
JClass Chart
Programmer’s Guide & Reference Manual

Version 3.6 �

JDK 1.0.2, JDK 1.1, JDK 1.1+Swing, and JDK 1.2

The Best Java Charting Solution

TM

260 King Street East
Toronto, Ontario, Canada M5A 1K3
(416) 594-1026
www.klg.com

February 1999 RefNo: PRGDE-JCCHT/J/361-02/99

Copyright  1997 - 1999 by KL Group Inc. All rights reserved

KL Group, the KL Group logo, JClass, JClass BWT, JClass Chart, JClass DataSource, JClass Field,
JClass HiGrid, and JClass LiveTable are trademarks of KL Group Inc.

Java is a trademark of Sun Microsystems Inc. Microsoft, MS-DOS, and Windows are registered
trademarks, and Windows NT is a trademark of Microsoft Corporation.

All other products, names, and services are trademarks or registered trademarks of their respective
companies or organizations.

Use of this software for providing LZW capability for any purpose is not authorized unless user first
enters into a license agreement with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts.
For information concerning licensing, please contact:

Unisys Corporation
Welch Licensing Department - C1SW19
Township Line &Union Meeting Roads
P.O. Box 500
Blue Bell, PA USA
19424

LIMITED END-USER LICENSE AGREEMENT FOR KL GROUP JCLASS PRODUCTS
The following is the limited end user license agreement (“LEULA”) for limited use on all of KL Group Inc.'s JClass products, other than JClass JarMaster and JClass JarHelper.
IMPORTANT — READ CAREFULLY: This KL Group Inc. (“KL Group”) Limited End-User License Agreement (“LEULA”) is a legal agreement between you (either an individual or a single entity) and KL
Group for the KL Group software product identified above, which computer software includes class libraries, Sun Microsystems, Inc.’s Java© Project X Technology and may include associated
media, printed materials, and “online” or electronic documentation (“SOFTWARE”). By installing, copying, or otherwise using the SOFTWARE, you agree to be bound by the terms of this LEULA. If
you do not agree to the terms of this LEULA, do not install or use the SOFTWARE; you may, however, return it to your place of purchase for a full refund.

SOFTWARE LICENSE
The SOFTWARE is protected by copyright laws and international copyright treaties, as well as other intellectual property laws and treaties. The SOFTWARE is licensed, not sold.

1. GRANT OF LICENSE. This LEULA grants you the following rights:
(a) If You Have Any Version Of A JClass Product. This license permits a single developer to use the SOFTWARE on a single computer, subject to the restrictions in Section 3:

i. To Build Applets. Provided that applets you build are used only as an internal component in end-user oriented user-interfaces, you may copy them to additional computers (e.g.
Web Servers), from which you may allow end-users to download, royalty-free, the applets in the course of browsing or interacting with Web pages you create. You are not
permitted to distribute the applets in any fashion which would promote, encourage or allow reuse or redistribution of the applet, other than as permitted above; and

ii. To Build Stand-Alone Java Applications. You have a royalty-free right to reproduce and distribute the class libraries as an integral part of your application(s). You are not
permitted to expose, either directly or indirectly, any API that allows programmatic access to the class libraries.

(b) Definition Of Use. The SOFTWARE is “in use” on a computer when it is loaded into temporary memory (i.e. RAM) or installed into permanent memory (e.g. hard disk, CD-ROM, or
other storage device) of that computer, except that a copy installed on a network server for the sole purpose of distribution to other computers is not “in use”.

2. LIMITED DISTRIBUTION RIGHTS. Your royalty-free distribution rights described in Section 1 above are granted provided that you:
(a) distribute the Applet(s) you build only in conjunction with and as an integral part of your Web pages, and distribute the class libraries only as an integral part of your end-user, stand-

alone application;
(b) your Web pages or software product(s) are targeted at end-users, and are not a development tool;
(c) you do not use KL Group’s name, logo or trademark to market your Web pages or application;
(d) you include a valid copyright notice on your Web pages and software products; and
(e) you agree to indemnify, hold harmless, and defend KL Group and its suppliers from and against any claims or lawsuits, including attorney’s fees, that arise or result from the use or

distribution of your Web pages and/or applications.

3. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.
(a) Rental. You may not rent, lease, or lend the SOFTWARE, but you may transfer the SOFTWARE and accompanying written materials on a permanent basis provided you retain no copies

and the recipient agrees to the terms of this License Agreement. If the SOFTWARE is an upgrade, any transfer must include the most recent upgrade and all prior versions.
(b) Support Services. KL Group may provide you with support services related to the SOFTWARE (“Support Services”). Use of Support Services is governed by the KL Group policies

and programs described in the user manual, “online” documentation, and/or other KL Group-provided materials. Any supplemental software code provided to you as part of the
Support Services shall be considered part of the SOFTWARE and subject to the terms and conditions of this LEULA. With respect to technical information you provide to KL Group as
part of the Support Services, KL Group may use such information for its business purposes, including for product support and development. KL Group will not utilize such technical
information in a form that personally identifies you. This LEULA does not entitle you to purchase KL Group’s Gold Support service offerings. Only a non-limited EULA entitles you to
purchase such support services.

(c) Termination. Without prejudice to any other rights, KL Group may terminate this LEULA if you fail to comply with the terms and conditions of this LEULA. In such event, you must
destroy all copies of the SOFTWARE and all of its component parts.

4. UPGRADES.
This LEULA does not entitle you to Upgrades for the SOFTWARE. Only a non-limited EULA entitles you to such Upgrades

5. COPYRIGHT.
All title and copyrights in and to the SOFTWARE (including but not limited to any images, photographs, animations, video, audio, music, text, and “applets” incorporated into the SOFTWARE), the
accompanying printed materials, and any copies of the SOFTWARE are owned by KL Group or its suppliers. Specifically, all title and copyrights in and to the Java© Project X Technology are owned
and licensed by Sun Microsystems, Inc., Copyright © Sun Microsystems, Inc. All rights reserved.
The SOFTWARE is protected by copyright laws and international treaty provisions. Therefore, you must treat the SOFTWARE like any other copyrighted material except that you may install the
SOFTWARE on a single computer provided you keep the original solely for backup or archival purposes. You may not copy the printed materials accompanying the SOFTWARE.

6. DUAL-MEDIA SOFTWARE.
You may receive the SOFTWARE in more than one medium. Regardless of the type or size of medium you receive, you may use only one medium that is appropriate for your single computer. You
may not use or install the other medium on another computer. You may not loan, rent, lease, or otherwise transfer the other medium to another user.

7. U.S. GOVERNMENT RESTRICTED RIGHTS.
The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph(c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer Software-Restricted Rights at 48 CFR 52.227-19, as
applicable. Manufacturer is KL Group Inc., 260 King Street East, Toronto, Ontario, Canada, M5A 4L5.

8. EXPORT RESTRICTIONS.
You agree that you do not intend to or will, directly or indirectly, export or transmit the SOFTWARE or related documentation and technical data, or process, or service that is the direct product of the
SOFTWARE, to any country to which such export or transmission is restricted by any applicable U.S., Canadian or other State regulation or statute, without the prior written consent, if required, of
the Bureau of Export Administration of the U.S. Department of Commerce, or such other governmental entity as may have jurisdiction over such export or transmission.

9. MISCELLANEOUS.
If you acquired this product in the United States this LEULA is governed by the laws of New York State, and the parties agree to resolve any dispute exclusively in the courts at New York City. If you
acquired this product in Canada, this LEULA is governed by the laws of the Province of Ontario, and the parties agree to resolve any dispute exclusively in the courts at Toronto.
If this product was acquired outside the United States or Canada, then local law may apply.
Should you have any questions concerning this LEULA, or if you desire to contact KL Group for any reason, please contact the KL Group subsidiary serving your country, or write: KL Group Sales
Information, 260 King Street East, Toronto, Ontario, Canada, M5A 4L5.

10. LIMITED WARRANTY.
LIMITED WARRANTY. KL Group warrants that (a) the SOFTWARE will perform substantially in accordance with the accompanying written materials for a period of ninety (90) days from the date of
receipt, and (b) any Support Services provided by KL Group shall be substantially as described in applicable written materials provided to you by KL Group, and KL Group support engineers will make
commercially reasonable efforts to solve any problem issues. Some states and jurisdictions do not allow limitations on duration of an implied warranty, so the above limitation may not apply to you.
To the extent allowed by applicable law, implied warranties on the SOFTWARE, if any, are limited to ninety (90) days.
CUSTOMER REMEDIES. KL Group’s and its suppliers’ entire liability and your exclusive remedy shall be, at KL Group’s option, either (a) return of the price paid, if any, or (b) repair or replacement of
the SOFTWARE that does not meet KL Group’s Limited Warranty and that is returned to KL Group with a copy of your receipt. This Limited Warranty is void if failure of the SOFTWARE has resulted
from accident, abuse, or misapplication. Any replacement SOFTWARE will be warranted for the remainder of the original warranty period or thirty (30) days, whichever is longer. Outside the United
States and Canada, neither these remedies nor any product support services offered by KL Group are available without proof of purchase from an authorized international source.
SPECIFIC DISCLAIMER FOR HIGH-RISK ACTIVITIES. The SOFTWARE is not designed or intended for use in high-risk activities including, without restricting the generality of the foregoing, on-line
control of aircraft, air traffic, aircraft navigation or aircraft communications; or in the design, construction, operation or maintenance of any nuclear facility. KL Group and its suppliers specifically
disclaim any express or implied warranty of fitness for such purposes or any other purposes.
NO OTHER WARRANTIES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KL GROUP AND ITS SUPPLIERS DISCLAIM ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH REGARD TO THE SOFTWARE AND THE ACCOMPANYING
PRINTED MATERIALS. THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS WHICH VARY FROM STATE/JURISDICTION TO STATE/JURISDICTION.

11. LIMITATION OF LIABILITY.
TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL KL GROUP OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF KL GROUP HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY CASE, KL GROUP’S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS LEULA SHALL BE LIMITED TO THE GREATER OF THE
AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE OR US$5.00; PROVIDED, HOWEVER, IF YOU HAVE ENTERED INTO A KL GROUP SUPPORT SERVICES AGREEMENT, KL GROUP’S ENTIRE
LIABILITY REGARDING SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF THAT AGREEMENT. BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF LIABILITY, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

JCL-BINLIC-LTD-9904

Table of Contents

Preface . 1
Introducing JClass Chart . 1
Assumptions . 2
Typographical Conventions Used in this Manual 2
Overview of Manual . 3
Related Documents . 4
Technical Support . 4
Product Feedback and Annoucements 5

Part I: Using JClass Chart

1 Getting Started . 9
1.1 Introduction . 9
1.2 Matching JClass and JDK Versions 9
1.3 Setting the CLASSPATH Environment Variable 10

Setting the CLASSPATH in Windows 11
Setting the CLASSPATH in Unix 12
Testing the Installation 12

1.4 Installed Files Overview 13
1.5 Adding JClass Chart to Your IDE 14

Using Visual Café with JClass Chart 15
Using JBuilder with JClass Chart 16

1.6 Java and JavaBeans Basics 17

2 JClass Chart Basics. .19
2.1 Chart Areas . 19
2.2 Chart Types . 20
2.3 Loading Data . 22
2.4 Setting and Getting Object Properties 22

Setting Properties with Java Code 23
Setting Applet Properties in an HTML File 23
Setting Properties with a Java IDE at Design-Time 24
v

Setting Properties Interactively at Run-Time 25
2.5 Other Programming Basics 25
2.6 JClass Chart Inheritance Hierarchy 26
2.7 JClass Chart Object Containment 28
2.8 The Chart Customizer 29

Displaying the Chart Customizer at Run-Time 29
Editing and Viewing Properties 30
Saving Customized Charts 31

2.9 Distributing Applets and Applications on a Web Server 31
Publishing an Applet on a Web Server 31
Using JarHelper to Customize the Deployment Archive . . . 33

3 SimpleChart Bean Tutorial. 35
3.1 Introduction to JavaBeans 35

Properties . 35
New Event Model 36

3.2 SimpleChart Tutorial 37
Steps in this Tutorial 37

4 Bean Reference . 43
4.1 Choosing the Right Bean 43

JClass Chart Beans 44
JClass Chart Beans and JCChart 44
A Note for JClass Chart Lite Users 45

4.2 Standard Bean Properties 45
Axis Properties 45
Chart Types . 49
Display Properties 50
Headers and Footers 52
Legends . 52

4.3 Data Loading Methods 54
SimpleChart: Loading Data from a File 55
SimpleChart: Using Swing TableModel Data Objects 56
Data Binding in Borland JBuilder 57
Data Binding in Visual Café 60
Data Binding with JClass DataSource 63

5 MultiChart. 69
5.1 Introduction to MultiChart 69

Multiple Axes . 70
Multiple Data Views 70
vi Contents

Intelligent Defaults 70
5.2 Getting Started with MultiChart 71
5.3 MultiChart Property Reference 72

Axis Controls 72
Headers, Footers, and Legends 81
Data Source and Data View Controls 83
Appearance Controls 88
Event Controls 91

6 Chart Programming Tutorial .93
6.1 Introduction . 93
6.2 A Basic Plot Chart 93
6.3 Loading Data From a File 95
6.4 Adding Header, Footer and Labels 96
6.5 Changing to a Bar Chart 98
6.6 Inverting Chart Orientation 99
6.7 End-User Interaction 101
6.8 Get Started Programming with JClass Chart 101

7 Axis Controls . 103
7.1 Creating a New Chart in a Nutshell 103
7.2 Axis Labelling and Annotation Methods 104

Choosing Annotation Method 104
Values Annotation 105
PointLabels Annotation 106
ValueLabels Annotation 107
TimeLabels Annotation 108

7.3 Positioning Axis Annotations 110
Specifying Annotation placement 110

7.4 Chart Orientation and Axis Direction 111
Inverting Chart Orientation 111
Changing Axis Direction 111

7.5 Setting Axis Bounds 112
7.6 Customizing Origins 112
7.7 Logarithmic Axes 113
7.8 Titling Axes and Rotating Axis Elements 115
7.9 Adding Grid Lines 116
7.10 Adding a Second Axis 117
Contents vii

8 Data Sources . 119
8.1 Overview . 119
8.2 File Data Source 120
8.3 URL Data Source 120
8.4 Applet Data Source 121
8.5 ChartSwingDataSource for Swing TableModel 121
8.6 Standard Data Formats 122

Formatted Data Examples 122
Explanation of Format Elements 123

8.7 Data Binding: Loading Data from Databases 125
Data Binding using JDBCDataSource 125
Data Binding with Visual Cafe 126
Data Binding with JBuilder 127
Data Binding with JClass DataSource 128

8.8 Using Multiple Data Sources 128
8.9 The Data Model 129
8.10 Creating Custom Data Sources 131

Implementing the Chartable Interface 131

9 Text and Style Elements . 135
9.1 Header and Footer Titles 135
9.2 Legends . 136

Customizing Legends 137
9.3 Chart Labels . 138

Label Implementation 138
Adding Labels to a Chart 138
Interactive Labels 139
Adding and Formatting Label Text 140
Positioning Labels 140
Setting Label Borders and Colors 140
Adding Connecting Lines 141

9.4 Chart Styles . 141
9.5 Borders . 144
9.6 Fonts . 144
9.7 Colors . 145
9.8 JCStrings . 146
9.9 Positioning Chart Elements 147
9.10 3D Effect . 148
9.11 Special Bar Chart Properties 149
9.12 Special Pie Chart Properties 150

Building the “Other” Slice 150
viii Contents

“Other” Slice Style and Label 151
Pie Ordering 152
Exploded Pie Slices 152

9.13 Special Area Chart Properties 154
9.14 Hi-Lo and Candle Charts 155

10 Advanced Chart Programming. 159
10.1 Batching Chart Updates 159
10.2 Coordinate Conversion Methods 160

CoordToDataCoord and DataIndexToCoord 160
Map and Unmap 161

10.3 Double Buffering 161
10.4 FastAction . 161
10.5 Programming End-User Interaction 162

Event Triggers 162
Valid Modifiers 162
Programming Event Triggers 163
Removing Action Mappings 163
Calling an Action Directly 163
Specifying Action Axes 163

10.6 Image-Filled Bar Charts 164
10.7 Using Pick and Unpick 165

Pick Focus . 169
Unpick . 170

Part II: Reference Appendices

A JClass Chart Property Listing . 173
A.1 ChartDataView 173
A.2 ChartDataViewSeries 176
A.3 ChartRegion . 176
A.4 ChartText . 178
A.5 JCAxis . 179
A.6 JCAxisFormula . 184
A.7 JCAxisTitle . 184
A.8 JCBarChartFormat 186
A.9 JCBorderStyle . 186
A.10 JCCandleChartFormat 186
A.11 JCChart . 187
A.12 JCChartArea . 189
A.13 JCChartComponent 190
Contents ix

A.14 JCChartLabel . 199
A.15 JCChartStyle . 201
A.16 JCFillStyle . 202
A.17 JCGridLegend . 203
A.18 JCHLOCChartFormat 204
A.19 JCLegend . 205
A.20 JCLineStyle . 206
A.21 JCMultiColLegend 207
A.22 JCPieChartFormat 209
A.23 JCSymbolStyle 209
A.24 JCTitle . 210
A.25 JCValueLabel . 211
A.26 PlotArea . 212
A.27 SimpleChart . 212

B JCString Properties . 215

C Colors and Fonts . 219
C.1 Colorname Values 219
C.2 RGB Color Values 220
C.3 Fonts . 223

D HTML Property Reference . 225
D.1 ChartDataView Properties 225
D.2 ChartDataViewSeries Properties 226
D.3 JCAxis X- and Y-axis Properties 227
D.4 JCBarChartFormat Properties 228
D.5 JCCandleChartFormat Properties 228
D.6 JCChart/JCComponent Properties 229
D.7 JCChartArea Properties 230
D.8 JCChartLabel Properties 231
D.9 JCDataIndex Properties 232
D.10 JCHLOCChartFormat Properties 232
D.11 JCHiLoChartFormat Properties 233
D.12 JCLegend Properties 233
D.13 JCPieChartFormat Properties 233
D.14 JCTitle Header and Footer Properties 234
D.15 Example HTML File 235

Index . 239
x Contents

Preface
Introducing JClass Chart ■ Assumptions

Typographical Conventions Used in this Manual ■ Overview of Manual
Related Documents ■ Technical Support

Product Feedback and Annoucements

Introducing JClass Chart

JClass Chart is a charting/graphing component written entirely in Java. The chart
component displays data graphically in a window and can interact with a user.

JClass Chart may be used in conjunction with KL Group’s JClass BWT and JClass
LiveTable. JClass BWT provides additional Java components that complement or
replace standard AWT components.

The chart component can be used easily by all types of Java programmers:

■ Component users, setting JClass Chart properties programmatically

■ OO developers, instantiating and extending JClass Chart objects

■ Java Bean developers, setting JClass Chart properties using a third-party
Integrated Development Environment (IDE)

■ Web page designers, setting JClass Chart properties exposed through HTML
parameters.

You can freely distribute Java applets and applications containing JClass components
according to the terms of the License Agreement.

Feature Overview
You can set the properties of JClass Chart objects to determine how the chart will
look and behave. You can control:

■ Chart type (Plot, Scatter Plot, Area, Stacking Area, Bar, Stacking Bar, Pie, Hi-Lo,
Hi-Lo-Open-Close and Candle)

■ Header and footer positioning, border style, text, font, and color.

■ Number of data views, each having its own data, chart type, axes, and chart
styles

■ Flexible data loading from Applets, files, URLs, input streams, and databases.

■ Chart styles: line color, fill color, point size, point style, point color

■ Legend positioning, orientation, border style, anchor, font, and color
1

cover_chart.html#jclass_standard_license_agreement

■ Chart positioning, border style, color, width, height, and 3-D effect (bar, stacking
bar and pie charts only)

■ Axis labelling using Point labels, Series labels, Value labels, or Time labels

■ Number of X- or Y-axes, each having its own minimum and maximum, axis
numbering method, numbering and ticking increment, grid increment, font,
origin, axis direction and precision

■ Control of user interaction with component including picking, mapping, Chart
Customizer, rotation, scaling, translation

■ Chart labels that can appear anywhere on the chart, including automatic dwell
labels for each point on the chart

■ Rich text (fonts, colors, placement, URLs) for any chart element using JCStrings

Assumptions

This manual assumes that you have some experience with the Java programming
language. You should have a basic understanding of object-oriented programming
and Java programming concepts such as classes, methods, and packages before
proceeding with this manual. See “Related Documents” later in this section of the
manual for additional sources of Java-related information.

Typographical Conventions Used in this Manual

Typewriter Font ■ Java language source code and examples of file contents.
■ JClass Chart and Java classes, objects, methods,

properties, constants and events.
■ HTML documents, tags, and attributes.
■ Commands that you enter on the screen.

Italic Text ■ Pathnames, filenames, URLs, programs and method
parameters.

■ New terms as they are introduced, and to emphasize
important words.

■ Figure and table titles.
■ The names of other documents referenced in this manual,

such as Java in a Nutshell.

Bold ■ Keyboard key names and menu references.
2 Preface

Overview of Manual

Part I — “Using JClass Chart” describes programming with JClass Chart.

Chapter 1, “Getting Started” provides help with common configuration
problems, including CLASSPATH and IDE setup.

Chapter 2, “JClass Chart Basics”, provides a programmer’s overview of JClass
Chart. It covers class hierarchy, object containment, terminology, programming
basics, and specific issues to be aware of before using JClass Chart.

Chapter 3, “SimpleChart Bean Tutorial“, introduces basic Bean concepts, and
guides you through developing a chart application in an IDE or BeanBox.

Chapter 4, “Bean Reference”, is a guide to the different JClass Chart Beans. It
illustrates all of the properties available, including the different data loading
methods.

Chapter 5, “MultiChart“, is a user’s guide for MulitChart, an advanced charting
Bean.

Chapter 6, “Chart Programming Tutorial”, is a tutorial designed to introduce you
to JClass Chart programming, It includes examples of common chart
programming tasks.

Chapter 7, “Axis Controls”, covers JClass Chart properties used when first
setting up your chart, concentrating on axis properties.

Chapter 8, “Data Sources”, is a guide to using different pre-built data sources,
and how to use the data source toolkit to create your own.

Chapter 9, “Text and Style Elements”, covers JClass Chart properties used to
customize the appearance of a chart, including header/footer, legend and chart
styles.

Chapter 10, “Advanced Chart Programming”, looks at programming more
advanced aspects of the chart.

Part II — “Reference Appendices” contains detailed technical reference information.

Appendix A, “JClass Chart Property Listing”, summarizes the properties
contained in all of the JClass Chart objects.

Appendix B, “JCString Properties”, describes the types of JCString properties
available for adding hypertext, images and text within JClass Chart programs.

Appendix C, “Colors and Fonts”, lists all of the colornames and RGB values that
can be used in JClass Chart applications. It also lists all of the fonts and font style
constants that can be used.

Appendix D, “HTML Property Reference”, is a listing of all of the HTML
properties that can be used by Applets created from JClass Chart.
Preface 3

Related Documents

The following is a sample of useful references to Java and JavaBeans programming:

■ “Writing Java Programs” at http://www.javasoft.com/docs/programmer.html and the
“Java Tutorial” at http://www.javasoft.com/docs/books/tutorial/index.html from Sun
Microsystems

■ Java in a Nutshell, 2nd Edition from O’Reilly & Associates Inc.

■ Resources for using JavaBeans at http://www.javasoft.com/beans/resources.html

However, these documents are not required to develop applications using JClass
Chart and Java.

Technical Support

Many of the initial questions you may have are basic installation or configuration
problems. Consult this product’s readme file and Chapter 1, “Getting Started”, for
help with these types of problems.

KL Group’s Standard Support plan is included with your purchase and entitles
registered users with a valid JClass software license to the following support:

■ 30 days of direct technical support via telephone, email or fax.

■ FAQ Documents on our Web site.

■ JClass Knowledge Base, a searchable collection of information including
program samples and problem/resolution documents.

■ JClass Forum Newsgroup, where you can communicate with other developers
using JClass products around the world.

■ Minor bug-fix update releases downloadable from our Web site.

Upgrading to KL Group’s Gold Support with Subscription plan entitles you to the
following additional support:

■ Unlimited direct technical support for one full year.

■ Web-based Express Case Submission form for quickly logging problems; a
Customer Support Engineer will contact and assist you directly.

■ All product upgrade releases; download from Web site or shipped to you on CD-
ROM.

For information on obtaining Gold Support for your JClass product, please visit our
online store or your JClass reseller. You can also email sales@klg.com.

To Contact JClass Support
Any request for support must include your JClass product serial number. Supplying
the following information will help us serve you better:

■ The type and version of the operating system you are using

■ Your development environment and its version
4 Preface

http://www.javasoft.com/docs/programmer.html
http://www.javasoft.com/docs/books/tutorial/index.html
http://www.javasoft.com/beans/resources.html
mailto:sales@klg.com

■ A full description of the problem including the steps required to duplicate it.

Product Feedback and Annoucements

We are interested in hearing about how you use JClass Chart, any problems you
encounter, or any additional features you would find helpful. The majority of
enhancements to JClass products are the result of customer requests.

Please send your comments to:

KL Group Inc.
260 King Street East
Toronto, Ontario, M5A 1K3 Canada

Phone: (416) 594-1026
Fax: (416) 594-1919
Email: dev_jclass@klg.com
Internet: news://news.klg.com/klg.forum.jclass

While we appreciate your feedback, we cannot guarantee a response. Please do not
use the dev_jclass email address for technical support questions.

Occasionally, we send JClass-related product announcments to our customers using
an email list. To add yourself to this mailing list, send email with the word
“subscribe” in the body of the message to jclass_announce-request@klg.com.
Visit the KL Group web site at http://www.klg.com for more details.

Telephone:

800-663-4723 (toll free in North America) or
416-594-1026
Available Monday – Friday, 9:00 a.m. to 8:00 p.m.
Eastern time

Fax: 416-594-1919

Standard Support Email: jclass_support@klg.com

Express Case Submission
Form (Gold Support only)

http://www.klg.com/cgi-bin/webcase.cgi

Other Support Resources

JClass Technical Support
(links to Knowledge Base):

http://www.klg.com/cs/tech/jclass/

JClass FAQs: http://www.klg.com/cs/tech/jclass/faq/

Using JClass in IDEs: http://www.klg.com/jclass/ides.html
Preface 5

mailto:jclass_support@klg.com
mailto:dev_jclass@klg.com
news://news.klg.com/klg.forum.jclass
mailto:jclass_announce-request@klg.com
http://www.klg.com
http://www.klg.com/cgi-bin/webcase.cgi
http://www.klg.com/cs/tech/jclass/
http://www.klg.com/cs/tech/jclass/faq/
http://www.klg.com/jclass/ides.html

6 Preface

Part
I

Using
JClass Chart

1
Getting Started

Introduction ■ Matching JClass and JDK Versions

Setting the CLASSPATH Environment Variable ■ Installed Files Overview
Adding JClass Chart to Your IDE ■ Java and JavaBeans Basics

1.1 Introduction

This chapter covers common configuration issues so you can start using JClass Chart
as quickly as possible. Because of the wide variety of Java platforms and
development environments, JClass Chart may not be configured correctly for your
environment after installation.

Please see the readme-chart.txt file included with this release for details on installing
JClass Chart and for information on supported Java environments.

1.2 Matching JClass and JDK Versions

Separate versions of JClass Chart are available for specific versions of the Java
Platform. The version you use should match the JDK version needed by your
application/applet. For example, if you are creating an applet to run in Microsoft
Internet Explorer 4.0 (JDK 1.1 platform), use the JClass Chart version for JDK 1.1.
Use the following table to determine which version of JClass Chart to use for your
application:

Version Java Platform Description

JClass Chart 3.6T JDK 1.0.2 ■ “Transitional Beans” that provide JDK 1.1-level
event APIs for easy migration to JDK 1.1.

JClass Chart 3.6 JDK 1.1 ■ Standard “AWT-style” JavaBeans.

JClass Chart 3.6S JDK 1.1 + Swing ■ JavaBeans for JDK 1.1 applications using
Swing 1.0.3 components.
9

Each version has the same API and virtually the same features to make it easy for
existing applications to migrate to new versions of the Java platform. For clarity,
distribution filenames and JAR/ZIP archives contain the full version number in the
name, for example, jcchart360.jar and jcchart360S.jar.

This documentation covers all versions of JClass Chart, noting any differences
between versions where they occur.

Determining the JDK and JClass Chart Version
To determine the version of the JDK you are using, enter the following at a
command prompt:

 java -version

To determine the version of JClass Chart you are using on your system, run the
version program provided:

 java jclass.chart.JCVersion

This program will only run if the CLASSPATH has been set correctly as described
in the following section.

1.3 Setting the CLASSPATH Environment Variable

The Java Virtual Machine (JVM) and other applications use the CLASSPATH
environment variable to locate user-defined classes. You should ensure that the
CLASSPATH points to the location of the JClass Chart classes (and classes you
develop). The installation program does this automatically for Windows users; Unix
users need to add JClass Chart to the CLASSPATH manually.

Two entries should be part of the CLASSPATH — one specifying the JClass product
classes (a JAR or ZIP file located in the product’s \lib\ directory), and one specifying
the installation directory (necessary to run JClass Chart example and demo
programs). You should not need to unzip the JAR/ZIP archive to develop with JClass
Chart.

For example, if you installed JClass Chart on a Windows machine in C:\JClass36, the
CLASSPATH would include the following ([xxx] is the product version number):

 C:\JClass36\lib\jcchart[xxx].jar;C:\JClass36\

To determine the current CLASSPATH, enter the following at a command prompt:

Windows — echo %CLASSPATH%
Unix — echo $CLASSPATH

JClass Chart 3.6J JDK 1.2 ■ JavaBeans for JDK 1.2 applications.
■ Also for JDK 1.1 applications using Swing 1.1.

Version Java Platform Description
10 Part I ■ Using JClass Chart

Some CLASSPATH specification tips:

■ Each entry is separated by a semicolon (Windows) or a colon (Unix).

■ An entry is typically a root directory to search through for .class files (if a class is
part of a package, each level in the package is treated as a subdirectory from
here), for example, C:\JClass36.

■ Entries can also specify a JAR or ZIP file containing archived classes, for
example, C:\JClass36\lib\jcchart[xxx].jar.

■ Add a period (.) to the CLASSPATH to include the current directory.

■ Setting the CLASSPATH in a startup file causes it to be used when running web
browsers and other applications for your entire session.

1.3.1 Setting the CLASSPATH in Windows

The Windows-based setup program automatically adds JClass Chart to the
CLASSPATH during installation. The following instructions are provided in case
you need to configure the CLASSPATH manually for some reason.

Windows 95 and Windows 98
Add the following statement to your autoexec.bat file to include JClass Chart in the
CLASSPATH ([xxx] is the product version number):

 set CLASSPATH=%CLASSPATH%;C:\JClass36\lib\jcchart[xxx].jar;
 C:\JClass36;

JDK 1.0.2 users: Replace jcchart[xxx].jar above with jcchart[xxx]-classes.zip.

Restart Windows to make the change take effect.

Windows NT (3.51 and higher)
The best way to set environment variables is using the Control Panel. Start Control
Panel and select System. Locate the CLASSPATH environment variable (if it
doesn’t exist, create it). Add the following value to the variable to include JClass
Chart in the CLASSPATH ([xxx] is the product version number):

 [existing-classes];C:\JClass36\lib\jcchart[xxx].jar;C:\JClass36;

JDK 1.0.2 users: Replace jcchart[xxx].jar above with jcchart[xxx]-classes.zip.
Chapter 1 ■ Getting Started 11

The following illustrates setting the CLASSPATH on Windows NT; your actual
setting may vary or have additional directories/JAR files.

1.3.2 Setting the CLASSPATH in Unix

You must manually configure the CLASSPATH environment variable before you
can start using JClass Chart. The CLASSPATH must point to the location of the
JClass Chart classes and installation directory (for example /usr/local).

Add a setenv command to your startup file (such as .cshrc) to set CLASSPATH to
point to the JClass Chart classes, for example ([xxx] is the JClass Chart version
number):

 setenv CLASSPATH .:/usr/local/JClass36/lib/jcchart[xxx].jar:
 /usr/local/JClass36

JDK 1.0.2 users: Replace jcchart[xxx].jar above with jcchart[xxx]-classes.zip.

1.3.3 Testing the Installation

After setting the CLASSPATH environment variable you should verify that it has
been configured correctly. The easiest way to test whether you can start
programming with JClass Chart is to execute the JCVersion class. Enter the
following at a command prompt:

 java jclass.chart.JCVersion

If the version number does not match the version just installed, there is probably an
older version of JClass Chart listed earlier in the CLASSPATH.
12 Part I ■ Using JClass Chart

1.4 Installed Files Overview

JClass products install into a single root directory. The directory hierarchy is
designed to make it easy to work with multiple JClass products in one location. The
following diagram provides an overview of the directory hierarchy created for JClass
Chart.

Class Library Archives
The \lib\ directory contains the JClass Chart class library archives in JAR or ZIP
format. JClass Chart developers can add these files to an IDE, or simply work with
them through the JDK. You usually do not need to unzip the archives when
programming with JClass Chart.

Your release of JClass Chart may include the following archives ([xxx] is the product
version number):

See the readme-chart.txt file for details on the archives that ship with each version of
JClass Chart.

jcchart[xxx].jar Standard JClass Chart components.

jcchart[xxx]jb.jar The standard components plus Beans that data
bind to Borland JBuilder data source components.

jcchart[xxx]vc.jar The standard components plus Beans that data
bind to Visual Café data source components.

jcchart[xxx]ds.jar JClass Chart components that data bind with
JClass DataSource data Beans. JClass DataSource
is available separately or as part of a JClass
product suite from KL Group.

jcchart[xxx]-classes.zip All JClass Chart components for development
environments that cannot use JAR files.
Chapter 1 ■ Getting Started 13

Sample Code
The jclass\chart\examples\ and jclass\chart\demos\ directories contain sample Java
programs that use JClass Chart. The programs can be executed as either applets or
applications. To run as applications, use the Java interpreter, specifying the
application class’s full package path, for example:

 java jclass.chart.examples.plot1

To run as applets, either open index.html in a compatible browser (you may need to
unset the CLASSPATH environment variable first) or use the JDK appletviewer
program.

JDK 1.2 Note: To run JClass Chart sample programs using appletviewer, you may
need to extract the product JAR file into your JCLASS_HOME directory. This is
because appletviewer in JDK 1.2 does not use the CLASSPATH environment
variable. You may also need to use the -nosecurity switch, for example:

 appletviewer -nosecurity index.html

Product Documentation
The jclass\chart\api\ directory contains JClass Chart programming and reference
documentation in HTML format. Open index.html in a frames-capable web browser
to read the documentation.

Version Notes, Compatibility, Known Problems
The readme-chart.txt file contains details on version-specific files installed with the
JClass Chart version for each JDK platform, compatibility with JDK and browser
environments, and changes and known problems with this release.

1.5 Adding JClass Chart to Your IDE

JClass Chart works well with any JavaBeans-compliant Integrated Development
Environment (IDE), including Symantec Visual Café, Inprise Borland JBuilder, IBM
VisualAge for Java, Sybase PowerJ, and SuperCede for Java.

Once added to the development environment’s component palette you can use
JClass Chart the same way you use standard AWT or Swing components — adding
them to forms, setting initial property values, specifying event-handling, and so on.

All environments provide a way to add components contained in a JAR or ZIP file
to their component palette. The exact steps are unique to each environment so the
best source for details is the documentation for your development environment. The
JClass Chart JAR and ZIP files are located in the \lib\ subdirectory of where you
installed JClass Chart.
14 Part I ■ Using JClass Chart

1.5.1 Using Visual Café with JClass Chart

We recommend installing JClass Chart after installing Visual Café; this way, JClass
Chart can be added to the Component Library automatically. The setup program
copies the JClass Chart JAR file to Visual Café’s \bin\components directory. (If you
install Visual Café after installing JClass Chart, you can add the JAR to the
Component Library manually as described in the Visual Café help.)

Replacing the Bundled JClass Components
It is important to note that installing this release does not automatically replace the
older JClass BWT, JClass Chart, and JClass LiveTable components that are included
with Visual Café (located in \KLGroup\klg.jar). If the bundled JClass components
have been added to the Component Library, a newer version will not be shown in
the Component Library.

To force Visual Café to replace the old JClass components in the Component
Library, you must explicitly add jcchart[xxx]vc.jar to the Component Library (Insert |
Component into Library...).

Adding JClass Chart to the Component Palette
When JClass Chart is in the Component Library, you can add its components to the
Component Palette to make them convenient to use. The following steps describe
one easy way to add a new palette tab containing all of the JClass Chart components:

1. Display the Component Library window if it is not
already visible (View | Component Library)

2. Right-click the “jcchart[xxx]vc” folder and select
Add to Palette from the popup menu. Visual Café
creates a new tab on the Component Palette and
adds all of the JClass Chart components to it.

3. You can rename the tab to make it easier to read. To
do this, right-click the Component Palette, select
Customize Palette... from the popup menu, and
change the name of the “jcchart[xxx]vc” folder to “JClass Chart”.

Upgrading to a Newer Version of JClass Chart
Visual Café only allows one version of a component to be listed in the Component
Library, so when you install a newer version of JClass Chart, it automatically
replaces the older version in the Component Library (except for the version
included with Visual Café; see Replacing the Bundled JClass Components for
details).

When you reopen your project, it seamlessly uses the latest version of JClass Chart.
There should generally be no problem using a newer version of JClass Chart with an
existing application. However, if you do experience problems, you can revert back
Chapter 1 ■ Getting Started 15

to the previous version by moving the new version’s JAR file out of the
\bin\components directory (previous versions’ JARs are not deleted).

Note: You must add JClass Chart to the Component Palette again manually when
you install a newer version.

Removing JClass Chart from the Component Library
Using the Add/Remove Programs dialog in the Control Panel does not remove
JClass Chart from Visual Café. You must manually delete the JClass Chart JAR file
from Visual Café’s \bin\components directory and manually remove the JClass Chart
tab from the Component Palette.

1.5.2 Using JBuilder with JClass Chart

We recommend installing JClass Chart after installing Borland JBuilder; this way,
JClass Chart is added to the Component Palette automatically. If you install JBuilder
after installing JClass Chart, you can add the JAR file to the Palette manually (Tools
| Configure Palette...) as described in the JBuilder help.

Upgrading to a Newer Version of JClass Chart
When you install a newer version of JClass Chart, the Component Palette is
automatically updated to use the new version. However, existing JClass Chart
projects need to be reconfigured to use the new version, as outlined below:

1. With your project open, display the Project Properties dialog (File |
Project Properties...).

2. Edit the Java Libraries list on the Paths tab to use the new version of the JClass
Chart JAR file.

3. Save your project files.

4. Similarly, edit the default Java Libraries list (Tools | Default Project
Properties...) to use the new version of the JClass Chart JAR file for new
projects.

See the JBuilder help for complete details. There should generally be no problem
using a newer version of JClass Chart with an existing application. However, if you
do experience problems, you can revert back to the previous version in the Project
Properties dialog.

Removing JClass Chart from JBuilder
Using the Add/Remove Programs dialog in the Control Panel does not remove
JClass Chart from JBuilder. You must manually configure JBuilder to remove all
references to JClass Chart:

■ Remove JClass Chart from the default Java libraries list using the Default Project
Properties... dialog (Tools | Default Project Properties...).
16 Part I ■ Using JClass Chart

■ To remove the JClass Chart tab from the Palette, right-click the palette, select
Properties..., and click the Remove button.

1.6 Java and JavaBeans Basics

Java is both a compiled and an interpreted language. After writing a Java program
using a text editor, save it as a source file with the extension .java. When this source
file is run through the Java compiler, it compiles the file into a .class file. Unlike .exe
files, these compiled .class files are not directly executable under any operating
system, because they do not contain machine-language code that can be understood
directly by the microprocessor. Instead, they are compiled into a byte-code format
consisting of machine-language instructions designed for a virtual microprocessor.
This virtual microprocessor is the Java Virtual Machine, which interprets the byte-
code into a machine-language code that can be understood by your system’s
microprocessor. As long as the Java Virtual Machine software exists for a computing
platform, any Java programs you create will be able to run on that platform.

If the Java compiler and CLASSPATH are properly configured, you can compile a
Java program by running the Java compiler at the command prompt, for example:

 javac MyJavaProgram.java

Java Applications and Applets
Java programs are usually one of two types: stand-alone applications and applets.
Stand-alone applications can be run directly on a system containing the Java
interpreter or Java runtime environment, while applets can be added to web pages
for execution by a Java-compatible browser. JClass components can be used to
create both types of Java programs.

JClass Chart and JavaBeans
JavaBeans(TM) is the software component model for Java. Introduced in JDK 1.1, the
JavaBeans specification enables developers to create and use platform-independent,
reusable software components on a wide variety of platforms and development
environments. JClass Chart components are JavaBeans; they follow standard API
naming conventions, the JavaBeans event model, and can easily be integrated with
Java IDEs.

A good source of general information on Java and JavaBeans is the Frequently Asked
Questions (FAQ) list that can be found at the JavaSoft Web site at
http://www.javasoft.com/products/jdk/faq.html and
http://www.javasoft.com/beans/FAQ.html respectively.
Chapter 1 ■ Getting Started 17

http://www.javasoft.com/products/jdk/faq.html
http://www.javasoft.com/beans/FAQ.html

18 Part I ■ Using JClass Chart

2
JClass Chart Basics

Chart Areas ■ Chart Types ■ Loading Data

Setting and Getting Object Properties ■ Other Programming Basics
JClass Chart Inheritance Hierarchy ■ JClass Chart Object Containment

The Chart Customizer ■ Distributing Applets and Applications on a Web Server

This chapter covers concepts and vocabulary used in JClass Chart programming,
and provides an overview of the JClass Chart class hierarachy.

2.1 Chart Areas

The following illustration shows the terms used to describe chart areas:

Figure 1 Elements contained in a typical chart
19

2.2 Chart Types

JClass Chart can display data as one of ten basic chart types: Plot, Scatter Plot, Area,
Stacking Area, Bar, Stacking Bar, Pie, Hi-Lo, Hi-Lo-Open-Close, and Candle. It is
also possible to simulate more specialized types of charts using one of these basic
types.

Use the ChartType property to set the chart type for one ChartDataView. Each data
view managed by the chart has its own chart type. The following table lists basic
information about each chart type, including the enumeration that sets that type and
the data layouts it can display (see the next section for an introduction to data).

Chart Type Array
data

General
data Notes

Plot
Draws each series as connected points of data.
■ When using Array data, X-values shared across series
■ Series appearance determined by chart style line color,

symbol shape, size and color properties

Scatter Plot
Draws each series as unconnected points of data.
■ When using Array data, X-values shared across series
■ Series appearance determined by chart style symbol

shape, size and color properties

Bar
Draws each series as a bar in a cluster. The number of
clusters is the number of points in the data. Each cluster
displays the nth point in each series.
■ X-axis generally annotated using Point-labels
■ Series appearance determined by chart style fill color

and image properties
■ 3D effect available using depth, elevation and rotation

properties
20 Part I ■ Using JClass Chart

Stacking Bar
Draws each series as a portion of a stacked bar cluster, the
number of clusters being the number of data points. Each
cluster displays the nth point in each series. Negative Y-
values are stacked below the X-axis.
■ X-axis generally annotated using Point-labels
■ Series appearance determined by chart style fill color

property
■ 3D effect available using depth, elevation and rotation

properties

Area
Draws each series as connected points of data, filled below
the points. Each series is layered over the preceding series.
■ When using Array data, X-values shared across series
■ Series appearance determined by chart style fill color

property

Stacking Area
Draws each series as connected points of data, filled below
the points. Places each Y-series on top of the last to show
the area relationships between each series and the total.
■ When using Array data, X-values shared across series
■ Series appearance determined by chart style fill color

property

Pie
Draws each series as a slice of a pie. The number of pies is
the number of points in the data (values below a certain
threshold can be grouped into an other slice). Each pie
displays the nth point in each series.
■ Pies are annotated with Point-labels only
■ Series appearance determined by chart style fill color

property
■ 3D effect available using depth, elevation and rotation

properties

Hi-Lo
Draws two series together as a “High-low” bar. The points
in each series define one portion of the bar:

1st series — points are the “high” value
2nd series — points are the “low” value

■ Appearance determined by chart style line color
property in first series of the two

Chart Type Array
data

General
data Notes
Chapter 2 ■ JClass Chart Basics 21

2.3 Loading Data

Data is loaded into a chart by attaching one or more chartable data sources to it. A
chartable data source is an object that takes real-world data and puts it into a form
that JClass Chart can use. Once your data source is attached, you can chart the data
in a variety of ways.

Several stock (built-in) data sources are provided with JClass Chart, enabling you to
read data from an input stream, from a file, from a URL, databases and from HTML
applet <PARAM> tags. Loading data from a databases is called ‘data binding’. You can
also create your own data sources. See Data Sources for more information on loading
data, data binding, and creating your own data sources.

2.4 Setting and Getting Object Properties

There are four ways to set (and retrieve) JClass Chart properties:

1. By calling property set and get methods in a Java program

2. By specifying applet properties in an HTML file

3. By using a Java IDE at design-time (JavaBeans)

4. By using the Chart Customizer at run-time

Each method changes the same chart property. This manual therefore uses properties
to discuss how features work, rather than using the method, Customizer tab, or
HTML parameter you might use to set that property.

Hi-Lo-Open-Close
Similar to Hi-Lo, but draws four series together as a “High-
low-open-close” bar. The additional series’ points make up
the other components of the bar:

3rd series — points are the “open” value
4th series — points are the “close” value

■ Appearance determined by chart style line color and
symbol size properties in first series of the four

Candle
A special type of Hi-Lo-Open-Close chart, draws four
series together as a “candle” bar.
■ Simple candle appearance determined by chart style

line color, fill color, and symbol size properties in first
series of the four

■ Complex candle appearance determined by different
chart style properties from each series of the four

Chart Type Array
data

General
data Notes
22 Part I ■ Using JClass Chart

Note: In most cases, you need to understand the chart’s object containment
hierarchy to access its properties. Use the containment diagram in the previous
section to determine how to access the properties of an object.

2.4.1 Setting Properties with Java Code

Every JClass Chart property has a set and get method associated with it. For
example, to retrieve the value of the AnnotationMethod property of the first X-axis,
the getAnnotationMethod() method is called:

 method = c.getChartArea().getXAxis(0).getAnnotationMethod();

To set the AnnotationMethod property of the same axis:

 c.getChartArea().getXAxis(0).setAnnotationMethod(
 JCAxis.POINT_LABELS);

These statements navigate the objects contained in the chart by retrieving the values
of successive properties, which are contained objects. In the code above, the value of
the ChartArea property is a JCChartArea object. The chart area has an XAxis
property, the value of which is a collection of JCAxis objects. And the axis has the
desired AnnotationMethod property.

For detailed information on the properties available for each object, consult the
online HTML API reference documentation.

2.4.2 Setting Applet Properties in an HTML File

Another way to set chart properties, particularly appropriate for applets, is in an
HTML file. Applets built with JClass Chart automatically parse applet <PARAM> tags
and set the chart properties defined in the file. (A pre-built applet called
JCChartApplet.class is provided with JClass Chart). Even standalone Java applications
can save the values of chart properties to an HTML file, which can serve as a useful
debugging tool.

Using HTML to set properties has the following benefits:

■ Speed — see the effect of different property values quickly without recompiling.

■ Flexibility — use a single applet class to create many different kinds of charts
simply by varying HTML properties; end-users can modify HTML properties to
suit their own needs.

Chart properties are coded in HTML as applet <PARAM> tags. The NAME element of
the <PARAM> tag specifies the property name; the VALUE element specifies the
property value to set.

The following example HTML file supplies the chart’s data in the applet:

 <HTML>
 <HEAD><TITLE>plot1</TITLE></HEAD>
 <BODY>
 <CENTER><H2>plot1</H2></CENTER>
 <APPLET CODE=jclass/chart/JCChartApplet.class CODEBASE="../../.."
 HEIGHT=300 WIDTH=400>
 <PARAM NAME=data VALUE="
Chapter 2 ■ JClass Chart Basics 23

Package-jclass.chart.html

 ARRAY 2 4
 # X-values
 1.0 2.0 3.0 4.0
 # Y-values
 150.0 175.0 160.0 170.0
 # Y-values set 2
 125.0 100.0 225.0 300.0
 ">
 </APPLET>
 </BODY>
 </HTML>

Figure 2 Chart applet displaying data specified in its HTML file

The easiest way to create a set of HTML properties is to use the JClass Chart
Customizer to save the property values to an HTML file. For more details, see the
“The Chart Customizer” section in this chapter. A full listing of the syntax of JClass
Chart properties when used in HTML files can be found in Appendix D: HTML
Property Reference. Many example HTML files are located in the
JCLASS_HOME/jclass/chart/applet/ directory.

2.4.3 Setting Properties with a Java IDE at Design-Time

JClass Chart can be used with a Java Integrated Development Environment (IDE),
and its properties can be manipulated at design time. Consult the IDE
documentation for details on how to load third-party Bean components into the IDE.

Most IDEs list a component’s properties in a property sheet or dialog. Simply find
the property you want to set in this list and edit its value. Again, consult the IDE
documentation for complete details.
24 Part I ■ Using JClass Chart

2.4.4 Setting Properties Interactively at Run-Time

If enabled by the developer, end-users can manipulate property values on a chart
running in your application. Clicking a mouse button launches the JClass Chart
Customizer. The user can navigate through the tabbed dialogs and edit the
properties displayed.

For details on enabling and using the Customizer, see The Chart Customizer later in
this chapter.

2.5 Other Programming Basics

Working with Object Collections
Many chart objects are organized into collections. For example, the chart axes are
organized into the XAxis collection and the YAxis collection. In Beans terminology,
these objects are held in indexed properties.

To access a particular element of a collection, specify the index which uniquely
identifies this element. For example, the following code changes the maximum value
of the first X-axis to 25.1:

 c.getChartArea().getAxis(0).setMax(25.1);

Note that the index refers to the first element of a collection. Also, note that by
default JCChartArea contains one element in XAxis and one in YAxis.

Calling Methods
To call a JClass Chart method, access the object that defines the method. For
example, the following statement uses the coordToDataCoord() method, defined by
the ChartDataView collection, to convert the location of a mouse click event in pixels
to their equivalent in data coordinates:

 JCDataCoord dc = c.getDataView(0).coordToDataCoord(10,15);

Details on each method can be found in the API documentation for each class.
Chapter 2 ■ JClass Chart Basics 25

2.6 JClass Chart Inheritance Hierarchy

The following provides an overview of class inheritance of JClass Chart.

Figure 3 Class hierarchy of the jclass.chart package
26 Part I ■ Using JClass Chart

JClass Chart has a different Java base class depending on the JDK version used. For
example, JClass Chart for JDK 1.1 + Swing is subclassed from
com.sun.java.swing.JComponent, so it inherits the capabilities provided by the
Swing component set. The following diagram shows the Java base class for each Java
version supported.

Figure 4 Java base class used by each version of JClass Chart
Chapter 2 ■ JClass Chart Basics 27

2.7 JClass Chart Object Containment

When you create (or instantiate) a new chart, several other objects are also created.
These objects are contained in and are part of the chart. Chart programmers need to
traverse these objects to access the properties of a contained object. The following
diagram shows the object containment for JClass Chart.

Figure 5 Objects contained in a chart — traverse contained objects to access properties

JCChart (the top-level object) manages header and footer JCTitle objects, a legend
(JCLegend), and the chart area (JCChartArea). The chart also contains a collection of
data view (ChartDataView) objects and can contain a collection of chart label
(JCChartLabel) objects.

The chart area contains most of the chart’s actual properties because it is responsible
for charting the data. It also contains and manages a collection of X-axis (JCAxis)
objects and Y-axis (JCAxis) objects (one of each by default).
28 Part I ■ Using JClass Chart

The data view collection contains objects and properties (like the chart type) that are
tied to the data being charted. Each data view contains a collection of series
(ChartDataViewSeries) objects, one for each series of data points, used to store the
visual display style of each series (JCChartStyle).

But the chart does not own the data itself, merely views on the data. The data is
owned by the DataSource object. This is an object that your application creates and
manages separately from the chart. For more information on JClass Chart’s data
source model, see Chapter 8, Data Sources.

2.8 The Chart Customizer

The JClass Chart Customizer enables developers (or end-users if enabled by your
program) to view and customize the properties of the chart as it runs.

Figure 6 The JClass Chart Customizer

The Customizer can save developers a lot of time. Charts can be prototyped and
shown to potential end-users without having to write any code. Developers can
experiment with combinations of property settings, seeing results immediately in the
context of a running application, greatly aiding chart debugging.

2.8.1 Displaying the Chart Customizer at Run-Time

By default, the Customizer is disabled at run-time. To enable it, you need to set the
chart’s AllowUserChanges and Trigger properties, for example:

 chart.setAllowUserChanges(true);
 chart.setTrigger(0, new EventTrigger(Event.META_MASK,
 EventTrigger.CUSTOMIZE);
Chapter 2 ■ JClass Chart Basics 29

To display the Customizer once it has been enabled, move the mouse over the chart
and click the secondary mouse button; that is, the button on your system that displays
popup menus, for example:

■ Windows — Right mouse button

■ UNIX — Middle mouse button

2.8.2 Editing and Viewing Properties

1. Select the tab that corresponds to the element of the chart that you want to edit.
Tabs contain one or more inner tabs that group related properties together. Select
inner tabs to narrow down on the type of property you want to edit.

2. If you are editing an indexed property, select the specific object to edit from the
lists displayed in the tabs. The fields in the tab update to display the current
property values.

3. Select a property and edit its value.

Figure 7 Editing a sample chart with the Customizer

As you change property values, the changes are immediately applied to the chart and
displayed. You can make further changes without leaving the Customizer. However,
once you have changed a property the only way to “undo” it is to manually change
the property back to its previous value.

To close the Customizer, close its window (the actual steps differ for each platform).
30 Part I ■ Using JClass Chart

2.8.3 Saving Customized Charts

Changes made with the Customizer are lost when the program terminates. However,
you can save the current values of all chart properties to an HTML file. You can then
view the generated HTML file, edit the properties further if you wish, and use the
HTML file to create a chart with those property settings.

To save a customized chart, select SaveAs from the File menu on the Customizer,
enter a filename in the dialog, and click the Save button.

2.9 Distributing Applets and Applications on a Web Server

Once you have finished programming your Java applet or application, you will
undoubtedly want to distribute it to your users. A common method of applet and
application distribution is with your Web server. Here is a brief overview of how to
deploy applets and applications, as well as reduce the size and customize the
contents of the deployment archive1.

2.9.1 Publishing an Applet on a Web Server

You can distribute your applet by putting the Web pages that contain it onto your
Web server. Distributing your applet this way involves:

■ creating directories for your JClass archive, HTML and class files

■ copying the required JClass archive files to the Web server

■ setting a CLASSPATH on the Web server

■ copying the HTML and class files to the Web server

■ ensuring that the HTML files properly reference the JClass archive and class files

Install the JClass Archives on the Server
First, you need to make sure that your CLASSPATH is not set. Although you will
need to set it later when adding applets to the server, keep it undefined for now.

Create a JClass directory on your Web server (e.g. \JClassLib, just below the root
document directory). This directory holds all of the archives that came with your
JClass products.

1. Although the term “archive” has a somewhat ambiguous and flexible definition, for the purpose of this section,
it refers to the JClass product JAR files.
Chapter 2 ■ JClass Chart Basics 31

Figure 8 Example: suggested JClass archives folder name and location

Copy the JClass archive files to the newly created \JClassLib directory. The number
and version of archives copied over, depend on which JClass products you own.
These JAR files are found in the \lib directory of your JClass installation. Please refer
to the Installed Files Overview section earlier in chapter 1 for more information
about these files.

Preparing the directory for the applet
Create a directory for the applet classes and their HTML pages. It is important to
keep the directory structure identical to the one found in the original location of the
classes.

Figure 9 Example: proper applet class directory structure (using BWT)

Set a CLASSPATH on Your Web Server
If the applet reads local files from the Web server, the CLASSPATH needs to
include the directory in which these files are located. As an example, if your applet
uses images, the CLASSPATH needs to point to that images directory.

Install Your Applet Classes and HTML files on Your Web Server
Now that the directories have been created with the correct structure, you can copy
over all of the required class and HTML files. The directories in which the class files
are copied must be the same as the ones from where they are being copied. The
HTML files can be placed together in a different location from the associated HTML
files (as a suggestion, either the \JClassLib or \JClass will work fine), since they can
point to class files in different locations.
32 Part I ■ Using JClass Chart

Since your HTML files contain a JClass applet, and they might be located in a
different directory from the associated class files, there are certain attributes that
must be used to ensure that the file points to the proper JClass archive, class and
location.

■ <ARCHIVE>: The value given for this attribute is the path or URL of the JClass
product archive (ZIP or JAR) that the applet requires to run.

■ <CODEBASE>: You will need this if your applet is in a package or uses classes that
are in other packages. The value of this attribute points to the ‘top’ of the
directory structure that contains these classes and packages.

■ <CODE>: The value of this attribute points to your applet class file.

Any printed or online HTML reference can provide more in–depth information
about these attributes. Please refer to it if you need to.

For troubleshooting information about the above procedures, please refer to the
JClass Knowledge Base on KL’s Web site support area, and perform an online search
for Publishing JClass products on a Web Server.

2.9.2 Using JarHelper to Customize the Deployment Archive

Deploying your applet or application does not end with copying the required class
and HTML files to your Web server; the size of the archive should also be a
consideration. The size of the archive, and its related download time are important
factors to consider when deploying your applet or application on a Web server.

JarHelper is a utility that allows you to customize and reduce the size of the
deployment archive. Using JarHelper, you can combine different JClass product
JARs. As well, you can also choose which of the components found within one or
more JClass product JARs will be included in the deployment archive. JarHelper
takes the selected components of the JClass JAR(s), and creates a new, smaller file,
which results in faster download times.

For example, you can use JarHelper to exclude the Bean property editors that are
only useful during development, to significantly reduce the size of the deployment
archive.
Chapter 2 ■ JClass Chart Basics 33

http://www.klg.com/cs/tech/jclass

Figure 10 JarHelper‘s JClass product and component selection screen

JClass JarHelper comes with the JClass Enterprise Suite, and is installed
automatically with the rest of the bundle’s products. It is also available for download
from KL Group’s Web site for licensees of any JClass product.

Please refer to the readme-jarhelper.txt file for JDK and Swing requirements and
installation.

Running JarHelper
Windows 95 and NT: Using the Start menu, navigate to the JClass JarHelper
program group and select the JarHelper.bat (DOS) icon. You can also run
JarHelper from a command line; the batch file is located in
JCLASS_HOME\bin\JarHelper.bat.

Unix: Execute the shell script located in the $JCLASS_HOME/bin directory from a
command prompt.

Using JarHelper
For more information about using JarHelper to create new JARs, please consult its
online documentation.
34 Part I ■ Using JClass Chart

3
SimpleChart Bean Tutorial

Introduction to JavaBeans

SimpleChart Tutorial

3.1 Introduction to JavaBeans

JClass Chart components are JavaBean-compliant. The JavaBeans specification
makes it very easy for a Java Integrated Development Environment (IDE) to
“discover” the set of properties belonging to an object. The developer can then
manipulate the properties of the object easily through the graphical interface of the
IDE when constructing a program.

The three main characteristics of a Bean are:

■ the set of properties it exposes

■ the set of methods it allows other components to call

■ and the set of events it fires

Properties control the appearance and behavior of the Bean. Bean methods can also
be called from other components. Beans fire events to notify other components that
an action has happened.

3.1.1 Properties

Under the new model, “properties” are the named method attributes of a class that
can affect its appearance or behavior. Properties that are readable have a “get”
method which enables the developer to read a property’s value, and those properties
which are writable have a “set” method which enable a property’s value to be
changed.

For example, the JCAxis object in JClass Chart has a property called
AnnotationMethod. This property is used to control how an axis is labelled. To set
the property value, the setAnnotationMethod() method is used. To get the
property value, the getAnnotationMethod() method is used.
35

For complete details on how JClass Chart’s object properties are organized, see
“JClass Chart Object Containment” and “Setting and Getting Object Properties” in
the JClass Chart Basics chapter.

Setting Bean Properties at Design-Time
One of the features of any Java Bean component is that it can be manipulated
interactively in a visual design tool (such as a commercial Java IDE) to set the initial
property values when the application starts. Consult the IDE documentation for
details on how to load third-party Bean components into the IDE.

Most IDEs list a component’s properties in a property sheet or dialog. Simply find
the property you want to set in this list and edit its value. Again, consult the IDE
documentation for complete details.

3.1.2 New Event Model

Events are a mechanism used to propagate state change notifications between a
source object and one or more target listener objects. Events are typically used
within windowing toolkits for delivering notifications of such things as mouse or
keyboard actions, or other programmatically-defined actions.

In the JDK 1.0.2, the behavior of Java programs was typically modified by
subclassing and overriding event handling classes. Subclassing overrode the default
behavior of a method. This approach was clumsy because it required the
programmer to have a thorough understanding of base class methods and internals
before writing any code.

Bean-compliant JClass programs (like JClass Chart) provide the means for an
application to be notified when an event occurs through event listeners. It works like
this: if a component is acted upon by the user or from within the program, a
JCFooEvent is fired. The JCFooListener (which has been registered by calling
addFooListener() on the component) receives the instance and enacts the action to
be taken. The programmer uses the JCFooListener to define what action or actions
should take place when it receives the JCFooEvent.
36 Part I ■ Using JClass Chart

Outliner
3.2 SimpleChart Tutorial

This tutorial guides you through the development of an application that uses
SimpleChart to chart the financial information of “Michelle’s Microchips”. It is a
good starting point for learning basic JClass Chart features. To explore more
advanced features of JClass Chart, however, we recommend that you use the
MultiChart Bean.

The tutorial does not cover all of the properties available in SimpleChart. For a
complete reference, see the Bean Reference. The screen captures have all been taken
from Sun’s BeanBox and will differ slightly from your IDE’s appearance.

3.2.1 Steps in this Tutorial

This tutorial has eight steps:

1. Create a new application in your IDE and add a container

2. Put a SimpleChart object into the container

3. Load the data for Michelle’s Microchips

4. Add a header, footer, and legend

5. Add point labels to the x-axis

6. Change the background color to white

7. Set the chart type to bar, and add 3D effects

8. Compile and run the application

Step 1: Create the ‘Michelle’ Application
Create a new application in your IDE and add a container to hold a SimpleChart
object. In most IDE’s this will be a frame or a panel. See your IDE’s documentation
for instructions on creating a basic application and adding a container.

Step 2: Put a SimpleChart Object into the Container
With the container displayed in design mode, click the SimpleChart icon and place a
SimpleChart object into the container’s area. See your IDE’s documentation for
details on placing objects into a container. The SimpleChart icon looks like this:
Chapter 3 ■ SimpleChart Bean Tutorial 37

In your container object, you should now see a basic chart area with an x- and y-axis,
like this:

If you open your property list (the window that displays the Bean’s properties) with
the SimpleChart area selected, you should see the property editors that are available
in SimpleChart.

Step 3: Load Data from a File
This tutorial uses data from a file named plot2.dat, contained in the
JCLASS_HOME/jclass/chart/examples/ directory. To load plot2.dat into SimpleChart,
bring up the custom data source editor by clicking on the data property:

The data source editor provides two methods for loading data: editing data in the
text area, or loading data from a file. For Michelle’s Microchips, click the Load data
from a file radio button. Then, enter the full path name of plot2.dat in the File
Location field. After you click Done, you should see the data displayed in the chart
area as follows:
38 Part I ■ Using JClass Chart

Outliner
What’s in plot2.dat?
Plot2.dat has financial information for Michelle’s Microchips, formatted for the file
data source method of data loading. SimpleChart accepts only .dat files, or
modifications to the default data in the editor. For more information on creating a file
data source, see, File Data Source in the Data Sources chapter.

The content of plot2.dat is:

JClass Chart also has other Beans which allow you chart data from a database easily.
See the Bean Reference for more information.

Step 4: Add a Header, Footer, and Legend
Enter “Michelle’s Microchips” in the headerText property editor and “1963
Quarterly Results” in the footerText property editor:

To add the legend, set the legendIsShowing property to true. The legend items and
text are taken from information in the data source. Notice how the plot area is
resized to accommodate the legend. You may have to resize your chart area to
accommodate the changes:

For more information on legend properties, see Legends, in the Bean Reference.

ARRAY ’’ 2 4
’Q1’ ’Q2’ ’Q3’ ’Q4’
’’ 1.0 2.0 3.0 4.0
’Expenses’ 150.0 175.0 160.0 170.0
’Revenue’ 125.0 100.0 225.0 300.0
Chapter 3 ■ SimpleChart Bean Tutorial 39

Step 5: Add Point Labels to the x-axis
By default, SimpleChart annotates the axes using with values. You can change the
annotation to show point labels or time labels.

For Michelle’s Microchips, change the x-axis annotation from values to point labels.
Do this by setting the xAxisAnnotationMethod property to Point_Labels:

You should now see “Q1”, “Q2”, “Q3”, and “Q4” on the x-axis. These labels are
contained in the plot2.dat file, and come up automatically when Point_Labels is
selected. For more information on axis annotation, see Axis Properties, in the Bean
Reference.

Step 6: Change the Background Color
To change the background color to white, click the background property to bring up
your color editor:

The custom color editor used by your IDE will differ from the BeanBox. Select pure
white from the options on your color editor:
40 Part I ■ Using JClass Chart

Outliner
Step 7: Change to Bar Chart and add 3D Effects

You can select from nine chart types using the chartType property editor (see, Chart
Types, for a complete list). For Michelle’s Microchips, select the BAR type:

To add three-dimensional visuals to your chart, click the view3D property to bring up
the View3DEditor:

There are two main settings in the View3DEditor (below): depth, and combined
elevation and rotation. They are both set by dragging the box in the editor with a
mouse.

First, drag the square with your mouse until you have an Elevation of 45 and a
Rotation of 45. Second, check the Change Depth box, and drag the red square until
it has a depth of 31. Click Done to set the changes:
Chapter 3 ■ SimpleChart Bean Tutorial 41

Step 8: Compile and Run the Application
For the last step, compile and run the application. See your IDE’s documentation for
details. And that’s it! When you run the application, you should have a window with
a chart, displaying Michelle’s Microchips’ financial information. The following
example illustrates how the application appears when run:
42 Part I ■ Using JClass Chart

4
Bean Reference

Choosing the Right Bean

Standard Bean Properties
Data Loading Methods

This chapter is a reference for JClass Chart Beans and their properties. For basic
Bean concepts and a tutorial, see the SimpleChart Bean Tutorial.

4.1 Choosing the Right Bean

When creating new applications in an IDE, you can either use MultiChart,
SimpleChart, or one of the data binding Beans. Unless you are binding to a database,
we recommend using MultiChart, both for learning JClass Chart’s features, and
creating new applications.

The MultiChart Bean
MultiChart is JClass Chart’s newest and most powerful Bean. It contains a richer set
of features than previous Beans, highlighting the superiority of JClass Chart as a
charting application tool. Among its features are the ability to handle multiple data
sources and multiple axes. For more information, see the MultiChart chapter.

SimpleChart
SimpleChart was designed for quick chart development in any IDE environment. It
exposes the most commonly used charting properties, and presents them in easy to
use property editors. SimpleChart can load data from a file or a design-time editor.

SimpleChart and the data binding Beans share a common set of properties that are
covered in this chapter. SimpleChart and the data binding Beans only differ in how
they load data. Therefore, this chapter is divided into Standard Bean Properties and
Data Loading Methods.
43

Data Binding Beans
If you want to load data from a database, you will have to use one of the data binding
Beans. In order to chart data from a database, your application must be able to
establish a connection, perform necessary queries on the data, and then put the data
into a chartable format. This type of database connectivity is often called ‘data
binding’.

There are three data binding Beans. One for JBuilder, one for Visual Café, and one
for JClass DataSource.

Once you have set up your data handling for a specific Bean, you can then use the
Standard Bean Properties to customize your chart.

4.1.1 JClass Chart Beans

The following table shows all of the available Beans, and their uses:

4.1.2 JClass Chart Beans and JCChart

All JClass Chart Beans are subclasses of the main chart object, JCChart. This means
that the entire JClass Chart API is available to any developer using any of the Beans.

JClass Chart Bean Description

MultiChart The newest and most powerful charting Bean.
■ Chart data from two data sources and plot them

against multiple axes.
■ Data sources can be a file, or data entered at

design-time. Also supports using Swing
TableModel objects as data sources.

■ Compatible with all IDE’s.

See MultiChart for complete details.

SimpleChart Chart data from a file, or data entered at design-time.
Also supports a Swing TableModel object as a data
source. Compatible with all IDE’s.

DSdbChart Bind a chart to JClass DataSource and chart data from
a database. Compatible with all IDE’s and the BeanBox
(Requires JClass DataSource Component)

JBdbChart Bind a chart to a JBuilder DataSet and chart data from
a database. (Requires Borland JBuilder 2.0)

VCdbChart Bind a chart with a Visual Café QueryNavigator and
chart data from a database. (Requires Visual Café 2.5).

JCChartComponent Included for backwards compatibility. It is
recommended that you use the other Beans for new
charting applications.
44 Part I ■ Using JClass Chart

Outliner
4.1.3 A Note for JClass Chart Lite Users

JClass Chart Lite is a special verison of Chart bundled free of charge with popular
IDEs. Chart Lite limits some functionality, but imposes no run-time penalty. In
other words, if you use Chart Lite and deploy an application or applet, there is no
indication that Chart is “lite” — no special banner or dialog or message. Chart Lite
does have some feature limitations:

■ When dropped into an IDE at design time, a dialog will appear that explains you
are using a Lite version. This happens for all Beans.

■ Several features of MultiChart have been restricted or omitted. See the
MultiChart chapter for more details on these limitations.

4.2 Standard Bean Properties

SimpleChart, and the data binding beans (VBdbChart, JBdbChart, and DSdbChart)
have a set of standard properties that allow you to control the appearance and
behavior of your charts.

They only differ in the way they retrieve data. This section covers the standard
properties. See Data Loading Methods, later in this chapter, for information on data
management properties for the different Beans.

4.2.1 Axis Properties

JClass Chart Beans set up basic axis properties for you automatically, and adjust
these properties to your data. You can also customize your axes with the axes
property editors. You have control over the following axis properties:

■ Axis Titles

■ Annotation Method

■ Axis Number Intervals

■ Axis Range

■ Axis Grids

■ Axis Hiding

■ Logarithmic Notation

■ Axes Orientation
Chapter 4 ■ Bean Reference 45

Axis Titles
Enter x- and y-axis titles in the xAxisTitleText and yAxisTitleText property
editors:

Annotation Method
Set the annotation method for the axes using the xAnnotationMethod and
yAnnotationMethod editors. By default, Value annotation is used for both:

Value_Labels notation can only be added programmatically, or by using HTML
parameters, and is therefore, not very useful for Bean programming. The following
examples show the three applicable annotation methods as applied to the x-axis:

Axis Number Intervals
To specify the number interval on the axes, enter the interval into the
yAxisNumSpacing or xAxisNumSpacing property editors:

Point_Labels Time_Labels Value
46 Part I ■ Using JClass Chart

Outliner
Axis Range
The axis number range is determined by the minimum and maximum values of the
axes. By default, these values are set automatically, based on the available data. You
can specify the range using the xAxisMinMax and yAxisMinMax property editors.
Enter the minimum value on the left of the comma, and the maximum on the right:

Logarithmic Notation
You can specify that one or both of the axes are logarithmic, by setting the
xAxisIsLogarithmic or yAxisIsLogarithmic properties to true:

Hiding Axes
by default, both the x and y axes are displayed. You can hide them by setting the
xAxisIsShowing or yAxisIsShowing properties to false. The following example
hides the y-axis:
Chapter 4 ■ Bean Reference 47

Showing Grids
Display grid lines for one or both axes by setting the xAxisGridIsShowing or
yAxisGridIsShowing properties to true. By default, the grids are hidden. The
following example sets both axes to display grid lines:

Axis Orientation
Axis orientation determines how the axes are positioned on the chart. By default, the
axes are positioned with the y-axis left/vertical and the x-axis right/horizontal. Use
the axis orientation custom editor to change how your axes are oriented. To launch
the custom editor, click the axisOrientation property:

The axis orientation editor will illustrate the eight combinations. Select the desired
orientation and click Done.
48 Part I ■ Using JClass Chart

Outliner
4.2.2 Chart Types

By default, JClass Chart Beans use the Plot chart type to display data. To change to
another type, use the chartType property editor. The following example selects the
PIE type:

Data Interpretation
The following examples show how data is displayed by the different chart types:

Area Bar Candle

HiLo Hilo_Open_Close Pie

Plot Scatter_Plot
Stacking_Area

Stacking_Bar
Chapter 4 ■ Bean Reference 49

4.2.3 Display Properties

Font
Set the size and style of text on your chart by clicking the font property:

The font you choose will apply to all text on the chart simultaneously. Note that the
font editor that appears in your IDE may be different from the example below. The
following example sets the font to Courier, Bold, 24 point, with the BeanBox font
editor:

Foreground and Background Colors
Click the foreground and background properties to set the foreground and
background colors of your chart. A color editor will appear. By default, the colors are
black foreground and light-grey background:

Most IDE’s have their own color editors that differ from the BeanBox. The following
example sets the background color to red:
50 Part I ■ Using JClass Chart

Outliner
3D Effects
To add 3D effects to your chart, click the View3D property:

This will bring up the View3DEditor. There are two main settings in the
View3DEditor: depth and combined elevation and rotation.

To add 3D effects, first drag the red square in the editor until it has the desired
Elevation and Rotation. Then, check the Change Depth option box, and drag the
red square until it has the Depth you want to see on your chart. The degree of depth,
elevation and rotation is displayed in numbers at the top of the editor. Click Done to
set the changes:

Margins
The margins property controls the distance from the data display to the chart area
boundary:

As you increase the margins, you shrink the data display area, including headers,
footers, and the legend. The overall chart size remains the same.
Chapter 4 ■ Bean Reference 51

4.2.4 Headers and Footers

Add a header, footer, or both with the headerText and footerText property editors.
The following example sets both:

The font characteristics of the header and footer are determined by the chart’s
default, which can be changed with the font property. See Display Properties in this
chapter, for more details.

4.2.5 Legends

You can add a legend, position it, and select its layout. The items that appear in the
legend come from the information in the data source. In order to change what
appears in the legend, you have to change what is in the data source. For information
on how to set up legend items in the data source, see Standard Data Formats, in the
Data Sources chapter.

Showing the Legend
To show the legend, set the legendIsShowing property to true:
52 Part I ■ Using JClass Chart

Outliner
Legend Placement
Specify where the legend will be anchored in the chart area by selecting a compass
direction from the legendAnchor property options. By default, legends are anchored
on the East (see above). The following example anchors the legend North:

Legend Layout
Legend items can be laid out vertically or horizontally. By default the legend has a
vertical layout (see above). To specify a horizontal layout, set the legendOrientation
property to Horizontal:
Chapter 4 ■ Bean Reference 53

4.3 Data Loading Methods

This section covers the data loading methods of SimpleChart and the data binding
Beans. For MultiChart data loading details, see, the MultiChart chapter. Select the
Bean that best matches your data needs, and follow the instructions on loading the
data for that Bean:

If you are using an IDE other than Borland JBuilder or Visual Café, and you want to
connect to a database, then, you will have to use the JClass DataSource. JBuilder and
Café users may still want to use the JClass DataSource for data binding instead of
their IDE-specific solutions.

JClass DataSource
JClass DataSource is a full data binding solution. It is a robust hierarchical, multiple-
platform data source that you can use to bind and query any JDBC compatible
database. It can also bind to platform-specific data solutions in JBuilder and Visual
Café.

The JClass DataSource product comes with the JClass Enterprise Suite, JClass
HiGrid, or can be purchased separately. Visit http://www.klg.com for information and
downloads.

JClass Chart Bean Data Source & IDE Compatibility

SimpleChart ■ Formatted file or design-time editor
■ Also supports using a Swing TableModel object

as the data source
■ All IDE’s

DSdbChart ■ Data binding
■ All IDE’s (Requires JClass DataSource Component)

JBdbChart ■ Data binding
■ Borland JBuilder 2.0

VCdbChart ■ Data binding
■ Visual Café 2.5
54 Part I ■ Using JClass Chart

http://www.klg.com

Outliner
4.3.1 SimpleChart: Loading Data from a File

There are two ways of loading data with the SimpleChart Bean: from a .dat file, or
by entering data directly into the custom editor. Both methods are managed by the
DataSourceEditor. To bring up the DataSourceEditor, click on the data property:

The DataSource Editor will appear (see below).

Loading Data from a .dat File
To load data from a file, click Load data from a file, enter the name of the file in
the File Location field, and click Done:

Specify the full path of the file. The file must be pre-formatted to the JClass Chart
Standard (see Data Sources). Sample data files are located in the
JCLASS_HOME/jclass/chart/examples directory.

Editing the Default Data
You can use the data provided in the editor, as is, or you can modify it. To use
existing data, just check the Edit data in the text area radio button, and click
Chapter 4 ■ Bean Reference 55

Done. Change data by deleting and inserting text in the area provided. Be careful to
preserve the punctuation surrounding the original text:

The chart below shows how the default data appears as a plot. Notice where the
different elements are positioned. Each point on the x-axis is labelled with the names
specified in the default data. The name of each series of y-values appears in the
legend. The name of the data view is positioned directly above the legend.

In order for the default data to display this way, you must first set the
xAxisAnnotation property to Point_Labels, and the legendIsShowing property to
true.

4.3.2 SimpleChart: Using Swing TableModel Data Objects

Your (Swing) application may have the data you want to chart contained in a Swing
TableModel-type data object. You can use this object as your data source instead of
using the JClass Chart built-in data sources.

Use the SwingDataModel property to specify an already-created Swing TableModel
object to use as the chart’s data source.
56 Part I ■ Using JClass Chart

Outliner
4.3.3 Data Binding in Borland JBuilder

Binding a chart to a database in JBuilder involves adding a database connection and
query functionality with JBuilder Components and then using JBdbChart to connect
to the dataset and chart the data. This section walks through these steps.

Database connection and querying are handled by JBuilder components. Our
coverage of these components is only intended as a guide. For detailed information
on JBuilder database connectivity, consult your JBuilder documentation.

Before proceeding, make sure you have:

■ Borland JBuilder 2.0

■ JDK 1.1

■ JBdbChart Bean loaded in your JBuilder Palette. For details on how to load a
Bean, see the Getting Started Chapter or your JBuilder documentation.

■ Database set up properly.

■ Basic SQL command knowledge

Step 1: Connect to a Database
Use JBuilder’s Database Bean to add a database connection. The icon is found under
the Data Express tab.

Add an instance to your frame. Then, use the connection property to specify the
URL of the database that you want to use.

Step 2: Query the Data
To query the database, add an instance of JBuilder’s QueryDataSet to your frame.
This Bean is found under the Data Express tab.

Select columns that you may want to chart with the query property editor. Each
column will represent a series of data, or point labels. For example, to select all of the
columns from a table named MotorVehicle_Sales, you would type a statement
similar to:

select * from MotorVehicle_Sales
Chapter 4 ■ Bean Reference 57

You can include all columns at this step, and then use JBdbChart to choose which
ones to display later.

Step 3: Connect the Chart to the DataSet
With the database connection established and the query created, you can now use
JBdbChart to connect to the JBuilder DataSet and chart the data. JBdbChart’s data
binding properties are dataSet, and DataBindingMetaData.

Insert a JBdbChart into your frame.

Select a query from the dataSet property’s pull down menu. If the database
connection and query are set up properly with JBuilder components, there should be
one or more queries in the list.

You can now select the columns and range of data that will be displayed. Columns
that contain numeric data are considered ‘data series’, and can be plotted on a chart.
Columns that have non-numeric data can be used for point labels on the X-axis.
Click the dataBindingMetaData property to bring up the custom editor:

This editor allows you to set the columns and the data range of the chart. Click on
column names to select them (when they are highlighted, they are selected).

Columns on the left hand side of the editor are numeric. Columns on the right are
non-numeric. Only one X-axis column is allowed.
58 Part I ■ Using JClass Chart

Outliner
You can either set the range to all data by checking the All rows box, or you can
specify a range using the Start Point and End Point fields.

In order to display the point labels on the X-axis, you have to set the
xAxisAnnotationMethod property to Point_Labels. For more information, see, Axis
Properties.

That’s all there is to it. You should see your data in the design frame:.

With your connection established, you can then use the Standard Bean Properties to
customize and enhance your chart. In the example above, a header, footer, axis title,
legend, point labels and 3D effects have been added.
Chapter 4 ■ Bean Reference 59

4.3.4 Data Binding in Visual Café

Binding a chart to a database in Café involves two basic steps: establishing a
connection to a database table with Café components, and then using VCdbChart to
connect the chart to the QueryNavigator and display the data.This section walks
through the steps.

Database connection and querying are handled by Visual Café components. This
manual’s coverage of these components is only intended as an introductory guide.
For detailed information on database connectivity, consult your Visual Café
documentation.

Before proceeding, you must have:

■ Visual Café 2.5

■ JDK 1.1

■ VCdbChart component in your Visual Café component library. For details on
how to load a Bean, see the Getting Started Chapter or your Café
documentation.

■ Symantec dbAnywhere server running

Step 1: Connect to a DataBase Table
An easy way to set up data binding in Visual Cafe is to drag a table from the
dbNavigator window to the design area and ‘drop’ it in. This will set up the
DatabaseManager, JdbcConnection, and QueryNavigator all at once:
60 Part I ■ Using JClass Chart

Outliner
When you see the QueryNavigator icon in your design area, you can proceed to the
next step: connecting the chart to the database.

Step 2: Connect the Chart to QueryNavigator
Once you have a connection to the database in Café, connect VCdbChart to the
QueryNavigator and select the columns to be displayed. Two properties are used for
connecting the data: DataBinding, and DataBindingMetaData.

First, add a VCdbChart to the design area. The icon is shown below

Click the DataBinding property to bring up the Databinding custom editor.

In the QueryNavigator Alias field, enter the Alias Name of your QueryNavigator.
The easiest way to do this is cut/paste from the QueryNavigator’s property list. The
Full Name field will automatically update itself when selected. Click OK when
finished.

You can now select the columns and range of data that you want to display, using the
DataBindingMetaData custom editor. To bring it up, click DataBindingMetaData
property:
Chapter 4 ■ Bean Reference 61

In the Series Columns field, enter the columns to be displayed as Y- data series.
Separate the column names with a comma.

Then enter the column that you have selected for point labels (optional) in the Point
labels column field. In order to display the point labels on the X-axis, set the
xAxisAnnotationMethod property to Point_Labels (for more information, see, Axis
Properties).

You can either set the range to all data by checking the All rows box, or you can
specify a range using the Start Point and End Point fields.

Now, test-run the application to see how the data is displayed in your chart, and then
use the Standard Bean Properties to control the behavior and appearance of the
chart. In the example below, a header, footer, axis title, legend, and point labels have
been added.
62 Part I ■ Using JClass Chart

Outliner
4.3.5 Data Binding with JClass DataSource

The JClass DataSource manages all connection and query functionality for data
binding. After establishing a connection and query with JClass DataSource, you then
bind DSdbChart to JClass DataSource to chart the data.

The JClass DataSource package contains a number of Beans used for binding to
databases, including TreeDataBean, and DataBean. This section will illustrate the
process with the DataBean Bean. DSdbChart uses the same method to connect to
either Bean. Consult your JClass DataSource documentation for details on their
features and how to use them.

To use this solution, you require the following:

■ Sun’s BeanBox, or any IDE

■ JDK 1.1

■ JClass DataSource. (comes with JClass Enterprise, HiGrid, or can be purchased
separately).

■ DSdbChart loaded into the BeanBox or IDE. For details on how to load a Bean,
see the Getting Started chapter, or your JClass DataSource documentation

■ If you are using Windows, you will need to establish an ODBC database
connection. Set this in the in Control Panel > ODBC.

The following steps guide you through using DSdbChart to connect to JClass
DataSource. They are: connect to a database, query the data, and connect DSdbChart
to the JClass DataSource.

Step 1: Connect to a Database
Add a DataBean instance to your design area. The icon looks like this

Click the dataBeanComponent property to bring up the DataBeanComponentEditor.
Chapter 4 ■ Bean Reference 63

This editor manages all of the connection and query settings. The first thing you
have to do is set up a serialization file under the Serialization tab. This file saves
information and settings about the connection. You can then proceed to set up a
connection and query.

To set up a database connection, go to the DataModel > JDBC > Connection tab,
and specify the Server Name and Driver for the database you want to connect to. Test
the connection. If there are error messages, consult your JClass DataSource
documentation.

When your connection is successful, you can then proceed to set up a query.
64 Part I ■ Using JClass Chart

Outliner
Step 2: Query the Data
Click the Data Model > JDBC > SQL Statement tab to show the query options:

You can create your whole SQL query using mouse clicks. First, add a table, and
then create a query by selecting columns. When all finished, click Set/Modify, and
then Done.

Step 3: Connect a Chart to JClass DataSource
With your database connection established, you can then bind a chart to the data.
This is done using the dataBinding and DataBindingMetaData property editors.

First, add DSdbChart to your design area. The icon looks like this:

Click the dataBinding property to bring up the DataBindingEditor.
Chapter 4 ■ Bean Reference 65

If the connection in JClass DataSource is properly established, you should see one or
more data sources to select from:

Select a source and click Done.

You can now select the columns and range of rows to be displayed in the chart. To do
this, click the DataBindingMetaData property to bring up the DataBindingMetaData
custom editor:

Columns on the left are numeric and are displayed as Y series. Columns on the right
can be used as X-axis point labels. In order to display the point labels on the X-axis,
set the xAxisAnnotationMethod property to Point_Labels. For more information,
see, Axis Properties.

You can either set the range to all data by checking the All rows box, or you can
specify a range using the Start Point and End Point fields.
66 Part I ■ Using JClass Chart

Outliner
When you click Done, you should see the data displayed in the design area of the
Beanbox or IDE. Your data binding is complete.
Chapter 4 ■ Bean Reference 67

68 Part I ■ Using JClass Chart

5
MultiChart

Introduction to MultiChart ■ Getting Started with MultiChart

MultiChart Property Reference ■ Axis Controls
Headers, Footers, and Legends ■ Data Source and Data View Controls

Appearance Controls ■ Event Controls

5.1 Introduction to MultiChart

MultiChart is the next generation charting Bean from JClass Chart. It contains a
richer set of features than previous Beans, highlighting the superiority of JClass Chart
as a charting application tool.

The MultiChart icon:

Highlights of the new MultiChart Bean

■ Handles multiple data sources

■ Plot data against multiple x and y axes.

■ Fully customizable axes.

■ Extensive control of font, colors, borders, and styles for each chart element.
69

5.1.1 Multiple Axes

MultiChart can have two x and two y axes, as in the example below:

Setting Properties on Multiple Axes
Axis properties can be set for each axis individually. At the top of each axis editor
you will see four radio buttons:

When a radio button is selected, all that follows below will apply to that axis.

5.1.2 Multiple Data Views

MultiChart allows you to load data from two different sources at the same
time.When loading data from two different sources, they are each assigned to a
separate data view.

By default, both data views are showing, but you can hide or reveal data views
depending on your application’s needs. Both sets of data can be mapped to the same
set of x and y axes, or, mapped to different axes.

5.1.3 Intelligent Defaults

MultiChart has a sophisticated set of dynamic default settings in the custom property
editors. You can override these defaults to suit your needs. When you override a
default value in a text editor, it becomes static, and will not automatically adjust
anymore.

Returning to Default Values
If you want to return to default settings in the custom editors after overriding them,
all you have to do is delete the contents of the changed field, and leave it blank. The
next time you bring the editor you will see that the automatic values have returned.
70 Part I ■ Using JClass Chart

Outliner
5.2 Getting Started with MultiChart

MultiChart has a sophisticated set of dynamic default settings that adjust to your
data and other settings. This means that you only have to make a minimum of
settings to have a respectable chart. The following list describes the most common
start-up tasks and the editors used for them:

■ Load Data. To load data in the chart, use the DataSource editor. This editor
allows you to load data from one or two sources. There is also a default set of
data built-in that you can use to experiment with. Alternately, you can use a
Swing TableModel data object as the chart’s data source using the
SwingDataModel property.

■ Select Chart Types. For each data view, you can select a chart type and the
axes that the data will be plotted against with the DataChart editor.

■ Set BackGround Color. Use ChartAppearance to set the color of the chart
background.

■ Set Axis Annotation. By default, MultiChart uses values to annotate the axes.
You can also use value labels, point labels, or time labels by setting the
annotation type with the AxisAnnotation editor.

■ Add a Legend. Add a legend by checking the Showing box in the
LegendAppearance editor.

■ Add a Header and Footer. To add a header, use HeaderText to add the text,
and then check the Showing box in HeaderAppearance. The footer is the same,
but uses the FooterText, and FooterAppearance editors

■ Add Extra Axes. By default a standard X-Y axis set is displayed. If you require,
you can display a second X or Y axis. Display them with the AxisMisc editor’s
IsShowing property. Then use the many axis editors, such as AxisPlacement, to
set up and align the axes.
Chapter 5 ■ MultiChart 71

5.3 MultiChart Property Reference

The following property reference covers all of MultiChart’s features. Note that if
you are a JClass Chart Lite user, not all features will be available for you. The
following list summarizes the limited features:

Features Unavailable to JClass Chart Lite Users
When dropped into an IDE at design time, a dialog will appear that explains that
you are using a lite version. The limited components will not have any run-time
penalty, such as a banner or message. The following features are limited at design-
time, however:

5.3.1 Axis Controls

This group of editors sets up the axes. MultiChart has a sophisticated set of
automatic default values, that adjust to your data. This makes chart development fast
and easy. But, MultiChart is also extremely flexible, and every aspect of the axes can
be adjusted.

AxisAnnotation
With the AxisAnnotation editor, you can set the annotation type for each axis, and
control how they look. Axis annotations are numbers or text that appear along the

Feature/Editor Limiting

All appearance editors Border types limited to NONE, PLAIN, IN,
FRAME_IN and ETCHED_IN

All axis editors Multiple X-Y axes not available

AxisAnnotations Time labelling disallowed

AxisPlacement Automatic axis placement only.

AxisRelationships All features disabled

AxisScale Automatic tick-spacing and precision only

DataChart Plotting data against second x or y axis
disallowed

OriginPlacement Only automatic placement allowed

TriggerList Editor does not allow triggers to use
control, alt, or meta modifiers.
72 Part I ■ Using JClass Chart

Outliner
axes. Options in the Method menu are: Value, Time_Labels, Point_Labels, and
Value_Labels.

For each of the labelling methods, there is a corresponding editor that gives you
more control over the behavior and appearance. For Value, use AxisScale, for
Point_Labels, use AxisPointLabels, for Time_Labels, use, AxisTimeLabels, and for
Value_Labels, use, AxisValueLabels.

The following examples illustrate the different label types:

With the Rotation property, you can rotate the labels on the axis. The following
example shows Value_Labels, rotated by 90 degrees and with bold, 12pt font:

Gap controls the space between annotations. If, for example, you used point labels,
you could use the Gap property to make sure they have enough room to display
properly.

Point_Labels Time_Labels Value Value_Labels
Chapter 5 ■ MultiChart 73

AxisGrid
Use the AxisGrid editor to set up grid lines on each of the axes. There are also
controls for color, line spacing, and line width of the grid lines.

The following example sets X Axis 1 grid and Y Axis 1 grid to Showing, with
Spacing = 1, and Width = 1:

AxisOrigin
The AxisOrigin editor allows you to specify an origin by coordinates, or by
choosing an option from a pull down menu. By default axes origins are set
automatically, based on the available data.
74 Part I ■ Using JClass Chart

Outliner
To place the origin, you can select one of the locations from the pull-down menu,
such as Min, or Max. If you want to set the origin to a specific value on the axis,
select Value_Anchored from the menu and then enter the value in the Origin field.:

The following example anchors the origin of Y Axis 1 at 20 (default data):

Note that, by default, X Axis 1 is placed at the origin of Y Axis 1. To override this
default, use the AxisPlacement editor.
Chapter 5 ■ MultiChart 75

AxisPlacement
Axis placement determines the placement of an axis in relation to another. By
default, this is set automatically by MultiChart, based on the given data. Sometimes,
however, you may want to locate an axis in a different location.

Using the Placement field, select the type of placement for the axis selected.
Placement options include: Min, Max, Automatic. Origin, and Value_Anchored.

The Axis field selects the anchor-axis that you want to place the current axis against
(e.g. place X Axis 1 in relation to Y Axis 2). If you select None as an Axis, MultiChart
will use the default axis.

To place the axis at a specific value along another axis, select Value_Anchored from
the pull-down menu, and enter the value in the Location field.

The following example shows X Axis 1, with a Placement of Max in relation to Y
Axis 1:

AxisMisc
Use AxisMisc to show or hide any of the axes. It also allows you to make any axis
logarithmic. The IsEditable property, when selected allows zooming, editing, and
76 Part I ■ Using JClass Chart

Outliner
translation for the selected axis. For more information on interactive events, see
Event Controls

The following example hides X Axis 1 from view by deselecting IsShowing:

AxisPointLabels
Use the AxisPointLabels editor to create point labels (applies to X1 and X2 axes
only). Point labels label specific points of data on the X axes.

The editor reads data from the data source associated with the selected axis and
provides a list of point labels that are initially blank. To add text to these labels, enter
the text alongside the point, with a comma (see editor below for an example).

In order for the labels to appear on the chart, you also have to set the annotation
method to Point_Labels in the AxisAnnoation editor.
Chapter 5 ■ MultiChart 77

The following example shows how the default data’s point labels appear on X Axis
1:

Note that if you are mapping multiple data sources against a single axis, then you will
want to use value labels instead, as the AxisPointLabels editor only uses points from
the first data source associated with the selected axis.

AxisRelationships
The AxisRelationships editor allows you to create a mathematical relationship
between two axes. For example, if you want to create a thermometer chart with
Celsius values on the left and the Fahrenheit values on the right, you could create a
Celsius axis, and then base the Fahrenheit axis values on it.

There are three properties included in this calculation: Originator, Multiplier, and
Constant. The calculation is based on the formula:

New Axis Value = Constant + Multiplier x Originator.

To use this editor, first select an Axis that you want to affect (with a radio button).
Then, select an axis from the Originator menu that your calculation will be based
on; and enter a value in the Multiplier field that represents the relationship. The
Constant value is optional.

AxisScale
The AxisScale editor controls the range on each axis, the interval of the numbering,
and Tick Spacing. It is used primarily for the Value method of axis annotation (See
the AxisAnnotation editor). Precision determines the numeric precision of the axis
numbering. The Min and Max fields determine the range of data that is displayed on
78 Part I ■ Using JClass Chart

Outliner
the chart. There are intelligent defaults in this editor that adjust to your data and
other chart settings. You can override these settings with the fields provided.

AxisTimeLabels
The AxisTimeLabels editor allows you to control how the time labels appear. When
you select the annotation method with AxisAnnotations, you can select time labels,
which represent the values on the axis as units of time.

Time Base determines the date and time that the labelling starts from (default is
current time/date). Time Unit is the unit of time the labels use, such as year, month,
day, minute, second, etc.... The default time unit is minutes. Time Format field
allows you to customize the text in the time labels with a set of formatting codes. See
Axis Labelling and Annotation Methods in the Axis Controls chapter for a list of
these codes.
Chapter 5 ■ MultiChart 79

The following example uses time labelling on X Axis 1, with seconds as the time
unit:

AxisTitle
Using the AxisTitle editor, you can add axis titles to each axis. There are also
settings for the font, point, rotation and placement of the title

In the Placement field’s pull down menu are a list of compass directions for title
placement. Not all options are available to x and y axes. If you select a placement,
and it returns to the previous selection, that placement is not available for that axis.
The following example adds titles to X Axis 1 and Y Axis 1, and sets the font to bold,
with a size of 12:

AxisValueLabels
Use the AxisValueLabels editor to enter value labels for the axes. Value labels
appear on along the axis at specified values. You also have to set the annotation
80 Part I ■ Using JClass Chart

Outliner
method to Value_Labels, in the AxisAnnotation editor before the labels will
display.

To add value labels, enter the value, followed by a comma and a label (see above).
The following example shows how the labels in the editor above appear on X Axis 1.

5.3.2 Headers, Footers, and Legends

FooterText
The FooterText editor allows you to enter text that will appear at the bottom of the
chart area. You can also select a font, font style and size of the footer.

Note that the footer will not display unless you check the Showing box, in the
FooterAppearance editor (this editor also controls footer borders, background and
foreground).
Chapter 5 ■ MultiChart 81

The following example shows how a ‘pointless footer’ appears on the chart area:

HeaderText
The HeaderText editor allows you to enter header text, that will appear at the top of
the chart area. You can also select a font, font style and size of the header.

Note that the header will not display unless you check the Showing box, in the
HeaderAppearance editor (which also controls header borders, background and
foreground).

The following example shows how a ‘pointless header’ displays on the chart:

LegendLayout
The LegendLayout editor controls the layout of the legends. Orientation determines
how the legend items are placed in the legend (either vertically or horizontally). The
Anchor property positions the entire legend on the chart, based on compass
directions.
82 Part I ■ Using JClass Chart

Outliner
In order for the legend to display on your chart, the Showing checkbox in the
LegendAppearance editor must be selected.

Below are two examples of legend layout:

The example on the left uses the default settings with Anchor = East and
Orientation = Vertical. In the example on the right, Anchor = North, and
Orientation = Horizontal.

5.3.3 Data Source and Data View Controls

This group of editors manages the properties that control the data source, and the
views on the data. MultiChart can load data from two different sources. Each of the
data sources is assigned to a data view.
Chapter 5 ■ MultiChart 83

DataChart
The DataChart editor allows you to select the chart type of each data view, and
which axes each data view will be mapped against.

The ChartType property selects from the following chart types:

Area Bar Candle

HiLo Hilo_Open_Close Pie

Plot Scatter_Plot
Stacking_Area
84 Part I ■ Using JClass Chart

Outliner
DataMisc
The DataMisc editor controls several aspects of the data views.

With the Showing property, you can show or hide each data view from the display
area. Showing In Legend will show/hide a data view from the legend (but the data
will still be charted).

Automatic Labelling attaches a dwell label to every data point in the chart. A dwell
label is an interactive label that shows the value of a point, bar or slice, when a user’s
mouse moves over it. In the example below, ‘225’ appears on top of the green bar as
the cursor passes over it, indicating that the value of the bar is 225.

When Draw on Front Plane is selected, the data view will be mapped on the front
plane of a three dimensional chart space. Applies only in cases where there are
multiple data series, displayed on multiple axes, using 3D effects.

Stacking_Bar
Chapter 5 ■ MultiChart 85

DataSource
There are three ways of loading data with the MultiChart Bean. Two are handled by
this property: from a .dat file, or by entering data directly into the custom editor.
Both methods are managed by the DataSource editor.

The third method is to use a Swing TableModel-type data object as a data source,
instead of using the JClass Chart built-in data source. See SwingDataModel below for
details.

The first step is to select a data view with one of the radio buttons. Then, follow the
procedure below for each data view.

To load data from a file into a data view, click Load data from a file, enter the
name of the file in the File Location field, and click Done:

Specify the full path of the file. The file must be pre-formatted to the JClass Chart
Standard (see Data Sources). Sample data files are located in the
JCLASS_HOME/jclass/chart/examples directory.

You can use the data provided in the editor, as is, or you can modify it. To use
existing data, just check the Edit data in the text area radio button, and click
86 Part I ■ Using JClass Chart

Outliner
Done. Change data by deleting and inserting text in the area provided. Be careful to
preserve the punctuation surrounding the original text:

The chart below shows how the default data for Data View 1 appears as a plot.
Notice where the different elements are positioned. Each point on the x-axis is
labelled with the names specified in the default data. The name of each series of y-
values appears in the legend. The name of the data view is positioned directly above
the legend.

In order for the default data to display this way, you must first set the
xAxisAnnotation property to Point_Labels, and the legendIsShowing property to
true.

SwingDataModel
Instead of using the chart’s internal data source, you can use a Swing TableModel-
type data object that you have already created for your application. This saves
reformatting your data to match the format used by JClass Chart.

Use the SwingDataModel1 property to specify an already-created Swing TableModel
object to use as the data source for the first data view. Use SwingDataModel2 to
specify a TableModel object to use for the chart’s second data view.
Chapter 5 ■ MultiChart 87

5.3.4 Appearance Controls

This group of editors allows you to control the look of specific chart areas. You can
control font, borders, background and foreground for the chart, chart area, plot area,
header, footer, and legend. The following diagram illustrates the different chart
areas:.

All editors have the same basic functionality that apply to a specific chart area, as
follows:

Small differences in each editor will be discussed below. Note that for most of the
appearance editors, there are corresponding editors for controlling other properties
of that chart element.
88 Part I ■ Using JClass Chart

Outliner
ChartAppearance
The ChartAppearance editor sets the foreground/background and borders for the
chart. This editor affects the areas behind all other chart elements.

ChartAreaAppearance
The ChartAreaAppearance editor sets the foreground, background and borders for
the chart area (see diagram above).

FooterAppearance
The FooterAppearance editor sets the foreground, background and borders for the
footer. When Showing is checked, the footer will be displayed in the chart. By
default the footer is not showing. The FooterAppearance editor works in conjunction
with the FooterText editor, which is used to enter the footer text.

HeaderAppearance
The HeaderAppearance editor sets the foreground, background and borders for the
header. When Showing is checked, a header will be displayed in the chart. By
default the header is not showing. This editor works in conjunction with the
HeaderText editor.

LegendAppearance
The LegendAppearance editor sets the foreground/background and borders for the
legend and determines if it is displayed. When Showing is checked, a legend will be
displayed in the chart.

The content of the legend come from the information in the data source. In order to
change the contents of the legend, you have to change what is in the data source. For
information on how to set up legend items in the data source, see Standard Data
Formats., in the Data Sources chapter.

Other legend settings are found in the HeaderText editor.

PlotAreaAppearance
The PlotAreaAppearance editor sets the foreground and background for the plot
area, and allows you to add an Axis Bounding Box. A bounding box is a graphical
feature that ‘closes off’ the axes with two lines. forming a square.

Font
The Font editor sets the font defaults for your chart.
Chapter 5 ■ MultiChart 89

The font you choose will apply to all text on the chart simultaneously. The following
example sets the font to Courier, Bold, 24 point:

This font editor sets up a default font for every element. You can, however, change
font for selected elements using custom editors for each property. For example, the
HeaderText, FooterText, and AxisAnnotation editors allow you to override the
default font settings.

Margins
The margins property controls the distance from the data display to the chart area
boundary:

As you increase the margins, you shrink the data display area, including headers,
footers, and the legend. The overall chart size remains the same.

View3D
To add 3D effects to your chart, click the View3D property.

First drag the red square in the editor until it has the desired Elevation and Rotation.
Then, check the Change Depth option box, and drag the red square until it has the
90 Part I ■ Using JClass Chart

Outliner
Depth you want to see on your chart. The degree of depth, elevation and rotation is
displayed in numbers at the top of the editor. Click Done to set the changes:

5.3.5 Event Controls

TriggerList
The TriggerList editor sets up what user events the chart will handle, either from a
mouse, or mouse-keyboard combination.
Chapter 5 ■ MultiChart 91

Actions are the available event mechanisms, such as Zoom, Rotate, Depth,
Customize, Pick and Translate. By setting up these triggers, the end-user can
examine data more closely or visually isolate part of the chart. The following list
describes these interactions:

■ Translate allows moving of the chart

■ Zoom allows zooming into or out from the chart

■ Rotate allows rotation (only for bar or pie charts displaying a 3D effect)

■ Depth allows adding depth cues to the chart

■ Customize allows the user to launch the chart Customizer. To use this feature,
you must also check the Allow User Changes box.

■ Pick allows you to set up pick events. The pick method is used to retrieve an x,y
coordinate in a Chart from user input and then translate that into the data point
nearest to it. This feature requires some non-bean programming. See Using Pick
and Unpick for more details.

A Modifier is a keyboard event that can ‘modify’ a mouse click.

It is also possible in most cases for the user to reset the chart to its original display
parameters. The interactions described here affect the chart displayed inside the
ChartArea; other chart elements like the header are not affected.
92 Part I ■ Using JClass Chart

6
Chart Programming Tutorial

Introduction ■ A Basic Plot Chart

Loading Data From a File ■ Adding Header, Footer and Labels
Changing to a Bar Chart ■ Inverting Chart Orientation

End-User Interaction ■ Get Started Programming with JClass Chart

6.1 Introduction

This tutorial shows you how to start using JClass Chart, by compiling and running an
example program. It is different from the SimpleChart Bean tutorial, because it
focusses on programmatic use of JClass Chart. For a Bean tutorial, see the
SimpleChart Bean Tutorial. This program, plot1.java, will graph the 1963 Quarterly
Expenses and Revenues for “Michelle’s Microchips”, a small company a little ahead
of its time.

The following table shows the data to be displayed:

6.2 A Basic Plot Chart

The following listing displays the program plot1.java. This is a minimal Java program
that creates a new chart component and loads data into it from a file. It can be run as
an applet or a standalone application. The source code can be found in the JClass
Chart distribution in the JCLASS_HOME/jclass/chart/examples directory.

Q1 Q2 Q3 Q4

Expenses 150.0 175.0 160.0 170.0

Revenue 125.0 100.0 225.0 300.0
93

1 package jclass.chart.examples;
2
3 import java.awt.GridLayout;
4 import jclass.chart.JCChart;
5 import jclass.chart.ChartDataView;
6 import jclass.chart.FileDataSource;
7
8 public class plot1 extends java.applet.Applet {
9
10 public void init() {
11 setLayout(new GridLayout(1,1));
12
13 try {
14 JCChart c = new JCChart();
15 c.getDataView(0).setDataSource(new
 FileDataSource("plot1.dat"));
16 add(c);
17 }
18 catch (Exception e) {
19 e.printStackTrace(System.out);
20 }
21 }
22
23 public static void main(String args[]) {
24 ExampleFrame f = new ExampleFrame("plot1");
25 plot1 p = new plot1();
26 p.init();
27 f.setLayout(new GridLayout(1,1));
28 f.add(p);
29 f.pack();
30 f.resize(400, 300);
31 f.show();
32 }
33
34 }

Most of the code in plot1.java should be familiar to Java programmers. The first few
lines (3–6) import the classes necessary to run plot1.java. In addition to the standard
AWT GridLayout class, three classes in the jclass.chart package are needed:
JCChart (the main chart class), ChartDataView (the data view object) and
FileDataSource (a stock data source). Line 8 provides the class definition for this
program, a subclass of java.applet.Applet.

Lines 10–21 define the init() method, used when the program is run as an applet.
The Layout property on line 11 lays out a simple grid structure to display the
components it holds. A new chart is then instantiated on line 14. Line 15 loads data
from a file named plot1.dat into a new data source object (FileDataSource) and tells
the chart to display this data.

Lines 23–31 define the main() method needed when the program is run as a
standalone Java application. Notice that it calls the init() method defined earlier to
create the chart and add the data.

When plot1.java is compiled and run, the window shown below is displayed:
94 Part I ■ Using JClass Chart

Outliner
Figure 11 The plot1.java program displayed

JClass Chart supports ten different types of charts: Plot, Scatter Plot, Area, Stacking
Area, Bar, Stacking Bar, Pie, Hi-Lo, Hi-Lo-Open-Close, and Candle. Because Plot is
the default, we do not need to set a property in this example.

6.3 Loading Data From a File

A common task in any JClass Chart program is to load the chart data into a format
that the chart can use. JClass Chart uses a “model view/control” (MVC) architecture
to handle data in a flexible and efficient manner. The data itself is stored in a
DataSource object, created and controlled by your application. The chart has a
ChartDataView object that controls a view on this data source, providing properties
that control which data source to use, and how to display the data.

JClass Chart includes several stock (built-in) data sources that you can use (or you
can define your own). This program uses the data source that reads data from a file:
FileDataSource. With this understanding we can look more closely at line 15:

15 c.getDataView(0).setDataSource(new
 FileDataSource("plot1.dat"));

Two things are happening here: a new FileDataSource object is instantiated, with
the name of the data file passed as a parameter in the constructor; the DataSource
property of the chart’s first (default) data view is being set to use this data source.
Chapter 6 ■ Chart Programming Tutorial 95

The following shows the contents of the plot1.dat file:

 ARRAY 2 4
 # X-values
 1.0 2.0 3.0 4.0
 # Y-values
 150.0 175.0 160.0 170.0
 # Y-values set 2
 125.0 100.0 225.0 300.0

This file is in the format understood by FileDataSource. Lines beginning with a ‘#’
symbol are treated as comments. The first line tells the FileDataSource object that
the data that follows is in Array layout and is made up of two series containing four
points each. The X-values are used by all series.

There are two types of data: Array and General. Use Array layout when the series of
Y-values share common X-values. Use General when the Y-values do not share
common X-values, or when all series do not have the same number of values.

For complete details on using data with JClass Chart, see Chapter 8, Data Sources.

6.4 Adding Header, Footer and Labels

The plot displayed by plot1.java is not very useful to an end-user. There is no header,
footer, or legend, and the X-axis numbering is not very meaningful.

JClass Chart will always try to produce a reasonable chart display, even if very few
properties have been specified. JClass Chart will use intelligent defaults for all
unspecified properties.

All properties for a particular chart may be specified when the chart is created.
Properties may also be changed as the program runs by calling the property’s set
method. A programmer can also ask for the current value of any property by using
the property’s get method.

Adding Headers and Footers
To display a header or footer, we need to set properties of the Header and Footer
objects contained in the chart. For example, the following code sets the Text and
IsShowing properties for the footer:

 c.getFooter().setIsShowing(true);
 c.getFooter().getLabel().setText(
 "1963 [COLOR=BLUE]Quarterly[DEFAULT_COLOR] Results", true);

IsShowing displays the header/footer. Text specifies the text displayed in the
header/footer. The footer text uses JCString properties to change the color of the
word “Quarterly” in the footer. JCStrings enable an application to display text
containing images, URLs, or richly-formatted text. More information on JCStrings
can be found in Appendix B, JCString Properties.
96 Part I ■ Using JClass Chart

Outliner
Adding a Legend and Labelling Points
A legend clarifies the chart by showing a label for each series in the chart. We would
also like to display more meaningful labels for the points along the X-axis. Both
types of information can be easily specified in the data file itself. The following lists
plot2.dat, a modified version of the previous data file that includes series labels (for
the legend), and point labels (for the X-axis):

 ARRAY ’’ 2 4
 ’Q1’ ’Q2’ ’Q3’ ’Q4’
 ’’ 1.0 2.0 3.0 4.0
 ’Expenses’ 150.0 175.0 160.0 170.0
 ’Revenue’ 125.0 100.0 225.0 300.0

The second line specifies the point labels (“Q1”, “Q2”, etc.). Subsequent lines of data
begin with a data series label (“Expenses”, “Revenue”, etc.).

This data file now provides the labels that we want to use, but to actually display
them in the chart, we need to set the Legend object’s IsShowing property and change
the AnnotationMethod property of the X-axis to annotate the axis with the Point-
labels in the data.

These and the previous changes are combined; now the chart is created with code
that looks like this:

 JCChart c = new JCChart();
 c.getDataView(0).setDataSource(new FileDataSource("plot2.dat"));
 c.getHeader().setIsShowing(true);
 c.getHeader().getLabel().setText("Michelle’s Microchips", false);
 c.getFooter().setIsShowing(true);
 c.getFooter().getLabel().setText(
 "1963 [COLOR=BLUE]Quarterly[DEFAULT_COLOR] Results", true);
 c.getLegend().setIsShowing(true);
 c.getChartArea().getXAxis(0).setAnnotationMethod(
 JCAxis.POINT_LABELS);
 add(c);

Because we are accessing a variable defined in JCAxis we need to add that to the
classes imported by the program:

 import jclass.chart.JCAxis;

In the line that sets the annotation method, notice that XAxis is a collection of JCAxis
objects. A single data view can display several X- and Y-axes.

The chart resulting from these changes is displayed below. Full source code can be
found in the plot2.java program, located in the JCLASS_HOME/jclass/chart/examples
directory.
Chapter 6 ■ Chart Programming Tutorial 97

Figure 12 The program created by plot2.java

6.5 Changing to a Bar Chart

A powerful feature of JClass Chart is the ability to change the chart type
independently of any other property.1 For example, to change the plot2 chart to a
bar chart, the following code can be used:

 c.getDataView(0).setChartType(JCChart.BAR);

This sets the ChartType property of the data view. Alternately, you can set the chart
type when you instantiate a new chart, for example:

 JCChart c = new JCChart(JCChart.BAR);

1. Although there are interdependencies between some properties, most properties are completely orthogonal.
98 Part I ■ Using JClass Chart

Outliner

Figure 13 The bar2.java program displayed

The full code for this program (bar2.java) can be found in with the other examples.

JClass Chart can display data as one of ten different chart types. For more
information on chart types, see Chart Types on page 20.

6.6 Inverting Chart Orientation

Most graphs display the X-axis horizontally and the Y-axis vertically. It is often
appropriate, however, to invert the sense of the X- and Y-axis. This is easy to do,
using the IsInverted property of the data view object.

In a plot, inverting causes the Y-values to be plotted against the horizontal axis, and
the X-values to be plotted against the vertical. In a bar chart, it causes the bars to be
displayed horizontally instead of vertically.

When programming JClass Chart, try not to assume that the X-axis is always the
horizontal axis. Determining which axis is vertical and which horizontal depends on
the value of the IsInverted property.

To invert, set the data view object’s IsInverted property to true. By default it is
false.

 c.getDataView(0).setIsInverted(true);

The following shows the windows created by plot2.java and bar2.java when inverted:
Chapter 6 ■ Chart Programming Tutorial 99

Figure 14 plot2 and bar2 windows with IsInverted set to true

Full code for these examples can be found in the
JCLASS_HOME/jclass/chart/examples/ directory.
100 Part I ■ Using JClass Chart

Outliner
6.7 End-User Interaction

More than simply a display tool, JClass Chart is an interactive component.
Programmers can explicitly add functions that enable an end-user to directly interact
with a chart. The following end-user interactions are possible:

■ Translation—users can move a graph or a series of graphs along the X- and or Y-
axes.

■ Rotate—users can change the vantage point of a chart type, to better view
information contained with a JClass Chart component.

■ Zoom—users can zoom in or out of a JClass Chart component to better view
information contained with a JClass Chart component.

■ Depth—users can change the apparent depth of a 3D chart.

■ Pick—users can change the placement of data points within a chart.

■ Edit—users can alter the other display features of a chart, (such as color, label
names or the numerical value of data points) that comprise a chart display.

6.8 Get Started Programming with JClass Chart

The following suggestions should help you become productive with JClass Chart as
quickly as possible:

■ Check out the sample code — the example and demo programs included with
JClass Chart are useful in showing what JClass Chart can do, and how to do it.
Run them and examine the source code. They can all be found in the
JCLASS_HOME/jclass/chart/demos/ and JCLASS_HOME/jclass/chart/examples/
directories. A collection of HTML-only charts can be found in the
JCLASS_HOME/jclass/chart/applet/ directory.

■ Browse the JClass Chart API documentation — complete reference
documentation on the API is available online in HTML format, generated by
javadoc. All of the properties, methods and events for each component are
completely documented.
Chapter 6 ■ Chart Programming Tutorial 101

Package-jclass.chart.html

102 Part I ■ Using JClass Chart

7
Axis Controls

Creating a New Chart in a Nutshell ■ Axis Labelling and Annotation Methods

Positioning Axis Annotations ■ Chart Orientation and Axis Direction
Setting Axis Bounds ■ Customizing Origins

Logarithmic Axes ■ Titling Axes and Rotating Axis Elements

Adding Grid Lines ■ Adding a Second Axis

JClass Chart can automatically set properties based on the data, so axis numbering
and data display usually do not need much customizing. You can however, control
any aspect of the chart axes, depending on your requirements. This chapter covers
the different axis controls available.

If you developing your chart application using one of the JClass Chart Beans, please
refer to the Bean Reference chapter instead.

7.1 Creating a New Chart in a Nutshell
1. If one exists, use an existing chart as a starting point for the new one. The sample

charts provided as part of the JClass Chart package are a good starting point.
Load a chart description resembling the new chart.

2. Load your data into the chart.

3. Set the chart type.

4. Annotate and format the axes and data if necessary, described as follows:

■ Axis annotation (Values (default), ValueLabels, PointLabels, TimeLabels

■ Positioning Axis Annotations

■ Chart Orientation and Axis Direction

■ Setting Axis Bounds

■ Customizing Origins

■ Logarithmic Axes
103

■ Titling Axes and Rotating Axis Elements

■ Adding Grid Lines

■ Adding a Second Axis.

7.2 Axis Labelling and Annotation Methods

There are several ways to annotate the chart’s axes, each suited to specific situations.
The chart can automatically generate numeric annotation appropriate to the data it is
displaying; you can provide a label for each point in the chart (X-axis only); you can
provide a label for specific values along the axis; or the chart can automatically
generate time-based annotation.1

Whichever annotation method you choose, the chart makes considerable effort to
produce the most natural annotation possible, even as the data changes. You can
fine-tune this process using axis annotation properties.

7.2.1 Choosing Annotation Method

A variety of properties combine to determine the annotation that appears on the
axes. The JCAxis AnnotationMethod property specifies the method used to annotate
the axis. The valid annotation methods are:

Note: Point-labels annotation (JCAxis.POINT_LABELS) is only valid for an X-axis
when it has been added to the X-axis collection in JCChartArea. This means that a
new JCAxis instance that has not yet been added to JCChartArea will not be
considered an X-axis.

The following topics discuss setting up and fine-tuning each type of annotation.

1. None of the axis properties discussed in this section apply to pie charts, since pie charts don’t have axes.

JCAxis.VALUE
(default)

The chart chooses appropriate axis annotation automatically
(with possible callbacks to a label generator), based on the
chart type and the data itself.

JCAxis.POINT_LABELS
(X-axis only)

The chart spaces the points based on the X-values and
annotates them with text you specify (in the data source) for
each point.

JCAxis.VALUE_LABELS The chart annotates the axis with text you define for specific
X-or Y-axis coordinates.

JCAxis.TIME_LABELS The chart interprets the X- or Y-values as units of time,
automatically choosing time/date annotation based on the
starting point and format you specify.
104 Part I ■ Using JClass Chart

7.2.2 Values Annotation

Values annotation produces numeric labelling along an axis, based on the data itself.
The chart can produce very natural-looking axis numbering automatically, but you
can fine-tune the properties that control this process.

Numbering Precision
Use the Precision axis property to set the number of decimal places to use when
displaying each number. The PrecisionIsDefault property allows the chart to
automatically determine precision based on the data. The effect of Precision
depends on whether it is positive or negative:

■ Positive values add that number of places after the decimal place. For example, a
value of 2 displays an annotation of 10 as “10.00”.

■ Negative values indicate the minimum number of zeros to use before the decimal
place. For example, a value of -2 displays annotation in multiples of 100.

The default value of Precision is calculated from the data supplied.

Numbering and Ticking Increments
Use the NumSpacing axis property to set the increment between labels along an axis.
The NumSpacingIsDefault property allows the chart to automatically determine the
increment.

Use the TickSpacing axis property to set the increment between ticks along an axis.
This should generally divide equally into NumSpacing on axes using Values
annotation. The TickSpacingIsDefault property allows the chart to automatically
determine the increment. Note that if the AnnotationMethod property is set to
POINT_LABELS, tick lines appear at point values.
Chapter 7 ■ Axis Controls 105

7.2.3 PointLabels Annotation

PointLabels annotation displays defined labels along an X-axis. This is useful for
annotating the X-axis of any chart using Array data layout, including bar, stacking
bar, and pie charts. It is possible to add, remove, and edit PointLabels. In JClass
Chart, PointLabels are typically defined with the data.

Figure 15 PointLabels X-axis annotation

PointLabels are a collection of labels. The first label applies to the first point, the
second label applies to the second point, and so on.

The labels can also be supplied by setting the PointLabels property of the
ChartDataView object for this chart. For example, the following code specifies labels
for each of the three points on the X-axis:

 c.getChartArea.getxAxis(0).setAnnotationMethod(JCAxisPOINT_LABELS);
 ChartDataView cd = c.getDataView(0);
 cd.setPointLabel(0, "Point 1");
 cd.setPointLabel(1, "Point 2");
 cd.setPointLabel(2, "Point 3");
106 Part I ■ Using JClass Chart

7.2.4 ValueLabels Annotation

ValueLabels annotation displays labels at the axis coordinate specified. This is useful
for displaying special text at a specific axis coordinate, or when a type of annotation
that the chart does not support is needed, such as scientific notation. You can set the
axis coordinate and the text to display for each ValueLabel, and also add and
remove individual ValueLabels.

Figure 16 Using ValueLabels to annotate axes

Every label displayed on the axis is one ValueLabel. Each ValueLabel has a Value
property and a Label property.

If the AnnotationMethod property is set to JCAxis.VALUE_LABELS, the chart places
labels at explicit locations along an axis. The ValueLabels property of JCAxis, which
is a ValueLabels collection, supplies this list of strings and their locations. For
example, the following code sets value labels at the locations 10, 20 and 30:

 JCAxis x=c.getChartArea.getXAxis(0);
 x.setValueLabel(0, new JCValueLabel(10, 0, "Label"));
 x.setValueLabel(1, new JCValueLabel(20, 0, "Label 2"));
 x.setValueLabel(2, new JCValueLabel(30, 0, "Label 3"));

The ValueLabels collection can be indexed either by subscript or by value:

 JCValueLabel v1
 // this retrieves the label for the second Value-label
 v1=c.getChartLabelArea().getXAxis(0);
 getValueLabel(2);
 // this retrieves the label at chart coordinate 2.0
 v1=c.getChartLabelArea().getXAxis(0);
 getValueLabel(2.0);
Chapter 7 ■ Axis Controls 107

7.2.5 TimeLabels Annotation

TimeLabels annotation interprets the value data as units of time. The chart calculates
and displays a time-axis based on the starting point and format specified. A time-axis
is useful for charts that measure something in seconds, minutes, hours, days, weeks,
months, or years.

Figure 17 TimeLabels annotating X- and Y-axes

Four properties are used to control the display and behavior of TimeLabels:

■ TimeUnit

■ TimeBase

■ TimeFormat

■ AnnotationMethod (set to JCAxis.TIME_LABELS to use this annotation method)

Time Unit
Use the TimeUnit property to specify how to interpret the values in the data. Select
either JCAxis.SECONDS, JCAxis.MINUTES, JCAxis.HOURS, JCAxis.WEEKS,
JCAxis.MONTHS, or JCAxis.YEARS. For example, when set to JCAxis.YEARS, values
that range from 5 to 15 become a time-axis spanning 10 years. By default, TimeUnit is
set to JCAxis.SECONDS.

Time Base
Use the TimeBase property to set the date and time that the time-axis starts from. Use
the Java Date class (java.util.Date) to specify the TimeBase. The default for
TimeBase is the current time.

For example, the following statement sets the starting point to January 15, 1985:
c.getChartArea().getXAxis(0).setTimeBase(new Date(85,0,15);
108 Part I ■ Using JClass Chart

Time Format
Use the TimeFormat property to specify the text to display at each annotation point.
The TimeFormatIsDefault property allows the chart to automatically determine an
appropriate format based on the TimeUnit property and the data, so it is often
unnecessary to customize the format.

TimeFormat specifies a time format. You build a time format using special format
codes. The chart displays only the parts of the date/time specified by Format. The
following lists all of the valid format codes:

The default for TimeFormat is calculated based on the value for TimeUnit.

Using Date Methods
The dateToValue() method converts a Java date value into a time-axis position (a
floating-point value). To convert a time-axis position to a date, use the
valueToDate() method. For example:

 JCAxis y;
 Date d = y.valueToDate(3.0);
 double val = y.dateToValue(new Date(90,1,0));

Format Code Meaning

%a Weekday name, abbreviated

%A Weekday name

%b Month name, abbreviated

%B Month name

%c Appropriate date/time representation

%d Day of month (01 to 31)

%H Hour (0 to 23)

%I Hour (0 to 12)

%m Month number (01 to 12)

%M Minute of hour (00 to 59)

%p AM or PM

%S Seconds (00 to 61)

%U Week number of year (00 to 53), Sunday first day of week 1

%w Weekday number (0 to 6), Sunday = 0

%x Appropriate date representation

%X Appropriate time representation

%y Year number within century (00 to 99)

%Y Year
Chapter 7 ■ Axis Controls 109

To convert a date to a formatted text string, use the timeLabel() method (defined in
JCChartTimeUtil). This method takes a format string and a Java Date object.

7.3 Positioning Axis Annotations

Axis annotation typically appears beside its axis. This may be a problem on charts
with an origin that is not at the axis minimum or maximum. The chart can
automatically determine where to place annotation in different situations, depending
on the chart type. If this does not give the desired results, specify where to place the
annotation for each axis.

Figure 18 X- and Y-axes set to Min

7.3.1 Specifying Annotation placement

Use the Placement property to specify annotation placement for an axis. Use the
PlacementIsDefault property to specify whether the chart determines the
annotation placement. When PlacementIsDefault is set to true, annotations on plot
charts are placed at the origin; on bar and stacking bar charts they are placed at the
end of the axis closest to the origin. You can also explicitly place annotations at the
origin, the axis minimum, or the axis maximum.

Note: In some cases, the chart may change the placement. For example, Placement
for the Y-axis is ignored on bar and stacking bar charts and plot and area charts when
110 Part I ■ Using JClass Chart

using PointLabels annotation. And, when Placement is set to Origin, changing the
axis origin will move axes placed at that origin.

7.4 Chart Orientation and Axis Direction

A typical chart draws the X-axis horizontally from left-to-right and the Y-axes
vertically from bottom-to-top. You can reverse the orientation of the entire chart,
and/or the direction of each axis.

7.4.1 Inverting Chart Orientation

Use the ChartDataView object’s IsInverted property to change the chart orientation.
When set to true, the X-axis is drawn vertically and the Y-axis horizontally for the
data view. Any properties set on the X-axis then apply to the vertical axis, and Y-axis
properties apply to the horizontal axis.

Note: To switch the orientation of charts with multiple data views, you must set the
IsInverted property of each ChartDataView object.

Figure 19 Normal and inverted orientation

7.4.2 Changing Axis Direction

Use the IsReversed property of JCAxis to reverse the direction of an axis. By default,
IsReversed is set to false.
Chapter 7 ■ Axis Controls 111

Figure 20 Two charts depicting a normal and reversed Y- axis

7.5 Setting Axis Bounds

Normally a graph displays all of the data it contains. There are situations where only
part of the data is to be displayed. This can be accomplished by fixing axis bounds.

Min and Max
Use the Min and Max properties of JCAxis to frame a chart at specific axis values. The
MinIsDefault and MaxIsDefault properties allow the chart to automatically
determine axis bounds based on the data bounds.

7.6 Customizing Origins

The chart can choose appropriate origins for the axes automatically, based on the
data. It is also possible to customize how the chart determines the origin, or to
directly specify the coordinates of the origin.
112 Part I ■ Using JClass Chart

Figure 21 Defining origins for X- and Y-axes

Origin Placement
The easiest way to customize an origin is by controlling its placement, using the
Axes’ OriginPlacement property. It has four possible values: AUTOMATIC, ZERO, MIN
and MAX. When set to AUTOMATIC, the origin is placed at the axis minimum or at zero,
if the data contains positive and negative values or is a bar chart. ZERO places the
origin at zero, MIN places the origin at the minimum value on the axis, and MAX places
the origin at the maximum value on axis.

Origin Coordinates
When the origin of a coordinate must be set to a value different from the default
(0,0), use the Axes’ Origin property. The OriginIsDefault property allows the chart
to automatically determine the origin coordinate based on the data.

Note: When an origin coordinate is explicitly set or fixed, the chart ignores the
OriginPlacement property.

7.7 Logarithmic Axes

Axis annotation is normally interpreted and drawn in a linear fashion. It is also
possible to set any axis to be interpreted logarithmically (log base 10), as shown in the
following image. Logarithmic axes are useful for charting certain types of scientific
data.
Chapter 7 ■ Axis Controls 113

Figure 22 Logarithmic X- and Y-axes

Because of the nature of logarithmic axes, they impose the following restrictions on
the chart:

■ any data that is less than or equal to zero is not graphed (it is treated as a data
hole), since a logarithmic axis only handles data values that are greater than zero.
For the same reason, axis and data minimum/maximum bounds and origin
properties cannot be set to zero or less.

■ axis numbering increment, ticking increment, and precision properties have no
effect when the axis is logarithmic.

■ the X-axis of bar, stacking bar, and pie charts cannot be logarithmic.

■ the annotation method for the X-axis cannot be PointLabels or TimeLabels.

Specifying a Logarithmic Axis
Use the IsLogarithmic property of JCAxis to make an axis logarithmic.

Note: Pie charts are not affected by logarithmic axes.
114 Part I ■ Using JClass Chart

7.8 Titling Axes and Rotating Axis Elements

Adding a title to an axis clarifies what is charted along that axis. You can add a title to
any axis, and also rotate the title or the annotation along the axis, as shown below.

Figure 23 Rotated axis title and annotation

Adding an Axis Title
Use the Title property to add a title to an axis. It sets the JCAxisTitle object
associated with the JCAxis. JCAxisTitle controls the appearance of the axis title.
JCAxisTitle’s Text property specifies the title text. The text can be either a regular
string, or a JCString. For more information on JCStrings, see Appendix B, JCString
Properties.

Axis Title Rotation
Use the Rotation property of JCAxisTitle to set the rotation of the title. Valid
values are defined in ChartText: DEG_0 (no rotation), DEG_90 (90 degrees
counterclockwise), DEG_180 (180 degrees), and DEG_270 (270 degrees).

Rotating Axis Annotation
Use the AnnotationRotation property of JCAxis to rotate the axis annotation to
either 90, 180, or 270 degrees counterclockwise. 270-degree rotation usually looks
best on second Y-axis.
Chapter 7 ■ Axis Controls 115

7.9 Adding Grid Lines

Displaying a grid on a chart can make it easier to see the exact value of data points.
The spacing between lines on the grid can be defined to determine how a grid is
displayed.

Figure 24 JClass Chart illustrating the effects of grid lines

Horizontal gridlines are a property of the Y-axis. Vertical gridlines are a property of
the X-axis. Set GridIsShowing to true to display gridlines.

Grid Spacing
Use the GridSpacing property to customize the grid spacing for an axis. The
GridSpacingIsDefault property allows the chart to space the grid automatically,
drawing a gridline wherever there is annotation. By default, gridlines will correspond
with axis annotations.

Grid Appearance
Use the grid GridStyle properties to customize the line pattern, thickness, and color
of the gridlines. The following code fragment provides a sample of GridStyle and
GridIsShowing used within a program:

otherXAxis.setGridIsShowing(true);
otherXAxis.getGridStyle().getLineStyle().setColor(Color.green);
otherYAxis.setGridIsShowing(true);
otherYAxis.getGridStyle().getLineStyle().setColor(Color.green);
116 Part I ■ Using JClass Chart

7.10 Adding a Second Axis

There are two ways to create a second Y-axis on a chart. The simplest way is to
define a numeric relationship between the two Y axes, as shown in the following
illustration. Use this to display a different scale or interpretation of the same graph
data.

Figure 25 Chart containing multiple Y-axes

In some cases, it may be desirable to show two sets of data in the same chart that are
plotted against different axes. JClass Chart supports this by allowing each DataView
to specify its own XAxis and YAxis. For example, consider a case in which a second
data set d2 is to be plotted against its own y axis. A JCAxis instance must be created
and added to the JCChartArea, as shown:

// Create a Y-axis and set it vertical
otherYAxis = new JCAxis();
otherYAxis.setIsVertical(true);

// Add it to the list of Y-axes in the chart area
c.getChartArea().setYAxis(1, otherYAxis);
// Add it to the data view
d2.setYAxis(otherYAxis);

Defining Axis Multiplier
Use the Multiplier property to define the multiplication factor for the second axis.
This property is used to generate axis values based on the first axis. The
multiplication factor can be positive or negative.

Using a Constant Value
Use the Constant axis property to define a value to be added to or subtracted from
the axis values generated by Multiplier.
Chapter 7 ■ Axis Controls 117

Hiding the Second Axis
Set the IsShowing property to false to remove it from display. By default, it is set to
true.

Other Second-Axis Properties

All axes have the same features. Any property can be set on any axis.
118 Part I ■ Using JClass Chart

8
Data Sources

Overview ■ File Data Source

URL Data Source ■ Applet Data Source
ChartSwingDataSource for Swing TableModel ■ Standard Data Formats

Data Binding: Loading Data from Databases ■ Using Multiple Data Sources

The Data Model ■ Creating Custom Data Sources

8.1 Overview

Data is loaded into a chart by attaching one or more chartable data sources to it. A
chartable data source is an object that takes real-world data and puts it into a form
that JClass Chart can use. Once your data source is attached, you can chart the data
in a variety of ways.

The design of JClass Chart makes it possible to chart data from virtually any real-
world source. There is a toolkit that you can use to create custom chartable objects
(data sources) for your real-world data.

Creating your own data sources can be time consuming, however. For that reason,
JClass Chart provides pre-built chartable data sources for most common real-world
data: files, URL’s, Applets, strings, and databases.

This chapter describes how to use the pre-built data sources, and how to create your
own.
119

8.2 File Data Source

An easy way to bring data into a chart is to load it from a formatted file using
FileDataSource. To load data this way, you create a data file that follows JClass
Chart’s standard format (see Standard Data Formats.)

Then, you instantiate a FileDataSource object and attach it to a view in your chart
application. And that’s it. The following example shows how to instantiate and attach
a FileDataSource:

 chart.getDataView(0).setDataSource(new FileDataSource("file.dat"));

8.3 URL Data Source

You can chart data from a URL address using URLDataSource. To load data this way,
you create a data file that follows JClass Chart’s standard format (see Standard Data
Formats.)

Then, you instantiate URLDataSource and attach it to a view in your chart. The
following example uses data from a file named plot1.dat:

chart.getDataView(0).setDataSource(new URLDataSource(getDocumentBase(),
"plot1.dat"));

Parameter options for URLDataSource:
The following are valid parameter combinations for URLDataSource:

■ URL

■ base, file

■ host, file

host: The WWW hostname
file: The fully-qualified name of the file on the server
URL: The URL address of a data file. e.g. http://www.klg.com/datafile.dat
base: A URL object representing the directory where the file is located

In the example above, the first parameter passed is getDocumentBase(), a method
that returns the path where the current applet is located.
120 Part I ■ Using JClass Chart

8.4 Applet Data Source

You can chart data from an Applet using AppletDataSource.

To prepare the data, put it into the standard format, (see Standard Data Formats), and
insert it into the HTML file that calls your Applet. In most cases, that will be
index.html. The HTML syntax is as follows:

<Applet>
...
<PARAM NAME=Your_Data_Name VALUE="formatted data... “>
...
</Applet>

‘Your_Data_Name’ is used by your Applet to select the right set of information. Use
the same name in the Applet and the HTML source.

With your data in the HTML file, instantiate an AppletDataSource and attach it to a
view in your chart as follows:

 chart.getDataView(0).setDataSource(new
AppletDataSource(“Your_Data_Name"));

Example of Data in an HTML file
<APPLET CODEBASE="../../../.."
CODE="jclass/chart/demos/labels/labels.class"

<PARAM NAME=data VALUE="

 ARRAY 'Oblivion Inc. 1996 Results' 2 4
 'Q1' 'Q2' 'Q3' 'Q4'
 'Quarter' 1 2 3 4
 'Expenses' 150.2 182.1 152.1 170.6
 'Revenue ' 125.5 102.7 225.0 300.9
">
</APPLET>

8.5 ChartSwingDataSource for Swing TableModel

The ChartSwingDataSource class enables you to use any type of Swing TableModel
data object for the chart. TableModel is typically used for Swing JTable components,
so your application may already have created this type of data object.

ChartSwingDataSource “wraps” around a TableModel object, so that the data
appears to the chart in the format it understands.

This data source is available through the SwingDataModel property in the
SimpleChart and MultiChart Beans. To use it, prepare your data in a Swing
TableModel object and set the SwingDataModel property to that object.
Chapter 8 ■ Data Sources 121

8.6 Standard Data Formats

FileDataSource, URLDataSource, and AppletDataSource all require that data be pre-
formatted. The following table illustrates the formatting requirements of data for pre-
built data sources. There are two main ways to format data: Array and General.

Array Format is the recommended standard, because it works well with all of the
chart types. General Format may not display data properly in Stacking Bar, Stacking
Area, Pie charts and Bar Charts.

General Format was intended for use in cases where you want to display multiple x-
axis values on the same chart.

The following table shows four formatted data examples. An explanation of each
element follows:

8.6.1 Formatted Data Examples

Array Data Format (Recommended)

ARRAY 2 3 # 2 series of 3 points
HOLE 10000 # Use only if custom hole value needed
’Point 0’ ’Point 1’ ’Point 2’ # Optional Point-labels
X-values common to all points
 1.0 2.0 3.0
Y-values
’Series 0’ 50.0 75.0 60.0 # Series-label is optional
’Series 1’ 25.0 10.0 50.0

Transposed Array Data Format (same data as previous)

ARRAY 2 3 T # 2 series of 3 points, Transposed
HOLE 10000
 ’’ ’Series 0’ ’Series 1’ # Optional Series-labels
X-values Y0-values Y1-values
’Point 0’ 1.0 50.0 25.0 # Point-labels are optional
’Point 1’ 2.0 75.0 10.0
’Point 2’ 3.0 60.0 50.0

General Data Format (Use if X data is different for each series)

GENERAL 2 4 # 2 series, max 4 points in each
HOLE -10000 # Use only if custom hole value needed
’Series 0’ 2 # 2 points, optional series label
 1.0 3.0 # X-values
 50.0 60.0 # Y-values
’Series 1’ 4 # 4 points
 2.0 2.5 3.5 5.0 # X-values
 45.0 60.0 HOLE 70.0 # Y-values, including data hole
122 Part I ■ Using JClass Chart

8.6.2 Explanation of Format Elements

Initialization — Data Layout, Data Size, Hole Value
The first (non-comment) line must begin with either “ARRAY” or “GENERAL” followed
by two integers specifying the number of series and the number of points in each
series. For example:

 # This is an Array data file containing 2 series of 4 points
 ARRAY 2 4

The only difference with General data is that the second integer specifies the
maximum number of points possible for each series:

 # A General data file, 5 series, maximum 10 points
 GENERAL 5 10

The second line can optionally specify a data hole value. A hole value is the number
that is interpreted by the chart as missing data. Use this if you know that a particular
value in the data should be ignored in the chart:

 HOLE 10000

You can also indicate that any particular point is a hole by specifying the word
“HOLE” for that X- or Y-value. For example:

 50.0 75.0 HOLE 70.0

Adding Comments
You can use comments throughout the data file to make it easier for people to
understand. Any text on a line following a “#” symbol are treated as comments and
are ignored.

Point Labels
The third line can optionally specify text labels for each data point, which can be used
to annotate the X-axis. Point-labels are generally only useful with Array data; if

Transposed General Data Format (same data as previous)

GENERAL 2 4 T # 2 series, max 4 points in each, Transposed
HOLE -10000
’Series 0’ 2 # 2 points, optional series label
X Y
 1.0 50.0
 3.0 60.0
’Series 1’ 4 # 4 points
X Y
 2.0 45.0
 2.5 60.0
 3.5 HOLE
 5.0 70.0
Chapter 8 ■ Data Sources 123

specified for General data they apply to the first series. The following shows how to
specify Point-labels:

 ’Point 1’ ’Point 2’ ’Point 3’ # Optional Point-labels

The Data — Array layout
The rest of the file contains the data to be charted. Array layout uses the first line of
data as X-values that are common to all points. Subsequent lines specify the Y-values
for each data series:

 1.0 2.0 3.0 4.0 # X-values
 150.0 175.0 160.0 170.0 # Y-values, series 0
 125.0 100.0 225.0 300.0 # Y-values, series 1
 # Y-values continue, until end of data

The Data — General layout
General layout provides more flexibility. For each series, the first line of data
specifies the number of points in the series (this cannot be greater than the maximum
number of points defined earlier). The second line specifies the X-values for that
series; the third line specifies the Y-values:

 4 # Series 0, 4 points
 50.0 75.0 60.0 70.0 # X-values
 25.0 10.0 25.0 30.0 # Y-values
 # Next series follows, until end of data

Series Labels
You can optionally specify text labels for each series, which can be displayed in the
legend. Series labels are enclosed in single-quotes. In Array data, the label appears at
the start of each line of Y-values, for example:

 ’Series label’ 150.0 175.0 160.0 170.0 # Y-values, series 0

In General data, the label appears at the start of the line defining the number of
points in that series, for example:

 ’Series label’ 4 # Series 0, 4 points
 50.0 75.0 60.0 70.0 # X-values
 25.0 10.0 25.0 30.0 # Y-values

Transposed Data
JClass Chart can also interpret transposed data, where the meaning of the data series
and points is switched. Note that transposing data also transposes series and point
labels. To indicate that the data is transposed, add a “T” to the first line specifying the
data layout and size. The following illustrates how data is interpreted when
transposed:

 ARRAY 2 3 T
 # X-values Y0-values Y1-values
 1.0 150.0 125.0
 2.0 175.0 100.0
 3.0 160.0 225.0
124 Part I ■ Using JClass Chart

8.7 Data Binding: Loading Data from Databases

In order to chart data from a database, your application must be able to establish a
connection, perform necessary queries on the data, and then put the data into a
chartable format.

This type of database connectivity is often called ‘data binding’ and components that
can be connected to a database are considered ‘data bound’. JClass Chart is a data
bound component.

Perhaps the easiest way to bind a chart to a database is to use one of the data binding
Beans (DSdbChart, VCdbChart, JBdbChart) in an IDE or the BeanBox. There are
Beans for connecting to a database using Borland JBuilder, Visual Café, and the
JClass DataSource. See the Bean Reference for complete details on using these Beans
in an IDE.

More complex chart features, however, can only be accessed programmatically. To
do data binding programmatically, you can use one of the solutions listed in the table
below:

The following sections provide a brief outline of these different data binding
methods.

8.7.1 Data Binding using JDBCDataSource

JDBCDataSource is not a full data binding solution. It ia a data source that you can
use to chart data from an SQL Result Set. It does not perform any binding operations
such as connecting to, or querying the database. You will have to provide that
functionality.

To use it, you just attach an instance of JDBCDataSource to your chart and pass it a
Result Set from your application, as follows:

chart.getDataView(0).setDataSource(new JDBCDataSource(ResultSet));

Class Use with:

JCChart ■ JDBCDataSource
■ An application that provides connection to

database and passes an SQL result set to
JDBCDataSource.

DSdbChart ■ JClass DataSource component

JBdbChart ■ Borland JBuilder 2.0 components

VCdbChart ■ Visual Café 2.5 components
Chapter 8 ■ Data Sources 125

8.7.2 Data Binding with Visual Cafe

VCdbChart allows you to bind to Visual Café’s QueryNavigator, for a full data
binding solution. The following example illustrates how to connect to the necessary
Visual Cafe components:

{
//{{INIT_CONTROLS

//Cafe data binding object setup
setLayout(null);
setSize(672,393);
Products_Navigator = new QueryNavigator();
Products_Navigator.setAutoStart(true);
Products_Navigator.setClassName("Products_Record");
Products_Navigator.setAliasName("Applet1_QNAlias");

//Create Visual Cafe databinding version of JClass Chart
vCdbChart1 = new jclass.chart.db.vcafe.VCdbChart();
vCdbChart1.setXAxisAnnotationMethod

(jclass.chart.JCAxis.POINT_LABELS);

// Specify columns for point labels and data series
vCdbChart1.setDataBindingMetaData(new

jclass.chart.db.DataBindingMetaData
("ProductID",new String[] {"UnitPrice"},0,100));

//Connect chart to QueryNavigator instance
vCdbChart1.setDataBinding("Applet1_QNAlias@UnitPrice,ProductID");
vCdbChart1.setBounds(60,24,552,288);
add(vCdbChart1);
//}}
}

126 Part I ■ Using JClass Chart

8.7.3 Data Binding with JBuilder

JBdbChart allows you to bind to JBuilder’s DataSet, for a full data binding solution.
The following example illustrates how to connect to the necessary JBuilder
components:

public class Frame1 extends DecoratedFrame {
 Database database1 = new Database();
QueryDataSet queryDataSet1 = new QueryDataSet();

 jclass.chart.db.jbuilder.JBdbChart jBdbChart1 = new
jclass.chart.db.jbuilder.JBdbChart();

...

private void jbInit() throws Exception {
 this.setSize(new Dimension(792, 593));
 database1.setConnection(new

borland.sql.dataset.ConnectionDescriptor
("jdbc:odbc:JClassDemoSQLAnywhere", "dba", "sql", false,
"sun.jdbc.odbc.JdbcOdbcDriver"));

queryDataSet1.setQuery(new
borland.sql.dataset.QueryDescriptor(database1, "select * from
OrderDetails", null, true, Load.ALL));

jBdbChart1.setXAxisAnnotationMethod(jclass.chart.JCAxis.POINT_LABELS);
 jBdbChart1.setDataSet(queryDataSet1);
 jBdbChart1.setDataBindingMetaData(new

jclass.chart.db.DataBindingMetaData("PRODUCTID",new String[]
{"QUANTITY","SALESTAX"},0,100));

 this.add(jBdbChart1, BorderLayout.CENTER);
 }
}

Chapter 8 ■ Data Sources 127

8.7.4 Data Binding with JClass DataSource

JClass DataSource is a full data binding solution. It is a robust hierarchical, multiple-
platform data source that you can use to bind and query any JDBC compatible
database. It can also bind to platform-specific data solutions in JBuilder and Visual
Café. It comes with JClass Enterprise, JClass HiGrid, or can be purchased separately.

To bind a chart to a database through JClass DataSource, use DSdbChart.

The following example illustrates the main parts of binding with DSdbChart:

■ The variable declaration.

■ Setting the data source in the Chart using ChartDataView

■ The contents of makeChartDataSource().

private JCChart chart = null;
private TreeData treeData = null;// this is the database
private DataBoundSource dbSource = null; // chart’s datasource linked to
a db (i.e. treeData)

private ChartDataBinding navigator = null;

 ...

makeChartDataSource();
chart.getDataView(0).setDataSource(dbSource);

 ...

private void makeChartDataSource() {ChartDataBinding chartDataBinding =
new ChartDataBinding();

chartDataBinding.setDataBinding(treeData, "Orders|OrderDetails");
dbSource = new DataBoundSource(
chartDataBinding.getDataBindableObject());

chartDataBinding.addDBUpdateListener(dbSource);
dbSource.addChartDataListener(chart);
dbSource.setSeriesColumns(new String[] {"TotalLessTax","SalesTax"});
dbSource.setPointLabelsColumn("DateSold");
dbSource.setName("Order Details");
}

Note that treeData is a TreeData instance, and should be configured separately.
Consult the JClass DataSource documentation for details.

8.8 Using Multiple Data Sources

A chart can connect to and display more than one data source. The data from
different sources can even be plotted on the same set of axes. The ChartDataView
object properties control which data source to display, and how to display the data.

To use multiple data sources:

■ Each data source must be assigned to a separate ChartDataView.

■ Each ChartDataView must be assigned an x and y axis.
128 Part I ■ Using JClass Chart

Note that while plotting multiple ChartDataViews against the same x or y axis,
JClass Chart will adjust the range of the axes to the size of the union of the two
ranges. See Axis Controls, for more details on controlling axis settings.

8.9 The Data Model

The following diagram illustrates the main classes and interfaces for JClass Chart
data sources:

Figure 26 Class hierarchy of the jclass.chart package data sources

The Chartable Interface
In order for a data source object to work with JClass Chart, it must implement the
Chartable interface. The Chartable interface is intended for use with existing data
objects. Chartable assumes that data is available in table form, and is well-suited to
retrieve data that originates from databases or other “flat” files.

The ChartDataView
The ChartDataView object contains a collection of ChartDataViewSeries objects;
one for each data series in the data view. ChartDataView and ChartDataViewSeries
are used to control how the data is used by JClass Chart. This task is performed by
the data source. DataSource is a property of ChartDataView that points to the data
source. In JClass Chart, the DataSource is an object derived from Chartable,
EditableChartable or ChartDataModel.

The Chartable interface contains elements for retrieving data. An object that
implements the Chartable interface can be attached to ChartDataView as a data
Chapter 8 ■ Data Sources 129

source using the DataSource property. ChartDataView uses its DataSource property
to retrieve data for display. Example uses of Chartable can be found throughout the
demos. The basic demo (JCLASS_HOME/jclass/chart/demos/basic/) contains
ArrayData.java and GeneralData.java, two code samples which contain good examples
of data sources that use the Chartable interface.

EditableChartable Interface
The EditableChartable interface extends the Chartable interface including a
method for changing data in the data source. An object that implements the
EditableChartable interface can be attached to the DataSource property of
ChartDataView. In this case, user changes to the data are sent back to the data source.
This represents another level of connectivity between JClass Chart and the external
data source. A good example can be found in the table demo
(JCLASS_HOME/jclass/chart/demos/table/) in Data.java.

ChartDataModel
The ChartDataModel class is an abstract class that extends EditableChartable. In
order to make use of ChartDataModel, developers must use it as a base class. The
advantage of using ChartDataModel is that the ChartDataModel can use model-view
to update JClass Chart. In other words, ChartDataView will be registered as an
Observer of ChartDataModel. This allows the external data object to inform JClass
Chart of changes to the data.

The model-view aspect of ChartDataModel is handled by the Java utility classes
Observer and Observable. ChartDataView inherits from Observer. ChartDataModel
inherits from Observable. If a ChartDataModel is attached to the DataSource
property of a ChartDataView instance, it will register itself with the ChartDataModel.
In the object derived from ChartDataModel (i.e. the external data source object), a
call to update() will send a message to ChartDataView.

The details of the messages sent from ChartDataModel to ChartDataView are
handled by the ChartDataModelUpdate class. An instance of ChartDataModelUpdate
must be constructed by the external data source and passed to the update() method.
Possible messages include CHANGE_VALUE, NEW_VALUE, CHANGE_ROW, NEW_ROW. For a
complete list of messages, see the API documentation for ChartDataModelUpdate. A
good example of an updating data source can be found in the strip chart
demonstration program (JCLASS_HOME/jclass/chart/demos/stripper/) in
StripperData.java.
130 Part I ■ Using JClass Chart

8.10 Creating Custom Data Sources

On some occasions, you may find it necessary to create a custom data source. You
have two basic options: you can create a data source from scratch, using the
Chartable interface (see Implementing the Chartable Interface). Or, you can
subclass/extend one of the existing implementations.

For example, InputDataStreamSource implements the Chartable interface for use
with input stream data sources. FileDataSource, AppletDataSource,
URLDataSource and StringDataSource all subclass from it.

VectorDataSource also implements the Chartable interface. It allows you to chart
data from an in memory vector. This has many uses. For example, JDBCDataSource
extends VectorDataSource to add the ability to chart a Result Set.

Whatever method you use, once you create a data source, use the same syntax, as
you would any other data source to attach it to your chart:

JCChart chart = new JCChart();
chart.getDataView(0).setDataSource(new MyDataSource());

8.10.1 Implementing the Chartable Interface

A data source object you create must implement (at minimum) the Chartable
interface. It must implement all the methods defined in Chartable, but the following
four are the most important:

1. getDataInterpretation()

This method returns either Chartable.GENERAL or Chartable.ARRAY.

ARRAY means that the first row in the table of data contains the X-values used for
every series, and all subsequent rows contain Y-values. GENERAL means the data is
interpreted in pairs, the first row containing the X-values, and the second row
containing the Y-values.

2. getDataItem(int row, int column)

This method reads data from the data source into the chart.

3. getRow(int row)

This method also reads data from the data source into the chart, but an entire
row at a time.

4. getNumRows()

This method returns the number of rows in the table of data.
Chapter 8 ■ Data Sources 131

The remaining methods in the Chartable interface can be useful, but aren’t required
to get data into the chart (return null in your data source):

Row Indices
getDataItem() and getRow() index data source entries by rwo number. The meaning
of the number depends on the value returned by getDataInterpretation(). If
ARRAY, row 0 represents the x values, and row 1-n (where n+number of series) are
the y values. getNumRows() should return n+1. If GENERAL, every even row
number contains X values, and every odd row number contains Y values.
getNumRows() should return n*2.

Column Indices
The column number used in getDataItem() starts at 0 and goes to n-1, where n is the
number of points in a series

Attaching your data source to the chart is no different than attaching a stock data
source, for example:

 JCChart chart = new JCChart();
 chart.getDataView(0).setDataSource(new MyDataSource());

The following example creates a data source that returns data from a matrix:

package jclass.chart.demos.basic;

import jclass.chart.Chartable;
import java.util.Vector;

public class ArrayData implements Chartable {

// The data - first row is x, all the rest are y
public double rawData[][] = {
 { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 },
 { 0.3, 0.2, 0.16, 0.15, 0.145, 0.143, 0.142 },
 { -0.1, -0.2, 0.4, 0.3, 0.2, 0.1, 0.0},
 { 0.4, 0.3, 0.4, 0.3, 0.4, 0.3, 0.4 },
 { 0.2, 0.5, 0.2, 0.5, 0.2, 0.5, 0.2 },
 { 0.8, 0.7, 0.8, 0.7, 0.8, 0.7, 0.8 },
 { 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2 },
 { 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 }
};

getPointLabels() Retrieves Point-labels for the data.

getSeriesName() Retrieves a particular series name (used to retrieve a
ChartDataViewSeries object by name).

getSeriesLabel() Retrieves a particular Series-label.

getName() Retrieves the name for the data.
132 Part I ■ Using JClass Chart

// Holds the data
Vector data = new Vector();

// Default constructor. Puts default rawData into data vector.
public ArrayData() {
 makeData(rawData);
}

// Typical constructor. Puts supplied data into the data vector.
public ArrayData(double data[][]) {
 makeData(data);
}

// Create the data vector given an 2D array of doubles
private void makeData(double array[][]) {
 for (int i = 0; i < array.length; i++) {
 Vector row = new Vector();
 for (int j = 0; j < array[i].length; j++) {
 row.addElement(new Double(rawData[i][j]));
 }
 data.addElement(row);
 }
}

// Overridden from Chartable
public Object getDataItem(int row, int column) {
 Object rval = null;
 try {
 rval = ((Vector)data.elementAt(row)).elementAt(column);
 }
 catch (Exception e) {
 }
 return rval;
}
// Overridden from Chartable
public Vector getRow(int row) {
 Vector rval = null;
 try {
 rval = (Vector)data.elementAt(row);
 }
 catch (Exception e) {
 }
 return rval;
}

// Overridden from Chartable
public int getDataInterpretation() {
 return ARRAY;
}

// Overridden from Chartable
public int getNumRows() {
 if (data == null) return 0;
 return data.size();
}

Chapter 8 ■ Data Sources 133

// Overridden from Chartable
public String[] getPointLabels() {
 return null;
}

// Overridden from Chartable
public String getSeriesName(int row) {
 return null;
}

// Overridden from Chartable
public String getSeriesLabel(int row) {
 return getSeriesName(row);
}

// Overridden from Chartable
public String getName() {
 return new String("Array Data");
}

}

134 Part I ■ Using JClass Chart

9
Text and Style Elements

Header and Footer Titles ■ Legends ■ Chart Labels

Chart Styles ■ Borders ■ Fonts
Colors ■ JCStrings ■ Positioning Chart Elements

3D Effect ■ Special Bar Chart Properties ■ Special Pie Chart Properties

Special Area Chart Properties ■ Hi-Lo and Candle Charts

This chapter describes the different formatting elements available within JClass
Chart, and how they can be used. If you developing your chart application using one
of the JClass Chart Beans, please refer to the Bean Reference chapter instead.

9.1 Header and Footer Titles

A chart can have two titles, called the header and footer. A title consists of one or
more lines of text with an optional border, both of which you can customize. You can
also set the text alignment, positioning, colors, and font used for the header or footer.

Title Text and Alignment
Use the Text title property to add, change, or remove text for a title. To enter
multiple lines of text, press RETURN between each line.

Use the Adjust title property to specify whether to center, left-justify, or right-justify
a multi-line title.

Title Positioning
Use the Left and Top location properties to customize the location of the title. When
their respective IsDefault properties are used, the header is centered over the
ChartArea and the footer is centered below the ChartArea. See Positioning Chart
Elements later in this chapter for more information.

Title Border
Use the BorderType and BorderWidth border properties to customize the title’s
border. See Borders later in this chapter for more information.
135

Title Colors
Use the Background and Foreground properties to customize background and text
colors of a title. See Colors later in this chapter for more information.

Title Font
Use the Font property to customize the font used for a title. See Fonts later in this
chapter for more information.

9.2 Legends
A legend shows the visual attributes (or ChartStyle) used for each series in the chart,
with text that labels the series. You can customize the series labels, positioning,
border, colors and font used for the legend.

Figure 27 Vertically-oriented legend anchored NorthEast

Legend Text and Orientation
The legend displays the text contained in the Label property of each Series in a
DataView. The IsShowingInLegend property of the series determines whether the
Series will appear in the Legend.

Use the legend Orientation property to lay out the legend horizontally or vertically.

Legend Positioning
Use the legend Anchor property to specify where to position the legend relative to
the ChartArea. You can select from eight compass points around the ChartArea.

Use the Left and Top location properties to fine-tune the positioning. When their
respective IsDefault properties are used, the chart automatically positions the
legend. See Positioning Chart Elements later in this chapter for more information.
136 Part I ■ Using JClass Chart

Legend Border
Use the BorderType and BorderWidth border properties to customize the legend’s
border. See Borders later in this chapter for more information.

Legend Colors
Use the Background and Foreground properties to customize background and text
colors of the legend. See Colors later in this chapter for more information.

Legend Font
Use the Font property to customize the font used for the legend. See Fonts later in
this chapter for more information.

9.2.1 Customizing Legends

JClass Chart provides a legend toolkit for users who want more control over legend
behavior. You can create custom legends by overriding the existing legends
provided, or by subclassing from the JCLegend class. Create a custom legend by
subclassing JCLegend, and overriding the abstract method layoutLegend(). If you
just want to make minor changes to the legend, override JCGridLegend or
JCMultiColLegend. With either method, call setLegend() on the JCChart instance
with the new legend.

Custom legend demo

The legend demo, located in JCLASS_HOME/jclass/chart/demos/legend/ has several
examples of how to use the legend toolkit.

The upper left chart on the demo uses the JCMultiColLegend class to create a legend.
The upper right chart creates a custom legend called sepLegend that overrides the
JCGridLegend class and inserts a separator between the title and the body, adding
both layout and drawing rules for it. The lower left chart creates a custom legend
called revLegend that overrides the JCGridLegend class to reverse the order of items
in the legend. The lower right implements a custom legend flowLegend by
overriding the abstract class JCLegend to layout the legend items in a flow style.
Chapter 9 ■ Text and Style Elements 137

9.3 Chart Labels

Chart labels allow you to add more information to your chart. There are static labels
that display continuously and interactive labels that pop-up when a cursor moves
over a data item. Labels can be attached to different parts of a chart: absolute
coordinates, coordinates in the plotting area, or a specific data item. To see a wide
range of label uses, browse the demos in the JCLASS_HOME/jclass/chart/demos/labels/
directory.

9.3.1 Label Implementation

JCChart contains a list of labels, managed by the ChartLabels property. The list is
initially empty. When you create a label, it is added to ChartLabels. Labels are
instances of the JCChartLabel class.

9.3.2 Adding Labels to a Chart

Labels are added to a chart in two ways: with the AutoLabels property of
ChartDataView, or by attaching an instance of JCChartLabel to a chart element.

Individual labels are attached in three ways: to coordinates on the chart area
(ATTACH_COORD); coordinates on the plot area (ATTACH_DATACOORD); or to a data item
(ATTACH_DATAINDEX). Interactive labels must use the ATTACH_DATAINDEX method.

Each label on the chart below uses a different attachment method. The
“Point(100,50) label, is attached to coordinates originating from the top left corner of
the chart area. “Value(2,220)” is attached to axes coordinates, and Data(Set0,Point2)
is attached to a specific data item.

Attaching a Label to a Data Item
To attach a label to a point, bar or slice, set the AttachMethod property to
ATTACH_DATAINDEX. The following example puts a label on a chart next to the fourth
data point in the second data series.

cl = new JCChartLabel(Double.toString(series.getY(nPoint)),
false);
cl.setDataView(view);
cl.setDataIndex(new JCDataIndex(3, 1));
cl.setAttachMethod(JCChartLabel.ATTACH_DATAINDEX);
cl.setIsDwellLabel(false);
cl.setAnchor(JCChartLabel.AUTO);
chart.addChartLabel(cl);
138 Part I ■ Using JClass Chart

Attaching a Label to Chart Area Coordinates
To attach a label to a point on the chart area, set the AttachMethod property to
ATTACH_COORD. The coordinate origin for this method is the top left corner of the
chart area. The following example sets up a point label and takes advantage of
JCString tags.

JCChartLabel cl = new JCChartLabel(
"[COLOR=blue][FONT=TimesNewRoman-bold-20]Label 1", true);
cl.setAttachMethod(JCChartLabel.ATTACH_COORD);
cl.setCoord(new Point(100, 75));
chart.addChartLabel(cl);

Attaching a Label to Plot Area Coordinates
To attach a label to coordinates on the plot area, set the AttachMethod property to
ATTACH_DATACOORD. The plot area is defined by the chart’s x and y axes. The
following example places a label in the plot area at x-value 2.5, y-value 160.

JCChartLabel cl = new JCChartLabel("Attached to the data
coordinate", false);
cl.setDataCoord(new JCDataCoord(2.5, 160));
cl.setAnchor(JCChartLabel.NORTH);
cl.setAttachMethod(JCChartLabel.ATTACH_DATACOORD);
cl.setBorderType(Border.ETCHED_OUT);
cl.setBorderWidth(5);
chart.addChartLabel(cl);

9.3.3 Interactive Labels

You can have labels pop-up as a cursor dwells over a point, bar or slice (a dwell
label). This allows you to create an interactive chart where information is hidden
until the user wants to see it. The AutoLabel property will set up a compete series of
dwell labels for your chart. In the example below, ‘225’ appears on top of the green
bar as the cursor passes over it, to indicate the value of the bar.

Automatically Generated Dwell Labels
The AutoLabel property of ChartDataView will generate a complete series of dwell
labels if set to true. It attaches dwell labels to every data index. The following code,
added to the init() method, adds automatic dwell labels to the data:

chart.getDataView(0).setAutoLabel(true);
Chapter 9 ■ Text and Style Elements 139

Adding Individual Dwell Labels
Attaching an individual dwell label is the same as attaching a static label to a data
item, except that the IsDwellLabel property is set to true:

cl.setIsDwellLabel(true);

A dwell label can only be used when the AttachMethod property is set to
ATTACH_DATAINDEX.

9.3.4 Adding and Formatting Label Text

Adding Label Text
You can add text to a label with the constructor method, or with the Text property.
To add text to a label when it is constructed, include the text in the constructor’s
argument, as follows:

JCChartLabel cl = new JCChartLabel(“I’m a Label”, false)’

To add text using the Text property, use the setText method, as follows:

cl.setText(“I’m a Label”);

Formatting Label Text
Use the Font property to set the font for a label:

Font f = new Font(“timesroman”, Font.BOLD, 24);
cl.setFont(f);

In addition to the properties defined in JCChartLabel, you can add tags for
embedded colors, fonts, images, URL’s and more. The following example uses
JCString tags to set the font and color of text in a label:

JCChartLabel cl = new JCChartLabel(
"[COLOR=blue][FONT=TimesNewRoman-bold-20]Label 1", true);

Setting the second parameter to true indicates that the first argument is a JCString.
See JCString Properties in Appendix B for complete details on JCString tags.

9.3.5 Positioning Labels

The Anchor property determines the position of the label, relative to the point of
attachment. Valid positions include: NORTH, NORTHEAST, NORTHWEST, EAST, WEST,
SOUTHEAST, SOUTHWEST, SOUTH. The following example shows the syntax:

cl.setAnchor(JCChartLabel.EAST);

9.3.6 Setting Label Borders and Colors

JCChartLabel has border and color properties that you can use to enhance the
appearance of your chart. You can add graphical borders to your chart label, and set
the border’s width. The following example puts a plain border with a width of 1 on a
label:

cl.setBorderType(Border.PLAIN);
cl.setBorderWidth(1);
140 Part I ■ Using JClass Chart

For a complete description of the different border styles, see Borders.

Use the Foreground and Background properties to set label colors. The syntax for
setting color is as follows:

cl.setBackground(Color.white);
cl.setForeground(Color.black);

For a complete description of color control, see Colors.

9.3.7 Adding Connecting Lines

You can add lines that connect a label to its point of attachment. This can help the
end-user pinpoint what a label refers to on a chart.

To add a connecting line to a label, set the IsConnected property to true, as follows:

cl.setIsConnected(true);

9.4 Chart Styles

Chart styles define all of the visual attributes of how a data series of data appears in
the chart, including:

■ Lines and points in plots and financial charts

■ Color of each bar in bar charts

■ Slice colors in pie charts

■ Color of each filled area in area charts

Each series in a data view has its own JCChartStyle object; as new series are added,
new JCChartStyle objects are created automatically by the chart. JClass Chart
defines a set of visually different styles for n series, so while you can customize any
chart style, you may not need to.

Every ChartStyle has a FillStyle, a LineStyle, and a SymbolStyle. FillStyles are
used for bar, stacking bar, area and pie charts. LineStyles and SymbolStyles are
used for plots.
Chapter 9 ■ Text and Style Elements 141

Figure 28 Types of ChartStyles available

ChartStyle is an indexed property of ChartDataView that “owns” the JCChartStyle
objects for that data view. It can be manipulated like any other indexed property, for
example:

 arr.setChartStyle(0, new JCChartStyle());

This adds the specified ChartStyle to the indexed property at the specified index. If
the ChartStyle is null, the JCChartStyle at the specified point is removed. The
following lists some of the other ways ChartStyle can be used:

■ getChartStyle(index) — retrieves the chart style at the specified index

■ setChartStyle(JCChartStyle[]) — replaces all existing chart styles

■ JCChartStyle [] getChartStyle() — retrieves a copy of the array of chart styles

Normally, you will not need to add or remove JCChartStyle objects from the
collection yourself. If a JCChartStyle object already exists when its corresponding
series is created, the previously created JCChartStyle object is used to display the
data in this series.

Customizing Existing ChartStyles
Each JCChartStyle object contains three smaller objects that control different
aspects of the style:JCFillStyle, JCLineStyle, and JCSymbolStyle.

The most common chart style sub-properties are repeated in JCChartStyle. For
example, FillColor is a property of JCChartStyle that corresponds to the Color
property of JCFillStyle object. The following lists all of the repeated properties:

■ LinePattern, LineWidth and LineColor repeat JCLineStyle properties

■ SymbolShape, SymbolColor, SymbolSize, and SymbolCustomShape repeat
JCSymbol properties

■ FillColor, FillPattern and FillImage repeat JCFillStyle properties.

FillStyle
JCFillStyle controls fills, used in bar, pie, area, and candle charts. Its properties
include Color and Pattern. Use Pattern to set the fill drawing pattern and Color to
set the fill color.

Note: Patterned fills are not currently supported within Java.
142 Part I ■ Using JClass Chart

LineStyle
JCLineStyle controls line drawing, used in line and hi-lo charts. Its properties are
Color, Pattern and Width. Use Pattern to set the line drawing pattern, Color to set
the line color, and Width to set the line width.

Note: Line patterns are currently not supported within Java.

SymbolStyle
JCSymbolStyle controls the symbol used to represent points in a data series, used in
plot or scatter plot charts. Its properties are Shape, Color and Size. Use Shape to set
the symbol type, Size to set its size, and Color to set the symbol color.

The valid symbols are shown below:

Figure 29 Symbols available in JCSymbolStyle

You can also provide a custom shape by implementing an abstract class JCShape and
assigning it to the CustomShape property.

Customizing All ChartStyles
By looping through the JCChartStyle indexed property, you can quickly change the
appearance of all of the bars, lines or points in a chart. For example, the following
code lightens all of the bars in a chart whenever the mouse is clicked:

 JCChartStyle[] style=c.getDataView(1).getChartStyle();
 for(int i=0; i < style.length, i++)
 {JCFillStyle fs=style[i].getFillStyle();
 fs.setColor(fg.getColor().brighten());}
Chapter 9 ■ Text and Style Elements 143

9.5 Borders

One way to highlight important information or improve the chart’s appearance is to
use a border. You can customize the border of the following chart objects:

■ Header and Footer titles

■ Legend

■ ChartArea

■ each ChartLabel added to the chart

■ the entire chart

BorderType and BorderWidth properties
Use the BorderType property to set the border style, and the BorderWidth property
to set its thickness. The valid border types are shown below (defined in
jclass.base.Border); you can also specify that no border is used.

Figure 30 Border styles

9.6 Fonts

A chart can have more impact when you customize the fonts used for different chart
elements. You may also want to change the font size to make an element better fit the
overall size of the chart. Any font available when the chart is running can be used.
You can set the font for the following chart elements:

■ Header and Footer titles

■ Legend

■ Axis annotation and title

■ each ChartLabel added to the chart.

Changing a Font
Use the font properties to set the font, style, and size attributes.
144 Part I ■ Using JClass Chart

9.7 Colors

Color can powerfully enhance a chart’s visual impact. You can customize chart
colors using Java colornames or RGB values. Using an interactive tool like the Chart
Customizer can make selecting custom colors quick and easy. Each of the following
visual elements in the chart has a background and foreground color that you can
customize:

■ the entire chart

■ Header and Footer titles

■ Legend

■ ChartArea

■ PlotArea (foreground colors JCChartArea’s AxisBoundingBox)

■ each ChartLabel added to the chart.

Other Chart objects have color properties too, including ChartDataView (bar/pie
outline color), ChartStyles, GridLines, and Markers.

Color Defaults
If colors have not been set, each Chart element inherits its colors from the element in
which it is contained. This means, for example, that setting the background color of
JCChart also changes the background color of the chart area, header, footer, legend,
and plot area. However, once the application sets the colors of an element, they do
not change when other elements’ colors change.

Specifying Foreground and Background Colors
Each chart element listed above has a Background and Foreground property that
specifies the current color of the element. The easiest way to specify a color is to use
the built-in colornames defined in java.awt.Color. The following table summarizes
these colors:

Alternately, you can specify a color by its RGB components, useful for matching
another RGB color. RGB color specifications are composed of a value from 0 – 255
for each of the red, green and blue components of a color. For example, the RGB
specification of Cyan is “0-255-255” (combining the maximum value for both green
and blue with no red). An extensive listing of available RGB color values can be
found in Appendix C, “Colors and Fonts”.

Built-in Colors in java.awt.Color

black blue cyan

darkGray gray green

lightGray magenta orange

pink red white

yellow
Chapter 9 ■ Text and Style Elements 145

The following example sets the header background using a built-in color, and the
footer background to an RGB color (a dark shade of Turquoise):

 c.getHeader().setBackground(Color.cyan);

 mycolor = new Color(95,158,160);
 c.getFooter().setBackground(mycolor);

Take care not to choose a background color that is also used to display data in the
chart. The default ChartStyles use all of the built-in colors in the following order:
Red, Orange, Blue, Light gray, Magenta, Yellow, Gray, Green, Dark Gray, Cyan,
Black, Pink and White.

9.8 JCStrings

There are often cases where it would be desirable to add such things as images, text
and hyperlinks within a JClass Chart component, particularly if the component is to
be used within an applet. Most JClass Chart components support a rich text format
called “JCString”, which allows a mixture of hypertext, images and text within Chart
components. Text can also appear in a variety of colors, fonts and styles, including
underline and strikeout.

For example, the following code adds a multi-line JCString to the header:

 c.getHeader().getLabel().setText("[IMAGE=yuri.gif][NEWLINE]
[FONT=TimesRoman-italic-20] Yuri Presents...", true);

For more information on the types of JCStrings available in JClass Chart, see
Appendix A, “JCString Properties”.
146 Part I ■ Using JClass Chart

9.9 Positioning Chart Elements

Each of the main chart elements (Header, Footer, Legend, ChartArea, and
ChartLabels) has properties that control its position and size. While the chart can
automatically control these properties, you can also customize the following:

■ Positioning of any element

■ Size of any element.

When the chart controls positioning, it first allows space for the Header, Footer, and
Legend, if they exist (size is determined by contents, border, and font). The
ChartArea is sized and positioned to fit into the largest remaining rectangular area.
Positioning adjusts when other chart properties change.

ChartLabels do not figure into the overall Chart layout. Instead, they are positioned
above all other Chart elements.

Changing the View Location
Use the Left location property to specify the number of pixels from the edge of the
chart to the left edge of the chart element. Use the Top location property to specify
the number of pixels from the edge of the chart to the top of the chart element. Left
and Top have IsDefault properties that allow the chart to automatically position the
element.

Changing Width and Height
Use the Width and Height location properties to specify the width and height of the
chart element. These properties have IsDefault properties that allow the chart to
automatically size the chart element.

Note that ChartLabels do not have Width and Height properties. Instead,
ChartLabel size is adjusted using Right and Bottom.
Chapter 9 ■ Text and Style Elements 147

9.10 3D Effect

Data in bar, stacking bar and pie charts can be displayed with a three-dimensional
appearance using several JCChartArea properties:

■ Depth — Specifies the apparent depth as a percentage of the chart’s width. No 3D
effect appears unless this property is set greater than zero.

■ Elevation — Specifies the eye’s position above the horizontal axis, in degrees.

■ Rotation — Specifies the number of degrees the eye is positioned to the right of
the vertical axis. This property has no effect on pie charts.

You can set the visual depth and the “elevation angle” of the 3D effect. You can also
set the “rotation angle” on bar and stacking bar charts. Depth, Rotation and
Elevation are all properties of the ChartArea.

Figure 31 Two JClass Charts illustrating the effects of 3D
148 Part I ■ Using JClass Chart

9.11 Special Bar Chart Properties

Bar charts display each point as one bar in a cluster. There are several properties
defined in JCBarChartFormat that control exactly how the bars are spaced and
displayed. Use the getBarChartFormat() method to retrieve and set these
properties.

Stacking Bar Charts
Data is displayed as a stacking bar chart when the ChartType property is set to
JCChart.STACKING_BAR. In stacking bar charts, there is only one bar per cluster. All
Y-values less than zero are stacked below the Y-axis. The syntax is as follows:

dataView.setChartType(JCChart.STACKING_BAR);

Cluster Overlap
Use the bar ClusterOverlap property to set the amount that bars in a cluster overlap
each other. The value represents the percentage of bar overlap. Negative values add
space between bars and positive values cause bars to overlap. Valid values are
between -100 and 100. The syntax is as follows:

dataView.getBarChartFormat().setClusterOverlap(50);

Figure 32 Negative and positive bar cluster overlap
Chapter 9 ■ Text and Style Elements 149

Cluster Width
Use the bar ClusterWidth property to set the space used by each bar cluster. The
value represents the percentage available space, with valid values between 0 and
100. The syntax is as follows:

dataView.getBarChartFormat().setClusterWidth(100);

Figure 33 Setting different bar cluster widths

100-Percent Stacking Bar Charts
The Y-axes of stacking bar charts can display a percentage interpretation of the bar
data using the 100Percent property. When set to true, each stacked bar’s total Y-
values represents 100%. The Y-value of each bar is interpreted as its percentage of
the total. This property has no effect on bar charts. The syntax is as follows:

dataView.getBarChartFormat().set100Percent(true);

9.12 Special Pie Chart Properties

Pie charts are quite different from the other chart types. They do not have the
concept of a two-dimensional grid or axes. They also introduce a special category
called “Other”, into which all data values below a certain threshold are grouped.

You can customize your pie charts with the properties of JCPieChartFormat. The
following code snippet shows the syntax for setting JCPieChartFormat properties:

JCPieChartFormat pcf = arr.getPieChartFormat();
pcf.setOtherLabel("[FONT=Helvetica-italic-
14]Other[NEWLINE]Bands");
pcf.setThresholdValue(10.0);
pcf.setThresholdMethod(JCPieChartFormat.PIE_PERCENTILE);
pcf.setSortOrder(JCPieChartFormat.DATA_ORDER);

9.12.1 Building the “Other” Slice

Pie charts are often more effective if unimportant values are grouped into an “Other”
category. Use the ThresholdMethod property to select the grouping method to use.
SLICE_CUTOFF is useful when you know the data value that should be grouped into
150 Part I ■ Using JClass Chart

the “Other” slice. PIE_PERCENTILE is useful when you want a certain percentage of
the pie to be devoted to the “Other” slice.

Figure 34 Three JClass Charts illustrating how the “Other” slice can be used

Use the MinSlices property to fine-tune the number of slices displayed before the
“Other” slice. For example, when set to 5, the chart tries to display 5 slices before
grouping data into the “Other” slice.

9.12.2 “Other” Slice Style and Label

The OtherStyle property allows access to the ChartStyle used to render the
“Other” slice. Use FillStyle’s Pattern and Color properties to define the
appearance of the Other slice.

Use the OtherLabel property to change the label of the “Other” slice.
Chapter 9 ■ Text and Style Elements 151

9.12.3 Pie Ordering

Use the SortOrder property to specify whether to display slices largest-to-smallest,
smallest-to-largest, or the order they appear in the data.

9.12.4 Exploded Pie Slices

It is possible to have individual slices of a pie “explode” (i.e. detach itself from the
rest of the pie) when a user clicks on the slice. The slice “implodes” (i.e. re-joins the
rest of the pie) if the user clicks on it again.

Two properties of JCPieChartFormat are responsible for this function: ExplodeList
and ExplodeOffset.

ExplodeList specifies a list of exploded pie slices in the pie charts. It takes pts as a
parameter, which is composed of an array of Point objects. Each point object
contains the data point index (pie number) in the x value and the series number (slice
index) in the y value, specifying the pie slice to explode. To explode the “other” slice,
the series number should be OTHER_SLICE. If null, no slices are exploded.

ExplodeOffset specifies the distance a slice is exploded from the center of a pie
chart. It takes off as a parameter, which is the explode offset value.

The following code sample shows how ExplodeList and ExplodeOffset can be
used. First, the list of exploded pie slices is set:

Point[] exList = new Point[3];
exList[0] = new Point(0, 0);
exList[1] = new Point(1, 5);
exList[2] = new Point(2, JCPieChartFormat.OTHER_SLICE);
pcf.setExplodeList(exList);
pcf.setExplodeOffset(10);

Given a pick event, the picked pie slice explodes or implodes, depending on
whether or not it is already exploded.

public void pick(JCPickEvent e)
{
JCDataIndex di = e.getPickResult();
if (di == null) return;
Object obj = di.getObject();
ChartDataView vw = di.getDataView();
ChartDataViewSeries srs = di.getSeries();
int slice = di.getSeriesIndex();
int pt = di.getPoint();
int dist = di.getDistance();
if (vw != null && slice != -1) {
JCPieChartFormat pcf = vw.getPieChartFormat();
Point[] exList = pcf.getExplodeList();
if (exList == null) return;
// implode existing exploded slices
for (int i = 0; i < exList.length; i++) {

if ((exList[i].x == pt) && (exList[i].y == slice)) {
Point[] newList = new Point[exList.length - 1];
for (int j = 0; j < i; j++)

newList[j] = exList[j];
for (int j = i; j < newList.length; j++)
152 Part I ■ Using JClass Chart

newList[j] = exList[j + 1];
pcf.setExplodeList(newList);
vw.setChanged(true);
return;

}
}
// explode new slice
Point[] newList = new Point[exList.length + 1];
for (int j = 0; j < exList.length; j++)

newList[j] = exList[j];
newList[exList.length] = new Point(pt, slice);
pcf.setExplodeList(newList);
vw.setChanged(true);

}
}

The full code for this program can be found in the exploding pie charts demo. For more
information on pick, see “Using Pick and Unpick”.
Chapter 9 ■ Text and Style Elements 153

9.13 Special Area Chart Properties

Similar to the stacking bar type, JClass Chart provides a stacking area type. To see an
example of a stacking area chart, launch “Area Chart Demo” from
JCLASS_HOME/jclass/chart/demos/index.html .

Stacking Area Charts
A stacking area chart places each Y-series on top of the last. This shows the area
relationships between each series and the total. The following example shows the
same set of data as displayed by stacking area and area types:

To create a stacking area chart, set the ChartType property to
JCChart.STACKING_AREA., as follows:

dataView.setChartType(JCChart.STACKING_AREA);

100-Percent Stacking Area Charts
When 100Percent property is set to true, the Y-axes display as an area percentage of
the total. The top of the chart is 100% (the total of all Y-values).

Use the following syntax to display data in 100-Percent mode:

dataView.getAreaChartFormat().set100Percent(true);
154 Part I ■ Using JClass Chart

9.14 Hi-Lo and Candle Charts

JClass Chart’s Hi-Lo, Hi-Lo-Open-Close, and Candle financial chart types use the Y-
values in multiple series to construct each “bar”. Hi-Lo charts use every two series
and Hi-Lo-Open-Close and candle charts use every four series. Each series defines a
specific portion of the bar:

■ First series — High value

■ Second series — Low value

■ Third series (if needed) — Open value

■ Fourth series (if needed) — Close value

Figure 35 Simple Candle chart displayed by stock demo

It is useful to think of each group of series as one “logical series”. But note that most
JClass Chart properties or methods that use a series (such as chart labels attached by
DataIndex) use the actual series index.

Hi-Lo-Open-Close Charts
When the chart type is JCChart.HILO_OPEN_CLOSE, several properties defined in
JCHLOCChartFormat control how open and close ticks are displayed:

IsShowingOpen Displays or hides open tick marks

IsShowingClose Displays or hides close tick marks

IsOpenCloseFullWidth Displays open/close ticks across both sides of the bar.
This is useful for creating error bar charts.
Chapter 9 ■ Text and Style Elements 155

Customizing ChartStyles
Because these chart types use multiple series for each “row” of Hi-Lo or Candle bars,
it is difficult to determine which chart style specifies the display attributes of a
particular row of bars. To make programming the chart styles of financial charts
easier, JClass Chart provides several methods that retrieve and set the style for a
logical series. These methods are defined in the JCHiloChartFormat,
JCHLOCChartFormat and JCCandleChartFormat classes. Each get method returns the
JCChartStyle object used for the logical series you specify. You can customize the
properties in this returned object and then use the appropriate set method to apply
them to the same logical series in the chart.

Most of the financial chart types use only one or two JCChartStyle properties. The
following table lists the properties used by each chart type (see “Chart Styles” for
more information on chart styles):

For every financial chart type except complex candle, the actual chart style used is
that of the first series.

Simple and Complex Candle Charts
You can choose between a simple and complex candle chart display using the
IsComplex property defined in JCCandleChartFormat.

When set to false, the chart style from just one series (the first) determines the
appearance of the candle. The table above shows the properties used. A rising stock
price is indicated by making the candle transparent. A falling stock price displays in
the color specified by FillColor.

Complex candle charts (IsComplex is true), use elements of the chart styles of all four
series, providing complete control over every visual aspect of the candles. The
convenience methods defined in JCCandleChartFormat make it easy to retrieve/set
the style that controls the appearance of a particular aspect of the candles.

The following lists the JCChartStyle properties that control each aspect of a
complex candle, along with which of the four chart styles is used:

■ Hi-Lo line — LineColor property (first chart style)

■ Rising price candle color and width — FillColor and SymbolSize properties
(second chart style)

■ Falling price candle color and width — FillColor and SymbolSize properties
(third chart style)

■ Candle outline — LineColor property (fourth chart style)

LineColor SymbolSize

Hi-Lo

Hi-Lo-Open-Close

Candle (simple)

Candle (complex) see below
156 Part I ■ Using JClass Chart

Example Code
The following code sets the rising and falling candle styles of a complex candle chart:

 JCChartStyle chartStyle;
 JCCandleChartFormat candleFormat;

 // Set candle to complex type so we can change colors
 candleFormat = chart.getDataView(1).getCandleChartFormat();
 candleFormat.setIsComplex(true);

 // Change rising candle color
 chartStyle = candleFormat.getRisingCandleStyle(0);
 chartStyle.setLineColor(Color.green);
 chartStyle.setFillColor(Color.red);

 // Change falling candle color
 chartStyle = candleFormat.getFallingCandleStyle(0);
 chartStyle.setLineColor(Color.green);
 chartStyle.setFillColor(Color.yellow);

Two demo programs included with JClass Chart illustrate creating financial charts:
the stock demo, located in JCLASS_HOME/jclass/chart/demos/stock/, and the financial
demo, located in JCLASS_HOME/jclass/chart/demos/financial/.
Chapter 9 ■ Text and Style Elements 157

158 Part I ■ Using JClass Chart

10
Advanced Chart Programming

Batching Chart Updates ■ Coordinate Conversion Methods

Double Buffering ■ FastAction
Programming End-User Interaction ■ Image-Filled Bar Charts

Using Pick and Unpick

Controlling the chart in an application program is generally straightforward once
you are familiar with the programming basics and the object hierarchy. For most
JClass Chart objects, all the information needed to program them can be found in
the Application Programming Interface (API). In addition, extensive information on
how they can be used can be found in the numerous example and demonstration
programs provided with JClass Chart.

This chapter covers some basic programming concepts for JClass Chart and also
looks at more complex chart programming tasks.

10.1 Batching Chart Updates

Normally, the chart is repainted immediately after a property is set. To make several
changes to a chart before causing a repaint, set the IsBatched property of the
JCChart object to true. Property changes do not cause a repaint until IsBatched is
reset to false.

The IsBatched property is also defined for the ChartDataView object. This
IsBatched property is independent of JCChart.IsBatched. It is used to control the
update requests sent from the DataSource to the chart.

It is recommended that you batch around the creation or updating of multiple chart
labels.
159

10.2 Coordinate Conversion Methods

The ChartDataView object provides methods which enable you to do the following:

■ Convert from data coordinates to pixel coordinates and vice versa.

■ Determine the pixel coordinates of a given data point in a series, or the closest
point to a given set of pixel coordinates.

These functions can be accomplished by using coordToDataCoord() and
dataIndexToCoord() respectively, or by using their functional equivalents map and
unmap.

10.2.1 CoordToDataCoord and DataIndexToCoord

To convert from data coordinates to pixel coordinates, call the dataCoordToCoord()
method. For example, the following code obtains the pixel coordinates
corresponding to the data coordinates (5.1, 10.2):

 Pointp=c.getDataView(0).dataCoordToCoord(5.1,10.2);

This works in the same way as unmap. Note that the pixel coordinate positioning is
relative to the upper left corner of the JCChart component display.

To convert from pixel coordinates to data coordinates, call coordToDataCoord(). For
example, the following converts the pixel coordinates (225, 92) to their equivalent
data coordinates:

 JCDataCoord cd=c.getDataView(0).coordToDataCoord(225,92);

This works in the same manner as map. So, coordToDataCoord() returns a
JCDataCoord object containing the x and y values in the data space.

To determine the pixel coordinates of a given data point, call dataIndexToCoord().
For example, the following code obtains the pixel coordinates of the third point in
the first data series:

 JCDataIndex di=new JCDataIndex(3,c.getDataView(0).getSeries(0));
 Paint cdc=c.getDataView(0).dataIndexToCoord(di);

To determine the closest data point to a set of pixel coordinates, call
coordToDataIndex():

 JCDataIndex di=c.getDataView(0).coordToDataIndex(225,92,
 ChartDataView.PICK_FOCUSXY);

Essentially, these last two examples demonstrate that dataIndexToCoord() works in
much the same way as pick and unpick. The third argument passed to
coordToDataIndex() specifies how the nearest series and point value are
determined. This argument can be one of ChartDataView.PICK_FOCUSXY,
ChartDataView.PICK_FOCUSX or ChartDataView.PICK_FOCUSY. For more information
on the pick and unpick methods, see the Using Pick and Unpick section later in this
chapter.

JCDataIndex contains the series and point value corresponding to the closest data
point, and also returns the distance in pixels between the pixel coordinates and the
point. coordToDataIndex() returns a JCDataIndex instance.
160 Part I ■ Using JClass Chart

10.2.2 Map and Unmap

The map and unmap are functionally equivalent to the coordToDataCoord() and
dataIndexToCoord() methods. They are provided as convenience methods, and are
more in keeping with typical Java terminology than coordToDataCoord() and
dataIndexToCoord(), which are used as method names by KL Group’s Olectra
Chart product for Windows developers.

10.3 Double Buffering

Double buffering is a graphics technique which will reduce the amount of flashing
perceived by a user when a chart changes. By default, double buffering is in effect. To
turn off double buffering for a JCChart object, set its DoubleBuffered property to
false.

When double buffering is turned on, every time the chart changes, it will:

■ Allocate (if necessary) and clear an off-screen bitmap.

■ Render the complete graph to the off-screen bitmap.

When double buffering is turned off, the chart clears the screen image every time a
chart is changed (possibly causing a visual flash). Then, it renders the complete
image to the visible window (possibly allowing the user to see the chart being drawn
piece by piece).

Turning off double buffering can improve the chart's graphing performance and
reduce its memory requirements, but it will likely result in a chart display that
“flashes” repeatedly as updates are continually drawn to the screen. By default
IsDoubleBuffered is true.

10.4 FastAction

The FastAction property determines whether chart actions will use an optimized
mode in which it does not bother to update display axis annotations or grid lines
during a chart action. Default value is false.

Using FastAction can greatly improve the performance of a chart display, because
relatively more time is needed to draw such things as axis annotations or grid lines
than for simply updating the points on a chart. It is designed for use in dynamic chart
displays, such as charts that enable the user to perform translation or rotation actions.

The following line of code shows how FastAction can be used in a program:

 c.getChartArea().setFastAction(true);
Chapter 10 ■ Advanced Chart Programming 161

10.5 Programming End-User Interaction

An end-user can interact with a chart more directly than using the Customizer. Using
the mouse and keyboard, a user can examine data more closely or visually isolate
part of the chart. JClass Chart provides the following interactions:

■ moving the chart

■ zooming into or out of the chart

■ rotation (only for bar or pie charts displaying a 3D effect)

■ adding depth cues to the chart

■ interactively change data points (using the pick feature)

It is also possible in most cases for the user to reset the chart to its original display
parameters. The interactions described here effect the chart displayed inside the
ChartArea; other chart elements like the header are not affected.

Note: The keyboard/mouse combinations that perform the different interactions can
be changed or removed by a programmer. The interactions described here may not
be enabled for your chart.

A chart action is a user event that causes some interactive action to take place in the
control. In JClass Chart, actions like zoom, translate and rotate can be mapped to a
mouse button and a modifier. For example, it is possible to bind the translate event
to the combination of mouse button 2 and the Control key. Whenever the user hits
Control and mouse button 2 and drags the mouse, the chart will move.

10.5.1 Event Triggers

An event trigger is a mapping of a mouse operation and/or a key press to a chart
action. In the example above, the trigger for translate is a combination of mouse
button 2 and the Control key.

An event trigger has two parts:

■ the modifier, which specifies the combination of meta keys and mouse buttons
that will trigger the action; and,

■ the action, which specifies the combination of chart action that will occur.

Valid actions include EventTrigger.ZOOM, EventTrigger.TRANSLATE,
EventTrigger.ROTATE and EventTrigger.DEPTH.

10.5.2 Valid Modifiers

The value of a modifier is specified using AWT modifiers, as shown in the following
list:

■ Event.SHIFT_MASK

■ Event.CTRL_MASK

■ Event.ALT_MASK
162 Part I ■ Using JClass Chart

■ Event.META_MASK

If you are using the JDK 1.1, you can also specify the mouse button using one of the
following modifiers:

■ InputEvent.BUTTON1_MASK

■ InputEvent.BUTTON2_MASK

■ InputEvent.BUTTON3_MASK

10.5.3 Programming Event Triggers

To program an event trigger, use the setTrigger method to add the new action
mapping to the collection.

For example, the following tells JClass Chart to perform a zoom operation when
Shift and mouse button are pressed:

 c.setTrigger(0,newEventTrigger(Event.SHIFT_MASK,
 EventTrigger.ZOOM);

10.5.4 Removing Action Mappings

To remove an existing action mapping, set the trigger to null, as in the following
example:

 c.setTrigger(0,null);

10.5.5 Calling an Action Directly

In JClass Chart, it is possible to force some actions by calling a method of JCChart.
The following is a list of the methods that can be called upon to force a particular
action:

■ Translation - translateStart(), translate(), translateEnd()

■ Rotation - rotateStart(), rotate(), rotateEnd()

■ Zoom - zoomStart(), zoom(), zoomEnd()

■ Scale - scale()

■ Reset - reset()

10.5.6 Specifying Action Axes

Actions like translation occur with respect to one or more axes. In JClass Chart, the
axes can be set using the HorizActionAxis and VertActionAxis properties of
JCChartArea, as the following code fragment illustrates:

 ChartDataView arr = c.getDataView(0);
 c.getChartArea().setHorizActionAxis(arr.getXAxis());
 c.getChartArea().setVertActionAxis(arr.getYAxis());

Note that it is possible to have a null value for an action axis. This means that chart
actions like translation do not have any effect in that direction. By default, the
Chapter 10 ■ Advanced Chart Programming 163

HorizActionAxis is set to the default X-axis, and the VertActionAxis is set to the
default Y-axis.

10.6 Image-Filled Bar Charts

It is possible to use image files as chart elements within a bar chart. This is
accomplished by using the Image method. Image sets the image used to paint the fill
region of bar charts. It takes img as a parameter, which is an AWT Image class
representing the image to be used to paint image fills. If set to null, no image fill is
done.

The following code fragment shows how Image can be incorporated into a program:

 // Set the labels of each series.
 String seriesLabels[] = {"CD", "Cassette"};
 String imageStrings[] = {"cd.gif", "tape.gif"};
 ChartDataViewSeries seriesList[] = arr.getSeries();
 for (int i = 0; i < arr.getNumSeries(); i++) {
 if (i < seriesLabels.length) {
 seriesList[i].setLabel(seriesLabels[i]);
 if (imageStrings[i] != null) {
 seriesList[i].getStyle().getFillStyle().setImage(
 this, imageStrings[i]);
 }
 }
 }

The effects can be seen in the ImageBar demonstration program, (in the
JCLASS_HOME/jclass/chart/demos/imagebar/ directory), which comes with JClass
Chart.
164 Part I ■ Using JClass Chart

Figure 36 The imagebar demonstration program

The image is clipped at the point of the highest value indicated for the bar chart.

Image only tiles the image along a single axis. For example, if the bars were widened
in the above illustration, it would still tile along the vertical Y-axis only, and would
not fill in the image across the horizontal X-axis. This same principle applies (though
along different axes) when the bar chart is rotated 90 degrees.

Note: Image can only be used with the image formats that can be used in Java.

10.7 Using Pick and Unpick

The pick method is used to retrieve an x,y coordinate in a Chart from user input and
then translate that into selecting the data point nearest to it. For example, if a user
clicks within a single bar within a bar chart, pick takes the coordinates of the mouse-
click and selects that bar for any action within the program. Similarly, if a user clicks
in an area immediately above a bar chart, pick is used to select the bar that is closest
to the mouse click.

To use the pick listener, you must first set up a PICK event trigger on the chart. See,
Programming Event Triggers for more details.

Consider the following code listing (the code that comprises the DrillDown
demonstration program that comes with JClass Chart, in
Chapter 10 ■ Advanced Chart Programming 165

JCLASS_HOME/jclass/chart/demo/drilldown/) that demonstrates how pick can be used
to “drill down” to reveal more information:

package jclass.chart.demos.drilldown;

import java.applet.Applet;
import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Event;
import java.awt.GridLayout;
import jclass.bwt.BWTEnum;
import jclass.chart.ChartDataView;
import jclass.chart.ChartDataViewSeries;
import jclass.chart.EventTrigger;
import jclass.chart.JCAxis;
import jclass.chart.JCPickListener;
import jclass.chart.JCPickEvent;
import jclass.chart.JCChartStyle;
import jclass.chart.JCChart;
import jclass.chart.ChartText;
import jclass.chart.JCDataIndex;
import jclass.chart.JCLegend;
import jclass.chart.JCChartArea;
import jclass.chart.demos.DemoFrame;

/*
 * This applet shows using pick to drill down to more refined data
 */
public class DrillDown extends Applet implements JCPickListener
{
Data d = null;

JCChart c = null;

public void init()
{
 setLayout(new BorderLayout(10,10));

 d = new Data();

 Color Turquoise = new Color(64,224,208);
 Color DarkTurquoise = new Color(0x00,0xce,0xd1);

 c = new JCChart();
 c.setTrigger(0, new EventTrigger(0, EventTrigger.PICK));
 c.setBackground(DarkTurquoise);

 c.getChartArea().getPlotArea().setBackground(Turquoise);
 c.getChartArea().setBorderWidth(4);
 c.getChartArea().setBorderType(BWTEnum.SHADOW_ETCHED_IN);

 c.getHeader().setBackground(Turquoise);
 c.getHeader().getLabel().setText("[FONT=TimesRoman-bold-16]Drill
Down Demo\n[FONT=TimesRoman-plain-16]Independent Comic Book Sales
1996", true);
 c.getHeader().setBorderType(BWTEnum.SHADOW_ETCHED_OUT);
 c.getHeader().setBorderWidth(1);
 c.getHeader().setIsShowing(true);

 c.getLegend().setIsShowing(true);
166 Part I ■ Using JClass Chart

 c.getLegend().setBackground(Turquoise);
 c.getLegend().setBorderType(BWTEnum.SHADOW_IN);
 c.getLegend().setBorderWidth(1);

 c.setIsBatched(false);
 c.getDataView(0).setDataSource(d);
 c.getDataView(0).setChartType(JCChart.BAR);
 c.getDataView(0).setHoleValue(-1000);

 c.getFooter().setIsShowing(true);
 c.getFooter().getLabel().setText("[FONT=TimesRoman-italic-12]Drill
Down -> Mouse Down on Bar or Legend\nDrill Up -> Mouse Down on Other
Area of Graph", true);
 c.getFooter().setAdjust(ChartText.LEFT);

 c.getChartArea().setDepth(10);
 c.getChartArea().setElevation(20);
 c.getChartArea().setRotation(20);

 // Set colors for each data series
 setSeriesColor();

 // Set up pick and rotate trigger
 c.setTrigger(0, new EventTrigger(0, EventTrigger.PICK));
 c.setTrigger(0, new EventTrigger(Event.SHIFT_MASK,
 EventTrigger.ROTATE));

 // Add listener for pick events
 c.addPickListener(this);

 add("Center",c);
}

void setSeriesColor()
{
 // Set colors for each data series
 Color colors[] = {Color.red, Color.blue, Color.white, Color.magenta,
 Color.green, Color.cyan, Color.orange,
 Color.yellow};
 ChartDataView arr = c.getDataView(0);
 ChartDataViewSeries seriesList[] = arr.getSeries();
 for (int i = 0; i < arr.getNumSeries(); i++) {
 seriesList[i].getStyle().setFillColor(colors[i]);
 }
}

/** Pick event listener. Upon receipt of a pick event, it either drills
 * up or down to more general or refined data.
 */
public void pick(JCPickEvent e)
{
 boolean doLevel = false;
 boolean doUpLevel = true;
 JCDataIndex di = e.getPickResult();
 int srs = 0;

 // If clicked on bar or legend item, drill down. If clicked on
 // any other area of chart, drill up.
 if (di != null) {
 Object obj = di.getObject();
Chapter 10 ■ Advanced Chart Programming 167

 ChartDataView vw = di.getDataView();
 srs = di.getSeriesIndex();
 int pt = di.getPoint();
 int dist = di.getDistance();

 if (vw != null && srs != -1) {
 if (srs >= 0) {
 if ((obj instanceof JCLegend) ||
 (obj instanceof JCChartArea && dist == 0)) {
 doLevel = true;
 doUpLevel = false;
 }
 else {
 doLevel = true;
 }
 }
 } else {
 doLevel = true;
 }
 } else {
 doLevel = true;
 }

 if (doLevel) {
 c.setIsBatched(true);
 if (doUpLevel)
 d.upLevel();
 else
 d.downLevel(srs);
 setSeriesColor();
 c.setIsBatched(false);
 }
}

public static void main(String args[]) {
 DemoFrame f = new DemoFrame("Basic Drilldown example");
 DrillDown tc = new DrillDown();
 tc.init();
 f.setLayout(new GridLayout(1,1));
 f.add(tc);
 f.pack();
 f.show();
 f.resize(500,400);
}

}

When compiled and run, the DrillDown.class program displays the following:
168 Part I ■ Using JClass Chart

Figure 37 The DrillDown demonstration program displayed

When a bar or legend within this chart is clicked by the user, the program “drills
down” to reveal more refined data comprising that bar. If an area outside of the bars
is clicked upon, then the program “drills up” to reveal more general data.

pick is key to this program, determining the way the program interacts with the user.
pick requires an event trigger and listener to work, as the following code fragment
shows:

 c.setTrigger(0, new EventTrigger(0, EventTrigger.PICK));
 c.setTrigger(0, new EventTrigger(Event.SHIFT_MASK,
 EventTrigger.ROTATE));
 c.addPickListener(this);
 add("Center",c);
}
public void pick(JCPickEvent e)
{
 JCDataIndex di = e.getPickResult();

When a user clicks in the DrillDown demonstration program, the event is triggered,
and the x,y coordinates are passed along to the pick event listener, which in turn
takes the information and performs the indicated action. The pick() method returns
a JCDataIndex which encapsulates the point index and data series of the selected
point.

10.7.1 Pick Focus

pick normally takes an x,y coordinate value, but it can take an x or y value only,
which is useful for specific chart types. This can be specified using the PickFocus
property, which specifies how distance is determined for pick operations. When set
to PICK_FOCUS_XY (default), a pick operation will use the actual distance between the
point and the drawn data. When set to values of PICK_FOCUS_X or PICK_FOCUS_Y,
only the distance along the X- or Y-axis is used.
Chapter 10 ■ Advanced Chart Programming 169

This is a particularly useful method to use within programs that display typical bar
charts. In most cases it is more desirable to know which bar the user is over than
which bar the user is closest to when the user clicks their mouse over a chart.

For example, a user may click over a relatively small bar in a bar chart, with the
intention of raising the value of the bar displayed. If an adjacent bar in the chart is
closer to the area of the mouse click along the Y-axis than the X-axis, then the
adjacent bar could be selected instead of the intended target bar.

To overcome this, use PickFocus and select the axis whose values are to be reported
back to the program. For example, the following line of code sets PickFocus to only
report the x coordinate of a pick event:

 arr.setPickFocus(ChartDataView.PICK_FOCUS_X);

10.7.2 Unpick

The unpick method essentially functions in the opposite manner of pick: given a
data series and a data point within that series, unpick returns the pixel co-ordinates
of that point relative to the chart area. It takes two sets of parameters: pt for the point
index, and series for the data series. For bar charts it returns the top-middle location
for a given bar, and the middle of an arc for a pie chart. unpick can be used to
display information at a given point in a chart, and can be used for attaching labels to
chart regions.
170 Part I ■ Using JClass Chart

Part
II

Reference
Appendices

A
JClass Chart Property Listing

ChartDataView ■ ChartDataViewSeries ■ ChartRegion

ChartText ■ JCAxis ■ JCAxisFormula
JCAxisTitle ■ JCBarChartFormat ■ JCBorderStyle

JCCandleChartFormat ■ JCChart ■ JCChartArea

JCChartComponent ■ JCChartLabel ■ JCChartStyle
JCFillStyle ■ JCGridLegend ■ JCHLOCChartFormat

JCLegend ■ JCLineStyle ■ JCMultiColLegend

JCPieChartFormat ■ JCSymbolStyle ■ JCTitle
JCValueLabel ■ PlotArea ■ SimpleChart

This appendix summarizes the JClass Chart properties for all commonly-used
classes, in alphabetical order.

A.1 ChartDataView

Name Description

AutoLabel The AutoLabel property determines if the chart automatically
generates labels for each point in each series. The default is false.
The labels are stored in the AutoLabelList property. They are
created using the Label property of each series.

AutoLabelList The AutoLabelList property is a two-dimensional array of
automatically-generated JCChartLabel instances, one for every point
and series. The inner array is indexed by point; the outer array by
series. Default is empty.

BarChartFormat The BarChartFormat property represents the JCBarChartFormat
for the ChartDataView instance. Unless the ChartType property is a
bar chart, the BarChartFormat property is null.
173

BufferPlotData The BufferPlotData property controls whether plot data is to be
buffered to speed up the drawing process. This property is applicable
for Plot, Scatter, Area, Hilo, HLOC, and Candle chart types only.
Normally it is true. The property is ignored if the FastUpdate
property is true. Plot data will be buffered for FastUpdate.

CandleChartFormat The CandleChartFormat property represents the
JCCandleChartFormat for the ChartDataView instance. Unless the
ChartType property is a candle chart, the CandleChartFormat
property is null.

Changed The Changed property manages whether the data view requires
recalculation. If set to true, a recalculation may be triggered. Default
value is true.

ChartStyle The ChartStyle property contains all the ChartStyles for the data
series in this data view. Default value is generated.

ChartType The ChartType property of the ChartData object specifies the
type of chart used to plot the data. Valid values are: JCChart.AREA,
JCChart.BAR, JCChart.CANDLE, JCChart.HILO,
JCChart.HILO_OPEN_CLOSE, JCChart.PIE, JCChart.PLOT
(default), JCChart.SCATTER_PLOT, and
JCChart.STACKING_BAR.

DataSource The DataSource property, if non-null, is used as a source for data in
the ChartDataView. The DataSource can refer to an object that
implements Chartable or EditableChartable, or it can refer to
an object that extends the abstract class ChartDataModel. JCChart
will do the "right thing" based on the object provided.

DrawingOrder The DrawingOrder property determines the drawing order of items.
When the DrawingOrder property is changed, the order properties
of all ChartDataView instances managed by a single JCChart
object are normalized.

DrawFrontPlane The DrawFrontPlane property determines whether a data view that
has both axes on the front plane of a 3d chart will draw on the front or
back plane of that chart. If true, it will draw on the front plane; if
false it will draw on the back plane. If either axis associated with the
data view is on the back plane, this property will be ignored and the
data view will automatically be drawn on the back plane. This property
is also ignored for 3d chart types such as bar and stacking bars that
automatically appear on the front plane.

FastUpdate The FastUpdate property controls whether column appends to the
data are performed quickly, only recalculating and redrawing the
newly-appended data.

HiloChartFormat The HiloChartFormat property represents the JCHiloChartFormat
for the ChartDataView instance. Unless the ChartType property
is a HiLo chart, the HiloChartFormat property is null.

HLOCChartFormat The HLOCChartFormat property represents the
JCHLOCChartFormat for the ChartDataView instance. Unless the
ChartType property is a HiLoOpenClose chart, the
HLOCChartFormat property is null.

Name Description
174 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
HoleValue The HoleValue property is a floating point number used to
represent a hole in the data. Internally, ChartDataView places this
value in the x and y arrays to represent a missing data value.

IsBatched The IsBatched property controls whether the ChartDataView is
notified immediately of data source changes, or if the changes are
accumulated and sent at a later date.

IsInverted If the IsInverted property is set to true, the x axis becomes
vertical, and the y axis becomes horizontal. Default value is false.

IsShowing The IsShowing property determines whether the dataview is
showing or not. Default value is true.

IsShowingInLegend The IsShowingInLegend property determines whether or not the
view name and its series will appear in the chart legend.

Name The Name property is used as an index for referencing particular
ChartDataView objects.

NumPointLabels The NumPointLabels property determines the number of labels in the
PointLabels property. The PointLabels property is an indexed property
consisting of a series of strings representing the desired label for a
particular data point.

NumSeries The NumSeries property determines how many data series there are
in a ChartDataView.

OutlineColor The OutlineColor property determines the color with which to
draw the outline around a filled chart item (e.g. bar, pie).

PickFocus The PickFocus property specifies how distance is determined for
pick operations. When set to PICK_FOCUS_XY, a pick operation will
use the actual distance between the point and the drawn data. When
set to values of PICK_FOCUS_X or PICK_FOCUS_Y, the distance
only along the X or Y axis is used.

PieChartFormat The PieChartFormat property represents the JCPieChartFormat
for the ChartDataView instance. Unless the ChartType property is a
pie chart, the PieChartFormat property is null.

Pointlabel Sets a particular PointLabel from the PointLabels property (see
below).

PointLabels The PointLabels property is an indexed property consisting of a
series of strings representing the desired label for a particular data
point.

Series The Series property is an indexed property that contains all data
series for a particular ChartDataView. The order of
ChartDataViewSeries objects in the series array corresponds to
the drawing order.

XAxis The XAxis property determines the x axis against which the data in
ChartDataView is plotted.

YAxis The YAxis property determines the y axis against which the data in
ChartDataView is plotted.

Name Description
Appendix A ■ JClass Chart Property Listing 175

A.2 ChartDataViewSeries

A.3 ChartRegion

Name Description

DrawingOrder The DrawingOrder property determines the order of display of
data series. When the DrawingOrder property is changed,
ChartDataView will normalize the order properties of all the
ChartDataViewSeries objects that it manages.

FirstPoint The FirstPoint property controls the index of the first point
displayed in the ChartDataSeries.

IsIncluded The IsIncluded property determines whether a data series is
included in chart calculations (like axis bounds).

IsShowing The IsShowing property determines whether the data series is
showing in the chart area. Note that data series that are not showing
are still used in axis calculations. See the IsIncluded property for
details on how to omit a data series from chart calculations.

IsShowingInLegend The IsShowingInLegend property determines whether or not this
series will appear in the chart legend.

Label The Label property controls the text that appears next to the data
series inside the legend. It can be an unparsed JCString.

LastPoint The LastPoint property controls the index of the first point
displayed in the ChartDataSeries.

Name The Name property represents the name of the data series. In JClass
Chart, data series are named, and can be retrieved by name.

Style The Style property defines the rendering style for the data series.

X The X property determines the x value at a specified index.

Y The Y property determines the y value at a specified index.

Name Description

Background The Background property determines the foreground color used to
draw inside the chart region. Note that the Background property is
inherited from the parent JCChart.

BorderType The BorderType property determines the style of border drawn
around the ChartRegion. Valid values come from
jclass.base.Border, and include NONE, ETCHED_IN,
ETCHED_OUT, IN, OUT, PLAIN, FRAME_IN, FRAME_OUT,
CONTROL_IN and CONTROL_OUT.

BorderWidth The BorderWidth property determines the width of the border
drawn around the region.
176 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
Font The Font property determines what font is used to render text inside
the chart region. Note that the Font property is inherited from the
parent JCChart.

Foreground The Foreground property determines the foreground color used to
draw inside the chart region. Note that the Foreground property is
inherited from the parent JCChart.

Height The Height property determines the height of the ChartRegion.

HeightIsDefault The HeightIsDefault property determines whether the height of
the chart region is calculated by Chart (true) or taken from the
Height property (false).

Insets The Insets property specifies the space that a container must leave at
each of its edges. The space can be a border, a blank space, or a title.

IsShowing The IsShowing property determines whether the associated
ChartRegion is currently visible.

Left The Left property determines the location of the left of the
ChartRegion

LeftIsDefault The LeftIsDefault property determines whether the left position
of the chart region is calculated by Chart (true) or taken from the
Left property (false).

Name The Name property specifies a string identifier for the ChartRegion
object.

Parent The Parent property assures the connection to the chart on which
the ChartRegion appears. Default value is null.

ParentRegion The ParentRegion property is the ChartRegion parent. Default
value is null.

Top The Top property determines the location of the top of the
ChartRegion.

TopIsDefault The TopIsDefault property determines whether the top position of
the chart region is calculated by Chart (true) or taken from the Top
property (false).

Width The Width property determines the width of the ChartRegion.

WidthIsDefault The WidthIsDefault property determines whether the width of the
chart region is calculated by Chart (true) or taken from the Width
property (false).

Name Description
Appendix A ■ JClass Chart Property Listing 177

A.4 ChartText

Name Description

Adjust The Adjust property determines how text is justified (positioned)
in the label. Valid values include ChartText.LEFT,
ChartText.CENTER and ChartText.RIGHT. The default value
is ChartText.LEFT.

Background The Background property determines the background color used
to draw inside the chart region. Note that the Background property
is inherited from the parent ChartRegion.

BorderType The BorderType property determines the style of border drawn
around the ChartRegion. Valid values come from
jclass.base.Border, and include NONE, ETCHED_IN,
ETCHED_OUT, IN, OUT, PLAIN, FRAME_IN, FRAME_OUT,
CONTROL_IN and CONTROL_OUT.

BorderWidth The BorderWidth property determines the width of the border
drawn around the region. The default value is 0.

Font The Font property determines what font is used to render text
inside the chart region. Note that the Font property is inherited
from the parent ChartRegion.

Foreground The Foreground property determines the foreground color used to
draw inside the chart region. Note that the Foreground property is
inherited from the parent ChartRegion.

Height The Height property determines the height of the ChartRegion.
The default value is calculated.

HeightIsDefault The HeightIsDefault property determines whether the height of
the chart region is calculated by Chart (true) or taken from the
Height property (false). The default value is true.

Insets The Insets property specifies the space that a container must leave
at each of its edges. The space can be a border, a blank space, or a
title.

IsShowing The IsShowing property determines whether the associated
ChartRegion is currently visible. Default value is true.

Left The Left property determines the location of the left of the
ChartRegion. The default value is calculated.

LeftIsDefault The LeftIsDefault property determines whether the left position
of the chart region is calculated by Chart (true) or taken from the
Left property (false). The default value is true.

Name The Name property specifies a string identifier for the
ChartRegion object.

Parent The Parent property assures the connection to the chart on which
the ChartRegion appears. Default value is null.

ParentRegion The ParentRegion property is the ChartRegion parent. Default
value is null.
178 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
A.5 JCAxis

Rotation The Rotation property controls the rotation of the label. Valid
values include ChartText.DEG_90, ChartText.DEG_180,
ChartText.DEG_270 and ChartText.DEG_0. The default
value is ChartText.DEG_0.

Text The Text property is a string property that represents the text to be
displayed inside the chart label. In some cases, the Text property is
used to create a JCString instance. Default value is " " (empty string).

Top The Top property determines the location of the top of the
ChartRegion. The default value is calculated.

TopIsDefault The TopIsDefault property determines whether the top position
of the chart region is calculated by Chart (true) or taken from the
Top property (false). The default value is true.

Width The Width property determines the width of the ChartRegion.
The default value is calculated.

WidthIsDefault The WidthIsDefault property determines whether the width of
the chart region is calculated by Chart (true) or taken from the
Width property (false). The default value is true.

Name Description

AnnotationMethod The AnnotationMethod property determines how axis
annotations are generated. Valid values are JCAxis.VALUE
(annotation is generated by Chart, with possible callbacks to
a label generator); JCAxis.VALUE_LABELS (annotation is
taken from a list of value labels provided by the user -- a
value label is a label that appears at a particular axis value);
JCAxis.POINT_LABELS (annotation comes from the data
source’s point labels that are associated with particular data
points); and JCAxis.TIME_LABELS (Chart generates
time/date labels based on the TimeUnit, TimeBase and
TimeFormat properties). Default value is JCAxis.VALUE.

AnnotationRotation The AnnotationRotation property specifies the rotation
of each axis label. Valid values are JCAxis.ROTATE_90,
JCAxis.ROTATE_180, JCAxis.ROTATE_270 or
JCAxis.ROTATE_NONE. Default value is
JCAxis.ROTATE_NONE.

Background The Background property determines the background
color used to draw inside the chart region. Note that the
Background property is inherited from the parent
ChartRegion.

Font The Font property determines what font is used to render
text inside the chart region. Note that the Font property is
inherited from the parent ChartRegion.

Name Description
Appendix A ■ JClass Chart Property Listing 179

Foreground The Foreground property determines the foreground color
used to draw inside the chart region. Note that the
Foreground property is inherited from the parent
ChartRegion.

Formula The Formula property determines how an axis is related to
another axis object. If set, the Formula property overrides
all other axis properties. See JCAxisFormula for details.

Gap The Gap property determines the amount of space left
between adjacent axis annotations.

GeneratedValueLabels The GeneratedValueLabels property reveals the value label at
the specified index in the list of value labels generated for
this axis.

GridIsShowing The GridIsShowing property determines whether a grid is
drawn for the axis. Default value is false.

GridSpacing The GridSpacing property controls the spacing between
grid lines relative to the axis. Default value is 0.0.

GridSpacingIsDefault The GridSpacingIsDefault property determines
whether Chart is responsible for calculating the grid spacing
value. If true, Chart will calculate the grid spacing. If
false, Chart will use the provided grid spacing. Default
value is true.

GridStyle The GridStyle property controls how grids are drawn. The
default value is generated.

Height The Height property determines the height of the
ChartRegion. The default value is calculated.

HeightIsDefault The HeightIsDefault property determines whether the
height of the chart region is calculated by Chart (true) or
taken from the Height property (false). Default value is
true.

IsEditable The IsEditable property determines whether the axis can
be affected by edit/translation/zooming. Default value is
true.

IsLogarithmic The IsLogarithmic property determines whether the axis
will be logarithmic (true) or linear (false). Default value is
false.

IsReversed The IsReversed property of JCAxis determines if the
axis order is reversed. Default value is false.

IsShowing The IsShowing property determines whether the
associated Axis is currently visible. Default value is true.
Note that the Font property is inherited from the parent
ChartRegion.

IsVertical The IsVertical property determines whether the
associated Axis is vertical. Default value is false.

Name Description
180 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
LabelGenerator The LabelGenerator property holds a reference to an
object that implements the JCLabelGenerator interface.
This interface is used to externally generate labels if the
AnnotationMethod property is set to JCAxis.VALUE.
Default value is null.

Left The Left property determines the location of the left of the
ChartRegion. The default value is calculated.

LeftIsDefault The LeftIsDefault property determines whether the left
position of the chart region is calculated by Chart (true) or
taken from the Left property (false). Default value is
true.

Max The Max property controls the maximum value shown on the
axis. The data max is determined by Chart. Default value is
calculated.

MaxIsDefault The MaxIsDefault property determines whether Chart is
responsible for calculating the maximum axis value. If true,
Chart calculates the axis max. If false, Chart uses the
provided axis max. Default value is true.

Min The Min property controls the minimum value shown on the
axis. The data min is determined by Chart. Default value is
calculated.

MinIsDefault The MinIsDefault property determines whether Chart is
responsible for calculating the minimum axis value. If true,
Chart will calculate the axis min. If false, Chart will use the
provided axis min. Default value is true.

Name The Name property specifies a string identifier for the
ChartRegion object. Note that the Name property is inherited
from the parent ChartRegion.

Parent The Parent property assures the connection to the chart on
which the JCAxis appears. Default value is null. Note that
the Parent property is inherited from the parent
ChartRegion.

ParentRegion The ParentRegion property is the ChartRegion parent.
Default value is null. Note that the ParentRegion
property is inherited from the parent ChartRegion.

NumSpacing The NumSpacing property controls the interval between
axis labels. The default value is calculated.

NumSpacingIsDefault The NumSpacingIsDefault property determines whether
Chart is responsible for calculating the numbering spacing. If
true, Chart will calculate the spacing. If false, Chart will
use the provided numbering spacing. Default value is true.

Origin The Origin property controls location of the origin along
the axis. The default value is calculated.

OriginIsDefault The OriginIsDefault property determines whether
Chart is responsible for positioning the axis origin. If true,
Chart calculates the axis origin. If false, Chart uses the
provided axis origin value. Default value is true.

Name Description
Appendix A ■ JClass Chart Property Listing 181

OriginPlacement The OriginPlacement property specifies where the origin
is placed. Note that the OriginPlacement property is
only active if the Origin property has not been set. Valid
values include AUTOMATIC (places origin at minimum
value). ZERO (places origin at zero), MIN (places origin at
minimum value on axis) or MAX (places origin at maximum
value on axis). Default value is AUTOMATIC.

OriginPlacementIsDefault The OriginPlacementIsDefault property determines
whether Chart is responsible for determining the location of
the axis origin. If true, Chart calculates the origin
positioning. If false, Chart uses the provided origin
placement.

Placement The Placement property determines the method used to
place the axis. Valid values include JCAxis.AUTOMATIC
(Chart chooses an appropriate location), JCAxis.ORIGIN
(appears at the origin of another axis, specified via the
PlacementAxis property), JCAxis.MIN (appears at the
minimum axis value), JCAxis.MAX (appears at the
maximum axis value) or JCAxis.VALUE_ANCHORED
(appears at a particular value along another axis, specified
via the PlacementAxis property). Default value is
AUTOMATIC.

PlacementAxis The PlacementAxis property determines the axis that
controls the placement of this axis. In JCChart, it is
possible to position an axis at a particular position on
another axis (in conjunction with the
PlacementLocation property or the Placement
property). Default value is null.

PlacementIsDefault The PlacementIsDefault property determines whether
Chart is responsible for determining the location of the axis.
If true, Chart calculates the axis positioning. If false,
Chart uses the provided axis placement.

PlacementLocation The PlacementLocation property is used with the
PlacementAxis property to position the current axis
object at a particular point on another axis. Default value is
0.0.

Precision The Precision property controls the number of zeros that
appear after the decimal place in chart-generated axis labels.
The default value is calculated.

PrecisionIsDefault The PrecisionIsDefault determines whether Chart is
responsible for calculating the numbering precision. If true,
Chart will calculate the precision. If false, Chart will use the
provided precision. Default value is true.

TickSpacing The TickSpacing property controls the interval between
tick lines on the axis. Note: if the AnnotationMethod
property is set to POINT_LABELS, tick lines appear at point
values. The default value is calculated.

Name Description
182 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
TickSpacingIsDefault The TickSpacingIsDefault property determines
whether Chart is responsible for calculating the tick spacing.
If true, Chart will calculate the tick spacing. If false, Chart
will use the provided tick spacing. Default value is true.

TimeBase The TimeBase property defines the start time for the axis.
Default value is the current time.

TimeFormat The TimeFormat property controls the format used to
generate time labels for time labelled axes. The formats
supported are similar to those supported by the C function
strftime(). Default value is calculated based on
TimeUnit.

TimeFormatIsDefault The TimeFormatIsDefault property determines whether
a time label format is generated automatically, or the user
value for TimeFormat is used. Default value is true.

TimeUnit The TimeUnit property controls the unit of time used for
labelling a time labelled axis. Valid TimeUnit values include
JCAxis.SECONDS, JCAxis.MINUTES, JCAxis.HOURS,
JCAxis.DAYS, JCAxis.WEEKS, JCAxis.MONTHS and
JCAxis.YEARS. Default value is JCAxis.SECONDS.

Title The Title property controls the appearance of the axis title.

Top The Top property determines the location of the top of the
ChartRegion. The default value is calculated.

TopIsDefault The TopIsDefault property determines whether the top
position of the chart region is calculated by Chart (true) or
taken from the Top property (false). Default value is true.

ValueLabels The ValueLabels property is an indexed property
containing a list of all annotations for an axis. Default value is
null, no value labels.

Width The Width property determines the width of the
ChartRegion. The default value is calculated.

WidthIsDefault The WidthIsDefault property determines whether the
width of the chart region is calculated by Chart (true) or
taken from the Width property (false). Default value is
true.

Name Description
Appendix A ■ JClass Chart Property Listing 183

A.6 JCAxisFormula

A.7 JCAxisTitle

Name Description

Constant The Constant property specifies the “c” value in the axis relationship
y2 = my + c.

Multiplier The Multiplier property specifies the “m” value in the relationship
y2 = my + c.

Originator The Originator property specifies an object representing the axis
that is related to the current axis by the formula y = mx + c. The
originator is “x”.

Name Description

Adjust The Adjust property determines how text is justified (positioned) in
the label. If the contents of the ChartText are a JCString, this has no
effect. Valid values include ChartText.LEFT,
ChartText.CENTER and ChartText.RIGHT. Default value is
ChartText.LEFT.

Background The Background property determines the background color used to
draw inside the chart region. Note that the Background property is
inherited from the parent ChartText.

BorderType The BorderType property determines the style of border drawn around
the ChartRegion. Valid values come from jclass.base.Border, and
include NONE, ETCHED_IN, ETCHED_OUT, IN, OUT, PLAIN,
FRAME_IN, FRAME_OUT, CONTROL_IN and CONTROL_OUT. Default
is null.

BorderWidth The BorderWidth property determines the width of the border drawn
around the region.

Font The Font property determines what font is used to render text inside
the chart region. Note that the Font property is inherited from the
parent ChartText.

Foreground The Foreground property determines the foreground color used to
draw inside the chart region. Note that the Foreground property is
inherited from the parent ChartText.

Height The Height property defines the height of the chart region. The
default value is calculated.

HeightIsDefault The HeightIsDefault property determines whether the height of the
chart region is calculated by Chart (true) or taken from the Height
property (false).

Insets The Insets property specifies the space that a container must leave at
each of its edges. The space can be a border, a blank space, or a title.
184 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
IsShowing The IsShowing property determines whether the associated Axis is
currently visible. Default value is true.

Left The Left property determines the location of the left of the chart
region. This property is read-only.

LeftIsDefault The LeftIsDefault property determines whether the left position of the
chart region is calculated by Chart (true) or taken from the Left
property (false).

Placement The Placement property controls where the JCAxis title is placed
relative to the “opposing” axis. Valid values include
JCLegend.NORTH or JCLegend.SOUTH for horizontal axes, and
JCLegend.EAST, JCLegend.WEST, JCLegend.NORTHEAST,
JCLegend.SOUTHEAST, JCLegend.NORTHWEST or
JCLegend.SOUTHEAST for vertical axes. The default value is
calculated.

PlacementIsDefault The PlacementIsDefault property determines whether Chart is
responsible for calculating a reasonable default placement for the axis
title. Default value is true.

Rotation The Rotation property controls the rotation of the label. Valid
values include ChartText.DEG_90, ChartText.DEG_180,
ChartText.DEG_270 and ChartText.DEG_0. Default value is
ChartText.DEG_0.

Text The Text property is a string property that represents the text to be
displayed inside the chart label. In some cases, the Text property is
used to create a JCString instance. Default value is " " (nothing).

Top The Top property determines the location of the top of the chart
region. This property is read-only.

TopIsDefault The TopIsDefault property determines whether the top position of the
chart region is calculated by Chart (true) or taken from the Top
property (false).

Width The Width property defines the width of the chart region. The default
value is calculated.

WidthIsDefault The WidthIsDefault property determines whether the width of the
chart region is calculated by Chart (true) or taken from the Width
property (false).

Name Description
Appendix A ■ JClass Chart Property Listing 185

A.8 JCBarChartFormat

A.9 JCBorderStyle

A.10 JCCandleChartFormat

Name Description

100Percent The 100Percent property determines whether stacking bar charts will
be charted versus an axis representing a percentage between 0 and 100.
Default value is false.

ClusterOverlap The ClusterOverlap property specifies the overlap between bars.
Valid values are between -100 and 100. Default value is 0.

ClusterWidth The ClusterWidth property determines the percentage of available
space which will be occupied by the bars. Valid values are between 0 and
100. Default value is 80.

Name Description

Type The Type property determines the style of border drawn around the ChartRegion.
Valid values come from jclass.base.Border, and include NONE, ETCHED_IN,
ETCHED_OUT, IN, OUT, PLAIN, FRAME_IN, FRAME_OUT, CONTROL_IN and
CONTROL_OUT. Default value is FRAME_IN.

Width The Width property determines the width of the border. Default value is 0.

Name Description

CandleOutlineStyle The CandleOutlineStyle determines the the candle outline style of the
complex candle chart.

FallingCandleStyle The FallingCandleStyle determines the candle style of the falling
candle style of the complex candle chart.

HiloStyle The HiloStyle determines the candle style of the simple candle or the
HiLo line of the complex candle chart.

IsComplex The IsComplex property determines whether candle charts use the
simple or the complex display style. When false, Chart only uses the
style referenced by getHiLoStyle() for the candle appearance.
When set to true, all four styles are used. Default value is false.

RisingCandleStyle The RisingCandleStyle determines the rising candle style of the
complex candle chart.
186 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
A.11 JCChart

Name Description

About The About property displays contact information for KL Group in the
bean box.

AllowUserChanges The AllowUserChanges property determines whether the user
viewing the graph can modify graph values. Default value is false.

Background The Background property determines the background color used to
draw inside the chart region. Note that the Background property is
inherited from the parent JCComponent.

BorderType Determines the style of border drawn around the Chart. Valid values
come from jclass.base.Border, and include NONE,
ETCHED_IN, ETCHED_OUT, IN, OUT, PLAIN, FRAME_IN,
FRAME_OUT, CONTROL_IN and CONTROL_OUT..

BorderWidth The BorderWidth property determines the width of the border
drawn around the chart. Default value is 0.

BottomMargin The BottomMargin property controls the bottom margin on the
chart. Default value is 1.

CancelKey The CancelKey property specifies the key used to perform a cancel
operation.

Changed The Changed property determines whether the chart requires
recalculation. Default value is false.

ChartArea The ChartArea property controls the object that controls the
display of the graph. Default value is null.

ChartLabels The ChartLabels property controls a list of chart labels managed
by the chart. Default value is an empty JCVector.

DataView The DataView property is an indexed property that contains all the
data to be displayed in Chart. See ChartDataView for details on
data format. By default, one ChartDataView is created.

DoubleBuffer The DoubleBuffer property controls whether the chart rendering
uses an off-screen image or renders directly to the screen. Default
value is true.

FillColorIndex The FillColorIndex property controls the fill color index. Default
value is 0.

Font The Font property determines what font is used to render text inside
the chart region. Note that the Font property is inherited from the
parent JCComponent.

Footer The Footer property controls the object that controls the display of
the footer. Default value is null.

Foreground The Foreground property determines the foreground color used to
draw inside the chart region. Note that the Foreground property is
inherited from the parent JCComponent.

Header The Header property controls the object that controls the display of
the header. Default value is null.
Appendix A ■ JClass Chart Property Listing 187

IsBatched The IsBatched property controls whether chart updates are
accumulated. Default value is false.

Legend The Legend property controls the object that controls the display of
the legend. Default value is null.

LeftMargin The LeftMargin property controls the left margin on the chart.
Default value is 1.

LineColorIndex The LineColorIndex property controls the line color index.
Default value is 0.

NumChartLabels The NumChartLabels property indicates how many chart labels
there are. This property is read-only. Default value is calculated.

NumData The NumData property indicates how many ChartDataView objects
are stored in JCChart. This is a read-only property. Default value is 1.

NumTriggers The NumTriggers property indicates how many event triggers have
been specified.

ResetKey The ResetKey property specifies the key used to perform a reset
operation.

RightMargin The RightMargin property controls the right margin on the chart.
Default value is 1.

SaveParamStream The SaveParamStream property specifies the output stream to
save Chart HTML tags to. Default value is null.

SymbolColorIndex The SymbolColorIndex property controls the symbol color index.
Default value is 0.

SymbolShapeIndex The SymbolShapeIndex property controls the symbol shape
index. Default value is 1.

TopMargin The TopMargin property controls the top margin on the chart.
Default value is 1.

Trigger The Trigger property is an indexed property that contains all the
information necessary to map user events into Chart actions. The
Trigger property is made up of a number of EventTrigger
objects. Default value is empty.

Version The Version property specifies the JClass Chart version number.
This property is read-only. Default value is calculated.

Name Description
188 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
A.12 JCChartArea

Name Description

AngleUnit The AngleUnit property determines the unit of all angle values.
Default value is DEGREES.

AxisBoundingBox The AxisBoundingBox property determines whether a box is drawn
around the area bound by the inner axes.

Background The Background property determines the background color used to
draw inside the chart region. Note that the Background property is
inherited from the parent ChartRegion.

BorderType The BorderType property determines the style of border drawn
around the ChartRegion. Valid values come from
jclass.base.Border, and include NONE, ETCHED_IN,
ETCHED_OUT, IN, OUT, PLAIN, FRAME_IN, FRAME_OUT,
CONTROL_IN and CONTROL_OUT.

BorderWidth The BorderWidth property determines the width of the border drawn
around the chart area. (Note that legend, header, footer and chart area
are all ChartRegion instances). Default value is 0.

Depth The Depth property controls the apparent depth of a graph. Default
value is 0.0.

Elevation The Elevation property controls distance from the X axis. Default
value is 0.0.

FastAction The FastAction property determines whether chart actions will use
an optimized mode in which it does not bother to display axis
annotations or gridlines. Default value is false.

Font The Font property determines what font is used to render text inside
the chart region. Note that the Font property is inherited from the
parent ChartRegion.

Foreground The Foreground property determines the foreground color used to
draw inside the chart region. Note that the Foreground property is
inherited from the parent ChartRegion.

Height The Height property determines the height of the ChartRegion.
The default value is calculated.

HeightIsDefault The HeightIsDefault property determines whether the height of
the chart area is calculated by Chart (true) or taken from the Height
property (false). Default value is false.

HorizActionAxis The HorizActionAxis property determines the axis used for
actions (zooming, translating) in the horizontal direction. Default value
is null.

Insets The Insets property specifies the space that a container must leave at
each of its edges. The space can be a border, a blank space, or a title.

IsShowing If true, the ChartRegion will appear on the screen. If false, it will
not appear on the screen. (Note that legend, header, footer and chart
area are all ChartRegion instances). Default value is true.
Appendix A ■ JClass Chart Property Listing 189

A.13 JCChartComponent

Left The Left property determines the location of the left of the
ChartRegion. The default value is calculated.

LeftIsDefault The LeftIsDefault property determines whether the left position of
the chart area is calculated by Chart (true) or taken from the Left
property (false). Default value is false.

Markers The Markers property is an indexed property that controls the
markers that appear on a particular JCChartArea instance.
JCChartArea will pre-allocate an array of JCMarkers. Initially, the
markers will have their axis and series properties set to null, so the
markers will not appear.

PlotArea The PlotArea property represents the region of the ChartArea that is
inside the axes.

Rotation The Rotation property controls the position of the eye relative to the
Y axis. Default value is 0.0.

Top The Top property determines the location of the top of the
ChartRegion. The default value is calculated.

TopIsDefault The TopIsDefault property determines whether the top position of
the chart area is calculated by Chart (true) or taken from the Top
property (false). Default value is false.

VertActionAxis The VertActionAxis property determines the axis used for actions
(zooming, translating) in the vertical direction. Default value is null.

Width The Width property determines the width of the ChartRegion. The
default value is calculated.

WidthIsDefault The WidthIsDefault property determines whether the width of the
chart area is calculated by Chart (true) or taken from the Width
property (false). Default value is false.

XAxis The XAxis property is an indexed property that contains all the x axes
for the chart area. Default value is one x axis.

YAxis The YAxis property is an indexed property that contains all the y axes
for the chart area. Default value is one y axis.

Name Description

AllowUserChanges The AllowUserChanges property determines
whether the user viewing the graph can modify graph
values. Default value is false.

AxisBoundingBox The AxisBoundingBox property determines
whether a box is drawn around the area bound by the
inner axes. (AxisBoundingBox is actually a
property of JCChartArea).

Name Description
190 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
Background The Background property determines the
background color used to draw inside the chart region.
Note that the Background property is inherited from
the parent JCComponent.

BorderType The BorderType property determines the style of
border drawn around the ChartRegion. Valid values
come from jclass.base.Border, and include
NONE, ETCHED_IN, ETCHED_OUT, IN, OUT, PLAIN,
FRAME_IN, FRAME_OUT, CONTROL_IN and
CONTROL_OUT.

BorderWidth The BorderWidth property determines the width of
the border drawn around the chart. Default value is 0.

BottomMargin The BottomMargin property controls the bottom
margin on the chart. Default value is 1.

CancelKey The CancelKey property specifies the key used to
perform a cancel operation.

Changed The Changed property determines whether the chart
requires recalculation. Default value is false.

ChartArea The ChartArea property controls the object that
controls the display of the graph. Default value is
null.

ChartLabels The ChartLabels property controls a list of chart
labels managed by the chart. Default value is an empty
JCVector.

DataView1 The DataView1 property controls the file or URL
used for the first set of data in chart.

DataView1ChartType The DataView1ChartType property determines the
chart type of the first set of data in the chart.

DataSources The DataSources property is an indexed property
used to get data into Chart. Each element in
DataSources is either a filename or a valid URL
from which properly-formatted data can be retrieved.

DataViewIsInverted The DataViewIsInverted property determines
whether the x and y axis are inverted.

DataView2 The DataView2 property controls the file or URL
used for the first set of data in chart.

DataView2ChartType The DataView2ChartType property determines the
chart type of the first set of data in the chart.

Depth The Depth property controls the apparent depth of a
graph when displayed in 3D mode. (Depth is actually
a property of JCChartArea). Default value is 0.0.

DoubleBuffer The DoubleBuffer property controls whether the
chart rendering uses an off-screen image or renders
directly to the screen. Default value is true.

Name Description
Appendix A ■ JClass Chart Property Listing 191

FillColorIndex The FillColorIndex property controls the fill color
index. Default value is 0.

Elevation The Elevation property controls the distance form
the x axis when the chart is displayed in 3D mode.
(Elevation is actually a property of JCChartArea).
Default value is 0.0.

FastAction The FastAction property determines whether chart
actions will use an optimized mode in which it does
not bother to display axis annotations or grid lines.
(FastAction is actually a property of JCChartArea).

Font The Font property determines what font is used to
render text inside the chart region. Note that the Font
property is inherited from the parent JCComponent.

FooterIsShowing The FooterIsShowing property determines
whether the footer is visible. Default value is false.

FooterText The FooterText property holds the text that is
displayed in the footer. Default value is " " (empty
string).

Foreground The Foreground property determines the
foreground color used to draw inside the chart region.
Note that the Foreground property is inherited from
the parent JCComponent.

HeaderIsShowing The HeaderIsShowing property determines
whether the header is visible. Default value is false.

HeaderText The HeaderText property holds the text that is
displayed in the header. Default value is " " (empty
string).

IsBatched The IsBatched property controls whether chart
updates are accumulated. Default value is false.

LeftMargin The LeftMargin property controls the left margin on
the chart. Default value is 1.

Legend The Legend property controls the object that controls
the display of the legend. Default value is null.

LegendAnchor The LegendAnchor property determines the position
of the legend relative to the ChartArea. Valid values
include NORTH, SOUTH, EAST, WEST, NORTHWEST,
SOUTHWEST, NORTHEAST and SOUTHEAST. Default
value is EAST.

LegendIsShowing The LegendIsShowing property determines
whether the legend is visible. Default value is false.

LegendOrientation The LegendOrientation property determines how
legend information is laid out. Valid values include
VERTICAL and HORIZONTAL. Default value is
VERTICAL.

Name Description
192 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
LineColorIndex The LineColorIndex property controls the line
color index. Default value is 0.

NumChartLabels The NumChartLabels property indicates how many
chart labels there are. This property is read-only.
Default value is calculated.

NumData The NumData property indicates how many
ChartDataView objects are stored in JCChart.
This is a read-only property. Default value is 1.

NumTriggers The NumTriggers property indicates how many
event triggers have been specified.

ResetKey The ResetKey property specifies the key used to
perform a reset operation.

RightMargin The RightMargin property controls the right margin
on the chart. Default value is 1.

Rotation The Rotation property controls the position of the
eye relative to the y axis when the chart is displayed in
3D mode. (Rotation is actually a property of
JCChartArea). Default value is 0.0.

SaveParamStream The SaveParamStream property specifies the
output stream to save Chart HTML tags to. Default
value is null.

SymbolColorIndex The SymbolColorIndex property controls the
symbol color index. Default value is 0.

SymbolShapeIndex The SymbolShapeIndex property controls the
symbol shape index. Default value is 1.

TopMargin The TopMargin property controls the top margin on
the chart. Default value is 1.

Trigger The Trigger property is an indexed property that
contains all the information necessary to map user
events into Chart actions. The Trigger property is
made up of a number of EventTrigger objects. Default
value is empty.

Version The Version property specifies the JClass Chart
version number. This property is read-only. Default
value is calculated.

X1AxisAnnotationMethod The X1AxisAnnotationMethod property
determines how axis annotations are generated. Valid
values include VALUE (annotation is generated by
Chart, with possible callbacks to a label generator);
VALUE_LABELS (annotation is taken from a list of
value labels provided by the user -- a value label is a
label that appears at a particular axis value);
POINT_LABELS (annotation comes from the data
source’s point labels that are associated with particular
data points); and TIME_LABELS (Chart generates
time/date labels based on the TimeUnit, TimeBase
and TimeFormat properties). Default value is VALUE.

Name Description
Appendix A ■ JClass Chart Property Listing 193

X1AxisAnnotationRotation The X1AxisAnnotationRotation property
specifies the rotation of each axis label. Valid values
are ROTATE_90, ROTATE_180, ROTATE_270 or
ROTATE_NONE. Default value is ROTATE_NONE.

X1AxisGridIsShowing The X1AxisGridIsShowing property determines
whether a grid is drawn for the axis. Default value is
false.

X1AxisGridSpacing The X1AxisGridSpacing property controls the
spacing between grid lines relative to the axis. Default
value is calculated.

X1AxisGridSpacingIsDefault The X1AxisGridSpacingIsDefault property
determines whether Chart is responsible for
calculating the grid spacing value. If true, Chart will
calculate the grid spacing. If false, Chart will use the
provided grid spacing. Default value is true.

X1AxisIsLogarithmic The X1AxisIsLogarithmic property determines
whether the first x axis will be logarithmic (true) or
linear (false). Default value is false.

X1AxisIsReversed The X1AxisIsReversed property determines
whether the first x axis will be reversed in direction.
Default value is false.

X1AxisIsShowing The X1AxisIsShowing property determines
whether the first x axis is currently visible. Default
value is true.

X1AxisMax The X1AxisMax property controls the maximum
value shown on the axis. The data max is determined
by Chart. Default value is calculated.

X1AxisMaxIsDefault The X1AxisMaxIsDefault property determines
whether Chart is responsible for calculating the
maximum axis value. If true, Chart will calculate the
axis max. If false, Chart will use the provided axis
max. Default value is true.

X1AxisMin The X1AxisMin property controls the minimum value
shown on the axis. The data min is determined by
Chart. Default value is calculated.

X1AxisMinIsDefault The X1AxisMinIsDefault property determines
whether Chart is responsible for calculating the
minimum axis value. If true, Chart will calculate the
axis min. If false, Chart will use the provided axis
min. Default value is true.

X1AxisNumSpacing The X1AxisNumSpacing property controls the
interval between axis labels. Default value is
calculated.

Name Description
194 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
X1AxisNumSpacingIsDefault The X1AxisNumSpacingIsDefault property
determines whether Chart is responsible for
calculating the numbering spacing. If true, Chart will
calculate the spacing. If false, Chart will use the
provided numbering spacing. Default value is true.

X1AxisOrigin The X1AxisOrigin property controls location of the
origin along the axis. Default value is calculated.

X1AxisOriginIsDefault The X1AxisOriginIsDefault property
determines whether Chart is responsible for
positioning the axis origin. If true, Chart calculates
the axis origin. If false, Chart uses the provided axis
origin value. Default value is true.

X1AxisOriginPlacement The X1AxisOriginPlacement property specifies
where the origin is placed. Note that the
X1AxisOriginPlacement property is only active if
the X1AxisOrigin property has not been set. Valid
values include AUTOMATIC (places origin at minimum
value or at zero if there are negative and positive
values), ZERO (places origin at zero), MIN (places
origin at minimum value on axis) or MAX (places origin
at maximum value on axis). Default value is calculated.

X1AxisPlacement The X1AxisPlacement property determines the
method used to place the first x axis. Valid values
include AUTOMATIC (Chart chooses an appropriate
location), ORIGIN (appears at the origin of another
axis), MIN (appears at the minimum axis value), MAX
(appears at the maximum axis value) or
VALUE_ANCHORED (appears at a particular value
along another axis). Default value is AUTOMATIC.

X1AxisPrecision The X1AxisPrecision property controls the
number of zeros that appear after the decimal place in
chart-generated axis labels. Default value is calculated.

X1AxisPrecisionIsDefault The X1AxisPrecisionIsDefault determines
whether Chart is responsible for calculating the
numbering precision. If true, Chart will calculate the
precision. If false, Chart will use the precision
provided in X1AxisPrecision. Default value is
true.

X1AxisTickSpacing The X1AxisTickSpacing property controls the
interval between tick lines on the axis. Note: if the
X1AxisAnnotationMethod property is set to
POINT_LABELS, tick lines appear at point values.
Default value is calculated.

X1AxisTickSpacingIsDefault The X1AxisTickSpacingIsDefault property
determines whether Chart is responsible for
calculating the tick spacing. If true, Chart will
calculate the tick spacing. If false, Chart will use the
provided tick spacing. Default value is true.

Name Description
Appendix A ■ JClass Chart Property Listing 195

X1AxisTimeFormat The X1AxisTimeFormat property controls the
format used to generate time labels for time labelled
axes. The formats supported are similar to those
supported by the C function strftime(). Default
value is based on value of X1AxisTimeUnit.

X1AxisTimeFormatIsDefault The X1AxisTimeFormatIsDefault property
determines whether a time label format is generated
automatically, or the user value for
X1AxisTimeFormat is used. Default value is true.

X1AxisTimeUnit The X1AxisTimeUnit property controls the unit of
time used for labelling a time labelled axis. Valid
X1AxisTimeUnit values include SECONDS,
MINUTES, HOURS, DAYS, WEEKS, MONTHS and
YEARS. Default value is SECONDS.

X1AxisTitleIsShowing The X1AxisTitleIsShowing property determines
whether the x1 axis is visible. Default value is false.

X1AxisTitlePlacement The X1AxisTitlePlacement property controls
where the JCAxis title is placed relative to the
“opposing” axis. Valid values include
JCLegend.NORTH or JCLegend.SOUTH for
horizontal axes, and JCLegend.EAST,
JCLegend.WEST, JCLegend.NORTHEAST,
JCLegend.SOUTHEAST, JCLegend.NORTHWEST
or JCLegend.SOUTHEAST for vertical axes. Default
value is calculated.

X1AxisTitlePlacementIsDefault The X1AxisTitlePlacementIsDefault property
determines whether Chart is responsible for
calculating a reasonable default placement for the axis
title. Default value is true.

X1AxisTitleText The X1AxisTitleText property specifies the text
that will appear as the x1 axis title. Default value is " "
(empty string).

Y1AxisAnnotationMethod The Y1AxisAnnotationMethod property
determines how axis annotations are generated. Valid
values include VALUE (annotation is generated by
Chart, with possible callbacks to a label generator);
VALUE_LABELS (annotation is taken from a list of
value labels provided by the user -- a value label is a
label that appears at a particular axis value);
POINT_LABELS (annotation comes from the data
source's point labels that are associated with particular
data points); and TIME_LABELS (Chart generates
time/date labels based on the TimeUnit, TimeBase
and TimeFormat properties). Default value is VALUE.

Y1AxisAnnotationRotation The Y1AxisAnnotationRotation property
specifies the rotation of each axis label. Valid values
are ROTATE_90, ROTATE_180, ROTATE_270 or
ROTATE_NONE. Default value is ROTATE_NONE.

Y1AxisGridIsShowing The Y1AxisGridIsShowing property determines
whether a grid is drawn for the axis.

Name Description
196 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
Y1AxisGridSpacing The Y1AxisGridSpacing property controls the
spacing between grid lines relative to the axis.

Y1AxisGridSpacingIsDefault The Y1AxisGridSpacingIsDefault property
determines whether Chart is responsible for
calculating the grid spacing value. If true, Chart will
calculate the grid spacing. If false, Chart will use the
provided grid spacing.

Y1AxisIsLogarithmic The Y1AxisIsLogarithmic property determines
whether the first y axis will be logarithmic (true) or
linear (false). Default value is false.

Y1AxisIsReversed The Y1AxisIsReversed property determines
whether the first y axis will be reversed in direction.
Default value is false.

Y1AxisIsShowing The Y1AxisIsShowing property determines
whether the first y axis is currently visible. Default
value is true.

Y1AxisMax The Y1AxisMax property controls the maximum
value shown on the axis. The data max is determined
by Chart. Default value is calculated.

Y1AxisMaxIsDefault The Y1AxisMaxIsDefault property determines
whether Chart is responsible for calculating the
maximum axis value. If true, Chart will calculate the
axis max. If false, Chart will use the provided axis
max. Default value is true.

Y1AxisMin The Y1AxisMin property controls the minimum value
shown on the axis. The data max is determined by
Chart. Default value is calculated.

Y1AxisMinIsDefault The Y1AxisMinIsDefault property determines
whether Chart is responsible for calculating the
minimum axis value. If true, Chart will calculate the
axis min. If false, Chart will use the provided axis
min. Default value is true.

Y1AxisNumSpacing The Y1AxisNumSpacing property controls the
interval between axis labels. Default value is
calculated.

Y1AxisNumSpacingIsDefault The Y1AxisNumSpacingIsDefault property
determines whether Chart is responsible for
calculating the numbering spacing. If true, Chart will
calculate the spacing. If false, Chart will use the
provided numbering spacing. Default value is true.

Y1AxisOrigin The Y1AxisOrigin property controls location of the
origin along the axis. Default value is calculated.

Y1AxisOriginIsDefault The Y1AxisOriginIsDefault property
determines whether Chart is responsible for
positioning the axis origin. If true, Chart calculates
the axis origin. If false, Chart uses the provided axis
origin value. Default value is true.

Name Description
Appendix A ■ JClass Chart Property Listing 197

Y1AxisOriginPlacement The Y1AxisOriginPlacement property specifies
where the origin is placed. Note that the
Y1AxisOriginPlacement property is only active if
the Y1AxisOrigin property has not been set. Valid
values include AUTOMATIC (places origin at minimum
value or at zero if there are negative and positive
values), ZERO (places origin at zero), MIN (places
origin at minimum value on axis) or MAX (places origin
at maximum value on axis). Default value is
AUTOMATIC.

Y1AxisPlacement The Y1AxisPlacement property determines the
method used to place the first y axis. Valid values
include AUTOMATIC (Chart chooses an appropriate
location), ORIGIN (appears at the origin of another
axis), MIN (appears at the minimum axis value), MAX
(appears at the maximum axis value) or
VALUE_ANCHORED (appears at a particular value
along another axis). Default value is AUTOMATIC.

Y1AxisPrecision The Y1AxisPrecision property controls the
number of zeros that appear after the decimal place in
chart-generated axis labels. Default value is calculated.

Y1AxisPrecisionIsDefault The Y1AxisPrecisionIsDefault determines
whether Chart is responsible for calculating the
numbering precision. If true, Chart will calculate the
precision. If false, Chart will use the precision
provided in Y1AxisPrecision. Default value is
true.

Y1AxisTickSpacing The Y1AxisTickSpacing property controls the
interval between tick lines on the axis. Note: if the
Y1AxisAnnotationMethod property is set to
POINT_LABELS, tick lines appear at point values.
Default value is calculated.

Y1AxisTickSpacingIsDefault The Y1AxisTickSpacingIsDefault property
determines whether Chart is responsible for
calculating the tick spacing. If true, Chart will
calculate the tick spacing. If false, Chart will use the
provided tick spacing. Default value is true.

Y1AxisTimeFormat The Y1AxisTimeFormat property controls the
format used to generate time labels for time labelled
axes. The formats supported are similar to those
supported by the C function strftime(). Default
value is calculated based on the value of
Y1AxisTimeUnit.

Y1AxisTimeFormatIsDefault The Y1AxisTimeFormatIsDefault property
determines whether a time label format is generated
automatically, or the user value for
Y1AxisTimeFormat is used. Default value is true.

Name Description
198 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
A.14 JCChartLabel

Y1AxisTimeUnit The Y1AxisTimeUnit property controls the unit of
time used for labelling a time labelled axis. Valid
Y1AxisTimeUnit values include SECONDS,
MINUTES, HOURS, DAYS, WEEKS, MONTHS and
YEARS. Default value is SECONDS.

Y1AxisTitleIsShowing The Y1AxisTitleIsShowing property determines
whether the Y1 axis is visible. Default value is false.
Default value is false.

Y1AxisTitlePlacement The Y1AxisTitlePlacement property controls
where the JCAxis title is placed relative to the
“opposing” axis. Valid values include
JCLegend.NORTH or JCLegend.SOUTH for
horizontal axes, and JCLegend.EAST,
JCLegend.WEST, JCLegend.NORTHEAST,
JCLegend.SOUTHEAST, JCLegend.NORTHWEST
or JCLegend.SOUTHEAST for vertical axes. Default
value is calculated.

Y1AxisTitlePlacementIsDefault The Y1AxisTitlePlacementIsDefault property
determines whether Chart is responsible for
calculating a reasonable default placement for the axis
title. Default value is true.

Y1AxisTitleText The Y1AxisTitleText property specifies the text
that will appear as the Y1 axis title. Default value is " "
(empty string).

Name Description

Adjust The Adjust property determines how text is justified (positioned) in the
label. Valid values include ChartText.LEFT, ChartText.CENTER
and ChartText.RIGHT. Default value is ChartText.LEFT.

Anchor Specifies how the label is to be positioned relative to the specified point.
Valid values are JCChartLabel.NORTHEAST,
JCChartLabel.NORTHWEST, JCChartLabel.NORTH,
JCChartLabel.EAST, JCChartLabel.WEST,
JCChartLabel.SOUTHEAST, JCChartLabel.SOUTHWEST and
JCChartLabel.SOUTH.

AttachMethod Specifies how the label is attached to the chart. Valid values are
JCChartLabel.ATTACH_COORD (attach label to an absolute point
anywhere on the chart), JCChartLabel.ATTACH_DATACOORD
(attach label to a point in the data space on the chart area), and
JCChartLabel.ATTACH_DATAINDEX (attach the label to a specific
point/bar/slice on the chart)

Background The Background property determines the background color used to
draw inside the chart region. Note that the Background property is
inherited from the parent JCTitle.

Name Description
Appendix A ■ JClass Chart Property Listing 199

BorderType The BorderType property determines the style of border drawn around
the ChartRegion. Valid values come from jclass.base.Border,
and include NONE, ETCHED_IN, ETCHED_OUT, IN, OUT, PLAIN,
FRAME_IN, FRAME_OUT, CONTROL_IN and CONTROL_OUT.

BorderWidth The BorderWidth property determines the width of the border drawn
around the chart label. Default value is 0.

Coord The coordinate in the chart’s space where the label is to be attached.

DataCoord The coordinate in the chart area’s data space where the label is to be
attached.

DataIndex A data index representing the point/bar/slice in the chart to which the
label is to be attached.

DataView For labels using ATTACH_DATACOORD, this property specifies which
ChartDataView’s axes should be used.

DwellDelay Value in milliseconds representing the delay after the mouse arrives at a
data point to which a Dwell Label is attached before showing the label.
Default is 0, to display the label immediately.

Font The Font property determines what font is used to render text inside the
chart region. Note that the Font property is inherited from the parent
JCTitle.

Foreground The Foreground property determines the foreground color used to
draw inside the chart region. Note that the Foreground property is
inherited from the parent JCTitle.

Height The Height property determines the height of the label. Default value is
generated.

HeightIsDefault The HeightIsDefault property determines whether the height of the
label is calculated by Chart (true) or taken from the Height property
(false). Default value is true.

Insets The Insets property specifies the space that a container must leave at
each of its edges. The space can be a border, a blank space, or a title.

IsDwellLabel When IsDwellLabel is set to true, the label is only displayed when
the cursor is over the point/bar/slice that the label is attached to. This
property is only used when the label is attached using
ATTACH_DATAINDEX. When set to false (the default), the label is
always displayed.

IsShowing The IsShowing property determines whether the associated label is
currently visible. Default value is true.

Left The Left property determines the location of the left of the label. Default
value is generated.

LeftIsDefault The LeftIsDefault property determines whether the left position of
the label is calculated by Chart (true) or taken from the Left property
(false). Default value is true.

Name The Name property specifies a string identifier for the JCChartLabel
object.

Name Description
200 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
A.15 JCChartStyle

Offset Offset specifies where the label should be positioned relative to the
position the labels thinks it should be, depending on what the label’s
attachMethod is.

Parent The Parent property assures the connection to the chart on which the
JCChartLabel appears. Default value is null.

ParentRegion The ParentRegion property is the ChartRegion parent. Default value is
null.

Rotation The Rotation property specifies the label’s rotation (counterclockwise).
Valid values are ChartText.DEG_90, ChartText.DEG_180,
ChartText.DEG_270 and ChartText.DEG_0. The default value is
ChartText.DEG_0.

Text The Text property controls the text displayed inside the label.

Top The Top property determines the location of the top of the label. The
default value is calculated.

TopIsDefault The TopIsDefault property determines whether the top position of
the label is calculated by Chart (true) or taken from the Top property
(false). Default value is true.

Width The Width property determines the width of the label. Default value is
generated.

WidthIsDefault The WidthIsDefault property determines whether the width of the
label is calculated by Chart (true) or taken from the Width property
(false). Default value is true.

Name Description

FillColor The FillColor property determines the color used to fill regions in
chart. Default value is generated.

FillImage The FillImage property determines the image used to paint the fill
region of bar charts. Default value is null.

FillPattern The FillPattern property determines the fill pattern used to fill
regions in chart. Note: Since Java does not support patterned fills, this
property is not supported. Default value is JCFillStyle.SOLID.

FillStyle The FillStyle property controls the appearance of filled areas in
chart. See JCFillStyle for additional properties. Note that all
JCChartStyle properties of the format Fill* are virtual properties
that map to properties of JCFillStyle.

LineColor The LineColor property determines the color used to draw a line.
Default value is generated.

Name Description
Appendix A ■ JClass Chart Property Listing 201

A.16 JCFillStyle

LinePattern The LinePattern property dictates the pattern used to draw a line.
Valid values include JCLineStyle.NONE, JCLineStyle.SOLID,
JCLineStyle.LONG_DASH, JCLineStyle.SHORT_DASH,
JCLineStyle.LSL_DASH and JCLineStyle.DASH_DOT. Note:
Since Java does not support line patterns, this property is currently not
supported. Default value is JCLineStyle.SOLID.

LineStyle The LineStyle property controls the appearance of lines in chart.
See JCLineStyle for additional properties.

LineWidth The LineWidth property controls the line width. Note: Since Java
only supports width-1 lines, this property is currently not supported.
Default value is 1.

SymbolColor The SymbolColor property determines the color used to paint the
symbol. Default value is generated.

SymbolCustomShape The SymbolCustomShape property contains an object derived from
JCShape that is used to draw points. See JCShape for details. Default
value is null.

SymbolShape The SymbolShape property determines the type of symbol that will
be drawn. Valid values include JCSymbolStyle.NONE,
JCSymbolStyle.DOT, JCSymbolStyle.BOX,
JCSymbolStyle.TRIANGLE, JCSymbolStyle.DIAMOND,
JCSymbolStyle.STAR, JCSymbolStyle.VERT_LINE,
JCSymbolStyle.HORIZ_LINE, JCSymbolStyle.CROSS,
JCSymbolStyle.CIRCLE and JCSymbolStyle.SQUARE. Default
value is generated.

SymbolSize The SymbolSize property determines the size of the symbol. Default
value is 6.

SymbolStyle The SymbolStyle property controls the symbol that represents an
individual point. See JCSymbolStyle for additional properties. Note
that all JCChartStyle properties of the format Symbol* are virtual
properties that map to properties of JCSymbolStyle.

Name Description

Color The Color property determines the color used to fill regions in chart. The
default value is generated.

Image The Image property determines the image used to paint the fill region. Only bar
charts use this property. The default value is null.

Pattern The Pattern property determines the fill pattern used to fill regions in chart.
Note: Since Java does not support patterned fills, this property is not
supported. The default value is JCFillStyle.SOLID.

Name Description
202 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
A.17 JCGridLegend

Name Description

Anchor The Anchor property determines the position of the legend relative to the
ChartArea. Valid values include JCLegend.NORTH, JCLegend.SOUTH,
JCLegend.EAST, JCLegend.WEST, JCLegend.NORTHWEST,
JCLegend.SOUTHWEST, JCLegend.NORTHEAST and
JCLegend.SOUTHEAST. The default value is JCLegend.EAST.

Background The Background property determines the background color used to
draw inside the legend. Note that the Background property is inherited
from the parent ChartRegion.

BorderType The BorderType property determines the style of border drawn around
the ChartRegion. Valid values come from jclass.base.Border, and
include NONE, ETCHED_IN, ETCHED_OUT, IN, OUT, PLAIN, FRAME_IN,
FRAME_OUT, CONTROL_IN and CONTROL_OUT.

BorderWidth The BorderWidth property determines the width of the border drawn
around the legend. The default value is 0.

Font The Font property determines what font is used to render text inside the
legend. Note that the Font property is inherited from the parent
ChartRegion.

Foreground The Foreground property determines the foreground color used to
draw inside the legend. Note that the Foreground property is inherited
from the parent ChartRegion.

GroupGap The GroupGap property determines the gap between groups of items in
the chart legend (e.g. the columns/rows associated with a data view).

Height The Height property determines the height of the legend. The default
value is calculated. Note that the property is inherited from the parent
ChartRegion.

HeightIsDefault The HeightIsDefault property determines whether the height of the
legend is calculated by Chart (true) or taken from the Height property
(false). The default value is true. Note that the property is inherited
from the parent ChartRegion.

Insets The Insets property specifies the space that a container must leave at each
of its edges. The space can be a border, a blank space, or a title.

InsideItemGap The InsideItemGap property determines the gap between the symbol
and text portions of a legend item.

IsShowing The IsShowing property determines whether the legend is currently
visible. Default value is false.

ItemGap The ItemGap property determines the gap between the legend items in
the same group.

Left The Left property determines the location of the left of the legend. The
default value is calculated. Note that the property is inherited from the
parent ChartRegion.
Appendix A ■ JClass Chart Property Listing 203

A.18 JCHLOCChartFormat

LeftIsDefault The LeftIsDefault property determines whether the left position of
the legend is calculated by Chart (true) or taken from the Left property
(false). The default value is true. Note that the property is inherited
from the parent ChartRegion.

MarginGap The MarginGap property determines the gap between the edge of the
legend and the start of the item layout.

Name The Name property specifies a string identifier for the JCLegend object.
Note that this property is inherited from ChartRegion.

Orientation The Orientation property determines how legend information is laid
out. Valid values include JCLegend.VERTICAL and
JCLegend.HORIZONTAL. The default value is JCLegend.VERTICAL.

Parent The Parent property assures the connection to the chart on which the
JCLegend appears. Default value is null. Note that this property is
inherited from ChartRegion.

ParentRegion The ParentRegion property is the JCLegend’s ChartRegion parent.
Default value is null. Note that this property is inherited from ChartRegion.

SymbolSize The SymbolSize property determines the size of the symbol. Default value
is 6.

Top The Top property determines the location of the top of the legend. The
default value is calculated. Note that the property is inherited from the
parent ChartRegion.

TopIsDefault The TopIsDefault property determines whether the top position of the
legend is calculated by Chart (true) or taken from the Top property
(false). The default value is true. Note that the property is inherited
from the parent ChartRegion.

Width The Width property determines the width of the legend. The default value
is calculated. Note that the property is inherited from the parent
ChartRegion.

WidthIsDefault The WidthIsDefault property determines whether the width of the
legend is calculated by Chart (true) or taken from the Width property
(false). The default value is true. Note that the property is inherited
from the parent ChartRegion.

Name Description

IsShowingClose The IsShowingClose property indicates whether the close tick
indication is shown or not. The tick appears to the right of the Hi-
Lo line. The default value is true.

IsShowingOpen The IsShowingOpen property indicates whether the open tick
indication is shown or not. The tick appears to the left of the Hi-Lo
line. The default value is true.

Name Description
204 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
A.19 JCLegend

IsOpenCloseFullWidth The IsOpenCloseFullWidth property indicates whether the
open and close tick indications are drawn across the full width of
the Hi-Lo bar or just on one side. The default value is false.

Name Description

Anchor The Anchor property determines the position of the legend relative to
the ChartArea. Valid values include JCLegend.NORTH,
JCLegend.SOUTH, JCLegend.EAST, JCLegend.WEST,
JCLegend.NORTHWEST, JCLegend.SOUTHWEST,
JCLegend.NORTHEAST and JCLegend.SOUTHEAST. The default
value is JCLegend.EAST.

Background The Background property determines the background color used to
draw inside the legend. Note that the Background property is
inherited from the parent ChartRegion.

BorderType The BorderType property determines the style of border drawn
around the ChartRegion. Valid values come from
jclass.base.Border, and include NONE, ETCHED_IN,
ETCHED_OUT, IN, OUT, PLAIN, FRAME_IN, FRAME_OUT,
CONTROL_IN and CONTROL_OUT.

BorderWidth The BorderWidth property determines the width of the border drawn
around the legend. The default value is 0.

Font The Font property determines what font is used to render text inside
the legend. Note that the Font property is inherited from the parent
ChartRegion.

Foreground The Foreground property determines the foreground color used to
draw inside the legend. Note that the Foreground property is
inherited from the parent ChartRegion.

Height The Height property determines the height of the legend. The default
value is calculated. Note that the property is inherited from the parent
ChartRegion.

HeightIsDefault The HeightIsDefault property determines whether the height of
the legend is calculated by Chart (true) or taken from the Height
property (false). The default value is true. Note that the property is
inherited from the parent ChartRegion.

IsShowing The IsShowing property determines whether the legend is currently
visible. Default value is false.

Left The Left property determines the location of the left of the legend. The
default value is calculated. Note that the property is inherited from the
parent ChartRegion.

Name Description
Appendix A ■ JClass Chart Property Listing 205

A.20 JCLineStyle

LeftIsDefault The LeftIsDefault property determines whether the left position of
the legend is calculated by Chart (true) or taken from the Left
property (false). The default value is true. Note that the property is
inherited from the parent ChartRegion.

Name The Name property specifies a string identifier for the JCLegend
object. Note that this property is inherited from ChartRegion.

Orientation The Orientation property determines how legend information is laid
out. Valid values include JCLegend.VERTICAL and
JCLegend.HORIZONTAL. The default value is
JCLegend.VERTICAL.

Parent The Parent property assures the connection to the chart on which the
JCLegend appears. Default value is null. Note that this property is
inherited from ChartRegion.

ParentRegion The ParentRegion property is the JCLegend’s ChartRegion parent.
Default value is null. Note that this property is inherited from
ChartRegion.

Top The Top property determines the location of the top of the legend. The
default value is calculated. Note that the property is inherited from the
parent ChartRegion.

TopIsDefault The TopIsDefault property determines whether the top position of
the legend is calculated by Chart (true) or taken from the Top property
(false). The default value is true. Note that the property is inherited
from the parent ChartRegion.

Width The Width property determines the width of the legend. The default
value is calculated. Note that the property is inherited from the parent
ChartRegion.

WidthIsDefault The WidthIsDefault property determines whether the width of the
legend is calculated by Chart (true) or taken from the Width property
(false). The default value is true. Note that the property is inherited
from the parent ChartRegion.

Name Description

Color The Color property determines the color used to draw a line. The default value
is generated.

Pattern The Pattern property dictates the pattern used to draw a line. Valid values
include JCLineStyle.NONE, JCLineStyle.SOLID,
JCLineStyle.LONG_DASH, JCLineStyle.SHORT_DASH,
JCLineStyle.LSL_DASH and JCLineStyle.DASH_DOT. Note: Since Java
does not support line patterns, this property is currently not supported. The
default value is JCLineStyle.SOLID.

Width The Width property controls the line width. The default value is 1.

Name Description
206 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
A.21 JCMultiColLegend

Name Description

Anchor The Anchor property determines the position of the legend
relative to the ChartArea. Valid values include JCLegend.NORTH,
JCLegend.SOUTH, JCLegend.EAST, JCLegend.WEST,
JCLegend.NORTHWEST, JCLegend.SOUTHWEST,
JCLegend.NORTHEAST and JCLegend.SOUTHEAST. The
default value is JCLegend.EAST.

Background The Background property determines the background color used
to draw inside the legend. Note that the Background property is
inherited from the parent ChartRegion.

BorderType The BorderType property determines the style of border drawn
around the ChartRegion. Valid values come from
jclass.base.Border, and include NONE, ETCHED_IN,
ETCHED_OUT, IN, OUT, PLAIN, FRAME_IN, FRAME_OUT,
CONTROL_IN and CONTROL_OUT.

BorderWidth The BorderWidth property determines the width of the border
drawn around the legend. The default value is 0.

Font The Font property determines what font is used to render text
inside the legend. Note that the Font property is inherited from the
parent ChartRegion.

Foreground The Foreground property determines the foreground color used
to draw inside the legend. Note that the Foreground property is
inherited from the parent ChartRegion.

GroupGap The GroupGap property determines the gap between groups of
items in the chart legend (e.g. the columns/rows associated with a
data view).

Height The Height property determines the height of the legend. The
default value is calculated. Note that the property is inherited from
the parent ChartRegion.

HeightIsDefault The HeightIsDefault property determines whether the height
of the legend is calculated by Chart (true) or taken from the
Height property (false). The default value is true. Note that
the property is inherited from the parent ChartRegion.

Insets The Insets property specifies the space that a container must leave
at each of its edges. The space can be a border, a blank space, or a
title.

InsideItemGap The InsideItemGap property determines the gap between the
symbol and text portions of a legend item.

IsShowing The IsShowing property determines whether the legend is
currently visible. Default value is false.

ItemGap The ItemGap property determines the gap between the legend
items in the same group.
Appendix A ■ JClass Chart Property Listing 207

Left The Left property determines the location of the left of the legend.
The default value is calculated. Note that the property is inherited
from the parent ChartRegion.

LeftIsDefault The LeftIsDefault property determines whether the left
position of the legend is calculated by Chart (true) or taken from
the Left property (false). The default value is true. Note that
the property is inherited from the parent ChartRegion.

MarginGap The MarginGap property determines the gap between the edge of
the legend and the start of the item layout.

Name The Name property specifies a string identifier for the JCLegend
object. Note that this property is inherited from ChartRegion.

NumColumns The NumColumns property determines the number of columns in
this legend. If the number of columns is set to zero (the default),
then the NumColumns will be adjusted automatically.

NumRows The NumRows property determines the number of rows in this
legend. If the number of rows is set to zero (the default), the
number of rows will be adjusted automatically.

Orientation The Orientation property determines how legend information
is laid out. Valid values include JCLegend.VERTICAL and
JCLegend.HORIZONTAL. The default value is
JCLegend.VERTICAL.

Parent The Parent property assures the connection to the chart on
which the JCLegend appears. Default value is null. Note that
this property is inherited from ChartRegion.

ParentRegion The ParentRegion property is the JCLegend’s ChartRegion
parent. Default value is null. Note that this property is inherited
from ChartRegion.

SymbolSize The SymbolSize property determines the size of the symbol.
Default value is 6.

Top The Top property determines the location of the top of the legend.
The default value is calculated. Note that the property is inherited
from the parent ChartRegion.

TopIsDefault The TopIsDefault property determines whether the top position
of the legend is calculated by Chart (true) or taken from the Top
property (false). The default value is true. Note that the
property is inherited from the parent ChartRegion.

Width The Width property determines the width of the legend. The
default value is calculated. Note that the property is inherited from
the parent ChartRegion.

WidthIsDefault The WidthIsDefault property determines whether the width of
the legend is calculated by Chart (true) or taken from the Width
property (false). The default value is true. Note that the
property is inherited from the parent ChartRegion.

Name Description
208 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
A.22 JCPieChartFormat

A.23 JCSymbolStyle

Name Description

ExplodeList The ExplodeList property specifies a list of exploded pie slices in the
pie charts. Default value is an empty list.

ExplodeOffset The ExplodeOffset property specifies the distance a slice is exploded
from the center of a pie chart. Default value is 10.

MinSlices The MinSlices property represents the minimum number of pie slices
that Chart will try to display before grouping slices into the other slice.
Default value is 5.

OtherLabel The OtherLabel property represents used on the "other" pie slice. As
with other point labels, the "other" label is a ChartText instance. Default
value is " " (empty string).

OtherStyle The OtherStyle property specifies the style used to render the "other"
pie slice.

SortOrder The SortOrder property determines the order in which pie slices will be
displayed. Note that the other slice is always last in any ordering. Valid
values include JCPieChartFormat.ASCENDING_ORDER,
JCPieChartFormat.DESCENDING_ORDER and
JCPieChartFormat.DATA_ORDER. Default value is
JCPieChartFormat.DATA_ORDER.

ThresholdMethod The ThresholdMethod property determines how the
ThresholdValue property is used. If the method is SLICE_CUTOFF,
the ThresholdValue is used as a cutoff to determine what items are
lumped into the other slice. If the method is PIE_PERCENTILE, items
are groups into the other slice until it represents "ThresholdValue" percent
of the pie. Default value is SLICE_CUTOFF.

ThresholdValue The ThresholdValue property is a percentage value between 0.0 and
100.0. How this value is used depends on the ThresholdMethod
property. Default value is 10.0.

Name Description

Color The Color property determines the color used to paint the symbol. The
default value is generated.

CustomShape The CustomShape property contains an object derived from JCShape that
is used to draw points. See JCShape for details. The default value is null.
Appendix A ■ JClass Chart Property Listing 209

A.24 JCTitle

Shape The Shape property determines the shape of symbol that will be drawn.
Valid values include JCSymbolStyle.NONE, JCSymbolStyle.DOT,
JCSymbolStyle.BOX, JCSymbolStyle.TRIANGLE,
JCSymbolStyle.DIAMOND, JCSymbolStyle.STAR,
JCSymbolStyle.VERT_LINE, JCSymbolStyle.HORIZ_LINE,
JCSymbolStyle.CROSS, JCSymbolStyle.CIRCLE and
JCSymbolStyle.SQUARE. The default value is JCSymbolStyle.DOT.

Size The Size property determines the size of the symbol. The default value is 6.

Name Description

Adjust The Adjust property determines how text is justified or positioned in the
title. Valid values include ChartText.LEFT, ChartText.CENTER and
ChartText.RIGHT. Default value is ChartText.LEFT.

Background The Background property determines the background color used to
draw inside the chart region. Note that the Background property is
inherited from the parent ChartText.

BorderType The BorderType property determines the style of border drawn around
the ChartRegion. Valid values come from jclass.base.Border,
and include NONE, ETCHED_IN, ETCHED_OUT, IN, OUT, PLAIN,
FRAME_IN, FRAME_OUT, CONTROL_IN and CONTROL_OUT.

BorderWidth The BorderWidth property determines the width of the border drawn
around the title. Default value is 0.

Font The Font property determines what font is used to render text inside the
chart region. Note that the Font property is inherited from the parent
ChartText.

Foreground The Foreground property determines the foreground color used to draw
inside the chart region. Note that the Foreground property is inherited
from the parent ChartText.

Height The Height property determines the height of the JCTitle. Default value
is generated.

HeightIsDefault The HeightIsDefault property determines whether the height of the
title is calculated by Chart (true) or taken from the Height property
(false). Default value is true.

Insets The Insets property specifies the space that a container must leave at each
of its edges. The space can be a border, a blank space, or a title.

IsShowing The IsShowing property determines whether the associated title is
currently visible. Default value is true.

Label The Label property determines the label that appears inside JCTitle. For
backwards-compatability. Default value is calculated.

Name Description
210 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
A.25 JCValueLabel

Left The Left property determines the location of the left of the JCTitle.
Default value is generated.

LeftIsDefault The LeftIsDefault property determines whether the left position of
the title is calculated by Chart (true) or taken from the Left property
(false). Default value is true.

Name The Name property specifies a string identifier for the JCTitle object.

Parent The Parent property assures the connection to the chart on which the
JCTitle appears. Default value is null.

ParentRegion The ParentRegion property is the ChartRegion parent. Default value is
null.

Rotation The Rotation property specifies the label’s rotation (counterclockwise).
Valid values are ChartText.DEG_90, ChartText.DEG_180,
ChartText.DEG_270 and ChartText.DEG_0. The default value is
ChartText.DEG_0.

Text The Text property controls the text displayed inside the title. The default
value is " " (empty string).

Top The Top property determines the location of the top of the JCTitle. The
default value is calculated.

TopIsDefault The TopIsDefault property determines whether the top position of the
title is calculated by Chart (true) or taken from the Top property
(false). Default value is true.

Width The Width property determines the width of the JCTitle. Default value is
generated.

WidthIsDefault The WidthIsDefault property determines whether the width of the
title is calculated by Chart (true) or taken from the Width property
(false). Default value is true.

Name Description

ChartText The ChartText property controls the ChartText associated with this Value
label. The default value is a ChartText instance.

Text The Text property specifies the text displayed inside the label. The default
value is " " (empty string).

Value The Value property controls the position of a label in data space along a
particular axis. The default value is 0.0.

Name Description
Appendix A ■ JClass Chart Property Listing 211

A.26 PlotArea

A.27 SimpleChart

Name Description

Background The Background property determines the background color used to
draw inside the chart region. Note that the Background is inherited from
the parent ChartRegion.

Bottom The Bottom property determines the location of the bottom of the
PlotArea

BottomIsDefault The BottomIsDefault property determines whether the Bottom of the
chart region is calculated by Chart (true) or taken from the Bottom
property (false).

Foreground The Foreground property property determines the color used to draw
the axis bounding box controlled by JCChartArea. Note that the
Foreground property is inherited from the parent ChartRegion.

Left The Left property determines the location of the left of the PlotArea

LeftIsDefault The LeftIsDefault property determines whether the left position of
the chart region is calculated by Chart (true) or taken from the Left
property (false).

Right The Right property determines the Right of the PlotArea.

RightIsDefault The RightIsDefault property determines whether the Right of the
chart region is calculated by Chart (true) or taken from the Right
property (false).

Top The Top property determines the location of the top of the PlotArea.

TopIsDefault The TopIsDefault property determines whether the top position of the
chart region is calculated by Chart (true) or taken from the Top property
(false).

Name Description

AxisOrientation The AxisOrientation property determines if the x and y axis
are inverted and reversed.

Background The Background property determines the background color used
to draw inside the chart region. Note that the Background
property is inherited from the parent JCComponent.

ChartType The ChartType property determines the chart type of the first set
of data in the chart.

Data The Data property controls the file or URL used for the first set of
data in chart.
212 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
Font The Font property determines what font is used to render text
inside the chart region. Note that the Font property is inherited
from the parent JCComponent.

FooterText The FooterText property holds the text that is displayed in the
footer. The default value is " " (empty string).

Foreground The Foreground property determines the foreground color used
to draw inside the chart region. Note that the Foreground
property is inherited from the parent JCComponent.

HeaderText The HeaderText property holds the text that is displayed in the
header. The default value is " " (empty string).

Legend The Legend property controls the object that controls the display
of the legend. The default value is null.

LegendAnchor The LegendAnchor property determines the position of the
legend relative to the ChartArea. Valid values include NORTH,
SOUTH, EAST, WEST, NORTHWEST, SOUTHWEST, NORTHEAST and
SOUTHEAST. The default value is EAST.

LegendIsShowing The LegendIsShowing property determines whether the legend
is visible. The default value is false.

LegendOrientation The LegendOrientation property determines how legend
information is laid out. Valid values include VERTICAL and
HORIZONTAL. The default value is VERTICAL.

Margins The Margins property controls the margins (an Insets object)
on the chart. The default value is 1,1,1,1.

SwingDataModel Sets the chart’s data source to use a specified Swing TableModel
object, instead of using the Data property.

View3D The View3D property combines the values of the Depth,
Elevation, and Rotation properties defined in
JCChartArea. Depth controls the apparent depth of a graph.
Elevation controls the distance above the X-axis for the 3D
effect. Rotation controls the position of the eye relative to the Y-
axis for the 3D effect. The default value is "0.0,0.0,0.0".

Version The Version property specifies the JClass Chart version number.
This property is read-only. The default value is calculated.

XAxisAnnotation-
Method

The XAxisAnnotationMethod property determines how axis
annotations are generated. Valid values include VALUE (annotation
is generated by Chart, with possible callbacks to a label generator);
VALUE_LABELS (annotation is taken from a list of value labels
provided by the user — a value label is a label that appears at a
particular axis value); POINT_LABELS (annotation comes from
the data source's point labels that are associated with particular
data points); and TIME_LABELS (Chart generates time/date labels
based on the TimeUnit, TimeBase and TimeFormat
properties). The default value is VALUE.

XAxisGridIsShowing The XAxisGridIsShowing property determines whether a grid
is drawn for the axis. The default value is false.

Name Description
Appendix A ■ JClass Chart Property Listing 213

XAxisIsLogarithmic The XAxisIsLogarithmic property determines whether the
first x axis will be logarithmic (true) or linear (false). The
default value is false.

XAxisIsShowing The XAxisIsShowing property determines whether the first x
axis is currently visible. The default value is true.

XAxisMinMax The XAxisMinMax controls both the XAxisMin and XAxisMax
properties. The XAxisMin property controls the minimum value
shown on the axis. If a null string is used, Chart will calculate the
axis min. The data min is determined by Chart. The default value is
calculated. The XAxisMax property controls the maximum value
shown on the axis. If a null string is used, Chart will calculate the
axis max. The data max is determined by Chart. The default value is
calculated.

XAxisNumSpacing The XAxisNumSpacing property controls the interval between
axis labels. If a null string is used, Chart will calculate the interval.
The default value is calculated.

XAxisTitleText The XAxisTitleText property specifies the text that will appear
as the x axis title. The default value is " " (empty string).

YAxisAnnotation-
Method

The YAxisAnnotationMethod property determines how axis
annotations are generated. Valid values include VALUE (annotation
is generated by Chart, with possible callbacks to a label generator);
VALUE_LABELS (annotation is taken from a list of value labels
provided by the user — a value label is a label that appears at a
particular axis value); POINT_LABELS (annotation comes from
the data source's point labels that are associated with particular
data points); and TIME_LABELS (Chart generates time/date labels
based on the TimeUnit, TimeBase and TimeFormat
properties). The default value is VALUE.

YAxisGridIsShowing The YAxisGridIsShowing property determines whether a grid
is drawn for the axis.

YAxisIsLogarithmic The YAxisIsLogarithmic property determines whether the
first y axis will be logarithmic (true) or linear (false). The
default value is false.

YAxisIsShowing The YAxisIsShowing property determines whether the first y
axis is currently visible. The default value is true.

YAxisMinMax The YAxisMinMax controls both the YAxisMin and YAxisMax
properties. The YAxisMin property controls the minimum value
shown on the axis. If a null string is used, Chart will calculate the
axis min. The data min is determined by Chart. The default value is
calculated. The YAxisMax property controls the maximum value
shown on the axis. If a null string is used, Chart will calculate the
axis max. The data max is determined by Chart. The default value is
calculated.

YAxisNumSpacing The YAxisNumSpacing property controls the interval between
axis labels. If a null string is used, Chart will calculate the interval.
The default value is calculated.

YAxisTitleText The YAxisTitleText property specifies the text that will appear
as the Y axis title. The default value is " " (empty string).

Name Description
214 Part II ■ Reference Appendices

B
JCString Properties

Alignment ■ Color ■ Fonts ■ Hypertext ■ Images

Reset ■ Strikethrough Text ■ Underlined Text

Most JClass Chart components support a rich text format called “JCString”, which
allows a mixture of hypertext, images and text within Chart components. Text can
also appear in a variety of colors, fonts and styles, including underline and strikeout.

The following section describes the types of JCString properties available, and
provides examples of their use.

B.0.1 Alignment

If a cell contains an image, the line height can, in some cases, be greater than the
height of the text. Text can be aligned vertically using the ALIGN property. Valid
values include TOP, BOTTOM and MIDDLE. The following example uses all three
possible ALIGN values:

([IMAGE=smiley.gif][ALIGN=TOP]top
[IMAGE=smiley.gif][ALIGN=MIDDLE]middle
[IMAGE=smiley.gif][ALIGN=bottom]bottom)

B.0.2 Color

Different text colors can be specified by using the COLOR property. The JCString
shown below displays text using red, green and blue colors.

([COLOR=red]Red, [COLOR=green]Green, [COLOR=blue]Blue,
[DEFAULT_COLOR]Default)

In addition to these colors, any color referenced in Appendix C can be used,
including RGB color values.

Note: The property DEFAULT_COLOR resets the text color in the rest of the table to the
browser’s regular text color.
215

B.0.3 Fonts

Different fonts can be specified within a single cell or label by using the FONT
property. The following JCString example displays text using a variety of fonts and
font styles.

([FONT=timesroman-plain-20]TimesRoman-20,
 [FONT=timesroman-bold-12]TimesRoman-12 bold,
 [DEFAULT_FONT]Default)

Note: The property DEFAULT_FONT resets the fonts in the rest of the table to the
browser’s regular font.

B.0.4 Horizontal and Vertical Spacing

Vertical and horizontal spacing can be modified by using the VERT_SPACE and
HORIZ_SPACE tags. VERT_SPACE offsets the current line by a number of pixels, and
HORIZ_SPACE offsets the line from the margin by a set number of pixels.

The example below makes use of the HORIZ_SPACE and VERT_SPACE. tags.

([VERT_SPACE=10]Vertical offset=10
 [HORIZ_SPACE=10] Horizontal offset=10)

B.0.5 Hypertext

Hypertext links can be specified within a cell. The link appears underlined, and the
browser display will show the target URL when the mouse cursor passes over the
linked text. Hypertext uses the HREF property, and trackCursorPosition must be set
to true in order for the link to work. The example below links to KL Group’s home
page:

(Click [HREF=http://www.klg.com]here[/HREF] for tech support)

B.0.6 Images

Images can be specified in a cell by using the IMAGE property. A URL or file name
must be provided. If a relative path is given, the document base for the page is
assumed.

The example below mixes an image with text:

(Tech Support: [IMAGE=http://www.klg.com/images/technical.gif])

B.0.7 Reset

The RESET property resets the font and color to the default value used by the
browser. The following example changes the COLOR and FONT values back to the
default:

([COLOR=green][FONT=timesroman-plain-20]Big text[RESET]Regular Text)
216 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
B.0.8 Strikethrough Text

Text can be crossed-out using the STRIKEOUT property. The following incorporates
text that has been stuck through:

(This text is [ST]crossed-out[/ST].)

B.0.9 Underlined Text

Text can be underlined using the JCString UNDERLINE property. The following
example incorporates underlined text:

(This text is [UL]underlined[/UL].)
Appendix B ■ JCString Properties 217

218 Part II ■ Reference Appendices

C
Colors and Fonts

Colorname Values ■ RGB Color Values ■ Fonts

This section provides information on common colorname values, specific rgb color
values and fonts applicable to all Java programs.

C.1 Colorname Values

The following lists all the colornames that can be used within Java programs. The
majority of these colors will appear the same (or similar) across different computing
platforms.

■ black

■ blue

■ cyan

■ darkGray

■ darkGrey

■ gray

■ grey

■ green

■ lightGray

■ lightGrey

■ lightBlue

■ magenta

■ orange

■ pink

■ red

■ white

■ yellow
219

C.2 RGB Color Values

The following lists all the main RGB color values that can be used within JClass
Chart. RGB color values are specified as three numeric values representing the red,
green and blue color components; these values are separated by dashes (“-”).

The following RGB color values describe the colors available to Unix systems. It is
recommended that you test these color values in a JClass Chart program on a
Windows or Macintosh system before utilizing them.

The list begins with all of the variations of white, then blacks and greys, and then
describes the full color spectrum ranging from reds to violets.

Example code:

<PARAM NAME=backgroundList VALUE="(4, 5 255-255-0)">

RGB Value Description
255-250-250 Snow
248-248-255 Ghost White
245-245-245 White Smoke
220-220-220 Gainsboro
255-250-240 Floral White
253-245-230 Old Lace
250-240-230 Linen
250-235-215 Antique White
255-239-213 Papaya Whip
255-235-205 Blanched Almond
255-228-196 Bisque
255-218-185 Peach Puff
255-222-173 Navajo White
255-228-181 Moccasin
255 248-220 Cornsilk
255-255-240 Ivory
255-250-205 Lemon Chiffon
255-245-238 Seashell
240-255-240 Honeydew
245-255-250 Mint Cream
240-255-255 Azure
240-248-255 Alice Blue
230-230-250 Lavender
255-240-245 Lavender Blush
255-228-225 Misty Rose
255-255-255 White
0-0-0 Black
47-79-79 Dark Slate Grey
105-105-105 Dim Gray
112- 128-144 Slate Grey
119- 136-153 Light Slate Grey
190- 190-190 Grey
220 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
211- 211-211 Light Gray
25-25-112 Midnight Blue
0-0-128 Navy Blue
100- 149 237 Cornflower Blue
72-61-139 Dark Slate Blue
106-90-205 Slate Blue
123- 104 238 Medium Slate Blue
132-112- 255 Light Slate Blue
0-0-205 Medium Blue
65-105-225 Royal Blue
0-0-255 Blue
30-144-255 Dodger Blue
0-19 -255 Deep Sky Blue
135-206-235 Sky Blue
135-206-250 Light Sky Blue
70-130-180 Steel Blue
176-196- 222 Light Steel Blue
173-216-230 Light Blue
176-224-230 Powder Blue
175-238-238 Pale Turquoise
0-206-209 Dark Turquoise
72-209-204 Medium Turquoise
64-224-208 Turquoise
0-255-255 Cyan
224-255-255 Light Cyan
95-158-160 Cadet Blue
102-205-170 Medium Aquamarine
127-255-212 Aquamarine
0-100-0 Dark Green
85-107-47 Dark Olive Green
143-188-143 Dark Sea Green
46-139-87 Sea Green
60-179-113 Medium Sea Green
32-178-170 Light Sea Green
152-251-152 Pale Green
0-255-127 Spring Green
124-252- 0 Lawn Green
0-255-0 Green
127-255- 0 Chartreuse
0-250-154 Medium Spring Green
173-255-47 Green Yellow
50-205-50 Lime Green
154-205-50 Yellow Green
34-139-34 Forest Green
107-142-35 Olive Drab
189-183-107 Dark Khaki
240-230-140 Khaki
238-232-170 Pale Goldenrod
250-250-210 Light Goldenrod Yellow
Appendix C ■ Colors and Fonts 221

255-255-224 Light Yellow
255-255-0 Yellow
255-215-0 Gold
238-221-130 Light Goldenrod
218-165-32 Goldenrod
184-134-11 Dark Goldenrod
188-143-143 Rosy Brown
205-92-92 Indian Red
139-69-19 Saddle Brown
160-82-45 Sienna
205-133-63 Peru
222-184- 135 Burlywood
245-245-220 Beige
245-222-179 Wheat
244-164-96 SandyBrown
210-180-140 Tan
210-105-30 Chocolate
178-34-34 Firebrick
165-42-42 Brown
233-150-122 Dark Salmon
250-128-114 Salmon
255-160-122 Light Salmon
255-165- 0 Orange
255-140-0 Dark Orange
255-127-80 Coral
240-128-128 Light Coral
255-99-71 Tomato
255-69-0 Orange Red
255-0-0 Red
255-105-180 Hot Pink
255-20-147 Deep Pink
255-192-203 Pink
255-182-193 Light Pink
219-112-147 Pale Violet Red
176-48-96 Maroon
199-21-133 Medium Violet Red
208-32-144 Violet Red
255-0-255 Magenta
238-130-238 Violet
221-160-221 Plum
218-112-214 Orchid
186-85-211 Medium Orchid
153-50-204 Dark Orchid
148-0-211 Dark Violet
138-43-226 Blue Violet
160- 32-240 Purple
147-112-219 Medium Purple
216-191-216 Thistle
222 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
C.3 Fonts

There are five different font names that can be specified in any Java program. They
are:

■ Courier

■ Dialog

■ DialogInput

■ Helvetica

■ TimesRoman

Note: Font names are case-sensitive.

There are also four standard font style constants that can be used. The valid Java font
style constants are:

■ bold

■ bold+italic

■ italic

■ plain

These values are strung together with dashes (“-”) when used with the VALUE
attribute. You must also specify a point size by adding it to other font elements. To
display a text using a 12-point italic Helvetica font, use the following:

Helvetica-italic-12

All three elements (font name, font style and point size) must be used to specify a
particular font display; otherwise, the default font is used.

Note: Font display may vary from system to system. If a font does not exist on a
system, the default font is displayed instead.
Appendix C ■ Colors and Fonts 223

224 Part II ■ Reference Appendices

D
HTML Property Reference

ChartDataView Properties ■ ChartDataViewSeries Properties

JCAxis X- and Y-axis Properties ■ JCBarChartFormat Properties
JCCandleChartFormat Properties ■ JCChart/JCComponent Properties

JCChartArea Properties ■ JCChartLabel Properties

JCDataIndex Properties ■ JCHLOCChartFormat Properties
JCHiLoChartFormat Properties ■ JCLegend Properties

JCPieChartFormat Properties ■ JCTitle Header and Footer Properties

Example HTML File

This appendix lists the syntax of JClass Chart properties when specified in an HTML
file. For example, the following HTML code sets the X-axis annotation method
property:

 <PARAM NAME="xaxis.annotationMethod" VALUE="POINT_LABELS">

D.1 ChartDataView Properties

Java Property HTML Syntax Value Type

AutoLabel data.autoLabel boolean

BufferPlotData data.bufferPlotData boolean

ChartType data.chartType (enum)

Data data AppletDataSource

DataFile dataFile, data1File, or data2File URLDataSource,
FileDataSource

FastUpdate data.fastUpdate boolean

HoleValue data.holeValue double
225

jclass.chart.JCChart.html#PLOT

Note: data is the name of the first dataset, generated when chart properties are saved
to an HTML file; additional datasets are named data1, data2, datan.

D.2 ChartDataViewSeries Properties

Note: data is the name of the first dataset, generated when chart properties are saved
to an HTML file; additional datasets are named data1, data2, datan.

IsInverted data.isInverted boolean

IsShowing data.isShowing boolean

IsShowingInLegend data.isShowingInLegend boolean

OutlineColor data.outlineColor Color

pointLabels dataN.pointLabels String

Java Property HTML Syntax Value Type

Fill Color data.seriesn.fill.color Color

Fill ColorIndex data.seriesn.fill.colorIndex int

Fill Image data.seriesn.fill.image Image

FirstPoint data.seriesn.firstPoint int

IsIncluded data.seriesn.isIncluded boolean

IsShowing data.seriesn.isShowing boolean

IsShowingInLegend data.seriesn.isShowingInLegend boolean

Label data.seriesn.label String

LastPoint data.seriesn.lastPoint int

Line Color data.seriesn.line.color Color

Line ColorIndex data.seriesn.line.colorIndex int

Line Width
(not supported in JDK 1.0 or 1.1)

data.seriesn.line.width int

Symbol Color data.seriesn.symbol.color Color

Symbol ColorIndex data.seriesn.symbol.colorIndex int

Symbol Shape data.seriesn.symbol.shape (enum)

Symbol ShapeIndex data.seriesn.symbol.shapeIndex int

Symbol Size data.seriesn.symbol.size int

Java Property HTML Syntax Value Type
226 Part II ■ Reference Appendices

jclass.chart.JCSymbolStyle.html#DOT

R
eference A

ppendices
R

eference A
ppendices
D.3 JCAxis X- and Y-axis Properties

Java Property HTML Syntax Value Type

AnnotationMethod [xy]axis.annotationMethod (enum)

AnnotationRotation [xy]axis.annotationRotation (enum)

Font [xy]axis.font Font

Foreground [xy]axis.foreground Color

Formula Constant [xy]axis.formula.constant double

Formula Multiplier [xy]axis.formula.multiplier double

Formula Originator [xy]axis.formula.originator Axis Name, eg. xaxis1

GridColor [xy]axis.gridColor Color

GridIsShowing [xy]axis.gridIsShowing boolean

GridSpacing [xy]axis.gridSpacing double

IsEditable [xy]axis.isEditable boolean

IsLogarithmic [xy]axis.isLogarithmic boolean

IsReversed [xy]axis.isReversed boolean

IsShowing [xy]axis.isShowing boolean

Min [xy]axis.min double

Max [xy]axis.max double

NumSpacing [xy]axis.numSpacing double

Origin [xy]axis.origin double

OriginPlacement [xy]axis.originPlacement (enum)

Placement [xy]axis.placement (enum)

PlacementAxis [xy]axis.placementAxis Axis Name, eg. xaxis1

PlacementLocation [xy]axis.placementLocation double

Precision [xy]axis.precision int

TickSpacing [xy]axis.tickSpacing double

TimeBase [xy]axis.timeBase Date

TimeFormat [xy]axis.timeFormat String

TimeUnit [xy]axis.timeUnit (enum)

Title Adjust [xy]axis.title.adjust (enum)

Title Background [xy]axis.title.background Color

Title BorderType [xy]axis.title.borderType (enum)
Appendix D ■ HTML Property Reference 227

jclass.chart.JCAxis.html#VALUE
jclass.chart.JCAxis.html#ROTATE_NONE
jclass.chart.JCAxis.html#AUTOMATIC
jclass.chart.JCAxis.html#AUTOMATIC
jclass.chart.JCAxis.html#SECONDS
jclass.chart.ChartText.html#LEFT

Note: xaxis and yaxis are the names of the first axes, generated when chart
properties are saved to an HTML file; additional axes are named [xy]axis1,
[xy]axis2, [xy]axisn.

D.4 JCBarChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved
to an HTML file; additional datasets are named data1, data2, datan.

D.5 JCCandleChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved
to an HTML file; additional datasets are named data1, data2, datan.

Title BorderWidth [xy]axis.title.borderWidth (enum)

Title Font [xy]axis.title.font Font

Title Foreground [xy]axis.title.foreground Color

Title IsShowing [xy]axis.title.isShowing boolean

Title Placement [xy]axis.title.placement (enum)

Title Rotation [xy]axis.title.rotation 0, 90, 180, 270

Title Text [xy]axis.title.text JCString

ValueLabels [xy]axis.valueLabels String[]
(values separated by “;”)

Java Property HTML Syntax Value Type

100Percent data.Bar.100Percent boolean

ClusterOverlap data.Bar.clusterOverlap int

ClusterWidth data.Bar.clusterWidth int

Java Property HTML Syntax Value Type

IsComplex data.Candle.isComplex boolean

Java Property HTML Syntax Value Type
228 Part II ■ Reference Appendices

jclass.chart.JCLegend.html#NORTH
jclass.chart.ChartText.html#DEG_0

R
eference A

ppendices
R

eference A
ppendices
D.6 JCChart/JCComponent Properties

Java Property HTML Syntax Value Type

AllowUserChanges allowUserChanges boolean

Background background Color

BorderType borderType (enum)

BorderWidth borderWidth int

BottomMargin bottomMargin int

CancelKey cancelKey int

CustomizeTrigger customizeTrigger (enum)
(see Note for details)

DepthTrigger depthTrigger (enum)
(see Note for details)

DoubleBuffer doubleBuffer boolean

EditTrigger editTrigger (enum)
(see Note for details)

Font font Font

Foreground foreground Color

HighlightColor highlightColor Color

HighlightThickness highlightThickness int

Insets insets insets

IsBatched isBatched boolean

LabelName labeln String
(see Note for details)

LeftMargin leftMargin int

Offset offset int

PickTrigger PickTrigger (enum)
(see Note for details)

ResetKey resetKey int

RightMargin rightMargin int

RotateTrigger RotateTrigger (enum)
(see Note for details)

ShadowThickness shadowThickness int

SymbolColorIndex symbolColorIndex int

SymbolShapeIndex symbolShapeIndex int

TopMargin topMargin int
Appendix D ■ HTML Property Reference 229

jclass.base.Border.html#NONE

Notes: labeln is the number of Chart Labels when chart properties are saved to an
HTML file. Valid values for any Trigger property are NONE, CTRL, SHIFT, ALT or META
(equivalent to right-mouse-click).

D.7 JCChartArea Properties

TranslateTrigger TranslateTrigger (enum)
(see Note for details)

Traversable traversable boolean

ZoomTrigger ZoomTrigger (enum)
(see Note for details)

Java Property HTML Syntax Value Type

AngleUnit chartArea.angleUnit (enum)

AxisBoundingBox chartArea.axisBoundingBox boolean

Background chartArea.background Color

BorderType chartArea.borderType (enum)

BorderWidth chartArea.borderWidth int

Depth chartArea.depth int

Elevation chartArea.elevation int

FastAction chartArea.fastAction boolean

Font chartArea.font Font

Foreground chartArea.foreground Color

Height chartArea.height int

HorizActionAxis chartArea.horizActionAxis Axis Name, eg. xaxis1

Insets chartArea.insets Insets

IsShowing chartArea.isShowing boolean

Left chartArea.left int

PlotArea Background chartArea.plotArea.background Color

PlotArea Bottom chartArea.plotArea.bottom int

PlotArea Foreground chartArea.plotArea.foreground Color

PlotArea Left chartArea.plotArea.left int

PlotArea Right chartArea.plotArea.right int

Java Property HTML Syntax Value Type
230 Part II ■ Reference Appendices

jclass.chart.JCChartUtil.html#DEGREES
jclass.base.Border.html#NONE

R
eference A

ppendices
R

eference A
ppendices
D.8 JCChartLabel Properties

PlotArea Top chartArea.plotArea.top int

Rotation chartArea.rotation int

Top chartArea.top int

VertActionAxis chartArea.vertActionAxis Axis Name, eg. xaxis1

Width chartArea.width int

Java Property HTML Syntax Value Type

Adjust labeln.adjust (enum)

Anchor labeln.anchor (enum)

AttachMethod labeln.attachMethod (enum)

AttachX labeln.attachX int

AttachY labeln.attachY int

Background labeln.background Color

BorderType labeln.borderType (enum)

BorderWidth labeln.borderWidth int

DataAttachX labeln.dataAttachX int

DataAttachY labeln.dataAttachY int

DataIndex labeln.dataIndex DataIndex Name, eg.
AttachIndex1

DataView labeln.dataView ChartDataView

DwellDelay labeln.dwellDelay int

Font labeln.font Font

Foreground labeln.foreground Color

Height labeln.height int

Insets labeln.insets Insets

IsDwellLabel labeln.isDwellLabel boolean

IsShowing labeln.isShowing boolean

Left labeln.left int

OffsetX labeln.offsetX int

OffsetY labeln.offsetY int

Java Property HTML Syntax Value Type
Appendix D ■ HTML Property Reference 231

jclass.base.Border.html#NONE
jclass.chart.ChartText.html#LEFT
jclass.chart.JCChartLabel.html#NORTHEAST
jclass.chart.JCChartLabel.html#ATTACH_COORD

Note: label1 is the name of the first Chart Label, generated when chart properties
are saved to an HTML file; additional labels are named label2, label3, labeln.

D.9 JCDataIndex Properties

Note: AttachIndex1 is the name of first series index, generated when chart
properties are saved to an HTML file; additional series are named AttachIndex2,
AttachIndex3, AttachIndexn.

D.10 JCHLOCChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved
to an HTML file; additional datasets are named data1, data2, datan.

Rotation labeln.rotation (enum)

Text labeln.text JCString

Top labeln.top int

Width labeln.width int

Java Property HTML Syntax Value Type

DataView AttachIndexn.dataView ChartDataView

Distance AttachIndexn.distance int

Point AttachIndexn.point int

SeriesIndex AttachIndexn.seriesIndex int

Java Property HTML Syntax Value Type

IsOpenCloseFullWidth data.HLOC.isOpenCloseFullWidth boolean

IsShowingClose data.HLOC.isShowingClose boolean

IsShowingOpen data.HLOC.isShowingOpen boolean

Line Color data.HLOC.seriesn.line.color Color

Line Width
(not supported in JDK 1.0 or 1.1)

data.HLOC.seriesn.line.width int

TickSize data.HLOC.seriesn.tickSize int

Java Property HTML Syntax Value Type
232 Part II ■ Reference Appendices

jclass.chart.ChartText.html#DEG_0

R
eference A

ppendices
R

eference A
ppendices
D.11 JCHiLoChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved
to an HTML file; additional datasets are named data1, data2, datan.

D.12 JCLegend Properties

D.13 JCPieChartFormat Properties

Java Property HTML Syntax Value Type

Line Color data.HiLo.seriesn.line.color Color

Line Width
(not supported in JDK 1.0 or 1.1)

data.HiLo.seriesn.line.width int

Java Property HTML Syntax Value Type

Anchor legend.anchor (enum)

Background legend.background Color

BorderType legend.borderType (enum)

BorderWidth legend.borderWidth int

Font legend.font Font

Foreground legend.foreground Color

Height legend.height int

Insets legend.insets Insets

IsShowing legend.isShowing boolean

Left legend.left int

Orientation legend.orientation (enum)

Top legend.top int

Width legend.width int

Java Property HTML Syntax Value Type

ExplodeOffset data.Pie.explodeOffset int

MinSlices data.Pie.minSlices int

Other Label data.Pie.other.label String
Appendix D ■ HTML Property Reference 233

jclass.base.Border.html#NONE
jclass.chart.JCLegend.html#NORTH
jclass.chart.JCLegend.html#HORIZONTAL

Note: data is the name of the first dataset, generated when chart properties are saved
to an HTML file; additional datasets are named data1, data2, datan.

D.14 JCTitle Header and Footer Properties

Other Fill Color data.Pie.other.fill.color Color

SortOrder data.Pie.sortOrder ASCENDING,
DESCENDING

ThresholdMethod data.Pie.thresholdMethod (enum)

ThresholdValue data.Pie.thresholdValue int

Java Property HTML Syntax Value Type

Adjust header.adjust
footer.adjust

(enum)

Background header.background
footer.background

Color

BorderType header.borderType
footer.borderType

(enum)

BorderWidth header.borderWidth
footer.borderWidth

int

Font header.font
footer.font

Font

Foreground header.foreground
footer.foreground

Color

Height header.height
footer.height

int

Insets header.insets
footer.insets

Insets

IsShowing header.isShowing
footer.isShowing

boolean

Left header.left
footer.left

int

Rotation header.rotation
footer.rotation

(enum)

Text header.orientation
footer.orientation

JCString

Java Property HTML Syntax Value Type
234 Part II ■ Reference Appendices

jclass.base.Border.html#NONE
jclass.chart.JCPieChartFormat.html#SLICE_CUTOFF
jclass.chart.ChartText.html#LEFT
jclass.chart.ChartText.html#DEG_0

R
eference A

ppendices
R

eference A
ppendices
D.15 Example HTML File

The following HTML file defines the chart shown below:

<HTML>
<HEAD>
<TITLE>Yoyodyne snaps back</TITLE>
</HEAD>
<BODY>
<CENTER><H2>Yoyodyne snaps back</H2></CENTER>
<APPLET CODE=jclass/chart/JCChartApplet.class CODEBASE="../../.." HEIGHT=472 WIDTH=580>
<PARAM NAME=background VALUE="255-158-107">
<PARAM NAME=foreground VALUE="black">
<PARAM NAME=font VALUE="Dialog-PLAIN-12">
<PARAM NAME=CustomizeTrigger VALUE="Meta">
<PARAM NAME=allowUserChanges VALUE="true">
<PARAM NAME=footer.top VALUE="85">
<PARAM NAME=footer.width VALUE="505">
<PARAM NAME=footer.borderType VALUE="In">
<PARAM NAME=footer.borderWidth VALUE="2">
<PARAM NAME=footer.font VALUE="Helvetica-BOLD-20">
<PARAM NAME=footer.background VALUE="255-175-125">
<PARAM NAME=footer.insets VALUE="0,2,1,2">
<PARAM NAME=footer.text VALUE="Profits have recovered but share prices remains low">
<PARAM NAME=footer.isShowing VALUE="true">
<PARAM NAME=header.width VALUE="375">
<PARAM NAME=header.borderType VALUE="In">
<PARAM NAME=header.borderWidth VALUE="2">

Top header.top
footer.top

int

Width header.width
footer.width

int

Java Property HTML Syntax Value Type
Appendix D ■ HTML Property Reference 235

<PARAM NAME=header.font VALUE="Helvetica-BOLD-35">
<PARAM NAME=header.background VALUE="255-175-125">
<PARAM NAME=header.insets VALUE="0,2,1,2">
<PARAM NAME=header.text VALUE="Yoyodyne snaps back">
<PARAM NAME=header.isShowing VALUE="true">
<PARAM NAME=legend.top VALUE="416">
<PARAM NAME=legend.borderType VALUE="In">
<PARAM NAME=legend.borderWidth VALUE="5">
<PARAM NAME=legend.background VALUE="255-175-125">
<PARAM NAME=legend.isShowing VALUE="true">
<PARAM NAME=legend.anchor VALUE="South">
<PARAM NAME=legend.orientation VALUE="Horizontal">
<PARAM NAME=chartArea.top VALUE="130">
<PARAM NAME=chartArea.height VALUE="280">
<PARAM NAME=chartArea.width VALUE="549">
<PARAM NAME=chartArea.borderType VALUE="In">
<PARAM NAME=chartArea.borderWidth VALUE="5">
<PARAM NAME=chartArea.background VALUE="255-175-125">
<PARAM NAME=xaxis.borderWidth VALUE="3">
<PARAM NAME=xaxis.annotationMethod VALUE="Value_Labels">
<PARAM NAME=xaxis.placement VALUE="Min">
<PARAM NAME=xaxis.placementAxis VALUE="yaxis">
<PARAM NAME=xaxis.gridColor VALUE="black">
<PARAM NAME=xaxis.valueLabels VALUE="1.0; ’87; 2.0; ’88; 3.0; 89; 4.0; 90; 5.0; ’91">
<PARAM NAME=xaxis.title.isShowing VALUE="false">
<PARAM NAME=yaxis.borderWidth VALUE="3">
<PARAM NAME=yaxis.placement VALUE="Min">
<PARAM NAME=yaxis.gridIsShowing VALUE="true">
<PARAM NAME=yaxis.gridColor VALUE="black">
<PARAM NAME=yaxis.title.font VALUE="TimesRoman-BOLD-12">
<PARAM NAME=yaxis.title.text VALUE="$millions">
<PARAM NAME=chartArea.yaxisName1 VALUE="yaxis1">
<PARAM NAME=yaxis1.borderWidth VALUE="3">
<PARAM NAME=yaxis1.placement VALUE="Max">
<PARAM NAME=yaxis1.min VALUE="4.0">
<PARAM NAME=yaxis1.max VALUE="22.0">
<PARAM NAME=yaxis1.gridColor VALUE="black">
<PARAM NAME=yaxis1.title.font VALUE="TimesRoman-BOLD-12">
<PARAM NAME=yaxis1.title.text VALUE="share prices ">
<PARAM NAME=data.chartType VALUE="Bar">
<PARAM NAME=data.outlineColor VALUE="black">
<PARAM NAME=data.series1.line.colorIndex VALUE="0">
<PARAM NAME=data.series1.fill.colorIndex VALUE="0">
<PARAM NAME=data.series1.fill.color VALUE="0-84-255">
<PARAM NAME=data.series1.fill.pattern VALUE="Per_25">
<PARAM NAME=data.series1.symbol.colorIndex VALUE="0">
<PARAM NAME=data.series1.symbol.shapeIndex VALUE="1">
<PARAM NAME=data.series1.label VALUE="Profits">
<PARAM NAME=data.Bar.clusterWidth VALUE="50">
<PARAM NAME=data VALUE="
 ARRAY ’ ’ 1 5
 1.0 2.0 3.0 4.0 5.0
 24.0 30.2 36.4 -19.8 10.6
 ">
<PARAM NAME=dataName1 VALUE="data1">
<PARAM NAME=data1.outlineColor VALUE="black">
<PARAM NAME=data1.series1.line.colorIndex VALUE="1">
<PARAM NAME=data1.series1.line.color VALUE="red">
<PARAM NAME=data1.series1.fill.colorIndex VALUE="1">
<PARAM NAME=data1.series1.symbol.colorIndex VALUE="1">
236 Part II ■ Reference Appendices

R
eference A

ppendices
R

eference A
ppendices
<PARAM NAME=data1.series1.symbol.shapeIndex VALUE="2">
<PARAM NAME=data1.series1.symbol.color VALUE="red">
<PARAM NAME=data1.series1.symbol.shape VALUE="Dot">
<PARAM NAME=data1.series1.symbol.size VALUE="10">
<PARAM NAME=data1.series1.label VALUE="Share Prices">
<PARAM NAME=data1.yaxis VALUE="yaxis1">
<PARAM NAME=data1 VALUE="
 ARRAY ’ ’ 1 5
 1.0 2.0 3.0 4.0 5.0
 20.5 12.3 14.8 6.2 5.75
 ">
</APPLET>
</BODY>
</HTML>
Appendix D ■ HTML Property Reference 237

238 Part II ■ Reference Appendices

Index

“other” slice 151
3D effect 51, 90, 148

A
actions, programming 162
add a database connection 57
ALIGN

JCString property 215
alignment

JCString property 215
AllowUserChanges property 29
Anchor 140
Applet 121
AppletDataSource 121, 122
applets and applications

distributing on a Web server 31
applets, HTML parameter listing 225
array data format 122
array data layout 22
ATTACH_COORD 138
ATTACH_DATACOORD 138
ATTACH_DATAINDEX 138
Attach_Method 138
AutoLabel 139
AutoLabels 138
Automatic Labelling 85
axis

adding second Y 117
direction 111
grid lines 116
labelling 104
logarithmic 113
min and max 112
origins 112
positioning annotation 110
rotating annotation 115
rotating title 115
title 115

axis annotation
overview 104
PointLabels 106
TimeLabels 108
ValueLabels 107
Values 105

Axis Bounding Box 89
axis bounds 112
AxisAnnotation 72

AxisGrid 74
AxisMisc 76
axisOrientation property 48
AxisOrigin 74
AxisPlacement 76
AxisPointLabels 77
AxisScale 78
AxisTimeLabels 79
AxisTitle 80

B
Background property 141
background property 50
bar

cluster overlap 149, 154
cluster width 149, 154

bar chart
3D effect 148
image fill 164
origin placement 113
pick focus 170
special properties 149, 154

base 120
batching chart updates 159
BeanBox 37
Beans

MultiChart 69
overview 35

borders
using 144

Borland JBuilder
adding JClass to 16

C
Cafe

adding JClass to 15
Candle charts

ChartStyle properties used 156
simple and complex display 156

chart
basics 19
orientation 111
setting type 20
user interaction 162
239

chart customizer
enabling 29
using 29

chart elements
positioning 147

Chart labels 138
chart terminology 19
chart type 20
Chartable 129
chartable data source 22, 119
ChartAppearance 89
ChartArea

positioning 147
ChartAreaAppearance 89
ChartDataModel 130
ChartDataModelUpdate 130
ChartDataView 129, 138

ChartType property 20
containment hierarchy 28
converting coordinates 160
data source 129
HTML property syntax 225
IsInverted property 111
PointLabels 106
programming ChartStyles 142
property summary 173

ChartDataViewSeries 29, 129
property summary 176

ChartLabels property 138
ChartRegion

property summary 176
ChartStyles

area charts 141
bar charts 141
pie charts 141
plot and financial charts 141
use in financial chart types 156

ChartStyles, customizing 141
ChartSwingDataSource 121
ChartText

property summary 178
ChartType 98
ChartType property 20, 154
chartType property 49
choosing chart type 20
CLASSPATH

affect on web browsers 11
and Windows 95/98 11
and Windows NT 11
tips on setting 11

cluster overlap, bar chart 149, 154
cluster width, bar chart 149, 154
collections of objects 25
COLOR

JCString property 215
color

JCString property 215
colors

colorname values 219
RGB color value list 220

setting 145
Columns 66
comments on product 5
Constant 78
container 37
converting coordinates 160
customizer, using 29

D
data

array layout 22
general layout 22
layout 22
min and max 112

data binding 125
data binding Beans 44
data bound 125
data bounds 112
data formatting 120, 122
data layout

introduction 22
data view 84
DataBean 63
DataBinding property 65
DataBindingMetaData property 61, 66
dataBindingMetaData property 58
DataChart 84
DataMisc 85
dataSet property 58
DataSource 86
DataView, multiple axes 117
demos, running 14

JDK 1.2 note 14
Depth 51, 91
distributing applets and applications 31

using JarHelper 33
double buffering chart updates 161
Draw on Front Plane 85
DSdbChart 63, 128
DSdbChart Bean 65
dwell labels 139

E
EditableChartable 130
Elevation 51, 90
error bar charts using Hi-Lo-Open-Close chart type 155
EventTrigger 162
examples, running 14

JDK 1.2 note 14
ExplodeList property 152
ExplodeOffset property 152
240 Index

F
FAQs 5
feature limiting 72
FileDataSource 120, 122

tutorial 95
financial charts, ChartStyle properties used 156
FONT

JCString property 216
Font 89, 140
font

names 223
point size 223
style constants 223

font property 50, 52
fonts

choosing 144
JCString property 216

footer
positioning 147

FooterAppearance 89
footerText 52
Foreground property 141
foreground property 50
formatted file 120

G
general data format 122
general data layout 22
Gold Support, features of 4
grid lines 74, 116

 48

H
header

positioning 147
HeaderAppearance 89
headers and footers 135
HeaderText 82
headerText 52
Hi-Lo charts, ChartStyle properties used 156
HORIZ_SPACE

JCString property 216
Horizontal 53
horizontal spacing

JCString property 216
host 120
HREF

JCString property 216
HTML 121
HTML property syntax

ChartDataView 225
hypertext

JCString property 216
Hypertext Markup Language (HTML) 23, 101

I
IDE

setting properties 24
IDEs, information on using 5
IMAGE

JCString property 216
images

JCString property 216
interacting with the chart 162
Interactive Labels 139
introduction to JClass Chart 1
inverting a chart 111
inverting X- and Y-axis 99
IsComplex property 156
IsConnected 141
IsInverted property 111
IsOpenCloseFullWidth

using for error bar charts 155
IsOpenCloseFullWidth property 155
IsShowingClose property 155
IsShowingOpen property 155

J
J version, description of 9
JarHelper 33

requirements and installation 34
Java

introduction 17
Java Development Kit

versions of 9
Java Development Kit (JDK) 10

event models 36
Java Platform, versions of 9
JavaBeans 17

adding to IDE 14
introduction 17
overview 35

JavaBeans version 9
JBdbChart Bean 58
JBuilder 54, 128

adding JClass to 16
using with JClass 5

JCAxis
AnnotationRotation property 115
containment hierarchy 28
IsLogarithmic property 114
IsReversed property 111
Min and Max properties 112
property summary 179
second Y-axis 117

JCAxisFormula
property summary 184

JCAxisTitle 115
property summary 184
Rotation property 115
Text property 115
Index 241

JCBarChartFormat
property summary 186

JCBorderStyle
property summary 186

JCCandleChartFormat 156
property summary 186

JCChart 138
object hierarchy 28
property summary 187

JCChartApplet 23
JCChartArea 28

3D effect properties 148
property summary 189

JCChartComponent
property summary 190

JCChartLabel 28, 138
property summary 199

JCChartStyle 29, 141
property summary 201

JCChartTimeUtil 110
JCDataIndex 160

returned by pick() method 169
JCFillStyle 142

property summary 202
JCGridLegend 137

property summary 203
JCHiloChartFormat 156
JCHLOCChartFormat 156

property summary 204
JClass Chart

overview 1
JClass Chart Beans 43
JClass Chart Lite 45, 72
JClass DataSource 128
JClass Field, setting CLASSPATH 10
JClass Field, versions of 9
JClass technical support 4

contacting 4
JClass, determining version of 10
JCLegend 28, 137

property summary 205
JCLineStyle 143

property summary 206
JCMultiColLegend 137

property summary 207
JCPieChartFormat 150, 152

property summary 209
JCString 115, 146, 215
JCString properties

alignment 215
color 215
fonts 216
horizontal spacing 216
hypertext 216
images 216
reset 216
strikethrough text 217
underlined text 217
vertical spacing 216

JCSymbolStyle 143

property summary 209
JCTitle 28

property summary 210
JCValueLabel

property summary 211
JDBC 54, 128
JdbcDataSource 125
JDK

determining version of 10
versions of 9

JDK 1.2 support 9
JFC support 9

K
KL Group technical support 4

contacting 4

L
label

Adding Connecting Lines 141
Adding Labels to a Chart 138
Adding Text 140
Attaching to a Data Item 138
Attaching to Chart Area Coordinates 139
Attaching to Plot Area Coordinates 139
attachment method 138
Automatically Generated Dwell Labels 139
Borders and Colors 140
demos 138
dwell 139
Formatting Text 140
Individual Dwell Labels 140
interactive 138, 139
JCString tags 140
Positioning Labels 140
static 138

layoutLegend 137
learning JClass Chart 101
legend

custom legends 137
positioning 147
using 136

legend demo 137
legend toolkit 137
legendAnchor property 53
LegendAppearance 89
legendIsShowing property 52
LegendLayout 82
legendOrientation property 53
limited features 72
lite version 45
lite versions 72
logarithmic axis 113
242 Index

M
margins property 51, 90
MulltiChart

axis origin 74
MultiChart 43, 69

3D planes 85
adding footer text 81
adding header text 82
appearance controls 88
automatic dwell labels 85
axis annotation 72
axis controls 72
axis number precision 78
axis numbering 78
axis placement 76
axis precision 78
axis range 78
axis tick marks 78
axis titles 80
AxisRelationships 78
background 88
bounding box 89
chart areas 88
chart types 84
controlling 3D planes 85
data view 86
data views 85
events 91
foreground 88
grid lines 74
hiding an axis 76
IsEditable 76
label rotation 73
legend layout 82
loading data from a file 86
point labels 77
selecting axes for a data view 84
tick spacing 78
time labels 79
value labels 80

MultiChart showing a data view 85
multiple x-axes 122
Multiplier 78

O
object containment hierarchy 28
Origin property 113
Originator 78
OriginPlacement property 113
origins 112
other slice, pie charts 151

P
pick focus, bar chart 170
PIE 49

pie chart
“other” slice 151
3D effect 148
labelling pies with PointLabels 106
special properties 150
thresholding 150
use with unpick() method 170

plot1.java demo program 93
plot2.java demo program 97
PlotArea

property summary 212
PlotAreaAppearance 89
PointLabels axis annotation 106
PointLabels, use with pie charts 106
positioning chart elements 147
pre-formatted data 122
product feedback 5
programming actions 162
programming basics

collections 25
properties

100Percent 150, 154
access in IDE 24
Adjust 135
Anchor 136
AnnotationMethod 23, 97, 104, 108
AnnotationRotation 115
Background 136, 137, 145
BorderType 135, 137, 144
BorderWidth 135, 137, 144
Chartable 129, 130
ChartDataModel 129, 130
ChartDataViewSeries 129
ChartType 20
ClusterOverlap 149
ClusterWidth 150
Color 142, 143, 145, 151, 215, 220
CustomShape 143
DataView 136
Depth 148
EditableChartable 129, 130
Elevation 148
FastAction 161
FillStyle 142
Font 136, 137, 144, 223
Foreground 136, 137, 145
GridIsShowing 116
GridSpacing 116
GridStyle 116
Height 147
HorizActionAxis 163, 164
IsBatched 159
IsLogarithmic 114
IsReversed 111
IsShowing 96, 118
Left 135, 136, 147
LineStyle 143
Max 112
Min 112
MinSlices 151
Index 243

NumSpacing 105
Origin 113
OriginPlacement 113
OtherLabel 151
OtherStyle 151
Pattern 142, 143, 151
PlotArea 145
Precision 105
Rotation 115, 148
Shape 143
Size 143
SortOrder 152
SymbolStyle 143
Text 96, 135
ThresholdMethod 150
TickSpacing 105
TimeBase 108
TimeFormat 108, 109
TimeUnit 108
Title (axis) 115
Top 135, 136, 147
VertActionAxis 163
Width 143, 147

property summary
ChartDataView 173
ChartDataViewSeries 176
ChartRegion 176
ChartText 178
JCAxis 179
JCAxisFormula 184
JCAxisTitle 184
JCBarChartFormat 186
JCBorderStyle 186
JCCandleChartFormat 186
JCChart 187
JCChartArea 189
JCChartComponent 190
JCChartLabel 199
JCChartStyle 201
JCFillStyle 202
JCGridLegend 203
JCHLOCChartFormat 204
JCLegend 205
JCLineStyle 206
JCMultiColLegend 207
JCPieChartFormat 209
JCSymbolStyle 209
JCTitle 210
JCValueLabel 211
PlotArea 212
SimpleChart 212

Q
query property IJBuilder) 57
QueryDataSet (JBuilder) 57

R
related documents 4
RESET

JCString property 216
reset

JCString property 216
reversing an axis 111
RGB format 220
Rotation 51, 90
rotation 73
running sample programs 14

JDK 1.2 note 14

S
S version, description of 9
sample programs, running 14

JDK 1.2 note 14
setLegend 137
setText 140
setting CLASSPATH 10
setting properties in an IDE 24
SimpleChart 43

3D Effects 51
Axis Annotation Method 46
Axis Number Intervals 46
Axis Orientation 48
Axis Properties 45
Axis Range 47
Chart Types 49
Data Interpretation 49
data loading 55, 86
Font 50
footer 52
Foreground and Background Colors 50
header 52
Hiding Axes 47
Legend Layout 53
Legends 52
Logarithmic Notation 47
Margins 51, 90
property summary 212
Showing Grids 48
Showing the Legend 52
tutorial 37
using Swing TableModel data object 56, 87

special terms 19
sql query 65
stacking area chart 154
stacking bar chart

100 percent axis 150, 154
overview 149, 154

standard version, description of 9
STRIKEOUT

JCString property 217
strikethrough text

JCString property 217
support 4
244 Index

contacting 4
FAQs 5
IDE information 5

support plans, features of 4
Swing support 9
Swing TableModel object, use with SimpleChart 56,

86, 87
SwingDataModel 121

T
T version, description of 9
TableModel 121
TableModel, use with SimpleChart 56, 86, 87
technical support 4

contacting 4
FAQs 5

terminology 19
Text property 140
time base 79
time format 79
time unit 79
tips on setting CLASSPATH 11
Title property (axis) 115
titles 135
transitional bean version 9
Trigger property 29
TriggerList 91

U
UNDERLINE

JCString property 217
underlined text

JCString property 217
URL 120
URLDataSource 120, 122

V
Value annotation 46
Value_Labels notation 46
ValueLabels 107
ValueLabels axis annotation 107
VCdbChart Bean 61
version numbering scheme

JClass products 9
version, determining 10
versions, JClass Field 9
VERT_SPACE

JCString property 216
vertical spacing

JCString property 216
View3D property 51, 90
View3DEditor 51
Visual Cafe

adding JClass to 15

Visual Café 54, 128
Visual Cafe, using with JClass 5

W
web browsers and CLASSPATH 11
Windows 95, setting CLASSPATH 11
Windows 98, setting CLASSPATH 11
Windows NT, setting CLASSPATH 11

X
xAnnotationMethod property 46
X-axis

when chart inverted 111
when logarithmic 114

xAxisGridIsShowing property 48
xAxisIsLogarithmic property 47
xAxisIsShowing property 47
xAxisMinMax property 47
xAxisNumSpacing property 46
xAxisTitleText property 46

Y
Y2-axis 117
yAnnotationMethod property 46
Y-axis

when chart inverted 111
yAxisGridIsShowing property 48
yAxisIsLogarithmic property 47
yAxisIsShowing property 47
yAxisMinMax property 47
yAxisNumSpacing property 46
yAxisTitleText property 46

Z
zoom 92
Index 245

246 Index

