.java 

Run the Timer1 program from examples\timer. 

Window1

The source code for SleepyHead.java and Timer1.java follows: 

Class examples\timer\SleepyHead.java
// copyright 1997-1999 objectspace

package examples.timer;

import com.objectspace.lib.timer.*;

public class SleepyHead implements TimerListener
  {
  public void timerExpired( TimerEvent event )
    {
    System.out.println( “enter timerExpired( “ + event + “ )” );
    System.out.println( “sleep 2 seconds...” );

 >java examples.timer.Timer1
notify after 10 seconds using shared thread
main program sleeps for 20 seconds...
enter timerExpired( TimerEvent( 903768890498 ) )
sleep 2 seconds...
exit timerExpired( TimerEvent( 903768890498 ) )
enter timerExpired( TimerEvent( 903768890498 ) )
sleep 2 seconds...
exit timerExpired( TimerEvent( 903768890498 ) )
main program terminates

>



Voyager ORB Developer Guide 277

    try{ Thread.sleep( 2000 ); } catch( InterruptedException exception ) {}
    System.out.println( “exit timerExpired( “ + event + “ )” );
    }
  }

Program examples\timer\Timer1.java
// copyright 1997-1999 objectspace

package examples.timer;

import com.objectspace.lib.timer.*;

public class Timer1
  {
  public static void main( String args[] )
    {
    SleepyHead sleepy1 = new SleepyHead();
    SleepyHead sleepy2 = new SleepyHead();

    System.out.println( “notify after 10 seconds using shared thread” );
    Timer timer = new Timer();
    timer.addTimerListener( sleepy1 );
    timer.addTimerListener( sleepy2 );
    timer.alarmAfter( 10000 );
      
    System.out.println( “main program sleeps for 20 seconds...” );
    try{ Thread.sleep( 20000 ); } catch( InterruptedException exception ) {}
    System.out.println( “main program terminates” );
    }
  }

Timer2 Example

The Timer2 example demonstrates TimerListeners listening from within different timer 
groups. The event notifications are interlaced due to the multi-threaded listening.

From examples\timer, compile the program:

javac Timer2.java 

Run the Timer2 program from examples\timer. 



278 Appendix B • Examples

Window1

The source code for Timer2.java follows: 

Program examples\timer\Timer2.java
// copyright 1997-1999 objectspace

package examples.timer;

import com.objectspace.lib.timer.*;

public class Timer2
  {
  public static void main( String args[] )
    {
    SleepyHead sleepy1 = new SleepyHead();
    SleepyHead sleepy2 = new SleepyHead();

    System.out.println( “timer1 is member of default timer group” );

 >java examples.timer.Timer2
timer1 is member of default timer group
timer1 will wake up sleepy1 every 10 seconds
timer2 is member of explicit timer group
timer2 will wake up sleepy2 every 10 seconds
main program sleeps for 25 seconds...
enter timerExpired( TimerEvent( 903769450483 ) )
sleep 2 seconds...
enter timerExpired( TimerEvent( 903769450413 ) )
sleep 2 seconds...
exit timerExpired( TimerEvent( 903769450483 ) )
exit timerExpired( TimerEvent( 903769450413 ) )
enter timerExpired( TimerEvent( 903769460417 ) )
sleep 2 seconds...
enter timerExpired( TimerEvent( 903769460487 ) )
sleep 2 seconds...
exit timerExpired( TimerEvent( 903769460417 ) )
exit timerExpired( TimerEvent( 903769460487 ) )
main program terminates

>



Voyager ORB Developer Guide 279

    Timer timer1 = new Timer(); // default timer group, Thread.NORM_PRIORITY
    timer1.addTimerListener( new TimerListenerThread( sleepy1 ) );
    System.out.println( “timer1 will wake up sleepy1 every 10 seconds” );
    timer1.alarmEvery( 10000 );

    System.out.println( “timer2 is member of explicit timer group” );
    TimerGroup group = new TimerGroup( Thread.MAX_PRIORITY );
    Timer timer2 = new Timer( group ); // explicit timer group
    timer2.addTimerListener( new TimerListenerThread( sleepy2 ) );
    System.out.println( “timer2 will wake up sleepy2 every 10 seconds” );
    timer2.alarmEvery( 10000 );
      
    System.out.println( “main program sleeps for 25 seconds...” );
    try{ Thread.sleep( 25000 ); } catch( InterruptedException exception ) {}
    System.out.println( “main program terminates” );
    }
  }

Timer3 Example

The Timer3 example demonstrates TimerListeners listening for an alarm using separate 
thread notification. The event notifications are interlaced due to the multi-threaded 
listening. 

From examples\timer, compile the program:

javac Timer3.java 

Run the Timer3 program from examples\timer. 



280 Appendix B • Examples

Window1

The source code for Timer3.java follows: 

Program examples\timer\Timer3.java
// copyright 1997-1999 objectspace

package examples.timer;

import com.objectspace.lib.timer.*;

public class Timer3
  {
  public static void main( String args[] )
    {
    SleepyHead sleepy1 = new SleepyHead();
    SleepyHead sleepy2 = new SleepyHead();

    System.out.println( “notify after 10 seconds with separate threads” );
    Timer timer = new Timer();
    timer.addTimerListener( new TimerListenerThread( sleepy1 ) );
    timer.addTimerListener( new TimerListenerThread( sleepy2 ) );
    timer.alarmAfter( 10000 );
      
    System.out.println( “main program sleeps for 20 seconds...” );
    try{ Thread.sleep( 20000 ); } catch( InterruptedException exception ) {}
    System.out.println( “main program terminates” );

 >java examples.timer.Timer3
notify after 10 seconds with separate threads
main program sleeps for 20 seconds...
enter timerExpired( TimerEvent( 903769946226 ) )
sleep 2 seconds...
enter timerExpired( TimerEvent( 903769946226 ) )
sleep 2 seconds...
exit timerExpired( TimerEvent( 903769946226 ) )
exit timerExpired( TimerEvent( 903769946226 ) )
main program terminates

>



Voyager ORB Developer Guide 281

    }
  }



282 Appendix B • Examples

Configuration and Management

The examples in this section demonstrate extending Voyager’s configuration and 
management frameworks and using them in a deployed system by converting 
VoyagerDB into a simple, configurable Voyager service. Use the VoyagerDB add-on to 
run this example. 

From examples\management, compile all of the Java files:

javac *.java

Start a Voyager Directory Server in one window on port 8000 with its root at dir and its 
directory file at 8000.db. 

Window 1

In a second window, create the serialized configuration object for DbService. 

Window 2

The configuration object is written to the file dbsvc.ser.

Start the Voyager Management Console, using the console utility, and log into the 
directory server by entering 8000/dir in the URL field and pressing the OK button. The 
console will inform you that the directory server has not been initialized. Press the OK 
button to clear this dialog. Next, from the File menu choose Initialize directory... Install 

Pro
Only

> voyager 8000 -j dir -f 8000.db
voyager orb professional (directory server) 3.0, copyright objectspace 1997-1999

> java examples.management.ConfigurationFactory dbsvc.ser
>



Voyager ORB Developer Guide 283

the DbService into the directory by choosing Install service from the file menu and 
selecting dbsvc.ser. 

Create a new server profile by choosing New server profile... from the file menu. Enter 
test in the URL field, and check DbService in the services list. Press OK when finished.



284 Appendix B • Examples

A node called test appears in the tree view on the left. Highlight the test node. In the 
Startup URL field, replace 8000 with 9000, and press the Accept button. 



Voyager ORB Developer Guide 285

Expand the test node, and highlight the DbService child node. Enter test.db in the 
Database name field. 

Shut down the console. Start a Voyager server, and associate it with the test entry in the 
directory, using the -d option.

Window 3

Start the console again and log into the directory server the same as before. Expand the 
test node, and highlight the DbService child node. It now has two tabs, one for 

> voyager -d 8000/dir/test
voyager orb professional 3.0, copyright objectspace 1997-1999
DbService OPENED



286 Appendix B • Examples

configuration and one for actions. You are now interacting with the service via the 
management framework.

The source code for DbConfig.java, DbMonitor.java, DbService.java, and MonitorTool.java 
follows. DbConfig is an implementation of IConfiguration, DbMonitor is an implementation of 
IManagementAgent, DbService is the class being configured and managed, and MonitorTool is 
an implementation of ITool.

Class examples\management\DbConfig.java

// copyright 1999 objectspace

package examples.management;

import com.objectspace.voyager.management.*;
import com.objectspace.voyager.db.DatabaseException;
import com.objectspace.voyager.*;



Voyager ORB Developer Guide 287

import java.util.Properties;

public class DbConfig implements IConfiguration
  {
  
  private String dbFileName = null;
  
  public DbConfig( String dbFileName )
    {
    setDbFileName( dbFileName );
    }
  
  
// ACCESSING

  public void setDbFileName( String dbFileName )
    {
    this.dbFileName = dbFileName;
    }
  
  public String getDbFileName()
    {
    return this.dbFileName;
    }
  
  
// ICONFIGURATION BEHAVIOR

  public void install( String url ) throws ManagementException
    {
    initialize();
    installAgent( url );
    }
  

// SUPPORT

  void initialize()
    {
    try
      {
      DbService.initialize( getDbFileName() );



288 Appendix B • Examples

      }
    catch( DatabaseException e )
      {
      throw new DbServiceException( "could not initialize database: " + e );
      }
    }
  
  private void installAgent( String url )
    {
    IManagementAgent agent = getAgent();
    DbService.setAgentInstaller( new Installer( url, agent ) );
    }
  
  private IManagementAgent getAgent()
    {
    try
      {
      return DbMonitor.getMonitor();
      }
    catch( Exception e )
      {
      throw new DbServiceException( "could not create management agent" );
      }
    }
  
  }

Class examples\management\DbMonitor.java

// copyright 1999 objectspace

package examples.management;

import com.objectspace.voyager.management.*;
import com.objectspace.voyager.*;
import javax.naming.*;
import com.objectspace.voyager.db.DatabaseException;
import java.util.Properties;

public class DbMonitor extends ManagementAgent implements IConstants, IRemote
  {



Voyager ORB Developer Guide 289

  
  private static IManagementAgent soleInstance = null;
  
  public static IManagementAgent getMonitor()
    {
    try
      {
      if( soleInstance == null )
        soleInstance = (IManagementAgent) Factory.create( DbMonitor.class.getName() );
      }
    catch( Exception e )
      {
      throw new DbServiceException( "could not create management agent" );
      }
    
    return soleInstance;
    }
  
  
  /**
   * @return the managed objects
   */
  
  public Object[] getManagedObjects()
    {
    return new Object[] { Proxy.of( this ) };
    }
  
  /**
   * @return an array of strings identifying these actions
   */

  public String[] getActions()
    {
    return actions;
    }
  
  /**
   * @param action a string identifying the desired action
   */

  public void performAction( String action ) throws ManagementException



290 Appendix B • Examples

    {
    if( action.equals( CLEAR_ACTION ) == true )
      doClear();
    
    else if( action.equals( STARTUP_ACTION ) == true )
      restart();
    
    else if( action.equals( SHUTDOWN_ACTION ) == true )
      shutdown( SHUTDOWN_GRACEFULLY );
    
    else
      throw new ManagementException( "action \"" + action + "\" not supported" );
    }
  
  /**
   * @return an array of strings identifying the event types
   */

  public String[] getEventTypes()
    {
    return events;
    }
  
  /**
   * updates the configuration information for this service
   * @param url the location where this agent and its configuration are bound
   * @param configuration the new configuration object
   */

  public void update( String url, IConfiguration configuration ) 
    throws ManagementException
    {
    shutdown( SHUTDOWN_GRACEFULLY );
    
    if( configuration instanceof DbConfig )
      ( (DbConfig) configuration ).initialize();
    
    updateConfiguration( url, configuration );
    restart();
    }
  
  /**



Voyager ORB Developer Guide 291

   * ask the service to restart
   */
  
  public void restart()
    {
    try
      {
      DbService.open();
      notify( STARTUP_EVENT, null );
      }
    catch( DatabaseException e )
      {
      notify( EXCEPTION_EVENT, new Object[] { e } );
      }
    }
  
  /**
   * ask the service to shut down
   * @param mode SHUTDOWN_GRACEFULLY, SHUTDOWN_IMMEDIATELY, or user value
   */
  
  public void shutdown( int mode )
    {
    try
      {
      DbService.close();
      notify( SHUTDOWN_EVENT, null );
      }
    catch( DatabaseException e )
      {
      notify( EXCEPTION_EVENT, new Object[] { e } );
      }
    }
  
  private void doClear()
    {
    try
      {
      DbService.clear();
      notify( CLEAR_EVENT, null );
      }
    catch( DatabaseException e )



292 Appendix B • Examples

      {
      notify( EXCEPTION_EVENT, new Object[] { e } );
      }
    }
  
  
  private void updateConfiguration( String url, IConfiguration config )
    {
    new Installer( url, config ).run();
    }
  
  }

Class examples\management\DbService.java

// copyright 1999 objectspace

package examples.management;

import com.objectspace.voyager.db.*;
import com.objectspace.voyager.*;
import com.objectspace.voyager.persistence.Persistence;
import com.objectspace.voyager.system.IService;
import java.io.PrintStream;

public class DbService implements IService
  {
  
  private IVoyagerDb database = null;
  private static Runnable agentInstaller = null;
  private static DbService soleInstance = null;
  
  private DbService( String fileName ) throws DatabaseException
    {
    this.database = new VoyagerDb( fileName, false );
    Persistence.setDatabase( this.database );
    }
  
// STATIC

  public static void initialize( String fileName ) throws DatabaseException
    {



Voyager ORB Developer Guide 293

    try
      {
      if( DbService.soleInstance != null )
        Voyager.deregisterService( DbService.soleInstance );
      
      DbService.soleInstance = new DbService( fileName );
      Voyager.registerService( DbService.soleInstance );
      }
    catch( DatabaseException e )
      {
      throw new DbServiceException( "could not initialize database: " + e );
      }
    }
  
  
// ACCESSING

  public static IVoyagerDb getDatabase() throws DatabaseException
    {
    return getSoleInstance().getDb();
    }
  
  public static void setAgentInstaller( Runnable agentInstaller )
    {
    DbService.agentInstaller = agentInstaller;
    }
  
  private static DbService getSoleInstance()
    {
    if( DbService.soleInstance == null )
      throw new DbServiceException( "DbService has not been initialized" );
    
    return soleInstance;
    }
  
  private IVoyagerDb getDb()
    {
    return this.database;
    }
  
  private static Runnable getAgentInstaller()
    {



294 Appendix B • Examples

    return DbService.agentInstaller;
    }
    
  
// EXPOSED VOYAGERDB BEHAVIOR

  public static void open() throws DatabaseException
    {
    getDatabase().open();
    System.out.println( "DbService OPENED" );
    }
  
  public static void close() throws DatabaseException
    {
    getDatabase().close();
    System.out.println( "DbService CLOSED" );
    }
  
  public static void clear() throws DatabaseException
    {
    getDatabase().clear();
    System.out.println( "DbService CLEARED" );
    }

  
// ISERVICE BEHAVIOR

  public void startup() throws StartupException
    {
    if( getAgentInstaller() != null )
      getAgentInstaller().run();
    
    try
      {
      DbService.open();
      }
    catch( DatabaseException e )
      {
      throw new StartupException( e );
      }
    }
  



Voyager ORB Developer Guide 295

  public void shutdown()
    {
    try
      {
      DbService.close();
      }
    catch( DatabaseException e )
      {
      throw new DbServiceException( "could not close database: " + e );
      }
    }
  
  public String getId()
    {
    return "VoyagerDB";
    }
  
  public String[] getPrerequisites()
    {
    return new String[0];
    }
  
  public void dumpStatus( PrintStream printStream )
    {
    try
      {
      String status = ( getDatabase().isOpen() == true ) ? "open" : "closed";
      printStream.println( "DbService: VoyagerDB is " + status );
      }
    catch( Exception e )
      {
      printStream.println( "DbService: error printing status: " + e );
      }
    }
  
  }

Class examples\management\MonitorTool.java

// copyright 1999 objectspace

package examples.management;



296 Appendix B • Examples

import com.objectspace.workshop.explorer.ui.BasicUIPanel;
import com.objectspace.voyager.management.*;
import com.objectspace.voyager.*;
import com.objectspace.lib.ui.*;
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class MonitorTool extends BasicUIPanel implements IEventListener, IConstants
  {
  
  public static final String TOOL_NAME = "Actions";
  
  private JComboBox actions = null;
  private JLabel actionsLabel = null;
  private JButton execute = null;
  private JLabel title = null;
  
  
// ITOOL BEHAVIOR

  public Image getIcon()
    {
    return null;
    }
  
  public boolean isDestroyable()
    {
    return true;
    }
  
  public boolean isStoppable()
    {
    return true;
    }
  
  public void init()
    {
    addAsEventListener( DbMonitor.EXCEPTION_EVENT );
    addAsEventListener( DbMonitor.STARTUP_EVENT );
    addAsEventListener( DbMonitor.SHUTDOWN_EVENT );



Voyager ORB Developer Guide 297

    addAsEventListener( DbMonitor.CLEAR_EVENT );
    
    actions = new JComboBox();
    actions.setPreferredSize( FIELD_SIZE );
    actionsLabel = new JLabel( "Available actions:" );
    title = new JLabel( "VoyagerDB Actions" );
    title.setFont( new Font( "dialog", Font.BOLD, 14 ) );
    execute = new JButton( "Execute" );
    execute.addActionListener( getActionListener() );
    
    GridBagHelper grid = new GridBagHelper( this );
    
    grid.insets = grid.FULL_CUSHION;
    grid.gridwidth = 2;
    grid.add( title, 0, 0 );
    
    grid.insets = grid.NORTH_CUSHION;
    grid.gridwidth = 1;
    grid.add( actionsLabel, 0, 1 );
    grid.add( actions, 1, 1 );
    
    grid.insets = grid.NO_CUSHION;
    grid.add( execute, 1, 2 );
    grid.weighty = 1;
    
    grid.add( new JPanel(), 0, 3 );
    
    refreshValues();
    }
  
  public void start()
    {
    // no op
    }
  
  public void stop()
    {
    // no op
    }
  
  public void destroy()
    {



298 Appendix B • Examples

    removeAsEventListener( DbMonitor.EXCEPTION_EVENT );
    removeAsEventListener( DbMonitor.STARTUP_EVENT );
    removeAsEventListener( DbMonitor.SHUTDOWN_EVENT );
    removeAsEventListener( DbMonitor.CLEAR_EVENT );
    }
  
  public String getName()
    {
    return TOOL_NAME;
    }
  
  
// SUPPORT

  private void refreshValues()
    {
    String[] available = getManagementAgent().getActions();

    if( actions.getItemCount() > 0 ) 
      actions.removeAllItems();       
    
    for( int i = 0; i < available.length; i++ )
      actions.addItem( available[ i ] );
    
    if( available.length > 0 )
      actions.setSelectedIndex( 0 );
    
    validate();
    }
  
  private void execute()
    {
    if( actions.getSelectedIndex() != -1 )
      {
      String selected = (String) actions.getSelectedItem();
      executeAction( selected );
      }
    else
      showNotSelected();
    }
  
  private void executeAction( String action )



Voyager ORB Developer Guide 299

    {
    try
      {
      getManagementAgent().performAction( action );
      }
    catch( ManagementException e )
      {
      handleException( e );
      }      
    }
  
  private void showNotSelected()
    {
    JOptionPane.showMessageDialog(
      this,
      "No action is selected.\nPlease make a selection.",
      "No selection",
      JOptionPane.INFORMATION_MESSAGE );
    }

  private IManagementAgent getManagementAgent()
    {
    return (IManagementAgent) getObject();
    }

  private void handleException( Exception e )
    {
    getContext().showStatus( "MonitorTool exception: " + e );
    }
  

// EVENTS

  private ActionListener getActionListener()
    {
    return new ActionListener()
      {
      public void actionPerformed( ActionEvent e )
        {
        if( e.getSource() == execute )
          execute();
        }



300 Appendix B • Examples

      };
    }
 
  
// IEVENTLISTENER BEHAVIOR

  public void notify( String eventType, Object args[] )
    {
    getContext().showStatus( "EVENT - " + eventType );
    }
  
  
// EVENTLISTENER HELPERS

  private void addAsEventListener( String eventType )
    {
    try
      {
      getManagementAgent().addEventListener( (IEventListener) Proxy.of( this ), eventType );
      }
    catch( ManagementException e )
      {
      handleException( e );
      }
    }
  
  private void removeAsEventListener( String eventType )
    {
    try
      {
      getManagementAgent().removeEventListener( (IEventListener) Proxy.of( this ), eventType );
      }
    catch( ManagementException e )
      {
      handleException( e );
      }      
    }  
  
  }



Voyager ORB Developer Guide 301

Configuration

The examples in this section demonstrate user-customized configuration of Voyager 
properties.

Configuration1 Example 

The Configuration1 example demonstrates configuration of a property in a Voyager server. 
The server is started on port 8000 with a properties file that changes the Console log 
level from SILENT to VERBOSE. The output to this server’s console shows the 
modification. 

From examples\configuration, compile the example program:

javac IDisplay.java Display.java Configuration1.java

Start a Voyager server on port 8000 with the properties file in one window. Run 
Configuration1 in a second window.

Note: The displayed exception indicates that the Configuration1 program terminated. 
This information is reported to the Console in the form of the SocketException.

Pro
Only



302 Appendix B • Examples

Window1

Window2

The source code for configuration1.properties, IDisplay.java, Display.java, and Configuration1.java 
follows: 

Properties examples\configuration\configuration1.properties
# This will set the Console log level to VERBOSE so that the 
# display agent will successfully display its message
lib.util.Console.setLogLevel=verbose

>voyager 8000 -p configuration1.properties
voyager 3.0, copyright objectspace 1997-1999
tcp accepting connections on tcp://homer1:8000
[thread: TransportConnection(tcp://10.2.5.194:8000->tcp://10.2.5.194:1229)]  DGC cycle START
[thread: Thread-2]  will display because log level set to verbose
[thread: TransportConnection(tcp://10.2.5.194:8000->tcp://10.2.5.194:1229)]
java.net.SocketException: Connection reset by peer
        at java.net.SocketInputStream.read(Compiled Code)
        at java.io.BufferedInputStream.fill(Compiled Code)
        at java.io.BufferedInputStream.read(Compiled Code)
        at com.objectspace.voyager.vrmp.VrmpRequestHandler.readFully(Compiled Code)
        at com.objectspace.voyager.vrmp.VrmpRequestHandler.canProcess(Compiled Code)
        at com.objectspace.voyager.tcp.RequestManager.process(Compiled Code)
        at com.objectspace.voyager.tcp.RequestManager.process(Compiled Code)
        at com.objectspace.voyager.tcp.RequestManager$1.run(Compiled Code)
        at com.objectspace.lib.thread.ReusableThread.run(Compiled Code)
[thread: TransportConnection(tcp://10.2.5.194:8000->tcp://10.2.5.194:1229)]  Closing connection
 TransportConnection(tcp://10.2.5.194:8000->tcp://10.2.5.194:1229)

>java examples.configuration.Configuration1

>



Voyager ORB Developer Guide 303

Interface examples\configuration\IDisplay.java
// copyright 1997-1999 objectspace

package examples.configuration;

public interface IDisplay
  {
  void display( String message );
  }

Class examples\configuration\Display.java
// copyright 1997-1999 objectspace

package examples.configuration;

import java.io.Serializable;
import com.objectspace.lib.util.Console;

public class Display implements Serializable, IDisplay
  {
  public Display()
    {
    }

  public void display( String message )
    {
    Console.log( message, Console.VERBOSE );
    }
  }

Program examples\configuration\Configuration1.java
// copyright 1997-1999 objectspace

package examples.configuration;

import com.objectspace.voyager.Proxy;
import com.objectspace.voyager.Voyager;
import com.objectspace.voyager.agent.Agent;

public class Configuration1
  {



304 Appendix B • Examples

  public static void main( String[] args )
    {
    try
      {
      Voyager.startup();
      IDisplay agent = (IDisplay) Proxy.of( new Display() );

      // won’t display locally
      agent.display( “will not display since log level is silent by default” );

      // will display remotely
      Agent.of( agent ).moveTo( “//localhost:8000”, “display”, new Object[]{ “will display because log level set 
to verbose” } );
      Voyager.shutdown();
      }
    catch( Exception ex )
      {
      ex.printStackTrace();
      }
    }
  }

Configuration2 Example 

The Configuration2 example demonstrates configuration of multiple properties in a 
custom Voyager application.   The thread pool’s max idle thread count is set, as is the 
routing address. The router is configured to send all remote communication through the 
server on 8000. The output in this server’s window shows confirmation of the router.

From examples\configuration, compile the example program:

javac Configuration2.java

Start a Voyager server on port 8000 with verbose logging in one window, and a Voyager 
server on port 7000 with verbose logging in a second window. Run Configuration2 in a 
third window.



Voyager ORB Developer Guide 305

Window1

Window2

>voyager 8000 –l verbose
voyager 3.0, copyright objectspace 1997-1999
tcp accepting connections on tcp://homer1:8000
[thread: TransportConnection(tcp://10.2.5.194:8000->tcp://10.2.5.194:1237)]
java.net.SocketException: Connection reset by peer
        at java.net.SocketInputStream.read(Compiled Code)
        at java.io.BufferedInputStream.fill(Compiled Code)
        at java.io.BufferedInputStream.read(Compiled Code)
        at com.objectspace.voyager.router.RouteRequestHandler.readFully(Compiled Code)
        at com.objectspace.voyager.router.RouteRequestHandler.canProcess(Compiled Code)
        at com.objectspace.voyager.tcp.RequestManager.process(Compiled Code)
        at com.objectspace.voyager.tcp.RequestManager.process(Compiled Code)
        at com.objectspace.voyager.tcp.RequestManager$1.run(Compiled Code)
        at com.objectspace.lib.thread.ReusableThread.run(Compiled Code)
[thread: TransportConnection(tcp://10.2.5.194:8000->tcp://10.2.5.194:1237)]  Closing connection
 TransportConnection(tcp://10.2.5.194:8000->tcp://10.2.5.194:1237)

>voyager 7000 –l verbose
voyager 3.0, copyright objectspace 1997-1999
tcp accepting connections on tcp://homer1:7000
[thread: TransportConnection(tcp://10.2.5.194:7000->tcp://10.2.5.194:1238)]  DGC cycle START
[thread: TransportConnection(tcp://10.2.5.194:7000->tcp://10.2.5.194:1238)]  routed message



306 Appendix B • Examples

Window3

The source code for configuration2.properties and Configuration2.java follows: 

Properties examples\configuration\configuration2.properties
# Change the max idle threads from Integer.MAX_VALUE to 10
voyager.ThreadManager.setMaxIdleThreads=10

# Route all communication through localhost:8000 
voyager.router.Routing.setRouterAddress=//localhost:8000

Program examples\configuration\Configuration2.java
// copyright 1997-1999 objectspace

package examples.configuration;

import com.objectspace.lib.configuration.PropertyLoader;
import com.objectspace.voyager.Proxy;
import com.objectspace.voyager.ThreadManager;
import com.objectspace.voyager.Factory;
import com.objectspace.voyager.Voyager;
import com.objectspace.voyager.router.Routing;

public class Configuration2
  {
  public static void main( String[] args )
    {
    try
      {
      // configure router and threadmanager
      new PropertyLoader( “configuration2.properties” ).load();
      Voyager.startup();
      System.out.println( “max idle threads set to: “ + ThreadManager.getMaxIdleThreads() );

 >java examples.configuration.Configuration2
max idle threads set to: 10
router address set to:   //homer1:8000

>



Voyager ORB Developer Guide 307

      System.out.println( “router address set to:   “ + Routing.getRouterAddress() );

      IDisplay d = (IDisplay) Factory.create( “examples.configuration.Display”, “//localhost:7000” );
      d.display( “routed message” );
      Voyager.shutdown();
      }
    catch( Exception ex )
      {
      ex.printStackTrace();
      }
    }
  }

Configuration3 Example 

The Configuration3 example demonstrates configuration of a multi-property, that is, a 
property that can take multiple values. The property demonstrated is the URL resource 
property. Setting these two properties, allows Voyager to load classes from the otherwise 
hidden folders ./hidden1 and ./hidden2. 

From examples\configuration, compile the example program:

javac Configuration3.java

From examples\configuration\hidden1, compile the first hidden class:

javac Hidden1.java

From examples\configuration\hidden2, compile the second hidden class:

javac Hidden2.java

Run Configuration3 from examples\configuration.

Window1

>java examples.configuration.Configuration3
found class Hidden1
found class Hidden2

>



308 Appendix B • Examples

The source code for configuration3.properties and Configuration3.java follows: 

Properties examples\configuration\configuration3.properties
# Without these two lines, Voyager would not be able to find the 
# classes Hidden1 and Hidden2. These two lines use relative 
# syntax for specifying “file:” URLs.
voyager.loader.VoyagerClassLoader.addURLResource[1]=./hidden1/
voyager.loader.VoyagerClassLoader.addURLResource[2]=./hidden2/

Program examples\configuration\Configuration3.java
// copyright 1997-1999 objectspace

package examples.configuration;

import com.objectspace.lib.configuration.PropertyLoader;
import com.objectspace.voyager.ClassManager;
import com.objectspace.voyager.Voyager;

public class Configuration3
  {
  public static void main( String[] args )
    {
    try
      {
      // add multiple resource loaders
      new PropertyLoader( “configuration3.properties” ).load();
      Voyager.startup();
      Class c = ClassManager.getClass( “Hidden1” );
      System.out.println( “found “ + c );
      c = ClassManager.getClass( “Hidden2” );
      System.out.println( “found “ + c );
      Voyager.shutdown();
      }
    catch( Exception ex )
      {
      ex.printStackTrace();
      }
    }
  }



Voyager ORB Developer Guide 309

Universal Gateway

There are two Voyager servers: one on port 8000 and the other one on port 10000 
(Voyager server on port 10000 must be started with -r option). The one on port 8000 has 
a CORBA object bound to TravelEngine in the CorbaDirectory directory. This Voyager 
server is started in CorbaServer.class. In order to get a proxy to a CORBA reference, the 
actual object must be remote to the server where the proxy is created. 

To create this environment, the lookup call is sent to Voyager on port 10000: 
"rmi://:10000/". This is an RMI call since there is an rmi: prefix; thus the returned object 
will be a proxy to an RMI object. The server will look up the actual object on port 
10000, and it will use the remaining portion of the name: 
cos://localhost:8000/CorbaDirectory/TravelEngine. This routes to the Voyager server on port 
8000 and returns a proxy to a CORBA object. (see Client.java)

From examples/universalgateway, compile the universal gateway example files:

javac *.java

Window1

This starts a Voyager server on port 10000 with a resource loader enabled:

Window2

Pro
Only

>voyager 10000 -r

>java CorbaServer



310 Appendix B • Examples

Window2

The source code for Client.java, CorbaServer.java, Flight.java, IFlight.java, 
PassengerInfo.java, IPassengerInfo.java, TravelEngine.java, ITravelEngine.java, and 
ITravelEngine.idl follows:

Program examples\universalgateway\Client.java
import java.rmi.*;

public class Client
{
  public static void main( String[] args )
    {  
    try
      {
      System.setSecurityManager( new RMISecurityManager() );
      
      // This is a bit tricky:
      // There are two Voyager servers: one on port 8000 and the other one on port 10000 (Voyager server
      // on port 10000 must be started with -r option).
      // The one on port 8000 has a CORBA object bound to “TravelEngine” name in “CorbaDirectory” 
directory.
      // This Voyager server is started in CorbaServer.class. In order to get a proxy to a CORBA reference, 
      // the actual objet must be remote to the server, where the proxy is created. To create this environment, 
      // the lookup call is sent to Voyager on port 10000: “rmi://:10000/”. This is an RMI call, since there 
      // is rmi: prefix, thus the returned object will be a proxy to an RMI object. The actual object is going 
      // to be lookup by the server on port 10000, and it will use the remaining portion of the 
      // name: “cos://localhost:8000/CorbaDirectory/TravelEngine” which routes to the Voyager server on 
      // port 8000 and it will return a proxy to a CORBA object.
      // AS A RESULT THE FOLLOWING lookup() CALL WILL RETURN AN RMI PROXY TO A CORBA 
OBJECT
      ITravelEngine travelEngine = ( ITravelEngine )Naming.lookup( 
“rmi://:10000/cos://localhost:8000/CorbaDirectory/TravelEngine” );
    
    
      // Get the flight availability for Dallas - London

>java Client



Voyager ORB Developer Guide 311

      System.out.println( “Getting flight availability for Dallas - London” );
      IFlight[] flights = travelEngine.getFlightAvailability( “DFW”, “LON” );
    
      int bestFare = 0;
      int availabilityOption = 0;
    
      System.out.println( “Got flights back:” );
    
      for( int i =0 ; i < flights.length; i++ )
        {
        System.out.println( flights[i].getCityFrom() + “ “ + 
                            flights[i].getCityTo()  + “ “ + 
                            flights[i].getDepartureDate() + “ “ +
                            flights[i].getDepartureTime() + “ “ +
                            flights[i].getDepartureDate() + “ “ +
                            flights[i].getDepartureTime());      
        
        int fare = travelEngine.getPrice( flights[i] );

        if( bestFare == 0 )
          {
          bestFare = fare;
          availabilityOption = i;
          }
        else
          {
          if( bestFare > fare )
            {
            bestFare = fare;
            availabilityOption = i;
            }        
          }
        
        System.out.println( “Fare quote - $” + fare );
        }
    
      System.out.println( “\n\nBest fare - $” + bestFare );
      System.out.println( “\nConfirming reservation...” );
    
      IPassengerInfo passenger = travelEngine.createPassenger( “Joe”, “Traveler”, “100 Main St, Dallas, TX 
75001”, 456789012, 23232 );
    



312 Appendix B • Examples

      System.out.println( “Reservation number - “ + new String( travelEngine.bookFlight( flights[ 
availabilityOption ], passenger ) ) );
      }
    catch( Exception e )
      {
      e.printStackTrace();
      }        
    }
}

Program examples\universalgateway\CorbaServer.java
import java.io.*;
import com.objectspace.voyager.*;
import com.objectspace.voyager.corba.*;
import com.objectspace.voyager.directory.*;

public class CorbaServer
{
  public static void main( String[] args )
    {
    try
      {
      Voyager.startup( “8000” );
      
      ClassManager.enableResourceServer();
      
      ITravelEngine travelEngine = new TravelEngine();      
      
      String ior = Corba.asIOR( travelEngine );
            
      Object corbaobject = Namespace.lookup( ior );
      
      Namespace.bind( “CorbaDirectory/TravelEngine”,  corbaobject );
      
      System.out.println( “Server is ready” );      
      }
    catch( Exception e )
      {



Voyager ORB Developer Guide 313

      e.printStackTrace();
      }
    }    
}

Program examples\universalgateway\Flight.java
public class Flight implements IFlight
{
  String flightNumber, cityFrom, cityTo, depDate, depTime, arrDate, arrTime;
               
  public Flight( )
    {
    }
  
    public Flight( String flightNumber, 
                 String cityFrom, 
                 String cityTo, 
                 String depDate, 
                 String depTime,
                 String arrDate,
                 String arrTime )
    {
    this.flightNumber = flightNumber;
    this.cityFrom = cityFrom;
    this.cityTo = cityTo;
    this.depDate = depDate;
    this.depTime = depTime;
    this.arrDate = arrDate;
    this.arrTime = arrTime;    
    }
    
  protected void finalize()
    {
    System.out.println( “Object is being finalized” );
    }
  
  public java.lang.String getFlightNumber()
    {
    return flightNumber;    
    }
  



314 Appendix B • Examples

  public java.lang.String getCityFrom()
    {
    return cityFrom;    
    }
  
  public java.lang.String getCityTo()
    {
    return cityTo;    
    }  
   
  public java.lang.String getDepartureDate()    
    {
    return depDate;    
    }  

  public java.lang.String getDepartureTime()
    {
    return depTime;    
    }  
    
  public java.lang.String getArrivalDate()
    {
    return arrDate;    
    }  
    
  public java.lang.String getArrivalTime()  
    {
    return arrTime;        
    }      
}

Program examples\universalgateway\IFlight.java
/**
 * IFlight.java
 * <p>
 * @version 1.0
 * @author generated by cgen 3.0b2 at Wed Mar 24 19:20:41 CST 1999
 */

public interface IFlight extends com.objectspace.voyager.IRemote
  {



Voyager ORB Developer Guide 315

  public java.lang.String getFlightNumber();
  public java.lang.String getCityFrom();
  public java.lang.String getCityTo();
  public java.lang.String getDepartureDate();
  public java.lang.String getDepartureTime();
  public java.lang.String getArrivalDate();
  public java.lang.String getArrivalTime();
  public static com.objectspace.voyager.corba.ObjectCode _TYPECODE = new 
com.objectspace.voyager.corba.ObjectCode( “IFlight”, “IDL:IFlight:1.0”, “IFlight” ); // added by cgen
  }

Program examples\universalgateway\PassengerInfo.java
public class PassengerInfo implements IPassengerInfo, java.io.Serializable
  {
  String firstName;
  String lastName;
  String address;
  long creditCardNumber;
  int expDate;
  
  public PassengerInfo( String firstName, 
                        String lastName, 
                        String address,
                        long creditCardNumber,
                        int expDate )
    {
    this.firstName = firstName;
    this.lastName = lastName;
    this.address = address;
    this.creditCardNumber = creditCardNumber;
    this.expDate = expDate;    
    }
  
  public java.lang.String getFirstName()
    {
    return firstName;
    }
  
  public java.lang.String getLastName()
    {
    return lastName;    



316 Appendix B • Examples

    }
    
  public java.lang.String getAddress()
    {
    return address;    
    }
    
  public long getCreditCardNumber()
    {
    return creditCardNumber;    
    }
    
  public int getExpirationDate()  
    {
    return expDate;    
    }    
  }

Program examples\universalgateway\IPassengerInfo.java
/**
 * IPassengerInfo.java
 * <p>
 * @version 1.0
 * @author generated by cgen 3.0b2 at Wed Mar 24 19:20:41 CST 1999
 */

public interface IPassengerInfo extends com.objectspace.voyager.IRemote
  {
  public java.lang.String getFirstName();
  public java.lang.String getLastName();
  public java.lang.String getAddress();
  public long getCreditCardNumber();
  public int getExpirationDate();
  public static com.objectspace.voyager.corba.ObjectCode _TYPECODE = new 
com.objectspace.voyager.corba.ObjectCode( “IPassengerInfo”, “IDL:IPassengerInfo:1.0”, “IPassengerInfo” 
); // added by cgen
  }



Voyager ORB Developer Guide 317

Program examples\universalgateway\TravelEngine.java
import java.util.*;

public class TravelEngine implements ITravelEngine
{
  static Random random = new Random( Calendar.getInstance().getTime().getTime() );
  
  static String[] months = 
    {
     ““,
     “JAN”,
     “FEB”,
     “MAR”,
     “APR”,
     “MAY”,
     “JUN”,
     “JUL”,
     “AUG”,
     “SEP”,
     “OCT”,
     “NOV”,
     “DEC”
    };

  public IFlight[] getFlightAvailability( java.lang.String cityFrom, java.lang.String cityTo )
    {
    IFlight[] flights = new IFlight[5];
    
    Calendar cal = Calendar.getInstance();    
    
    for( int i=0; i < flights.length; i++ )
      {
      flights[i] = new Flight( “00” + i, 
                                    cityFrom, 
                                    cityTo, 
                                    ““ + cal.get( Calendar.DATE ) + months[ cal.get( Calendar.MONTH ) ],
                                    ( ““ + cal.get( Calendar.HOUR_OF_DAY ) ) + ( “:” + cal.get( Calendar.MINUTE ) ),
                                    ““ + cal.get( Calendar.DATE ) + months[ cal.get( Calendar.MONTH ) ],
                                    ( ““ + cal.get( Calendar.HOUR_OF_DAY ) ) + ( “:” + cal.get( Calendar.MINUTE ) ) );
      }
    



318 Appendix B • Examples

    return flights;
    }
  
  public int getPrice( IFlight flight )
    {
    return Math.abs( random.nextInt() ) / 1000;
    }
  
  public char[] bookFlight( IFlight flight, IPassengerInfo passenger )
    {    
    System.out.println( “Performing booking for:\n” + passenger.getFirstName() + “ “ + 
passenger.getLastName() );
    System.out.println( “Flight details:\n\tFROM: “ + flight.getCityFrom() + 
                                       “\n\tTO: “ + flight.getCityTo() +
                                       “\n\tDEPARTURE DATE: “ + flight.getDepartureDate() +
                                       “\n\tDEPARTURE TIME: “ + flight.getDepartureTime() +
                                       “\n\tARRIVAL DATE: “ + flight.getDepartureDate() +
                                       “\n\tARRIVAL TIME: “ + flight.getDepartureTime());
                        
                        
                       
    char[] resNumber = new char[6];
    
    for( int i=0 ; i < resNumber.length; i++ )
      resNumber[i] = ( char )random.nextInt();
    
    return resNumber;
    }
  
   public IPassengerInfo createPassenger( String firstname, String lastname, String address, long 
creditcard, int expDate ) 
     {
     return new PassengerInfo( firstname, lastname, address, creditcard, expDate ) ;
     }
}

Program examples\universalgateway\ITravelEngine.java
/**
 * ITravelEngine.java
 * <p>



Voyager ORB Developer Guide 319

 * @version 1.0
 * @author generated by cgen 3.0b2 at Wed Mar 24 19:20:41 CST 1999
 */

public interface ITravelEngine extends com.objectspace.voyager.IRemote
  {
  public IFlight[] getFlightAvailability( java.lang.String cityFrom, java.lang.String cityTo );
  public int getPrice( IFlight flight );
  public IPassengerInfo createPassenger( java.lang.String firstname, java.lang.String lastname, 
java.lang.String address, long creditcard, int expDate );
  public char[] bookFlight( IFlight flight, IPassengerInfo passenger );
  public static com.objectspace.voyager.corba.ObjectCode _TYPECODE = new 
com.objectspace.voyager.corba.ObjectCode( “ITravelEngine”, “IDL:ITravelEngine:1.0”, “ITravelEngine” ); // 
added by cgen
  }

Program examples\universalgateway\ITravelEngine.idl

interface IFlight
  {
  string getFlightNumber();
  
  string getCityFrom();
  string getCityTo();
  
  string getDepartureDate();
  string getDepartureTime();
  
  string getArrivalDate();
  string getArrivalTime();  
  };
  
interface IPassengerInfo
  {
  string getFirstName();
  string getLastName();
  
  string getAddress();
  
  long long getCreditCardNumber();



320 Appendix B • Examples

  long getExpirationDate();
  };  

interface ITravelEngine
  {
  typedef sequence <IFlight>  FlightList;
  typedef sequence <char,6> ConfirmationNumber;

  FlightList getFlightAvailability( in string cityFrom, in string cityTo );
  
  long getPrice( in IFlight flight );
  
  IPassengerInfo createPassenger( in string firstname, in string lastname, in string address, in long long 
creditcard, in long expDate);

  ConfirmationNumber bookFlight( in IFlight flight, in IPassengerInfo passenger );

  };


