
JClass LiveTable
Programmer’s Guide & Reference Manual

Version 3.6 ■

JDK 1.0.2, JDK 1.1, JDK 1.1+Swing, and JDK 1.2

The Essential Java Grid/Table Component

TM

260 King Street East
Toronto, Ontario, Canada M5A 1K3
(416) 594-1026
www.klg.com

December 1998 RefNo: PRGDE-JCTBL/J/360-12/98

Copyright  1996-1998 by KL Group Inc. All rights reserved

KL Group, the KL Group logo, JClass, JClass BWT, JClass Chart, JClass DataSource, JClass Field,
JClass HiGrid, and JClass LiveTable are trademarks of KL Group Inc.

Java is a trademark of Sun Microsystems Inc. Microsoft, MS-DOS, and Windows are registered
trademarks, and Windows NT is a trademark of Microsoft Corporation.

All other products, names, and services are trademarks or registered trademarks of their respective
companies or organizations.

LIMITED END-USER LICENSE AGREEMENT FOR KL GROUP JCLASS PRODUCTS
The following is the limited end user license agreement (“LEULA”) for limited use on all of KL Group Inc.'s JClass products, other than JClass JarMaster and JClass JarHelper.
IMPORTANT — READ CAREFULLY: This KL Group Inc. (“KL Group”) Limited End-User License Agreement (“LEULA”) is a legal agreement between you (either an individual or a single entity) and KL
Group for the KL Group software product identified above, which computer software includes class libraries, Sun Microsystems, Inc.’s Java© Project X Technology and may include associated
media, printed materials, and “online” or electronic documentation (“SOFTWARE”). By installing, copying, or otherwise using the SOFTWARE, you agree to be bound by the terms of this LEULA. If
you do not agree to the terms of this LEULA, do not install or use the SOFTWARE; you may, however, return it to your place of purchase for a full refund.

SOFTWARE LICENSE
The SOFTWARE is protected by copyright laws and international copyright treaties, as well as other intellectual property laws and treaties. The SOFTWARE is licensed, not sold.

1. GRANT OF LICENSE. This LEULA grants you the following rights:
(a) If You Have Any Version Of A JClass Product. This license permits a single developer to use the SOFTWARE on a single computer, subject to the restrictions in Section 3:

i. To Build Applets. Provided that applets you build are used only as an internal component in end-user oriented user-interfaces, you may copy them to additional computers (e.g.
Web Servers), from which you may allow end-users to download, royalty-free, the applets in the course of browsing or interacting with Web pages you create. You are not
permitted to distribute the applets in any fashion which would promote, encourage or allow reuse or redistribution of the applet, other than as permitted above; and

ii. To Build Stand-Alone Java Applications. You have a royalty-free right to reproduce and distribute the class libraries as an integral part of your application(s). You are not
permitted to expose, either directly or indirectly, any API that allows programmatic access to the class libraries.

(b) Definition Of Use. The SOFTWARE is “in use” on a computer when it is loaded into temporary memory (i.e. RAM) or installed into permanent memory (e.g. hard disk, CD-ROM, or
other storage device) of that computer, except that a copy installed on a network server for the sole purpose of distribution to other computers is not “in use”.

2. LIMITED DISTRIBUTION RIGHTS. Your royalty-free distribution rights described in Section 1 above are granted provided that you:
(a) distribute the Applet(s) you build only in conjunction with and as an integral part of your Web pages, and distribute the class libraries only as an integral part of your end-user, stand-

alone application;
(b) your Web pages or software product(s) are targeted at end-users, and are not a development tool;
(c) you do not use KL Group’s name, logo or trademark to market your Web pages or application;
(d) you include a valid copyright notice on your Web pages and software products; and
(e) you agree to indemnify, hold harmless, and defend KL Group and its suppliers from and against any claims or lawsuits, including attorney’s fees, that arise or result from the use or

distribution of your Web pages and/or applications.

3. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.
(a) Rental. You may not rent, lease, or lend the SOFTWARE, but you may transfer the SOFTWARE and accompanying written materials on a permanent basis provided you retain no copies

and the recipient agrees to the terms of this License Agreement. If the SOFTWARE is an upgrade, any transfer must include the most recent upgrade and all prior versions.
(b) Support Services. KL Group may provide you with support services related to the SOFTWARE (“Support Services”). Use of Support Services is governed by the KL Group policies

and programs described in the user manual, “online” documentation, and/or other KL Group-provided materials. Any supplemental software code provided to you as part of the
Support Services shall be considered part of the SOFTWARE and subject to the terms and conditions of this LEULA. With respect to technical information you provide to KL Group as
part of the Support Services, KL Group may use such information for its business purposes, including for product support and development. KL Group will not utilize such technical
information in a form that personally identifies you. This LEULA does not entitle you to purchase KL Group’s Gold Support service offerings. Only a non-limited EULA entitles you to
purchase such support services.

(c) Termination. Without prejudice to any other rights, KL Group may terminate this LEULA if you fail to comply with the terms and conditions of this LEULA. In such event, you must
destroy all copies of the SOFTWARE and all of its component parts.

4. UPGRADES.
This LEULA does not entitle you to Upgrades for the SOFTWARE. Only a non-limited EULA entitles you to such Upgrades

5. COPYRIGHT.
All title and copyrights in and to the SOFTWARE (including but not limited to any images, photographs, animations, video, audio, music, text, and “applets” incorporated into the SOFTWARE), the
accompanying printed materials, and any copies of the SOFTWARE are owned by KL Group or its suppliers. Specifically, all title and copyrights in and to the Java© Project X Technology are owned
and licensed by Sun Microsystems, Inc., Copyright © Sun Microsystems, Inc. All rights reserved.
The SOFTWARE is protected by copyright laws and international treaty provisions. Therefore, you must treat the SOFTWARE like any other copyrighted material except that you may install the
SOFTWARE on a single computer provided you keep the original solely for backup or archival purposes. You may not copy the printed materials accompanying the SOFTWARE.

6. DUAL-MEDIA SOFTWARE.
You may receive the SOFTWARE in more than one medium. Regardless of the type or size of medium you receive, you may use only one medium that is appropriate for your single computer. You
may not use or install the other medium on another computer. You may not loan, rent, lease, or otherwise transfer the other medium to another user.

7. U.S. GOVERNMENT RESTRICTED RIGHTS.
The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph(c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer Software-Restricted Rights at 48 CFR 52.227-19, as
applicable. Manufacturer is KL Group Inc., 260 King Street East, Toronto, Ontario, Canada, M5A 4L5.

8. EXPORT RESTRICTIONS.
You agree that you do not intend to or will, directly or indirectly, export or transmit the SOFTWARE or related documentation and technical data, or process, or service that is the direct product of the
SOFTWARE, to any country to which such export or transmission is restricted by any applicable U.S., Canadian or other State regulation or statute, without the prior written consent, if required, of
the Bureau of Export Administration of the U.S. Department of Commerce, or such other governmental entity as may have jurisdiction over such export or transmission.

9. MISCELLANEOUS.
If you acquired this product in the United States this LEULA is governed by the laws of New York State, and the parties agree to resolve any dispute exclusively in the courts at New York City. If you
acquired this product in Canada, this LEULA is governed by the laws of the Province of Ontario, and the parties agree to resolve any dispute exclusively in the courts at Toronto.
If this product was acquired outside the United States or Canada, then local law may apply.
Should you have any questions concerning this LEULA, or if you desire to contact KL Group for any reason, please contact the KL Group subsidiary serving your country, or write: KL Group Sales
Information, 260 King Street East, Toronto, Ontario, Canada, M5A 4L5.

10. LIMITED WARRANTY.
LIMITED WARRANTY. KL Group warrants that (a) the SOFTWARE will perform substantially in accordance with the accompanying written materials for a period of ninety (90) days from the date of
receipt, and (b) any Support Services provided by KL Group shall be substantially as described in applicable written materials provided to you by KL Group, and KL Group support engineers will make
commercially reasonable efforts to solve any problem issues. Some states and jurisdictions do not allow limitations on duration of an implied warranty, so the above limitation may not apply to you.
To the extent allowed by applicable law, implied warranties on the SOFTWARE, if any, are limited to ninety (90) days.
CUSTOMER REMEDIES. KL Group’s and its suppliers’ entire liability and your exclusive remedy shall be, at KL Group’s option, either (a) return of the price paid, if any, or (b) repair or replacement of
the SOFTWARE that does not meet KL Group’s Limited Warranty and that is returned to KL Group with a copy of your receipt. This Limited Warranty is void if failure of the SOFTWARE has resulted
from accident, abuse, or misapplication. Any replacement SOFTWARE will be warranted for the remainder of the original warranty period or thirty (30) days, whichever is longer. Outside the United
States and Canada, neither these remedies nor any product support services offered by KL Group are available without proof of purchase from an authorized international source.
SPECIFIC DISCLAIMER FOR HIGH-RISK ACTIVITIES. The SOFTWARE is not designed or intended for use in high-risk activities including, without restricting the generality of the foregoing, on-line
control of aircraft, air traffic, aircraft navigation or aircraft communications; or in the design, construction, operation or maintenance of any nuclear facility. KL Group and its suppliers specifically
disclaim any express or implied warranty of fitness for such purposes or any other purposes.
NO OTHER WARRANTIES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KL GROUP AND ITS SUPPLIERS DISCLAIM ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH REGARD TO THE SOFTWARE AND THE ACCOMPANYING
PRINTED MATERIALS. THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS WHICH VARY FROM STATE/JURISDICTION TO STATE/JURISDICTION.

11. LIMITATION OF LIABILITY.
TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL KL GROUP OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF KL GROUP HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY CASE, KL GROUP’S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS LEULA SHALL BE LIMITED TO THE GREATER OF THE
AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE OR US$5.00; PROVIDED, HOWEVER, IF YOU HAVE ENTERED INTO A KL GROUP SUPPORT SERVICES AGREEMENT, KL GROUP’S ENTIRE
LIABILITY REGARDING SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF THAT AGREEMENT. BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF LIABILITY, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

JCL-BINLIC-LTD-9904

v

Table of Contents

Preface .11
Introducing JClass LiveTable 11
Assumptions . 12
Typographical Conventions in this Manual 12
Overview of the Manual 12
Related Documents . . 13
Technical Support . 14
Product Feedback and Annoucements 15

Part I: Using JClass LiveTable

1 Getting Started .19
1.1 Introduction . 19
1.2 Matching JClass and JDK Versions 19
1.3 Setting the CLASSPATH Environment Variable 20

Setting the CLASSPATH in Windows 21
Setting the CLASSPATH in Unix 22
Testing the Installation 22

1.4 Installed Files Overview 23
1.5 Adding JClass LiveTable to Your IDE 24

Using Visual Café with JClass LiveTable 25
Using JBuilder with JClass LiveTable 26

1.6 Java and JavaBeans Basics 27
1.7 Moving from JClass LiveTable 2.x to JClass LiveTable 3.x . . 28

2 ‘Hello Table’ — A Simple JClass LiveTable Program 29
2.1 The Basic Table 30
2.2 Improving the Table’s Appearance 32

Adding and Formatting Labels 32
Changing Alignment 34

vi Contents

Changing the Fonts 34
Adding Color to an Individual Cell 36
Changing the Cell Borders and Spacing 36
Displaying More of the Cells 37

2.3 Adding Interactivity 37
Making the Cells Editable 37
Enabling Cell Selection 38
Resizing using Labels Only 39
Enabling Column Sorting 39

2.4 Distributing Applets and Applications on a Web Server 39
Publishing an Applet on a Web Server 40
Using JarHelper to Customize the Deployment Archive . . . 42

2.5 Proceeding from Here 43

3 Building a Table. 45
3.1 Table Anatomy 101 46
3.2 JClass LiveTable Inheritance Hierarchy 47
3.3 Cell Management 48

CellRenderer and CellEditor 48
Scrollbar Components 48

3.4 Setting and Getting Properties 49
Table Contexts 49
Setting Cell/Label Properties with Java Code 51
Setting Applet Properties in an HTML File 51
Setting Properties with a Java IDE at Design-Time 53

3.5 Preset Table Styles 53
3.6 Defining Rows and Columns 55

Determining the Number of Rows/Columns 55
Setting Visible Rows/Columns 55
Swapping Rows or Columns 55
Specifying ‘Frozen’ Rows and Columns 56

3.7 Adding Row and Column Labels 57
Label Placement and Spacing 57

3.8 Row Height and Column Width 59
Character Height and Width 59
Pixel Height and Width 60
Variable Height and Width 61
Multiple Lines in Cells 61
Using Row Height and Width to Hide Rows and Columns . . 61
Controlling Cell Editor Size 62

Contents vii

3.9 Colors . 63
Foreground and Background Colors 63
Color of Selected Cells 63
Focus Rectangle Color 63
Repeating Colors 63

3.10 Cell and Label Text Alignment 64
3.11 Cell and Label Fonts 65
3.12 Border Types and Sides 65

Cell and Label Border Types 66
Custom Cell and Label Borders 66
Cell and Label Bordercells Width 67
Cell and Label Border Sides 68
Frame Border Attributes 68

3.13 Cell and Label Margins 69
3.14 Displaying Images in Table Cells 70

Image Format 70
Image Layout 70

3.15 Text and Image Clipping 71
3.16 Cell and Label Spanning 71

Using Spanning to Create Multi-line Headers 72

4 Working with Table Data .75
4.1 Overview: Data Handling in JClass LiveTable 75

How the Table and Data Source Communicate 76
4.2 Getting Data into your Table 76

Making the Data Source Editable 77
4.3 Using Stock Data Sources 77

VectorDataSource: the Data Source Workhorse 78
Getting Data from an Input Stream 78
Getting Data from a Database 79
Using a Data Source with JCTable 79
Caching Data with CachedDataSource 79
Using Swing TableModel Data Objects 79

4.4 Setting Stock Data Source Properties 80
Working with Rows and Columns 80
Working with Other Properties 82

4.5 Creating your own Data Sources 83
4.6 Dynamically Updating Data 86

Adding and Removing Columns and Rows 89

viii Contents

5 Displaying and Editing Cells . 91
5.1 Overview . 91
5.2 Default Cell Rendering and Editing 92
5.3 Rendering Cells . 93

JClass Cell Renderers 94
Setting a Cell Renderer for a Series 95
Mapping a Data Type to a Cell Renderer 95
Creating your own Cell Renderers 96

5.4 Editing Cells . 99
Default Cell Editors 99
Setting a Cell Editor for a Series 101
Mapping a Data Type to a Cell Editor 101
Creating Your Own Cell Editors 102

5.5 The CellInfo Interface 109

6 Programming User Interactivity . 111
6.1 Cell Traversal . 111

Default Cell Traversal 111
Focus Rectangle Color 111
Customizing Cell Traversal 112
Minimum Cell Visibility 112
Forcing Traversal 112
Controlling Interactive Traversal 112

6.2 Cell Selection . 113
Default Cell Selection 113
Customizing Cell Selection 114
Selected Cell List 115
Selection Colors 116
Working with Selected Ranges 116
Forcing Selection 117
Removing Selections 117
Selection in List Mode 117
Runtime Selection Control 117

6.3 Resizing Rows and Columns 118
Default Resizing Behavior 118
Disallowing Cell Resizing 118
Controlling Resizing 119

6.4 Table Scrolling 120
Default Scrolling Behavior 120
Specifying your own Scrollbars 120
Attaching Scrollbars 121

Contents ix

Setting Scrollbar Display Options 122
Managing Table Scrolling 122
Scroll Listener Methods 123

6.5 Dragging Rows and Columns 124
6.6 Sorting Columns 124

Sort by Clicking on a Column Label 126
Resetting the Table after Sorting 127

6.7 Custom Mouse Pointers 127

7 Events and Listeners . 129
7.1 Displaying Cells 129
7.2 Creating Components 131
7.3 Displaying Components 134
7.4 Entering Cells . 136
7.5 Painting . 138
7.6 Printing . 139
7.7 Resizing . 139
7.8 Scrolling . 141
7.9 Sorting . 145
7.10 Traversing . 146

8 Table Printing. 149
8.1 Basic Printing . 149
8.2 Adding Enhanced Print Functionality 149

Setting Page Layout Properties 150
Printing Headers and Footers 150

8.3 Adding Print Preview Capability 151

9 JClass LiveTable Beans and IDEs. 153
9.1 An Introduction to JavaBeans 153

Properties . 153
Setting Properties in a Java IDE at Design-Time 154
Setting Properties using Methods in the API 154

9.2 JClass LiveTable and JavaBeans 155
9.3 Setting Properties for the LiveTable Bean 155

JClass LiveTable Property Editors 156
LiveTable Lite Features and Property Limitations 159
LiveTable Properties 160

9.4 Tutorial: Building a Table in an IDE 175
The Basic Table 176
Improving the Table’s Appearance 177

x Contents

Adding Interactivity 182
The Final Program 184

9.5 Data Binding with IDEs 185
Data Binding LiveTable with a JBuilder Data Source . . . 185
Data Binding LiveTable with a Visual Café Data Source . . 190
Data Binding Using JClass DataSource 194

9.6 Interacting with Data Bound Tables 198
9.7 Property Differences Between the LiveTable and Data Binding Beans 200

Part II: Reference Appendices

A Event Summary . 203

B JClass LiveTable Property Listing . 205
B.1 Properties of jclass.table3.Table 205
B.2 Properties of jclass.table3.LiveTable 213
B.3 Properties of jclass.table3.db.jbuilder.JBdbTable 214
B.4 Properties of jclass.table3.db.vcafe.VCdbTable 216
B.5 Properties of jclass.table3.db.datasource.DSdbTable 217

C Moving from JClass LiveTable 2.x to 3.x 219
C.1 Overview . 219
C.2 What's New . 220
C.3 What's Removed 221
C.4 What's Different 221
C.5 Using the Transitional JCTable Class 222

D JCString Properties . 225

E Colors and Fonts . 229
E.1 Colorname Values 229
E.2 RGB Color Values 229
E.3 Fonts . 234

11

Preface
Introducing JClass LiveTable ■ Assumptions

Typographical Conventions in this Manual ■ Overview of the Manual
Related Documents ■ Technical Support

Product Feedback and Annoucements

Introducing JClass LiveTable

JClass LiveTable is a Java GUI component that displays rows and columns of user-
interactive text, images, hypertext links, and other Java components in a scrollable
window.

JClass LiveTable may be used in conjunction with KL Group’s JClass BWT or JClass
Field. JClass BWT provides additional Java components that complement or replace
their equivalent AWT components. A JClass BWT component may be added to a
JClass LiveTable cell.

All JClass LiveTable components are written entirely in Java; as long as the Java
implementation for a particular platform works, JClass LiveTable will work.

You can freely distribute Java applets and applications containing JClass components
according to the terms of the Licence Agreement.

Feature Overview
You can set the properties of JClass LiveTable components to determine how the
table will look and behave. You can control:

■ the data source for the table

■ preset and custom cell editing and display behavior for all types of data

■ labels for columns and rows

■ colors, fonts, borders (including custom borders), alignment, and spacing for
cells and labels

■ row and column dragging

■ column sorting

■ adding, deleting, moving, and dragging rows and columns

■ scrolling and attaching default or custom scrollbars

■ cell selection and traversal

12 Preface

Assumptions

This manual assumes that you have some experience with the Java programming
language. You should have a basic understanding of object-oriented programming
and Java programming concepts such as classes, methods, and packages before
proceeding with this manual. See “Related Documents” later in this section of the
manual for additional sources of Java-related information.

Typographical Conventions in this Manual

Overview of the Manual

Part I — “Using JClass LiveTable” describes how to use the JClass LiveTable
programming components.

Chapter 1 , “Getting Started”, provides help with common configuration
problems, including CLASSPATH and IDE setup.

Chapter 2 , “‘Hello Table’ — A Simple JClass LiveTable Program”, provides a
tutorial exercise to familiarize new users with the basics of writing a JClass
LiveTable program.

Chapter 3 , “Building a Table”, explains how to set most JClass LiveTable
properties to customize the appearance and display of JClass LiveTable
applications.

Chapter 4 , “Working with Table Data”, gives details on getting data into and out
of tables using the new Model View Controller data handling in JClass
LiveTable 3.

Chapter 5 , “Displaying and Editing Cells”, describes how to configure JClass
LiveTable so users can edit cells of any data type.

Typewriter Font ■ Java language source code and examples of file contents.
■ JClass LiveTable and Java classes, objects, methods,

properties, constants and events.
■ HTML documents, tags, and attributes.
■ Commands that you enter on the screen.

Italic Text ■ Pathnames, filenames, URLs, programs and method
parameters.

■ New terms as they are introduced, and to emphasize
important words.

■ Figure and table titles.
■ The names of other documents referenced in this manual,

such as Java in a Nutshell.

Bold ■ Keyboard key names and menu references.

Preface 13

Chapter 6 , “Programming User Interactivity”, explains how to control how users
interact with your table application, including cell traversal, selection, sorting,
etc.

Chapter 7 , “Events and Listeners”, explains how to send events and register
event listeners in your JClass LiveTable programs.

Chapter 8 , “Table Printing”, describes the enhanced printing features of JClass
LiveTable.

Chapter 9 , “JClass LiveTable Beans and IDEs”, describes the JClass LiveTable
JavaBeans and how to use them within a Java Development Environment.

Part II — Reference Appendices are provided for quick access to detailed
information of JClass LiveTable features and implementation.

Appendix A, Event Summary, lists events and corresponding event listeners.

Appendix B, JClass LiveTable Property Listing, is a quick reference to properties,
their functions, and settable values.

Appendix C, Moving from JClass LiveTable 2.x to 3.x, explains how to use the
JCTable transitional class in JClass LiveTable, and includes an explanation of the
differences between the two versions.

Appendix D, JCString Properties, describes types of JCString properties
available for adding hypertext and text within programs using JClass LiveTable
components.

Appendix E, Colors and Fonts, lists all of the color names and RGB values
available to JClass LiveTable applications. It also lists all of the available fonts
and font style constants.

Related Documents

The following is a sample of useful references to Java and JavaBeans programming:

■ “Writing Java Programs” at http://www.javasoft.com/docs/programmer.html and the
“Java Tutorial” at http://www.javasoft.com/docs/books/tutorial/index.html from Sun
Microsystems.

■ Java in a Nutshell, 2nd Edition from O’Reilly & Associates Inc.

■ Resources for using JavaBeans are at http://www.javasoft.com/beans/resources.html.

However, these documents are not required to develop applications using JClass
LiveTable and Java.

http://www.javasoft.com/docs/programmer.html
http://www.javasoft.com/docs/books/tutorial/index.html
http://www.javasoft.com/beans/resources.html

14 Preface

Technical Support

Many of the initial questions you may have are basic installation or configuration
problems. Consult this product’s readme file and Chapter 1, “Getting Started”, for
help with these types of problems.

KL Group’s Standard Support plan is included with your purchase and entitles
registered users with a valid JClass software license to the following support:

■ 30 days of direct technical support via telephone, email or fax.

■ FAQ Documents on our Web site.

■ JClass Knowledge Base, a searchable collection of information including
program samples and problem/resolution documents.

■ JClass Forum Newsgroup, where you can communicate with other developers
using JClass products around the world.

■ Minor bug-fix update releases downloadable from our Web site.

Upgrading to KL Group’s Gold Support with Subscription plan entitles you to the
following additional support:

■ Unlimited direct technical support for one full year.

■ Web-based Express Case Submission form for quickly logging problems; a
Customer Support Engineer will contact and assist you directly.

■ All product upgrade releases; download from Web site or shipped to you on CD-
ROM.

For information on obtaining Gold Support for your JClass product, please visit our
online store or your JClass reseller. You can also email sales@klg.com.

To Contact JClass Support
Any request for support must include your JClass product serial number. Supplying
the following information will help us serve you better:

■ The type and version of the operating system you are using

■ Your development environment and its version

■ A full description of the problem including the steps required to duplicate it.

mailto:sales@klg.com

Preface 15

Product Feedback and Annoucements

We are interested in hearing about how you use JClass LiveTable, any problems you
encounter, or any additional features you would find helpful. The majority of
enhancements to JClass products are the result of customer requests.

Please send your comments to:

KL Group Inc.
260 King Street East
Toronto, Ontario, M5A 1K3 Canada

Phone: (416) 594-1026
Fax: (416) 594-1919
Email: dev_jclass@klg.com
Internet: news://news.klg.com/klg.forum.jclass

While we appreciate your feedback, we cannot guarantee a response. Please do not
use the dev_jclass email address for technical support questions.

Occasionally, we send JClass-related product announcments to our customers using
an email list. To add yourself to this mailing list, send email with the word
“subscribe” in the body of the message to jclass_announce-request@klg.com.
Visit the KL Group web site at http://www.klg.com for more details.

Telephone:

800-663-4723 (toll free in North America) or
416-594-1026
Available Monday – Friday, 9:00 a.m. to 8:00 p.m.
Eastern time

Fax: 416-594-1919

Standard Support Email: jclass_support@klg.com

Express Case Submission
Form (Gold Support only)

http://www.klg.com/cgi-bin/webcase.cgi

Other Support Resources

JClass Technical Support
(links to Knowledge Base):

http://www.klg.com/cs/tech/jclass/

JClass FAQs: http://www.klg.com/cs/tech/jclass/faq/

Using JClass in IDEs: http://www.klg.com/jclass/ides.html

mailto:dev_jclass@klg.com
news://news.klg.com/klg.forum.jclass
mailto:jclass_announce-request@klg.com
http://www.klg.com
mailto:jclass_support@klg.com
http://www.klg.com/cgi-bin/webcase.cgi
http://www.klg.com/cs/tech/jclass/
http://www.klg.com/cs/tech/jclass/faq/
http://www.klg.com/jclass/ides.html

16 Preface

Part
I

Using JClass
LiveTable

19

1
Getting Started

Introduction ■ Matching JClass and JDK Versions

Setting the CLASSPATH Environment Variable ■ Installed Files Overview
Adding JClass LiveTable to Your IDE ■ Java and JavaBeans Basics

Moving from JClass LiveTable 2.x to JClass LiveTable 3.x

1.1 Introduction

This chapter covers common configuration issues so you can start using JClass
LiveTable as quickly as possible. Because of the wide variety of Java platforms and
development environments, JClass LiveTable may not be configured correctly for
your environment after installation.

Please see the readme-table.txt file included with this release for details on installing
JClass LiveTable and for information on supported Java environments.

1.2 Matching JClass and JDK Versions

Separate versions of JClass LiveTable are available for specific versions of the Java
Platform. The version you use should match the JDK version needed by your
application/applet. For example, if you are creating an applet to run in Microsoft
Internet Explorer 4.0 (JDK 1.1 platform), use the JClass LiveTable version for JDK
1.1. Use the following table to determine which version of JClass LiveTable to use for
your application:

Version Java Platform Description

JClass LiveTable 3.6T JDK 1.0.2 ■ “Transitional Beans” that provide JDK 1.1-level
event APIs for easy migration to JDK 1.1.

JClass LiveTable 3.6 JDK 1.1 ■ Standard “AWT-style” JavaBeans.

JClass LiveTable 3.6S JDK 1.1 + Swing ■ JavaBeans for JDK 1.1 applications using
Swing 1.0.3 components.

20 Part I ■ Using JClass LiveTable

Each version has the same API and virtually the same features to make it easy for
existing applications to migrate to new versions of the Java platform. For clarity,
distribution filenames and JAR/ZIP archives contain the full version number in the
name, for example, jctable360.jar and jctable360S.jar.

This documentation covers all versions of JClass LiveTable, noting any differences
between versions where they occur.

Determining the JDK and JClass LiveTable Version
To determine the version of the JDK you are using, enter the following at a
command prompt:

 java -version

To determine the version of JClass LiveTable you are using on your system, run the
version program provided:

 java jclass.table3.JCVersion

This program will only run if the CLASSPATH has been set correctly as described
in the following section.

1.3 Setting the CLASSPATH Environment Variable

The Java Virtual Machine (JVM) and other applications use the CLASSPATH
environment variable to locate user-defined classes. You should ensure that the
CLASSPATH points to the location of the JClass LiveTable classes (and classes you
develop). The installation program does this automatically for Windows users; Unix
users need to add JClass LiveTable to the CLASSPATH manually.

Two entries should be part of the CLASSPATH — one specifying the JClass product
classes (a JAR or ZIP file located in the product’s \lib\ directory), and one specifying
the installation directory (necessary to run JClass LiveTable example and demo
programs). You should not need to unzip the JAR/ZIP archive to develop with JClass
LiveTable.

For example, if you installed JClass LiveTable on a Windows machine in C:\JClass36,
the CLASSPATH would include the following ([xxx] is the product version number):

 C:\JClass36\lib\jctable[xxx].jar;C:\JClass36\

To determine the current CLASSPATH, enter the following at a command prompt:

Windows — echo %CLASSPATH%
Unix — echo $CLASSPATH

JClass LiveTable 3.6J JDK 1.2 ■ JavaBeans for JDK 1.2 applications.
■ Also for JDK 1.1 applications using Swing 1.1.

Version Java Platform Description

Chapter 1 ■ Getting Started 21

Some CLASSPATH specification tips:

■ Each entry is separated by a semicolon (Windows) or a colon (Unix).

■ An entry is typically a root directory to search through for .class files (if a class is
part of a package, each level in the package is treated as a subdirectory from
here), for example, C:\JClass36.

■ Entries can also specify a JAR or ZIP file containing archived classes, for
example, C:\JClass36\lib\jctable[xxx].jar.

■ Add a period (.) to the CLASSPATH to include the current directory.

■ Setting the CLASSPATH in a startup file causes it to be used when running web
browsers and other applications for your entire session.

1.3.1 Setting the CLASSPATH in Windows

The Windows-based setup program automatically adds JClass LiveTable to the
CLASSPATH during installation. The following instructions are provided in case
you need to configure the CLASSPATH manually for some reason.

Windows 95 and Windows 98
Add the following statement to your autoexec.bat file to include JClass LiveTable in
the CLASSPATH ([xxx] is the product version number):

 set CLASSPATH=%CLASSPATH%;C:\JClass36\lib\jctable[xxx].jar;
 C:\JClass36;

JDK 1.0.2 users: Replace jctable[xxx].jar above with jctable[xxx]-classes.zip.

Restart Windows to make the change take effect.

Windows NT (3.51 and higher)
The best way to set environment variables is using the Control Panel. Start Control
Panel and select System. Locate the CLASSPATH environment variable (if it
doesn’t exist, create it). Add the following value to the variable to include JClass
LiveTable in the CLASSPATH ([xxx] is the product version number):

 [existing-classes];C:\JClass36\lib\jctable[xxx].jar;C:\JClass36;

JDK 1.0.2 users: Replace jctable[xxx].jar above with jctable[xxx]-classes.zip.

The following illustrates setting the CLASSPATH on Windows NT; your actual
setting may vary or have additional directories/JAR files.

22 Part I ■ Using JClass LiveTable

1.3.2 Setting the CLASSPATH in Unix

You must manually configure the CLASSPATH environment variable before you
can start using JClass LiveTable. The CLASSPATH must point to the location of the
JClass LiveTable classes and installation directory (for example /usr/local).

Add a setenv command to your startup file (such as .cshrc) to set CLASSPATH to
point to the JClass LiveTable classes, for example ([xxx] is the JClass LiveTable
version number):

 setenv CLASSPATH .:/usr/local/JClass36/lib/jctable[xxx].jar:
 /usr/local/JClass36

JDK 1.0.2 users: Replace jctable[xxx].jar above with jctable[xxx]-classes.zip.

1.3.3 Testing the Installation

After setting the CLASSPATH environment variable you should verify that it has
been configured correctly. The easiest way to test whether you can start
programming with JClass LiveTable is to execute the JCVersion class. Enter the
following at a command prompt:

 java jclass.table3.JCVersion

If the version number does not match the version just installed, there is probably an
older version of JClass LiveTable listed earlier in the CLASSPATH.

Chapter 1 ■ Getting Started 23

1.4 Installed Files Overview

JClass products install into a single root directory. The directory hierarchy is
designed to make it easy to work with multiple JClass products in one location. The
following diagram provides an overview of the directory hierarchy created for JClass
LiveTable.

Class Library Archives
The \lib\ directory contains the JClass LiveTable class library archives in JAR or ZIP
format. JClass LiveTable developers can add these files to an IDE, or simply work
with them through the JDK. You usually do not need to unzip the archives when
programming with JClass LiveTable.

Your release of JClass LiveTable may include the following archives ([xxx] is the
product version number):

See the readme-table.txt file for details on the archives that ship with each version of
JClass LiveTable.

jctable[xxx].jar Standard JClass LiveTable components.

jctable[xxx]jb.jar The standard components plus a Bean that data
binds to Borland JBuilder data source components.

jctable[xxx]vc.jar The standard components plus a Bean that data
binds to Visual Café data source components.

jctable[xxx]ds.jar JClass LiveTable components that data bind with
JClass DataSource data Beans. JClass DataSource is
available separately or as part of a JClass product
suite from KL Group.

jctable[xxx]-classes.zip Standard JClass LiveTable components for
development environments that cannot use JAR
files.

24 Part I ■ Using JClass LiveTable

Sample Code
The jclass\table3\examples\ and jclass\table3\demos\ directories contain sample Java
programs that use JClass LiveTable. The programs can be executed as either applets
or applications. To run as applications, use the Java interpreter, specifying the
application class’s full package path, for example:

 java jclass.table3.examples.simple

To run as applets, either open index.html in a compatible browser (you may need to
unset the CLASSPATH environment variable first) or use the JDK appletviewer
program.

JDK 1.2 Note: To run JClass LiveTable sample programs using appletviewer, you
may need to extract the product JAR file into your JCLASS_HOME directory. This
is because appletviewer in JDK 1.2 does not use the CLASSPATH environment
variable. You may also need to use the -nosecurity switch, for example:

 appletviewer -nosecurity index.html

Product Documentation
The jclass\table3\api\ directory contains JClass LiveTable programming and reference
documentation in HTML format. Open index.html in a frames-capable web browser
to read the documentation.

Version Notes, Compatibility, Known Problems
The readme-table350.txt file contains details on version-specific files installed with the
JClass LiveTable version for each JDK platform, compatibility with JDK and
browser environments, and changes and known problems with this release.

1.5 Adding JClass LiveTable to Your IDE

JClass LiveTable works well with any JavaBeans-compliant Integrated Development
Environment (IDE), including Symantec Visual Café, Inprise Borland JBuilder, IBM
VisualAge for Java, Sybase PowerJ, and SuperCede for Java.

Once added to the development environment’s component palette you can use
JClass LiveTable the same way you use standard AWT or Swing components —
adding them to forms, setting initial property values, specifying event-handling, and
so on.

All environments provide a way to add components contained in a JAR or ZIP file
to their component palette. The exact steps are unique to each environment so the
best source for details is the documentation for your development environment. The
JClass LiveTable JAR and ZIP files are located in the \lib\ subdirectory of where you
installed JClass LiveTable.

Chapter 1 ■ Getting Started 25

1.5.1 Using Visual Café with JClass LiveTable

We recommend installing JClass LiveTable after installing Visual Café; this way,
JClass LiveTable can be added to the Component Library automatically. The setup
program copies the JClass LiveTable JAR file to Visual Café’s \bin\components
directory. (If you install Visual Café after installing JClass LiveTable, you can add the
JAR to the Component Library manually as described in the Visual Café help.)

Replacing the Bundled JClass Components
It is important to note that installing this release does not automatically replace the
older JClass BWT, JClass Chart, and JClass LiveTable components that are included
with Visual Café (located in \KLGroup\klg.jar). If the bundled JClass components
have been added to the Component Library, a newer version will not be shown in
the Component Library.

To force Visual Café to replace the old JClass components in the Component
Library, you must explicitly add jctable[xxx]vc.jar to the Component Library (Insert |
Component into Library...).

Adding JClass LiveTable to the Component Palette
When JClass LiveTable is in the Component Library, you can add its components to
the Component Palette to make them convenient to use. The following steps
describe one easy way to add a new palette tab containing all of the JClass LiveTable
components:

1. Display the Component Library window if it is not
already visible (View | Component Library)

2. Right-click the “jctable[xxx]vc” folder and select
Add to Palette from the popup menu. Visual Café
creates a new tab on the Component Palette and
adds all of the JClass LiveTable components to it.

3. You can rename the tab to make it easier to read. To
do this, right-click the Component Palette, select
Customize Palette... from the popup menu, and
change the name of the “jctable[xxx]vc” folder to “JClass LiveTable”.

Upgrading to a Newer Version of JClass LiveTable
Visual Café only allows one version of a component to be listed in the Component
Library, so when you install a newer version of JClass LiveTable, it automatically
replaces the older version in the Component Library (except for the version
included with Visual Café; see Replacing the Bundled JClass Components for
details).

When you reopen your project, it seamlessly uses the latest version of JClass
LiveTable. There should generally be no problem using a newer version of JClass

26 Part I ■ Using JClass LiveTable

LiveTable with an existing application. However, if you do experience problems,
you can revert back to the previous version by moving the new version’s JAR file out
of the \bin\components directory (previous versions’ JARs are not deleted).

Note: You must add JClass LiveTable to the Component Palette again manually
when you install a newer version.

Removing JClass LiveTable from the Component Library
Using the Add/Remove Programs dialog in the Control Panel does not remove
JClass LiveTable from Visual Café. You must manually delete the JClass LiveTable
JAR file from Visual Café’s \bin\components directory and manually remove the JClass
LiveTable tab from the Component Palette.

1.5.2 Using JBuilder with JClass LiveTable

We recommend installing JClass LiveTable after installing Borland JBuilder; this way,
JClass LiveTable is added to the Component Palette automatically. If you install
JBuilder after installing JClass LiveTable, you can add the JAR file to the Palette
manually (Tools | Configure Palette...) as described in the JBuilder help.

Upgrading to a Newer Version of JClass LiveTable
When you install a newer version of JClass LiveTable, the Component Palette is
automatically updated to use the new version. However, existing JClass LiveTable
projects need to be reconfigured to use the new version, as outlined below:

1. With your project open, display the Project Properties dialog (File |
Project Properties...).

2. Edit the Java Libraries list on the Paths tab to use the new version of the JClass
LiveTable JAR file.

3. Save your project files.

4. Similarly, edit the default Java Libraries list (Tools | Default Project
Properties...) to use the new version of the JClass LiveTable JAR file for new
projects.

See the JBuilder help for complete details. There should generally be no problem
using a newer version of JClass LiveTable with an existing application. However, if
you do experience problems, you can revert back to the previous version in the
Project Properties dialog.

Removing JClass LiveTable from JBuilder
Using the Add/Remove Programs dialog in the Control Panel does not remove
JClass LiveTable from JBuilder. You must manually configure JBuilder to remove all
references to JClass LiveTable:

Chapter 1 ■ Getting Started 27

■ Remove JClass LiveTable from the default Java libraries list using the Default
Project Properties... dialog (Tools | Default Project Properties...).

■ To remove the JClass LiveTable tab from the Palette, right-click the palette, select
Properties..., and click the Remove button.

1.6 Java and JavaBeans Basics

Java is both a compiled and an interpreted language. After writing a Java program
using a text editor, save it as a source file with the extension .java. When this source
file is run through the Java compiler, it compiles the file into a .class file. Unlike .exe
files, these compiled .class files are not directly executable under any operating
system, because they do not contain machine-language code that can be understood
directly by the microprocessor. Instead, they are compiled into a byte-code format
consisting of machine-language instructions designed for a virtual microprocessor.
This virtual microprocessor is the Java Virtual Machine, which interprets the byte-
code into a machine-language code that can be understood by your system’s
microprocessor. As long as the Java Virtual Machine software exists for a computing
platform, any Java programs you create will be able to run on that platform.

If the Java compiler and CLASSPATH are properly configured, you can compile a
Java program by running the Java compiler at the command prompt, for example:

 javac MyJavaProgram.java

Java Applications and Applets
Java programs are usually one of two types: stand-alone applications and applets.
Stand-alone applications can be run directly on a system containing the Java
interpreter or Java runtime environment, while applets can be added to web pages
for execution by a Java-compatible browser. JClass components can be used to
create both types of Java programs.

JClass LiveTable and JavaBeans
JavaBeans(TM) is the software component model for Java. Introduced in JDK 1.1, the
JavaBeans specification enables developers to create and use platform-independent,
reusable software components on a wide variety of platforms and development
environments. JClass LiveTable components are JavaBeans; they follow standard
API naming conventions, the JavaBeans event model, and can easily be integrated
with Java IDEs.

A good source of general information on Java and JavaBeans is the Frequently Asked
Questions (FAQ) list that can be found at the JavaSoft Web site at
http://www.javasoft.com/products/jdk/faq.html and
http://www.javasoft.com/beans/FAQ.html respectively.

http://www.javasoft.com/products/jdk/faq.html
http://www.javasoft.com/beans/FAQ.html

28 Part I ■ Using JClass LiveTable

1.7 Moving from JClass LiveTable 2.x to JClass LiveTable 3.x

JClass LiveTable 3.0 and 3.6 include significant changes from the previous version.
Nevertheless, it should not be difficult for you to use your JClass LiveTable 2.x
applications in the new version because we have provided a transitional class called
JCTable.

In most cases, your JClass LiveTable 2.x applications should run using LiveTable 3.x
by simply calling JCTable instead of Table as the core class name. You will also need
to change import statements to use the new package name, jclass.table3, instead
of jclass.table.

For specific differences between JClass LiveTable 2.x and 3.x, and for further details
on how to use JCTable please see Appendix C, Moving from JClass LiveTable 2.x to
3.x.

29

2
‘Hello Table’ — A Simple

JClass LiveTable Program
The Basic Table ■ Improving the Table’s Appearance

Adding Interactivity ■ Distributing Applets and Applications on a Web Server
Proceeding from Here

You can immediately learn about some fundamental JClass LiveTable programming
concepts by compiling and running an example program1. This program displays
information about orders for ‘The Musical Fruit’, a fictional wholesale coffee
distributor, based on the following data:

1. This exercise assumes that you are familiar with Java programming concepts and have previously written and
compiled Java programs. It also begs forgiveness for yet another play on the coffee theme of Java.

Customer Name Order Date Item Quantity (lbs.) Price/lb.

The Cuppa 11/11/97 French Mocha 60 $7.01

The Underground Cafe 11/14/97 Brazilian Medium 112 $6.80

RocketFuel and Cake Cafe 10/30/97 Espresso Dark 300 $8.02

WideEyes Coffee House 11/12/97 Colombian/Irish
Cream Flavored

120 $5.30

Jitters Caffeine Cavern 10/01/97 Ethiopian
Medium

80 $7.50

Twitchie’s on the Mall 12/06/97 French Roast
Kona

160 $14.50

KL Group 12/12/97 Colombian 22,000 $5.28

30 Part I ■ Using JClass LiveTable

2.1 The Basic Table

The following code is from ExampleTable1.java, found in the examples\chapter2
directory of your JClass LiveTable installation directory. The code creates a very
plain-looking table, without column labels or any other of JClass LiveTable’s features
to improve usability and appearance.

 package jclass.table3.examples.chapter2;

 // import the necessary java classes, including the Table package
 import jclass.table3.*;
 import jclass.contrib.ContribFrame;

 // initiate the class declaration
 public class ExampleTable1 extends ContribFrame {

 // set the cell values as a matrix of strings
 String cells[][] = {
 {"The Cuppa","11/11/97","French Mocha","60","$7.01"},
 {"The Underground Cafe","11/14/97", "Brazilian Medium","112","$6.80"},
 {"RocketFuel and Cake","10/30/97","Espresso Dark","300","$8.02"},
 {"WideEyes Coffee House","11/12/97","Colombian/Irish Cream Flavored","120","$5.30"},
 {"Jitters Caffeine Cavern","10/01/97","Ethiopian Medium Roast","80","$7.50"},
 {"Twitchy’s on the Mall","12/06/97","French Roast Kona","160","$14.50"},
 {"KL Group Inc.","12/12/97", "Colombian","22,000","$5.28"}
 };

 // initialize the Table object
 Table table;

 // Build the table, point to the data source and define the table properties

 public ExampleTable1() {
 table = new Table();
 VectorDataSource ds = new VectorDataSource();
 table.setColumnLabelDisplay(false);
 table.setRowLabelDisplay(false);
 table.setDataSource(ds);
 ds.setNumRows(7);
 ds.setNumColumns(5);
 ds.setCells(cells);
 this.add(table); // JDK 1.0.2 and 1.1 code
 // this.getContentPane().add(table); // or code for Swing and JDK 1.2
 pack();
 show();
 }

 public static void main(String args[]) {
 new ExampleTable1();
 }
 public void addTableDataListener(TableDataListener l) {
 // the data source isn’t going to change so this can do nothing
 }
 public void removeTableDataListener(TableDataListener l) {
 // the data source isn’t going to change so this can do nothing
 }

 }

Chapter 2 ■ ‘Hello Table’ — A Simple JClass LiveTable Program 31

The ExampleTable1.java program should be straightforward to Java programmers.
The only difference between Java environments is the line that adds the table to its
container — in JDK 1.0.2 and 1.1, we use “this.add(table);”, but in JDK 1.2 and
Swing, we use “this.getContentPane().add(table);”

The table uses a Model-View-Controller (MVC) data mechanism (unlike JClass
LiveTable 2); the table data is now stored in a separate object. In this case, we’ve
used VectorDataSource, a class provided with JClass LiveTable that retrieves data
from the data source and stores it in memory (see Using Stock Data Sources in
Chapter 4 for more information).

The data source is set using the table.setDataSource() method. Once the data
source is set to the VectorDataSource (ds) object, then that object handles the data,
including setting the number of rows and columns, and accessing the cell values:

 table.setDataSource(ds);
 ds.setNumRows(7);
 ds.setNumColumns(5);
 ds.setCells(cells);

The data in the cells is of type String. The data source retrieves the data as Strings,
but the data is invisibly translated for the table object to a specific cell data type
called TextCellData. For small programs, this automatic translation is convenient. If
you have large tables with many cells, you should specify the CellData data type for
the cells. See Chapter 5, Displaying and Editing Cells for more information about
CellData data types.

If you compile and run the ExampleTable1.java program1, the following table is
displayed:

Figure 1 ExampleTable1.java

The clip arrows illustrate that the cells are not large enough to display their entire
contents. By default, users can resize rows and columns to view the contents of the

1. Note that the example programs in your JClass LiveTable distribution contain a package name. To run the
compiled class, you must type the full package name, for example:
java jclass.table3.examples.chapter2.ExampleTable1

32 Part I ■ Using JClass LiveTable

cell. Notice that as you click in a cell, a focus rectangle appears, showing you the
current cell.

If you resize any of the rows or columns to make them larger, the area required to
display the cells is greater than the area contained in the table frame. The Table then
attaches scrollbars so you can scroll the table display.

2.2 Improving the Table’s Appearance

All properties for a table can be specified when you create the table, or they may be
changed at any time as the program runs by using event listeners. Each property has
two accessor methods: set and get. An example of a set method for a property is
setBackground(), which sets the background color of a cell or label. You can
retrieve the current value of any property using the property’s get method, as in
getBackground().

Using some of the properties for modifying a table’s appearance, you can easily
move from the basic, drab table in ExampleTable1.java, to a table that’s easier to
understand, easier to use, and more interesting to look at. The following sections
explain how to set properties in a JClass LiveTable program. A sample program,
called ExampleTable2.java, contains all of the changes outlined below.

2.2.1 Adding and Formatting Labels

The table displayed by the ExampleTable1.java program is not very useful to an end-
user. Not only is it uninteresting to look at, but you can’t tell what kinds of
information the various cells contain because there are no column labels. In the
original data outline for the table, we specified the following column headers or
labels:

■ Customer Name

■ Order Date

■ Item

■ Quantity (lbs.)

■ Price/lb.

Labels are cells that can never be edited and can contain any Object, (Strings,
images, Integers, etc.). You can apply labels to rows or columns. The label values,
like cell values, are set in the data source object.

For the example program, set the labels as a String:

 String labels [] = {"Customer Name","Order Date","Item",
 "Quantity (lbs.)","Price/lb."};

Once you have defined the values for the column labels, you have to tell the Table
object to display labels. The ExampleTable1.java program currently contains the line:

 table.setColumnLabelDisplay(false);

Chapter 2 ■ ‘Hello Table’ — A Simple JClass LiveTable Program 33

Change this to:

 table.setColumnLabelDisplay(true);

Once the ColumnLabelDisplay property is set to true, you can set the column labels
in the data source. Add the line:

 ds.setColumnLabels(labels);

After the line

 ds.setCells(cells);

This uses the data source to set the values of the column labels from the data
specified in the String cells.

If you compile and run your amended ExampleTable1.java (or the sample
ExampleTable2.java) you’ll see that the column labels are now displayed. Notice that if
you click on a label, you don’t get the focus rectangle the way you do if you click on
a cell: labels cannot be edited or traversed to. In certain circumstances, clicking on a
label will perform an action (see Adding Interactivity below), but in this case the
labels don’t perform any interactive function.

Figure 2 Labels Displayed in ExampleTable2.java

Other than the absence of a focus rectangle, it’s hard to see a difference between the
labels and the cells. To visually differentiate label cells from the other cells, you can
specify different background and foreground colors for the labels.

There are thirteen AWT color constants that can be used in Java. The color constant
values are:

Color.black Color.magenta

Color.blue Color.orange

Color.cyan Color.pink

Color.darkGray Color.red

Color.gray Color.white

34 Part I ■ Using JClass LiveTable

In order to make changes with AWT colors, you need to include the java.awt
package if it has not already there. Insert the following line near the beginning of
your code to declare the use of AWT packages:

import java.awt.*

To set the background color of the labels to blue, and the foreground color (text) to
white, insert the following lines:

 table.setBackground(JCTblEnum.LABEL, JCTblEnum.ALL, Color.blue);
 table.setForeground(JCTblEnum.LABEL, JCTblEnum.ALL, Color.white);

The parameters JCTblEnum.LABEL, and JCTblEnum.ALL represent the contexts, of the
property. In this case, the property is set for all of the labels. For more information on
table contexts, see Setting and Getting Properties on page 49.

Figure 3 ExampleTable3.java, displaying labels with different colors

2.2.2 Changing Alignment

Another way to visually differentiate the text that appears within a table is to change
its alignment within a cell relative to the default text alignment in other cells. By
default, text (or anything else you insert into specific cells in a table) is shifted to the
top and left margins of the cell. If you want to set the labels in the sample program to
appear horizontally centered and at the top of the cell, insert the following line:

 table.setAlignment(JCTblEnum.LABEL, JCTblEnum.ALL,
 JCTblEnum.TOPCENTER);

2.2.3 Changing the Fonts

It is also possible to change fonts and their appearance. This is another way to
visually distinguish one part of a table from another, or to change the overall
appearance of the table.

Color.green Color.yellow

Color.lightGray

Chapter 2 ■ ‘Hello Table’ — A Simple JClass LiveTable Program 35

Java defines five different platform-independent font names that are found (or have
close equivalents) on most computer platforms. Valid Java AWT font names are:

■ Courier

■ Dialog

■ DialogInput

■ Helvetica

■ TimesRoman

Note: Font names are case-sensitive.

There are also four standard font style constants that can be used. Valid Java AWT
font style constants are:

■ Font.BOLD

■ Font.BOLD + Font.ITALIC

■ Font.ITALIC

■ Font.PLAIN

In order to make changes with AWT fonts, you need to include the java.awt package
if it has not already there. Insert the following line near the beginning of your code to
declare the use of AWT packages:

import java.awt.*

To change the text column labels in the example program from their default to
display in 14 point bold-italic Times Roman, insert the following line:

 table.setFont(JCTblEnum.LABEL, JCTblEnum.ALL,
 new Font("TimesRoman", Font.BOLD + Font.ITALIC, 14));

Note: The type of font displayed on a user’s system depends entirely on the fonts
that are local to that user’s computer. If a font name specified in a Java program is
not found on a user’s system, the closest possible match is used (as determined by the
Java AWT).

Having changed the alignment and font, your table should now look something like
the following illustration:

Figure 4 ExampleTable4.java with new fonts and alignment for the labels

36 Part I ■ Using JClass LiveTable

You can compile and run ExampleTable4.java to see the example with these additions.

2.2.4 Adding Color to an Individual Cell

In some cases, you will want the information in a certain cell or range of cells to
stand out from the rest. The following code, when added to the improved example
program, highlights premium coffee orders using different foreground and
background colors (in this case, row 6, column 1 — ‘Twitchy’s on The Mall’ will be
highlighted):

 table.setBackground(5, 0, Color.red);
 table.setForeground(5, 0, Color.yellow);

Notice that row 6, column 1 displayed in the table are designated as row 5, column 0
(zero) in the code. This is because row and column indexes begin at zero. The top
left cell in the table is at location (0,0).

2.2.5 Changing the Cell Borders and Spacing

JClass LiveTable has properties that you can use to change the way the cell borders
and cell spacing appears.

There are a number of choices for cell borders, outlined in Border Types and Sides,
in Chapter 3. For the example program, we’re going to thicken the cell borders and
change the border style for the cells (not labels) by adding the following lines of
code:

 table.setCellBorderWidth(5);
 table.setCellBorderType(JCTblEnum.ALLCELLS, JCTblEnum.ALLCELLS,
 JCTblEnum.BORDER_ETCHED_OUT);
 table.setFrameBorderWidth(3);

The example program should now resemble ExampleTable5.java when compiled and
run:

Figure 5 Example table with highlighted cell and new borders

Chapter 2 ■ ‘Hello Table’ — A Simple JClass LiveTable Program 37

2.2.6 Displaying More of the Cells

The example table has certainly come a long way with very few properties set, but
there is still a small problem: the table only ever displays a single row of the cell’s
contents when you run the program. This means that the user has to resize the rows
or columns in order to read the contents of some cells. By default, JClass LiveTable
sets all of the cells to 10 characters wide and one row high. You could specify the
height and width of the cells in rows and columns in terms of lines and characters
using the CharHeight and CharWidth properties. In this program, however, we want
the cells to size themselves to display the entire contents (if possible). You can do this
using the following lines of code:

 table.setPixelHeight(JCTblEnum.ALLCELLS, JCTblEnum.VARIABLE);
 table.setPixelWidth(JCTblEnum.ALLCELLS, JCTblEnum.VARIABLE);

These lines set the PixelHeight and PixelWidth properties to a variable size for all
rows and all columns, ensuring that the table will attempt to display the entire
contents of each cell. You can also set these properties to specific pixel values for
rows and columns; see the section on how to set Row Height and Column Width in
Chapter 3 for more details.

2.3 Adding Interactivity

In a real-world situation, our example table would likely be used to track orders and
accounts with a large number of customers. Your users will likely want to update the
data, sort the information displayed in the table, and select sections of the table to
perform operations on them.

We’ll add some basic user-interactivity to our example table to give you a sense of
some of the things JClass LiveTable can do. You can explore user-interactivity
further in Chapter 6, Programming User Interactivity.

2.3.1 Making the Cells Editable

One problem with the table we have created is that it is not editable. When a user
clicks on a cell, the focus changes, but nothing else happens. To make the cell
editable, we have to change the data source object to an editable data source. The
VectorDataSource class we used as our data source has an editable counterpart
called, appropriately enough, EditableVectorDataSource. We have to change our
code to use this class instead. Simply change the line:

 VectorDataSource ds = new VectorDataSource();

to use the EditableVectorDataSource interface instead:

 EditableVectorDataSource ds = new EditableVectorDataSource();

Once you add this and compile the program, clicking in a cell will bring up the
editing component for that type of CellData. Since all of the cells contain strings, the
editing component is a text editor (see Chapter 5, Displaying and Editing Cells for
more information).

38 Part I ■ Using JClass LiveTable

Having added variable cell spacing and set your data source as editable, your table
should now look much like the one compiled using ExampleTable6.java:

Figure 6 Editable cells sized to fit their contents. Note the editing component displayed over the cell.

2.3.2 Enabling Cell Selection

JClass LiveTable provides methods that set how users can select cells, ranges of cells,
and entire rows and columns. Selection is enabled by setting the SelectionPolicy
property. By default, cell selection reverses the foreground and background colors of
the cells to highlight the selection. You can enable selection by adding the following
code to the example program:

 table.setSelectionPolicy(JCTblEnum.SELECT_RANGE);

This allows users to select one or more cells in rows or columns by clicking and
dragging the mouse, or using keyboard combinations.

By default, setting the SelectionPolicy property enables selection of entire rows or
columns by clicking on the row or column label. When the user clicks on the column
label, the column display, including the label, is reversed to highlight the selection.
You can configure the table not to highlight the label by using the following line of
code:

 table.setSelectIncludeLabels(false);

You can also change the default highlighting colors by setting the
SelectedForeground and SelectedBackground properties. See Cell Selection in
Chapter 6 for more information.

Chapter 2 ■ ‘Hello Table’ — A Simple JClass LiveTable Program 39

2.3.3 Resizing using Labels Only

By default, users can resize rows, columns, and labels by clicking on their borders
and dragging to resize. You can change this functionality to have the resize capability
available only from the label: to resize a column, the user resizes its label rather than
its cells. JClass LiveTable provides the ResizeByLabelsOnly property to enable this
feature. In your example program, add the line:

 table.setResizeByLabelsOnly(true);

When you compile and run the program, (or use ExampleTable7.java), you’ll see that
the mouse cursor becomes a “resize” cursor only over the borders of the column
labels, and not over the cell borders.

2.3.4 Enabling Column Sorting

It might be easier for your users to find certain information if they can sort the table
based on cell values in a column. That way they can find a customer name
alphabetically, or determine large orders by sorting on the order amounts column.

A simple way to allow your users to sort a row or column is to add a trigger that maps
a column or row event onto a label. Since the program currently selects a column
(but not the label) with a mouse-click, you need a way to differentiate between a
selection and a call to sort the column.

Using the ColumnTrigger and RowTrigger properties, you can allow users to sort the
column by using a Shift-click combination:

 table.setColumnTrigger(Event.SHIFT_MASK, LabelTrigger.SORT);

When you compile and run the program, (or use ExampleTable8.java) you will see
that holding down the Shift key and clicking on a column label sorts the rows in
ascending alphabetical/numerical order according to the contents of the column.

2.4 Distributing Applets and Applications on a Web Server

Once you have finished programming your Java applet or application, you will
undoubtedly want to distribute it to your users. A common method of applet and
application distribution is with your Web server. Here is a brief overview of how to
deploy applets and applications, as well as reduce the size and customize the
contents of the deployment archive1.

1. Although the term “archive” has a somewhat ambiguous and flexible definition, for the purpose of this section,
it refers to the JClass product JAR files.

40 Part I ■ Using JClass LiveTable

2.4.1 Publishing an Applet on a Web Server

You can distribute your applet by putting the Web pages that contain it onto your
Web server. Distributing your applet this way involves:

■ creating directories for your JClass archive, HTML and class files

■ copying the required JClass archive files to the Web server

■ setting a CLASSPATH on the Web server

■ copying the HTML and class files to the Web server

■ ensuring that the HTML files properly reference the JClass archive and class files

Install the JClass Archives on the Server
First, you need to make sure that your CLASSPATH is not set. Although you will
need to set it later when adding applets to the server, keep it undefined for now.

Create a JClass directory on your Web server (e.g. \JClassLib, just below the root
document directory). This directory holds all of the archives that came with your
JClass products.

Figure 7 Example: suggested JClass archives folder name and location

Copy the JClass archive files to the newly created \JClassLib directory. The number
and version of archives copied over, depend on which JClass products you own.
These JAR files are found in the \lib directory of your JClass installation. Please refer
to the Installed Files Overview section in the Getting Started chapter for more
information about these files.

Preparing the directory for the applet
Create a directory for the applet classes and their HTML pages. It is important to
keep the directory structure identical to the one found in the original location of the
classes.

Chapter 2 ■ ‘Hello Table’ — A Simple JClass LiveTable Program 41

Figure 8 Example: proper applet class directory structure (using BWT)

Set a CLASSPATH on Your Web Server
If the applet reads local files from the Web server, the CLASSPATH needs to
include the directory in which these files are located. As an example, if your applet
uses images, the CLASSPATH needs to point to that images directory.

Install Your Applet Classes and HTML files on Your Web Server
Now that the directories have been created with the correct structure, you can copy
over all of the required class and HTML files. The directories in which the class files
are copied must be the same as the ones from where they are being copied. The
HTML files can be placed together in a different location from the associated HTML
files (as a suggestion, either the \JClassLib or \JClass will work fine), since they can
point to class files in different locations.

Since your HTML files contain a JClass applet, and they might be located in a
different directory from the associated class files, there are certain attributes that
must be used to ensure that the file points to the proper JClass archive, class and
location.

■ <ARCHIVE>: The value given for this attribute is the path or URL of the JClass
product archive (ZIP or JAR) that the applet requires to run.

■ <CODEBASE>: You will need this if your applet is in a package or uses classes that
are in other packages. The value of this attribute points to the ‘top’ of the
directory structure that contains these classes and packages.

■ <CODE>: The value of this attribute points to your applet class file.

Any printed or online HTML reference can provide more in–depth information
about these attributes. Please refer to it if you need to.

For troubleshooting information about the above procedures, please refer to the
JClass Knowledge Base on KL’s Web site support area, and perform an online search
for Publishing JClass products on a Web Server.

http://www.klg.com/cs/tech/jclass

42 Part I ■ Using JClass LiveTable

2.4.2 Using JarHelper to Customize the Deployment Archive

Deploying your applet or application does not end with copying the required class
and HTML files to your Web server; the size of the archive should also be a
consideration. The size of the archive, and its related download time are important
factors to consider when deploying your applet or application on a Web server.

JarHelper is a utility that allows you to customize and reduce the size of the
deployment archive. Using JarHelper, you can combine different JClass product
JARs. As well, you can also choose which of the components found within one or
more JClass product JARs will be included in the deployment archive. JarHelper
takes the selected components of the JClass JAR(s), and creates a new, smaller file,
which results in faster download times.

As an example, you can use JarHelper to exclude the enhanced editors and
renderers from your new deployment JAR. Doing so would reduce your file size by
approximately 200K, which would result in less server space being used, and faster
download times.

Figure 9 JarHelper’s JClass product and component selection screen

JClass JarHelper comes with the JClass Enterprise Suite, and is installed
automatically with the rest of the bundle’s products. It is also available for download
from KL Group’s Web site for licensees of any JClass product.

Please refer to the readme-jarhelper.txt file for JDK and Swing requirements and
installation.

Running JarHelper
Windows 95 and NT: Using the Start menu, navigate to the JClass JarHelper
program group and select the JarHelper.bat (DOS) icon. You can also run
JarHelper from a command line; the batch file is located in
JCLASS_HOME\bin\JarHelper.bat.

Chapter 2 ■ ‘Hello Table’ — A Simple JClass LiveTable Program 43

Unix: Execute the shell script located in the $JCLASS_HOME/bin directory from a
command prompt.

Using JarHelper
For more information about using JarHelper to create new JARs, please consult its
online documentation.

2.5 Proceeding from Here

This exercise has given you a simple overview of some of the types of things you can
do with JClass LiveTable.

■ For detailed information on the design elements of JClass LiveTable, see Chapter
3, Building a Table. Appendix B, JClass LiveTable Property Listing, contains the
JClass LiveTable Properties in table format.

■ To learn about using the new JClass LiveTable data model, see Chapter 4,
Working with Table Data and Chapter 5, Displaying and Editing Cells.

■ To learn about user-interaction with JClass LiveTable, see Chapter 6,
Programming User Interactivity.

■ To try this same tutorial in a JavaBeans development environment, see Chapter
9, JClass LiveTable Beans and IDEs.

You can find many more examples of ways to customize and enhance applications
and applets in the demos directory of your JClass LiveTable distribution.

44 Part I ■ Using JClass LiveTable

45

3
Building a Table

Table Anatomy 101 ■ JClass LiveTable Inheritance Hierarchy

Cell Management ■ Setting and Getting Properties ■ Preset Table Styles
Defining Rows and Columns ■ Adding Row and Column Labels

Row Height and Column Width ■ Colors

■ Cell and Label Text Alignment ■ Cell and Label Fonts
Border Types and Sides ■ Cell and Label Margins ■ Displaying Images in Table Cells

Text and Image Clipping ■ Cell and Label Spanning

Using the JClass LiveTable API, you can customize the appearance of your tables
with colors, borders, custom scrollbars, and other display properties. This chapter
describes the properties you can set to define the structure and appearance of your
tables. The properties are set for rows, columns, and cells. See JClass LiveTable
Property Listing for a quick-reference summary of the properties.

Many of the table’s properties are set using methods of the Table class. However,
some properties are set in the data source. For more information setting properties
using methods in the data source, see Chapter 4, Working with Table Data, and
Chapter 5, Displaying and Editing Cells. The following descriptions note whether
setting the property from the data source is applicable.

JClass LiveTable property accessor methods are also exposed to JavaBeans-
compatible IDEs through the LiveTable Bean.

46 Part I ■ Using JClass LiveTable

3.1 Table Anatomy 101

JClass LiveTable provides a scrollable viewing area for its cells and labels.

Figure 10 Components of a Table

The following list defines the terminology used throughout JClass LiveTable:

Cell
A cell is an individual container of table data. Cell drawing and editing is handled by
the jclass.cell package (see Chapter 5, Displaying and Editing Cells). A cell is
visible if it is currently scrolled into view. The entire collection of displayed cells is
called the cell area.

Label
A label is a non-editable cell appearing in a row at the top or bottom of the table, or
in a column at the left or right side of a table. Like cells, labels can contain text and
components, and can display an image or URL.

Current Cell
This is the cell that currently has the user input focus. End-users can enter and edit
the value of this cell (unless this ability is disabled).

Chapter 3 ■ Building a Table 47

3.2 JClass LiveTable Inheritance Hierarchy

The following figure provides an overview of class inheritance of JClass LiveTable.

Figure 11 The jclass.table3 package

TableData is the core data source interface, and EditableTableData extends this
interface to allow editing of the data. VectorDataSource stores table data in a series
of vectors. InputStreamDataSource extends VectorDataSource to read from any
stream, and AppletDataSource, FileDataSource and URLDataSource further extend
it to read from specific stream types. The other stock data sources exist for other,
more specific, situations.

48 Part I ■ Using JClass LiveTable

The following figure describes the top–level inheritence variations for the different
Java development platforms.

Figure 12 Hierarchy differences by JDK platform

3.3 Cell Management

JClass LiveTable displays and edits cells through the jclass.cell.CellRenderer
and jclass.cell.CellEditor interfaces. It manages the display of the cell area by
using two scrollbars.

3.3.1 CellRenderer and CellEditor

Cells are drawn into the cell area by a CellRenderer object that understands how to
draw that specific type of data. If the user types or clicks in a cell, and there is a
CellEditor for the data type of the cell, the editor component is drawn is displayed
over the cell. See Chapter 5, Displaying and Editing Cells for more information on
cell editors.

3.3.2 Scrollbar Components

These components are created and displayed if the number of rows or columns in
the table is greater than the number of rows or columns visible on the screen. They
provide end-users with the ability to scroll through the entire table. You can learn
more about scrollbars in Chapter 6, Programming User Interactivity.

Chapter 3 ■ Building a Table 49

3.4 Setting and Getting Properties

There are three ways to set (and retrieve) JClass LiveTable properties:

1. By calling property set and get methods in a Java program

2. By specifying applet properties in an HTML file

3. By using a Java IDE at design-time (JavaBeans)

Each method changes the same table property. This manual therefore uses properties
to discuss how features work, rather than using the method, Property Editor, or
HTML parameter you might use to set that property.

3.4.1 Table Contexts

A context is composed of a row and column index, both zero-based. The current
context specifies the portion of a table’s cells and labels for which an application sets
and retrieves properties. Context defines the current context. Specifying a table
context is part of any method that sets table properties.

The following outlines the valid table contexts available, using the Background
property, with Color.white changes, as a working example
(table.setBackground(context definition,Color.white);).

Context selection Examples

a cell (0,1) (1,0)

Referenced by a row
index and a column index.

all row or column cells (0,JCTblEnum.ALLCELLS) (JCTblEnum.ALLCELLS,0);

Referenced by the
constant
JCTblEnum.ALLCELLS in
conjunction with a row or
column index.
This does not include
labels.

a range of cells (range); /* range defined as JCCellRange(0,1,1,2) */

Referenced by the
location of the top-left
cell/label and the location
of the bottom-right
cell/label in the range.
A range be referenced as
one context when
defining JCCellRange.

50 Part I ■ Using JClass LiveTable

a row or column label (0,JCTblEnum.LABEL) (JCTblEnum.LABEL,0)

Referenced by the
constant
JCTblEnum.LABEL in
conjunction with a row or
column index.

all row or column labels (JCTblEnum.ALL,JCTblEnum.LABEL) (JCTblEnum.LABEL,JCTblEnum.ALL)

Referenced by both
JCTblEnum.ALL and
JCTblEnum.LABEL, the
order dependent on which
set of labels is being
referenced.

all labels (JCTblEnum.LABEL,JCTblEnum.LABEL)

Referenced using
(JCTblEnum.LABEL,
JCTblEnum.LABEL).

an entire row or column (1,JCTblEnum.ALL) (JCTblEnum.ALL,1)

Referenced by the
constant JCTblEnum.ALL
in conjunction with a row
or column index.
The context includes
labels.

all table cells (JCTblEnum.ALLCELLS,JCTblEnum.ALLCELLS)

Referenced by
(JCTblEnum.ALLCELLS,
JCTblEnum.ALLCELLS).
The context does not
include labels.

an entire table (JCTblEnum.ALL,JCTblEnum.ALL)

Referenced by
(JCTblEnum.ALL,
JCTblEnum.ALL).
The context includes
labels.

Context selection Examples

Chapter 3 ■ Building a Table 51

3.4.2 Setting Cell/Label Properties with Java Code

Every JClass LiveTable property has a set and get method associated with it. For
example, to retrieve the value of the Background property, the getBackground()
method is called:

col = table.getBackground(0, 3);

The following code sets Background property:

table.setBackground(0, 3, Color.blue);

The following code shows setting properties for several contexts:

table.setBackground(JCTblEnum.ALL, JCTblEnum.ALL, Color.yellow);
table.setForeground(JCTblEnum.ALL, JCTblEnum.ALL, Color.blue);
table.setBackground(0, 3, Color.red);
table.setForeground(0, 3, Color.yellow);

In this case, all of the backgrounds in the table are set to yellow, and their
foregrounds (text) are set to blue. The subsequent Background and Foreground
members override this general condition by setting the background to red and the
foreground to yellow for the cell located at 0, 3.

You can set some properties for a range of cells defined by a JCCellRange. If this is
possible for a specific property, it will be noted in this manual.

Generally, to set a property for a JCCellRange, the code would resemble the
following:

JCCellRange range = new JCCellRange(0,3,2,4);
table.setBackground(range, Color.red);

3.4.3 Setting Applet Properties in an HTML File

Another way to set table properties, particularly appropriate for applets, is in an
HTML file. Applets built with JClass LiveTable can parse applet <PARAM> tags and
set the table properties defined in the file. (A pre-built applet called
JCTableApplet.class is provided with JClass LiveTable). Even standalone Java
applications can make use of HTML parameters as a debugging tool.

Using HTML to set properties has the following benefits:

■ Speed — see the effect of different property values quickly without recompiling.

■ Flexibility — use a single applet class to create many different kinds of tables
simply by varying HTML properties; end-users can modify HTML properties to
suit their own needs.

Table properties are coded in HTML as applet <PARAM> tags. The NAME element of
the <PARAM> tag specifies the property name; the VALUE element specifies the
property value to set.

Most JClass LiveTable properties can be set in an HTML file. The HTML property
parameters match the API property names. Properties that cannot be set in HTML
are generally too complex or too obscure for end-users to want to modify them. The

52 Part I ■ Using JClass LiveTable

following example HTML file specifies a complete table entirely through HTML
parameters:

<HTML>
<HEAD>
<TITLE>Quote.Com Example</TITLE>
</HEAD>
<BODY BGCOLOR=#FFFFFF>
<h1>Quote.Com Portfolio Example</h1>
Initial Prototype based on the data and configuration at
<A HREF="http://www.javaworld.com/javaworld/quote.com/
jw-quote.html">http://www.javaworld.com/javaworld/quote.com/
jw-quote.html.
<P>
<APPLET CODE="jclass/table3/JCTableApplet.class" codebase="../../.."
height=250 width=550>
<!-->
<! Stock sample similar to -->
<! http://www.javaworld.com/javaworld/quote.com/jw-quote.html -->
<! o bordersides top and bottom -->
<! o border width = 1 -->
<PARAM NAME=columnLabelSort VALUE=true>
<PARAM NAME=ColumnLabels
VALUE="*|symbol|price|change|volume|open|high|low|time">

<PARAM NAME=VisibleRows VALUE=7>
<PARAM NAME=VertScrollbarOffset VALUE=0>
<PARAM NAME=HorizScrollbarOffset VALUE=0>
<PARAM NAME=BorderTypeList VALUE="(ALL ALL BORDER_FRAME_OUT)
(LABEL ALL BORDER_OUT)">

<PARAM NAME=BorderSidesList VALUE="
 (ALLCELLS ALLCELLS BORDERSIDE_top + BORDERSIDE_bottom)">
<PARAM NAME=shadowThickness VALUE=1>
<PARAM NAME=frameShadowThickness VALUE=1>
<PARAM NAME=frameBorderType VALUE=border_out>
<PARAM NAME=ForegroundList VALUE="(ALL ALL black)(label all white)
(0 3 red)(1 3 #006600)(2 3 #006600)(3 3 red)(4 3 red)(5 3 red)(6 3
red)">
<PARAM NAME=BackgroundList VALUE="(ALL ALL lightgray)
(LABEL ALL #803366)">

<PARAM NAME=PixelHeightList VALUE="(ALL variable)">
<PARAM NAME=PixelWidthList VALUE="(ALL variable)">
<PARAM NAME=FontList VALUE="(label all dialog-bold-14)">
<PARAM NAME=AlignmentList VALUE="(ALL ALL center)(all 1 left)
(ALL 4 right)">

<PARAM NAME=datatypeList VALUE="(all 2-3 type_double)
(all 4 type_integer)(all 5-7 type_double)">

<PARAM NAME=columnLabelOffset VALUE=3>
<PARAM NAME=cells VALUE="
([IMAGE=down.gif]|BORL|7.125|-0.125|103400|7.375|7.375|7.125|17:28)
([IMAGE=up.gif]|SYMC|10.5625|0.3125|321200|10.5|10.75|10.25|17:25)
([IMAGE=up.gif]|ORCL|40.625|0.75|4472900|40.125|40.875|40.875|17:32)
([IMAGE=down.gif]|NSCP|46.875|-1.125|1281300|48.5|48.75|45.5|17:32)
([IMAGE=down.gif]|ADBE|32.25|-0.875|558700|33.25|33.625|31.625|17:27)
([IMAGE=down.gif]|USRX|57|-2.125|2086800|60.125|60.5|56.75|17:31)
([IMAGE=down.gif]|DIS|58.5|-0.5|784100|59|59|58.25|17:31)
">
</APPLET>
<P>
</BODY>
</HTML>

Chapter 3 ■ Building a Table 53

Figure 13 The applet displayed in JCQuote.html using AppletViewer

Several example HTML files are located in the jclass/table3/applet/ directory.

3.4.4 Setting Properties with a Java IDE at Design-Time

JClass LiveTable can be used with a Java Integrated Development Environment
(IDE), and its properties can be manipulated at design time. Consult the IDE
documentation for details on how to load third-party Bean components into the IDE.

See JClass LiveTable Beans and IDEs, in Chapter 9 for complete details on using
JClass LiveTable’s JavaBeans in IDEs.

3.5 Preset Table Styles

You can quickly build a standard table with a number of default settings by setting
the table to a specific mode, which is overridden by any properties you specifically
set later in your program. These styles are set using the setMode() method using one
of the following parameters:

■ JCTblEnum.MODE_TABLE

■ JCTblEnum.MODE_LIST

The setMode() method sets the initial state of the Table. Any properties you set after
calling setMode() will override the properties set by the above parameters. Because
of this, you cannot call setMode() to ‘reset’ the table to default properties.

54 Part I ■ Using JClass LiveTable

Table Mode
This is the default mode for JClass LiveTable programs. By default, calling
setMode(JCTblEnum.MODE_TABLE) produces a table with the following default
properties:

■ The horizontal and vertical scrollbars are both attached to the table cells and end
at the edge of the visible cells (see Attaching Scrollbars, in Chapter 6).

■ Cell and cell range selection is not enabled.

■ The CellBorderWidth property of the cells is set to 1 pixel.

■ Cells are traversable (see Controlling Interactive Traversal, in Chapter 6).

List Mode
List mode essentially displays a table as a multicolumn list. The following are default
settings in List Mode:

■ The horizontal and vertical scrollbars are both attached to the side of the table
and end at the edge of the table frame (see Attaching Scrollbars, in Chapter 6).

■ Users can select single cells; when a cell is clicked on, it selects the entire row (see
Cell Selection, in Chapter 6).

■ The CellBorderWidth property of the cell borders is set to 0; so borders are not
displayed (see Border Types and Sides).

■ Cells are not traversable (see Cell Traversal, in Chapter 6).

■ The ResizeByLabelsOnly property is set to true, since there are no cell borders
to use for resizing the individual cells (see Controlling Resizing, in Chapter 6 for
more details).

Chapter 3 ■ Building a Table 55

3.6 Defining Rows and Columns

3.6.1 Determining the Number of Rows/Columns

TheNumRows and NumColumns properties are set using methods in the data source. To
retrieve these values, use the VectorDataSource.getNumRows() and
VectorDataSource.getNumColumns() methods. Please see Setting Stock Data
Source Properties, in Chapter 4 for information on setting these properties in the
data source.

The number of rows/columns must be greater than the number of frozen
rows/columns. For more information on frozen rows/columns, see Section 3.6.4,
Specifying ‘Frozen’ Rows and Columns.

3.6.2 Setting Visible Rows/Columns

The number of rows and columns currently visible in the window is specified by the
VisibleRows and VisibleColumns properties.1

You can force the table to display a particular number of rows or columns by calling
setVisibleRows() and setVisibleColumns().

If you set the number of visible rows or columns to greater than the corresponding
NumRows and NumColumns properties, a theoretical value is calculated based on 10-
character columns and one-line rows.

To retrieve the values of VisibleRows or VisibleColumns, call the getVisibleRows()
and getVisibleColumns() methods. These values determine the preferred size of the
table and are not updated dynamically as a user resizes the table.

Displaying the Entire Table
To display the entire table, set VisibleRows and VisibleColumns to
JCTblEnum.NOVALUE. Setting either property to NOVALUE sets a special flag that causes
the table to attempt to resize to make all rows or columns visible. Any change to the
number of rows/columns in the table will cause the table to attempt to resize when
this flag has been set.

3.6.3 Swapping Rows or Columns

You can make two rows or columns switch places by using the swapRows() and
swapColumns() methods. For example, to swap rows 3 and 9:

table.swapRows(3,9)

These methods do not affect the data source, but use an internal mapping table to
keep track of row and column locations.

1. Rows/columns that are only partially visible are also included in the value of these properties.

56 Part I ■ Using JClass LiveTable

To reset the rows or columns to their original locations, based on the data source, use
the resetSwappedRows() or resetSwappedColumns() methods.

3.6.4 Specifying ‘Frozen’ Rows and Columns

An application can make rows and columns non-scrollable using the FrozenRows and
FrozenColumns properties. You can use frozen rows or columns to hold important
information on the screen as a user scrolls through the table (such as totals at the
bottom of a table). You could also use frozen rows or columns as additional rows or
columns that act like labels; see Using Spanning to Create Multi-line Headers below
for an example.

■ setFrozenRows() specifies the number of rows held at the top or bottom of the
window and not scrolled. The default value is zero.

■ setFrozenColumns() specifies the number of columns held at the left or right
side of the window and not scrolled. The default is zero.

Frozen rows/columns always start from the beginning of the table. They are still
editable and traversable unless set otherwise. The following figure shows an example
of frozen rows.

Figure 14 Visible and Frozen Rows and Columns-note absence of scrollbar to right of frozen rows

Freezing Rows and Columns
Setting frozen rows or columns sets the number of columns from the left or the
number of rows from the top:

table.setFrozenRows(2);

Freezes the first two rows of the table.

table.setFrozenColumns(4);

Freezes the first four columns of the table.

If you want to freeze a single column or row in the middle of the table, you can easily
move the specified row or column to the beginning of the table by using the
swapRows() or swapColumns() method (described above), then freeze the row or
column.

Chapter 3 ■ Building a Table 57

To move and freeze more than one column or row, you will have to call the
moveRows() or moveColumns() method in the data source (see Using Stock Data
Sources, in Chapter 4) to move the desired rows/columns to the beginning of the
table, then set FrozenRows or FrozenColumns to the number of rows/columns that
you want to freeze.

Placing Frozen Rows/Columns

You can place frozen rows at either the top or bottom of the table. Frozen columns
can be placed at either the left or right of the table. The placement of frozen
rows/columns does not affect the location of the rows/columns in the data source.

To change the placement of the frozen rows, set the FrozenRowPlacement property to
either JCTblEnum.PLACE_TOP or JCTblEnum.PLACE_BOTTOM.

To change the placement of all frozen columns, set the FrozenColumnPlacement
property to either JCTblEnum.PLACE_LEFT or JCTblEnum.PLACE_RIGHT.

3.7 Adding Row and Column Labels

A row or column label is a non-editable cell that identifies the row or label to the
user. Row and column label values are set in the data source (see Chapter 4, Working
with Table Data). By default, row and column labels are displayed in your table,
regardless of whether you have specified contents for the labels in the data source
(they will be empty if there are no labels defined in the data source). To prevent row
and column labels from displaying, you must use the the methods:

table.setRowLabelDisplay(false);
table.setColumnLabelDisplay(false);

3.7.1 Label Placement and Spacing

Label Placement

You can specify the positioning of row/column labels on the screen using the
setRowLabelPlacement() and setColumnLabelPlacement() methods. Valid values
include:

■ JCTblEnum.PLACE_TOP - label displayed at top of table

■ JCTblEnum.PLACE_BOTTOM - label displayed at bottom of table

■ JCTblEnum.PLACE_LEFT - label displayed to left of table

■ JCTblEnum.PLACE_RIGHT - label displayed to right of table

The next figure displays the effect of reversing the default row/column label
placement by using the following lines:

table.setColumnLabelPlacement(JCTblEnum.PLACE_BOTTOM);
table.setRowLabelPlacement(JCTblEnum.PLACE_RIGHT);

58 Part I ■ Using JClass LiveTable

Figure 15 Reversing the default row/column label placement

Label Spacing

Normally, there is no space between labels and the cell area. The RowLabelOffset
property specifies the distance in pixels between the row labels and the cell area.
Similarly, the ColumnLabelOffset property specifies the distance in pixels between
the column labels and the cell area. If you specify a negative value, the labels overlap
the cell area.

Figure 16 Row and column label spacing

Chapter 3 ■ Building a Table 59

3.8 Row Height and Column Width

By default, JClass LiveTable sets the height of rows to display one line of text. The
width of columns is set by default to display 10 characters of text. If a cell value,
image file, or component does not fit in its cell, the cell displays clipping arrows by
default. Each row can have its own height, and each column its own width.

JClass LiveTable provides two different ways to specify row height and column
width: character and pixel. Character specification determines the height/width by the
number of characters or lines that the row/column can display. Pixel specification
determines the height/width by the explicit number of pixels.

Only one method can be used for a row or column. Pixel specification overrides
character specification.

Note: When users interactively resize rows/columns, the row height/column width
is specified by pixel regardless of how your application specified it.

Figure 17 Difference between Character and Pixel Row/Column specification

3.8.1 Character Height and Width

The CharWidth property specifies the number of characters a column can display.
CharHeight specifies the number of lines of text a row can display. For these
properties to control row height/column width, PixelWidth and PixelHeight must
be set to JCTblEnum.NOVALUE.

60 Part I ■ Using JClass LiveTable

Figure 18 Character specification of row height

Character specification is convenient when you know how many characters you
want a row/column to display. It works best with non-proportional1 fonts because
JClass LiveTable uses the widest character along with the largest ascender/descender
to guarantee that the specified number of characters will fit in the cell or label.

The following example sets the width of the third column to 15 characters:

table.setCharWidth(2, 15);

To determine the pixel dimensions of a row or column whose height/width was set
by CharWidth or CharHeight, use the getPosition() method.

3.8.2 Pixel Height and Width

PixelWidth and PixelHeight specify column width and row height in pixels. You
can set these properties to an explicit pixel value, JCTblEnum.NOVALUE,
JCTblEnum.VARIABLE. (This value is discussed in detail in the following section).

Unless set to JCTblEnum.NOVALUE (default), these properties override the CharWidth
and CharHeight properties. The next illustration shows setting PixelHeight to a
pixel value.

Figure 19 Pixel specification of row height

1. All of the characters in a fixed-width font have the same width

Chapter 3 ■ Building a Table 61

The following code sets the width of the second column to 120 pixels:

table.setPixelWidth(1, 120);
// Wraps the text
table.setMultiline(JCTblEnum.ALLCELLS,1,true);

3.8.3 Variable Height and Width

An application can have JClass LiveTable automatically size rows and columns to fit
the contents of the table by setting PixelWidth and PixelHeight to
JCTblEnum.VARIABLE. As your application changes table attributes affecting the cells’
contents, the table will resize the rows and columns to fit.1

When a cell contains a component, JClass LiveTable sizes the cell to fit the
component’s preferred size.

To determine the pixel dimensions of a row or column with variable height or width,
call the getRowPixelHeight() and getColumPixelWidth() methods.

3.8.4 Multiple Lines in Cells

When you set the height and width of your cells, you necessarily adjust how much of
the data can be displayed in the cell. If your cell contains text, then JClass LiveTable
makes it possible for you to display and edit multiple lines. This is accomplished by
setting the Multiline property with a boolean value (default: false).

To set the Multiline property, call setMultiline() for a particular context:

table.setMultiline(JCTblEnum.ALLCELLS,JCTblEnum.ALLCELLS,true);

You can also set this property for a JCCellRange range of cells, as in:

JCCellRange range = new JCCellRange(0,3,2,4);
table.setMultiline(range,true);

If the data displayed in the cells contains a newline character (\n), the cell is
automatically displayed as a multiline cell regardless of the value of the Multiline
property.

For rendering, the data determines whether multiple lines are displayed (because of
the newline character). For editing, the boolean value determines whether multiple
lines are used.

3.8.5 Using Row Height and Width to Hide Rows and Columns

An application can “hide” rows and columns from the end-user by setting the
PixelHeight/PixelWidth properties to zero pixels.2 Though the row/column
appears to have vanished, the application can set attributes or change cell values.
The next figure illustrates the effect.

1. When width are height are set to zero, the row/column becomes hidden.

2. Users cannot interactively hide or reveal rows/columns.

62 Part I ■ Using JClass LiveTable

The current cell should not be in the hidden row/column.

Figure 20 Hiding the “Temperature” column

To reveal a hidden row/column, set the pixel height or width to a pixel value or
JCTblEnum.NOVALUE (to use the character specification defined for the row/column).

3.8.6 Controlling Cell Editor Size

The table can control the size of a cell editing component using the
EditHeightPolicy and EditWidthPolicy properties. Each of these properties can
take one of three values:

■ JCTblEnum.EDIT_SIZE_TO_CELL: resize the component to fit the Table’s cell size

■ JCTblEnum.EDIT_ENSURE_MINIMUM_SIZE: resize the component to its minimum
size

■ JCTblEnum.EDIT_ENSURE_PREFERRED_SIZE: resize the cell to editing component’s
preferred size

These properties allow the table to have better control over cell editors created using
the jclass.cell.CellEditor interface. For more information about cell editors, see
Chapter 5, Displaying and Editing Cells.

Chapter 3 ■ Building a Table 63

3.9 Colors

3.9.1 Foreground and Background Colors

The foreground and background colors used for cells are specified by the
Foreground and Background properties. The following example displays the effect of
setting the background color of column 2 to blue, and the foreground color for cell
(1, 3) to white:

table.setBackground(JCTblEnum.ALL, 1, Color.blue);
table.setForeground(0, 3, Color.white);

In addition to the row, column indexed contexts, you can set the Foreground and
Background properties for a range of cells specified by a JCCellRange object:

JCCellRange range = new JCCellRange(0,3,2,4);
table.setBackground(range, Color.red);

3.9.2 Color of Selected Cells

The foreground and background colors used for selected cells are specified by
SelectedBackground and SelectedForeground. By default, selected cells are
displayed with the table’s reversed default colors. The background color of the
selected cell is the table’s default foreground color (black), and the foreground color
of the selection is the default background color (gray). The current cell displays the
selection colors in its border.

When SelectedBackground or SelectedForeground is set to null, selected cells look
identical to unselected cells–the background and foreground colors are the same as
the colors defined for the cells. Other cell properties, such as cell fonts, can be
changed for selected cells.

3.9.3 Focus Rectangle Color

You can change the color of the focus rectangle (the rectangle drawn inside a cell
when it is traversed to) using the setFocusRectColor() method:

setFocusRectColor(Color.blue);

3.9.4 Repeating Colors

JClass LiveTable makes it easy to create rows or columns whose background and
foreground colors alternate or cycle in a repeating pattern. To create a repeating
pattern of background colors, set the RepeatBackgroundColors property as shown
by the following example:

Color[] c1 = {Color.orange, Color.green, Color.magenta};
table.setRepeatBackgroundColors(c1);
table.setBackground(JCTblEnum.ALLCELLS, JCTblEnum.ALLCELLS,

JCTblEnum.REPEAT_COLUMN);

A list of repeating foreground colors can be created by setting the
RepeatForegroundColors property.

64 Part I ■ Using JClass LiveTable

You can define as many repeating colors as you like. The colors are always selected
in the order listed.

JCTblEnum.REPEAT_ROW repeats colors in row order, whereas
JCTblEnum.REPEAT_COLUMN repeats colors in column order. The following illustration
displays the effect of each setting.

Figure 21 Repeating background colors

To set the foreground colors for the current context to a repeating color list defined
by RepeatForegroundColors, set ForegroundContext to JCTblEnum.REPEAT_ROW or
JCTblEnum.REPEAT_COLUMN.

3.10 Cell and Label Text Alignment

The horizontal and vertical alignment of text (or images) within cells and labels is
specified by the Alignment property. Cell/label values can be centered or positioned
along any side of the cell/label. Valid values for Alignment are:

The following figure shows how the values of this property affect the text display.

■ JCTblEnum.TOPLEFT (default) ■ JCTblEnum.MIDDLERIGHT

■ JCTblEnum.TOPCENTER ■ JCTblEnum.BOTTOMLEFT

■ JCTblEnum.TOPRIGHT ■ JCTblEnum.BOTTOMCENTER

■ JCTblEnum.MIDDLELEFT ■ JCTblEnum.BOTTOMRIGHT

■ JCTblEnum.MIDDLECENTER

Chapter 3 ■ Building a Table 65

Figure 22 Text alignment positions all position values begin with JCTblEnum.

In addition to being able to set alignment on row or column–indexed contexts, you
can set the Alignment property for a range of cells specified by a JCCellRange object:

JCCellRange range = new JCCellRange(0,2,1,2);
table.setAlignment(range, JCTblEnum.BOTTOMCENTER);

3.11 Cell and Label Fonts

You can specify the font for the text in a cell or label with the Font property. JClass
LiveTable supports the use of one or more fonts in each cell/label. The example
below sets a separate font for all column labels:

table.setFont(JCTblEnum.LABEL, JCTblEnum.ALL,
new Font("TimesRoman", Font.ITALIC, 20));

You can also set the Font property for a range of cells specified by a JCCellRange
object:

JCCellRange range = new JCCellRange(1, 3, 1, 7);
table.setFont(range, new Font("TimesRoman", Font.BOLD, 10));

JClass LiveTable can use any of the fonts available to Java. See your Java
documentation for details on finding and setting fonts.

3.12 Border Types and Sides

All cells and labels have a border around them. The visual look of the border, and
the sides on which it appears, can be customized for individual cells and labels. The
border width is specified for the entire table.

In addition, the table frame, which encloses the cells and labels, can have the visual
look of its border customized.

66 Part I ■ Using JClass LiveTable

3.12.1 Cell and Label Border Types

The CellBorderType property specifies the type of border drawn around cells or
labels. The CellBorderType is defined a number of ways, the simplest being the
setCellBorderType() method, which takes a row and column value and one of the
following JCTblEnum border type parameters:

Figure 23 Border Types

The following example sets a blank border for a row:

table.setCellBorderType(2, JCTblEnum.ALLCELLS,
 JCTblEnum.BORDER_NONE);

The above method is actually a convenience method that uses a class called
StandardCellBorder. The StandardCellBorder class implements the CellBorder
interface and defines the above border types for you.

You can also set CellBorderType for a range of cells specified by a JCCellRange
object. The following lines set a standard border type for a range of cells, note that
here we use a StandardCellBorder object:

JCCellRange range = new JCCellRange(2, 3, 2, 8);
table.setCellBorderType(range, new
 StandardCellBorder(JCTblEnum.BORDER_FRAME_OUT));

Note: To see the effect of the ETCHED and FRAME borders, CellBorderWidth must be
set to a value greater than 5 pixels.

To retrieve the border style for a cell, use the getCellBorderType() method. This
returns a CellBorder object (see below).

3.12.2 Custom Cell and Label Borders

JClass LiveTable includes an interface that allows you to define your own cell
borders and backgrounds for cells and labels. The CellBorder interface has a single
method called drawBackground(). The drawBackground() method allows you to

Chapter 3 ■ Building a Table 67

specify the border width, the sides of the cell on which to draw the border, the colors
of the border sides, and the dimensions of the rectangle that gets drawn.

To define a new type of border, you have to create an Object that implements the
CellBorder interface. The following (from the BorderTypes.java example in
examples\misc) defines a single-line border object called LiteBorder:

class LiteBorder implements CellBorder {

Color color;

public LiteBorder(Color color) {
 this.color = color;
}

public void drawBackground(Graphics gc, int border_thickness, int
 border_sides, int x, int y, int width, int height,
 Color top_color, Color bottom_color, Color plain_color) {

 gc.setColor(color);
 gc.drawRect(x, y, width, height);
}

}

To apply this custom border to a cell, use:

table.setCellBorderType(3, 4, new LiteBorder(Color.gray));

You can also apply it to a range of cells defined by a JCCellRange:

JCCellRange range = new JCCellRange(1, 3, 1, 7);
table.setCellBorderType(range, new LiteBorder(Color.black));

The examples\misc directory also contains a program called TextureTable.java, which
illustrates how you can use the custom border features to insert a background
graphic into cells.

Caution: If you create many different CellBorder objects, it will have an impact on
your table’s performance.

3.12.3 Cell and Label Bordercells Width

The width of the borders around the cells and labels is specified by
CellBorderWidth. This property applies to the entire table. By default, the borders
are 1 pixel wide. The following image shows the visual effect of different border
widths.

Figure 24 Setting CellBorderWidth

68 Part I ■ Using JClass LiveTable

Use the setCellBorderWidth() method to set the pixel value:

table.setCellBorderWidth(5);

3.12.4 Cell and Label Border Sides

The CellBorderSides property specifies the sides of a cell or label that display the
border type (specified by the CellBorderType property). By default, the border type
is displayed on all sides of a cell/label. The following figure illustrates one of the
visual effects that can be achieved.

Figure 25 Customized Cell Borders

The valid values for CellBorderSides are:

Specifying border sides is accomplished by OR-ing together all of the sides to have
borders, for example:

table.setCellBorderSides(JCTblEnum.ALL, 0,
 JCTblEnum.BORDERSIDE_LEFT | JCTblEnum.BORDERSIDE_TOP |
 JCTblEnum.BORDERSIDE_BOTTOM);

You can also set CellBorderSides for a range of cells specified by a JCCellRange
object:

JCCellRange range = new JCCellRange(2, 3, 2, 8);
table.setCellBorderSides(range, JCTblEnum.BORDERSIDE_LEFT |
 JCTblEnum.BORDERSIDE_TOP);

3.12.5 Frame Border Attributes

The FrameBorderType property specifies the border type for the frame enclosing the
cell and label areas. Its possible values are:

The FrameBorderWidth property specifies the thickness of the border surrounding
the cell and label areas. Its default value is 0 (no frame border).

■ JCTblEnum.BORDERSIDE_LEFT ■ JCTblEnum.BORDERSIDE_BOTTOM

■ JCTblEnum.BORDERSIDE_RIGHT ■ JCTblEnum.BORDERSIDE_ALL

■ JCTblEnum.BORDERSIDE_TOP ■ JCTblEnum.BORDERSIDE_NONE

■ JCTblEnum.BORDER_NONE (default) ■ JCTblEnum.BORDER_PLAIN

■ JCTblEnum.BORDER_OUT ■ JCTblEnum.BORDER_ETCHED_OUT

■ JCTblEnum.BORDER_IN ■ JCTblEnum.BORDER_ETCHED_IN

Chapter 3 ■ Building a Table 69

Border colors are calculated using the table’s background color.

Figure 26 A table with frame border attributes set

3.13 Cell and Label Margins

You can alter the space between the cell borders and the contents of cells. The
MarginWidth property sets the distance (in pixels) between the inside edge of the cell
border and the top and bottom edge of the cell's contents (default: 2). The
MarginHeight property specifies the margin (in pixels) between the inside edge of
the cell border and the left/right edge of the cell's contents (default: 3). The next
illustration shows the appearance of different margins. These properties affect all
cells/labels in the table—margins cannot be set for individual cells.

Figure 27 Margin Height and Margin Width

70 Part I ■ Using JClass LiveTable

3.14 Displaying Images in Table Cells

JClass LiveTable can display an image in each cell or label in the table. The image
appears inside the margin of the cell. Images are displayed using the
ImageCellRenderer class in the jclass.cell package. For more information, please
see Chapter 5, Displaying and Editing Cells.

3.14.1 Image Format

JClass LiveTable supports the image file formats supported by the Java AWT: .gif
and .jpg. For more information on available file formats, see your Java
documentation.

3.14.2 Image Layout

The position of the image within the cell is specified in the same way as Strings, using
Alignment. The next figure shows how the values of this property change the
positioning of the image.

Figure 28 Image layouts

In addition to being able to set alignment of images on row or column–indexed
contexts, you can set the Alignment property for a range of cells specified by a
JCCellRange object:

JCCellRange range = new JCCellRange(0,2,1,2);
table.setAlignment(range, JCTblEnum.BOTTOMCENTER);

Chapter 3 ■ Building a Table 71

3.15 Text and Image Clipping

When cell and label values don’t fit in their cells, JClass LiveTable can clip the
display of the cell value. The ClipArrows property determines which method is used.
The setClipArrows() method can take the following values:

■ JCTblEnum.CLIP_ARROWS_RIGHT

■ JCTblEnum.CLIP_ARROWS_DOWN

■ JCTblEnum.CLIP_ARROWS_BOTH (default)
■ JCTblEnum.CLIP_ARROWS_NONE

3.16 Cell and Label Spanning

Spanning is a way to join a range of cells or labels together and treat them as one
cell/label. A spanned range looks and acts like one cell/label that covers several rows
and/or columns. There are many potential uses for spanning, including designing
complex forms, displaying large images or components, and creating multi-line
headers.

When you create a spanned range, the top-left cell in the range is extended over the
entire range. The top-left cell is the source cell, and its value and attributes apply
over the entire span, covering any values or attributes set for the other cells/labels in
the range. Spanned ranges must begin at the top-left corner of the range. A span
cannot contain both cells and labels, or frozen and non-frozen elements. There must
also be more than one cell/label in a spanned range; when a single-cell range is
specified, it is removed from the list. The next figure shows an example of a table
containing spanned ranges.

Figure 29 Table design using spanned cells

The setSpans() method is used to set a Vector of ranges of cells or labels. Each
element of the Vector is an instance of a JCCellRange. A spanned range is a range of

72 Part I ■ Using JClass LiveTable

cells or labels that appear joined and can be treated as one cell. The top-left cell
(specified by the start_row and start_column members) is the source cell for the
spanned range. The cell/label value and attributes of the source cell are displayed in
the spanned cell. Attributes for the spanned range must be set on the source cell.

Spanned ranges may not overlap. If you have overlapping Spans, you will get a
System.err message similar to the following:

spanlist.overlap: Range R1C2:R1C4 overlaps R1C1:R1C2

Overlaps are determined by the order of cell ranges in the Span Vector.

To remove all of the spanned ranges, use the setSpans() method with a null value.

Each item in a span list is an instance of a JCCellRange. A JCCellRange object
defines the start and end columns/rows for the specified range.

The following example defines a cell that spans three columns and four rows
(columns 2 through 4, and rows 2 through 5):

Vector spans = new Vector();
spans.addElement(new JCCellRange(1, 1, 4, 3));
table.setSpans(spans);

Figure 30 Color properties of source cell (1,1) in the original table (left) are retained over the spanned
cells in the table after the code has been added (right)

3.16.1 Using Spanning to Create Multi-line Headers

You may want to create tables that contain multi-line column headers where a top
header is divided into two columns by sub-headers, as in the following illustration.

Chapter 3 ■ Building a Table 73

Figure 31 Multi-line headers

While JClass LiveTable does not support multi-row column labels, this effect can be
achieved by using a frozen row at the top of the table to mimic the appearance of the
column labels as follows:

■ The rightmost column label has been set to span columns 3 and 4. This produces
a heading for both columns.

■ The cell values for columns 3 and 4 in row zero have been set to contain the
“subheadings” of the spanned label heading.

■ The cells in row zero, columns 0 to 2 are empty.

■ Row zero has been frozen using setFrozenRows(1) so that it stays at the top of
the table and acts like a label.

■ Row zero’s cells are not editable (using the setEditable(false) method) and
not traversable (using setTraversable(false)).

■ The FrameBorderWidth property of the table must be set to zero, so that the
labels blend seamlessly into the frozen row.

■ Finally, the CellBorderSides, Background, and Foreground properties for the
column labels and row zero are all set to blend the two together.

74 Part I ■ Using JClass LiveTable

75

4
Working with Table Data

Overview: Data Handling in JClass LiveTable ■ Getting Data into your Table

Using Stock Data Sources ■ Setting Stock Data Source Properties
Creating your own Data Sources ■ Dynamically Updating Data

4.1 Overview: Data Handling in JClass LiveTable

JClass LiveTable is a Java component that creates a table-formatted view of a given
set of data. Data can come from many different types of sources; different
applications can have different data storage needs. Since applications can generally
store data more efficiently than a component, it is more practical for JClass
LiveTable to use an external data object rather than storing the data internally. An
external data model organizes the data in a way that is more convenient for the
application, rather than for the component.

Consequently, JClass LiveTable uses a Model-View-Controller (MVC) architecture
for data handling. The data in the table cells is stored in an external data source rather
than the Table object itself. Either you create the data source object, or the data
source can be a database. To use the latter, you need to use one of the LiveTable data
binding Beans. For more information about these Beans, and using them to bind with
a database, please see Chapter 9, JClass LiveTable Beans and IDEs.

With LiveTable’s MVC architecture, the data source object is the Model, which
manages the underlying data being displayed and manipulated. The Table object
acts as both the View (the object displaying the data to the user), and the Controller
(the object that manipulates and modifies the data).

This method of handling data is different from the method used by JClass LiveTable
2.x. For information about using JClass LiveTable 2.x programs and data in this
release, please see Appendix C, Moving from JClass LiveTable 2.x to 3.x.

Because the Table object and the data source are separated, you are free to use
whatever data storage mechanism you want; the Table object doesn’t need to know
anything about the mechanism itself. The MVC architecture also helps improve the
performance of JClass LiveTable programs by removing the need to load all of the
table’s data into memory, then copy it to the Table object. The data source is able to

76 Part I ■ Using JClass LiveTable

copy only the data that is currently displayed by the Table object. An external data
source can also manage large sets of data more efficiently than the Table object can.

4.1.1 How the Table and Data Source Communicate

Between the Table object and the data source lies another object called the
TableDataView. While most developers will never have to work with it directly, it’s
important to realize that the TableDataView monitors the data source for changes
and notifies the Table object when they occur. Additionally, the TableDataView has a
set of translation tables that allow it to re-map rows or columns from the data source
to the table. This is how JClass LiveTable can support features like column sorting
and row or column swapping, where the appearance of the table changes, without
manipulating the data source itself.

4.2 Getting Data into your Table

To display data in a JClass LiveTable application or applet, you need to create a data
source object. Any object that implements the TableData interface can be a data
source. This can either by one of the stock data sources included with LiveTable (see
the Using Stock Data Sources section in this chapter), or one of your own data
sources (see Creating your own Data Sources section in this chapter).

The TableData interface is as follows:

public interface TableData {
public Object getTableDataItem(int row, int column);
public int getNumRows();
public int getNumColumns();
public Object getTableRowLabel(int row);
public Object getTableColumnLabel(int column);
public void addTableDataListener(TableDataListener l);
public void removeTableDataListener(TableDataListener l);
}

The primary method in the TableData interface is getTableDataItem(), which
retrieves the value of a specified cell. For more information on the types of cell data
objects that Table understands, see Chapter 5, Displaying and Editing Cells. In short,
you can have any type of object (usually one of Integer, Double, String, Image) in a
cell.

Table Size

The size of the table is also specified by the data source, using the getNumRows()
and getNumColumns() methods.

Row and Column Labels

If you want to display row or column labels, their values are provided using the
getTableRowLabel() and getTableColumnLabel() methods. These methods
return the same types of objects as getTableDataItem(), but labels are never
editable.

Chapter 4 ■ Working with Table Data 77

Data Source Listeners

Any time the data inside the data source changes, it should notify all of its listeners.
To add and remove listeners to and from the data source, use the methods
addTableDataListener() and removeTableDataListener().

4.2.1 Making the Data Source Editable

If you want users to be able to edit the data, you must implement the
EditableTableData interface. EditableTableData is derived from TableData and
adds one new method: setTableDataItem().

public interface EditableTableData extends TableData {
public boolean setTableDataItem(Object o, int row, int column);
}

When the user edits a cell in the table, the cell editor validates the data (for more
information about cell editing, see Chapter 5, Displaying and Editing Cells), and
passes the new data to the data source using the setTableDataItem() method. If
the data source doesn’t accept the value of the object (the value is invalid in some
way), it will return false to indicate that the edit has been rejected. If the new value is
valid, then setTableDataItem() will return true and the data source will store the
value.

The setEditable() Method

You can use the setEditable() method to turn editing on and off for specific cells
and ranges of cells. For setEditable(true) to have any effect, the data source must
be editable.

4.3 Using Stock Data Sources

While it isn’t hard to create a data source for a table, JClass LiveTable includes
several stock data sources to save you the work of writing data sources for the most
common data types:

Data Source Description

VectorDataSource General purpose data source: extended by almost all stock data
sources.

EditableVectorDataSource Allows users to edit cell values in tables with the above data source.

InputStreamDataSource Base class for any data source that relies on streamed input.

AppletDataSource Reads in data from the DATA tag of an applet.

URLDataSource Uses URLs to create a data source object.

FileDataSource Creates an input data stream from a file.

EditableFileDataSource Allows users to edit cell values in tables with the above data source.

ResultSetDataSource Simple read–only JDBC database source.

78 Part I ■ Using JClass LiveTable

Most of the stock data sources extend the VectorDataSource class. Please see
Chapter 3, JClass LiveTable Inheritance Hierarchy, for a complete hierachy diagram
that outlines the relationship between the stock data source classes.

4.3.1 VectorDataSource: the Data Source Workhorse

A VectorDataSource simply stores all of its data in memory using Vectors. The
VectorDataSource class contains methods that allow you to set individual elements
or to set all of the data in the data source from a Vector or an array of objects.

Since VectorDataSource implements TableData, it can’t be edited by the Table
object. If you want users to be able to edit the cell values through the table, you
should use EditableVectorDataSource. The EditableVectorDataSource class is just
a subclass of VectorDataSource that implements the EdtitableTableData interface.

4.3.2 Getting Data from an Input Stream

JClass LiveTable provides the InputStreamDataSource class to read data in through
a standard java.io.InputStream.. Since InputStreamDataSource is derived from
VectorDataSource, it has all of the same capabilities as a VectorDataSource (see
Setting Stock Data Source Properties in this chapter). Items read into the data source
are stored as either String or Double objects. The data format for a simple table
would be similar to the following: (the # symbol denotes the beginning of a
comment)

TABLE 2 4 NOLABEL # 2 rows, 4 columns
1 2 3 4 # row 1
1 2 3 4 # row 2

If you want to include labels, the data format would be:

TABLE 3 4
 'Column 1’ ’Column 2’ ’Column 3’ ’Column 4’
’Row 1’ 1 2 3 4
’Row 2’ 1 4 9 16
’Row 3’ 1 16 81 256

The InputStreamDataSource class has the following subclasses that provide
convenient constructors to create an InputStream from various sources:

■ FileDataSource, for reading data from a file

■ URLDataSource, for reading data from a URL

JCTableDataSource For use with JCTable (backwards compatibility with LiveTable 2.0).

CachedDataSource Caches previously read data from the data source.

EditableCachedDataSource Allows users to edit cell values in tables with the above data source.

TableSwingDataSource Enables users to display and edit Swing TableModel data objects in
JClass LiveTable. Swing TableModel objects are typically used by the
Swing JTable component.

Data Source Description

Chapter 4 ■ Working with Table Data 79

■ AppletDataSource, for reading data from the DATA <PARAM> tag associated with
the specified applet.

4.3.3 Getting Data from a Database

The ResultSetDataSource uses a JDBC database connection and an SQL query to
create a data source. This feature is available only in the JDK 1.1. The
ResultSetDataSource is a rudimentary implementation of a data bound data source
to demonstrate that JClass LiveTable can be used with database applications quite
easily.

Note: The ResultSetDataSource is not an updatable data source; that is, it will
not write to the database.

4.3.4 Using a Data Source with JCTable

JCTable is a subclass of Table that provides backwards compatibility with LiveTable
2.x. If you are using this class for your application, JCTableDataSource is
automatically created for the table.

4.3.5 Caching Data with CachedDataSource

While VectorDataSource stores its memory using vectors, the CachedDataSource
class stores its data in a vector of vectors. CachedDataSource uses another TableData
class to contain table cell and label information (“in between” the table and the data
source). It will reference this table first to see if the required data exists; if it does not,
the call passes through to the original TableData class, and the value is taken. When
this happens, the retrieved value is also stored in CachedDataSource’s other
TableData class.

This method saves time by creating a second instance of previously–retrieved data,
outside of the actual data source. CachedDataSource should only be used when the
TableData’s getTableItem, getTableRowLabel, getTableColumnLabel are
calulation–intensive or expensive to retrieve.

Use EditableCachedDataSource to bind to an editable data source and be able to
edit the cell contents.

Note: A non–editable data source bound to EditableCachedDataSource will
display an editor but reject all changes

4.3.6 Using Swing TableModel Data Objects

The TableSwingDataSource enables you to use any type of Swing TableModel data
object in JClass LiveTable. TableSwingDataSource is an editable data source.

TableSwingDataSource interprets and reformats the TableModel data to the layout
used by JClass LiveTable. This makes it easier to replace the Swing JTable
component with JClass LiveTable because you do not have to reformat your data.

80 Part I ■ Using JClass LiveTable

When you create a TableSwingDataSource, you need to pass the constructor a valid
Swing TableModel object.

4.4 Setting Stock Data Source Properties

The following properties are set using methods of the VectorDataSource class. Since
the stock data sources are derived from the VectorDataSource class, you can set
these properties from any of the stock data sources (though all of the properties may
not be applicable to the specific data source).

Note: The VectorDataSource class contains properties that are not inherent to
the TableData interface. If you create your own data source, you will have to
produce your own methods for such operations as adding and deleting rows and
columns.

4.4.1 Working with Rows and Columns

Setting the Number of Rows/Columns
The setNumRows() and setNumColumns() methods specify the number of rows and
columns in the data source (default is 5 columns and 10 rows). These values do not
affect the internal CellValues Vector of the data source. The values of the NumRows
and NumColumns properties are updated by the addRow(), addColumn(),
deleteRows(), and deleteColumns() methods (see below).

Specifying Row and Column Labels
Set row and column labels by calling:

■ setRowLabel() and setColumnLabel() for individual labels, and

■ setRowLabels() and setColumnLabels() methods for all of the labels.

Column and row labels can be set as an array of Strings, or as a Vector. Each element
of the labels’ Vector may be an instance of a String, JCString, Image, Component, or
other object. To clear column or row labels, call the method with a null argument.

String clabels[] = { "Name", "Address", "Phone" };
...
VectorDataSource vds;
vds.setColumnLabels(clabels);

To retrieve the values, use:

■ getTableRowLabel() and getTableColumnLabel() for individual labels, and

■ getRowLabels() or getColumnLabels() for all of the labels.

Adding Rows and Columns
You can insert new rows and columns into the data source using the addColumn()
and addRow() methods. The addColumn() method inserts a new column into the
data source, shifting any cell values to the right of the insertion. The addRow()
method inserts a new row into the data source, shifting any cell values down. The

Chapter 4 ■ Working with Table Data 81

row and column labels will also be shifted unless you have registered a
JCLabelValueListener in your program.

The addColumn() and addRow() methods are identical:

public boolean addRow(int position,
 Object label,
 Vector values)

public boolean addColumn(int position,
 Object label,
 Vector values)

In the above methods,

■ The position parameter is the initial column (or row) index, and the new columns
or rows are added prior to this position. If the position is set to
JCTblEnum.MAXINT, the column or row is added after the final existing column or
row.

■ The label parameter refers to the column or row label. This parameter can have a
null value.

■ The Values parameter refers to the array of objects that comprise the cell values.
This parameter can have a null value.

■ Both the addColumn() and addRow() methods return false if any of the
parameters are invalid; if they return false, the row or column will not be
added.

When calling addRow() and addColumn(), note the following:

■ If you do not supply values for the new cells within the method, the cells are
blank. Values for the new row or column labels must be specified separately.

■ The initial row or column index cannot be greater than the values of NumRows or
NumColumns.

Deleting Rows and Columns
Use the deleteRows() and deleteColumns() methods to remove rows and
columns from the data source. When you delete a column, remaining cell values shift
to the left; when you delete a row, existing cell values shift up.

The deleteRows() and deleteColumns() methods are identical:

public boolean deleteRows(int position,
 int num_rows)

public boolean deleteColumns(int position,
 int num_rows)

In the above methods,

■ The position parameter specifies the first row or column number to delete from
the data source.

■ The num_rows or num_columns parameters specify the number of rows or
columns to be deleted starting from the row or column specified by position.

82 Part I ■ Using JClass LiveTable

When calling deleteRows() and deleteColumns(), note the following:

■ The starting row or column cannot be greater than the NumRows or NumColumns
properties.

■ Both the deleteRows() and deleteColumns() methods return false if any of
the parameters are invalid.

Moving Rows and Columns
To move a range of rows or columns in the data source, use the moveRows() and
moveColumns() methods. The moveRows() and moveColumns() methods take the
following forms:

public boolean moveRows(int source,
 int num_rows,
 int destination)

public boolean moveColumns(int source,
 int num_columns,
 int destination)

In the above methods,

■ The source parameter specifies the first row or column to move.

■ The num_rows and num_columns parameters specify the number of rows or
columns to move.

■ The destination parameter specifies the row number above which, or the column
number to the left of which to move the rows or columns.

When calling moveRows() and moveColumns(), note the following:

■ The starting (source) row or column cannot be greater than the value of the
NumRows() or NumColumns() properties.

■ Both the moveRows() and moveColumns() methods return false if any of the
parameters is invalid.

4.4.2 Working with Other Properties

Setting Cell Values
To set the cell values in the data source, use the setCell() or setCells() methods.
The setCells() method can be a matrix of Strings or a Vector of Vectors. To remove
all values, call clearCells().

Adding and Removing TableDataListeners
The VectorDataSource class contains methods for adding and removing listeners to
the data source: addTableDataListener() and removeTableDataListener().
These methods monitor the data source for changes. For more information, see
Dynamically Updating Data on page 86.

Chapter 4 ■ Working with Table Data 83

4.5 Creating your own Data Sources

If the stock data sources provided with JClass LiveTable do not meet your needs, you
can easily create your own data source objects by implementing the TableData
interface, as in the following example from examples\chapter4\MyDataSource.java:

import jclass.table3.TableData;
import jclass.table3.TableDataListener;
public class MyDataSource implements TableData {
String data[];
public MyDataSource(String strings[]) {
 if(strings == null)
 data = new String[0];
 else
 data = strings;
}
public Object getTableDataItem(int row, int column) {
 if(column == 0)
 return data[row];
 else
 return null;
}
public int getNumRows() {
 return data.length;
}
public int getNumColumns() {
 return 1;
}
public Object getTableRowLabel(int row) {
 return Integer.toString(row);
}
public Object getTableColumnLabel(int column) {
 return "Some Data";
}
public void addTableDataListener(TableDataListener l) {
}
public void removeTableDataListener(TableDataListener l) {
}
}

The MyDataSource class takes a one-dimensional array of Strings and turns it into a
read-only data source. The constructors takes the array of strings, the
getTableDataItem() method supply the data as it is needed. Note that the
addTableDataListener() and removeTableDataListener() methods have been
left empty because this data source is not going to be changing dynamically, thus
does not need to keep track of its listeners. You can attach this data source to a table
quite easily, as in examples\chapter4\MyTable.java:

84 Part I ■ Using JClass LiveTable

import java.awt.*;
import jclass.table3.*;
public class MyTable extends Frame {
Table table;
TableData dataSource;
String names[] = {"James",
 "Daniel",
 "Don",
 "Brian",
 "Geoff",
 "Worf",
 "Ethan",
 };
public MyTable() {
 setLayout(new GridLayout(1,1));
 table = new Table();
 dataSource = new MyDataSource(names);
 table.setDataSource(dataSource);
 table.setCharWidth(JCTblEnum.LABEL,3);
 add(table);
 pack();
 show();
}
public static void main(String args[]) {
 new MyTable();
}
}

To make the items in the table editable, you must implement the EditableTableData
interface, as in examples\chapter4\MyEditableDataSource.java:

import jclass.table3.EditableTableData;
import jclass.table3.TableDataListener;
public class MyEditableDataSource implements EditableTableData {
String data[];
public MyEditableDataSource(String strings[]) {
 if(strings == null)
 data = new String[0];
 else
 data = strings;
}
public Object getTableDataItem(int row, int column) {
 if(column == 0)
 return data[row];
 else
 return null;
}

public boolean setTableDataItem(Object o, int row, int column) {
if(column == 0) {
 if (o instanceof String)
 data[row] = (String)o;
 else
 data[row] = o.toString();
}

return true;
}
public int getNumRows() {
 return data.length;
}

Chapter 4 ■ Working with Table Data 85

public int getNumColumns() {
 return 1;
}
public Object getTableRowLabel(int row) {
 return Integer.toString(row);
}
public Object getTableColumnLabel(int column) {
 return "Some Data";
}
public void addTableDataListener(TableDataListener l) {
}
public void removeTableDataListener(TableDataListener l) {
}
}

The MyEditableDataSource class could have been a subclass of MyDataSource,
adding only the setTableDataItem() method, but in this example it was shown as
a standalone class to make sure everything is as clear as possible. Note that the object
that is passed back to the data source in setTableDataItem() is not a String.

The MyEditableDataSource class is used in the the program
examples\chapter4\MyTable2.java:

import java.awt.*;
import jclass.table3.*;
public class MyTable2 extends Frame {
Table table;
TableData dataSource;
String names[] = {"James",
 "Daniel",
 "Don",
 "Brian",
 "Geoff",
 "Worf",
 "Ethan",
 };
public MyTable2() {
 setLayout(new GridLayout(1,1));
 table = new Table();
 dataSource = new MyEditableDataSource(names);
 table.setDataSource(dataSource);
 table.setCharWidth(JCTblEnum.LABEL,3);
 add(table);
 pack();
 show();
}
public static void main(String args[]) {
 new MyTable2();
}
}

86 Part I ■ Using JClass LiveTable

4.6 Dynamically Updating Data

Sometimes the data in the data source changes all by itself — for example, you may
have a table displaying stock prices with data arriving in real–time over a network
socket. As new prices arrive, your users would like the table to update the values of
the appropriate cells.

To notify the table that the data has changed, send a TableDataEvent to all of the
TableDataListener objects that have registered themselves with the data source.

The following is a simple example that creates a background thread that
automatically updates cell values. It can be found in the file
examples\chapter4\DynamicDataSource.java:

import java.util.Enumeration;
import java.util.Random;
import jclass.table3.TableData;
import jclass.table3.TableDataEvent;
import jclass.table3.TableDataListener;
import jclass.table3.JCListenerList;
public class DynamicDataSource implements TableData, Runnable {
int data[];
JCListenerList listeners;
Thread kicker;
public DynamicDataSource() {
 data = new int[10];
 kicker = new Thread(this);
 kicker.start();
}
public Object getTableDataItem(int row, int column) {
 if(column == 0)
 return new Integer(data[row]);
 else
 return null;
}
public int getNumRows() {
 return data.length;
}
public int getNumColumns() {
 return 1;
}
public Object getTableRowLabel(int row) {
 return Integer.toString(row);
}
public Object getTableColumnLabel(int column) {
 return "Some Data";
}
public void addTableDataListener(TableDataListener l) {
 listeners = JCListenerList.add(listeners,l);
}
public void removeTableDataListener(TableDataListener l) {
 listeners = JCListenerList.remove(listeners,l);
}
public void run() {
 Random random = new Random();
 Enumeration e;
 TableDataListener l;
 TableDataEvent event;

Chapter 4 ■ Working with Table Data 87

 int i;
 for(;;) {
 i = random.nextInt() % data.length;
 if(i < 0)
 i = -i;
 data[i] += (int)(random.nextGaussian()*10);
 event = new
 TableDataEvent(this,i,0,0,0,TableDataEvent.CHANGE_VALUE);
 for(e = JCListenerList.elements(listeners);e.hasMoreElements();)
{
 l = (TableDataListener)e.nextElement();
 l.dataChanged(event);
 }
 try {
 Thread.sleep(400);
 }
 catch(Exception ex) {
 }
 }
}
}

The DynamicDataSource class sends CHANGE_VALUE messages to all of its listeners
whenever a value changes. When the Table object receives this message it retrieves
the new value from the data source and repaints the appropriate cell. There are
several other update commands available on the TableDataEvent class:

All of the CHANGE_ messages cause the Table to reload the specified data and repaint
the intersection of the data that has been changed and the data that’s being shown on
screen. For example, if you send a CHANGE_ROW message for row 55 and row 55 isn’t
currently on screen, the table won't do anything.

The file examples\chapter4\DynamicTest.java demonstrates the simple technique used in
DynamicDataSource.java.

Easy Listener Management
If you do not want to have to manage the listeners, JClass LiveTable includes a class
called TableDataSupport. TableDataSupport is an object provided by Table that has
methods for adding and removing TableDataListeners. In addition, it provides a
simple way to send data events using the fireTableDataEvent() method.

■ CHANGE_VALUE ■ NUM_ROWS

■ CHANGE_ROW ■ NUM_COLUMNS

■ CHANGE_COLUMN ■ ADD_COLUMN

■ CHANGE_ROW_LABEL ■ REMOVE_COLUMN

■ CHANGE_COLUMN_LABEL ■ MOVE_ROW

■ ADD_ROW ■ MOVE_COLUMN

■ REMOVE_ROW ■ RESET

88 Part I ■ Using JClass LiveTable

As an example, the DynamicDataSource.java program could be reimplemented to use
the TableDataSupport object as follows (examples\chapter4\DynamicDataSource2.java):

import java.util.Enumeration;
import java.util.Random;
import jclass.table3.TableDataSupport;
import jclass.table3.TableDataEvent;
import jclass.table3.TableDataListener;
import jclass.util.JCListenerList;

public class DynamicDataSource2 extends TableDataSupport implements
 Runnable {

int data[];
Thread kicker;

public DynamicDataSource2() {
 data = new int[10];

 kicker = new Thread(this);
 kicker.start();
}

public Object getTableDataItem(int row, int column) {
 if(column == 0)
 return new Integer(data[row]);
 else
 return null;
}

public int getNumRows() {
 return data.length;
}

public int getNumColumns() {
 return 1;
}

public Object getTableRowLabel(int row) {
 return Integer.toString(row);
}

public Object getTableColumnLabel(int column) {
 return "Some Data";
}

public void run() {
 Random random = new Random();
 Enumeration e;
 TableDataListener l;
 TableDataEvent event;
 int i;

 for(;;) {
 i = random.nextInt() % data.length;
 if(i < 0)
 i = -i;
 data[i] += (int)(random.nextGaussian()*10);

 event = new

Chapter 4 ■ Working with Table Data 89

 TableDataEvent(this,i,0,0,0,TableDataEvent.CHANGE_VALUE);
 fireTableDataEvent(event);

 try {
 Thread.sleep(400);
 }
 catch(Exception ex) {
 }
 }
}
}

Running examples\chapter4\DynamicTest2.java demonstrates that the same results can
be achieved more easily by using TableDataSupport.

4.6.1 Adding and Removing Columns and Rows

ADD_ROW, REMOVE_ROW, ADD_COLUMN, and REMOVE_COLUMN notify the table that a row or
column has been added or removed so that the table can update its internal list of
cell attributes. For example, if all your rows are different colors, and you delete a
row, the remaining rows will still have the correct colors if you send a DELETE_ROW
message to the Table. Some of the event parameters may be ignored for row or
column operations. For example, when you do an operation on an entire row or
column, if you create an ADD_ROW event, the column parameter is ignored by the table.
With the exception of the MOVE_ events, all of the events ignore the num_affected and
destination parameters of the TableDataEvent.

The MOVE_ROW, MOVE_COLUMN commands are the only commands that make use of the
num_affected and destination parameters in the TableDataEvent. When you have a
MOVE_ event, you can move multiple rows/columns (the num_affected parameter) and
you must specify which row/column you’re moving to (destination).

The RESET message causes the Table object to re-initialize itself by re-reading the
number of rows, number of columns and all the data from the data source. The
table’s visual attributes like fonts, colors, etc are not affected.

Note: when a user edits a cell in the table and the value is put back into the data
source via setTableDataItem() the table will automatically repaint the cell with a
new value.

90 Part I ■ Using JClass LiveTable

91

5
Displaying and Editing Cells

Overview ■ Default Cell Rendering and Editing ■ Rendering Cells

Editing Cells ■ The CellInfo Interface

JClass LiveTable offers a flexible way to display and edit any type of data contained
in a table’s cells. The following sections explain the techniques for displaying and
editing cells in your programs.

All of the example code is available in the examples\chapter5 directory of the JClass
LiveTable distribution1.

5.1 Overview

In order to display a cell, JClass LiveTable has to know what type of data renderer
the cell will contain so it knows how to paint that data into the cell area. Similarly, in
order for users to edit the cell values, LiveTable has to know what editor to return for
that data type.

These operations are performed using the classes in the jclass.cell package. This
package includes two interfaces that control displaying and editing cells:
CellRenderer and CellEditor. The jclass.cell package is a generic package;
renderers and editors written for JClass LiveTable will work with other JClass
products. In addition, JClass BWT and JClass Field components can work as
renderers and editors within LiveTable, allowing very lightweight operation.

JClass LiveTable has been designed to identify the type of data being retrieved from
the data source and to provide the appropriate cell renderer and cell editor for that
data type. Often, however, you will want to control the way data in a particular area
of the table is rendered, or assign a specific type of editor for that data. An example
of this is rendering String data in multiple lines and using java.awt TextArea as the
editor, rather than rendering and editing single line Strings.

1. Note that the example programs contain package names, and must be run using the full package name.

92 Part I ■ Using JClass LiveTable

If you want to have ultimate control over the way cells are rendered and edited, you
can create a custom CellData object for a particular data type, which acts as a
container for the data, its renderer, and its editor.

The following sections describe the techniques for rendering and editing cells by
beginning with the easiest default methods, followed by detailed explanations for
setting specific renderers and editors, mapping renderers and editors to a particular
data type, and creating your own renderers and editors. Finally, you can explore the
advanced procedure for creating your own CellData objects as containers.

5.2 Default Cell Rendering and Editing

Basic Editors and Renderers
When the table draws itself, it accesses the data source and attempts to paint the
contents of each cell. In doing so, it works through a three-stage process:

1. The table first looks for a CellData object that will provide the data, and a ren-
derer and editor for that data.

2. If the data is not a CellData object, the table checks to see if a renderer has been
assigned to the cell or a series of cells by the table.setCellRenderer() meth-
od.

3. If the table can’t find a specific CellRenderer for the data, it uses the default
mapping for that data type.

The following table lists the cell renderers and editors for common data types
included with JClass LiveTable. When going through the above steps, LiveTable uses
these default mappings if there is no CellData object or editor/renderer set.

Advanced Editors and Renderers
The following table lists the advanced editor/renderers, which are the ones used by
default. As with the the basic list above, these are included with JClass LiveTable.
These advanced properties are “lighter” versions of those found in JClass Field, and

Data Type Renderer Editor

String StringCellRenderer TextCellEditor

Boolean StringCellRenderer BooleanCellEditor

Date StringCellRenderer DateCellEditor

Double StringCellRenderer DoubleCellEditor

Float StringCellRenderer FloatCellEditor

Integer StringCellRenderer IntegerCellEditor

JCString JCStringCellRenderer JCStringCellEditor

Image ImageCellRenderer

Object StringCellRenderer

Chapter 5 ■ Displaying and Editing Cells 93

so are missing some functionality and customizability, such as the use of
customizable masked edits and validation control (full featured cell editing and
rendering can be used if you own JClass Field). These properties are part of the
jclass.field.cell package.

Although these basic and advanced editors and renderers are included with
LiveTable, you might find that you need more control over the way data is displayed
and edited than simply relying on these defaults. The following sections explain cell
rendering and cell editing in detail.

5.3 Rendering Cells

Cell rendering is simply the way in which data is drawn into a cell. JClass LiveTable
uses a model where a method is passed all of the information it needs to render the
data, including the data itself. It does not require a java.awt.Component to render
the data, and it allows you to reuse a single instance of a renderer.

Rendering is done by objects that implement the jclass.cell.CellRenderer
interface. The CellRenderer interface allows the implementor to:

■ Draw the cell, and

■ Determine the preferred size of the cell

For both these operations, the Table passes information to the renderer, including:

■ The color, font, alignment, and other visual attributes of the cell (these are
retrieved using the jclass.cell.CellInfo interface).

■ The Graphics component; the Table clips the Graphics component to the cell
location and size.

Other operations, such as initiating the renderer, providing and positioning a
Graphics object for drawing the cell, and context for the rendering operation. The

Data Type Editor/Renderer Limitation in relation to JClass Field

Float DoubleRendererEditor only allows numbers and a decimal point

Double DoubleRendererEditor only allows numbers and a decimal point

Integer IntegerRendererEditor numeric characters only

Long IntegerRendererEditor numeric characters only

Byte IntegerRendererEditor numeric characters only

java.util.Date DateRendererEditor no freeform typing allowed

java.util.Calendar DateRendererEditor no freeform typing allowed

java.sql.Date DateRendererEditor no freeform typing allowed

java.sql.Timestamp DateRendererEditor no freeform typing allowed

java.sql.Time DateRendererEditor no freeform typing allowed

94 Part I ■ Using JClass LiveTable

CellRenderer and CellInfo interfaces are described more fully in Creating your
own Cell Renderers, below.

5.3.1 JClass Cell Renderers

As shown in the table above, JClass LiveTable maps standard data types to specific
renderers when the program does not specify a renderer for that data type (either by
setting for a series or mapping). This means that most tables are easily rendered
without doing any special coding. The renderers are internally assigned. JClass
LiveTable also contains several cell renderers for specific data types that you can set
for a series (see Section 5.3.2, Setting a Cell Renderer for a Series) or as a mapping
(see Section 5.3.3, Mapping a Data Type to a Cell Renderer). These cell renderers are
described in the following table:

The default mappings and these special renderer classes should provide for
rendering most data types. Few programmers work under ideal conditions, however,

Name Package Data Type Description

ButtonCellRenderer jclass.cell.renderers String Defines a CellRenderer object
that paints a table cell as a button.

CheckboxCellRenderer jclass.cell.renderers boolean Defines a CellRenderer object
that paints boolean objects in a
table cell as checks.

ChoiceCellRenderer jclass.cell.renderers boolean Renders an integer by mapping it
to a String in a String array.

EllipsisCellRenderer jclass.cell.renderers String Uses an ellipsis to draws a single
line text if the text is larger than
the width of the cell.

ImageCellRenderer jclass.cell.renderers image Defines a CellRenderer object
that paints Image objects in a
table cell.

JCStringCellRenderer jclass.table3 JCString
objects

Renders an integer by mapping it
to a String in a String array.

RawImageCellRenderer jclass.cell.renderers image Defines a CellRenderer object
that paints unconverted Image
objects in a table cell (extends
scaled)

ScaledImageCellRenderer jclass.cell.renderers image Defines a CellRenderer object
that paints scaled Image objects
in a table cell.

StringCellRenderer jclass.cell.renderers String, boolean,
double, float,
integer, object.

A simple renderer that can draw
strings.

WordWrapCellRenderer jclass.cell.renderers String Defines word-wrapping logic for
multi-line display of strings in
cells.

Chapter 5 ■ Displaying and Editing Cells 95

and you will probably need to extend the capability of these renderers. JClass
LiveTable includes ways for you to customize cell rendering as described below.

5.3.2 Setting a Cell Renderer for a Series

Often, the rows and columns that comprise a table are grouped by the type of data
they contain. You may be creating an order form that has a product name (a String)
in one column, a part number (an Integer) in another, and a checkbox (a special type
of object) in the final column to indicate that you want that product:

All of these columns take a different data type, so their data is all rendered
differently. LiveTable will automatically detect the type of data found, and use one of
the default renderers for that column (please see the previous section, Default Cell
Rendering and Editing, for a list of default renderers). However, you can use your
own renderer if the default does not suit your needs.

In the case of the Order Checkbox, the default renderer for its Boolean data type will
be the StringCellRenderer. With this default renderer, since the data type is boolean,
instead of having a check (or no check) painted onto the cell, “true” or “false” will
appear. This is not desirable, so you need to deviate from LiveTable’s default
renderer. Inserting this line of code into your program will do this:

table.setCellRenderer(JCTblEnum.ALL, 3,
 new jclass.cell.renderers.CheckboxCellRenderer());

The CheckBoxCellRenderer class defines an object that paints boolean objects in a
table cell as checks. This way, the first two columns render automatically with the
defaults, and the third column will use your defined renderer.

5.3.3 Mapping a Data Type to a Cell Renderer

Even though you can set the renderer series, your table may be designed in such a
way that the data types within a row or column are not consistent, or will change
depending on the data source. In this case you could decide not to set the renderer
series at all, and allow the container to evaluate the data type and provide the
appropriate renderer. Unfortunately, this means you have to use the default
renderers for a given data type.

To use your own renderers without sacrificing flexibility, you can create a mapping.
The mapping takes a data type and associates it with a CellRenderer object;
whenever the container encounters that type of data, it uses the mapped
CellRenderer object to render the data object in the cell.

Mapping a CellRenderer object to a data type takes the following construction:

table.setCellRenderer(Class cellType, Class renderer);

Contents Product Name Part Number Order Checkbox

Data Type String Integer Boolean

96 Part I ■ Using JClass LiveTable

For example, in the following code fragment (from TriangleTest.java in the
examples\chapter5 directory of the JClass LiveTable distribution), the cell renderer is
set for a particular data type, defined by java.awt.Polygon.

try {
 table.setCellRenderer(Class.forName("java.awt.Polygon"),
 Class.forName
 ("jclass.table3.examples.chapter5.TriangleCellRenderer"));

....

}
catch (ClassNotFoundException e) {
 e.printStackTrace(System.out);
}

The table.setCellRenderer() method takes a class to define the data type and a
class to define the renderer. In the case below, we have created a class called
TriangleCellRenderer, which is identified using the Class.forName() method
imported from java.lang.Class. (Creating your own cell renderers is explained in
the next section).

Normally, you would use these mappings in a construction that would test for the
presence of the renderer you specify, and throw an exception if the renderer class
was not found, as is the case in the above sample.

To “unmap” a renderer, set the renderer class parameter to null.

5.3.4 Creating your own Cell Renderers

Naturally, the CellRenderer classes provided with JClass LiveTable will not meet
every programmer’s specific needs. However, they can be convenient as bases for
creating your own CellRenderer objects by subclassing the original classes. If you
really want to be a maverick and create your own CellRenderer classes, you can
build your own CellRenderer from scratch. Both techniques are discussed below.

Subclassing the Default Renderers
A simple way to create your own CellRenderer objects is to subclass the
CellRenderers provided with JClass LiveTable. ‘CalendarCellRenderer, found in
the demos\customCells\CustomCells.java file, is an example of subclassing from the
StringCellRenderer in the jclass.cell.renderers package.

Writing your own Cell Renderer
To create a CellRenderer object of your own, you must implement the
jclass.cell.CellRenderer interface.

public interface CellRenderer {
public void draw(Graphics gc, CellInfo cellInfo, Object o, boolean
 selected);
public Dimension getPreferredSize(CellInfo cellInfo, Object o);
}

The CellRenderer interface requires that you create two methods:

Chapter 5 ■ Displaying and Editing Cells 97

1. A draw() method, which is passed a CellInfo object (see The CellInfo Inter-
face, below for more details) containing information from the container about
the cell, a java.awt.Graphics object, and the object to be rendered. The Graph-
ics object is positioned at the origin of the cell (0,0), but is not clipped.

2. A getPreferredSize() method, which is used to allow the renderer to influ-
ence the container’s layout. The container may not honor the renderer’s request,
depending on a number of factors.

The following code, TriangleCellRenderer.java, draws a triangle into the cell area:

import java.awt.Polygon;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Rectangle;
import jclass.cell.CellRenderer;
import jclass.cell.CellInfo;

public class TriangleCellRenderer implements CellRenderer {

public void draw(Graphics gc, CellInfo cellInfo, Object o, boolean
 selected) {
 Polygon p = makePolygon(o);
 gc.fillPolygon(p);
}

public Dimension getPreferredSize(CellInfo cellInfo, Object o) {
 // Make a polygon from the object
 Polygon p = makePolygon(o);
 // Return no size if no polygon was created
 if (p == null) {
 return new Dimension(0,0);
 }
 // Bounds of the polygon determine size
 Rectangle r = p.getBoundingBox();
 return new Dimension(r.x+r.width,r.y+r.height);
}

private Polygon makePolygon(Object o) {
 if (o == null) return null;
 if (o instanceof Number) {
 return makePolygon(((Number)o).intValue());
 }
 else if (o instanceof Polygon) {
 return (Polygon)o;
 }
 return null;
}

public Polygon makePolygon(int s) {
 Polygon p = new Polygon();
 p.addPoint(0,0);
 p.addPoint(0,s);
 p.addPoint(s,0);
 return p;
}

}

98 Part I ■ Using JClass LiveTable

The above program creates a triangle renderer object that can handle both Integer
and Polygon objects.

As required by CellRenderer, the program contains a draw() method in the lines:

public void draw(Graphics gc, CellInfo cellInfo, Object o, boolean
 selected) {
 Polygon p = makePolygon(o);
 gc.fillPolygon(p);
}

The draw() method renders the object o by making it into a polygon and drawing
the polygon using the gc provided. The Table, as the container, automatically
translates and clips the gc, draws in the background of the cell, and sets the
foreground color.

The parameter cellInfo will retrieve other cell property information through the
CellInfo interface (see Section 5.5, The CellInfo Interface).

The second required method, getPreferredSize(), is provided in the lines:

public Dimension getPreferredSize(CellInfo cellInfo, Object o) {
 Polygon p = makePolygon(o);
 if (p == null) {
 return new Dimension(0,0);
 }
 Rectangle r = p.getBoundingBox();
 return new Dimension(r.x+r.width,r.y+r.height);
}

Here, the object is used to create a polygon (using a local method called
makePolygon()). If it doesn’t create a polygon from the object, the object is deemed
to have no size (0,0) and will not be displayed by the renderer. If a polygon was
created from the object, the polygon’s bounds determine the size of the rectangle in
the drawing area of the cell. The size returned is only a suggestion; control of the cell
size can be overridden by the Table container.

The renderer also contains two methods (makePolygon(Object o)) and
makePolygon(int s)) that create a polygon, the first a local method for either
Number or Polygon instances, and the second a generic method for creating a
polygon of size s.

You can also add clipping arrows to the Cell Renderer. When a table is displayed,
these indicate that the cell is not large enough to display all of its contents. Use the
setClipArrows() method to manually set the value of the ClipArrows property:

■ JCTblEnum.CLIP_ARROWS_RIGHT

■ JCTblEnum.CLIP_ARROWS_DOWN

■ JCTblEnum.CLIP_ARROWS_BOTH (default)
■ JCTblEnum.CLIP_ARROWS_NONE

The examples\chapter5 directory and the demos directories of your JClass LiveTable
distribution contain a wide array of sample programs that use different approaches to
cell rendering. You can use these examples and demos to help you refine your own
renderers for whatever purpose you require.

Chapter 5 ■ Displaying and Editing Cells 99

5.4 Editing Cells

While rendering cells is fairly straightforward, handling interactive cell editing is
considerably more complex. Cell editing involves coordinating the user-interactions
that begin and end the edit with cell data validation and connections to the data
source.

A typical cell edit works through the following process:

■ When a user initiates a cell edit with either a mouse click or a key press, the
Table object calls CellEditor.initialize() and passes a CellInfo object
with information about the cell, and the object (data) that will be edited.

■ The CellEditor displays the data and changes it according to user input.

■ If the user traverses out of the cell, then the container calls the
stopCellEditing() method, which asks the CellEditor to validate the edit. If
the edit is not valid — that is, stopCellEditing() returns false, the container
then retrieves the original cell value from the data source. If the edit is valid, then
the container calls getCellEditorValue() on the editor to retrieve the new value
of the cell and send it to the data source.

■ If the user types a key that the editor interprets as “done” (for example, Enter),
the editor will inform the table that the edit is complete by sending an
editingStopped event to the table. Typical editors will validate the user’s
changes before sending the event.

■ If the user types a key that the editor interprets as “cancel” (for example, Esc) the
editor will instruct the table to cancel the edit by sending an editingCanceled
event.

Because cell editing has been designed to be flexible, you can have as little or as
much control over the editing process as you want. The following sections explain
cell editing in further detail.

5.4.1 Default Cell Editors

Cell editors are typically AWT or Swing components with extended functionality
provided by the jclass.cell.CellEditor interface. Although every data object is
guaranteed to have a cell renderer, not every object is guaranteed to have an editor.
Unless an object has an editor, the cell is not editable, regardless of whether the
table.setEditable() method has a true value for that cell. Most of the standard
data types have default editors which are internally associated with that data type. If
the program does not specify an editor for a series or map a data type to an editor,
the Table uses the default. The following editors are provided in the
jclass.cell.editors package:

Editor Description

BaseCellEditor Provides a base editing component for other editors.

BigDecimalCellEditor An editor using a simple text field for BigDecimal objects.

100 Part I ■ Using JClass LiveTable

In addition, the jclass.table3 package contains the following cell editors:

BooleanCellEditor Provides a simple text editing component that allows the
user to set the boolean value as either ’true’, ’false’, ’t’ or ’f’.

ButtonCellEditor A featherweight editor that generates action events.

ByteCellEditor An editor using a simple text field for Byte objects.

CheckboxCellEditor A featherweight editor for CheckboxCellData that
automatically changes the checked state.

ChoiceCellEditor An editor using a simple Choice component for
ChoiceCellData.

DateCellEditor An editor using a simple text field for Date objects

DoubleCellEditor An editor using a simple text field for Double objects.

FeatherweightCellEditor A convenience class for featherweight editors. A
featherweight editor is an editor that has no component,
does no event processing, and typically completes the edit
operation during initialize(). An example is
CheckboxCellEditor

FloatCellEditor An editor using a simple text field for Float objects.

ImageCellEditor An editor using a simple text field for Image objects.

IntegerCellEditor An editor using a simple text field for Integer objects.

LongCellEditor An editor using a simple text field for Long objects.

MultilineCellEditor A simple text editing component for multiline data.

ShortCellEditor An editor using a simple text field for Short objects.

SQLDateCellEditor An editor using a simple text field for SQL Date objects.

SQLTimeCellEditor An editor using a simple text field for SQL Time objects.

SQLTimestampCellEditor An editor using a simple text field for SQL Timestamp
objects.

StringCellEdtitor Provides a simple text editing component.

WordWrapCellEditor Provides a simple text editing component that wraps text.

Editor Description

TextCellEditor An editor that extends the basic functionality of
StringCellEditor by converting keys based on
table.getStringCase and handles the
table.MaxLength property.

JCStringCellEditor Provides an editor using a simple text field for JCString
objects (see Appendix D, JCString Properties for more
information about JCString objects).

Editor Description

Chapter 5 ■ Displaying and Editing Cells 101

While these classes provide editing capability for most data types, many real-world
situations require greater control over cell editing, editing components, and their
relationships to specific data types. The following sections explore how you can
more minutely control the cell editing mechanism in your programs.

5.4.2 Setting a Cell Editor for a Series

As mentioned above, JClass LiveTable contains logic that will map data types to
their default editors. If you want to override these defaults, you can set a specific
editor for a series of cells in your table by setting the CellEditor property for a
series:

table.setCellEditor(int row,
 int col,
 CellEditor editor);

Therefore, the following method:

table.setCellEditor(JCTblEnum.ALL, 3,
 new jclass.cell.editors.StringCellEditor());

would use the same CellEditor (the default String editor in the
jclass.cell.editors package) for all of the cells in the fourth column in the table.

5.4.3 Mapping a Data Type to a Cell Editor

Even though you can set the editor series, your table may be designed in such a way
that the data types within a row or column are not consistent, or will change
depending on the data source. In this case you can create a mapping. The mapping
takes a data type and associates it with a cell editor; whenever the container
encounters that type of data, it uses the mapped CellEditor.

Mapping a CellEditor object to a data type takes the following construction:

table.setCellEditor(Class cellType, Class Editor);

Normally, you would use these mappings in a construction that would test for the
presence of the editor you specify, and throw an exception if the class was not found
as in the following sample from TriangleTest.java in the examples\chapter5 directory of
the JClass LiveTable distribution:

try {
 table.setCellEditor(Class.forName("java.awt.Polygon"),
 Class.forName
 ("jclass.table3.examples.chapter5.TriangleCellEditor"));
}
catch (ClassNotFoundException e) {
 e.printStackTrace(System.out);
}

The table.setCellEditor() method takes a class to define the data type and a
class to define the editor. In the case above, we have created a class called
TriangleCellEditor, which is identified using the Class.forName() method
imported from java.lang.Class. (Creating your own cell editors is explained in the
next section).

102 Part I ■ Using JClass LiveTable

To “unmap” an editor, set the editor class parameter to null.

5.4.4 Creating Your Own Cell Editors

To create a CellEditor object, you must implement the jclass.cell.CellEditor
interface. The following code comprises the CellEditor interface:

import java.awt.Component;
import java.awt.Dimension;

public interface CellEditor extends CellEditorEventSource {
public void initialize(InitialEvent ev, CellInfo info, Object o);
public Component getComponent();
public Object getCellEditorValue();
public boolean stopCellEditing();
public boolean isModified();
public void cancelCellEditing();
public Dimension getPreferredSize(CellInfo cellInfo, Object o);
public KeyModifier[] getReservedKeys();
}

Look at each of the methods in CellEditor:

Because the CellEditor interface extends CellEditorEventSource, the following
two methods are required to manage CellEditor event listeners:

Method Description

public void initialize(InitialEvent ev,
 CellInfo info, Object o);

The table calls initialize() before the edit starts to let the editor
know what kind of event started the edit, using the
jclass.cell.InitialEvent object. The size of the cell comes from
the CellInfo interface (detailed below). The initialize() method
also provides the data object.

public Component getComponent(); Returns the AWT component that does the editing.

public Object getCellEditorValue(); Returns the value contained in the editor. This method is called by the
table when the edit is complete. The value will be sent to the data
source.

public boolean stopCellEditing(); When this method is called by the table, the editor can refuse to
commit invalid values by returning false. This tells Table that editing is
not complete.

public boolean isModified(); Table uses this method to check whether the data has changed. This
can save unnecessary access to the data source when the data has
not actually changed.

public void cancelCellEditing(); Called by the table to stop editing and restore the cell’s original
contents.

Method Description

public abstract void
 addCellEditorListener(CellEditorListener l);

Adds a listener to the list that's notified when the editor starts,
stops, or cancels editing.

Chapter 5 ■ Displaying and Editing Cells 103

In addition to implementing the methods of CellEditor, an editor is responsible for
monitoring events and sending editingStopped and editingCanceled events to the
table. This functionality is further explained in Section 5.4.4, Creating Your Own
Cell Editors.

Subclassing the Default Editors
One easy way to create your own editor is to subclass one of the editors provided in
the jclass.cell.editors package. The following code is from
examples\chapter5\MoneyCellEditor.java. It creates a simple editor that extends the
jclass.cell.editors.StringCellEditor class. The MoneyCellEditor class formats
the data as money (two digits to the right of the decimal point) instead of a raw string;
but StringCellEditor does most of the work.

The initialize() method in MoneyCellEditor takes the object passed in and
creates a Money value for it. The getCellEditorValue() method will pass the
Money value back to the container.

import java.awt.TextField;
import java.awt.Dimension;
import jclass.cell.editors.StringCellEditor;
import jclass.cell.CellInfo;
import jclass.cell.InitialEvent;
import java.awt.Component;
import java.awt.Event;

public class MoneyCellEditor extends StringCellEditor {

Money initial = null;

public void initialize(InitialEvent ev, CellInfo info, Object o) {
 if (o instanceof Money) {
 Money data = (Money)o;
 initial = new Money(data.dollars, data.cents);
 }
 super.initialize(ev, info, initial.dollars+"."+initial.cents);

}

public Object getCellEditorValue() {
 int d, c;
 String text = getText().trim();
 Money new_data = new Money(initial.dollars, initial.cents);

public abstract void
 removeCellEditorListener(CellEditorListener l);

Removes the above listener.

public KeyModifier[] getReservedKeys(); Retrieves the keys the editor would like to reserve for itself. In
order to avoid the container overriding key processing in the
editor, the editor can pass back a list of keys it wishes to reserve.
The container can refuse the editor’s request to reserve keys.
Most editors can simply return null for this method.

Method Description

104 Part I ■ Using JClass LiveTable

 try {
 // one of these will probably throw an exception if
 // the number format is wrong
 d = Integer.parseInt(text.substring(0,text.indexOf(’.’)));
 c = Integer.parseInt(text.substring(text.indexOf(’.’)+1));

 new_data.setDollars(d);
 // this will throw an exception if there’s an invalid
 // number of cents
 new_data.setCents(c);
 }
 catch(Exception e) {
 return null;
 }

 return new_data;
}

public boolean isModified() {
 if (initial == null) return false;
 Money nv = (Money)getCellEditorValue();
 if (nv == null) return false;
 return (initial.dollars != nv.dollars || initial.cents !=
 nv.cents);
}
}

Starting with one of the CellEditors provided with the jclass.cell.editors
package can save you a lot of work coding entire editors on your own.

Writing your own Editors
Of course, you may be a bit of a maverick, and not want to subclass any of the
editors provided with the jclass.cell.editors package. The following is from an
editor that was written without subclassing an existing editor. By implementing the
CellEditor interface, we have written an editor that will edit triangles. The code is
in examples\chapter5\TriangleCellEditor.java. You can see it work by running
jclass.table3.examples.chapter5.TriangleTest.

Note that the example code in this manual is for JDK 1.1.x versions of the program.
The example code in the examples directory will be specific to the version of the JDK
that your distribution supports.

The editor handles both Integer and Polygon data types. It initializes the editor with
the object to be edited, either a Number or a Polygon:

Chapter 5 ■ Displaying and Editing Cells 105

....

public void initialize(InitialEvent ev, CellInfo info, Object o) {
 if (o instanceof Polygon) {
 orig_poly = (Polygon)o;
 }
 else if (o instanceof Number) {
 // Create polygon from the number
 int s = ((Number)o).intValue();
 orig_poly = new Polygon();
 orig_poly.addPoint(0,0);
 orig_poly.addPoint(0,s);
 orig_poly.addPoint(s,0);
 }

 new_poly = null;

 margin = info.getMarginSize();
}

The editor also needs to retrieve the AWT component that will be associated with it.
In this case the editor is an awt.Canvas object.

....
public Component getComponent() {
 return this;
}

The next CellEditor methods called are isModified(), which checks to see if the
editor has changed the data, and getCellEditorValue() which returns the new
Polygon created.

....
public boolean isModified() {
 return new_poly != null;
}

public Object getCellEditorValue() {
 return new_poly;
}

The CellEditor interface defines the stopCellEditing() method, which stops and
commits the editing operation. In the case of this example, there isn’t any validation
taking place, so the stopCellEditing() method will be unconditionally obeyed. The
TriangleCellEditor also defines a cancelCellEditing() method, which resets the
new Polygon.

....
public boolean stopCellEditing() {
 return true;
}

public void cancelCellEditing() {
 new_poly = null;
 return;
}

106 Part I ■ Using JClass LiveTable

The editor contains a local method for retrieving a non-null polygon for drawing:

....
private Polygon getDrawPoly() {
 if (new_poly == null)
 return orig_poly;
 return new_poly;
}

The editor also has to determine the minimum size for the cell, and its own preferred
size by looking at the object it’s editing.

....
public Dimension minimumSize() {
 Rectangle r = getDrawPoly().getBoundingBox();
 return new Dimension(r.width+r.x,r.height+r.y);
}

public Dimension getPreferredSize(CellInfo cellInfo, Object o) {
 if (o != null && o instanceof Polygon) {
 Polygon p = (Polygon) o;
 Rectangle r = p.getBoundingBox();
 return new Dimension(r.x+r.width,r.y+r.height);
 }
 return minimumSize();

}

Finally, the editor needs to know how to paint the current polygon into the cell:

....
public void paint(Graphics gc) {
 int x, y;

 Polygon local_poly = getDrawPoly();
 gc.translate(margin.left, margin.top);
 gc.fillPolygon(local_poly);

 for(int i = 0; i < local_poly.npoints; i++) {
 x = local_poly.xpoints[i];
 y = local_poly.ypoints[i];
 gc.drawOval(x-2,y-2,4,4);
 }

 gc.translate(-margin.left, -margin.top);
}

int dragging_point = -1;
boolean dragging_whole = false;
int last_x, last_y;

int dist(int x1, int y1, int x2, int y2) {
 return (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1);
}

Much of the rest of the editor handles mouse events to drag the triangle points, or to
move the whole triangle inside the cell. See the example file for this code.

Chapter 5 ■ Displaying and Editing Cells 107

Finally, the editor contains event listener methods that add and remove listeners
from the listener list. These listeners are notified when the editor starts, stops, or
cancels an edit.

CellEditorSupport support = new CellEditorSupport();
....
public void addCellEditorListener(CellEditorListener l) {
 support.addCellEditorListener(l);
}

public void removeCellEditorListener(CellEditorListener l) {
 support.removeCellEditorListener(l);
}

Note that an instance of jclass.cell.CellEditorSupport is used to manage the
listener list. The CellEditorSupport class is a useful convenience method for editors
that want to send events to JClass LiveTable programs.

The TriangleCellEditor is an example of a fairly complex implementation of the
CellEditor interface. It contains all of the core methods of the interface, and extends
the capabilities for an interesting type of data. You can use this example to help you
to write your own CellEditor classes that handle any type of data you care to
display and edit.

Handling Editor Events
The jclass.cell package contains several event and listener classes that enable cell
editors and their containers to inform each other of changes to the cell contents, and
allow you to control validation of the cell’s edited contents.

The simplest way to handle CellEditor events is to use the CellEditorSupport
convenience class. CellEditorSupport makes it easy for cell editors to implement
standard editor event handling by registering event listeners and providing easy
methods for sending events.

CellEditorSupport methods include:

For example, consider the TriangleCellEditor. The changes made are not actually
sent to the data source until the user clicks on another cell. It is more useful to have
the editor send an editingStopped event when the mouse button is released:

public void mouseReleased(MouseEvent e) {
 support.fireStopEditing(new CellEditorEvent(e));
}

Method Description

addCellEditorListener() Adds a new CellEditorListener to the listener list

removeCellEditorListener() Removes a CellEditorListener from the list

fireStopEditing() Sends an EditingStopped event to all listeners

fireCancelEditing() Sends an EditingCanceled event to all listeners

108 Part I ■ Using JClass LiveTable

For more complete control, however, you will have to use the other event handling
classes provided in the jclass.cell package:

Editor Key Control
Sometimes, you may want your cell editor to be able to accept keystrokes that have
already been reserved for a specific purpose in the container (a Tab key in
LiveTable, for example). To do this, you need to use the KeyModifier class to reserve
a key/modifier combination.

import java.awt.Event;
public class KeyModifier {
public int key;
public int modifier;
public static final int ALL = 1 << 4;
public KeyModifier(int key, int modifier) {
 this.key = key;
 this.modifier = modifier;
}

public KeyModifier(int key) {
 this.key = key;
 this.modifier = ALL;
}

public boolean match(int key, int modifier) {
 // Keys don’t match
 if (this.key != key) return false;

 // Keys don’t match, all modifiers accepted
 if (this.modifier == ALL) return true;

 // Modifiers match exactly
 if (this.modifier == modifier) return true;

Method Description

InitialEvent Tells the CellEditor what event started the edit
(usually a mouse click or key press). This is useful if the
event affects the edit. For example,
StringCellEditor will pass the key into the
TextField.

CellEditorEvent Sent when the CellEditor finishes an operation. The
CellEditorEvent contains the event that originated
the operation in the editor.

CellEditorListener The container registers a CellEditorListener to
let the CellEditor inform it when editing has stopped
or been canceled.

CellEditorEventSource This class defines the add and remove methods for an
object that posts CellEditorEvents.

Chapter 5 ■ Displaying and Editing Cells 109

 // Modifiers don’t match exactly, and ALL not specified.
 return false;
}
}

Using this class, you can reserve a key for a particular modifier or for all modifiers.
To reserve Ctrl-Tab and Shift-Tab you would specify two KeyModifier objects with
standard KeyEvent modifiers, for example KeyEvent.ALT_MASK.

If you want to reserve all Tab keys for the editor, you can use either of the following:

new KeyModifier(KeyEvent.VK_TAB, KeyModifier.ALL);

new KeyModifier(KeyEvent.VK_TAB);

When you call getReservedKeys() in your CellEditor, the editor will return the
values set in the KeyModifier object. Note that the container can still choose to
ignore reserved keys.

5.5 The CellInfo Interface

You can see that CellRenderer and CellEditor use the CellInfo interface to get
information about the cell. The CellInfo interface provides information about how
the container wants to show the cell. The renderer and editor determine whether or
not to honor the container’s request.

The CellInfo interface gives the renderer and editor access to cell formatting
information from the Table, including:

■ foreground color

■ background color

■ selected foreground color

■ selected background color

■ font

■ font metrics

■ horizontal and vertical alignment

This information is fairly generic. The jclass.table3 package also contains an
object called TableCellInfo, which extends CellInfo to include more detailed
information from the Table. TableCellInfo is useful for retrieving Table-specific
information for use in the editor or renderer. For example, TextCellRenderer uses
TableCellInfo to access the MaxLength and StringCase series.

Note that editors and renderers that rely on jclass.table3.TableCellInfo can
only be used with JClass LiveTable.

110 Part I ■ Using JClass LiveTable

Figure 32 The relationship of border sides, margins, and drawing
area provided by CellInfo

The following code comprises the jclass.cell.CellInfo interface:

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Font;
import java.awt.FontMetrics;
import java.awt.Insets;

public interface CellInfo {
public Color getBackground();
public Color getForeground();
public Color getSelectedBackground();
public Color getSelectedForeground();
public Font getFont();
public FontMetrics getFontMetrics();
public int getHorizontalAlignment();
public int getVerticalAlignment();
public Insets getMarginInsets();
public Insets getBorderInsets();
public int getBorderStyle();
public Rectangle getDrawingArea();
public boolean isEditable();
public boolean isEnabled();
public static final int LEFT = 0;
public static final int CENTER = 1;
public static final int RIGHT= 2;
public static final int TOP= 0;
public static final int BOTTOM = 2;
public boolean getSelectAll();
public int getClipHints();
public class getDataType();
}

111

6
Programming User Interactivity

Cell Traversal ■ Cell Selection

Resizing Rows and Columns ■ Table Scrolling ■ Dragging Rows and Columns
Sorting Columns ■ Custom Mouse Pointers

JClass LiveTable makes it easy to allow users to interact with the tables you create.
You can control how users can manipulate the table, and how a JClass LiveTable
application can control this interaction. The following sections describe the types of
user interactivity supported by JClass LiveTable, its default behavior, and how to
customize that behavior. Note that programming cell editing behavior is discussed
separately in Chapter 5, Displaying and Editing Cells.

6.1 Cell Traversal

Traversal is the act of moving the current cell from one location to another. The
Traversable property performs interactive cell traversal. A traversal passes through
three stages: validating the edited current cell, determining the new current cell
location, and entering that cell.

6.1.1 Default Cell Traversal

Users can traverse cells by clicking the primary mouse button when the mouse
pointer is over a cell. This changes the focus to that cell (a focus rectangle appears
around the inside of the cell borders). Users can traverse cells from the keyboard by
using the cursor keys (up, down, left, and right) and the Tab key to traverse right and
Shift+Tab key to traverse left.

6.1.2 Focus Rectangle Color

You can change the color of the focus rectangle using the setFocusRectColor()
method:

setFocusRectColor(Color.blue);

112 Part I ■ Using JClass LiveTable

6.1.3 Customizing Cell Traversal

By default, all cells are traversable. To prevent users from traversing to a cell, set
Traversable to false. Making a cell non-traversable also prevents it from being
traversed to programmatically.

Disabling traversal also disables cell editability regardless of whether the cell’s data
source is editable.

The following code fragment sets all cells in row 3 to be non-traversable:

table.setTraversable(3, JCTblEnum.ALLCELLS, false);
table.addTraverseCellListener(this);

You can also set the Traversable property for a range of cells specified by a
JCCellRange object:

JCCellRange range = new JCCellRange(2, 3, 2, 8);
table.setTraversable(range, false);

Use the setTraverseCycle() method to determine whether the traversal moves to
the opposite side when the left, top, right or bottom cell is reached (that is, when the
user traverses to the bottom of the table, the next traversal down will bring them to
the top of the table). The TraverseCycle property takes a boolean value. The default
is true.

6.1.4 Minimum Cell Visibility

By default, when a user traverses to a cell that is not currently visible, JClass
LiveTable scrolls the table to display the entire cell.

The setMinCellVisibility() method sets the minimum amount of a cell made
visible when it is traversed to. When the table scrolls to edit a non-visible cell, the
MinCellVisibility property determines the percentage of the cell that is scrolled
into view. When MinCellVisibility is set to 100, the entire cell is made visible.
When MinCellVisibility is set to 10, only 10% of the cell is made visible. If
MinCellVisibility is set to 0, the table will not scroll to reveal the cell.

The value of the MinCellVisibility property also affects the behavior of the
makeVisible() methods described in Section 6.4.5, Managing Table Scrolling.

6.1.5 Forcing Traversal

An application can force the current cell to traverse to a particular cell by calling
Traverse(). If the cell is non-traversable (specified by Traversable), this method
returns false.

6.1.6 Controlling Interactive Traversal

You can use TRAVERSE_CELL, the ID variable of JCTraverseCellEvent to control
interactive traversal. As a user traverses from one cell to another, this event is posted
after a user has committed a cell edit, and before moving the Text component to the
next cell. Each event listener is passed an object of type JCTraverseCellEvent.

Chapter 6 ■ Programming User Interactivity 113

JCTraverseCellEvent uses the getParam() method to retrieve information on the
direction of the traversal. getParam() retrieves one of the following strings indicating
the direction of traversal:

■ POINTER - Traverse to the cell user clicked on

■ LEFT - Traverse left to first traversable cell

■ RIGHT - Traverse right to first traversable cell

■ UP - Traverse up to first traversable cell

■ DOWN - Traverse down to first traversable cell

■ null - Initiated programmatically by call to table.traverse.

In addition to Param, there are several other properties available to
JCResizeCellEvent. The getColumn() and getRow() methods get the column and
row of the current cell respectively. Finally, the NextColumn and NextRow properties
respectively set or retrieve the column and row of the cell to traverse to.

The TRAVERSE_CELL action attempts to traverse to the cell specified by these
members. Note that if NextColumn and NextRow reference a non-traversable cell, the
traversal attempt will be unsuccessful. The following example code prevents the user
from traversing outside of column 0:

public void traverseCell(JCTraverseCellEvent ev) {
 if (ev.getNextColumn() > 0) {
 if (ev.getRow() >= table.getNumRows())
 ev.setNextRow(0);
 else
 ev.setNextRow(ev.getRow() + 1);
 ev.setNextColumn(0);
}
}

6.2 Cell Selection

6.2.1 Default Cell Selection
Cell selection is not enabled by default. When cell selection is enabled (see
Customizing Cell Selection), the default selection behavior is as follows:

■ Clicking on a cell, holding the mouse button down, and dragging selects those
cells.

■ Clicking over a label selects all the cells in the column or row.

■ Holding down the Shift key while clicking and dragging modifies the selection
(that is, it does not clear the previous selection).

■ Holding down the Ctrl key and making a sequence of selections adds the
selections together.

114 Part I ■ Using JClass LiveTable

■ Clicking in a cell, traversing out of the cell, then traversing back to the clicked
cell selects the cell without editing it.

JClass LiveTable allows a user to interactively select one or more ranges of cells. An
application can retrieve each range to manipulate the cells within it. An application
can also be notified of each user selection to control what and how the user selects
cells.

JClass LiveTable supports a number of selection policies, including:

■ JCTblEnum.SELECT_MULTIRANGE: multirange selection (selecting multiple ranges
of cells)

■ JCTblEnum.SELECT_RANGE: single range

■ JCTblEnum.SELECT_SINGLE: single cell

■ JCTblEnum.SELECT_NONE: no selection.

6.2.2 Customizing Cell Selection

The SelectionPolicy property controls the amount of selection allowed on the
table, both by end-users and by the application. Changing the selection policy affects
subsequent selection attempts; it does not affect current selections. The following
illustration shows the valid values, and the amount of selection they allow.

Figure 33 Selection policies

When SelectionPolicy is set to JCTblEnum.SELECT_NONE (default), JCSelectEvent
events are not posted as a user edits or attempts to select cells. Note that setting this
property does not change the selected cell list.

Chapter 6 ■ Programming User Interactivity 115

Setting the Selection Mode
In some cases, you may want to further control selection by specifying that selection
occurs only for rows or columns. To do this, set the SelectionMode property. The
setSelectionMode() method can take one of the following values:

■ JCTblEnum.SELECT_BY_CELL (default)
■ JCTblEnum.SELECT_BY_ROW

■ JCTblEnum.SELECT_BY_COLUMN

Selecting Row/Column Labels
By default, when a user clicks on a row or column label, the entire row or column,
including the label is highlighted. To change it so that the label is not highlighted
with the rest of the cells, set SelectIncludeLabels to false:

table.setSelectIncludeLabels(false);

6.2.3 Selected Cell List

The SelectedCells property specifies the list of all currently selected ranges in the
table, where each element of the vector is an instance of a JCCellRange.
SelectedCells is updated dynamically as a user selects cells. It is also updated when
an application programmatically selects or deselects cells. Labels cannot be part of a
selected range.1

Each range in the selected cell list is a JCCellRange structure. Its variables include:

■ start_column

■ start_row

■ end_column

■ end_row

The start_column variable is the column of the first cell in range (top-left corner),
while start_row is the first cell in range (top-left corner). The end_column variable is
the column of the last cell in a range (top-left corner), and end_row is the row of the
last cell in range (bottom-right corner).

All members of the JCCellRange structure can be a row and column index. end_row
and end_column can also be set to MAXINT, which specifies all of the cells in a row or
column. Because the user can make a selection at any point and in any direction
within a table, the start point is not necessarily the top-left corner of the range—it may
be any of the four corners of a range.

The following example sets two selected ranges:

table.setSelectionPolicy(JCTblEnum.SELECT_MULTIRANGE);
JCCellRange ranges[] = new JCCellRange[2];
ranges[0] = new JCCellRange(0, 0, 4, 2);
ranges[1] = new JCCellRange(7, 1, 7, 4);
Vector v = new Vector(ranges);
table.setSelectedCells(v);

1. Clicking on a label selects all of the cells in the row or column, including the label.

116 Part I ■ Using JClass LiveTable

6.2.4 Selection Colors

The background/foreground colors used for selected cells are specified by
SelectedBackground and SelectedForeground. By default, selected cells are
displayed in reverse video (i.e., the normal background and foreground color values
have been swapped). The current cell displays the selection colors in its border.

To reset the SelectedForeground and SelectedBackground properties to their
default, reverse video mode, set them to a null value.

6.2.5 Working with Selected Ranges

To get a selected range, allocate a JCCellRange structure and call
getSelectedRange(). This method has the following prototype:

public boolean getSelectedRange(int pos, JCCellRange range)

SelectedRange retrieves a currently-selected range from the SelectedCellList, and
it can take the following parameters:

■ pos - the position within the selected cell list

■ range - the returned range

range is rationalized to read from top to bottom and from left to right, and special
values such as MAXINT are converted to valid range values. SelectedRange returns
false if no cells are selected, or if any argument is invalid.

The following example gets each selected range (assuming that selection policy is
JCTblEnum.SELECT_MULTIRANGE):

int i = 0;
JCCellRange r = new JCCellRange();
while (table.getSelectedRange(i++, r)) {
 System.out.println("Range " + i + " is
 (" + r.start_row + "," + r.start_column + ") to
 (" + r.end_row + "," + r.end_column + ")");
}

To determine whether a particular cell is selected, and retrieve the range if it is, call
getSelectedCells(). This method has the following prototype:

public Vector getSelectedCells()

Each element of the Vector is an instance of a JCCellRange. This value is updated
dynamically as a user selects cells. The selection policy controls the amount of
selection allowed on the table, both by users and by the application. Users can select
in any direction, so start_row and/or start_column may be greater than end_row
and/or end_column. When a user clicks a row/column label to select an entire row or
column, end_row or end_column is set to MAXINT.

Chapter 6 ■ Programming User Interactivity 117

6.2.6 Forcing Selection

An application can add a selection to the selected cell list by adding the new range to
the SelectedCells Vector, as shown by the following code fragment:

 JCCellRange nr = new JCCellRange(8, 1, 8, 4);
 Vector ve = table.getSelectedCells();
 ve.addElement(nr);
 table.setSelectedCells(ve);

6.2.7 Removing Selections

To remove all selections from the table, call setSelectedCells(null).

6.2.8 Selection in List Mode

To select an entire row or column, set the Row or Column properties of JCSelectEvent
to JCTblEnum.ALL. Note that you cannot set a RowLabel or ColumnLabel in this
manner. JClass LiveTable allows you to specify that a table displays the entire row as
selected when a user clicks on a cell. To do this, set the setMode() property to
JCTblEnum.MODE_LIST (see Preset Table Styles, in Chapter 3). When a table is in list
display mode, an entire row is selected when a cell is selected. The SelectionPolicy
value controls whether users are allowed to select single rows, a range of rows, or
multiple ranges of rows.

The default setting for the Mode property is JCTblEnum.MODE_TABLE.

6.2.9 Runtime Selection Control

You can use JCSelectListener (registered with
addSelectListener(JCSelectListener)) to control interactive cell selection at each
stage, on a case-by-case basis. JCSelectEvent has a number of methods and
properties, enabling the programmer to modify the JCSelectEvent. One of these,
getParam(), is used to retrieve information on the initiating action. The getParam()
method retrieves one of the following strings to determine how the cell was selected
(if no selection is possible on a label):

■ START - select the cell if SelectionPolicy is not SELECT_NONE

■ CURRENT - select the current cell if SelectionPolicy is not SELECT_NONE

■ EXTEND - extend the selected region to include cell if SelectionPolicy is
SELECT_RANGE or SELECT_MULTIRANGE

■ ADD - select the cell if SelectionPolicy is to SELECT_MULTIRANGE

■ CANCEL - cancels the current selection

■ END - finish a selection.

The getAllowSelection() method determines whether the selection (or unselection)
should be allowed (default: true). The Row and Column properties set or retrieve the
respective value of the row or column being selected or unselected. The getEvent()
method gets the event that initiated the action. The getStage() method retrieves the

118 Part I ■ Using JClass LiveTable

selection stage (either INITIAL or EXTEND), while getStateChange() returns the state
change type generated by the event (either SELECTED or DESELECTED).

JCSelectListener is called before selection begins (selectBegin(JCSelectEvent)),
and after a selection has finished (selectEnd(JCSelectEvent)).

The following event listener routine constrains selection to the column where it
started:

public void selectBegin(JCSelectEvent ev) {
 if (ev.getStage() == JCSelectEvent.INITIAL) {
 save_column = ev.getColumn();
 }
 else if (ev.getStage() == JCSelectEvent.EXTEND) {
 if (ev.getColumn() != save_column)
 ev.setAllowSelection(false);
 }
}
public void selectEnd(JCSelectEvent ev) {}

6.3 Resizing Rows and Columns

6.3.1 Default Resizing Behavior

Users can position the mouse pointer over a cell/label border and click-and-drag to
resize the row/column. If users position the mouse pointer over the corner of a
cell/label, the mouse drag will resize the row and column simultaneously.

JClass LiveTable allows a user to interactively resize a row and/or column (when
allowed by AllowCellResize). This action routine alters the PixelHeight property
when resizing rows, and the PixelWidth property when resizing columns. Users
cannot resize rows or columns to smaller than 5 pixels.

6.3.2 Disallowing Cell Resizing

Use the setAllowCellResize() method to control interactive row/column resizing
over the entire table. The valid parameters of the AllowCellResize property are:

■ JCTblEnum.RESIZE_ALL: user resizing of cell permitted (default)

■ JCTblEnum.RESIZE_NONE: no row/column resizing is allowed

■ JCTblEnum.RESIZE_COLUMN: only columns may be resized

■ JCTblEnum.RESIZE_ROW: only rows may be resized

Chapter 6 ■ Programming User Interactivity 119

6.3.3 Controlling Resizing

You can use a JCResizeCellListener (registered with
addResizeCellListener(JCResizeCellListener)) to control interactive
row/column resizing on a case-by-case basis. JCResizeCellEvent is the event posted
as a user resizes a row and/or column.

JCResizeCellEvent uses the method getParam(), which retrieves the interactive
resize stage. The getParam() method retrieves one of the following string values:

■ START - begins interactive resize

■ MOVE - select new height/width

■ END - finish resize selection

■ CANCEL - cancels the current resize.

In addition to getParam(), there are other methods/properties available to
JCResizeCellEvent. The AllowResize property determines whether an interactive
resize is allowed (default: true).

The getColumn() method gets the column being resized. The
getCurrentColumnWidth() and getCurrentRowHeight() methods get the current
column width and the current row height respectively. The NewColumnWidth and
NewRowHeight properties can set and retrieve information on the new column width
and the new row height respectively.

As a cell is resized by the user, a JCResizeCellEvent is triggered,
resizeCellBegin(JCResizeCellEvent) is sent the initial values (as specified by
getCurrentColumnWidth() and getCurrentColumnHeight()). When the user
commits the change by releasing the mouse button, the end value from
resizeCellEnd(JCResizeCellEvent) is sent to setNewColumnWidth() and
setNewRowHeight().

The following example event listener routine sets the width of any resized column to
an increment of 10 pixels:

public class MyTable extends Frame implements JCResizeCellListener {
...
public void resizeCellBegin(JCResizeCellEvent ev) {}
public void resizeCellEnd(JCResizeCellEvent ev) {
 ev.setNewColumnWidth(ev.getNewColumnWidth() / 10 * 10);
}

To register the above event listener routine, use the following call (where this refers
to the class MyTable, which implements the JCResizeCellListener interface):

table.addResizeCellListener(this);

Resizing all Rows or Columns at Once
You can configure your JClass LiveTable program so that when a user interactively
resizes a row or column, all of the other rows or columns in the table resize to the
same value. This is achieved by setting the ResizeEven property to true using the
following method:

table.setResizeEven(true);

120 Part I ■ Using JClass LiveTable

Setting this property overrides row and column height and width properties, since
the rows and columns are all set to the same value as the row and column the user
resized.

Resizing Using Only Labels
As you’ve seen above, you can control how users can resize cells, rows, columns, and
labels. JClass LiveTable also allows you to set the resizing capability so that users can
only resize rows and/or columns using the row and column labels.

The setResizeByLabelsOnly() method requires a boolean value (default is false).
If set to true, users can resize rows and columns only by dragging on the borders
between row and column labels. The mouse pointer will not change to a resize arrow
over cell borders in the body of the table.

6.4 Table Scrolling

6.4.1 Default Scrolling Behavior
By default, users can scroll through the table using scrollbars and the mouse, or by
using arrow/page keys.

When a table is larger than the rows/columns visible on the screen, an end-user can
scroll through the table with the mouse or keyboard. JClass LiveTable uses two
scrollbar components (one horizontal, one vertical) to implement table scrolling.

JClass LiveTable can also scroll the table when requested by other interactions, such
as cell traversal, mouse dragging, or cell selection. Scrolling does not change the
location of the current cell.

You can control how and where scrollbars are attached to the component, when they
are displayed, and how they behave. The following sections outline this control in
detail.

6.4.2 Specifying your own Scrollbars

Using a Different Scrollbar Component
You may want to use a scrollbar component other than the default provided with
JClass LiveTable. To do this, use the setVertSB() and setHorizSB() methods.

Any scrollbar component you specify must implement JCAdjustable, as in the
following:

class MyScrollbar extends java.awt.Scrollbar implements JCAdjustable
{
public MyScrollbar() {
 super();
}
public MyScrollbar(int orientation) {
 super(orientation);
}

Chapter 6 ■ Programming User Interactivity 121

public MyScrollbar(int orientation, int value, int visible, int
minimum, int maximum) {
 super(orientation, value, visible, minimum, maximum);
}
}

Scrollbar Attributes
You can set or retrieve any of the properties of either scrollbar. The following code
gets the vertical scrollbar and sets its background color to red:

table.getVertSB().getComponent().setBackground(Color.red);

6.4.3 Attaching Scrollbars

The way scrollbars should be attached to the table depends on the style of table you
need for your application. Standard-style tables attach the scrollbars to the cell/label
area and move them to match changes to the size of the visible area. List-style tables
attach the scrollbars to the table component itself and do not move when the size of
the visible area changes—only changes in the component size cause the scrollbars to
move and change size (see Preset Table Styles, in Chapter 3 for more information
about table styles).

The HorizSBPosition property sets how the horizontal scrollbar is attached to the
table. Similarly, VertSBPosition sets how the vertical scrollbar is attached to the
table.

■ When set to JCTblEnum.SBPOSITION_CELLS (default), the scrollbar is attached to
the cell/label viewport (that is, the cells that are visible).

■ When set to JCTblEnum.SBPOSITION_SIDE, the scrollbar is attached to the side of
the table (that is, the whole of the table).

HorizSBAttachment sets how the end of the horizontal scrollbar is attached to the
table. When set to JCTblEnum.ATTACH_CELLS (default), the scrollbar ends at the edge
of the visible cells. When set to JCTblEnum.ATTACH_SIDE, the scrollbar ends at the
edge of the table.

To specify standard-style table scrollbars:

■ leave the position and attachment properties at their default values.

To specify List-style table scrollbars:

■ set the horizontal and vertical position properties to
JCTblEnum.SBPOSITION_SIDE

■ set the left, right, top, and bottom attachment properties to
JCTblEnum.ATTACH_SIDE

■ set HorizSBDisplay and VertSBDisplay to JCTblEnum.SBDISPLAY_ALWAYS

■ set HorizSBOffset and VertSBOffset to zero.

HorizSBOffset and VertSBOffset specify the offset between the scrollbars and the
table (default: 0 pixels). This offset usually applies to the space between the scrollbars
and the table’s cells/labels. However, when the scrollbars are attached to the side of
the component, it can also apply to the space between the scrollbars and the side of

122 Part I ■ Using JClass LiveTable

the component, and only when there is space between the last row/column and the
edge of the component.

6.4.4 Setting Scrollbar Display Options

By default, JClass LiveTable displays each scrollbar only when the table is larger than
the number of rows/columns visible on the screen. To display a scrollbar at all times,
set HorizSBDisplay and/or VertSBDisplay to JCTblEnum.SBDISPLAY_ALWAYS. Set
them to JCTblEnum.SBDISPLAY_NEVER to completely disable the scrollbar display1.

6.4.5 Managing Table Scrolling

Jump Scrolling
By using the JumpScroll property, you can control the scrolling behavior of each
scrollbar. Scrollbars can either scroll smoothly or “jump” scroll in whole row/column
increments. To enable jump scrolling, call the setJumpScroll() method with one of
the following parameters:

■ JCTblEnum.JUMP_VERTICAL (default), only the vertical scrollbar jump scrolls

■ JCTblEnum.JUMP_NONE, both scrollbars will scroll smoothly

■ JCTblEnum.JUMP_ALL, both scrollbars jump scroll

■ JCTblEnum.JUMP_HORIZONTAL, only the horizontal scrollbar jump scrolls

Using Automatic Scrolling
You can configure the table to scroll automatically whenever a user selects cells or
drags the mouse past the edge of the visible table area. To do this, you must call the
setAutoScroll() method, specifying one of the following parameters:

■ JCTblEnum.AUTO_SCROLL_NONE (default)
■ JCTblEnum.AUTO_SCROLL_ROW

■ JCTblEnum.AUTO_SCROLL_COLUMN

■ JCTblEnum.AUTO_SCROLL_BOTH

Note that automatic scrolling is disabled when no scrollbars are visible, and also
when jump scrolling is enabled.

Disabling Interactive Scrolling
Scrolling can be disabled in one or both directions. Mouse and keyboard scrolling
cannot be disabled separately.

Remove the scrollbars from the screen by setting set HorizSBDisplay and/or
VertSBDisplay to JCTblEnum.SBDISPLAY_NEVER.

To fully disable any and all scrolling, an application should also ensure that the user
cannot select cells or traverse to cells outside the visible area.

1. Although scrollbars are removed, a user can still scroll with the keyboard. See “Disabling Interactive Scrolling”
for complete information on disabling interactive scrolling.

Chapter 6 ■ Programming User Interactivity 123

Forcing Scrolling
An application can force the table to scroll in the following ways:

■ To scroll a particular row to the top of the display, set the TopRow property to the
number of the row you want to display at the top; for example, to display the
fifth row at the top of the table:
setTopRow(4)

■ To scroll a particular column to the left side of the display, set the LeftColumn
property to the column number you want to display; for example to display the
thirteenth column at the left of the table:
setLeftColumn(12)

■ To determine whether a row or column is visible, call the Table.isRowVisible()
or Table.isColumnVisible() methods. To check if a particular cell is visible,
use Table.isVisible().

■ To scroll to display a particular cell, call the makeVisible() method for that cell’s
context. For example makeVisible(4, 21). You can also call the
makeRowVisible() and makeColumnVisible() methods for entire rows and
columns.

6.4.6 Scroll Listener Methods

JClass LiveTable provides a way for your application to be notified when the table is
scrolled by either the end-user or the application. The JCScrollListener (registered
with addScrollListener(JCScrollListener)) allows you to define a procedure to
be called when the table scrolls; this is useful if your application is drawing into the
table. The method is sent an instance of JCScrollEvent.

The example below shows how to use the scrollBegin(JCScrollEvent) and
scrollEnd(JCScrollEvent) scrollbar interface methods to store an internal state:

public MyClass extends Frame implements JCScrollListener {
....
 public void scrollBegin(JCScrollEvent ev) {
 if (ev.getDirection() == TableScrollbar.HORIZONTAL)
 hScrollingActive = true;
 else if (ev.getDirection() == TableScrollbar.VERTICAL)
 vScrollingActive = true;
 }
public void scrollEnd(JCScrollEvent ev) {
 if (ev.getDirection() == TableScrollbar.HORIZONTAL)
 hScrollingActive = false;
 else if (ev.getDirection() == TableScrollbar.VERTICAL)
 vScrollingActive = false;
}

To register the above event listener routine, use the following call (where (this)
refers to the class MyClass, which implements the JCScrollListener interface):

table.addScrollListener(this);

124 Part I ■ Using JClass LiveTable

6.5 Dragging Rows and Columns

You can configure your JClass LiveTable program to allow users to drag rows and
columns to a new position in the table. This feature is implemented using the
RowTrigger and ColumnTrigger properties to specify a key-mouse-click combination
for dragging a row or column by its label. For example, you can specify that when a
user holds the Shift key and clicks on a row label, the user can drag that row to
another location in the table. When dragging is enabled, the mouse pointer turns
into a hand to indicate that the row or column can be dragged.

To enable users to drag rows and columns by holding down the Shift key and
clicking on the row or column label:

table.setColumnTrigger(Event.SHIFT_MASK,LabelTrigger.DRAG);
table.setRowTrigger(Event.SHIFT_MASK,LabelTrigger.DRAG);

Other key-click combinations are available:

■ CTRL_MASK

■ ALT_MASK

■ META_MASK

Under the JDK 1.1, you can also specify which mouse button to use in the trigger
method, using the following parameters:

■ InputEvent.BUTTON1_MASK

■ InputEvent.BUTTON2_MASK

■ InputEvent.BUTTON3_MASK

The following would enable row dragging on an Alt-right (secondary) mouse button
click combination under JDK 1.1:

table.setRowTrigger(InputEvent.BUTTON3_MASK,
 LabelTrigger.DRAG);

Dragging a row or column affects only the data view. It does not change the data
source.

6.6 Sorting Columns

You can easily program your JClass LiveTable applications and applets to allow users
to sort columns in the table. Sorting columns rearranges the rows in the table display,
but does not affect the data source of the table (this is true for the JClass LiveTable
transitional layer also). By default, sort behavior does not sort frozen rows set with
the setFrozenRows() method (see Specifying ‘Frozen’ Rows and Columns, in
Chapter 3).

The sortByColumn() method compares objects based on the type of data found in
the data source. As such, in some cases, sorting results may vary. For example, using
sortByColumn(0, Sort.ASCENDING), where the data used for column 1 are strings,
the string “14” will be considered greater than “110.” However, if these same
numerical values are represented as integers, 110 will be greater than 14.

Chapter 6 ■ Programming User Interactivity 125

Sorting a single column
To sort a single column in the data view, call the sortByColumn() method,
specifying the column number to sort, and the direction (Sort.ASCENDING or
Sort.DESCENDING):

sortByColumn(2, Sort.DESCENDING);

You can specify that only a particular range of rows is sorted using this variation on
the sortByColumn() method with the following construction:

table.sortByColumn(int col,
 int direction,
 int start_row,
 int end_row)

The following code sorts rows 2 to 18 in column 2 in descending order.

sortByColumn(2, Sort.DESCENDING, 2, 18);

Sorting Based on Multiple Columns
You can sort columns based on the values of cells in more than one column using the
following method construction:

table.sortByColumn(int col[],
 int direction[])

This method requires that you specify an array of columns on which to base the
sorting, and an array of directions in which to sort the columns.

When the sort begins, the rows are sorted based on the first column in the array. If
two or more rows contain the same value at the first column, the second column in
the array is used to sort the identical values. This process continues until there are no
duplicate values in a column, or until the end of the column array is reached.

Consider the following example:

To sort based on the cell values in columns 0, 1, and 3, use the following code:

int [] columns = {0, 1, 3};
int [] direction = {Sort.ASCENDING, Sort.ASCENDING, Sort.ASCENDING};
table.SortByColumn(columns, direction);

In this case, the sort is first based on the data in the rows in column 0. Since column
0 contains two cells with values ‘A’ (Rows 0 and 4), the sort moves to the next column
(1) in the array to determine how to sort the two ‘A’ rows. Row 0 at Column 1 has a

Column 0 Column 1 Column 2 Column 3

Row 0 A 20 Z 2

Row 1 G 7 A 4

Row 2 Z 8 B 5

Row 3 B 11 Z 4

Row 4 A 10 C 1

126 Part I ■ Using JClass LiveTable

value of 20 and Row 4 at Column 1 has a value of 10. Since these are sorted in
ascending order, the outcome of the sort is:

If there had been duplicate values in column 1, these would have been sorted based
on the values in the third column in the array (3).

You can also specify that the sorting operation affect a given range of rows using the
following method:

table.sortByColumn(int col[],
 int direction[],
 int start_row,
 int end_row)

To sort the example above from row 2 to row 4, use the following code:

int [] columns = {0, 1, 3};
int [] direction = {Sort.ASCENDING, Sort.ASCENDING, Sort.ASCENDING};
table.SortByColumn(columns, direction, 2, 4);

6.6.1 Sort by Clicking on a Column Label

With JClass LiveTable you can easily configure your table to sort columns based on a
key-mouse-click combination on the column’s label. For example, you can specify
that when a user holds the Ctrl key and clicks on the column label, that column gets
sorted in ascending order. This is done using the setColumnTrigger() method.

table.setColumnTrigger(Event.CTRL_MASK,LabelTrigger.SORT);

Other key-click combinations are available:

■ SHIFT_MASK

■ ALT_MASK

■ META_MASK

Under the JDK 1.1, you can also specify which mouse button to use in the trigger
method, using the following parameters:

■ InputEvent.BUTTON1_MASK

■ InputEvent.BUTTON2_MASK

■ InputEvent.BUTTON3_MASK

Column 0 Column 1 Column 2 Column 3

Row 4 A 10 C 1

Row 0 A 20 Z 2

Row 3 B 11 Z 4

Row 1 G 7 A 4

Row 2 Z 8 B 5

Chapter 6 ■ Programming User Interactivity 127

The following enables column sorting on an Alt-right (secondary) mouse button
click combination under JDK 1.1:

table.setColumnTrigger(InputEvent.BUTTON3_MASK, LabelTrigger.SORT);

Note: If the selection policy (see Customizing Cell Selection) is set to
JCTblEnum.SELECT_SINGLE or JCTblEnum.SELECT_MULTIRANGE, selected cells will
remain selected once the column is sorted.

6.6.2 Resetting the Table after Sorting

To clear all of the changes to the display resulting from column sorting, call the
resetSortedRows() method, which resets the display to match the data source.

6.7 Custom Mouse Pointers

When tracking the mouse pointer, JClass LiveTable considers the current settings of
the Traversable and AllowCellResize properties.

Disabling Pointer Tracking
To use an application-defined mouse pointer over the entire component, set
TrackCursor to false; JClass LiveTable will not track the position of the mouse over
the component. By default, TrackCursor is set to true.

Disabling JCString URL Tracking
JClass LiveTable detects JCString URLs when both the TrackCursor and
TrackJCStringURL properties are set to true. To disable this behavior, set
TrackJCStringURL to false. This can improve performance when the table is using
a data source that takes a long time to access, such as a database.

128 Part I ■ Using JClass LiveTable

129

7
Events and Listeners

Displaying Cells ■ Creating Components ■ Displaying Components

Entering Cells ■ Painting ■ Printing ■ Resizing
Scrolling ■ Sorting ■ Traversing

The following sections explain how to generate and receive events in your JClass
LiveTable programs.

The descriptions are listed in sets of events and event listeners, with examples of
when you would use the event and listener, and sample code.

In order to register an event listener in your program, it must implement the
listener’s interface.

7.1 Displaying Cells

JCCellDisplayEvent
This event will be posted when your program displays cell values in the table. When
you create a JCCellDisplayEvent object, you can call the following methods:

■ getCellData() retrieves the CellData object displayed by the table.

■ getRow() retrieves the row number of the cell or label displayed.

■ getColumn() retrieves the column number of the cell or label displayed.

■ setDisplayString() specifies a string to be displayed for the CellData object.

■ getDisplayString() retrieves the string displayed by the CellData object.

A request for display from Table generates a JCCellDisplayEvent and notifies any
JCCellDisplayListeners that they can customize the display string by calling
setDisplayString() on the event. The getDisplayString() method returns the
String as it will be displayed if setDisplayString() is not called.

130 Part I ■ Using JClass LiveTable

JCCellDisplayListener
To register table to receive JCCellDisplayEvent objects, use the following call
(where (this) refers to the class MyClass, which implements the
JCCellDisplayListener interface):

table.addCellDisplayListener(this);

JCCellDisplayListener requires the following method to be implemented:

public void cellDisplay(JCCellDisplayEvent e)

Using JCCellDisplay Events and Listeners
JCCellDisplayListener can be used to format the display string. Unlike the
JCLabelValueEvent and JCCellValueEvent of JClass LiveTable 2.x,
JCCellDisplayEvent does not provide any mechanism to store the displayed data in
the data source. The following example (see examples/chapter7/BooleanDisplay.java)
displays objects as yes/no. Setting the display string does not have any effect during
edit.

Figure 34 Using JCCellDisplayEvent to display BooleanCellData objects as yes/no strings

import jclass.table3.*;
import java.awt.*;
import java.awt.event.*;
import jclass.util.JCVector;

public BooleanDisplay() {
super("BooleanDisplay");
setBackground(Color.lightGray);

table = new Table();

evds = new EditableVectorDataSource();
evds.setNumRows(2);
evds.setNumColumns(2);

evds.setColumnLabel(0, "Original");
evds.setColumnLabel(1, "Formatted");

// BooleanCellEditor will be automatically chosen by Table
evds.setCell(0, 0, new Boolean(false));
evds.setCell(0, 1, new Boolean(false));
evds.setCell(1, 0, new Boolean(true));
evds.setCell(1, 1, new Boolean(true));

 table.setDataSource(evds);
 table.setMode(JCTblEnum.MODE_STYLEDTABLE);
 table.setRowLabelDisplay(false);

 add("Center", table);

Chapter 7 ■ Events and Listeners 131

 table.addCellDisplayListener(this);
 }

 public void cellDisplay(JCCellDisplayEvent e) {
 if(e.getColumn() == 1 && e.getRow() != JCTblEnum.LABEL) {
 if(e.getDisplayString().equalsIgnoreCase("true"))
 e.setDisplayString("yes");
 else
 e.setDisplayString("no");
 }
 }

 public boolean handleEvent(Event event) {
 if(event.id == Event.WINDOW_DESTROY) {
 hide();
 dispose();
 System.exit(0);
 }
 return super.handleEvent(event);
 }

 public static void main(String args[]) {
 BooleanDisplay f = new BooleanDisplay();
 f.pack();
 f.show();
 }

}

7.2 Creating Components

JCCreateComponentEvent
When components are added to a range of cells, table creates as many components
as required to fill the cells displayed on the screen. A JCCreateComponentEvent will
be generated by table whenever table requires more components than are currently
created. When you receive a JCCreateComponentEvent object, you can call the
following methods:

■ getRow() retrieves the row of the cell or label which will contain the
component.

■ getColumn() retrieves the column of the cell or label which will contain the
component.

■ getSourceComponent() retrieves the component being cloned.

■ setComponent() sets the component to be placed in the cell.

JCCreateComponentListener
To register table to receive JCCreateComponentEvent objects, use the following call
(where (this) refers to the class MyClass, which implements the
JCCreateComponentListener interface):

table.addCreateComponentListener(this);

132 Part I ■ Using JClass LiveTable

JCCreateComponentListener requires the following method to be implemented:

public void createComponent(JCCreateComponentEvent e)

Using JCCreateComponent Events and Listeners
When components are added to single cells, there is no need to register a
JCCreateComponentListener. However, when components are added to a range of
cells, table makes "clones" of the component on an as-needed basis. The
JCCreateComponentListener gives the developer the ability to control how those
components are created. If you add components to a range and do not specify a
JCCreateComponentListener, the table will attempt to generate “clones” by calling
newInstance() on the class of the original component.

The following example (see examples/chapter7/CreateComponent.java) creates new
Checkbox components in the createComponent() method. Because a
JCDisplayComponentListener is not registered in this example, the checkbox titles
reflect how table is conserving component creation.

As you scroll the display down, notice that the Checkbox components are reused by
the program:

JClass LiveTable will only generate a new JCCreateComponentEvent when the table
is resized and more rows are required. To synchronize the display of the component
with the actual cell in which the component appears, a
JCDisplayComponentListener must be registered.

The following code comprises the above example program.

import jclass.table3.*;
import java.awt.*;
import java.awt.event.*;
import jclass.util.JCVector;

Chapter 7 ■ Events and Listeners 133

public class CreateComponent extends Frame
implements JCCreateComponentListener {

 Table table;
 EditableVectorDataSource evds;
 TextArea ta;

 public CreateComponent() {
 super("CreateComponent");
 setBackground(Color.lightGray);

 table = new Table();
 evds = new EditableVectorDataSource();
 evds.setNumRows(10);
 evds.setNumColumns(2);

 for(int r = 0; r < evds.getNumRows(); r++) {
 evds.setCell(r, 0, new BooleanCellData(false));
 evds.setCell(r, 1, "R"+r+"C1");
 }
 table.setComponent(JCTblEnum.ALLCELLS, 0, new Checkbox());
 table.setDataSource(evds);
 table.setMode(JCTblEnum.MODE_STYLEDTABLE);
 table.setBackground(JCTblEnum.ALLCELLS, JCTblEnum.ALLCELLS,
 Color.lightGray);
 table.setRowLabelDisplay(false);

 add("West", table);
 ta = new TextArea();
 add(ta, "Center");
 table.addCreateComponentListener(this);
 }

 public void createComponent(JCCreateComponentEvent e) {
 if(e.getColumn() == 0) {
 ta.appendText("Creating component at row " + e.getRow() +

"\n");
 e.setComponent(new Checkbox("Row: " + e.getRow()));
 }
 }
 public boolean handleEvent(Event event) {
 if(event.id == Event.WINDOW_DESTROY) {
 hide();
 dispose();
 System.exit(0);
 }
 return super.handleEvent(event);
 }
 public static void main(String args[]) {
 CreateComponent f = new CreateComponent();
 f.resize(600,150);
 f.show();
 }
}

134 Part I ■ Using JClass LiveTable

7.3 Displaying Components

JCDisplayComponentEvent
When components are added to a range of cells, the table creates as many
components as required to fill the cells displayed on the screen. A
JCDisplayComponentEvent will be generated by table whenever the component is
displayed. This allows you to tie component creation (using a
JCCreateComponentListener) to the actual cell and underlying data source. When
you receive a JCDisplayComponentEvent object, you can call the following methods:

■ getRow() retrieves the row of the cell or label which will display the component

■ getColumn() retrieves the column of the cell or label which will display the
component

■ getComponent() retrieves the component being displayed

JCDisplayComponentListener
To register table to receive JCDisplayComponentEvent objects, use the following call
(where (this) refers to the class MyClass, which implements the
JCDisplayComponentListener interface):

table.addDisplayComponentListener(this);

JCDisplayComponentListener requires the following method to be implemented:

public void displayComponent(JCDisplayComponentEvent e)

Using JCDisplayComponent Events and Listeners
Used in conjunction with a JCCreateComponentListener, adding a
JCDisplayComponentListener to table allows you to customize how the component
is displayed when scrolled into view.

Caution: The row and column returned in the event are the display row and column
numbers. If you have sorted your data or dragged rows or columns, you must
request the data row and column from the TableDataView object if you wish to
customize the display relative to data source values.

The following example (see examples/chapter7/DisplayComponent.java) expands on the
CreateComponent.java example above.

Figure 35 Notifying an application when component is displayed

Chapter 7 ■ Events and Listeners 135

Only portions of the source code that differ from the CreateComponent example are
shown.

public class DisplayComponent extends Frame
implements JCCreateComponentListener, JCDisplayComponentListener {
...
...
public DisplayComponent() {
...
...
 table.addCreateComponentListener(this);
 table.addDisplayComponentListener(this);
}
public void createComponent(JCCreateComponentEvent e) {
 if(e.getColumn() == 0) {
 ta.appendText("Creating component at row " + e.getRow() + "\n");
 e.setComponent(new Checkbox("Row: " + e.getRow()));
 }
}

 public void displayComponent(JCDisplayComponentEvent e) {
 if(e.getColumn() == 0) {
 Checkbox cb = (Checkbox)e.getComponent();
 // You can use the event row/column values directly if your
 // table does not support sorting or dragging.
 int datarow = table.getDataView().getDataRow(e.getRow());
 int datacolumn = table.getDataView().getDataColumn(e.getColumn());
 ta.appendText("Creating component at row " + e.getRow() + "\n");
 cb.setLabel("R"+datarow+"C"+datacolumn);

 // Get the value in the data source
 BooleanCellData cd =
 (BooleanCellData)evds.getTableDataItem(datarow, datacolumn);
 cb.setState((cd.getData()).booleanValue());
 }
 }

How do I get my program to update my data when I click on a component?
The Table does not know how to update the data source when components are in
place. You must intercept events on your components and update the data source as
required. The Table method getPosition() can be used to determine the cell
location for a component placed on the table. The following example (see
examples\chapter7\ComponentSave.java) saves the checkbox state from the example
above. The example in examples\chapter7\ComponentSave102.java shows how to
process using the 1.0.2 event methods.

136 Part I ■ Using JClass LiveTable

public class ComponentSave extends Frame
implements JCCreateComponentListener, JCDisplayComponentListener,
 ItemListener {
...
...
public void createComponent(JCCreateComponentEvent e) {
 if(e.getColumn() == 0) {
 ta.appendText("Creating component at row " + e.getRow() + "\n");
 Checkbox cb = new Checkbox("Row: " + e.getRow());
 cb.addItemListener(this);
 e.setComponent(cb);
 }
}
...
...
public void itemStateChanged(ItemEvent event) {
 if(event.getSource() instanceof Checkbox) {
 Checkbox cb = (Checkbox)event.getSource();
 JCCellPosition cp = table.getPosition(cb, null);

 int datarow = table.getDataView().getDataRow(cp.row);
 int datacolumn = table.getDataView().getDataColumn(cp.column);

 evds.setTableDataItem(new BooleanCellData(cb.getState()),
 datarow, datacolumn);
 }
}
...
...

7.4 Entering Cells

JCEnterCellEvent
This event will be posted whenever a user traverses into a cell. When you receive a
JCEnterCellEvent object, you can call the following methods:

■ getRow() retrieves the row number of the cell being entered.

■ getColumn() retrieves the column number of the cell being entered.

■ getType() retrieves the type where type is JCEnterCellEvent.BEGIN or
JCEnterCellEvent.END

■ getParam() retrieves a string indicating the initiating action:

POINTER — Traverse to the cell the user clicked on

LEFT — Traverse left to the first traversable cell

RIGHT — Traverse right to the first traversable cell

UP — Traverse up to the first traversable cell

DOWN — Traverse down to the first traversable cell

null — Initiated programatically by call to JCTable.traverse

Chapter 7 ■ Events and Listeners 137

JCEnterCellListener
To register table to receive JCEnterCellEvent objects, use the following call (where
(this) refers to the class MyClass, which implements the JCEnterCellListener
interface):

table.addEnterCellListener(this);

JCEnterCellListener requires the following methods to be implemented:

public void enterCellBegin(JCEnterCellEvent e)
public void enterCellEnd(JCEnterCellEvent e)

Using JCEnterCell Events and Listeners
The following example (see examples\chapter7\EnterCell.java) displays a status
comment whenever a user enters a cell.

import jclass.table3.*;
import java.awt.*;

public class EnterCell extends Frame
implements JCEnterCellListener {

 Table table;
 EditableVectorDataSource evds;
 TextField message;

 String messages[] = {
 "This is the first column",
 "This is the second column",
 "This is the third column",
 "This is the forth column" };

 public EnterCell() {
 super("EnterCell");
 setBackground(Color.lightGray);

 table = new Table();

 evds = new EditableVectorDataSource();
 evds.setNumRows(10);
 evds.setNumColumns(4);
 evds.setColumnLabel(0, "First");
 evds.setColumnLabel(1, "Second");
 evds.setColumnLabel(2, "Third");
 evds.setColumnLabel(3, "Forth");

 for(int r = 0; r < evds.getNumRows(); r++)
 for(int c = 0; c < evds.getNumColumns(); c++)
 evds.setCell(r, c, "R"+r+"C"+c);

 table.setDataSource(evds);
 table.setMode(JCTblEnum.MODE_STYLEDTABLE);
 table.setRowLabelDisplay(false);

 add("Center", table);
 add("South", message = new TextField());
 table.addEnterCellListener(this);
 }

138 Part I ■ Using JClass LiveTable

 public void enterCellBegin(JCEnterCellEvent event) {
 message.setText(messages[event.getColumn()]);
 }

 public void enterCellEnd(JCEnterCellEvent event) {
 }

 public boolean handleEvent(Event event) {
 if(event.id == Event.WINDOW_DESTROY) {
 hide();
 dispose();
 System.exit(0);
 }
 return super.handleEvent(event);
 }

 public static void main(String args[]) {
 EnterCell f = new EnterCell();
 f.setSize(400,250);
 f.show();
 }
}

7.5 Painting

JCPaintEvent
This event will be posted when a portion of the table is painted. When you receive a
JCPaintEvent object, you can call the following methods:

■ getRect() retrieves the rectangle that is repainted.

■ getStartRow() retrieves the start row of the repainted region.

■ getStartColumn() retrieves the start end of the repainted region.

■ getEndRow() retrieves the end row of the repainted region.

■ getEndColumn() retrieves the end row of the repainted region.

■ getType() retrieves the type where type is JCPaintEvent.BEGIN or
JCPaintEvent.END

JCPaintListener
To register table to receive JCPaintEvent objects, use the following call (where
(this) refers to the class MyClass, which implements the JCPaintListener
interface):

table.addPaintListener(this);

JCPaintListener requires the following methods to be implemented:

public void paintBegin(JCPaintEvent e)
public void paintEnd(JCPaintEvent e)

Using JCPaint Events and Listeners
JCPaintListener allows you to monitor the repainting of table cells. Labels, frozen
cells and scrollable cells are painted independently.

Chapter 7 ■ Events and Listeners 139

7.6 Printing

JCPrintEvent
This event will be posted when your table is printed. When you receive a
JCPrintEvent object, you can call the following methods:

■ getGraphics() retrieves the current graphics object.

■ getPage() retrieves the page number.

■ getNumPages() retrieves the total number of pages (handy for page x of x
footers).

■ getType() retrieves the type where type is JCPrintEvent.HEADER,
JCPrintEvent.FOOTER, JCPrintEvent.BODY and JCPrintEvent.END

JCPrintListener
To register table to receive JCPrintEvent objects, use the following call (where
(this) refers to the class MyClass, which implements the JCPrintListener
interface):

table.addPrintListener(this);

JCPrintListener requires the following methods to be implemented:

public void printPageHeader(JCPrintEvent e)
public void printPageFooter(JCPrintEvent e)
public void printPageBody(JCPrintEvent e)
public void printEnd(JCPrintEvent e)

Using JCPrint Events and Listeners
JCPrintListener allows you to customize the header and footer regions for each
page of the printout. Chapter 8, Table Printing has details and examples for using
the JCPrintListener.

7.7 Resizing

JCResizeCellEvent
This event will be posted when a cell or label is resized. When you receive a
JCResizeCellEvent object, you can call the following methods:

■ getRow() retrieves the row being resized. Returns JCTblEnum.NOVALUE if only a
column is being resized.

■ getColumn() retrieves the column being resized. Returns JCTblEnum.NOVALUE if
only a row is being resized.

■ getParam() retrieves stage in the resize process where stage is
JCResizeCellEvent.START or JCResizeCellEvent.END.

■ getCurrentRowHeight() retrieves the current row height. Returns
JCTblEnum.NOVALUE if only a column is being resized.

■ getCurrentColumnWidth() retrieves the current column width. Returns
JCTblEnum.NOVALUE if only a row is being resized.

140 Part I ■ Using JClass LiveTable

■ getAllowResize() returns true if a resize is allowed.

■ setAllowResize() determines whether to allow an interactive resize (default:
true).

■ getType() retrieves the type where type is JCResizeCellEvent.BEGIN or
JCResizeCellEvent.END

The following methods have meaning only in the resizeCellEnd() method.

■ getNewRowHeight() retrieves the new row height. Returns JCTblEnum.NOVALUE
if only a column is being resized.

■ setNewRowHeight() sets the new row height.

■ getNewColumnWidth() retrieves the new column width. Returns
JCTblEnum.NOVALUE if only a row is being resized.

■ setNewColumnWidth() sets the new column width.

Resize messages are not generated during the drag process.

JCResizeCellListener
To register table to receive JCResizeCellEvent objects, use the following call (where
(this) refers to the class MyClass, which implements the JCResizeCellListener
interface):

table.addResizeCellListener(this);

JCResizeCellListener requires the following methods to be implemented:

public void resizeCellBegin(JCResizeCellEvent e)
public void resizeCellEnd(JCResizeCellEvent e)

Using JCResizeCell Events and Listeners
JCResizeCellListener allows you to customize how table resizes on a per-cell basis.
The following example (see examples\chapter7\ResizeCell.java) restricts resize so that
row labels cannot be resized and no cell can be less than 100 pixels or greater than
200 pixels.

import jclass.table3.*;
import java.awt.*;

public class ResizeCell extends Frame
implements JCResizeCellListener {

 Table table;
 EditableVectorDataSource evds;

 public ResizeCell() {
 super("ResizeCell");
 setBackground(Color.lightGray);

 table = new Table();
 evds = new EditableVectorDataSource();
 evds.setNumRows(100);
 evds.setNumColumns(4);

 for(int c = 0; c < evds.getNumColumns(); c++)
 evds.setColumnLabel(c,"Column: "+c);

Chapter 7 ■ Events and Listeners 141

 for(int r = 0; r < evds.getNumRows();r++) {
 evds.setRowLabel(r, "Row: "+r);
 for(int c = 0; c < evds.getNumColumns(); c++)
 evds.setCell(r,c,"Cell:R"+r+"C"+c);
 }

 table.setDataSource(evds);
 table.setMode(JCTblEnum.MODE_STYLEDTABLE);

 add("Center",table);
 table.addResizeCellListener(this);
 }

 public void resizeCellBegin(JCResizeCellEvent event) { }

 public void resizeCellEnd(JCResizeCellEvent event) {
 if(event.getColumn() == JCTblEnum.LABEL) {
 event.setAllowResize(false);
 return;
 }

 int width = event.getNewColumnWidth();
 if(width < 100)
 event.setNewColumnWidth(100);
 else if(width > 200)
 event.setNewColumnWidth(200);
 }

 public boolean handleEvent(Event event) {
 if(event.id == Event.WINDOW_DESTROY) {
 hide();
 dispose();
 System.exit(0);
 }
 return super.handleEvent(event);
 }

 public static void main(String args[]) {
 ResizeCell f = new ResizeCell();
 f.setSize(400,250);
 f.show();
 }

}

7.8 Scrolling

JCScrollEvent
JClass LiveTable provides a way for your application to be notified when the table is
scrolled by either the end-user or the application. The JCScrollListener (registered
with addScrollListener(JCScrollListener)) allows you to define a procedure to
be called when the table scrolls; this is useful if your application is drawing into the
table. The method is sent an instance of JCScrollEvent.

142 Part I ■ Using JClass LiveTable

The example below shows how to use the scrollBegin(JCScrollEvent) and
scrollEnd(JCScrollEvent) scrollbar interface methods to store an internal state:

public MyClass extends Frame implements JCScrollListener {
....
 public void scrollBegin(JCScrollEvent ev) {
 if (ev.getDirection() == TableScrollbar.HORIZONTAL)

hScrollingActive = true;
 else if (ev.getDirection() == TableScrollbar.VERTICAL)

vScrollingActive = true;
 }
public void scrollEnd(JCScrollEvent ev) {
 if (ev.getDirection() == TableScrollbar.HORIZONTAL)

hScrollingActive = false;
 else if (ev.getDirection() == TableScrollbar.VERTICAL)

vScrollingActive = false;
}

JCScrollListener
To register the above event listener routine, use the following call (where (this)
refers to the class MyClass, which implements the JCScrollListener interface):

 table.addScrollListener(this);

JCScrollListener requires the following methods to be implemented:

 public void scrollBegin(JCScrollEvent e)
 public void scrollEnd(JCScrollEvent e)

Using JCScroll Events and Listeners
JCScrollListener allows you to synchronize table scrolling with another object. The
following example (see examples\chapter7\TwoTables.java) links two tables together
with one scrollbar. This example uses two tables inside another table to simulate a
splitter window.

Figure 36 Example using JCScrollListener to synchronize scrolling between two tables

Chapter 7 ■ Events and Listeners 143

package jclass.table3.examples.chapter7;

import jclass.table3.*;
import jclass.contrib.ContribFrame;
import java.awt.Color;
import java.awt.Scrollbar;

public class TwoTables extends ContribFrame
 implements JCScrollListener {

Table table1;
EditableVectorDataSource evds1;
Table table2;
EditableVectorDataSource evds2;
Table parentTable;
VectorDataSource vdsParent;

boolean forcedScroll = false;

public TwoTables() {
 super("TwoTables");
 setBackground(Color.lightGray);

 //parent table
 parentTable = new Table();
 vdsParent = new VectorDataSource();
 vdsParent.setNumRows(2);
 vdsParent.setNumColumns(1);
 parentTable.setDataSource(vdsParent);
 parentTable.setPixelWidth(JCTblEnum.ALL, JCTblEnum.VARIABLE);
 parentTable.setPixelHeight(JCTblEnum.ALL, JCTblEnum.VARIABLE);
 parentTable.setHorizSBDisplay(JCTblEnum.SBDISPLAY_NEVER);
 this.add(parentTable);

 // table1
 table1 = new Table();

 evds1 = new EditableVectorDataSource();
 evds1.setNumRows(100);
 evds1.setNumColumns(6);

 for(int c = 0; c < evds1.getNumColumns(); c++)
 evds1.setColumnLabel(c, "C"+c);
 for(int r = 0; r < evds1.getNumRows(); r++) {
 evds1.setRowLabel(r, "R"+r);
 for(int c = 0; c < evds1.getNumColumns(); c++)
 evds1.setCell(r,c,"R"+r+"C"+c);
 }

 table1.setAllowCellResize(JCTblEnum.RESIZE_NONE);
 table1.setDataSource(evds1);
 table1.setHorizSBDisplay(JCTblEnum.SBDISPLAY_NEVER);
 table1.setStyled();
 table1.setTraversable(JCTblEnum.ALLCELLS, JCTblEnum.ALLCELLS,
 false);
 table1.setVisibleRows(2);
 table1.setVisibleColumns(3);

 parentTable.setComponent(0,0, table1);

144 Part I ■ Using JClass LiveTable

 // table2
 table2 = new Table();

 table2.setAllowCellResize(JCTblEnum.RESIZE_NONE);
 table2.setColumnLabelDisplay(false);
 table2.setDataSource(evds1);
 table2.setStyled();
 table2.setTopRow(2);
 table2.setTraversable(JCTblEnum.ALLCELLS, JCTblEnum.ALLCELLS,
 false);
 table2.setVisibleRows(5);
 table2.setVisibleColumns(3);

 parentTable.setComponent(1,0, table2);

 table1.addScrollListener(this);
 table2.addScrollListener(this);

}

public void scrollBegin(JCScrollEvent event) {
 // use forcedScroll to prevent a loop
 if(event.getDirection() == Scrollbar.HORIZONTAL) {
 if(forcedScroll == false) {
 if((event.getScrollbar().getComponent()).getParent() ==
 table2) {
 forcedScroll = true;
 table1.getHorizSB().setValue(event.getValue());
 }
 if((event.getScrollbar().getComponent()).getParent() ==
 table1) {
 forcedScroll = true;
 table2.getHorizSB().setValue(event.getValue());
 }
 } else {
 forcedScroll = false;
 }
 }
}

public void scrollEnd(JCScrollEvent event) {
}

public static void main(String args[]) {
 TwoTables f = new TwoTables();
 f.show();
 f.pack();
}

}

Chapter 7 ■ Events and Listeners 145

7.9 Sorting

JCSortEvent
This event will be posted when the table is sorted. When you receive a JCSortEvent
object, you can call the following methods:

■ getColumns() retrieves an array of column indices that were sorted.

■ getNewRows() retrieves the newly sorted order.

JCSortListener
To register table to receive JCSortEvent objects, use the following call (where (this)
refers to the class MyClass, which implements the JCSortListener interface):

table.addSortListener(this);

JCSortListener requires the following method to be implemented:

public void sort(JCSortEvent e)

Using JCSort Events and Listeners
JCSortListener allows you to synchronize the sorted rows with another object (or to
sort the data source). The following example (see examples\chapter7\Sorter.java) uses
the row sort array to pull out the top value.

Figure 37 Sorter.java, illustrating how to use JCSort Events and Listeners

import jclass.table3.*;
import java.awt.*;

public class Sorter extends Frame
implements JCSortListener {
 Table table;
 VectorDataSource ds;
 Label topItem;

 public Sorter() {
 super("Sorter");
 setBackground(Color.lightGray);

 table = new Table();

 ds = new EditableVectorDataSource();

146 Part I ■ Using JClass LiveTable

 ds.setNumRows(5);
 ds.setNumColumns(2);
 ds.setColumnLabel(0, "INTEGER");
 ds.setColumnLabel(1, "STRING");

 int numrows = ds.getNumRows();
 for(int r = 0; r < numrows; r++) {
 ds.setCell(r, 0, new Integer(r+8));
 ds.setCell(r, 1, "" + (r+8));
 }
 table.setDataSource(ds);
 table.setMode(JCTblEnum.MODE_STYLEDTABLE);
 table.setRowLabelDisplay(false);

 add("Center", table);
 // add a trigger to sort a column when it is clicked
 table.setColumnTrigger(0, LabelTrigger.SORT);
 table.addSortListener(this);

 add("South", topItem = new Label());
 }
 public void sort(JCSortEvent event) {
 int columns[] = event.getColumns();
 int rows[] = event.getNewRows();

 int maxrow = rows[rows.length - 1];
 topItem.setText("The top item in the " +
 ds.getTableColumnLabel(columns[0]) + " column is " +
 ds.getTableDataItem(maxrow,columns[0]));
 }
 public boolean handleEvent(Event event) {
 if(event.id == Event.WINDOW_DESTROY) {
 hide();
 dispose();
 System.exit(0);
 }
 return super.handleEvent(event);
 }
 public static void main(String args[]) {
 Sorter f = new Sorter();
 f.pack();
 f.show();
 }
}

7.10 Traversing

JCTraverseCellEvent
This event will be posted when cells in the table are traversed. When you receive a
JCTraverseCellEvent object, you can call the following methods:

■ getColumn() retrieves the column of the current cell.

■ getNextColumn() retrieves the proposed column of the cell to traverse to.

■ getRow() retrieves the row of the current cell.

■ getNextRow() retrieves the proposed row of the cell to traverse to.

Chapter 7 ■ Events and Listeners 147

■ getParam() retrieves a string indicating the initiating action:
POINTER Traverse to the cell the user clicked on
LEFT Traverse left to the first traversable cell
RIGHT Traverse right to the first traversable cell
UP Traverse up to the first traversable cell
DOWN Traverse down to the first traversable cell
null Initiated programatically by call to JCTable.traverse
setNewColumn() sets the column of the cell to traverse to.
setNewRow() sets the row of the cell to traverse to.

JCTraverseCellListener
To register table to receive JCTraverseCellEvent objects, use the following call
(where (this) refers to the class MyClass, which implements the
JCTraverseCellListener interface):

table.addTraverseCellListener(this);

JCTraverseCellListener requires the following method to be implemented:

public void traverseCell(JCTraverseCellEvent e)

Using JCTraverse Events and Listeners
JCTraverseCellListener allows you to custom how cell traversal occurs in table.
The following example (see examples\chapter7\SkipNavigation.java) uses a
JCTraverseCellListener to skip the second column if navigating from the first
column. The column is not skipped if navigating from the third column.

import jclass.table3.*;
import java.awt.*;

public class RandomNavigation extends Frame
implements JCTraverseCellListener {

 Table table;
 VectorDataSource ds;

 public SkipNavigation() {
 super("SkipNavigation");
 setBackground(Color.lightGray);

 table = new Table();

 ds = new VectorDataSource();
 ds.setNumRows(10);
 ds.setNumColumns(4);

 for(int c = 0; c < ds.getNumColumns(); c++)
 ds.setColumnLabel(c, "Column: "+c);
 for(int r = 0; r < ds.getNumRows(); r++) {
 ds.setRowLabel(r, "Row: "+r);
 for(int c = 0; c < ds.getNumColumns(); c++)
 ds.setCell(r,c,"Cell: R"+r+"C"+c);
 }
 table.setDataSource(ds);
 table.setMode(JCTblEnum.MODE_STYLEDTABLE);

 add("Center", table);

148 Part I ■ Using JClass LiveTable

 table.addTraverseCellListener(this);
 }
 public void traverseCell(JCTraverseCellEvent event) {
 // for one-way:
 if(event.getColumn() == 0 && event.getNextColumn() == 1)
 event.setNextColumn(2);
 // for two-way:
 // if(event.getNextColumn() == 1)
 // event.setNextColumn(1 + event.getNextColumn() -
 event.getColumn());
 }
 public boolean handleEvent(Event event) {
 if(event.id == Event.WINDOW_DESTROY) {
 hide();
 dispose();
 System.exit(0);
 }
 return super.handleEvent(event);
 }
 public static void main(String args[]) {
 SkipNavigation f = new SkipNavigation();
 f.pack();
 f.show();
 }

}

149

8
Table Printing

Basic Printing ■ Adding Enhanced Print Functionality

Adding Print Preview Capability

JClass LiveTable contains classes that enable end-users to print and print-preview
table applications. Since printing is not available under JDK 1.0, these classes apply
to JDK 1.1 (or higher) applications only.

8.1 Basic Printing

Basic print functionality is provided using the table.print() method, for example
to print based on a java.awt.Button press:

public boolean handleEvent(Event event) {
if (event.id == Event.ACTION_EVENT) {
table.print();

Will print the table “as is” without any extra formatting.

8.2 Adding Enhanced Print Functionality

JClass LiveTable uses the JCPrintTable class for enhanced table printing.
JCPrintTable creates a “copy” of the visible properties of the table and retrieves cell
contents from the data source. The width and height of cells in the table are copied
by actual pixel size. Printed tables do not display scrollbars or components.

150 Part I ■ Using JClass LiveTable

8.2.1 Setting Page Layout Properties

The JCPrintTable class provides methods for more detailed control of print output
from a JClass LiveTable application or applet.

Page Size
The following methods define printed page sizes:

getPageDimensions();
getPageWidth();
getPageHeight();

These methods retrieve page information from the printer.

Page Margins
Page margins are set using the setPageMargins() method. This method uses the
awt.Insets class to set the margins as in the following example:

printtable.setPageMargins(new Insets(54,36,36,54));

By default, JClass LiveTable sets the margins in pixels. To specify margin units in
inches, use the variable MARGIN_IN_INCHES in the getMarginUnits() method:

setMarginUnits(JCPrintTable.MARGIN_IN_INCHES);

You can retrieve page margins based on the Insets of the page using the
getPageMargins() method. Use the getDefaultPageMargins() to retrieve the
default Insets.

Other Print Properties
Use getPageResolution() to get the printer page resolution. The default is 72
pixels per inch.

To control page numbering, use getHorizontalPages() and
getNumVerticalPages() to determine the number of pages across and down.

8.2.2 Printing Headers and Footers

Headers and footers are applied using JCPrintListener receiving JCPrintEvent
events. A JCPrintEvent is posted for each page during printing, and provides a
graphic object clipped to the allowable paint region, the page number of the current
page, and the total number of pages:

public JCPrintEvent(Table table, Graphics gc, int page);
public GraphicsgetGraphics();
public Insets getPageMargins();
public int getMarginUnits();
public int getNumHorizontalPages();
public int getNumPages();
public int getNumVerticalPages();
public int getPage();
public Dimension getPageDimensions();
public int getPageResolution();
public DimensiongetTableDimensions();

Chapter 8 ■ Table Printing 151

getTableDimensions can be used in the printPageBody method to determine the
size the table occupies on the page.

The JCPrintListener requires that three methods are defined:

public void printPageHeader(JCPrintEvent e);
public void printPageFooter(JCPrintEvent e);
public void printPageBody(JCPrintEvent e);
public void printEnd(JCPrintEvent e);

The printPageBody method is called after the body of the page is printed.

The following code would produce the footer illustrated below:

public void printPageFooter(JCPrintEvent e) {
Graphics gc = e.getGraphics();
Rectangle r = gc.getClipRect();

FontMetrics fm = gc.getFontMetrics();

String page = "Page " + e.getPage();
String note = "Use JCPrintListener to customize the footer!";

// Pad the footer text to the right
gc.drawString(page, 0, r.height/2);
gc.drawString(note, r.width - fm.stringWidth(note), r.height/2);

}

Figure 38 Page Footer

If you don’t register a JCPrintListener for the table, the print engine will default to
printing a centered footer containing the text Page x, where x is the page number. If
you do register a JCPrintListener, however, then you are responsible for the
placing the page number either in the header or footer of the page.

8.3 Adding Print Preview Capability

JClass LiveTable provides a class that displays a preview of the print job in a separate
frame. Using the print preview frame, end-users can flip through the pages of the
print job, print individual pages, or print the whole job.

To add the print preview functionality, use JCPrintPreview:

JCPrintPreview(String title, JCPrintTable table)
showPage(int page)

For example the following provides a preview beginning at the first page of the job:

JCPrintPreview pf = new JCPrintPreview("Table Print Preview",
printtable);

pf.showPage(0);

152 Part I ■ Using JClass LiveTable

Figure 39 The JClass LiveTable Print Preview Window

153

9
JClass LiveTable Beans and IDEs

An Introduction to JavaBeans ■ JClass LiveTable and JavaBeans

Setting Properties for the LiveTable Bean ■ Tutorial: Building a Table in an IDE
Data Binding with IDEs ■ Interacting with Data Bound Tables

Property Differences Between the LiveTable and Data Binding Beans

JClass LiveTable complies with the JavaBeans specification, and include several
Beans that make it easy to create JClass LiveTable applications in an Integrated
Development Environment (IDE). The following sections outline some principles of
JavaBeans, and provide information about using JClass LiveTable in an IDE. All
illustrations display the BeanBox, JavaSoft’s test container for Beans included in the
Beans Development Kit (BDK).

9.1 An Introduction to JavaBeans

Introduced in JDK 1.1, JavaBeans is a specification for reusable, pre-built Java
software components. It is designed to be a fully platform-independent component
model written for the Java programming language. The JavaBeans specification
(available at http://www.javasoft.com/beans/index.html) enables developers to write
components that can be combined in applications, reducing the total time needed to
write entire applications.

The three main features of a Bean are:

■ the set of properties it exposes

■ the set of methods it allows other components to call

■ and the set of events it fires.

9.1.1 Properties

Under the JavaBeans model, properties are public attributes that affect a Bean’s
appearance or behavior. Properties can be read only, read/write, or write only.
Properties that are readable have a get method which enables you to retrieve the

http://www.javasoft.com/beans/index.html

154 Part I ■ Using JClass LiveTable

property’s value, and those properties which are writable have a set method which
allows you to change their values.

For example, JClass LiveTable has a property called FrameBorderType. This
property specifies the kind of border displayed around the table. To set the property
value, use the setFrameBorderType() method. To obtain the property value, use
the getFrameBorderType() method.

The main advantage of following the JavaBeans specification is that it makes it easy
for a Java IDE to “discover” the set of properties belonging to an object. Developers
can then manipulate the properties of the object easily through the graphical
interface of the IDE when constructing a program.

There are three ways to set (and retrieve) JClass LiveTable Bean properties; use the
method that applies best to your application:

1. By using a Java IDE at design-time

2. By calling property set and get methods in Java code

3. By specifying applet properties in an HTML file (see Setting Applet Properties in
an HTML File, in Chapter 3 for details)

Each method changes the same table property. This manual, therefore, uses properties
to discuss how features work, rather than using the method, Property Editor, or
HTML parameter you might use to set that property.

9.1.2 Setting Properties in a Java IDE at Design-Time
JClass LiveTable can be used with a Java Integrated Development Environment
(IDE), and its properties can be manipulated at design time. If you install your IDE
after you have installed JClass LiveTable, you will have to manually add LiveTable to
the IDE’s component manager. Refer to Adding JClass LiveTable to Your IDE, in
Chapter 1 for more information. Also, consult your IDE documentation for
information on working with third–party components.

Please see JClass LiveTable and JavaBeans for details on the LiveTable property
editors.

Please see Property Differences Between the LiveTable and Data Binding Beans later
in this chapter for information on the differences between the LiveTable Bean, and
the data binding Beans.

9.1.3 Setting Properties using Methods in the API
As mentioned previously in this chapter, every property in JClass LiveTable has a
set and get method associated with it. For example, to retrieve the value of the
FrameBorderType property of a given cell and label area:

getFrameBorderType();

To set the FrameBorderType property in the same object:

setFrameBorderType(JCTbleEnum.BORDER_IN);

Chapter 9 ■ JClass LiveTable Beans and IDEs 155

9.2 JClass LiveTable and JavaBeans

The JavaBeans included with JClass LiveTable make it easy to create applications
and applets in an Integrated Development Environment. JClass LiveTable provides
the following Beans:

■ LiveTable: the core JClass LiveTable Bean

■ JCTableComponent: provided for backward compatibility with LiveTable version
2.x (uses text editors to set properties).

■ Visual Café Bean (VCdbTable): the same as the LiveTable Bean, but can bind
LiveTable to a database using Visual Café’s QueryNavigator (version 2.5 or
greater)

■ JBuilder Bean (JBdbTable): the same as the LiveTable Bean, but can bind
LiveTable to a database using Borland JBuilder’s DataSet (version 2.0 or greater)

■ LiveTable DataSource Bean (DSdbTable): the same as the LiveTable Bean,
but can bind LiveTable to a database using KL Group’s JClass DataSource

9.3 Setting Properties for the LiveTable Bean

At design-time, most LiveTable properties are set using simple menu choices or text
entry boxes on the property sheet. Some properties that are set for individual cells or
labels, or ranges of cells or labels are set using a property editor. The LiveTable
property editors provide a visual interface for setting the properties using a model of
the table you are creating, and a number of ways for selecting the cell(s) or ranges
that you want to set the property for.

To make it easier to use, the LiveTable Bean combines some properties into special
property groups that are set using a single editor. For example, the Appearance
property combines the Foreground, Background, and Font properties and presents
them in a single editor.

Note: Custom property editors are generated using introspection, a JDK 1.1 feature.
Therefore, they are not available in the JDK 1.0.2 version of JClass LiveTable.

156 Part I ■ Using JClass LiveTable

9.3.1 JClass LiveTable Property Editors

The following is a typical property editor:

Figure 40 Property editor with elements common to other LiveTable property editors

Each property editor has the same interface for selecting the cells to which to apply a
specific property. On the left is a view of the table (the data reflects the properties
you’re setting). On the right are two groups of controls: Selected region provides an
alternate control of part of the table selected; Table Size controls the size of the table
view in the editor. Both of these interact with the table on the left.

It is important to note that the table view is provided only as a visual guide for setting
properties. Its size and contents may not necessarily reflect those of the actual table
you’re building. For example, in the AppearanceEditor shown above, the table
displays the name of the font set for each cell.

Selecting a Cell or Cell Range
The purpose of the property editors is to apply a given property to a single cell or
label, or to a range of cells or labels. You can select cells interactively using the
mouse or by using the Selected region controls.

To select cells using the mouse:

■ Click on an individual cell with the mouse to select that cell;

■ Click and drag the mouse to select a range of cells;

■ Click on a row or column label to select that row or column;

■ Click on a cell, hold down the Shift key and click on another cell to select a
range of cells between the two.

Note that when you make selections with the mouse, the ranges you have selected
are displayed in the Selected region controls, as shown in the following diagram:

Chapter 9 ■ JClass LiveTable Beans and IDEs 157

Figure 41 Mouse selection reflected as a range in the Selected Region box

To select cells using the Selected region controls:

Selecting Labels
To select labels using the mouse:

■ Row labels: click on the row label or select a range of row labels and choose
Label from the Column pull-down menu in the Selected region controls.

■ Column labels: click on the column label or select a range of column labels and
choose Label from the Row pull-down menu in the Selected region controls.

It may seem odd to be choosing in the Column box for row labels and in the
Row box for column labels, but it is easier to understand if you consider that you
are really specifying the row of column labels or the column of row labels. The
row or column number for a label specified in a range is -1.

To select labels using the Selected region controls:

■ To select a row label, choose Label from the Column pull-down menu; choose
Range in the Row pull-down menu, and type the number of the row in the text
field. To select all row labels, choose All in the Row pull-down menu.

To select a single cell, choose Range from both
the row and column pull-down menus, then type
the row index and column index for the cell. For
example, the cell that intersects the fourth row
and the third column would be selected by typing
5 for the Row range and 4 for the Column range
(remember, the rows and columns start at 0).

To select a range of cells, you must specify the
row and column index for the top-left and
bottom-right cells in the range (typically
specifying a range is easier to do with the mouse).
Choose Range from both the row and column
pull-down menus, then type the numbers of the
top and bottom rows of the range separated by a
comma; then type the left and right columns of
the range separated by a comma. This has
specified a bounding box for the range.

158 Part I ■ Using JClass LiveTable

■ Likewise, to select a column label, choose Label from the Row pull-down menu,
choose Range in the Column pull-down menu, and type the number of the
column in the text field. To select all column labels, choose All in the Column
pull-down menu.

Figure 42 Selecting labels using the Selected region controls

Changing the Property Editor Table Size
The Table size controls set the working size of the table view in the editor. By default,
the property editors display a 10 row, 5 column table, which is sufficient for most
selection. If you need to edit properties for a specific row or column beyond this
limit, use the Table size controls to enlarge the working area in the property editor.
To change table size, enter a new value in the Row or Column text field and press
Enter (or traverse out of the field); the table view will update to the new dimensions.

Note: To change the actual size of the table you’re building, use the Table size
controls on the DataEditor. The DataEditor is the only editor that uses the Table
size controls this way.

You can undo any of your changes and reset the properties to the values they had
when you opened the editors by clicking on the button.

Chapter 9 ■ JClass LiveTable Beans and IDEs 159

9.3.2 LiveTable Lite Features and Property Limitations

LiveTable Lite is a special version of LiveTable that is bundled with some popular
IDEs. LiveTable Lite has some limited functionality, but imposes no run–time
penalties. If you use LiveTable Lite and deploy an application or applet, there is no
indication that the version of LiveTable that you are using is limited in any way:
there are no special banners, dialogues or messages.

LiveTable Lite’s feature differences are:

■ When dropped into an IDE at design time, a dialog will appear that indicates
that you are using the Lite version.

■ All custom property editors will have a banner at the bottom that indicates you
are using the Lite version and that some features are disabled.

■ LiveTable’s version number has "Lite" attached to the end of it.

■ All Table Beans will have the design–time dialog. This means that even
JCTableComponent will have the dialog, even though there is no limiting
implemented for JCTableComponent.

LiveTable Lite’s property limitations apply to LiveTable, DSdbTable, JBdbTable and
VCdbTable. The limitations are:

Property Lite Limitation

advancedEditorRenderers property set to "off" (i.e. property not available)

appearance colors:
foreground and background colors limited to standard colors:
black, blue, cyan, gray, green, light gray, magenta, pink, red,
yellow and white
dark gray, light blue, orange and custom colors not available
fonts:
access allowed to only 20% of available system fonts

cellBorderType
columnLabelBorderType
frameBorderType
rowLabelBorderType

settings available:
BORDER_NONE, BORDER_IN, BORDER_OUT and
BORDER_PLAIN.
settings unavailable:
BORDER_ETCHED_IN and BORDER_ETCHED_OUT

focusRectColor limited to black and white

jumpScroll settings available:
JUMP_NONE
settings unavailable:
JUMP_HORIZONTAL, JUMP_VERTICAL and JUMP_ALL

printSettings no print preview, only wysiwyg printing enabled

selectedBackground
selectedForeground

limited to black, white and null

spanningCells cell span size is limited to one adjacent cell

textPositioning positioning is limited only to top–left and bottom–right

160 Part I ■ Using JClass LiveTable

9.3.3 LiveTable Properties

The LiveTable Bean exists because the current generation of Java IDEs do not
support properties in contained objects. While current Java IDEs allow properties in
contained objects to be modified, they cannot yet properly generate code for the
property change. LiveTable works around this problem by exposing many JClass
LiveTable properties in one object. While not all properties are provided, the most
common properties are available.

Since LiveTable is a subclass of Table, it is possible to switch and use the contained
properties in Table.

The following sections list the properties exposed in the LiveTable Bean. Many of
the properties can be set for individual cells/labels or ranges; these properties are set
using visual property editors (see JClass LiveTable Property Editors above for a
description of a typical editor and how to select cells). Note that the illustrations are
from Sun’s BeanBox in the Beans Development Kit (BDK). The properties and
editors are listed in alphabetical order; the BeanBox unfortunately does not list
properties in alphabetical order.

About

This property displays the component version and where to find more information
about JClass LiveTable.

AdvancedEditorRenderers

Determines if the advanced editors and
renderers are used for table cells. These are
“light” versions of some of JClass Field’s
calendar date and numerical value entry
features. This property takes a boolean
value, selected from the pull–down menu.

Chapter 9 ■ JClass LiveTable Beans and IDEs 161

AllowCellResize

Appearance

AutoScroll

This property determines if the user can
resize cells by dragging their borders. Set
this property by choosing one of the values
from the pull-down menu:

This property editor sets the font, style, and size of cell and label text. From this
editor, you can also set the foreground and background colors for specified cells and
labels.
To set the font, style, and size of the text for
a selection, make your selection and
choose the options from the font panel of
the AppearanceEditor.

To set the foreground and background
colors of selected cells, select from the
standard AWT color constant by name in
the pull-down menu, or click on the button
marked to invoke a custom RGB color
designer, as shown. Once you have made
your choice, and removed the highlighting
by moving the selection, your choice will
appear in the table display of the editor.

The AutoScroll property determines if the
table will automatically scroll if the user
drags the mouse or traverses past the
borders of the table. To set this property for
rows, columns or both, choose a value
from the pull-down menu:

162 Part I ■ Using JClass LiveTable

Background

CellBorderType

CellBorderWidth

This property specifies the thickness of the border around each cell and label. To
change this property, enter a new value in the text field.

CellSize

The CellSize editor lets you set the dimensions of rows and columns as fixed pixel
values or as variable values according to the cell contents. To set the value to a
variable size, select VARIABLE in the Width or Height pulldown menus.

The Background property is set for the
whole table, that is, the area behind the
table and the scrollbar components, and
also sets the default cell background color.
Click on the color box to bring up the color
chooser:

The CellBorderType property specifies the
type of border drawn around cells or
labels. To set this property, choose one of
the border types from the pull-down menu.
Note that etched and frame border types
will not be visible if the CellBorderWidth is
set to less than 5 pixels.

Chapter 9 ■ JClass LiveTable Beans and IDEs 163

ColumnLabelBorderType

ColumnLabelDisplay

ColumnLabelSort

Data

This property exclusive to the LiveTable Bean, and not available in the data binding
Beans, enables you add and customize table data and row/column labels. There are
two ways to get data into the table — by entering data directly using the DataEditor,
or by specifying a data file (can contain labels too).

The ColumnLabelBorderType property has
the same options as CellBorderType, but
is set specifically for column labels. To set
the ColumnLabelBorderType property,
choose one of the border types from the
pull-down menu. Note that etched and
frame border types will not be visible if the
CellBorderWidth is set to less than 5
pixels.

Specifies whether to display the column
labels. In the LiveTable Bean, column
labels are displayed by default even if they
contain no data. To set this property,
choose true or false from the pull-down
menu.

Determines if the user can sort a column by
clicking on its label. Choose a boolean
value from the pull-down menu.

164 Part I ■ Using JClass LiveTable

Table Data Source — To enter and edit data and labels directly, set the Data
source radio button to table. You can then use the editor’s table view to specify the
data, as shown above.
To set the size of the table, use the Table
size controls. You can increase or decrease
the number of rows/columns. Note: These
controls behave differently than in any
other property editor because they change
the actual size of the table you’re building.

To delete all the data from the table, click the button.

To enter or edit row labels, click
the button. To edit column
labels, click the button. Type
each label on its own line and press Enter:

File Data Source — To use data contained in a file, click the button and
select a valid table data file. The Data source radio button will switch to file when a
valid file data source has been set. Once set, you cannot edit the data or labels
directly, because the data source has been fixed to a file, so the Table size controls,
and the Clear Cells and label editing buttons are disabled.

Chapter 9 ■ JClass LiveTable Beans and IDEs 165

DisplayClipArrows

DoubleBuffer

EditHeightPolicy

EditState

Sets the traversable and editable properties for specified cells.

Traversable indicates that users can traverse to the specified cells by clicking on the
primary mouse button when the mouse pointer is over a cell. This changes the focus
to that cell (a focus rectangle appears around the inside of the cell borders). Users can
also traverse cells from the keyboard by using the cursor keys (up, down, left, and
right) and the Tab key to traverse right and Shift+Tab key to traverse left.

If you set a cell to non-traversable, it cannot be edited.

The data file format is a space-delimited
text file that can contain strings, doubles, or
integers. This example file contains 4 rows
and 4 columns with no labels:

TABLE 4 4 NOLABEL
 ’0,0’ ’0,1’ ’0,2’ ’0,3’
 ’1,0’ ’1,1’ ’1,2’ ’1,3’
 ’2,0’ ’2,1’ ’2,2’ ’2,3’
 ’3,0’ ’3,1’ ’3,2’ ’3,3’

To include reserved characters (like
spaces), enclose the data item in single
quotation marks, for example ’The Cuppa’.
This example shows how to specify labels:

TABLE 4 3
 ’Col 0’ ’Col 1’ ’Col 2’
’Row 0’ ’0,0’ ’0,1’ ’0,2’
’Row 1’ ’1,0’ ’1,1’ ’1,2’
’Row 2’ ’2,0’ ’2,1’ ’2,2’
’Row 3’ ’3,0’ ’3,1’ ’3,2’

Determines whether text clip arrows are
shown. This property takes a boolean
value; choose true or false from the pull-
down menu.

Determines whether double buffering is
used. This property takes a boolean value;
choose true or false from the pull-down
menu.

The table can control the height of a cell
editing component using the
EditHeightPolicy property. This property
can take one of three values:
EDIT_SIZE_TO_CELL resizes the component
to fit the table’s cell size
EDIT_ENSURE_MINIMUM_SIZE resizes the
component to its minimum size
EDIT_ENSURE_PREFERRED_SIZE resizes the
cell to the editing component’s preferred
size.

166 Part I ■ Using JClass LiveTable

The Editable property is closely linked with cell traversal. While most cell editing
functionality in JClass LiveTable relies on the CellEditor interface and the data
source, you can still set individual cells or ranges to be Editable or not Editable,
contingent on the existence of a cell editor and an editable data source.

To set the Traversable and Editable properties, select the cells you want to apply
the property to in the EditState editor. The properties are set and unset using the
checkboxes for each. The table display will reflect the current state of the selection,
where possible. Note that if you uncheck the Traversable property for any cell, the
Editable property is also unchecked.

Since labels are neither traversable nor editable, the selection options are limited to
ALLCELLS and RANGE.

EditWidthPolicy

The table can control the width of a cell
editing component using the
EditWidthPolicy property. This property
can take one of three values:
EDIT_SIZE_TO_CELL resizes the component
to fit the table’s cell size
EDIT_ENSURE_MINIMUM_SIZE resizes the
component to its minimum size
EDIT_ENSURE_PREFERRED_SIZE resizes the
cell to the editing component’s preferred
size.

Chapter 9 ■ JClass LiveTable Beans and IDEs 167

FocusRectColor

Foreground

FrameBorderType

FrameBorderWidth

The FrameBorderWidth property is the thickness of the frame around the cell and
label areas of the table in pixels. To change the value, type a new pixel value in the
text field.

FrozenCellLayout

Sets the position of frozen rows and columns. Frozen rows can be placed at the top or
bottom of the table, and frozen columns can be placed on the left or right side of the
table.

Sets the color of the focus rectangle. The
focus rectangle is the line drawn around
the inside of the cell that currently has
focus. To set this property, choose the color
from the color chooser dialog; when you
have chosen the color, click the
button.

This property sets the color for the
foreground of the entire Table component,
including the scrollbars, frame border, and
cell borders. It also sets the default cell
foreground color. When you have chosen
the color, click the button.

The FrameBorderType property specifies
the border type for the frame enclosing the
cell and label areas. Choose a border type
from the pull-down menu. Note that the
FrameBorderWidth property must be set to
greater than 5 in order for the etched
border types to be visible.

168 Part I ■ Using JClass LiveTable

FrozenColumns / FrozenRows

An application can make rows and columns non-scrollable using the FrozenRows and
FrozenColumns properties. You can use frozen rows or columns to hold important
information (such as totals at the bottom of the table) on the screen as a user scrolls
through the table. You could also use frozen rows or columns as additional rows or
columns that act like labels. They are still editable and traversable unless set
otherwise.

The number of frozen rows/columns always starts from the beginning of the table,
although they can be repositioned using the FrozenCellLayout editor. Specify the
number of frozen rows or columns in the text field.

HorizSBDisplay

This property specifies when the table
should display its horizontal scrollbar:
DISPLAY_ALWAYS keeps the horizontal
scrollbar in place even if the table is big
enough to display all of its columns;
DISPLAY_NEVER hides the scrollbar all the
time — scrolling is still available using the
keyboard;
DISPLAY_AS_NEEDED displays the horizontal
scrollbar only when the table cannot
display all of the columns.

Chapter 9 ■ JClass LiveTable Beans and IDEs 169

JumpScroll

LabelLayout

Sets the offset and placement of row and column labels. Label offset is the distance in
pixels between the edge of the table and the labels. You can place row labels at the
top or bottom of the table, and column labels at the right or left side of the table.

LeftColumn

This property specifies the leftmost column in the table as a referent for the table
display. Enter the column number that you want displayed at the left of the table in
the text field.

MarginHeight / MarginWidth

Height of the top and bottom margins of each cell, and width of the left and right
margins of each cell. Type a pixel value in the text field to set this value.

By using the JumpScroll property, you can
control the scrolling behavior of each
scrollbar. Scrollbars can either scroll
smoothly or “jump” scroll in whole
row/column increments. To enable jump
scrolling, choose one of the parameters
from the pull-down menu.

170 Part I ■ Using JClass LiveTable

MinCellVisibility

By default, when a user traverses to a cell that is not currently visible, LiveTable
scrolls the table to display the entire cell.

The MinCellVisibility property sets the minimum amount of a cell made visible
when it is traversed to. When the table scrolls to edit a non-visible cell, the
MinCellVisibility property determines the percentage of the cell that is scrolled
into view. When MinCellVisibility is set to 100, the entire cell is made visible.
When MinCellVisibility is set to 10, only 10% of the cell is made visible. If
MinCellVisibility is set to 0, the table will not scroll to reveal the cell.

To change the value of MinCellVisibility, type the percentage in the text field.

PopupMenuEnabled

This property determines whether or not
the popup menu is used. This property
takes a boolean value. The availability of
the Print and Print Preview in the menu is
determined by the printSettings
property (below). Additional menu options
are available for the data binding Beans.

Chapter 9 ■ JClass LiveTable Beans and IDEs 171

PrintSettings

ResizeByLabelsOnly

ResizeEven

RowLabelBorderType

This property determines if
the print preview feature is
available, and if the
printing features are
available as popup menu
options. It also specifies if
there are any headers or
footers in the print out, and
what information they will
display (more extensive
header and footer control is
available through
JCPrintListener).

This property specifies that rows and
columns can be resized by moving the
borders between their labels. Cells cannot
be resized from the body of the table. This
property takes a boolean value; choose
true or false from the pull-down menu.

When set to true, the ResizeEven property
determines that when a row or column is
resized, all of the other rows or columns in
the table are set to the same dimensions.
This property takes a boolean value;
choose true or false from the pull-down
menu.

The RowLabelBorderType property has the
same options as CellBorderType, but is
set specifically for row labels. To set this
property, choose one of the border types
from the pull-down menu. Note that etched
and frame border types will not be visible if
the CellBorderWidth is set to less than 5
pixels.

172 Part I ■ Using JClass LiveTable

RowLabelDisplay

SBLayout

Sets the horizontal and vertical scrollbar offset.

SelectedBackground

SelectedForeground

SelectIncludeLabels

SelectionPolicy

By default, the LiveTable Bean displays
row labels in the table. To specify that row
labels are not displayed, set the boolean
value to false in the pull-down menu.

Background (highlight) color for cells that
have been selected. The default is the
foreground color for the cells. To choose a
different background color, click on the
color box to bring up the color chooser.
When you have chosen the color, click
the button.

Foreground (highlight) color for cells that
have been selected. The default is the
background color for the cells. To choose a
different background color, click on the
color box to bring up the color chooser.
When you have chosen the color, click
the button.

By default, when a user clicks on a row or
column label, the entire row or column,
including the label is highlighted. To
change it so that the label is not highlighted
with the rest of the cells, set
SelectIncludeLabels to false.

The SelectionPolicy property controls
the amount of selection allowed on the
table, both by end-users and by the
application. Choose a value from the
SelectionPolicy pull-down menu:

Chapter 9 ■ JClass LiveTable Beans and IDEs 173

SpanningCells

The spanningCells editor allows you to select a range of cells to span into a single
cell area:

To span two or more cells:

■ Select the cells using the mouse, or specify a cell range using the Selected
region controls;

■ Click the button. The cells are now displayed as a single cell, using the
data from the top-left cell in the range.

To unspan the cells, select the spanned region and click the button.

Notes:

■ You cannot combine cells and labels in a span, or frozen and non-frozen cells.

■ The data hidden by spanned cells remains intact in the data source. When you
unspan the cells, they are repopulated from the data source.

SwingDataModel

Sets the table’s data source to use a specified Swing TableModel object, instead of
using the Data property.

■ SELECT_MULTIRANGE allows selection of discontinuous combinations of single
cells and ranges of adjacent cells

■ SELECT_SINGLE allows selection of only single cells

■ SELECT_RANGE allows selection of only a single continuous range of adjacent cells

■ SELECT_NONE does not allow any cell selection

174 Part I ■ Using JClass LiveTable

TextPositioning

Specifies the horizontal and vertical alignment of cell/label text.

TopRow

This property specifies the topmost row in the table as a referent for the table display.
Enter the row number that you want displayed at the top of the table in the text field.

TrackCursor

TraverseCycle

Determines whether the cursor changes
with mouse movements. This property
takes a boolean value; choose true or
false from the pull-down menu.

Determines if a traversal wraps to the
opposite side of the table when the edge of
the table is reached. This is a boolean
value. Choose true or false from the pull-
down menu.

Chapter 9 ■ JClass LiveTable Beans and IDEs 175

VertSBDisplay

9.4 Tutorial: Building a Table in an IDE

The following exercise will guide you through the steps to produce a JClass
LiveTable program in an IDE. The exercise is the same as the one in Chapter 2,
‘Hello Table’ — A Simple JClass LiveTable Program, which explains how to build a
table using the API. The example uses JavaSoft’s BeanBox IDE in the Java BDK.
This tutorial assumes that you have some experience working with a Java IDE. If
you are unsure how to get the LiveTable Bean into your IDE, please consult the IDE
documentation.

This program displays information about orders for ‘The Musical Fruit’1, a fictional
wholesale coffee distributor, based on the following data:

This property specifies when the table
should display its vertical scrollbar:
DISPLAY_ALWAYS keeps the vertical
scrollbar in place even if the table is big
enough to display all of its columns;
DISPLAY_NEVER hides the scrollbar all the
time — scrolling is still available using the
keyboard;
DISPLAY_AS_NEEDED displays the vertical
scrollbar only when the table cannot
display all of the columns.

1. We apologize for the addition of yet another coffee reference in an already crowded pantheon.

Customer Name Order Date Item Quantity (lbs.) Price/lb.

The Cuppa 11/11/97 French Mocha 60 $7.01

The Underground Cafe 11/14/97 Brazilian Medium 112 $6.80

RocketFuel and Cake Cafe 10/30/97 Espresso Dark 300 $8.02

WideEyes Coffee House 11/12/97 Colombian/Irish
Cream Flavored

120 $5.30

Jitters Caffeine Cavern 10/01/97 Ethiopian
Medium

80 $7.50

Twitchies on the Mall 12/06/97 French Roast
Kona

160 $14.50

KL Group 12/12/97 Colombian 22,000 $5.28

176 Part I ■ Using JClass LiveTable

9.4.1 The Basic Table

The first step is to create a default table. In the BeanBox, click on the LiveTable
component displayed in the Tool Box, then click in the BeanBox window. The
BeanBox will display a default-sized (10 rows by 5 columns) table with row and
column labels visible.

Figure 43 The default table in the BeanBox

Supplying the Data
The data for the table is contained in the data source. You can provide the data by
entering it into the table using the DataEditor, or by specifying that a file is the data
source. Start the DataEditor by clicking on the data property value in the property
sheet. Notice that the editor defaults to using the table as the data source.

The data we want to display is stored in a file. To use this file as the data source:

■ click the button;

■ navigate to the examples\chapter9 directory of your JClass LiveTable distribution;

■ choose the tutorialdat.txt file

Once you have chosen the file, the table display in the editor should be populated
with the data from the data source, and the Table size and buttons at the top should
be disabled, as shown in the following illustration:

Chapter 9 ■ JClass LiveTable Beans and IDEs 177

Figure 44 Using a file data source

To close the editor, click the button. The table displayed in the BeanBox will
now show the values from the data source.

Figure 45 The Table after Importing the Data

9.4.2 Improving the Table’s Appearance

Using some of the properties for modifying a table’s appearance, you can easily
move from the basic, drab table above, to a table that’s easier to understand, easier to
use, and more interesting to look at. The following sections explain how to set these
properties using an IDE.

Adding Column Labels
The table currently displayed in the BeanBox is not very useful to an end-user. Not
only is it not interesting to look at, but you can’t tell what kinds of information the
various cells contain because there are no column labels. In the original data outline
for the table, we indicated that we wanted the following column labels:

■ Customer Name

■ Order Date

■ Item

178 Part I ■ Using JClass LiveTable

■ Quantity (lbs.)

■ Price/lb.

Labels are cells that can never be edited and can contain any Object, (Strings,
images, Integers, etc.). Notice that since our data source contained no data for the
labels, the LiveTable Bean does not display any labels in the BeanBox.

If you had entered the table data directly into the Bean, you could add the labels
using the DataEditor. But since the file is the data source, adding the labels must be
done by editing the file. For convenience we have included the labels in another data
file. Load this data file using the DataEditor as before. The new file is called
tutorialdat-labels.txt, located in the examples\chapter9 directory of your JClass
LiveTable distribution.

By default, the table displays row and column labels that have values. This is
controlled by the ColumnLabelDisplay property, which takes a boolean value and
has a default value of true. Now that you have column labels, the table in the IDE
should update to look something like the following illustration:

Figure 46 Table after loading data file that includes labels

Notice that if you click on a label in your table, you don’t get the focus rectangle the
way you do if you click on a cell: labels cannot be edited or traversed to. In certain
circumstances, clicking on a label will perform an action (see Adding Interactivity
below), but in this case the labels don’t perform any interactive function.

The labels have a default border and color set to make them stand out from the table.
In this exercise, we’ll take it one step further by changing the colors and fonts of the
labels using the AppearanceEditor in the property sheet:

Chapter 9 ■ JClass LiveTable Beans and IDEs 179

Figure 47 The Appearance property editor

To begin, you have to select the column labels:

■ Choose Label from the Row pull-down menu in the Selected region box;

■ Choose All from the Column pull-down menu

This will apply any settings you choose to the column labels. Next, you’ll change the
color of the label text:

■ Choose White from the Foreground Color pull-down list;

■ Choose Blue from the Background Color pull-down list;

Finally, choose the font, style, and size of the label text:

■ Choose TimesRoman from the Font pull-down menu;

■ Choose Italic from the Style pull-down menu;

■ Choose 14 from the Size pull-down menu.

Note: The type of font displayed on a user’s system depends entirely on the fonts
that are local to that user’s computer. If a font name specified in a Java program
is not found on a user’s system, the closest possible match is used (as determined
by the Java AWT).

If you click on a cell that isn’t currently selected, you’ll be able to see your changes.

■ Click the button to commit the changes and return to the BeanBox.

Your changes are now visible in the BeanBox. You now have a basic table with labels
colored and text formatted to differentiate them from the rest of the table cells.

180 Part I ■ Using JClass LiveTable

Figure 48 Labels displayed with new colors and font

Label Layout
You can change the position of the labels relative to the table, and control their
distance from the table to help make the labels even more distinctive. By default,
labels are displayed right against the table border. You can make it stand off by using
the LabelLayout editor.

Figure 49 The LabelLayoutEditor

For this exercise, you are going to add some space between the column labels and
the top of the table.

■ Change the value of the Column text field from 0 to 2 in the Label Offset box.

The change is immediately reflected in the editor and the BeanBox.

■ Click the button to commit the changes and return to the BeanBox.

Having changed the alignment and font, your table should now look something like
the following illustration:

Chapter 9 ■ JClass LiveTable Beans and IDEs 181

Figure 50 The table with the changes

Changing the Cell Borders and Thickness
JClass LiveTable has properties that you can use to change the way the cell borders
and cell spacing appears.

There are a number of choices for cell borders, outlined above in the description of
the CellBorderType property. For the example program, you’re going to thicken
the cell borders and change the border style. You will have to edit two properties:
CellBorderWidth and CellBorderType.

To change the CellBorderWidth value, simply edit the value in the text box for the
CellBorderWidth property.

■ Set the value to 2 instead of the default (1).

To change the CellBorderType:

■ Choose BORDER_IN from the CellBorderType pull-down menu.

To set the BorderType for the column labels use the ColumnLabelBorderType
property. The properties are separate so that you can set different borders for cells
and labels:

■ Set this property to BORDER_OUT.

The table should now resemble the following in the BeanBox:

Figure 51 Example table with new borders

182 Part I ■ Using JClass LiveTable

9.4.3 Adding Interactivity

In a real-world situation, our example table would likely be used to track orders and
accounts with a large number of customers. Your users will likely want to update the
data, sort the information displayed in the table, and select sections of the table to
perform operations on them.

We’ll add some basic user-interactivity to our example table to give you a sense of
some of the things JClass LiveTable can do. You can explore user-interactivity
further in Chapter 6, Programming User Interactivity.

Controlling Cell Editability
Using the LiveTable Bean, the data source is editable by default. You can change the
editability of cells using the EditState property. Note that in the data source, KL
Group has ordered 22,000 pounds of coffee. This is obviously a typographical error,
but we’re going to make sure KL Group gets all 22,000 pounds of coffee by not
allowing that cell to be edited.

Invoke the EditState editor by clicking next to the EditState property:

Figure 52 The EditState editor with cell 6,3 selected

In our original data, the cell containing the value 22,000 was located at row 6,
column 3. You can either select this cell with the mouse, or type these values into the
Selected region box.

Note that each cell in the editor’s table reflects its current traversable and editable
state. A cell that is editable must also be traversable, but a cell that is traversable does
not necessarily have to be editable. For this particular cell, leave traversability on,
and simply unset its editability:

■ Uncheck the editable checkbox. This makes the cell traversable but not editable,
as is displayed in the editor’s table.

■ Click the button to commit the changes and return to the BeanBox.

Chapter 9 ■ JClass LiveTable Beans and IDEs 183

Now we can be sure that nobody will change KL Group’s coffee order!

Enabling Cell Selection
JClass LiveTable provides methods that set how users can select cells, ranges of cells,
and entire rows and columns. Selection is enabled by setting the SelectionPolicy
property. By default, cell selection reverses the foreground and background colors of
the cells to highlight the selection. You can enable selection by choosing a value from
the SelectionPolicy pull-down menu in the LiveTable property sheet.

Figure 53 The SelectionPolicy menu

Choose SELECT_MULTIRANGE. This allows users to select one or more cells in rows or
columns by clicking and dragging the mouse, or using keyboard combinations.

By default, setting the SelectionPolicy property enables selection of entire rows or
columns by clicking on the row or column label. When the user clicks on the column
label, the column display, including the label, is reversed to highlight the selection.
You can configure the table not to highlight the label by setting the
SelectIncludeLabels property to false.

Resizing using Labels Only
By default, users can resize rows, columns, and labels by clicking on their borders
and dragging to resize. You can change this functionality to have the resize capability
available only from the label: to resize a column, the user resizes its label rather than
its cells. LiveTable provides the ResizeByLabelsOnly property to enable this feature.
In the property sheet, change the ResizeByLabelsOnly property to true.

Enabling Column Sorting
It might be easier for your users to find certain information if they can sort the table
based on cell values in a column. That way they can find a customer name
alphabetically, or determine large orders by sorting the order amounts column.

A simple way to allow your users to sort a row or column is to set the
ColumnLabelSort property. This property takes a boolean value. Set this to true.

Changing the Focus Rectangle Color
Finally, some of your users have complained that it’s hard for them to see what cell
currently has focus because the focus rectangle is plain black. You can change the
color of the focus rectangle easily by setting the FocusRectColor property:

184 Part I ■ Using JClass LiveTable

Figure 54 Choosing color for the focus rectangle

When you click on the FocusRectColor property, the default color chooser appears.

Choose red from the color chooser. Now your users should be able to see the focus
rectangle clearly.

9.4.4 The Final Program

Your simple table program has evolved into an interactive, easy-to-understand utility.
Although it’s far from being a real order-tracking system, using a few more JClass
LiveTable features, it soon could be. The following illustration shows all of the visual
changes that you’ve accomplished. From here you can try out other properties and
see how they affect the table’s appearance and behavior.

Chapter 9 ■ JClass LiveTable Beans and IDEs 185

9.5 Data Binding with IDEs

If you are using an IDE to develop Java applets and applications, the LiveTable data
binding Beans allow you to bind a table with a JDBC–compliant data source, an
ODBC data source (by using the JDBC–ODBC bridge), or an IDE–specific data
source. Version 3.0 of LiveTable used the Model–View–Controller (MVC) data
mechanism, with which table data was stored in a separate object. LiveTable 3.5’s
data binding Beans extend this principle, where the direct link between the table
component and the IDE’s data source offers an easier and more efficient way of
representing and modifying data in your tables.

As outlined earlier in this chapter in JClass LiveTable and JavaBeans, LiveTable
includes three data binding Beans: JBdbTable is used with JBuilder’s DataSet,
VCdbTable is used with Visual Café’s QueryNavigator and DSdbTable is used with
any JDBC data source (and JClass DataSource) in any IDE.

The principles of data binding and connecting to a database in any environment are
similar. The following sections assume that you are:

■ familiar enough with your IDE or other development environment to create and
work with basic application projects

■ familiar with setting up database connectivity in your development
environment’s projects

Please note that the examples used in the following sections use a sample
JClassDemo database (demo.mdb) that is only included with JClass DataSource. As
such, these examples are primarily meant to illustrate data binding with IDEs, as you
will not be able to duplicate them if you do not have the sample database.

9.5.1 Data Binding LiveTable with a JBuilder Data Source

To data bind to a JBuilder’s DataSet using JBdbTable, you require:

■ Inprise JBuilder 2.0 or greater

■ JDK 1.1 or greater

■ JClass LiveTable’s JBdbTable Bean

■ a data source properly set up in Windows’ ODBC Data Source Administrator

Creating a Java application that contains a data bound table in JBuilder requires an
understanding of database connectivity in a JBuilder project. Binding your table with
a database in this IDE involves:

■ creating the project and laying out the UI

■ adding and configuring the Database component

■ adding and configuring the QueryDataSet component

■ adding and configuring the LiveTable data binding Bean (JBdbTable)

There are different methods and components with which a JBuilder project with
database connectivity can be created. The following provides a general overview of
data binding, as it is assumed that you are familiar with working with your IDE. For

186 Part I ■ Using JClass LiveTable

specific information, please refer to your JBuilder documentation, where
comprehensive tutorial and reference information can be found about setting up an
application project, and adding the Database and QueryDataSet components to
manage the JDBC connection, and communicating with the database.

Let’s begin with a basic project in JBuilder, where the UI components are set up,
readying the project for the addition of the database and data binding components.

Figure 55 Example project work space with defined UI components, ready for database components

Adding the Database Component to the Project
In the Data Express tab of the Component Palette, click the
borland.sql.dataset.Database object, designating it as the component to be
added. Next, click an empty area of the Component Tree. The database object is
added to your project.

Figure 56 Selecting the Database component on the Component Palette

Setting the Connection Property for the Database Component
Now that the database object has been inserted into your project, you need to define
the JDBC Connection information for this object. This is done by setting the
connection property in the Inspector, when the database object is selected.

It is here that you select the data source that you want bound to your table
component. All available data sources and DataGateway sources recognized by
JBuilder are listed and available to be set as the main data source. These data sources
are defined with Windows’ ODBC Administrator. In this example, the demo.mdb
database (JClassDemo) is selected.

Chapter 9 ■ JClass LiveTable Beans and IDEs 187

Adding the Database component and setting the connection properties adds the
following lines of code to your project:

import borland.sql.dataset.*;
...
Database database1 = new Database();
...
database1.setConnection(new borland.sql.dataset.ConnectionDescriptor

("jdbc:odbc:JClassDemo", "", "", false,
"sun.jdbc.odbc.JdbcOdbcDriver"));

This code introduces the database component (in this example, it is named as
database1) and points it to the data source that you define (in this example, the
sample demo.mdb database, JClassDemo is used).

Adding the QueryDataSet Component to the Project
Now that you have set up the link between your project and the desired database,
you need to interact with that database. In the Data Express tab of the Component
Palette, click the borland.sql.dataset.QueryDataSet object, designating it as the
component to be added. Next, click an empty area in the Component Tree. The
database query component is added to your project.

Figure 57 Selecting the QueryDataSet component on the Component Palette

Setting the Query Property for the QueryDataSet Component
Now that the QueryDataSet component has been added, you need to define which
parts of which database will be used. To do this, you need to query the database with
an SQL statement. This is done by setting the query property in the Inspector, when
the QueryDataSet object is selected.

In the query property area, select the database you just added, and browse the tables
if you have to get the proper information for your table. Enter the SQL statement
that represents your needs. Test it to be sure that such a query will be successful.

188 Part I ■ Using JClass LiveTable

Figure 58 Entering the query statement to the selected database

Adding the QueryDataSet component and setting the query property adds the
following lines of code to your project:

import java.util.*;
ReourceBundle sqlRes = ResourceBundle.getBundle("db_example.SqlRes");
...
QueryDataSet queryDataSet1 = new QueryDataSet();
...
queryDataSet1.setQuery(new borland.sql.dataset.QueryDescriptor

(database1, sqlRes.getString("OrderDetails"),null,true,Load.ALL));

This code defines a new QueryDataSet component (in this example, named
QueryDataSet1), which lets you read and write to and from the database by way of
SQL statements. It also defines which part of the database is extracted, and bound to
your table component. In this example, the OrderDetails table is selected with the
query statement.

Chapter 9 ■ JClass LiveTable Beans and IDEs 189

Figure 59 The project is ready for the table data binding component

Once the project’s database and database connectivity components are in place and
properly defined, the table component can be added, and the data binding can
occur.

Adding the LiveTable Data Binding Bean to the Table
When installing LiveTable 3.5, its JBuilder components, including the LiveTable data
binding Bean, were installed on JBuilder’s Component Palette. If they are not there,
please refer to Adding JClass LiveTable to Your IDE, in Chapter 1 for information
on manually adding LiveTable components to JBuilder’s Palette.

Click the table data binding Bean on the Component Palette, designating it to be
added. Next, insert the data binding table component by clicking anywhere in the
component tree (the table will be its default size), or by dragging and defining its size
in the UI Designer.

Figure 60 Selecting the data binding LiveTable component on the Component Palette

Setting the Dataset Property for the LiveTable Data Binding Component
Now that the data binding table component is part of the project, you need to define
its DataSet. This is done by setting the dataSet property in the Inspector, when the
table component is selected in the Component Tree.

190 Part I ■ Using JClass LiveTable

It is here that you set the property to the QueryDataSet component name that is part
of your project. In this example, the name of the component is queryDataSet1. This
action adds these lines of code to your .java file:

import jclass.table3.db.jbuilder.*;
...
jclass.table3.db.jbuilder.JBdbTable jBdbTable1 = new

jclass.table3.db.jbuilder.JBdbTable();
...
jBdbTable1.setDataSet(queryDataSet1);
...
this.add(jBdbTable1, BorderLayout.SOUTH);

This code introduces the LiveTable data binding Bean, and connects it to JBuilder’s
DataSet.

Figure 61 The project now contains a data bound table

Now that the table component has been linked to the QueryDataSet component, the
data bound table is part of the project. The project can now be compiled and run, or
continued to be developed.

9.5.2 Data Binding LiveTable with a Visual Café Data Source

To data bind to a Visual Café QueryNavigator using VCdbTable, you require:

■ Symantec Visual Café 2.5 or greater (Database Development Edition)

■ JDK 1.1 or greater

■ JClass LiveTable’s VCdbTable Bean

■ a data source properly set up in Windows’ ODBC Data Source Administrator

Creating a Java application that contains a data bound table in Visual Café requires
an understanding of database connectivity in an IDE project. Binding your table
with a database in Visual Café involves:

■ creating a project and laying out the UI

Chapter 9 ■ JClass LiveTable Beans and IDEs 191

■ adding the QueryNavigator database component with dbNAVIGATOR

■ adding the LiveTable data binding Bean (VCdbTable)

■ setting the table and QueryNavigator connection to data bind

There are different methods and components with which a Visual Café project with
database connectivity can be created. The following provides a general overview of
data binding, as it is assumed that you are familiar with working with your IDE. For
specific information, please refer to your Visual Café documentation, where
comprehensive tutorial and reference information can be found about using the
dbAWARE wizard to set up an application project, choosing the data source and
establishing a database connection with dbNAVIGATOR and dbAWARE.

Let’s begin with a basic Visual Café application project, where the UI components
are set up, readying the project for the addition of the database and data binding
components. Be sure that dbANYWHERE is running.

Figure 62 Example project with defined UI, and dbNAVIGATOR opened

Adding the QueryNavigator Database Component with dbNAVIGATOR
In order to perform this step, you must be running dbNAVIGATOR. Open it if you
have not done so yet. dbNAVIGATOR lists all of the data sources that you have
defined with Windows’ ODBC Administrator. For this example, the demo.mdb
database (JClassDemo) is selected.

192 Part I ■ Using JClass LiveTable

Figure 63 Making a selection from dbNAVIGATOR’s listing of the example JClassDemo database

Click the database table that you want to use, and drag it to the Form Designer. The
QueryNavigator appears where you placed it. This action adds the following lines of
code to your project:

C__db_demo__OrderDetails_Navigator =
new symantec.itools.db.beans.jdbcQueryNavigator();

C__db_demo__OrderDetails_Navigator.setAutoStart(true);
C__db_demo__OrderDetails_Navigator.setClassName

("C__db_demo__OrderDetails_Record");
C__db_demo__OrderDetails_Navigator.setAliasName

("C__db_demo__OrderDetails__Frame1_QNAlias");
...
symantec.itools.db.beans.jdbc.QueryNavigator

C__jclass_devt_jclass_table3_examples_db_demo__OrderDetails_Navigator;

This code brings the QueryNavigator component into the program, and directs its
queries to the chosen database and table (in this case OrderDetails in the
JClassDemo sample database).

Now that the QueryNavigator component is part of the application, you are ready to
add the LiveTable data binding Bean.

Adding the LiveTable Data Binding Bean
When installing LiveTable 3.5, its Visual Café components, including the LiveTable
data binding Bean, were installed on Visual Café’s Component Library. If they are
not there, please refer to Adding JClass LiveTable to Your IDE, in Chapter 1 for
information on manually adding LiveTable components to Visual Café’s Palette.

Click the table data binding Bean on the Component Palette, designating it to be
added. Next, insert the data binding table component by clicking anywhere in the
Form Designer (the table will be its default size), or by dragging and defining its size.

Chapter 9 ■ JClass LiveTable Beans and IDEs 193

Figure 64 Selecting the LiveTable data binding component

Inserting the table adds these lines of code to your project:

import jclass.table3.db.vcafe.VCdbTable;
...
vCdbTable1 = new jclass.table3.db.vcafe.VCdbTable();
add(vCdbTable1);
...
jclass.table3.db.vcafe.VCdbTable vCdbTable1;

This code simply introduces the LiveTable data binding bean (VCdbTable) into the
program. However, the presence of the table component is not enough: you need to
bind this table with the designated data source.

Setting the Table and QueryNavigator Connection to Data Bind
Click the QueryNavigator component in the Project window or Form Designer. In
the Property List, highlight the component’s Alias Name and copy it to the Windows
clipboard.

Next, click the LiveTable data binding component in the Project Window or Form
Designer. In the Property List, click the component’s DataBinding property to
access the DataBinding Custom Editor. In the Query Navigator Alias field, paste
the text that you copied from the QueryNavigator’s Alias Name property. Press Tab
to have the Full Name field filled in automatically. Then, type ALL in the Field
Name field to select all fields in the table.

Figure 65 Setting the data binding property so that the table (with no data) knows where to bind

194 Part I ■ Using JClass LiveTable

Once this has been done, you will not see any changes on the Form Designer, as
Visual Café does not show these changes at design time. Defining the table’s data
binding property, and connecting it to a data source adds this line of code to your
project:

vCdbTable1.setDataBinding("db_demo__OrderDetails__Frame1_QNAlias@ALL");

This line connects the table component to the desired table in the database, as
defined by the QueryNavigator (in this case, the OrderDetails table from the
JClassDemo sample database). You can now execute the project, or continue
development.

Figure 66 Executing the project produces a data bound table

9.5.3 Data Binding Using JClass DataSource

Using the DataSource data binding Bean (DSdbTable), you can bind a table
component with any JDBC–compliant data source. The DSdbTable Bean works in
any IDE1 but can also be used if you are developing an applet or application without
one. Data binding with the DSdbTable Bean requires:

■ Sun Microsystems’ Beans Development Kit or an IDE

■ JDK 1.1 or greater

■ JClass DataSource

■ JClass LiveTable’s DSdbTable Bean

■ a data source properly set up in Windows’ ODBC Data Source Administrator

1. If you are developing an application with JBuilder or Visual Café, you can use the specific data binding Beans
that were designed for use with them (JBdbTable and VCdbTable, respectively).

Chapter 9 ■ JClass LiveTable Beans and IDEs 195

When data binding your table component with a database, JClass DataSource
manages the connection and querying to the database in your development project.
Using the DSdbTable Bean creates a table component that connects with DataSource,
thus completing the data binding link.

JClass DataSource uses two data binding Beans: the DataBean and the
TreeDataBean. The DataBean allows data binding to flat data models, while the
TreeDataBean allows data binding to hierarchical data models. The following
example provides a general overview of data binding a LiveTable component to a
database in Sun’s Bean Development Kit.

It is assumed that you already are familiar with setting up a database connection with
JClass DataSource. For specific information, please refer to your JClass DataSource
documentation. Binding your table with a database involves:

■ creating a project in an IDE or the Beans Development Kit

■ establishing a database connection with DataBean or TreeDataBean

■ inputting database query statements with the DataBean or TreeDataBean’s
DataComponentEditor, or TreeDataBeanComponentEditor

■ adding the DSdbTable data binding Bean to the work area

Establish a database connection with the DataBean
Insert the DataBean into the design area. Doing this will allow you to begin working
with the DataComponentEditor in the BDK Properties window.

If desired, enter names in the Description and Model Name fields. In this example,
we will leave the BDK’s default names (Node1 and DataBean1). On the
Serialization tab, click Save As to save your serialization file. Next, click the Data
Model tab to specify which database you want to connect to.

You need to specify the Server Name and Driver on the Data Model \ JDBC \
Connection tab. For the purposes of this example, we are using the demo.mdb (JClass
Demo) database. In the Server Name field, enter or select jdbc:odbc:JClassDemo,
and in the Driver field, enter or select sun.jdbc.odbc.JdbcOdbcDriver. Ensure that
the Prompt User For Login checkbox is empty, and test the connection. When you
receive confirmation that the database connection is successful, you can begin to set
up the query statements.

196 Part I ■ Using JClass LiveTable

Figure 67 Connecting to the demo.mdb database in Sun’s Beans Development Kit

Inputting database query statements with the DataBean
In order to properly query the database you have connected to, you need to input
your query statement in the fields found on the Data Model \ JDBC \ SQL
Statement tab. For this example, the demo.mdb database contains various tables, one
of which is Customers. Enter select * from Customers to take all of the fields from
the demo.mdb’s customers table, then click Set.

Now that you’ve successfully connected to, and queried the database, click Done.

Chapter 9 ■ JClass LiveTable Beans and IDEs 197

Adding DSdbTable
The last step in creating a data bound table in your development project is adding
the actual table component. In the BDK’s Toolbox, click the DataSource data
binding Bean (DSdbTable) and drop it into the BeanBox design area. Doing this will
allow you to begin working with the DSdbTable properties in the Properties window.
In the list of properties, click the dataBinding property, and set the connection to
the appropriate data source. The data source is determined by what you entered in
the Description and Model Name fields in the DataBeanComponentEditor (if you
used the defaults in this example, they will be Node1 and DataBean1). The table
object will update to reflect the successful binding to the data source.

198 Part I ■ Using JClass LiveTable

At this point, you have a table component in your design area, that is bound to the
designated data source. You can now continue developing the rest of your
application.

9.6 Interacting with Data Bound Tables

When a data bound table component has been successfully placed into your applet
or application, you can interact with the table that takes advantage of the binding
between the component and the data source.

Figure 68 Interacting with the data bound table component

Chapter 9 ■ JClass LiveTable Beans and IDEs 199

These actions are accessible through the table component’s pop–up menu. By right–
clicking a record, or multiple selected records, a list of possible actions is presented
to the user.

Pop–up Menu Item Function

Insert Record Adds a new record to the current table and bound data
source.

Delete Record(s) Removes the selected row(s) from the current table and
bound data source.

Cancel Record(s) Cancels changes made to selected records.

Cancel All Cancels all changes made to all records.

Requery Record and Details Requeries the selected record(s) and any of its children
from the database.

Requery All Requeries all records in the table from the database.

Save Record(s) Commits changes to selected records in the table, and
updates the bound data source.

Save All Commits all changes made in the table to the database

200 Part I ■ Using JClass LiveTable

9.7 Property Differences Between the LiveTable and Data Binding
Beans

Most of the common properties of the three data binding Beans (JBdbTable,
VCdbTable, DSdbTable), are the same as the LiveTable Bean. By retaining most of
the LiveTable Bean properties (outlined in LiveTable Properties), the new Beans
provide feature–rich data binding table components.

The following data binding Bean properties are either unavailable, or have a new
editors.

Data binding Bean Property difference from LiveTable Bean

Appearance same property; new editor

CellSize unavailable in the data binding Beans

CommitPolicy unavailable in LiveTable

Data unavailable: replaced by specific data binding properties

FrozenRow unavailable in the data binding Beans

LeftColumn unavailable: data bound table always starts at column 0

RowLabelDisplay unavailable in the data binding Beans

SpanningCells unavailable in the data binding Beans

TopRow unavailable: data bound table always starts at row 0

TraverseCycle unavailable: always on in the data binding Beans

Part
II

Reference
Appendices

203

A
Event Summary

This table is a quick reference to JClass LiveTable’s events and their corresponding
event listeners. For details on how to use events and listeners in your programs, see
Chapter 7, Events and Listeners.

Event Listener Method Description

JCAdjustmentEvent addAdjustmentListener Under JDK 1.1, it is a trivial extension
of
java.awt.event.AdjustmentEvent.
Under JDK 1.0.2, it is a replacement for
JDK 1.1’s
java.awt.event.AdjustmentEvent.

JCCellDisplayEvent addCellDisplayListener Posted when a cell’s contents are to be
displayed in the table.

JCCreateComponentEvent addCreateComponentListener Posted when a single component has
been specified for multiple cells, or a
component is specified in the
componentList value in an HTML file.

JCDisplayComponentEvent addDisplayComponentListener Posted before drawing a component in
a cell or label.

JCEnterCellEvent addEnterCellListener Posted before and after completing a
traversal from one cell to another.

JCPaintEvent addPaintListener Posted when a portion of the table is
painted.

JCPrintEvent addPrintListener The event posted for each page during
printing.

JCResizeCellEvent addResizeCellListener Posted when the table is resized.

JCScrollEvent addScrollListener Posted when a user resizes a row
and/or column.

JCSelectEvent addSelectListener Posted when a user selects cells.

JCSortEvent addSortListener Posted after a call to sortByColumn.

204 Part II ■ Reference Appendices

JCTraverseCellEvent addTraverseCellListener Posted when a user traverses from one
cell to another.

JCValidateCellEvent
(JClass LiveTable 2.x
compatibility)

JCTable.addValidateCellListener Posted when a cell has been edited,
both before and after an edit has been
committed to cell value structures.

JCValueEvent
(JClass LiveTable 2.x
compatibility)

JCTable.addCellValueListener
JCTable.addLabelValueListener

Posted whenever the table displays an
empty cell or label (one which has no
value as described by the internal
vector of the table).
This event will be posted during the
initial table display, scrolling and table
repaint.

TableDataEvent TableData.addTableDataListener Describes changes to a TableData
object.

TableInitialEvent addInitialEventListener InitialEvent objects are used to tell
CellEditor classes what event started
the edit.

Event Listener Method Description

205

B
JClass LiveTable Property Listing

Properties of jclass.table3.Table ■ Properties of jclass.table3.LiveTable

Properties of jclass.table3.db.jbuilder.JBdbTable ■ Properties of jclass.table3.db.vcafe.VCdbTable
Properties of jclass.table3.db.datasource.DSdbTable

The following lists summarize all of the JClass LiveTable properties. Each of these
properties have two accessor methods: set and get. Methods are instantiated using
set(PropertyName), and you can retrieve the current value of any property using the
property’s get method.

The lists below are organized by the class that their accessor methods are called in,
and further by the type of property. The lists show the property, a brief description,
and either its enumerable value, defined by JCTblEnum or an example of a value for
setting the property. Default values are marked with an asterisk (*).

B.1 Properties of jclass.table3.Table

Properties controlling table design elements

Name Description Values/Examples

Alignment The Alignment property specifies the
alignment of cell or label text or images.
This property can also be set for a
JCCellRange of cells.

JCTblEnum.TOPLEFT*
JCTblEnum.TOPCENTER
JCTblEnum.TOPRIGHT
JCTblEnum.MIDDLELEFT
JCTblEnum.MIDDLECENTER
JCTblEnum.MIDDLERIGHT
JCTblEnum.BOTTOMLEFT
JCTblEnum.BOTTOMCENTER
JCTblEnum.BOTTOMRIGHT

Background Background color for the entire table. array of colors

CellBorderColor Specifies border colors single color value

206 Part II ■ Reference Appendices

CellBorderSides Visible border sides (defined by
CellBorderType) for individual cells.

JCTblEnum.BORDERSIDE_NONE
JCTblEnum.BORDERSIDE_ALL*
JCTblEnum.BORDERSIDE_LEFT
JCTblEnum.BORDERSIDE_RIGHT
JCTblEnum.BORDERSIDE_TOP
JCTblEnum.BORDERSIDE_BOTTOM

CellBorderType Border types for individual cells. JCTblEnum.BORDER_ETCHED_IN
JCTblEnum.BORDER_ETCHED_OUT
JCTblEnum.BORDER_FRAME_IN
JCTblEnum.BORDER_FRAME_OUT
JCTblEnum.BORDER_IN
JCTblEnum.BORDER_OUT
JCTblEnum.BORDER_PLAIN
JCTblEnum.BORDER_NONE

CellBorderWidth Sets the shadow thickness around each
cell.

integer: number of pixels

CharHeight Height in characters of individual cells. specific row number,
JCTblEnum.LABEL, or JCTblEnum.ALL,
plus the number of characters

CharWidth Width of column in characters. specific column number, JCTblEnum.LABEL,
or JCTblEnum.ALL, plus the number of
characters

ClipArrows Determines whether clip arrows are
shown, and where, when the contents of
the cell do not fit in the cell frame.

JCTblEnum.CLIP_ARROWS_BOTH
JCTblEnum.CLIP_ARROWS_RIGHT
JCTblEnum.CLIP_ARROWS_LEFT
JCTblEnum.CLIP_ARROWS_NONE

ColumnLabelDisplay Determines whether the column labels
display in the table.

boolean (default: true)

ColumnLabelOffset Distance between column labels and
table cells.

pixels (default: 0)
e.g., setColumnLabelOffset(4)

ColumnLabelPlacement Location of the column labels (top or
bottom of the table).

JCTblEnum.PLACE_TOP*
JCTblEnum.PLACE_BOTTOM

Cursor Creates a cursor and determines the
cursor type.

Cursor.CROSSHAIR_CURSOR
Cursor.DEFAULT_CURSOR
Cursor.E_RESIZE_CURSOR
Cursor.HAND_CURSOR
Cursor.MOVE_CURSOR
Cursor.N_RESIZE_CURSOR
Cursor.NE_RESIZE_CURSOR
Cursor.NW_RESIZE_CURSOR
Cursor.S_RESIZE_CURSOR
Cursor.SE_RESIZE_CURSOR
Cursor.SW_RESIZE_CURSOR
Cursor.TEXT_CURSOR
Cursor.W_RESIZE_CURSOR
Cursor.WAIT_CURSOR

Properties controlling table design elements

Name Description Values/Examples

Outliner

Appendix B ■ JClass LiveTable Property Listing 207

FocusRectColor The color of the focus rectangle. context and color name, e.g.,
setFocusRectColor(Color.blue);

Font Sets the font for the entire table. array of colors

Foreground Sets the foreground color for the entire
table.

array of colors

FrameBorderType Border type for the frame around the
table. FrameBorderWidth must be set
to greater than zero for the border to be
visible.

JCTblEnum.BORDER_IN*
JCTblEnum.BORDER_NONE
JCTblEnum.BORDER_ETCHED_IN
JCTblEnum.BORDER_ETCHED_OUT
JCTblEnum.BORDER_OUT
JCTblEnum.BORDER_PLAIN

FrameBorderWidth Thickness of the frame around the entire
table.

pixels (default:0), e.g.,
setFrameBorderWidth(5);

FrozenColumnPlacement Sets the location of all frozen columns
within the component display. Changing
the placement of frozen columns does
not change the location of the columns in
the table’s internal CellValues.

JCTblEnum.PLACE_LEFT*
JCTblEnum.PLACE_RIGHT

FrozenColumns Specifies the number of columns from
the start of the table that are not
horizontally scrollable.

number of columns to freeze e.g.,
setFrozenColumns(3);

FrozenRowPlacment Specifies the location of all frozen rows. JCTblEnum.PLACE_TOP*
JCTblEnum.PLACE_BOTTOM

FrozenRows Specifies the number of rows from the
start of the table that are not vertically
scrollable.

number of rows to freeze, e.g.,
setFrozenRows(2);

IgnoreContainerSize Specifies if the container determines the
size of the table.
Should be set to true when the table is
set on a scroll pane, as the table will then
take the maximum amount of space to
display all of the cells.

boolean (default: false)

LeftColumn Indicates the non-frozen column at least
partially visible at the left side of the
window.

integer: column number

MarginHeight Specifies the distance (in pixels) between
the inside edge of the cell border.

integer: pixels
e.g., setMarginHeight(4);

MarginWidth Specifies the distance (in pixels) between
the inside edge of the cell border and the
left/right edge of the cell’s contents.

integer: pixels
e.g., setMarginWidth(3);

MaxLength Maximum content length for individual
cells.

integer, (default: MAXINT)

MinCellVisibility Minimum visible percentage of a cell. integer: 1 to 100

Properties controlling table design elements

Name Description Values/Examples

208 Part II ■ Reference Appendices

Mode Determines table operation - table or list. JCTblEnum.MODE_LIST
JCTblEnum.MODE_TABLE

PixelHeight Row height in pixels. This property
controls the height unless set to
JCTblEnum.NOVALUE.

integer value (pixels)
Special values:
JCTblEnum.VARIABLE
JCTblEnum.AS_IS
JCTblEnum.VARIABLE_ESTIMATE

PixelWidth Column width in pixels. This property
controls the width unless set to
JCTblEnum.NOVALUE.

integer value (pixels)
Special values:
JCTblEnum.VARIABLE
JCTblEnum.AS_IS
JCTblEnum.VARIABLE_ESTIMATE

PopupMenuEnabled Determines whether or not to display the
table pop menu.

boolean value
default: false for LiveTable and
JCTableComponent
default: true for JBdbTable, VCdbTable and
DSdbTable

RepeatBackgroundColors Repeat pattern for background colors. array of colors

RepeatForegroundColors Repeat pattern for foreground colors. array of colors

RowLabelDisplay This property has a boolean value to
determine whether the row labels display
in the table

boolean value
default: true

RowLabelOffset Offset between row labels and table. integer: number of pixels

RowLabelPlacement Location of the row labels. JCTblEnum.PLACE_LEFT
JCTblEnum.PLACE_RIGHT

TopRow Indicates the non-frozen row at least
partially visible at the top of the table.

integer: row number

VisibleColumns Sets the number of columns used to
determine the initial table size. This value
is not updated when columns or the table
are resized.

integer: number of visible columns

VisibleRows Sets the number of rows used to
determine the initial table size. This value
is not updated when rows or the table are
resized.

integer: number of visible rows

Properties controlling table design elements

Name Description Values/Examples

Outliner

Appendix B ■ JClass LiveTable Property Listing 209

Properties controlling user interaction

Name Description Values/Examples

ActionKey Sets the key and modifier to initiate an
action on the table.

JCTblEnum.ACTION_COPY
JCTblEnum.ACTION_PASTE

AdvancedEditorRenderers Determines if the advanced field
editors and renderers are used.

boolean (default: true)

AllowCellResize The AllowCellResize property
specifies whether an end user is able
to resize rows and columns.

JCTblEnum.RESIZE_ALL*
JCTblEnum.RESIZE_NONE
JCTblEnum.RESIZE_COLUMNS
JCTblEnum.RESIZE_ROWS

AutoScroll Specifies the table’s scrolling behavior
when user selection or dragging
moves past the bounds of the table.

JCTblEnum.AUTO_SCROLL_NONE*
JCTblEnum.AUTO_SCROLL_ROW
JCTblEnum.AUTO_SCROLL_COLUMN
JCTblEnum.AUTO_SCROLL_BOTH

CellEditor Retrieves the component associated
with the current editor.
Returns null value if no cell selected.

Based on type
Non–advanced:
Boolean – BooleanCellEditor
Date – DateCellEditor
Double – DoubleCellEditor
Integer – IntegerCellEditor
JCString – JCStringCellEditor
String – TextCellEditor

CellRenderer Based on type
Non–advanced:
Image – ImageCellRenderer
JCString – JCStringCellRenderer
String – String CellRenderer
Object – StringCellRenderer

CellTrigger Maps user events into cell label
actions.

none

ColumnTrigger Sets the value of the ColumnTrigger
property. The ColumnTrigger
property maps user events into
column label actions. The
ColumnTrigger property is made up
of a number of LabelTrigger
objects.

Requires Event and Action parameters:
Events include:
Event.SHIFT_MASK
Event.CTRL_MASK
Event.ALT_MASK
Event.META_MASK
Actions are:
LabelTrigger.SORT
LabelTrigger.DRAG

Under JDK 1.1, you can specify a mouse
button for the Event:
InputEvent.Button1_MASK
InputEvent.Button2_MASK
InputEvent.Button3_MASK
e.g.
setColumnTrigger(Event.SHIFT_MASK,
LabelTrigger.SORT);

Component AWT components in individual cells. row and column index, component

210 Part II ■ Reference Appendices

DataSource Specifies the table’s data source (any
object that implements the TableData
interface).

data source object

DoubleBuffer Determines whether double buffering
is used.

boolean value (default:false)

Editable Editable attribute for individual cells,
JCTblEnum values, or JCCellRange
ranges. Contingent on whether the
data source is editable. Useful for
disabling editing for a single cell.

row and column + boolean value (default: true)
e.g., setEditable(3, 2, false);

EditHeightPolicy Vertical sizing policy for cell editors. JCTblEnum.EDIT_SIZE_TO_CELL
JCTblEnum.EDIT_ENSURE_MINIMUM_SIZE
JCTblEnum.EDIT_ENSURE_PREFERRED_SIZE

EditWidthPolicy Horizontal sizing policy for cell editors. JCTblEnum.EDIT_SIZE_TO_CELL
JCTblEnum.EDIT_ENSURE_MINIMUM_SIZE
JCTblEnum.EDIT_ENSURE_PREFERRED_SIZE

HorizSB Specifies a horizontal scrollbar
component other than the default
provided with JClass LiveTable. Note:
the specified component must
implement JCAdjustable

e.g., setHorizSB(java.awt.Scrollbar);

HorizSBAttachment Attach point for horizontal scrollbar.
When set to ATTACH_CELLS, the
scrollbar ends at the edge of the
visible cells. When set to
ATTACH_SIDE, the scrollbar is
attached to the whole side of the table.

JCTblEnum.ATTACH_CELLS*
JCTblEnum.ATTACH_SIDE

HorizSBDisplay Determines when to display horizontal
scrollbar.

JCTblEnum.SBDISPLAY_ALWAYS
JCTblEnum.SBDISPLAY_NEVER
JCTblEnum.SBDISPLAY_AS_NEEDED*

HorizSBOffset Distance between the table and
horizontal scrollbar in pixels.

integer: number of pixels
e.g., setHorizSBOffset(3);

HorizSBPosition Position of horizontal scrollbar. When
set to SBPOSITION_CELLS, the
scrollbar is attached to the visible
cells. When set to SBPOSITION_SIDE,
the scrollbar is attached to the whole
side of the table.

JCTblEnum.SBPOSITION_CELLS*
JCTblEnum.SBPOSITION_SIDE

JumpScroll Determines whether the table will
visually scroll smoothly or whether the
display will ‘jump’ to display the cells
scrolled to.

JCTblEnum.JUMP_NONE*
JCTblEnum.JUMP_HORIZONTAL
JCTblEnum.JUMP_VERTICAL
JCTblEnum.JUMP_ALL

Mode Sets table resources to list mode or
table mode.

JCTblEnum.MODE_LIST
JCTblEnum.MODE_TABLE

Multiline Sets whether data is displayed with
multiple lines.

boolean (default: false)

Properties controlling user interaction

Name Description Values/Examples

Outliner

Appendix B ■ JClass LiveTable Property Listing 211

Repaint Sets whether the table should be
redrawn and recomputed whenever
one of its properties is set.

boolean, (default: true)

ResizeByLabelsOnly This property controls whether
resizing can only be done with labels.
If set to true, users can resize rows
and columns only by resizing their
respective labels.

boolean value (default: false)

ResizeEven Specifies that when a user resizes a
row or column, all of the rows or
columns also resize the same amount.

boolean value (default: false)

RowTrigger Sets the value of the RowTrigger
property at a specified index. The
RowTrigger property is an indexed
property, and int contains all the
information necessary to map user
events into column label actions. The
RowTrigger property is made up of a
number of RowTrigger objects.

Requires Event and Action parameters:
Events include:
Event.SHIFT_MASK
Event.CTRL_MASK
Event.ALT_MASK
Event.META_MASK
Actions are:
LabelTrigger.SORT
LabelTrigger.DRAG

Under JDK 1.1, you can specify a mouse
button for the Event:
InputEvent.Button1_MASK
InputEvent.Button2_MASK
InputEvent.Button3_MASK
e.g. setRowTrigger(Event.CTRL_MASK,
LabelTrigger.DRAG);

SelectedBackground Background color for cells that have
been selected. The default is the cells’
foreground color.

Color value:
e.g.,
setSelectedBackground(Color.yellow);

SelectedCells List of selected cells. Vector or JCCellRange

SelectedForeground Foreground color for cells that have
been selected. The default is the cells’
background color.

Color value:
e.g.,
setSelectedForeground(Color.blue);

SelectIncludeLabels Sets the selection behavior for row
and column labels. When true, full
column or row selections do not
change the visible properties of the
label. When false, the row or column
label is changed.

boolean (default: true)

SelectionMode Specifies the mode for selecting,
based on cells, rows or columns.

JCTblEnum.SELECT_CELL*
JCTblEnum.SELECT_ROW
JCTblEnum.SELECT_COLUMN

Properties controlling user interaction

Name Description Values/Examples

212 Part II ■ Reference Appendices

SelectionPolicy Sets the type of allowable selection. JCTblEnum.SELECT_NONE
JCTblEnum.SELECT_SINGLE
JCTblEnum.SELECT_RANGE
JCTblEnum.SELECT_MULTIRANGE

SortSeries Specifies if series are sorted when the
table is sorted. If set as true, the series
information sorts with the table data.

boolean (default: true)

Spans Array of currently-spanned ranges of
cells or labels.

array

StringCase String case (upper/lower/as-is) for
cells, JCTblEnum values, or
JCCellRange ranges.

JCTblEnum.CASE_LOWER
JCTblEnum.CASE_AS_IS
JCTblEnum.CASE_UPPER

TrackCursor Determines whether the cursor
changes.

boolean (default: true)

TrackJCStringURL Determines whether URLs are
detected when JCStrings are in the
table.

boolean (default: true)

Traversable Allows traversal of individual cells. boolean (default: true)

TraverseCycle Specifies that when a user traverses to
past the top, bottom, left, or right of
the table, the traversal wraps to the
opposite side.

boolean (default: true)

Userdata Sets a user data object that the
application can attach (to what?).

null for all cells

VariableEstimateCount Sets the number of cells to use in
estimating variable pixel calculations.

default: JCTblEnum.ALL

VertSB Specifies a vertical scrollbar
component other than the default
provided with JClass LiveTable. Note:
the specified component must
implement JCAdjustable

e.g., setVertSB(component);

VertSBAttachment Attach point for vertical scrollbar.
When set to ATTACH_CELLS, the
scrollbar ends at the edge of the
visible cells. When set to
ATTACH_SIDE, the scrollbar is
attached to the whole side of the table.

JCTblEnum.ATTACH_CELLS
JCTblEnum.ATTACH_SIDE

VertSBDisplay Determines when to display vertical
scrollbar.

JCTblEnum.SBDISPLAY_ALWAYS
JCTblEnum.SBDISPLAY_NEVER
JCTblEnum.SBDISPLAY_AS_NEEDED

VertSBOffset Distance between the table and vertical
scrollbar.

integer: number of pixels
e.g., setVertSBOffset(4);

Properties controlling user interaction

Name Description Values/Examples

Outliner

Appendix B ■ JClass LiveTable Property Listing 213

B.2 Properties of jclass.table3.LiveTable

VertSBPosition Position of vertical scrollbar. When set
to SBPOSITION_CELLS, the scrollbar
is attached to the visible cells. When
set to SBPOSITION_SIDE, the
scrollbar is attached to the whole side
of the table.

JCTblEnum.SBPOSITION_CELLS
JCTblEnum.SBPOSITION_SIDE

Name Description

about Displays component version and contact information

advancedEditorRenderers Determines if the advanced field editors and renderers are used

allowCellResize Determines whether end-user can resize cells at run-time

appearance Specifies cell/label fonts and foreground/background colors

autoScroll Determines whether table scrolls during selection/traversal

background Specifies component background color

cellBorderType Specifies cell/label border types

cellBorderWidth Specifies width of cell/label borders

cellSize Specifies row heights and column widths

columnLabelBorderType Specifies column label border types

columnLabelDisplay Determines whether to display column labels

columnLabelSort Determines whether end-user can sort table by clicking column labels

data Specifies table data, data source, and row/column labels

displayClipArrows Determines whether arrows display when cell contents are clipped

doubleBuffer Determines whether to double-buffer table repaints

editHeightPolicy Determines height control of cell editing components

editState Determines whether cells are traversable and editable

editWidthPolicy Determines width control of cell editing components

focusRectColor Specifies color of line drawn around current cell

foreground Specifies component foreground color

frameBorderType Specifies frame border type

frameBorderWidth Specifies frame border width

frozenCellLayout Determines the position of frozen rows/columns

frozenColumns Specifies the number of frozen columns

frozenRows Specifies the number of frozen rows

horizSBDisplay Determines when to display horizontal scrollbar

jumpScroll Determines whether to scroll smoothly or jump by whole row/column

Properties controlling user interaction

Name Description Values/Examples

214 Part II ■ Reference Appendices

B.3 Properties of jclass.table3.db.jbuilder.JBdbTable

labelLayout Determines the position of row/column labels

leftColumn Specifies first column displayed on screen

marginHeight Specifies top and bottom cell margins

marginWidth Specifies left and right cell margins

minCellVisibility Determines amount of cell scrolled into view during traversal

popupMenuEnabled Determines whether to display table popup menu

printSettings Sets the pop menu printing options

resizeByLabelsOnly Determines whether end-user can resize cells by labels only

resizeEven Determines whether end-user resizing affects all rows/columns

rowLabelBorderType Specifies row label border types

rowLabelDisplay Determines whether to display row labels

selectedBackground Specifies the background (highlight) color of selected cells

selectedForeground Specifies the foreground (highlight) color of selected cells

selectIncludeLabels Determines whether selection includes row/column labels

sBLayout Determines the space between scrollbars and cells

selectionPolicy Determines type of cell selection allowed

spanningCells Specifies cell ranges to treat as spanned cells

swingDataModel Sets the table’s data source to use a specified Swing TableModel object,
instead of using the data property

textPositioning Specifies cell/label text alignments

topRow Specifies first row displayed on screen

trackCursor Determines whether mouse pointer is tracked over the table

traverseCycle Determines whether traversal can cycle to opposite side of table

vertSBDisplay Determines when to display vertical scrollbar

Name Description

about Displays data aware component version and contact information

advancedEditorRenderers Determines whether to use advanced field editor and renderers

appearance Specifies column fonts and foreground/background colors

allowCellResize Determines whether end-user can resize cells at run-time

autoScroll Determines whether table scrolls during selection/traversal

background Specifies component background color

cellBorderType Specifies cell/label border types

cellBorderWidth Specifies width of cell/label borders

columnLabelBorderType Specifies column label border types

Name Description

Outliner

Appendix B ■ JClass LiveTable Property Listing 215

columnLabelDisplay Determines whether to display column labels

columnLabelSort Determines whether end-user can sort table by clicking column labels

dataSet Specifies table data source

displayClipArrows Determines whether arrows display when cell contents are clipped

doubleBuffer Determines whether to double-buffer table repaints

editHeightPolicy Determines height control of cell editing components

editState Determines whether cells are traversable and editable

editWidthPolicy Determines width control of cell editing components

focusRectColor Specifies color of line drawn around current cell

foreground Specifies component foreground color

frameBorderType Specifies frame border type

frameBorderWidth Specifies frame border width

frozenCellLayout Determines the position of frozen columns

frozenColumns Specifies the number of frozen columns

horizSBDisplay Determines when to display horizontal scrollbar

jumpScroll Determines whether to scroll smoothly or jump by whole row/column

labelLayout Determines the position of row/column labels

leftColumn Specifies first column displayed on screen

marginHeight Specifies top and bottom cell margins

marginWidth Specifies left and right cell margins

minCellVisibility Determines amount of cell scrolled into view during traversal

popupMenuEnabled Determines whether to display table popup menu

printSettings Configures the popup menu printing options

resizeByLabelsOnly Determines whether end-user can resize cells by labels only

resizeEven Determines whether end-user resizing affects all rows/columns

rowLabelBorderType Specifies row label border types

rowLabelDisplay Determines whether to display row labels

selectedBackground Specifies the background (highlight) color of selected cells

selectedForeground Specifies the foreground (highlight) color of selected cells

selectIncludeLabels Determines whether selection includes row/column labels

sBLayout Determines the space between scrollbars and cells

selectionPolicy Determines type of cell selection allowed

textPositioning Specifies cell/label text alignments

trackCursor Determines whether mouse pointer is tracked over the table

useDataSourceEditable Determines whether the editable column state is defined by the data source
or the table

vertSBDisplay Determines when to display vertical scrollbar

Name Description

216 Part II ■ Reference Appendices

B.4 Properties of jclass.table3.db.vcafe.VCdbTable

Property Description

about Displays data aware component version and contact information

advancedEditorRenderers Determines whether to use advanced field editor and renderers

appearance Specifies column fonts and foreground/background colors

allowCellResize Determines whether end-user can resize cells at run-time

autoScroll Determines whether table scrolls during selection/traversal

background Specifies component background color

cellBorderType Specifies cell/label border types

cellBorderWidth Specifies width of cell/label borders

columnLabelBorderType Specifies column label border types

columnLabelDisplay Determines whether to display column labels

columnLabelSort Determines whether end-user can sort table by clicking column labels

dataBinding Specifies the table data source

displayClipArrows Determines whether arrows display when cell contents are clipped

doubleBuffer Determines whether to double-buffer table repaints

editHeightPolicy Determines height control of cell editing components

editState Determines whether cells are traversable and editable

editWidthPolicy Determines width control of cell editing components

focusRectColor Specifies color of line drawn around current cell

foreground Specifies component foreground color

frameBorderType Specifies frame border type

frameBorderWidth Specifies frame border width

frozenCellLayout Determines the position of frozen columns

frozenColumns Specifies the number of frozen columns

horizSBDisplay Determines when to display horizontal scrollbar

jumpScroll Determines whether to scroll smoothly or jump by whole row/column

labelLayout Determines the position of row/column labels

leftColumn Specifies first column displayed on screen

marginHeight Specifies top and bottom cell margins

marginWidth Specifies left and right cell margins

minCellVisibility Determines amount of cell scrolled into view during traversal

popupMenuEnabled Determines whether to display table popup menu

printSettings Configures the popup menu printing options

resizeByLabelsOnly Determines whether end-user can resize cells by labels only

resizeEven Determines whether end-user resizing affects all rows/columns

rowLabelBorderType Specifies row label border types

Outliner

Appendix B ■ JClass LiveTable Property Listing 217

B.5 Properties of jclass.table3.db.datasource.DSdbTable

rowLabelDisplay Determines whether to display row labels

selectedBackground Specifies the background (highlight) color of selected cells

selectedForeground Specifies the foreground (highlight) color of selected cells

selectIncludeLabels Determines whether selection includes row/column labels

sBLayout Determines the space between scrollbars and cells

selectionPolicy Determines type of cell selection allowed

textPositioning Specifies cell/label text alignments

trackCursor Determines whether mouse pointer is tracked over the table

useDataSourceEditable Deteremines whether the editable column state is defined by the data
source or the table

vertSBDisplay Determines when to display vertical scrollbar

Property Description

about Displays data aware component version and contact information

advancedEditorRenderers Determines whether to use advanced field editor and renderers

appearance Specifies column fonts and foreground/background colors

allowCellResize Determines whether end-user can resize cells at run-time

autoScroll Determines whether table scrolls during selection/traversal

background Specifies component background color

cellBorderType Specifies cell/label border types

cellBorderWidth Specifies width of cell/label borders

columnLabelBorderType Specifies column label border types

columnLabelDisplay Determines whether to display column labels

columnLabelSort Determines whether end-user can sort table by clicking column labels

dataBinding Specifies table data source

displayClipArrows Determines whether arrows display when cell contents are clipped

doubleBuffer Determines whether to double-buffer table repaints

editHeightPolicy Determines height control of cell editing components

editState Determines whether cells are traversable and editable

editWidthPolicy Determines width control of cell editing components

focusRectColor Specifies color of line drawn around current cell

foreground Specifies component foreground color

frameBorderType Specifies frame border type

frameBorderWidth Specifies frame border width

frozenCellLayout Determines the position of frozen columns

Property Description

218 Part II ■ Reference Appendices

frozenColumns Specifies the number of frozen columns

horizSBDisplay Determines when to display horizontal scrollbar

jumpScroll Determines whether to scroll smoothly or jump by whole row/column

labelLayout Determines the position of row/column labels

leftColumn Specifies first column displayed on screen

marginHeight Specifies top and bottom cell margins

marginWidth Specifies left and right cell margins

minCellVisibility Determines amount of cell scrolled into view during traversal

popupMenuEnabled Determines whether to display table popup menu

printSettings Configures the popup menu printing options

resizeByLabelsOnly Determines whether end-user can resize cells by labels only

resizeEven Determines whether end-user resizing affects all rows/columns

rowLabelBorderType Specifies row label border types

rowLabelDisplay Determines whether to display row labels

selectedBackground Specifies the background (highlight) color of selected cells

selectedForeground Specifies the foreground (highlight) color of selected cells

selectIncludeLabels Determines whether selection includes row/column labels

sBLayout Determines the space between scrollbars and cells

selectionPolicy Determines type of cell selection allowed

textPositioning Specifies cell/label text alignments

trackCursor Determines whether mouse pointer is tracked over the table

useDatasourceEditable Deteremines whether the editable column state is defined by the data
source or the table

vertSBDisplay Determines when to display vertical scrollbar

Property Description

219

C
Moving from JClass
LiveTable 2.x to 3.x

Overview ■ What’s New ■ What’s Removed

What’s Different ■ Using the Transitional JCTable Class

C.1 Overview

We have made significant changes and improvements to JClass LiveTable 3.x from
LiveTable 2.x. These changes range from fundamental operations to new method
names. These changes include:

■ A new data source mechanism where data is stored in an external object; see
Chapter 4, Working with Table Data.

■ A new way of rendering and editing cell data; see Chapter 5, Displaying and
Editing Cells.

■ Property name changes to clarify the property functions.

■ Added features.

■ New JavaBeans (LiveTable) and Bean property editors; see Chapter 9, JClass
LiveTable Beans and IDEs.

■ A compatibility class to allow you to use your JClass LiveTable 2.x code in the
new LiveTable 3.x package (see Using the Transitional JCTable Class below).

The major differences between JClass LiveTable 2.x and 3.x are outlined in What’s
Different, below.

220 Part II ■ Reference Appendices

C.2 What’s New

JClass LiveTable 3.x contains some new features that are not available in JClass
LiveTable 2.x. The following is a brief explanation of the new features:

Control Label Display
By default, row and column labels are not displayed in JClass LiveTable 3.x. To
display row and column labels, set the RowLabelDisplay and ColumnLabelDisplay
properties to true.

Control Editor Component Display
LiveTable 3.x contains methods that allow you to control how cell editors behave
with respect to the cells in which they are displayed. The editHeightPolicy and
editWidthPolicy properties determine how the editor fits according to the height
and width of the cell, respectively.

Control Focus Rectangle Color
JClass LiveTable 3.x gives you control over the color of the focus rectangle using the
setFocusRectColor() method. This method can take any of the 13 AWT color
constants as its value.

Customizable Scrollbars
You can now implement the JCAdjustable interface to attach your own scrollbars to
tables.

New Resize Behavior
You can set LiveTable 3.x to make it possible for users to resize rows and columns
only by dragging the borders between row and column labels. They will not be able
to resize the rows and columns by dragging individual cell borders. This behavior is
similar to some popular grid-based software currently available.

In addition, you can set the table so that when a user resizes a column or row, all of
the rows or columns in the table resize to the same width or height. To do so, set the
ResizeEven property to true.

New Selection Behavior
Two new properties have been added to allow more detailed control of cell selection
in JClass LiveTable applications and applets (see Chapter 6, Programming User
Interactivity for details):

SelectIncludeLabels specifies whether the label is included in the selection when a
user clicks on a row or column label to select the row or column.

SelectionMode allows you to control whether selections occur based on rows,
columns, or cells.

New Traversal Behavior
A new property—TraverseCycle—has been included with JClass LiveTable 3.x to set
traversals to wrap around the table to the other side. For example, if the user

Outliner

Appendix C ■ Moving from JClass LiveTable 2.x to 3.x 221

traverses to the last column in the table, then traverses right once more, the current
cell focus will be back at the beginning of the table on the next row down. The
property takes a boolean value.

Column and Row Event Triggers
In JClass LiveTable 3.x, you can set triggers on column and row labels to respond to
key+mouse-click combinations (or under JDK 1.1, alternate mouse button clicks) to
perform sorting and dragging actions. You can specify a key-click combination to
enable dragging on rows or columns, or sorting on columns. These actions are
specified by the RowTrigger and ColumnTrigger properties (see Chapter 6,
Programming User Interactivity for more information).

Cell Editors/Renderers
The way cells are drawn and edited in JClass LiveTable has changed substantially.
Please refer to Chapter 5, Displaying and Editing Cells for full details.

Table Data Sources
The core functionality of JClass LiveTable’s data handling has changed. LiveTable
now uses a data source stored as a separate object. For full details, please see Chapter
4, Working with Table Data.

C.3 What’s Removed

The following features have been removed but are still available as part of the
transitional JCTable class:

■ DataType, previously in JClass LiveTable 2.x, is now determined by data source
in LiveTable 3.x. DataType is still available as part of the JCTable compatibility
class (see below).

■ Previously, JClass LiveTable 2.x used JCValueEvent, JCLabelValueListener,
and JCCellValueListener to minimize the data stored in LiveTable. This is no
longer necessary with LiveTable 3.x and these have been removed.

■ JCValidateCellListener has no equivalent in LiveTable 3.x. Data validation is
provided by CellData objects.

C.4 What’s Different

Some of the features of JClass LiveTable 3.x have changed from their
implementation in LiveTable 2.x. Additionally, some method names and values have
changed. The following lists these changes:

■ The package name has changed from jclass.table to jclass.table3. You will
need to change import statements to use the new package name.

■ JClass LiveTable 3.x does not suppress row/column labels if there is no data. The
methods setRowLabelVisible() and setColumnLabelVisible() take
boolean values to display or hide labels. The default value is true.

222 Part II ■ Reference Appendices

■ The ClipArrows (DisplayClipArrows in LiveTable 2.x) property takes a different
type of value. Previously, it required a boolean, and now it requires a
JCTblEnum. value of one of CLIP_ARROWS_BOTH, CLIP_ARROWS_RIGHT,
CLIP_ARROWS_LEFT, or CLIP_ARROWS_NONE.

■ The new version uses a different sorting mechanism from the previous version:
sorting must be implemented using the JClass LiveTable 3.x methods. In JClass
LiveTable 3.x, sorting a column does not automatically select it. The
JCSortInterface from JClass LiveTable 2.x is no longer needed. Use the new
JCSortable interface instead.

■ Different events (see Chapter 7, Events and Listeners for details).

■ The following table outlines property name changes1 from JClass LiveTable 2.x
to LiveTable 3.x:

■ Subclassing the default editors or renderers may be incompatible. In particular,
overriding any AWT event–handling method when subclassing with LiveTable
3.x is not guaranteed to work with LiveTable 2.x.

■ In version 3.x, calling JCTable.setCell now validates. If you set validatePolicy to
anything other than NEVER, calling setCell initiates a validateCell event.

■ The behaviour of SelectedBackground and SelectedForeground now make cell
selections easier for the user. By default, selected cells’ foreground is Table’s
default background color (gray), and the selected cells’ background is the default
foreground color (black). When either or both of these properties are set to null,
selected cells do not change in color.

C.5 Using the Transitional JCTable Class

JClass LiveTable 3.x uses a compatibility class called JCTable that attempts to make
using JClass LiveTable 2.x code seamless within JClass LiveTable 3.x. Similarly,
JClass LiveTable 3.x contains a compatibility Bean called JCTableComponent. To port
LiveTable 2.x applications to use the JCTable compatibility class:

1. These name changes are handled by the JCTable compatibility class if you are running a LiveTable 2.x
program in LiveTable 3.x. This list is a quick-reference to help you use the new Table class.

LiveTable 2.x Property Name LiveTable 3.x Property Name

DisplayClipArrows ClipArrows

BorderSides CellBorderSides

BorderType CellBorderType

MultiLine Multiline

ShadowThickness CellBorderWidth

FrameShadowThickness FrameBorderWidth

Outliner

Appendix C ■ Moving from JClass LiveTable 2.x to 3.x 223

■ Change import statements to use the new package name, jclass.table3,
instead of jclass.table.

■ Change code to use the transitional JCTable class instead of Table.

Some of the JClass LiveTable 2.x functionality cannot be duplicated.

■ Various fixes to the listeners may result in extra/different events from JClass
LiveTable 2.x. For example, all actions that generate an enterCellBegin call will
generate an enterCellEnd call. See the Events chapter for more info.

■ JClass LiveTable 3.x does not support the JCValidateCellListener,
JCLabelValueListener and JCCellValueListeners. These listeners are
available in the JCTable transitional class but you will need to make changes to
your code when migrating to the new version. In JClass LiveTable 3.x, the
JCCellDisplayListener class allows you to modify the display string at run-
time. Unlike the JCLabelValueListener and JCCellValueListener,
JCCellDisplayListener does not provide methods to save the data. There is no
equivalent listener to JCValidateCellListener in JClass LiveTable 3.x. Custom
CellData data types replace this functionality.

■ Since LiveTable 3.x uses JCSortable instead of LiveTable 2.x’s
JCSortInterface, user-defined sorting will not be compatible. Methods like the
following:

 boolean compare(Object o1, Object o2);

will need to be changed to:

long compare(Object o1, Object o2)

where the return value should be:

JCSortable.LESS_THAN if o1 < o2
JCSortable.GREATHER_THAN if o1 > o2, and
JCSortable.EQUAL if o1 == o2.

■ JClass LiveTable 3.x does not support user data nor the getDatatype() or
setDatatype() methods. These methods are available in the transitional class,
JCTable.

We are interested in hearing about additional differences and problems our users
may have with our JClass LiveTable 2.x transitional class. See Product Feedback and
Annoucements, on page 15 for feedback information.

224 Part II ■ Reference Appendices

225

D
JCString Properties

Alignment ■ Color ■ Fonts

Horizontal and Vertical Spacing ■ Hypertext ■ Images
Reset ■ Strikethrough Text ■ Underlined Text

Most JClass LiveTable components support a rich text format called “JCString”,
which allows a mixture of hypertext, images and text within JClass LiveTable
components. Text can also appear in a variety of colors, fonts and styles, including
underline and strikeout.

The following section describes the types of JCString properties available, and
provides examples of their use.

D.0.1 Alignment

If a cell contains an image, the line height can, in some cases, be greater than the
height of the text. Text can be aligned vertically relative to the image using the ALIGN
property. Valid values include TOP, BOTTOM and MIDDLE. The following example uses
all three possible ALIGN values:

([IMAGE=smiley.gif][ALIGN=TOP]top
[IMAGE=smiley.gif][ALIGN=MIDDLE]middle
[IMAGE=smiley.gif][ALIGN=bottom]bottom)

D.0.2 Color

Different text colors can be specified by using the COLOR property. The JCString
shown below displays text using red, green and blue colors.

([COLOR=red]Red, [COLOR=green]Green, [COLOR=blue]Blue,
[DEFAULT_COLOR]Default)

In addition to these colors, any color referenced in Colors and Fonts can be used,
including RGB color values.

Note: The property DEFAULT_COLOR resets the text color in the rest of the table to the
browser’s regular text color.

226 Part II ■ Reference Appendices

D.0.3 Fonts

Different fonts can be specified within a single cell or label by using the FONT
property. The following JCString example displays text using a variety of fonts and
font styles.

([FONT=timesroman-plain-20]TimesRoman-20,
 [FONT=timesroman-bold-12]TimesRoman-12 bold,
 [DEFAULT_FONT]Default)

Note: The property DEFAULT_FONT resets the fonts in the rest of the table to the
browser’s regular font.

D.0.4 Horizontal and Vertical Spacing

Vertical and horizontal spacing can be modified by using the VERT_SPACE and
HORIZ_SPACE tags. VERT_SPACE offsets the current line by a number of pixels, and
HORIZ_SPACE offsets the line from the margin by a set number of pixels.

The example below makes use of the HORIZ_SPACE and VERT_SPACE tags.

([VERT_SPACE=10]Vertical offset=10
 [HORIZ_SPACE=10] Horizontal offset=10)

D.0.5 Hypertext

Hypertext links can be specified within a cell. The link appears underlined, and the
browser display will show the target URL when the mouse cursor passes over the
linked text. Hypertext uses the HREF property, and trackCursorPosition must be set
to true in order for the link to work. The example below links to KL Group’s home
page:

(Click [HREF=http://www.klg.com]here[/HREF] for tech support)

D.0.6 Images

Images can be specified in a cell by using the IMAGE property. A URL or file name
must be provided. If a relative path is given, the document base for the page is
assumed.

The example below mixes an image with text.

(Tech Support: [IMAGE=http://www.klg.com/images/technical.gif])

D.0.7 Reset

The RESET property resets the font and color to the default value used by the
browser. The following example changes the COLOR and FONT values back to the
default:

([COLOR=green][FONT=timesroman-plain-20]Big text[RESET]Regular Text)

Outliner

Appendix D ■ JCString Properties 227

D.0.8 Strikethrough Text

Text can be crossed-out using the STRIKEOUT property. The following incorporates
text that has been struck through:

(This text is [ST]crossed-out[/ST].)

D.0.9 Underlined Text

Text can be underlined using the JCString UNDERLINE property. The following
example incorporates underlined lined text:

(This text is [UL]underlined[/UL].)

228 Part II ■ Reference Appendices

229

E
Colors and Fonts

Colorname Values ■ RGB Color Values ■ Fonts

This section provides information on common colorname values, specific RGB color
values and fonts applicable to all Java programs.

E.1 Colorname Values

The following lists all the colornames that can be used within Java programs. The
majority of these colors will appear the same (or similar) across different computing
platforms.

E.2 RGB Color Values

The following lists all the main RGB color values that can be used within JClass
LiveTable. RGB color values are specified as three numeric values representing the
red, green and blue color components; these values are separated by dashes (“-”).

■ black ■ lightGrey

■ blue ■ lightBlue

■ cyan ■ magenta

■ darkGray ■ orange

■ darkGrey ■ pink

■ gray ■ red

■ grey ■ white

■ green ■ yellow

■ lightGray

230 Part II ■ Reference Appendices

The following RGB color values describe the colors available to Unix systems. It is
recommended that you test these color values in a JClass program on a Windows or
Macintosh system before utilizing them.

The list begins with all of the variations of white, then blacks and greys, and then
describes the full color spectrum ranging from reds to violets.

Example code from an HTML file:

 <PARAM NAME=backgroundList VALUE="(4, 5 255-255-0)">

RGB Value Description

255-250-250 Snow

248-248-255 Ghost White

245-245-245 White Smoke

220-220-220 Gainsboro

255-250-240 Floral White

253-245-230 Old Lace

250-240-230 Linen

250-235-215 Antique White

255-239-213 Papaya Whip

255-235-205 Blanched Almond

255-228-196 Bisque

255-218-185 Peach Puff

255-222-173 Navajo White

255-228-181 Moccasin

255 248-220 Cornsilk

255-255-240 Ivory

255-250-205 Lemon Chiffon

255-245-238 Seashell

240-255-240 Honeydew

245-255-250 Mint Cream

240-255-255 Azure

240-248-255 Alice Blue

230-230-250 Lavender

255-240-245 Lavender Blush

255-228-225 Misty Rose

255-255-255 White

0-0-0 Black

Outliner

Appendix E ■ Colors and Fonts 231

47-79-79 Dark Slate Grey

105-105-105 Dim Gray

112- 128-144 Slate Grey

119- 136-153 Light Slate Grey

190- 190-190 Grey

211- 211-211 Light Gray

25-25-112 Midnight Blue

0-0-128 Navy Blue

100- 149 237 Cornflower Blue

72-61-139 Dark Slate Blue

106-90-205 Slate Blue

123- 104 238 Medium Slate Blue

132-112- 255 Light Slate Blue

0-0-205 Medium Blue

65-105-225 Royal Blue

0-0-255 Blue

30-144-255 Dodger Blue

0-19 -255 Deep Sky Blue

135-206-235 Sky Blue

135-206-250 Light Sky Blue

70-130-180 Steel Blue

176-196- 222 Light Steel Blue

173-216-230 Light Blue

176-224-230 Powder Blue

175-238-238 Pale Turquoise

0-206-209 Dark Turquoise

72-209-204 Medium Turquoise

64-224-208 Turquoise

0-255-255 Cyan

224-255-255 Light Cyan

95-158-160 Cadet Blue

102-205-170 Medium Aquamarine

127-255-212 Aquamarine

0-100-0 Dark Green

RGB Value Description

232 Part II ■ Reference Appendices

85-107-47 Dark Olive Green

143-188-143 Dark Sea Green

46-139-87 Sea Green

60-179-113 Medium Sea Green

32-178-170 Light Sea Green

152-251-152 Pale Green

0-255-127 Spring Green

124-252- 0 Lawn Green

0-255-0 Green

127-255- 0 Chartreuse

0-250-154 Medium Spring Green

173-255-47 Green Yellow

50-205-50 Lime Green

154-205-50 Yellow Green

34-139-34 Forest Green

107-142-35 Olive Drab

189-183-107 Dark Khaki

240-230-140 Khaki

238-232-170 Pale Goldenrod

250-250-210 Light Goldenrod Yellow

255-255-224 Light Yellow

255-255-0 Yellow

255-215-0 Gold

238-221-130 Light Goldenrod

218-165-32 Goldenrod

184-134-11 Dark Goldenrod

188-143-143 Rosy Brown

205-92-92 Indian Red

139-69-19 Saddle Brown

160-82-45 Sienna

205-133-63 Peru

222-184- 135 Burlywood

245-245-220 Beige

245-222-179 Wheat

RGB Value Description

Outliner

Appendix E ■ Colors and Fonts 233

244-164-96 SandyBrown

210-180-140 Tan

210-105-30 Chocolate

178-34-34 Firebrick

165-42-42 Brown

233-150-122 Dark Salmon

250-128-114 Salmon

255-160-122 Light Salmon

255-165- 0 Orange

255-140-0 Dark Orange

255-127-80 Coral

240-128-128 Light Coral

255-99-71 Tomato

255-69-0 Orange Red

255-0-0 Red

255-105-180 Hot Pink

255-20-147 Deep Pink

255-192-203 Pink

255-182-193 Light Pink

219-112-147 Pale Violet Red

176-48-96 Maroon

199-21-133 Medium Violet Red

208-32-144 Violet Red

255-0-255 Magenta

238-130-238 Violet

221-160-221 Plum

218-112-214 Orchid

186-85-211 Medium Orchid

153-50-204 Dark Orchid

148-0-211 Dark Violet

138-43-226 Blue Violet

160- 32-240 Purple

147-112-219 Medium Purple

216-191-216 Thistle

RGB Value Description

234 Part II ■ Reference Appendices

E.3 Fonts

There are five different font names that can be specified in any Java program. They
are:

■ Courier

■ Dialog

■ DialogInput

■ Helvetica

■ TimesRoman

Note: Font names are case-sensitive.

There are also four standard font style constants that can be used. The valid Java font
style constants are:

■ bold

■ bold+italic

■ italic

■ plain

These values are strung together with dashes (“-”) when used with the VALUE
attribute. You must also specify a point size by adding it to other font elements. To
display a text using a 12-point italic Helvetica font, use the following:

Helvetica-italic-12

All three elements (font name, font style and point size) must be used to specify a
particular font display; otherwise, the default font is used instead.

Note: Font display may vary from system to system. If a font does not exist on a
system, the default font is displayed instead.

235

Index
.gif 70
.jpeg 70

A
Abstract Windowing Toolkit, see AWT
adding labels 57
adding listeners

cell editor 107
data source 82

advanced cell editors 92
advanced cell renderers 92
alignment

cells 64
changing (tutorial) 34
JCString property 225

all cells
referencing 49

all labels
referencing 49

AllowCellResize property 118
AllowCellResize property, effect on mouse pointers

127
applets and applications

defined 27
distributing on a Web server 39

attaching scrollbars 121
automatic scrolling 122
AWT

color constants 33
font styles (tutorial) 35
image file formats supported 70

B
background colors

repeating 63
Background property 63
Beans

LiveTable 160
border

frame attributes 157, 161–162, 164, 167, 172
table frame 68

border sides
specifying 68

borders
cell 65

Borland JBuilder
adding JClass to 26
data binding 185

C
Cafe

adding JClass to 25
cell editors

advanced 92
and CellInfo interface 109
controlling size 62
creating 102
default 99
defined 99
event listeners 107
getting reserved keys 103
handling editor events 107
reserving keys 103, 108
subclassing 103
writing 104

cell renderers
advanced 92
creating 96
data type 95
mapping 95
mapping a data type 95
setting 95
subclassing 96
writing 96

cell selection
colors 63, 116
controlling at runtime 117
customizing 114
forcing 117
forcing selection 117
in list mode 117
list mode 117
ranges 116
removing 117
removing a range 117
row and column labels 115
runtime control 117
selected cell list 115
selected ranges 116
setting the selection mode 115

cell size
character height/width 59

236 Index

character width/height 59
pixel width/height 60
variable 61

cell values
setting 82

CellBorderSides property 68
CellBorderType property 36, 66
CellBorderWidth property 36
CellData object 92
CellEditor, see cell editors
CellInfo interface 109–110
cells

alignment 64
alignment (tutorial) 34
border types 65
borders (tutorials) 36
CellEditor interface 91
CellInfo interface 109
CellRenderer interface 91
controlling editor size 62
current 46
customizing traversal 112
default traversal 111, 165
definition 46
determining visibility 123
dimensions 59
displaying 129
displaying multiple lines 61
editing 77, 99–107
editors 92
entering 136
fonts 65
forcing traversal 112
making visible 123
margins 69
minimum visibility 112
multiline 61
newline characters 61
referencing 49
renderers 94
rendering 93–98
rendering and editing 48, 92
renders 92
reserving keys for editors 103
resizing 118
selected cell list 115
selection 113
selection (tutorial) 38
selection colors 63
setting dimensions 59
setting renderers 95
setting values 82
size (tutorial) 37
spacing 36
spanning 71
specific data types 92
text alignment 64
traversal 111–112
variable dimensions 61
visibility 112

change values 87
changing data 83
characters

determining cell size 59
CharHeight property 59

tutorial 37
CharWidth property 59

tutorial 37
CLASSPATH

affect on web browsers 21
and Windows 95/98 21
and Windows NT 21
tips on setting 21

clip arrows
displaying 71, 98
tutorial 31

clipping
image 71
text 71

color
JCString property 225

colors
AWT constants 33
background 63
colorname values 229
focus rectangle 63, 111
foreground 63
repeating 63
RGB color value list 229
selected cells 63
selection 116
setting 63
setting (tutorial) 33

colors, Selection 116
column

referencing 49
column labels

displaying 32
selecting 115

column sorting
tutorial 39

column width
pixel value 59
setting 59

ColumnLabelDisplay property
tutorial 32

columns
adding 80, 89
controlling resizing 119
default resizing behavior 118
determining visibility 123
disallowing resizing 118
dragging 124
hiding 61
labels 57, 126
making visible 123
removing 89
sorting 126

ColumnTrigger property
and dragging 124

Index 237

and sorting 126
and sorting (tutorial) 39

comments on product 15
components

creating 132
displaying 134
firing events for displaying 134
listening for events 134

creating a cell editor 102
creating cell renderers 96
creating components 131
current cell 46

definition 46
current context 49

D
data

cell editor 91
cell renderer 91
changing 83
data source 76
data storage 75
editing 77
getting into a table 76
storing 78
updating 135

data binding
Beans 155
IDE 185
JBuilder 185
JClass DataSource 194
Visual Cafe 190

data editing 77
data source

adding and removing listeners 77
and setEditable method 166
and table size 76
editable (tutorial) 37
event listeners 77
Model-View-Controller 75
object 75
retrieving data 76
setting cell values 82
stock data sources 77
tutorial 31
VectorDataSource 78

DataSource
data binding 194

default
cell editors 92
cell renderers 92

default cell editors 92, 99
default cell renderers 92
default scrolling 120
definition 46
definitions

cell 46
current cell 46

deleting rows and columns 81
demos, running 24

JDK 1.2 note 24
dimensions

cell 59
disabling interactive scrolling 122
DisplayClipArrows property 71
displaying

cells 129
clip arrows 71, 98
images 70
rows and columns 55

distributing applets and applications 39
using JarHelper 42

dragging rows and columns 124
drawing cells 92

E
editable cells 77
Editable property 77
EditHeightPolicy property 62
editing cells 77, 92, 99–107
EditWidthPolicy property 62
entering cells 136
event listeners 129

cell display 130
creating component 131–132
data source 77
displaying components 134
entering cells 137
JCCellDisplayListener 130
JCCreateComponentListener 132
JCDisplayComponentListener 134
JCEnterCellListener 137
JCPaintListener 138
JCPrintListener 139
JCResizeListener 140
JCScrollListener 141
JCSortListener 145
JCTraverseCellListener 147
painting 138
printing 139
resizing 140
sorting 145
traversal 147

events
cell display events 130
creating component 131–132
displaying components 134
entering cells 136
JCCellDisplayEvent 129
JCCreateComponent 132
JCDisplayComponentEvent 134
JCEnterCellEvent 136
JCPaintEvent 138
JCPrintEvent 139
JCResizeEvent 139
JCScrollEvent 141

238 Index

JCTraverseCellEvent 146
painting 138
printing 139
resizing 139
scrolling 141
sorting 145
traversal 146

examples, running 24
JDK 1.2 note 24

F
FAQs 15
focus rectangle

color 63, 111
FocusRectColor property 63, 111
font

JCString property 226
setting 65
setting in labels 65

Font property 65
font styles

AWT 35
fonts

matched by AWT 35
names 234
point size 234
setting (tutorial) 34
setting in cells 65
size (tutorial) 35
style constants 234

forcing cell selection 117
forcing scrolling 123
foreground and background colors 63
foreground colors

repeating 63
Foreground property 63
format, RGB 229
frame

border 157, 161–162, 164, 167, 172
FrameBorderType property 68

in IDEs 167
freezing rows and columns 56
frozen columns

and sorting 124
frozen row/column placement 57
frozen rows and columns 56

setting in IDE 168

G
get method 205
getTableDataItem 76
Gold Support, features of 14

H
hiding rows/columns 61
horizontal spacing

JCString property 226
HorizSBAttachment 121
HorizSBDisplay 122
HTML files

using to set properties 51
hypertext

JCString property 226

I
IDE

data binding 185
setting properties 53

IDEs, information on using 15
image

clipping 71
displaying 70
format 70
formats supported 70
JCString property 226
layout 70
layout in cell 70

image format 70
image layout 70
InputStreamDataSource 78
Integrated Development Environment (IDE) 154

J
J version, description of 20
JarHelper 42

requirements and installation 42
Java

introduction 27
Java Development Kit

versions of 19
Java Development Kit (JDK) 20, 155
Java Platform, versions of 19
JavaBeans 27

adding to IDE 24
and JDK versions 155
features of 153
introduction 27

JavaBeans version 19
JBuilder

adding JClass to 26
data binding 185
using with JClass 15

JCCellRange
in cell selection 115

JClass DataSource
data binding 194

JClass Field, setting CLASSPATH 20
JClass Field, versions of 19

Index 239

JClass LiveTable
Lite 159
summary of 205

JClass LiveTable 3.0
compatibility with LiveTable 2.0 28, 222

JClass technical support 14
contacting 14

JClass, determining version of 20
jclass.cell package 91
JCResizeCellEvent 119
JCScrollEvent 123
JCScrollListener 123
JCString

mouse pointer URL tracking 127
JCString properties 225–227

alignment 225
color 225
fonts 226
horizontal spacing 226
HREF 226
hypertext 226
images 226
reset 226
strikethrough text 227
underlined text 227
vertical spacing 226

JCTableApplet 51
JCTraverseCellEvent 113
JDK

determining version of 20
versions of 19

JDK 1.2 support 20
JFC support 19–20
jump scrolling 122
JumpScroll property 122

K
keys

reserving for cell editors 103, 108
KL Group technical support 14

contacting 14

L
label parameter 81
labels

adding 57
definition 46
displaying (tutorial) 32
fonts 65
margins 69
offset from table 58
placement 57
referencing 49
spacing 58
spacing from cell area 58
spanning 71

text alignment 64
using for resizing 120

LeftColumn 123
list mode

cell selection in 117
list of cell editors 99
List, Selected Cell 115
listener methods, scroll 123
listeners, see event listeners
LiveTable 2.0 applications, porting to LiveTable 3.0 28,

222
LiveTable Bean 160

M
mapping a data type 95
Margin Height 69
margins

cell and label 69
setting 69

MarginWidth 69
methods

accessor 205
methods, scroll listener 123
minimum cell visibility 112
Mode property 53–54

list mode 54
Model-View-Controller 75
mouse pointers 127

disabling JCString URL tracking 127
disabling tracking 127

moving rows and columns 82
multi-line headers

spanning 72
Multiline property 61
multiple lines in cells 61
MVC 75

N
newline character

and Multiline property 61
NumColumns property 55, 76
NumRows property 55, 76

O
offset of labels 58

P
parameters

label 81
position 81
values 81

PixelHeight property 60
setting (tutorial) 37

240 Index

user row resizing 118
using to hide rows 61

PixelWidth property 60
column resizing 118
setting (tutorial) 37
using to hide columns 61

pointers, mouse 127
porting LiveTable 2.0 applications to LiveTable 3.0 28,

222
position parameter 81
preset table styles 53
print preview 151
printing 149

adding functionality 149
enhancements 149
events 139
headers and footers 150
other 150
page layout 150
page margins 150
page size 150
print preview 151

printing headers and footers 150
product feedback 15
programming the API 45–73
properties

access in IDE 53
accessor methods 205
Color 225, 229
Font 234
FrameBorderType 154
LiveTable Bean 160
setting for a cell range 51
setting for a range 49
setting for all cells 49
setting for all labels 49
setting for cells 49
setting for cells and labels 51
setting for column 49
setting for labels 49
setting for row 49
setting for rows 49
setting in the API 32
summary of 205
Text 225
using HTML files to set 51

R
ranges

in cell selection 115
referencing 49
selected 116
used in cell spanning 71

removing cell selections 117
removing listeners

data source 82
rendering cells 92–98
repeating colors 63

reset 89
JCString property 226

resetSortedRows() method 127
ResizeByLabelsOnly property 120

tutorial 39
ResizeEven property 119
resizing

default behavior 118
disabling 118
events and listeners 140
pixel width 118
rows and columns 119
using labels only 120

resizing rows and columns 119
RGB format 229
row

referencing 49
Row and Column Labels 76
row and column labels

placement 57
row height

pixel value 59
setting 59

row labels
selecting 115

RowLabelOffset property 58
rows

adding 80, 89
controlling resizing 119
default resizing behavior 118
disallowing resizing 118
dragging 124
hiding 61
labels 57
making visible 123
removing 89

rows and columns
deleting 81
displaying 55
freezing 56
frozen 168
moving 82
placement of frozen 57
resizing all at once 119
resizing with labels 120
setting the number of rows and columns 80
specifying labels 80
swapping 55

RowTrigger property
and dragging 124

running sample programs 24
JDK 1.2 note 24

runtime selection control 117

S
S version, description of 19
sample programs, running 24

JDK 1.2 note 24

Index 241

scroll listener methods 123
scrollbar attributes 121
scrollbar component 120
scrollbars

attaching 121
attributes 121
disabling 122
display 122
force scrolling by an application 123
jump scrolling 122
programming 122

scrolling 141
selected cell list 115
selected cells

list 115
SelectedBackground property 63
SelectedForeground property 63
selection

colors 116
default 113

Selection colors 116
selection in list mode 117
SelectionPolicy 114, 172
SelectionPolicy property

tutorial 38
set method 205
setAutoScroll() method 122
setJumpScroll() method 122
setting

scrollbar options 122
the selection mode 115

setting cell renderers
for a series 95

setting CLASSPATH 20
setting properties in an IDE 53
sorting 39

and ColumnTrigger property 126
event listeners 145
events and listeners

events
JCSortEvent 145

frozen columns 124
sorting columns 39
spanning

create multi-line headers 72
using JCCellRange 71

spanning cells 71
specifying row and column labels 80
standard version, description of 19
stock data sources

using 77
storing data 78
strikeout

JCString property 227
subclassing

cell editors 103
cell renderers 96

summary of properties 205
support 14

contacting 14

FAQs 15
IDE information 15

support plans, features of 14
swapColumns method 55
swapping rows and columns 55
swapRows method 55
Swing support 19–20
Swing, using TableModel data objects 79

T
T version, description of 19
table

components 131
frame border 68
mode 54
printing 139
resize events 139
resizing 139
scrolling 141
size defined by data source 76
sorting 145
styles 53

table anatomy
cell 46
current cell 46
current context 49
label 46
renderers and editors 48
scrollbars 48

table context 49
table frame

border 157, 161–162, 164, 167, 172
table scrolling

attaching scrollbars 121
attributes 121
automatic 122
default 120
different component 120
disabling 122
forcing 123
jump scrolling 122
listener methods 123
setting options 122

Table.isRowVisible() 123
TableData interface 76
TableDataEvent 86
TableDataSupport 87
TableDataView 76
TableModel, using in table 79
TableSwingDataSource 79
technical support 14

contacting 14
FAQs 15

The 67, 80
tips on setting CLASSPATH 21
TopRow property 123
TrackCursor property 127
TrackJCStringURL property 127

242 Index

transitional bean version 19
Traversable property, effect on mouse pointers 127
traversal

cell 111
customizing cell 112
default 111, 165
event listeners 147
events 146
forcing 112
interactive 112

tutorial 29–43
adding interactivity 37
cell selection 38
cell size 37
clip arrows 31
making a table editable 37
PixelHeight property 37
PixelWidth property 37
ResizeByLabelsOnly property 39
resizing cells 31
SelectionPolicy property 38
setting a data source 31
setting colors 33
setting properties in the API 32
sorting columns 39

U
underline

JCString property 227
updating data

on mouse click 135
using spanning to create multi-line headers 72

V
Values parameter 81
variable cell size 37
VectorDataSource

editing 78
version numbering scheme

JClass products 19
version, determining 20
versions, JClass Field 19
vertical spacing

JCString property 226
VertSBDisplay 122
visibility

cells 112
forcing 123

visibility of cells 123
visibility of columns 123
VisibleColumns property 55
VisibleRows property 55
Visual Cafe

adding JClass to 25
data binding 190

Visual Cafe, using with JClass 15

W
web browsers and CLASSPATH 21
Windows 95, setting CLASSPATH 21
Windows 98, setting CLASSPATH 21
Windows NT, setting CLASSPATH 21
working with selected ranges 116
writing a cell renderer 96

	Preface
	Introducing JClass LiveTable
	Assumptions
	Typographical Conventions in this Manual
	Overview of the Manual
	Related Documents
	Technical Support
	Product Feedback and Annoucements

	Using JClass LiveTable
	Getting Started
	1.1 Introduction
	1.2 Matching JClass and JDK Versions
	1.3 Setting the CLASSPATH Environment Variable
	1.4 Installed Files Overview
	1.5 Adding JClass LiveTable to Your IDE
	1.6 Java and JavaBeans Basics
	1.7 Moving from JClass LiveTable 2.x to JClass LiveTable 3.x

	‘Hello Table’ — A Simple JClass LiveTable Program
	2.1 The Basic Table
	2.2 Improving the Table’s Appearance
	2.3 Adding Interactivity
	2.4 Distributing Applets and Applications on a Web Server
	2.5 Proceeding from Here

	Building a Table
	3.1 Table Anatomy 101
	3.2 JClass LiveTable Inheritance Hierarchy
	3.3 Cell Management
	3.4 Setting and Getting Properties
	3.5 Preset Table Styles
	3.6 Defining Rows and Columns
	3.7 Adding Row and Column Labels
	3.8 Row Height and Column Width
	3.9 Colors
	3.10 Cell and Label Text Alignment
	3.11 Cell and Label Fonts
	3.12 Border Types and Sides
	3.13 Cell and Label Margins
	3.14 Displaying Images in Table Cells
	3.15 Text and Image Clipping
	3.16 Cell and Label Spanning

	Working with Table Data
	4.1 Overview: Data Handling in JClass LiveTable
	4.2 Getting Data into your Table
	4.3 Using Stock Data Sources
	4.4 Setting Stock Data Source Properties
	4.5 Creating your own Data Sources
	4.6 Dynamically Updating Data

	Displaying and Editing Cells
	5.1 Overview
	5.2 Default Cell Rendering and Editing
	5.3 Rendering Cells
	5.4 Editing Cells
	5.5 The CellInfo Interface

	Programming User Interactivity
	6.1 Cell Traversal
	6.2 Cell Selection
	6.3 Resizing Rows and Columns
	6.4 Table Scrolling
	6.5 Dragging Rows and Columns
	6.6 Sorting Columns
	6.7 Custom Mouse Pointers

	Events and Listeners
	7.1 Displaying Cells
	7.2 Creating Components
	7.3 Displaying Components
	7.4 Entering Cells
	7.5 Painting
	7.6 Printing
	7.7 Resizing
	7.8 Scrolling
	7.9 Sorting
	7.10 Traversing

	Table Printing
	8.1 Basic Printing
	8.2 Adding Enhanced Print Functionality
	8.3 Adding Print Preview Capability

	JClass LiveTable Beans and IDEs
	9.1 An Introduction to JavaBeans
	9.2 JClass LiveTable and JavaBeans
	9.3 Setting Properties for the LiveTable Bean
	9.4 Tutorial: Building a Table in an IDE
	9.5 Data Binding with IDEs
	9.6 Interacting with Data Bound Tables
	9.7 Property Differences Between the LiveTable and Data Binding Beans

	Reference Appendices
	Event Summary
	JClass LiveTable Property Listing
	B.1 Properties of jclass.table3.Table
	B.2 Properties of jclass.table3.LiveTable
	B.3 Properties of jclass.table3.db.jbuilder.JBdbTable
	B.4 Properties of jclass.table3.db.vcafe.VCdbTable
	B.5 Properties of jclass.table3.db.datasource.DSdbTable

	Moving from JClass LiveTable 2.x to 3.x
	C.1 Overview
	C.2 What's New
	C.3 What's Removed
	C.4 What's Different
	C.5 Using the Transitional JCTable Class

	JCString Properties
	Colors and Fonts
	E.1 Colorname Values
	E.2 RGB Color Values
	E.3 Fonts

