Functions

Daniel Stenberg

Functions

COLLABORATORS
TITLE :
Functions
ACTION NAME DATE SIGNATURE
WRITTEN BY Daniel Stenberg July 20, 2024

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

Functions iii

Contents
1 Functions 1
1.1 Function documentationo e e e e e e e e e 1
1.2 FPL Function Reference 1
1.3 Function description SYNtax v v v v v vt e e e e e e e e e e e e e e e e e e 5
1.4 About() o e 6
1.5 Activate() e e e e e e e e 6
1.6 ARexxRead() e e e e 7
1.7 ARexxResult() o e e e 8
1.8 ARexxSend() e e e e 8
1.9 ARexXSet() o e e e e e e e e e e e e e 9
1.10 AssignKey() o o L 9
LIT Backspace() v o v v e e e e e e 12
1.12 BackspaceWord() oL e e e e 13
1.13 BlockChange() o i i e 13
1.14 BlockCopy(), BlockCut(), BlockDelete() e e e e 14
1.15 BlockCreate() o e e e e e e e e e e e e 15
1.16 BlockMark() e e e e 15
1.17 BlockMove() o e e e e s 18
1.18 BlockPaste() e e e 18
1.19 BlockSort() e e e e e e 19
1.20 BSearch() e e e e 20
1.21 CConvertString() o v o i e e e e e e 21
1.22 CenterVIew() o e e e e e e e e e e e 21
1.23 Check() o 22
1.24 Clean() o e e 22
125 Clear() o o 23
1.26 CHpTOString()« o e e e e e 23
1.27 CloneWB() 24
1.28 ColorAdjust() o o i 24
1.29 ConstructInfo() L e e e e e 25

Functions iv

1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68

ColorReset() o e 26
CurrentBuffer() e e 27
CursorActive() o e e e e e 27
CUrsor MOVEMENTS .+ . v v v v v v e 28
CursorStack L e e 28
Delay() e e e e 29
Deiconify() e 30
Delete() o e 30
DeleteEol() e e e 31
DeleteInfo() L . e e e e e 31
DeleteKey() o o e e 31
DeleteLine() e e e e e e e 32
DisplayBeep() o o e 32
DuplicateBntry() 33
Change case o e e 33
Execution functions e e e e e e 34
FACTQ) . . . o e e e e e 35
FACTCIear() o o o e e e e e e e e e e e e e 37
FACTCreate() o e e 37
FACTDelete() o o e e e e e e e e e e e 38
FACTConvertString() o o i e e e e e e e e e e 38
FACTSHng() o o o e e e e e e e e e e e e e 39
FindPort() 40
Fold() . . . o o e e e e e 40
FoldDelete() e e e e e e 41
FoldHide() o e e e 41
FoldShow() o e e e e e 42
GetBIock() e e e e 42
GetBufferID() e e e e 43
GetByte() o e e e e e 44
GetChar() e e e e e e e e 44
GetCursor() . . . v . o e e e e e e s 45
GetDate() e e e e e e e e e e 46
GetEnv() e e e e 46
GetErrNO() e e e e e e 47
GetFileList() o e e e e 47
GetKey() . . . o o ot 48
GetLine() e e e e e 49
GetList() o e e e e 49

Functions v

1.69 GetReturnMSg() o o e 51
170 GetWord() o o e e e e 51
1.71 GotoChange() o o i e e e e e 52
1.72 GotoLine() o e e e e e 53
1.73 Hook functions e e 53
1.74 HookClear() o o e e e e e 55
175 Teonify() o o o 56
1.76 InsertFile() o e e e e 56
1.77 Inverseline() e 57
1.78 FACT reading functions 0 i e e e e e e e e e e e e e 57
179 Isfold() o 58
1.80 KeyPress() v v o v e e e e e e 59
181 Kill)) . . . o e 59
1.82 Load() o 60
1.83 LoadString() o e e e 61
1.84 LogSetting() o o e e e e e e e e 61
1.85 MacroRecord() L e e e e e 62
1.86 MatchParen() e 63
1.87 MaximizeView() e 63
1.88 MenuAdd() 63
1.89 MenuBuild() 65
1.90 MenuClear() o e e e e e e e e e e e e e 66
1.91 MenuDelete() e e e e e e e e e e e 66
1.92 MenuRead() o e e 67
1.93 NeW() . . o o o e e e 67
1.94 NextBuffer() e e e e 68
1.95 NextEntry() o o o e e 68
1.96 NextVIEw() o 69
197 Output() o o o e e e e e e e 70
1.98 PageDown() e e e e e e e 70
1.99 PlaceCursor() o e e e e e e e e e e e e e e 71
1.1I00PrintLine() e e e e e e e e 72
LI0IPrompt() o o o e e e e e 72
1.102PromptBuffer() e e e e 73
1.103PromptFile() e 73
1.104PromptFont() e e e e e e 75
1.105Prompt forinteger or string L e e e e 75
1.106PromptInfo() o e e e e e e 76

1.I07Random() e e e e e e e e e e e e e e 78

Functions Vi

1.1I08RedrawScreen() e e e e e 78
LI0OOQUItALL) e 79
1.110ReadInfo() e e e e 79
LITIRemoveVIew() o e e e 85
LII2Rename() o o e e e e e e 86
LII3Replace() o o o e e e e e e e 86
I.114ReplaceMatch() o o e e e e 87
L.1ISReplaceSet() o o e e 88
LIT6Request) o o o e 89
LIT7RequestWindow() o v o o e e e e e e e e e e e 90
1.I18ResiZeVIEW() o e e e e e e e e e e e e e e 91
1.119ReturnStatus() o e e e e e e e e e e e e 92
L120Save() o 92
L121SaveString() o o e e e e e e e 93
1.122Screenmode() e e e e e e 93
L1.123Scroll up or down L e e e 94
1.124Search() o e e e e 95
LI25SetEnv() o o 95
1.126SetInfo() o 96
1.127SetSave() o e e e e e e e e e 96
LI28Sort() o 97
LA20Status() e e e e e e e 98
1.130Stcgfn() and StEEfP() o o 99
LI31Stricmp() o 99
1.132StringChangeCase(), StringToLower(), StringToUpper() o o vttt 100
1.133StringToBlock() 101
1.134StringToCLp() o o o e e 101
LI35Strmfp() 102
LA36System() o o o e e e e e e e e e 102
LI37TimerAdd() 103
1.138TimerDelete() e e e e e e e e e 104
LI39UNdo() o 104
1.140UndoRestart() e e e e e 105
LI41Visible() o o o e 105
1.142WindowToFront() e e e e 106

LIA3YANKO) © o o o o o e e e 106

Functions

1/107

Chapter 1

Functions

1.1 Function documentation

FHE A R A R R AR R R R R R

S HHE FHE HEHEE o
HH## ## #H O #E H4 #

A
##
##
##
##
##

FHE R R R R R R

Copyright

(C)

RS ###
#H #4#
FHHEE HH ## ##

Latest update 4.9.95,

HHEHHH
##

HEHH FHAHEHH

O## ##
##4 ## ##
#o## #4 ##

A A

for version 1.9

Function documentation

by FrexxWare 1995

1.2 FPL Function Reference

All FPL functions that exist internally in FrexxEd are listed here.
You might find functions that are not in this list,
internal FrexxEd functions,

First, a list of all functions with a short description:

Function

Page

but then they are not
but added by FPL-programs.

Functions

2/107

About - Shows information about FrexxEd.........cc.eeeeeeeenn.. 6

Activate - Visualize a certain buffer.......... ..., 7

ARexxRead - Get the contents of an ARexx variable............. 8

ARexxResult - Send back result string to AREXX.....evveeeeenn. 9

ARexxSend - Send a string to an ARexxX pPort.........covvieeven.. 10
ARexxSet — Set the contents of an ARexx variable.............. 11
AssignKey - Assigns a function to a key sequence. [*]......... 12
Backspace - Kill characters to the left of the cursor......... 15
BackspaceWord — Kill words to the left of the cursor.......... 16
BlockChange - Change default block...... ... i, 17
BlockCopy — Copy a marked block.......oii it iiinnnnenn. 18
BlockCopyAppend - Copy marked area to the end of a block...... 18
BlockCreate — Create a new blocKk. [*] . ittt teeeeneennn 19
BlockCut — Cut a marked block...... .ttt iteneeenns 18
BlockCutAppend - Move marked area to the end of a block....... 18
BlockDelete — Delete marked area.......cuou ittt ennenns 18
BlockMark — Mark an area 1N @ VieW.o oiteeetoeeeenenenenn 20
BlockMarkLine - Mark full width of an area in a view.......... 20
BlockMarkRect - Mark a rectangular area in a view............. 20
BlockMove - Moves a marked block area horizontally............ 22
BlockPaste - Insert a block in the buffer............ 23
BlockPasteRect - Insert block as rectangular............o...o.. 23
BlockSort — Sort a bloCK. ...ttt ittt et e et 24
BSearch — Binary search in a string array......eeeeeeeeeeeee.. 25
CConvertString - Convert a raw string to C style. [*]......... 26
CenterView - Center the view vertically around the cursor..... 27
Check — Returns file information........ei i ieeeeeeneennenns 28
Clean - Execution without hooks. [*] ..ttt eennennn 29
Clear — Clear a buffer. ...ttt it it e ie i it e eeeeenns 30
ClipToString - Return clipboard.device data as a string. [x].. 31
CloneWB - Clone the current public screen...........oeeeeeeenn. 32
ColorAdjust — AdJUST COLOTS . ittt ittt ittt ettt teeeeseeenenns 33
ColorReset - Reset color(s) to workbench default. [*]......... 36
ConstructInfo - Create a new info variable. [*]...... ... 34
CurrentBuffer - Change current buffer.......... 37
CursorActive — Alter the cursor state.........i .. 38
CursorDown — MOVES CUTLSOL OWIle e v v vttt o moeseseeennnneseeenenns 39
CursorLeft — Moves cursor left........ii it itenenennenns 39
CursorLeftWord - Moves cursor entire words left............... 39
CursorRight — Moves cursor right.........c.iiiiiiiiiiiiiiennnnn 39
CursorRightWord - Moves cursor entire words right............. 39
CursorStack — Stores/gets cCursor POSIition.........oeieeueeeennn. 40
CUrsOorUp — MOVES CULSOL UP .« t v o oo v v oeeeennnnneseeennneeeseeenenns 39
Deiconify — Pops up FrexxEd from the icon state............... 42
Delay — Sleep for a while. [*] ...ttt itneeeeeennneeennn 41
Delete — Delete char(s) at CUILSOT. ...ttt ittt it teneennenns 43
DeleteEol - Delete the rest of the line........ .. 44
DeleteKey — Delete a key assigning..........euiiiiiiiinnnnenn. 46
Deleteline — Delete a line. ...ttt ittt eeeeeeeeneaenenn 47
DeleteInfo - Delete an info variable..........iiiiiiiinnnen.. 45
DeleteWord — Delete word(S) at CUILSOT .. e vttt ittt it tenneenenns 43
DisplayBeep — Flash the screen.........oii ittt itnneeenns 48
DownCase — Downcase a blocCKk. ... ittt ittt enneens 50
DuplicateEntry - Make two entries from one............ccueeeo.. 49
ExecuteBuffer - Execute a buffer as an FPL program............ 51

ExecuteFile - Execute a file as an FPL program. [*]........... 51

Functions

3/107

Executelater - Execute a string as an FPL program later....... 51
ExecuteString - Execute a string as an FPL program. [*]....... 51
FACT - Change the FrexxEd ASCII Convert Table. [*]............ 52
FACTClear - Reset the current FACT to defaults. [*]........... 54
FACTCreate — Create a new FACT . .. ittt ittt ittt tnneens 55
FACTConvertString — Convert a string with the FACT............ 57
FACTDelete — Delete a FACT . . it ittt ittt ettt aeneeeeaenans 56
FACTString - Returns the FACT string of a character. [*x]...... 58
FindPort - Find a given system message port. [*]......ccccve... 59
Fold - Fold an area of a buffer...... ...t 60
FoldDelete — Delete a fold. ..ottt iiineeeennnenenns 61
FoldHide — Hide a fold.....u ittt teeteeeeeeeaeeeeeenenans 62
FoldShow — Show a fold.ttt tietteeeeeeeeeeeeeaenens 63
GetBlock — Get block as string......oiiiin ittt eeenennn 64
GetBufferID - Get ID of a buffer...... ..t ienennn 65
GetByte - Get byte position from a given column............... 66
GetChar - Get character from buffer.......... 67
GetCursor - Return column position of a byte position......... 68
GetDate — Return date.ttt ittt ittt eeenaaens 69
GetEntryID — Get ID Of an entry ..ottt it ittt inteneeneeenens 65
GetEnv - Returns the value of an environment variable......... 70
GetErrNo — Return error number. [*] ...ttt iineeneennnnn 71
GetFileList - Get a list of file matching a pattern........... 72
GetKey — Get keypress from USer...... . ii ittt ineeeeeeennens 73
GetLine - Return a line from buffer...........iiiiiiiennenn. 74
GetList - Get listed information from FrexxEd................. 75
GetReturnMsg - Get verbose error description. [*]............. 77
GetWord — Get current WoIrd.ttt it ittt ieeeeeeeneseeeeaeas 78
GotoChange — Go to a previous Change........oi it eeeeneennenns 79
GotoLine — Go to a certain line and coOluUumn.......ououeeeeeeennnnsn 80
Hook — Patch a FrexxEd function. [*] ...t iiiiientinnnneenns 81
HookClear — Clear hooksS. [*] .ttt iiinneetteneeneeeeenenns 83
HookPast — Patch a FrexxEd function. [#]......iuiiiieieennnn. 81
Iconify - Sets FrexxEd in icon state.........ciiiiiiiinennnnnn 84
InsertFile - Insert a file in buffer........ ... 85
InverselLine - Inverse graphics on part of line................ 86
Isclose — Check if a character is a close. [*]..iiiiiiiennnn.. 87
Isfold — Check for a fold on a line.......i it iinnnnenns 88
Islower — Check if a character is lower case. [*] ..ueeeeeennnen. 87
Isnewline - Check i1f a character is newline. [*].....ciuiue... 87
Isopen — Check if a character is an open. [*].....iiiiieeea.. 87
Isspace — Check if a character is space. [*] ...t iiineeen.. 87
Issymbol — Check if a character is a symbol. [*].............. 87
Istab — Check if a character is tab. [*] ..t eenenen. 87
Isupper - Check if a character is upper case. [*]....ceeeueeen.. 87
Isword — Check if a character is word type. [*]....ccuiiiio... 87
KeyPress - Returns FPL program assigned to key................ 89
Kill — Kill a buffer. ...ttt ittt ittt et it eneeeaenns 90
Load — Load bUffer (S) c v vttt ittt ittt ittt ettt eeenanns 91
LoadString - Load a file and return as string. [*]............ 92
LogSetting - Log a variable’s default setting. [*]............ 93
MacroRecord — RECOTYA @ MACTO . 4t v vt ottt oot oneeeesneeoneesnseenss 94
MatchParen - Jump to matching delimiter............., 95
MaximizeView — Make a view alone ON SCreEeN........eeuwuweeeenns 96
MenuAdd - Add an item to the menu l1ist. [*] ...t ennnn. 97
MenuBuild - Builds a menu from the menu list.................. 99

MenuClear — Clears the menu list.........iiiiiiiiitinnennnnnnn 100

Functions

4/107

MenuDelete — Deletes a menu 1tem.ttt tinneeenenns 101
MenuRead - Read details from the menu.............co oo, 102
New — Create a new buffer..... ...ttt eeenn. 103
NextBuffer — Move to next buffer......... ... 104
NextEntry — Move tO nNext entry. iiitieneeeeeennneneeeans 105
NextHidden - Move to next hidden buffer.............. 105
NextView — Move tO NEeXL VieW.ttt ennneeeeenns 106
Output — Print text in buffer....... ...t ienennn 107
PageDown - Move down a screenful of lines.............cccoo.. 108
PageUp — Move up a screenful of lines........uuiiiiiiiinnnenn. 108
PlaceCursor — Place CUILSOLr ON SCLEEIM. ..ttt vt vnnnnnnnneeeeees 109
PrevBuffer - Move to previous buffer.......... 104
PrevEntry — Move LO Previous entry. ... oe e in e teetneeeeneeeeens 105
PrevHidden - Move to previous hidden buffer................... 105
PrevView — MoOvVe LTO PrevioUS VieW. ... eiie et eeeeeenneeeenns 106
PrintLine - Print a string on the screen............civviee... 110
Prompt - Interactive FPL program execution.................... 111
PromptBuffer — Get buffer from UsSer........cii ittt enennnnnn 112
PromptEntry — Get entry from User.........ii ittt ineenneenenns 112
PromptFile - Get file name from USeIr....... it 113
PromptFont — Get font from uUser....... ..ottt enneens 114
PromptInfo - Bring up an info variable window................. 116
PromptInt — Get integer from USer.......o.iiiiiiintineeenennnenn 115
PromptString — Get string from USer.......i ittt ineeneeenennn 115
QUitALl — Quit FrexxXEd. [#] ittt iteneeteeeneeeeeenneeeenns 121
Random — Get a random NUmMbEr....... ..ttt itiiiineeeeennnnns 119
ReadInfo - Get buffer information. [*].......0iiiiiiiiiiii.. 122
RedrawScreen - Update the screen image.........iiiiiiiiiinen.. 120
RemoveView — Take away a view from SCreen...........eeeeeeeenan 127
Rename - Change name of the buffer......... 128
Replace - Replaces strings with other strings in buffer....... 129
ReplaceMatch - Match pattern and generate replacement......... 130
ReplaceSet - Set search string, replace string and options.... 131
Request - Presents a multi-button requester................... 132
RequestWindow — User defined request window...........ceooee... 133
ResizeView - Make a view change size.........iiiiiiiiiinneenn. 135
ReturnStatus - Status line message at return.................. 136
Save — Write buffer to disk......iiiiiiiiiiii i, 137
SaveString — Store string on disk. [*] ...t iinteeeennnnnns 138
Screenmode — Change SCreenNMOdE . . vt v vt i vt eeeeeeeneeoeeeneenanns 139
ScrollDown — SCroll dOWN SCIrEEIM. .ttt ittt ittt eeeeeennneeeeenns 140
SCrOllUp — SCITOLLl UP SCrEEIMu v vttt ittt teetnstoeeenssonesnesanss 140
Search — Search for SLrIng..... . ii ittt e teeeeeennneeeeeans 141
SearchSet - Set search string, replace string and options..... 131
SetEnv - Set the value of an environment variable............. 142
SetInfo — Set info variables. [*] .u. ittt eeenenenn. 143
SetSave — Save Settings. [F] i ettt it tneeeeeeeeeeneeeeenns 144
SOrt — SOrt — SOFL AN AT Tay e v o ii ittt ittt teeeenntoneeneeanes 145
Status — Write text on the status line............ ... 146
Stcgfn - Returns the file name part of an entire path string.. 147
Stcgfp - Returns the path part of an entire path string....... 147
Stricmp - Compare strings case insensitive. [*]............... 148
StringChangeCase - Change case of string..........ccoiiieeeen.. 149
StringToBlock — Copy string to block. [*].....ciiiiiiiiinnnnn. 150
StringToBlockAppend - Append string to block. [*]............. 150
StringToClip - Copy string to clipboard. [*].....ccieieeeeenn.. 151

StringToLower — Lower cCasSe STring........eeiiiiiiiiinnnnnnnnn. 149

Functions 5/107

StringToUpper — Upper case SLrinNg.......eeiiiiiiiinnnnnnnnns 149
Strmfp - Merge a path string with a file string............... 152
SwapCase — Swap case o0of a block..... ..t 50

System — Perform a system command. [*] ...ttt ennenneenns 153
TimerAdd - Start timer execution............uiiiiiiiiiennnnn. 154
TimerDelete — Remove a timer execution........................ 155
Undo — UndOS Change s . v it ittt ittt ettt e eeeseeeeaeneeeenenens 156
UndoRestart — Restart an undo SESS1i0N......ttiiiiintetnnnnenn. 157
UpCase — Upcase a block. ...ttt ittt et e ie e 50

Visible - Turn visualization on or off......... 158
WindowToFront — Bring FrexxEd to front.............. 159
Yank - Paste the yank buffer........ 160

FPL function reference

1.3 Function description syntax

Following here is all functions that FrexxEd includes, with extensive and
verbose descriptions, including usage syntax, return values and often also
with examples of how to use.

The functions will be descriped using the following pattern:

NAME

<function name> - one line description. Functions programmed

in FPL but included in the default startup configuration will

be marked with a "[FPL]" symbol, and functions that are available

already in the startup function are marked with a "[x]" symbol.
SYNOPSIS

progress = <function name> (parameters);

int = <function name> (<parameter types>);

(The <parameter type> is written in all uppercase letters for
parameters that are optional - possible to leave out when calling
the described function. Other, required, parameters are written
in common lowercase letters.)

FUNCTION
Long description describing exactly what the function does, known
drawbacks, if it can be called with a variable number of parameters
and other things you need to know when calling the function.

CRIPPLE
If this keyword is present, it means that this funtion does not work
100% without a keyfile. The text will describe the effects of not
having a keyfile when running the function.

INPUTS
Description of the function input parameter(s).

RESULT
What the function returns.

Functions 6/107

EXAMPLE
If this keyword is present, a short FPL program example is visualized
that describes even more how to use this particular function.

SEE ALSO
References to other functions or further documentation which have
similar functionalities or provide more information.

BUGS
Any information regarding known bugs, flaws or drawbacks that comes
with using the function.

1.4 About()

NAME
About - Shows information about FrexxEd.

SYNOPSIS
About () ;

void About (void) ;

FUNCTION
This function pops up a window holding information regarding
FrexxEd. It tells about who wrote it, how to pay the
ShareWare fee, the name of this FrexxEd’s ARexxport and how
much memory there is available in the system respective has
been allocated (used) by FrexxEd (this last figure does only
include the amount of memory actually allocated by FrexxEd
itself, not including the memory different resources will
occupy when FrexxEd initializes such).

This information is localized and will produce a different
output in different languages.

INPUTS
RESULT

SEE ALSO
How to reach us

1.5 Activate()

NAME
Activate - Visualize a certain buffer.

SYNOPSIS
BufferID = Activate (BufferID, Mode, PopupOnto);

Functions

7/107

int Activate (INT, INT, INT);

FUNCTION
Forces the specified or current buffer to get visualized in a
view. The view will appear as set in the Mode parameter or
as set in ’'popup_view’. The third parameter specifies which buffer
it should split/replace. This function can be called with none to
three parameters.

INPUTS
BufferID - Buffer ID number of the buffer you want to
visualize. 0 or illegal IDs activate current buffer.

Mode - How to bring up the view.

= Replace the current view.

Split the current view.

= Make this the only view on screen.

0
1
2
-1 = As the ’'popup_view’ info variable tells!

PopupOnto - Buffer ID of the entry that should be replaced/split
when the ’'BufferID’ buffer gets viewed.

RESULT
Returns the BufferID.

SEE ALSO
GetBufferID (), CurrentBuffer ()

1.6 ARexxRead()

NAME
ARexxRead - Get the contents of an ARexx variable.

SYNOPSIS
Contents = ARexxRead (Variable);

string ARexxRead (string);

FUNCTION
When FrexxEd has received a message from an ARexx program, this
function returns the contents of a named ARexx variable.

INPUTS
Variable - The name of the ARexx variable. It must be specified
in all uppercase letters.

RESULT
The string the variable holds, or an empty string ("") if the
variable didn’t exist or anything went wrong. Use GetErrNo() to
figure out if an empty string was an error or a real empty
string!

SEE ALSO
A proper ARexx manual

Functions

8/107

ARexxResult (), ARexxSend(), ARexxSet (), FindPort ()

1.7 ARexxResult()

NAME
ARexxResult - Send back result string to ARexx.

SYNOPSIS
ARexxResult (Error, ResultString);

void ARexxResult (int, STRING);

FUNCTION
This function is useful when the program using it is called
from ARexx, otherwise it will not do anything.

It sets the return code and optionally the regular ARexx result
string (only if the return code is zero (0)).

INPUTS
Error - True/false if error should be reported to ARexx.
Non-zero means error, zero means OK.

ResultString - The string which the result variable will hold
after returning to ARexx.

RESULT
SEE ALSO
A proper ARexx manual
ARexxSend (), ARexxSet (), ARexxRead(), FindPort ()

1.8 ARexxSend()

NAME
ARexxSend - Send a string to an ARexx port.

SYNOPSIS
Result = ARexxSend (Port, String, Timeout);

string ARexxSend (string, string, INT);

FUNCTION

Tries to send the ’String’ to the specified ARexx ’'Port’. If ’'Timeout’
is specified and non-zero, FrexxEd will wait the specified amount of

seconds for ARexx to return a result string to us.
This function can be called with two or three parameters!

INPUTS
Port - Name of the ARexx port to send to.

Functions

9/107

String - Message to send to the port.
Timeout - Number of seconds to wait for an answer.
RESULT

If "Timeout’ is specified, the result string from the called program
will be returned, or an empty string if anything went wrong.

If 'Timeout’ isn’t specified, FrexxEd skips the waiting and an empty
string is always returned from this function.

SEE ALSO
A proper ARexx manual
ARexxResult (), ARexxSet (), ARexxRead(), FindPort ()

1.9 ARexxSet()

NAME
ARexxSet - Set the contents of an ARexx variable.

SYNOPSIS
Progress = ARexxSet (Variable, String);

int ARexxSet (string);
FUNCTION

When FrexxEd has received a message from an ARexx program, this
function can return set the contents of a named ARexx variable.

INPUTS
Variable - Name of the wvariable.
String - New contents of the variable.
RESULT

Zero means progress, non-zero means that the port didn’t exist
or that any other error occured.

SEE ALSO
A proper ARexx manual
ARexxResult (), ARexxSend (), ARexxRead (), FindPort ()

1.10 AssignKey()

NAME
AssignKey - Assigns a function to a key sequence.

SYNOPSIS
ret = AssignKey (FPLprogram, KeySequence, Condition);

int AssignKey (STRING, STRING, STRING);

Functions 10/107

FUNCTION
This function makes FrexxEd recognize the given key sequence
and when it is hit, the FPL program will be executed.

If this function is invoked with no parameter or with the first
parameter specified as an empty string (""), a requster will appear
asking for the right input.

If it is invoked with only one parameter or with ’KeySequence’

set to an empty string (""), FrexxEd will wait for a key sequence to
be pressed interactively. The key sequence is ended by pressing the
"escape’ key (which can’t be part of a key sequence).

The ’'Condition’ parameter controls whether the FPL program will get
executed when the ’KeySequence’ is pressed, or if it should continue
searching for another action bound to that key sequence!

INPUTS
FPLprogram — This must be a complete program using FPL syntax.
KeySequence - The key sequence string. It uses straigh left-
to-right order plain key description text in the
format:

[qualifier] <key>

AssignKey can recognize the following qualifier names:
"Amiga", "Shift", "Control", "Alt"

and these key names:

"F1" - "F20", "Del", "Delete", "Help", "Up", "Down",
"Right", "Left", "Esc", "Escape", "Enter", "Return",
"Tab", "Bspc", "Backspace", "Space", "Spc", "numO" -
"num9", "num([", "num]", "num/", "numx", "num-",
"num+", and "num.".

These latter strings should be written within single
quotes (ie, ’'delete’). (See example 3)

All of those is read case insensitive. Specifying
multiple key presses is done by simply writing several
key presses next to each other. (See example 4)

Characters are also recognized when written with a "\"
prefix in regular C-style.
(See example #5)

Rawkeys can be assigned by specifying the rawkey code
(hexadecimal, octal, decimal or binary) within single
quotes. (See example #6)

Spaces can only be written as a part of a key sequence
like "\x20" or "\040". Normal spaces indicates the
separation between words. (See example #7, #8)

Condition - The name of an info variable that has to hold a non-
zero number or a non-—-empty string to make the FPL
program get run when this key is pressed. If the name

Functions 11/107

is preceeded with a ’!’ character, the condition will
be reversed (that is, the FPL program will run if the
variable holds a zero or an empty string).

Combine several dependencies with the logical
expressions OR and AND by separating the variables
with | resp. &. That is, to assign a key to execute

if "foo’ or ’"bar’ is non-zero, use ’foo|bar’ as
"Condition’.

SEE the ’'hook condition’ chapter of the FrexxEd User’s
Guide.

RESULT
Standard FrexxEd error code. Returns zero if everything is OK,
otherwise non-zero.

NOTE
The key string is matched case sensitive. That means that there is a
difference the keysequences "amiga b" and "amiga B".

EXAMPLES
#1: To make "amiga s’ save the current buffer using the current
name:

AssignKey ("Save();", "Amiga s");

#2: To make ’'control alt p’ prompt the user for a text and then
write it:

AssignKey ("Output (PromptString());", "control ALT p");
#3: Make the cursor go up when pressing "alt delete" (!):
AssignKey ("CursorUp();", "alt ’'delete’");
#4: Assign the block sort to the sequence "Amiga B Control s"
AssignKey ("BlockSort ();", "Amiga B Control s");
#5: Assign the key producing the ASCII code 18 to Load():
AssignKey ("Load();", "\x12");
#6: Assign rawkey code 61 (the "8" on the numerical keyboard) to
move cCursor up:
AssignKey ("CursorUp();", "'61"");
or written hexadecimal:
AssignKey ("CursorUp();", "’'0x3e’");
or written binary:
AssignKey ("CursorUp();", "’0bl111101""™);

or written octal:

AssignKey ("CursorUp();", "/075'");

Functions

12/107

or use the existing easy-way:
AssignKey ("CursorUp();", "/num8’");
#7: Assign the string "Foo Bar" to Save():
AssignKey ("Save ();", "Foo\x20Bar");
#8: Assign the string "WRONGSPACE();" to shift space:
AssignKey ("WRONGSPACE (); ", "shift ’'space’");

#9: To make ’'amiga s’ save the current buffer using the current
name, but only if the ’changes’ variable is non-zero:

AssignKey ("Save ();", "Amiga s", "changes");
#10: To make 'amiga s’ save the current buffer using the current
name, but only if the ’'changes’ variable is non-zero and the
"prevent_save’ variable is zero.

AssignKey ("Save();", "Amiga s", "changes&!prevent_save");

#11: To make the screen beep if any change is done when ’'F4’ is
pressed:

AssignKey ("DisplayBeep ()", "'F4’", "changes");
NOTE: if ’changes’ isn’t non-zero, the string bound to the
key 'F4’ will get printed in the buffer (which is "3~" in my

keymap) !

SEE ALSO
DeleteKey (), Change action on keys

1.11 Backspace()

NAME
Backspace - Kill characters to the left of the cursor.

SYNOPSIS
Actual = Backspace (Number);

int Backspace (INT);

FUNCTION
Performs a specified number of backspaces. If no parameter is
specified, it defaults to 1.

INPUTS
Number - Amount of backspaces you want to perform.

RESULT
The number of backspaces that actually were done. If this

Functions 13/107

function is invoked with a parameter making the backspacing
hit the left edge of the first line, the backspacing is
aborted even though the requested number of backspaces
couldn’t be done.

SEE ALSO
BackspaceWord (), Delete(), DeleteLine()

1.12 BackspaceWord()

NAME
BackspaceWord — Kill words to the left of the cursor.

SYNOPSIS
Actual = BackspaceWord (Number);

int BackspaceWord (INT);

FUNCTION
Performs a specified number of backspace words. For each
number, one "word" is deleted and the cursor is moved, A
"word" is a number of characters of the same character class
written next to each other.

INPUTS
Number - Amount of words you want to backspace.

RESULT
The actual amount of deleted characters. If the function run out of
words to backspace, it will be aborted before it could perform all
the requested backspace words.

SEE ALSO
Backspace (), Delete(), Deleteline(), DeleteEol (), DeleteWord()

1.13 BlockChange()

NAME
BlockChange - Change default block.

SYNOPSIS
Previous = BlockChange (NewBlock);

int BlockChange (int);

FUNCTION
This function changes the default block to the one specified.
Block functions are always able to use the default block when
performing operations on blocks, and this function changes the
current default block to a new, already created, block.

NOTE

Functions

14 /107

The startup internal default block is named "DefaultBlock".

INPUTS
NewBlock - BufferID of the new defaultblock. 0 or an illegal
ID is equal to the internal default block ID.

RESULT
Previous block ID or zero if anything went wrong.

EXAMPLE
Change default block to the buffer named "Ninja.c":

BlockChange (GetBufferID ("Ninja.c"));

SEE ALSO
All the other BlockXXXXXX () functions.
The ’"Block concepts’ chapter.

1.14 BlockCopy(), BlockCut(), BlockDelete()

NAME
BlockCopy - Copy a marked block.
BlockCopyAppend - Copy marked area to the end of a block.
BlockCut - Cut a marked block.
BlockCutAppend - Move marked area to the end of a block.
BlockDelete - Delete a marked area.

SYNOPSIS
ret = BlockXXXX (BlockID, Columnl, Linel, Column2, Line2);
int BlockXXXX (INT, INT, INT, INT, INT);

(A1l these functions takes the same parameters of the same
types, and return the same return codes.)

FUNCTION
This is a set of functions operating on a marked block area,
with similar behaviour. They all use a default or specified
destination block, and they all have the possibility to
receive four coordinates to simulate a marked block area. These
functions must be called with either none, one or five
parameters.

BlockCopy () - Copies the contents of the currently marked area
to the destination block.

BlockCopyAppend () - Appends the contents of the currently
marked area to the end of the destination block.

BlockCut () - Cuts the contents of the marked area and copies
it to the destination block.

BlockCutAppend () - Cuts the contents of the marked area and
appends it to the end of the destination block.

BlockDelete () - Deletes the marked area.

Functions 15/107

NOTE
These functions can’t work if the current buffer is the destination
block!

INPUTS
BlockID - ID of the destination block. By specifying 0 (zero),
the default block will be used.

Columnl - The column which the marked block is to start at.

Linel - The line which the marked block is to start at.

Column2 - The column which the marked block is to end at.

Line2 - The line which the marked block is to end at.
RESULT

Standard FrexxEd error code. If zero is returned everything is
OK, otherwise the function failed.

SEE ALSO
All the other BlockXXXXXX () functions.
The ’"Block concepts’ chapter.

1.15 BlockCreate()

NAME
BlockCreate - Create a new block. [*]

SYNOPSIS
ret = BlockCreate (BlockName);

int BlockCreate (string);
FUNCTION
This function creates/initializes a new block. It is pretty much the

same as New (), but this sets the "block bits".

INPUTS
BlockName — The name of the new block/buffer.

RESULT
The ID of the newly created buffer/block.

SEE ALSO

BlockChange (), Kill ()
The ’"Block concepts’ chapter.

1.16 BlockMark()

Functions 16/107

NAME
BlockMark - Mark an area in a view.
BlockMarkLine - Mark full width of an area in a view.
BlockMarkRect - Mark a rectangular area in a view.

SYNOPSIS
BlockMarkXXX (Status, Columnl, Linel, Column2, Line2);

void BlockMarkxxxX (INT, INT, INT, INT, INT);

(A1l functions accept the same arguments of the same types,
and they return the same return codes.)

FUNCTION
The functions work very similar. They set the block mark
status and possibly the coordinates of the marked area.

BlockMark () - Performs "column style" block marking at specified
(or current) coordinates.

BlockMarkLine () - Performs "line-mode" block marking at specified
(or current) coordinates.

BlockMarkRect () - Performs rectangular block marking at
specified (or current) coordinates.

"column style" blocks are the "usual" kind of blocks. They
follow the orientation of the text lines, which means that
when the cursor is moved one line down, all columns to the
right on the previous line and all columns to the left on
the current line will automatically be included in the block.

"line-mode" block marking makes the block always mark the whole
current line, from the leftmost to the rightmost column.

Rectangular blocks are always square-shaped. They exist to
make it possible to cut out non line-oriented parts of text
documents, such as parts of figures or tables.

These functions should be called with none, one, three or five
parameters.

The main usage for BlockMark () is of course the interactive toggle
of the block existance. The toggling has three different ’positions’.
The marked block that is attached to the cursor (moving the cursor
makes the block-edge follow it), "released" block (a block is marked
and remain at the same place even though you run around with the
cursor and finally: "off" - no block is marked. On the status line,
there will be a ’'b’ visible when there is an attached block mark and
"B’ when it is released.

The ’Status’ parameter can set the toggle state of the block. Set
status 0 to unmark the block, set 1 to make it mark in attached-style
and use 2 for the released block mark style. -1 means "ignore", it is
used when all you want to do is specify new coordinates without
affecting the "current" block mark status.

Functions 17 /107

INPUTS
Status - Set state of the block:
-1 = Ignore. Just set the koordinates.
0 = Off. Quit block marking.
1 = On. Start block marking.
2 = Release. Let the block go.

Columnl - Start column of the marked block area.
Linel - Start line of the marked block area.
Column2 - End column of the marked block area.
Line2 - End line of the marked block area.
RESULT
EXAMPLE

Toggle column style block marking:
BlockMark () ;

Activate block marking:
BlockMark (1) ;

Mark a rectangular block, relased from the cursor, from line 5
column 7 to line 10 column 12:

BlockMarkRect (2, 7, 5, 12, 10);

Make a block mark from the start of the current line to the cursor.
This also starts "block marking mode":

BlockMark (1, 1, ReadInfo("line"));

Mark/highlight from 1,10 to 5,20. How does the BlockMark () call look
like?

BlockMark (2, /* released block style */
10, 1, /* from column 10 line 1 =/
20, 5); /* to column 20 line 5 x/

The user have already started a block marking (like with amiga b) and
your program should change the start column of that marked block:

BlockMark (1, /* end-of-block is attached to cursor =/
1,1); /* marks from the start of buffer x/

SEE ALSO
The other BlockXXXX () functions.
The ’"Block concepts’ chapter.

Functions 18/107

1.17 BlockMove()

NAME
BlockMove - Moves a marked block area horizontally.

SYNOPSIS
ret = BlockMove (Steps);

int BlockMove (INT);

FUNCTION
This function moves the contents of the marked block area a
specified number of steps horizontally. If this function is
invoked without parameter, the block can be moved inter-—
actively with the cursor keys and tab/shift tab to move the
block. Cancel the movings and get back to previous state by pressing
g as in quit, place the block at the current position by pressing
return or y as in yes. The maximum number of steps possible to move,
is the same as the width of the screen.

INPUTS
Steps — Number of steps to move the block. Positive numbers
to right, and negative to left.

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO

The other BlockXXXX () functions.
The ’"Block concepts’ chapter.

1.18 BlockPaste()

NAME
BlockPaste - Insert a block in the buffer.
BlockPasteRect - Insert block as rectangular.
SYNOPSIS

ret = BlockPaste (BlockID);
ret BlockPasteRect (BlockID);

int BlockPaste (INT);
int BlockPasteRect (INT);

FUNCTION
BlockPaste () and BlockPasteRect () insert the marked, current or
specified block at the current position.
The first one inserts the block as a regular line oriented block, and
the second one as a rectangular block.

They can also be forced to use the default block prior to the
currently marked!

Functions

19/107

These functions must be invoked with either none or one parameter.

NOTE
The block can’t be pasted into it’s own buffer.

INPUTS
BlockID - ID of a valid buffer/block. Specify 0 (zero) to use
the default block as source. -1 makes the default
block to get pasted even if there is a currently
marked one.

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
The other BlockXXXX () functions.
The ’"Block concepts’ chapter.

1.19 BlockSort()

NAME
BlockSort - Sort a block.

SYNOPSIS
ret = BlockSort (BlockID, Field, Flags);

int BlockSort (INT, INT, INT);

FUNCTION
This function lexigographicly sorts the lines of a marked, default or
specified block according to a field. Fields are separated with
whitespace. If no Field is specified, it defaults to 1.

Invoked with none or with one parameter, this will pop up a requester.

This function can be invoked with none to three parameters.

INPUTS
BlockID - ID of a valid buffer/block. Specify 0 (zero) to sort
the default block.

Field - Field number. 0 means from the absolute left (column
1), all other numbers means from the beginning of that
field. Fields are separated by characters marked with
the space class in the FACT.

Flags - bit 0 - case sensitive if unset (insensitive if set)
bit 1 - forward if unset (backwards if set)

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

EXAMPLE

Functions 20/107

Sort the block backwards, case sensitive according to field 2:
BlockSort (0, 2, 2);

Sort the block forwards, case sensitive according to the leftmost
position of the lines:

BLockSort (0, 0, 0);
SEE ALSO

The other BlockXXXX () functions.
The ’"Block concepts’ chapter.

1.20 BSearch()

NAME
BSearch - Binary search in a string array.

SYNOPSIS
Found = BSearch (Array, Search, Items, Method);

int BSearch (é&string[], string, INT, INT);

FUNCTION
Scans a sorted string array pointed to by the ’'Array’ parameter for a
string that equals the ’Search’ parameter. The string array must be
sorted forwards and case sensitive if ’'Method’ isn’t specified (with

the same bit flags as Sort () accepts).
INPUTS
Search - String to search for.
Array - Reference to a string array.
Items - If not the entire array should be scanned, this will
tell the function how many items it should scan for
the match.
Method - Defines sorting details. Set the following bits to
specify how the array is sorted:
0 - case insensitive
1 - backwards sort
RESULT

Array position, or -1 if not found.

NOTE
If the array isn’t sorted the right way, or if ’'Items’ isn’t set
properly, this function may very well not find the string.

SEE ALSO
Sort ()

Functions 21/107

1.21 CConvertString()

NAME
CConvertString - Convert a raw string to C style. [x]

SYNOPSIS
Cstring = CConvertString (RawString);

string = CConvertString (string);

FUNCTION
This function makes a C style string out of a raw binary
string. E.g, ASCII code 9 will be converted to \t, 10 will
become a \n and so on. Very practical if you would like to
visualize a string that might include non printable
characters.

INPUTS
RawString - The string to convert from.

RESULT
The converted string. If anything went wrong the resulting
string will be empty ("").

SEE ALSO
FACTConvertString ()

1.22 CenterView()

NAME
CenterView — Center the view vertically around the cursor.

SYNOPSIS
ret = CenterView (ViewID);

int = CConvertString (INT);

FUNCTION
Makes the current line, of the current or the specified view, the one
in the middle of the view - if possible. This function can be called
with or without parameter.

INPUTS
ViewID - The view to center.

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
ScrollDown (), ScrollUp()

Functions 22 /107

1.23 Check()

NAME
Check - Returns file information.

SYNOPSIS
ret = Check (Filename, Options);

int Check (string, STRING);

FUNCTION
Returns information regarding the specified file, according to the
"Options’. Without any options, Check () returns non-zero if the

specified file exists.
No options has been implemented yet!

INPUTS
Filename - Full path name to the file.

Options - Not currently in use!

RESULT
If no option is specified:
+ if zero is returned, the file doesn’t exist, otherwise the file
is there!

SEE ALSO
System()

1.24 Clean()

NAME
Clean - Execution without hooks. [*]

SYNOPSIS
Clean (Program);

void Clean (string);

FUNCTION
This function executes the specified string as an FPL program. When
that program runs (including all called functions), no hooks will be
called.

INPUTS
Program — A complete FPL program.

RESULT
FPL error code. Zero if everything went OK, otherwise non-zero.

SEE ALSO
ExecuteString (), ExecuteBuffer (), Hook (), HookClear ()
Error code defines in <libraries/FPL.h>

Functions 23/107

1.25 Clear()

NAME
Clear - Clear a buffer.

SYNOPSIS
ret = Clear (BufferID);

int Clear (INT);

FUNCTION
Clear removes all contents of the current or specified buffer.
This function can be called with or without argument.

INPUTS
BufferID - A valid buffer ID.

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
New (), BlockCreate (), Kill()

1.26 ClipToString()

NAME
ClipToString — Return clipboard.device data as a string.

SYNOPSIS
String = ClipToString (Unit);

string = ClipToString (INT);

FUNCTION
This function returns the contents of the specified or default
(0) unit from clipboard.device. Using this function you can
interface virutally any other software running on your Amiga
using the clipboard. This function can be called with or
without parameter.

INPUTS
Unit - Which clipboard unit you want to read data from.

RESULT
The data read is returned as a string.

EXAMPLE
Output the contents of clipboard unit 0 into the current buffer:

Output (ClipToString(0));

SEE ALSO
StringToClip ()

Functions 24 /107

1.27 CloneWB()

NAME
CloneWB - Clone the current public screen.

SYNOPSIS
ret = CloneWB ();

int = CloneWB ();

FUNCTION
This function copies as much as possible from the current public
screen to FrexxEd’s setup settings.

INPUTS

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO

1.28 ColorAdjust()

NAME
ColorAdjust - Adjust colors.

SYNOPSIS
ColorAdjust (ColorNo, Red, Green, Blue);

void ColorAdjust (INT, INT, INT, INT);

FUNCTION
This function enables you to change the RGB-settings of a
specified color. Without any parameter a palette requester
will appear to enable interactive changing of colors.

INPUTS
ColorNo - Color number. Which color do you want to change.
Ranging from zero to maximum colors - 1.
Red - The amount of red. 0 - 15
Green - The amount of green. 0 - 15
Blue - The amount of blue. 0 - 15
RESULT
SEE ALSO

ColorReset (), graphics.library/SetRGB4 ()

Functions 25/107

1.29 Constructinfo()

NAME
ConstructInfo - Create a new info variable.

SYNOPSIS
ConstructInfo(Name, FPLmodify, FPLreq, Type, CycleString, Min, Max, Default);

int ConstructInfo(string, string, string, string, string, int, int, STRING/INT <
)i

FUNCTION
This function creates a new info variable which is added to the
internal list of info variables. The new info variable will be
accessible/readable/modifyable just like other info variables through
ReadInfo () and SetInfol().

This function can be invoked with 7 or 8 parameters.

INPUTS
Name - The name of the new info variable. (If the name is
already used, everything is ignored)

FPLmodify - FPL string to run when this variable gets modified.
Full FPL syntax required.

FPLreq - FPL program to run when its button in the settings
window is pressed. Full FPL syntax required.
The return value of the program will become the new
value of the setting. If the program doesn’t return
anything, nothing is changed.

Type - A string holding any number of the following
characters in any combination:

(existance information, specify one of these:)
G - Global variable
L - Local variable

(variable type, specify one of these:)

B - A boolean variable (just TRUE or FALSE)

I - An integer variable

C - A cycle variable, able to alter between a
specified number of values.

S - A string variable

(extras:)

W — Write this variable in the default file

R - Read only variable

H - Hidden. Does not appear in a settings window.

(group)

Specify which groups the variable is to be sorted in.
Write the names of the groups within parentheses next
to each other. Available groups are:

Functions 26 /107

Display - Display matters (eg. ’'cursor_x')

IO - 0OS interactions (eg. ’expand_path’)
Screen - Screen oriented variable (eg. ’'window’)
System - Misc (eg. "autosave’, ’language’)

CycleString - If the variable is a cycle type, this string specifies
the names associated with each cycle step. It should
be specified as "stringO|stringl|string2|...".
The variable will contain the number of the currently
selected cycle (0 for the first, 1 for the second and
so on) .

Min - If this is an integer variable, this is its minimum
value.

Max - If this is an integer variable, this is its maximum
value. To make an integer variable without any limits,
neither min nor max, Jjust make sure both equal zero.

Default - The default value/string of this setting. If this
isn’t specified, it defaults to the minimum value or
an empty string ("").

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

EXAMPLE
Create a local boolean variable with the name ’tab_space’ that should
be saved and is unset by default:
ConstructInfo ("tab_space", "", "", "LBW(display)", "", 0, 0);
Create a global cycle variable named ’'weather’ that can alter between
"rainy", "sunny" and "cloudy". It is sorted under the ’system’ group

and is by default set to "sunny":

ConstructInfo ("weather", "", "", "GC(system)",
"rainy|sunny|cloudy", 0, 0, 1);

SEE ALSO
ReadInfo (), SetInfo(), PromptInfo(), DeleteInfol()

1.30 ColorReset()

NAME

ColorReset - Reset color(s) to workbench default.
SYNOPSIS

ColorReset (Color);

void ColorReset (INT);

Functions

27/107

FUNCTION
Resets all colors or Jjust the specified one to the workbench/
preferences default. If invoked without argument, all colors is
affected.

INPUTS
ColorNo - Color bits. Bit 0 is color 0, bit 1 color 1
and so on. -1 resets all colors.
RESULT
SEE ALSO

ColorAdjust (), graphics.library/SetRGB4 ()

1.31 CurrentBuffer()

NAME
CurrentBuffer - Change current buffer.
SYNOPSIS
Previous = CurrentBuffer (BufferID);
int Currentbuffer (int);
FUNCTION

This function changes the current buffer to the specified one.
If the current buffer isn’t visible when the FPL program ends,
it will pop up visible.

INPUTS
BufferID - A regular, valid buffer ID.

RESULT
Previous buffer ID or zero (0) if anything went wrong.

SEE ALSO
GetBufferID (), Activate()

1.32 CursorActive()

NAME
CursorActive - Alter the cursor state.

SYNOPSIS
Previous = CursorActive (Switch);
int CursorActive (INT);

FUNCTION

Turns the cursor on or off. If called without parameter, simply
returns the current state.

Functions

28/107

INPUTS
Switch - New state: 1 = on, 0 = off

RESULT
Previous cursor state.

SEE ALSO
Visible ()

1.33 Cursor movements

NAME
CursorDown - Moves cursor down.
CursorLeft - Moves cursor left.
CursorLeftWord - Moves cursor entire words left.
CursorRight - Moves cursor right.
CursorRightWord - Moves cursor entire words right.
CursorUp - Moves cursor up.

SYNOPSIS
Actual = CursorXXXXX (Steps);

int CursorXXXXX (INT);

(A1l the six functions accept the same amount of parameters of

the same types, and they use the same return codes.)

FUNCTION

CursorUp () and CursorDown () move the cursor one or a specified

amount of lines up or down.

CursorRight () and CursorLeft () move the cursor one or a
specified amount of columns right or left.

CursorRightWord () and CursorLeftWord() move the cursor one or
a specified amount of words right or left.

INPUTS
Steps — The amount of steps to take. Negative numbers mean opposite
direction.
RESULT

The actual number of steps taken. FrexxEd may abort the
function before being able to perform all requested steps due
to the end or beginning of file, and the return value will
tell how many steps that were performed.

SEE ALSO
ScrollDown (), PageDown ()

1.34 CursorStack

Functions 29/107

NAME
CursorStack - Stores/gets cursor position.

SYNOPSIS
CursorStack (Flag);

void CursorStack (INT);

FUNCTION
This function stores the current cursor position on a stack, or gets
a cursor position from it. If called without parameter or -1, it
stores, and if called with 1 as parameter it sets the cursor on the
position that is on the top of the cursor stack.

NOTE
The stack is simply an 8 level circular stack. You can’t push more
than eight positions to it and expect to get them back. There’s no
harm done if you don’t pull the same amount you push.

INPUTS
Flag - (-1) for storing (push), 1 for getting (pull)

RESULT
none

SEE ALSO
GotoLine ()

1.35 Delay()

NAME
Delay - Sleep for a while.

SYNOPSIS
Delay (Pause);
void Delay (int);
FUNCTION

The parameter ’'Pause’ specifies how many ticks (50 per second) to
wait before returning control.

QUOTE

"Stay a while... stay forever!!!" - Impossible Mission
INPUTS

Pause - Sleeping time specified in 50th of seconds.
RESULT

SEE ALSO

Functions

30/107

1.36 Deiconify()

NAME
Deiconify - Pops up FrexxEd from the icon state.

SYNOPSIS
ret = Deiconify ();

int Deiconify ();

FUNCTION

The reversed action of an Iconify() call. The appicon created then

is popped up into a normal FrexxEd screen/window again.

INPUTS

RESULT

Regular FrexxEd error code. If zero or a positive number is returned,

everything is OK, otherwise something went wrong.

SEE ALSO

1.37 Delete()

NAME
Delete - Delete char(s) at cursor.
DeleteWord - Delete word(s) at cursor.
SYNOPSIS

Actual = DeleteXXXX (Steps);
int DeleteXXXX (INT);

FUNCTION
Delete () — Removes one or a specified number of characters at
the cursor.

DeleteWord () - Removes one or a specified number of words at
the cursor.

INPUTS
Steps — The amount of deletions to perform.

RESULT
The actual number of deletions that were performed before end
of file (EOF) was reached.

SEE ALSO
Backspace (), BackspaceWord(), Deleteline(), DeleteEol ()

Functions 31/107

1.38 DeleteEol()

NAME
DeleteEol - Delete the rest of the line.

SYNOPSIS
Chars = DeleteEol ();

int = DeleteEol ();

FUNCTION
This function deletes the line from the current position to
the rightmost column.

INPUTS

RESULT

The number of characters that were deleted.

SEE ALSO
DeletelLine (), Delete()

1.39 Deletelnfo()

NAME

DeleteInfo - Delete an info variable.
SYNOPSIS

ret = DeletelInfo (Variable);

int = DeletelInfo (string);
FUNCTION

This function deletes the specified info variable.

INPUTS
Variable - The name of the variable to delete.

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
ConstructInfo (), ReadInfo(), SetInfol()

1.40 DeleteKey()

NAME
DeleteKey - Delete a key assigning.

SYNOPSIS

Functions 32/107

DeleteKey (KeySequence);
void DeleteKey (STRING);

FUNCTION
When you want to remove a previous AssignKey () to a cetain key
sequence, this is the function to call. When deleting a key
sequence, the function that was earlier bound to that will
yet again become the present action for that key sequence.

If invoked without parameter, interactive mode is entered which
enables the user to type the sequence to be removed, ended by hitting
escape. Interactive key sequences entered, will always strip the

caps lock and shift qualifiers.

INPUTS
KeySequence - A valid key sequence string. See AssignKey ()
for how to write such a string.

RESULT

SEE ALSO
AssignKey ()

1.41 DeleteLine()

NAME
Deleteline - Delete a line.

SYNOPSIS
Actual = DeletelLine (Lines);

int DeletelLine (INT);

FUNCTION
This function removes one or a specified number of lines.

INPUTS
Lines - The number of lines to delete.

RESULT
The actual amount of lines that were deleted. When end of file
(EOF) is reached before all requested lines have been deleted,
this function is aborted.

SEE ALSO
DeleteEol (), Delete()

1.42 DisplayBeep()

Functions 33/107

NAME
DisplayBeep - Flash the screen.

SYNOPSIS
DisplayBeep ();

void DisplayBeep ();
FUNCTION
This function makes the screen flash. It calls the

intuition.library function with the same name.

INPUTS
RESULT

SEE ALSO
Intuition.library/DisplayBeep ()

1.43 DuplicateEntry()

NAME
DuplicateEntry - Make two entries from one.

SYNOPSIS
NewID = DuplicateEntry (EntryID);

int = DuplicateEntry (INT);
FUNCTION
This function makes a copy of the current or specified entry

and adds it to the list of entries.

INPUTS
EntryID - A valid entry ID.

RESULT
The ID of the newly created entry.

SEE ALSO
GetEntryID (), Kill()

1.44 Change case

NAME
DownCase — Downcase a block.
SwapCase - Swap case of a block.

UpCase — Upcase a block.

Functions 34 /107

SYNOPSIS
ret = XXXCase (BlockID);

int XXXCase (INT);

FUNCTION
These functions work on the marked, default or the specified
block.
DownCase () — Change all letters to downcase.
SwapCase () - Change all letter to the opposite case.
UpCase () — Change all letters to upcase.

INPUTS

BlockID - ID of a valid buffer/block. Specify 0 (zero) to change
the default block.

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
BlockMark ()

1.45 Execution functions

NAME
ExecuteBuffer - Execute a buffer as an FPL program.
ExecuteFile - Execute a file as an FPL program.
Executelater - Execute a string as an FPL program later.
ExecuteString - Execute a string as an FPL program.

SYNOPSIS
ret = ExecuteBuffer (BufferID);
ret = ExecuteFile (FileName, Program);
ret = Executelater (String);

ret = ExecuteString (String, BufferID);

int ExecuteBuffer (INT);

int ExecuteFile (string, STRING);
int Executelater (string);

int ExecuteString (string, INT);

FUNCTION
These are functions for invoking FPL programs and FPL program
executions.

ExecuteBuffer executes the current or specified buffer.

ExecuteFile executes the specified file or the files that match the
pattern. If the optional ’'Program’ parameter is used, _that_ string
is executed instead of the files actual "main" program (the program
outside all functions).

Functions 35/107

Executelater executes the specified string later on.

ExecuteString executes the specified string. It handles an optional
BufferID which specifies in which buffer the execution is to take
effect in.

To read more about what FPL programs are, how to code them and how
to control them, read the "Programming FrexxEd" chapter of this
manual.

INPUTS
BufferID - A valid buffer ID.
FileName - Full path name/pattern to the file(s). Files will be

search for through the path specified in ’fpl path’.
String - The FPL program string.

RESULT
FPL error code. Zero if everything went OK, otherwise non-zero.

SEE ALSO
Introduktion to FPL
Clean ()
Error code defines in <libraries/FPL.h>

1.46 FACT()

NAME
FACT - Change the FrexxEd ASCII Convert Table

SYNOPSIS
ret = FACT ([Name,] ASCIIcode, Tag, [Value, [Tagll, ...);
int FACT ([STRING,] int, INT or STRING, ...);

FUNCTION

The FACT customizes the screen output of a certain ASCII code, among
other things. For closer documentation on why and other stuff, refer
to the "Character set" chapter.

FrexxEd supports local FACTs, and to specify another one than the
current one, the first parameter of the FACT() call should be the
name of that special FACT.

The ’'fact’ info variable holds the name of the current FACT.
TAGS

The tags are all integers, some of them requires nothing else but
the tags alone, but some requires a following argument:

Tag Arg Description

Functions

36/107

’Wl

’Nl

VU’

’Sl

INPUTS
Name

ASCI

Tag

RESULT
Regu

flag Clear a flag. The argument can be any one of '"W’,
rr,rr) INY, TN or =" for all flags.

Word class attribute. When set, that means that this
character can be a part of a regular word.

White space attribute. This character is a blank.
Symbol attribute. Such characters are e.g: !#5$%&.

Newline attribute. This character causes a new line
to start! This attribute can only be set when no
buffers, blocks or undo buffers exist in FrexxEd. If
you think of modifying this, do it at the absolute
startup.

Tab attribute. This character causes a jump to the
next tab position stop.

char This character is an open delimiter. The specified
"char’ argument is the ASCII code of the matching
opposite.

char This character is a close delimiter. The specified
"char’ argument is the ASCII code of the matching
opposite.

char This character is an upper case character. The
specified ’char’ argument is the ASCII code of the
lower case version of the same character.

char This character is a lower case character. The
specified ’'char’ argument is the ASCII code of the
upper case version of the same character.

string This is the string which will be wvisualized when
this ASCII code appears in the buffer.

Read that character set chapter for details of how

to customize the strings.

- If any other FACT than the current is to be changed.

Icode — The ASCII code which to modify the FACT entry for,

-1 = end of file character

-2 = ’ContinuedLine’ character.

-3 = Fold start character (displayed to the left of a
line with fold)

-4 = Fold area character (displayed to the left of a
shown folded area)

-5 = Fold margin fill character (which the fold margin
will consist of)

- See TAGS description

lar FrexxEd error code. If zero or a positive number is returned,

or

Functions

37/107

everything is OK, otherwise something went wrong.
SEE ALSO

Character set
FACT reading functions

1.47 FACTClear()

NAME
FACTClear - Reset the FACT to defaults.

SYNOPSIS
ret = FACTClear (ASCII, Name);

int FACTClear (INT, STRING);

FUNCTION
Resets the specified ASCII code FACT entry to default. If no ASCII
code is specified (or 256), all FACT entries will be reset. Use

this to remove not so very good FACT experiments.
Can be called with none, one or two parameters.

INPUTS
ASCII - The character code to reset. Valid numbers are 0-255 for

all those ASCII codes, or

-1 = end of file character

-2 = ’ContinuedLine’ character.

-3 = Fold start character (displayed to the left of a
line with fold)

-4 = Fold area character (displayed to the left of a
shown folded area)

-5 = Fold margin fill character (which the fold margin
will consist of)

Name - Name of the FACT to clear.
RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.
SEE ALSO
FACT (), FACTConvertString(), FACTString/()

FACT reading functions
Character set

1.48 FACTCreate()

NAME
FACTCreate - Create a new FACT.

SYNOPSIS

Functions 38/107

ret = FACTCreate (Name);
int FACTClear (string);

FUNCTION
Creates a new FACT. After it has been created, it has the built-in
look, and it can be altered and used.

INPUTS
Name - Name of the new FACT.

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
FACT (), FACTConvertString(), FACTString/()
FACT reading functions
Character set

1.49 FACTDelete()

NAME
FACTDelete - Delete a FACT.

SYNOPSIS
ret = FACTDelete (Name);

int FACTDelete (string);

FUNCTION
Deletes a named FACT.

INPUTS
Name - Name of the FACT to delete.

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
FACT (), FACTConvertString(), FACTString/()
FACT reading functions
Character set

1.50 FACTConvertString()

NAME
FACTConvertString - Convert a string with the FACT.

SYNOPSIS
Converted = FACTConvertString (Text);

Functions

39/107

string FACTConvertString (string);

FUNCTION
This function uses the current FACT to convert the input string, and
returns the convertion. The resulting string will look Jjust as the
specified string would look like on screen (font styles are of course
stripped).

INPUTS
Text - The string to convert.

RESULT
The converted text.

EXAMPLE
To optain the string that is output when a tab character appears in
a file:

string output = FACTConvertString("\t");

SEE ALSO
FACT (), FACTString(), CConvertString()
FACT reading functions
Character set

1.51 FACTString()

NAME
FACTString — Returns the FACT string of a character.

SYNOPSIS
Text = FACTString (ASCII);

string FACTString (int);

FUNCTION
Returns the string that is displayed when the specified ASCII code
is displayed on screen.

EXAMPLE
To optain the string that is output when a tab character appears in
a file:

string output = FACTString(’\t’);

INPUTS
ASCII - The character code to view. Valid numbers are 0-255 for
all those ASCII codes, -1 for the "end of file" character
and -2 for the "continued line" character.

RESULT
The string that represent the specified ASCII code.

SEE ALSO

Functions

40/107

FACT (), FACTClear (), FACTConvertString()
FACT reading functions
Character set

1.52 FindPort()

NAME

FindPort - Find a given system message port. [x]
SYNOPSIS

Exist = FindPort (Portname, Timeout);

int FindPort (string, INT);

FUNCTION
This function returns whether the specified ’'Portname’ exist. If the
option ’'Timeout’ field is specified with a non-zero number, FrexxEd
will wait at the most that number of seconds for the port to appear.

INPUTS
Portname - The name of the port.

Timeout - Number of seconds to wait for it.

RESULT
Non-zero if the port exist, otherwise zero.

SEE ALSO
exec.library/FindPort ()
A proper ARexx manual
ARexxRead (), ARexxResult (), ARexxSend(), ARexxSet ()

1.53 Fold()

NAME
Fold - Fold an area of a buffer.

SYNOPSIS
Ret = Fold (From, To, BufferID);

int Fold (INT, INT, INT);
FUNCTION
Makes a fold of the lines between ’'From’ and ’'To’. 'BufferID’ may

specify which buffer to affect.

If this function is called without parameters, the currently marked
block’s first and last line will be used.

INPUTS
From - First line of the new fold.

Functions 41 /107

To - Last line of the new fold.
BufferID - A valid buffer ID.
RESULT

Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
The Using folds chapter.
FoldDelete (), FoldHide (), FoldShow ()

1.54 FoldDelete()

NAME
FoldDelete - Delete a fold.

SYNOPSIS
Ret = FoldDelete (Line, BufferID);

int FoldDelete (INT, INT);

FUNCTION
Removes the fold (not the text) on the specified or current line.

Can get called with none, one or two parameters. Without parameters,
the current line will be used.

INPUTS
Line - Line on which the fold is to be removed from. -1 will
make all folds in the buffer to get deleted!

BufferID - A valid buffer ID.
RESULT

Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
The Using folds chapter.
Fold (), FoldHide (), FoldShow()

1.55 FoldHide()

NAME
FoldHide - Hide a fold.

SYNOPSIS
Ret = FoldHide (Line, BufferID);

int FoldDelete (INT, INT);

Functions

42 /107

FUNCTION
Hides the fold on the specified or current line.

Can get called with none, one or two parameters. Without parameters,
the current line will be used.

INPUTS
Line - Line on which the fold is. 0 means hide all folds
BufferID - A valid buffer ID.

RESULT

Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
The Using folds chapter.
Fold (), FoldHide (), FoldShow()

1.56 FoldShow()

NAME
FoldShow - Show a fold.

SYNOPSIS
Ret = FoldShow (Line, BufferID);

int FoldShow (INT, INT);

FUNCTION
Shows the fold on the specified or current line.

Can get called with none, one or two parameters. Without parameters,
the current line will be used.

INPUTS
Line - Line on which the fold is.
0 means show this fold xonlyx
-1 means show all folds

BufferID - A wvalid buffer ID.
RESULT

Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
The Using folds chapter.
Fold(), FoldHide (), FoldShow ()

1.57 GetBlock()

Functions

43/107

NAME
GetBlock - Get block as string.

SYNOPSIS
Block = GetBlock (BlockID);

string GetBlock (INT);

FUNCTION
This function returns the marked, default or named block. Can be
called with or without parameter.

INPUTS
BlockID - ID of a valid buffer/block. Specify 0 (zero) to get
the default block.

RESULT
This function returns the block as a string. If the block didn’t
exist, a zero length string ("") is returned (and use GetErrNo ()

to get the error code).

SEE ALSO
The Block concepts chapter.

1.58 GetBufferID()

NAME
GetBufferID - Get ID of a buffer.
GetEntryID - Get ID of a buffer.

SYNOPSIS
ID = GetBufferID (BufferName, FileNumber, ViewNumber);
ID = GetEntryID (BufferName, FileNumber, ViewNumber);

int GetBufferID (STRING, INT, INT);
int GetEntryID (STRING, INT, INT);

FUNCTION
These functions return the buffer/entry ID of the current or specified
buffer. The buffer is specified by entering information about the
name (which can be the entire path or simply the filename),
file number (if there are more than one buffers with the identical
name) and view number. The functions can be called with none to
three parameters.

INPUTS
BufferName - The name of the buffer.
FileNumber - The number of this file. Only interesting if the

buffer name is used in more than one buffer.

ViewNumer - The view number. Only interesting if a
DuplicateEntry () has been done to the buffer.

Functions

44 /107

RESULT
The buffer/entry ID, or zero if anything went wrong.

SEE ALSO
CurrentBuffer (), Activate()
The Buffer concepts chapter.

1.59 GetByte()

NAME
GetByte - Get byte position from a given column.

SYNOPSIS
BytePos = GetByte (Column, Line);

int GetByte (INT, INT);

FUNCTION

Converts from column to byte position of the current or specified
position.

The problem with characters of different widths (like the tab
character) is that the column number doesn’t tell which character
it is on the line. What we refer to as ’'Byte position’ is the exact
number of the position, when each character is one byte.

If no parameter is passed to this function, the current byte
position is returned!

This function can be called with none, one or two parameters.

INPUTS
Column - Number of the column to convert into byte position.
If this is beyond the end of line, the last
column of the line will be read.

Line - Number of the line to read the column from. If it
is specified beyond end of file, the last line will
be read.
RESULT

The byte position of the given or current position.

SEE ALSO
GetCursor ()

1.60 GetChar()

NAME
GetChar - Get character from buffer.

SYNOPSIS

Functions 45/107

Character = GetChar (Byte, Line);
int Getchar (INT, INT);

FUNCTION
This function reads a character from the buffer at the current or
specified position. This function can be called with none, one
or two parameters. Left out parameters defaults to the current
position.

INPUTS
Byte - Number of the byte position to read the character
from. If this is beyond the end of line, the last
character of the line will be read.

Line - Number of the line to read the character from. If it
is specified beyond end of file, the last line will
be read.
RESULT

The character at given position or -1 if anything failed.

SEE ALSO
GetLine (), GetWord()

1.61 GetCursor()

NAME
GetCursor — Return column position of a byte position

SYNOPSIS
Column = GetCursor (BytePos, Line);

int GetCursor (INT, INT);

FUNCTION
This function returns in which column the current or specified
position is. Can be called with none, one or two parameters.

Useful when checking which cursor position a certain place in
a text would get.

INPUTS
BytePos — Number of bytes from the leftmost position of
the specified or current line.

Line - Line to check.

RESULT
The column in which that position is on screen.

SEE ALSO
GetByte, GetChar (), GetWord(), GetKey(), GetLine /()

Functions

46 /107

1.62 GetDate()

NAME
GetDate - Return date.

SYNOPSIS
Date = GetDate (BufferID, Format);

string GetDate (INT, INT);
FUNCTION
This function returns the date and time of the current or specified

buffer, or even the system time, in the format specified.

When invoked with none or one parameter, it returns the time and date
in the format "DD-MMM-YY TT:MM:SS".

INPUTS
BufferID - A valid buffer ID. If set to 0, the current buffer time
is returned, if set to -1, the system time is.
Format - Specifies how the time and date should be constructed:
(OR together one value from each grop)
value meaning
(0x000) return date and time
(0x001) return date
(0x002) return time
(0x000) FORMAT_DOS dd-mmm-yy
(0x010) FORMAT_INT yy-mmm-dd
(0x020) FORMAT_USA mm-dd-yy
(0x030) FORMAT_CDN dd-mm-yy
(0x040) <locale> yyyy-mm-dd (varies)
(0x000) DTF_NORMAL
(0x100) DTF_SUBST substitute Today, Tomorrow, etc.
(0x200) DTF_FUTURE day of the week is in future
RESULT

A string holding the date/time or "".

EXAMPLE
Get the system time only, specified internationally with the future
flag set:

GetDate (-1, 0x424);

SEE ALSO

1.63 GetEnv()

NAME

Functions

47 /107

GetEnv - Return the value of an environment variable.
SYNOPSIS
Contents GetEnv (Name) ;

string GetEnv(string);

FUNCTION
Gets the value of an environment variable.

INPUTS
Name - Name of the variable to get.
RESULT
The contents of the variable or "" if the variable wasn’t found.

The error number will be set if an empty string is caused because of
the variable being absent.

SEE ALSO
SetEnv (), GetErrNo ()

1.64 GetErrNo()

NAME
GetErrNo - Return error number.

SYNOPSIS
ErrorNumber = GetErrNo();

int GetErrNo () ;

FUNCTION
When FrexxEd functions fail, most of them set the global error
variable. This function returns the value of that variable. This
is used to output verbose descriptions to faults.

INPUTS

NOTE
To get the correct error number, it should be read immediately after
the failing function.

RESULT
Returns the latest error number set by a FrexxEd function.

SEE ALSO
GetReturnMsg (), ReturnStatus()

1.65 GetFileList()

NAME
GetFilelist - Get a list of file matching a pattern.

Functions 48 /107

SYNOPSIS
Matches = GetFilelList (Pattern, ArrayRef);

int GetFilelist (string, string =[]);
FUNCTION
GetFileList () returns the number of directory entries that match the

"Pattern’. All matches are returned in the ’"ArrayRef’ string array.
Entries are files, directories and links to such.

INPUTS
Pattern - A valid AmigaDOS wild card pattern.

ArrayRef - A regular FPL string array reference.

RESULT
The number of matches.

EXAMPLE
A little routine that displays all entries in the FrexxEd: catalog,
or a if no entries are present, a requester holding the text "none":

string args[1l]; /* will be resized to the proper size */
int number; /* holds number of matches x/
number=GetFileList ("FrexxEd:#?", &args);
if (number) {
string result;
RequestWindow ("Filer",
"w, "A", &args, &result, -1);
} else
Request ("None") ;

SEE ALSO
An AmigaDOS manual for wildcard description!

1.66 GetKey()

NAME
GetKey - Get keypress from user.

SYNOPSIS
Output= GetKey (Flags);

string GetKey (INT);

FUNCTION
This function waits for the user to press a key. As soon as a key
press is detected, the keymap string for that press will be returned.
If '"Flags’ is set to 1, the function will return whatever is pressed
right now without waiting. If no key is pressed an empty string will
be returned.

INPUTS
Flags — If bit 0 is set, GetKey() will return without waiting for

Functions

49/107

the keypress.
if bit 1 is set, the qualifiers of the keypress will be
included in the returned string,

RESULT
The string in the keymap that represents the pressed key sequence.

SEE ALSO
PromptString ()

1.67 GetLine()

NAME

GetLine - Return a line from buffer.
SYNOPSIS

Line = GetLine (LineNumber, BufferID);

int GetLine (INT, INT);

FUNCTION
This function returns the current or specified line as a string. Can
be called with none to two parameters. Specifying a line number out

of range will make GetLine() return the last line available.
INPUTS

LineNumber - line number

BufferID - A valid buffer ID.
RESULT

The requested line as a string.

SEE ALSO
GetChar (), GetWord(), GetKey ()

1.68 GetlList()

NAME
GetList - Get listed information from FrexxEd.

SYNOPSIS
Entries = GetList (ListName, &Array, [Mask, NonMask, &TypeArray]);

int GetList (string, &string/int[], STRING, STRING, &STRING[]);
FUNCTION
GetList () resizes and fills in a string or int array with the

contents of an internal list.

These are the current lists available for reading:

Functions 50/107

extra returns extra information from a function just invoked.
Which information that is returned in the integer array is
documented in the specific function.

FACT lists all FACTs in memory

search all items in the search/replace history

setting all info variables. This list is special since it
requires three extra parameters to be specified.

symbols all exported identifiers available at the moment

INPUTS
ListName - Name of the list to get.
Array - Reference to a string or int array. The array will be

resized to fit all the items returned. The "extra"
list requires an int array, the rest string arrays!

These following is used only with the "setting" list:

Mask - Which settings to include. The mask is specified
as the '"IncludeMask’ for PromptInfol().

NonMask — Which settings to exclude. The mask is specified
as the ’"ExcludeMask’ for PromptInfol().

TypeArray - Reference to a string array. This array will be
resized to fit a string for each ’'Array’ entry. Each
string will hold the info wvariable type in the
following format (one or more of the following
letters) :

~
~

- boolean

- string

- cycle

- integer

- global

- local

- writeable (stored in the .default file)
- read only

— hidden

- userdefined

~
~

~
~

~
~

~
~

~
~

~
~

o R = HQF Q®O

RESULT
Returns the amount of items in the array.

EXAMPLES
Display all info variables currently present in FrexxEd in a
requester to let the user select from the list:

string arr[2];
string typel2];
int antal;

string res;

antal=GetList ("setting", &arr, "", "", &type);
while (antal) {

antal——;

arr[antal]l=arr[antal]+" "+typelantall];

Functions

51/107

RequestWindow ("Pick a variable", "", "a",

&arr,

&res,

-1);

Display all exported identifiers currently present in FrexxEd in a

requester to let the user select from the list:

string array[1l];

string str;

int antal;

antal=GetList ("symbols", &array);

Sort (&array) ;
RequestWindow ("Title", "", "a", &array,

SEE ALSO

1.69 GetReturnMsg()

NAME
GetReturnMsg - Get verbose error description.

SYNOPSIS
Message = GetReturnMsg (Number);

string GetReturnMsg (int);

FUNCTION

&str,

antal);

This function returns a verbose text that explains the error code

that was sent as a parameter.

INPUTS
Number - A regular FrexxEd error code.

RESULT
A string holding a verbose description.

SEE ALSO
GetErrNo (), ReturnStatus/()

1.70 GetWord()

NAME
GetWord - Get current word.

SYNOPSIS
Word = GetWord (Line, Pos);

string GetWord (INT, INT);

FUNCTION

Functions

52/107

This function returns the word currently under the cursor or at the
specified position. Can be called with none, one or two parameters.

If the specified line is not within reach, the current line will be
used. If the column isn’t within reach, a zero-length string will be
returned.

If "Line’ is the only specified parameter, the current pos will be
used on the specified line.

INPUTS
Line - Line number of the word. Use -1 to read current line.
Pos - Byte position of the line. -1 means current pos.

RESULT

A string holding the word.

SEE ALSO
GetLine (), GetChar ()

1.71 GotoChange()

NAME
GotoChange - Go to a previous change.

SYNOPSIS
Actual = GotoChange (Number);

int GotoChange (INT);

FUNCTION
This function consults the undo buffer, and moves the cursor to the
position of the Xth last change, where X is the number specified as
parameter to this function. No parameter means that FrexxEd defaults
to the very latest change.

INPUTS
Number - The change number. 1 is the latest change. 2 is the second
most recent change and so on...

NOTE
This function uses the undo buffer to get the information, which gives
that earlier changes than the very latest may not have happened exactly
where FrexxEd puts the cursor. The position it sets is the position it
would get if you would keep undoing until that change.

RESULT
The actual change number that it moved the cursor to. Trying to move
to a change not existing in the buffer, will make GotoChange () return
0 (zero). If no changes is done to this buffer, 0 will be returned
likewise.

SEE ALSO

Functions

53/107

GotoLine ()

1.72 GotoLine()

NAME
GotoLine - Go to a certain line and column.

SYNOPSIS
fail = GotoLine (Line, Byte);

int GotolLine (INT, INT);

FUNCTION

This function moves the cursor to the specified line and byte position.

If 'Byte’ isn’t specified, the cursor will be put on the beginning of
the line. Specifying no parameter will bring up a requester to be
filled up by the user. The requester field accepts a line number and a
column number separated with whitespace.

If the specified position is out of range, GotoLine() will put the
cursor on the position closest to the request.

INPUTS
Line - The line number to jump to. -1 is the same as the last
line of the buffer.

Byte - The byte position of the line to Jjump to. -1 is the same as
the last (rightmost) position of the line.

RESULT
This function returns zero if the placement of the cursor was put on
the exact spot as specified, or non-zero if the cursor couldn’t be
put on the exact specified spot.

EXAMPLE
A function call that move the cursor to the beginning of the current
line:

GotoLine (ReadInfo ("1line"));

Make the key control cursor up move to the uppermost line of the
current buffer:

ASSigHKey("GOtOLiHe (1)y", "control ’'up’");

SEE ALSO

1.73 Hook functions

NAME
Hook - Patch a FrexxEd function.

Functions 54 /107

HookPast - Patch a FrexxEd function.
SYNOPSIS
ret = Hook (HookName, FPLprogram, Condition);
ret = HookPast (HookName, FPLprogram, Condition);

int Hook (string, string, STRING);
int HookPast (string, string, STRING);

FUNCTION
FrexxEd provides, with these functions, ways for any FrexxEd programmer
to change the behaviour of a builtin function. When hooking onto a
a function, you make your own function get called before the real
function. If your function returns a non-zero value, the real function
(and following hooks) won’t be started. If using HookPast (), the hook
function will be called xafterx the real function, and the return code
simply stop following hooks from being run.

If the optionally specified info variable is set to a non-zero value,
the hook will be executed . If no variable is specified (or ""), it
will be invoked as described.

It is indeed possible to hook more than one program onto the very same
function. They will be interpreted in the hook order (as long as no
program return a non-zero value).

These functions can be called with two or three parameters.

See further information in the ’'Patching internal functions’ chapter
of the FrexxEd.guide manual.

Remember *notx to change the original function of a hooked function.
That won’t do any good, but only confuse.

INPUTS
HookName — Name of the hook. Valid hooks are all internal FrexxEd
function names and an additional amount of
"exceptions’.

FPLprogram — The FPL program that is interpreted when the hook is
activated. It can be specified in two ways:

+ One way 1s to write only the name of the function,
no parentheses, no semicolons and no other stuff.
Only the name of the function. It is very important
that the function accepts the exact same number and
kind of parameters as the hooked function does,
otherwise it won’t be a successful hooking (no error
code will be returned since this can’t be checked
when this function is called, but the hook won’t be
run properly later)!

* The other way to specify the hook is to write a full
FPL program to be run.

Condition - Name of the conditional info variable expression. See
further details in the description of AssignKey () !

RESULT

Functions 55/107

Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
HookClear ()
Patching internal functions

1.74 HookClear()

NAME
HookClear - Clear hooks.

SYNOPSIS
Number = HookClear (Hook, FPLprogram, Info);

int HookClear (STRING, STRING, STRING);

FUNCTION
This function removes the functions that the parameters match.

If "Hook’ 1is specified, all hooks on that function will be removed.
If it isn’t specified, it matches all functions.

If 'FPLprogram’ is specified, all hooks that calls this function will
match.
If it isn’t specified, it matches all hooks.

If "Info’ is specified, all hooks that is dependent on this variable
will match. NOTE: This matches xallx hooks dependent on this variable,
including those dependent on "!<variable>".

If it isn’t specified, it matches all hooks.

This function can be called with none to three parameters. Left out
parameters will act as if specified as a zero-length string.

INPUTS
Hook - Hook name, usually a FrexxEd function name. Specify
"" to match all hooks.
FPLprogram — Program to be called when the hook is activated. This

can also be a full fledged FPL program. Specify ""
to match all functions on this hook.

Info - Variable that the hook is dependent on. Specify ""
to match all hooks.

RESULT
The actual amount of hooks that was cleared.

SEE ALSO
Hook (), HookPast ()
Patching internal functions

Functions 56 /107

1.75 Iconify()

NAME

Iconify - Sets FrexxEd in icon state.
SYNOPSIS

ret = Iconify ();

int Iconify ();
FUNCTION

Closes down the normal screen/window, and if the ’appicon’ info
variable is switched on, it creates an appicon. Double-click on the
icon, call Deiconify () or send CONTROL-E to FrexxEd to make it normal
(deiconified) again.

INPUTS

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO

Deiconify
HotKey.FPL

1.76 InsertFile()

NAME

InsertFile - Insert a file in buffer.
SYNOPSIS

ret = InsertFile (File, Title, PromptName);

int InsertFile (STRING, STRING, STRING);

FUNCTION
Inserts a file (or a number of files) in the current buffer at the
current position. Using no parameter will bring up a requester
prompting for which file(s) to include.

If the ’'"PromptName’ field is used, the ’'File’ parameter is ignored,
a filerequester will appear prompting for a file name, and the
"PromptName’ string will appear as default choice of the regeuster.

This function uses its own requester to support multiple file
selections.

CRIPPLE
Unregistered versions of FrexxEd cannot load buffers larger than

around 60KB.

INPUTS

Functions 57 /107

File - The name of the file to insert. Wildcard is accepted,
more than one file can then be inserted at one
function call.

Title - Requester window title.
PromptName - Default string choice of the file requester.
RESULT

Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
Load ()
The IconDrop exception

1.77 InverseLine()

NAME
Inverseline - Inverse graphics on part of line.

SYNOPSIS
Inverseline (Line, Length, Column);

void InverselLine (INT, INT, INT);

FUNCTION
This function inverse the whole or specified part of the line at
the specified or current position. It can be called with none to
three parameters.

The inverse length is limited to the end of the line which it acts
on.

INPUTS
Line - Line number to inverse. If this isn’t displayed in the
view, nothing will happen! Default is current line.

Length - Number of characters to inverse. Default is the entire
line.
Column - Start column to inverse. Default is the leftmost, 1.
RESULT
SEE ALSO

PrintLine (), RedrawScreen ()

1.78 FACT reading functions

Functions 58 /107

NAME
Isclose - Check if a character is a close. [*]
Islower — Check if a character is lower case. [x*]
Isnewline - Check if a character is newline. [*]
Isopen - Check if a character is an open. [x]
Isspace — Check if a character is space. [*]
Issymbol - Check if a character is a symbol. [x]
Istab — Check if a character is tab. [x]
Isupper — Check if a character is upper case. [x*]
Isword — Check if a character is word type. [*]
SYNOPSIS

ret = IsXXXXXX (ASCII, FACTname);
int IsXXXXXX (int, STRING);

FUNCTION
These functions return information about the FACT character
characteristics.

Isclose returns the corresponding open character or -1.
Islower returns the corresponding upper case character or -1.
Isnewline returns non-zero if the character is a newline.
Isopen returns the corresponding close character or -1.
Isspace returns non-zero if the character is a space.
Issymbol returns non-zero if the character is a symbol.

Istab returns non-zero if the character is a tab character.
Isupper returns the corresponding lower case character or -1.
Isword returns non-zero if the character is a word type.

The functions can be called with one or two parameters.
INPUTS
ASCII - The character code to check. Valid numbers are 0-255.
Other input values give undefined results.

FACTname - Name of the FACT to check!

RESULT
See description.

SEE ALSO
FACTString (), FACTConvertString(), FACT()

1.79 Isfold()

NAME
Isfold - Check for a fold on a line.

SYNOPSIS
ret = Isfold (Line, BufferID);

int Isfold (INT, INT);

Functions 59 /107

FUNCTION
Returns the fold level of the current or specified line. If the line
is a visible fold, the returned value will be negatative.

Can get called with none, one or two parameters. Without parameters,
the current line will be used.

INPUTS
Line - Line to check fold level on. 0 means current line.
BufferID - A valid buffer ID.

RESULT

The fold level. If the line is a viewed fold, the level value will be
negative and if there is no fold at all on the line, 0 (zero) will
be returned.

SEE ALSO
The Using folds chapter.
Fold(), FoldHide (), FoldShow ()

1.80 KeyPress()

NAME

KeyPress - Returns FPL program assigned to key.
SYNOPSIS

Program = KeyPress (KeySequence);

string KeyPress (STRING);

FUNCTION
Returns the FPL program assigned to the specified key sequence. If no
parameter is specified, the key is to be entered interactively.

When the interactive mode is chosen, a key which has no actual
function bound to it, will although return a program like

"Output (key) : 7.

INPUTS
KeySequence - The key sequence you want the program from.

RESULT
The FPL program assigned to the key.

SEE ALSO
AssignKey (), MenuAdd()

1.81 Kill()

NAME
Kill - Kill a buffer.

Functions

60/107

SYNOPSIS
ID = Kill (BufferID);

int Kill (INT);

FUNCTION
This function removes current or specified entry from memory. This
function is xnot+* undoable. It can be called with or without arugment.

If the current entry is killed, the next entry in memory will become
the new current.

INPUTS
BufferID - A valid buffer or entry ID. If an entry ID is
specified, only the entry is killed.

RESULT
Returns the buffer ID of the next buffer in memory.

SEE ALSO
New (), CreateBlock (), QuitAll ()

1.82 Load()

NAME
Load - Load buffer(s).

SYNOPSIS
ret = Load (Filename, Title, PromptName) ;

int Load (STRING, STRING, STRING);

FUNCTION
This function loads the contents of a file into the buffer instead
of the current contents. If the input file name is a wildcard
matching several files, the first will replace the current buffer
and the rest will be loaded into new buffers. When called without
parameter, a file requester will be presented which enables multi
file selections. If the ’'PromptName’ field is used, the ’'Filename’
parameter is ignored, a filerequester will appear prompting for a
file name, and the ’'PromptName’ string will appear as default
choice of the reqgeuster.

Each matching file (and each file specified without wildcard) will
generate a 'GetFile’ exception.

The pattern used in the requester that appears if no file is
specified, can both be set and read with the ’request_pattern’ info
variable.

CRIPPLE
Unregistered versions of FrexxEd cannot load buffers larger than
around 60KB.

Functions 61/107

INPUTS

Filename - A standard AmigaDOS search pattern.

Title - Requester window title.

PromptName - Default string choice of the file requester.
RESULT

Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
New (), LoadString()
The GetFile exception

1.83 LoadString()

NAME
LoadString - Load a file and return as string. [*]

SYNOPSIS
String = LoadString (Filename);

string LoadString (string);

FUNCTION
This function reads the contents of a specified file and returns it as
a string.

CRIPPLE
Unregistered versions of FrexxEd cannot load buffers larger than
around 60KB.

INPUTS
Filename - Name of the file to load.

RESULT
The file returned as a string. If something went wrong, an empty
string ("") is returned.

SEE ALSO
Load (), SaveString()

1.84 LogSetting()

NAME
LogSetting - Log a variable’s default setting. [*]

SYNOPSIS
LogSetting (Variable, Type, Default);

string LoadString (string, string, int/string);

Functions

62/107

FUNCTION
This function logs the default contents of a variable. When that
variable is later created, it will get this default value. It is
not meant for user programs, but for the initial program generated
by FrexxEd.

INPUTS

Variable - Name of the info variable

Type - Variable type

Default - Default integer or string for the variable
RESULT
SEE ALSO

1.85 MacroRecord()

NAME
MacroRecord - Record a macro.

SYNOPSIS
ret = MacroRecord (InterActive, Name, KeySequence);

int MacroRecord (INT, STRING, STRING);

FUNCTION
This function toggles between recording and stop recording a macro.
Invoke this function to start the recording, and invoke it again
to stop recording.

if ’'InterActive’ is set to 0, a requester will appear, if set to 1,
the user have to enter the key sequence interactively, key by key

ended with escape. If ’"InterActive’ is set to 1, and ’'Name’ isn’t set,

MacroRecord() will create a unique name for the macro.

When invoked without any parameters, a requester asking for the
parameters will appear after the macro has been recorded.

INPUTS
InterActive - Interactive key sequence mode on/off. Set to 1 to

enable interactive mode, 0 to pop up requester.

Name - Name of the macro. If not set, MacroRecord() will
create a unique name for the macro.

KeySequence - Key sequence as described in AssignKey () .

RESULT

Regular FrexxEd error code. If zero or a positive number is returned,

everything is OK, otherwise something went wrong.

SEE ALSO

Functions

63/107

The block/buffer/macro concepts

1.86 MatchParen()

NAME
MatchParen - Jump to matching delimiter.

SYNOPSIS
NoJump = MatchParen ();

int MatchParen ();

FUNCTION

This function Jjumps to the matching delimiter as specified in the

FACT.

INPUTS

RESULT
If it performed a jump, a zero 1is returned,

SEE ALSO

1.87 MaximizeView()

NAME

MaximizeView — Make a view alone on screen.

SYNOPSIS
MaximizeView (ViewNumber);

void MaximizeView (INT);

FUNCTION

otherwise non-zero.

This function makes the current or the specified view number (0 is the
uppermost, followed by 1, 2, 3 and so on all the way down to the view
visible at the bottom wich will have the number NumberOfViews-1). Can

be called with or without parameter.

INPUTS
ViewNumber - Which view to enlarge.

RESULT

SEE ALSO
RemoveView (), ResizeView ()

1.88 MenuAdd()

Functions

64 /107

NAME

MenuAdd - Add an item to the menu list. [*]

S

)i

of

)i

SYNOPSIS
ret = MenuAdd (Type, String, FPLprogram, Keysequence, T, I,
int MenuAdd (string, string, STRING, STRING, INT, INT, INT
FUNCTION
This function adds a menu item to the current menu list. After a
menulist has been completed, MenuBuild() creates a menu out
the list, and MenuClear () restarts the list from scratch.

Do note the special handling of the ’'FPLprogram’ parameter to create

a boolean item!

MenuAdd ()

alre

ady existing menu strip. By using up to three integers,

you

specify which tiel/item/subitem the new item should appear as.

Coor
NOTE

dinates given as -1 means the last of the kind.
that separation lines are also counted as an item row.

is capable of adding an item to a given coordinate of the

This function can be called with from two up to seven parameters.

INPUTS
Type

Stri

FPLp

- Type of the item to add. Any case insensitive starting

substring of "Title" will make it a title, of "item"
will make it an item, and of "subitem" will make it a
subitem. Thus, the words "ti", "S", "ite" and likewise
are valid type names.

If the added item should become a boolean type, the
type strings to use are the first unique parts of
"setting" and "subsetting".

ng - The string which will appear in the visible menu. Any
string holding just a small number of "-" characters,

will be converted to a standard menu separator.

rogram — A full fledge FPL program to be invoked when this item

is selected. Titles and items wich subitems can’t be
selected and should not get FPL programs assigned
to them!

If this is a boolean info variable name only,

item will become a boolean item which will toggle the
specified info variable.

Keysequence - A string describing the key sequence that equals

I_

selection of this menu item. Shortcut, fastkey. The
key sequence will be visible to the right in the menu
item.

Title number to put the item after/below.

Item number to put the item after/below.

Functions 65/107

S - Sub item number to put the item after/below.
RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.
EXAMPLES
Add an item that will appear uppermost under the leftmost title in
the menu (without key short cut):
MenuAdd ("i", "FIRST", "First();", "", 1, 1);
Create a sub item to the second item of the second title:
MenuAdd ("s", "SECOND-SUB", "Sub();", "", 2, 2, 1);
Add a new title to the right end of the titles:
Menuadd ("t", "RIGHTMOST", "", "", -1);
Add an item to the right most title, make appear last among the items:

MenuAdd ("i", "LASTRIGHT", "", "", -1, -1);

Add a boolean menu item that toggles the ’'insert_mode’ variable last
among the menu items:

MenuAdd ("setting", "insert", "insert_mode");

SEE ALSO
MenuBuild (), MenuClear ()

1.89 MenuBuild()

NAME

MenuBuild - Builds a menu from the menu list.
SYNOPSIS

ret = MenuBuild ();

int MenuBuild ();
FUNCTION

Makes a new menu from the menu list created by calls to MenuAdd(),
and then attach it to FrexxEd.

INPUTS
RESULT
Regular FrexxEd error code. If zero or a positive number is returned,

everything is OK, otherwise something went wrong.

SEE ALSO
MenuAdd (), MenuClear ()

Functions 66 /107

1.90 MenuClear()

NAME
MenuClear - Clears the menu list.

SYNOPSIS
ret = MenuClear ();

int MenuClear ();

FUNCTION
Clears the menu list and makes following MenuAdd() restart a new one.

INPUTS

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
MenuAdd (), MenuBuild()

1.91 MenuDelete()

NAME
MenuDelete - Deletes a menu item.

SYNOPSIS
ret = MenuDelete (Tnum, Inum, Snum);

int MenuDelete (int, INT, INT);

FUNCTION
Deletes the specified item from the current menu strip. The specified
coordinates (one to three parameters) are the same as used with
MenuAdd () . -1 CAN NOT be used to specify anything.

Deleting a title removes all items below it, and deleting an item
removes all subitems below that.

INPUTS
Tnum - Title number you want to read.
Inum - Item number you want to read.
Snum — Sub item number you want to read.
RESULT

Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
MenuAdd (), MenuBuild()

Functions 67 /107

1.92 MenuRead()

NAME
MenuRead - Read details from the menu.

SYNOPSIS
ret = MenuRead (TitleRef, NameRef, FPLref, KeyRef, Tnum, Inum, Snum);

int MenuRead (string x, string =%, string %, string %, int, INT, INT);

FUNCTION
Reads the specified item from the current menu strip. The specified
coordinates (last three parameters) are the same as used with
MenuAdd () .

INPUTS
TitleRef - Reference to a string which will hold the title name.

NameRef - Reference to a string which will hold the item name.

FPLref - Reference to a string which will hold the FPL program.
KeyRef - Reference to a string which will hold the key sequence.
Tnum - Title number you want to read.
Inum - Item number you want to read.
Snum — Sub item number you want to read.

RESULT

Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

EXAMPLE
Using the Menu.FPL menu from the 1.5 release package, the piece:

string type, name, fpl, key;
MenuRead (&type, &name, &fpl, &key, 3, 4);

returns information about the "Backspace word" item.

SEE ALSO
MenuAdd (), MenuBuild()

1.93 New()

NAME
New - Create a new buffer.

SYNOPSIS
EntryID = New ();

int New ();

Functions

68/107

FUNCTION
This function creates a new initialized buffer.

INPUTS

RESULT
Returns the new entry ID, or zero if someting went wrong.

SEE ALSO
Clear (), CreateBlock (), Kill()

1.94 NextBuffer()

NAME
NextBuffer - Move to next buffer
PrevBuffer - Move to previous buffer

SYNOPSIS
BufferID NextBuffer (FromBufferID, Mask);
BufferID = PrevBuffer (FromBufferID. Mask);

int NextBuffer (INT, INT);
int PrevBuffer (INT, INT);

FUNCTION
These functions return ID of the next/previous buffer in the FrexxEd
internal list. If ’'Mask’ is specifed, it will chose the next buffer
that macthes that bit mask! The functions can be called with none,
one or two parameters. Without parameter they default to change from
the current buffer.

INPUTS
FromBufferID - Buffer ID of the buffer to change from. 0 is the
current buffer. -1 or an illegal value will change
from the start of the internal list.

Mask - Buffer selection mask
bit 0 - Regular file buffer
bit 1 - macro buffer
bit 2 - block buffer
bit 3 - invisible buffer

RESULT

Returns the new buffer ID, or zero if someting went wrong.
SEE ALSO

NextEntry (), PrevEntry()
The ’'type’ info variable

1.95 NextEntry()

Functions

69/107

NAME
NextEntry — Move to next entry.
PrevEntry - Move to previous entry.
NextHidden - Move to next hidden buffer.
PrevHidden - Move to previous hidden buffer.

SYNOPSIS
EntryID = NextEntry (FromEntryID, Mask);
EntryID PrevEntry (FromEntryID, Mask);
EntryID NextHidden (FromEntryID, Mask);
EntryID = PrevHidden (FromEntryID, Mask)

4

int NextEntry (INT, INT);
int PrevEntry (INT, INT);
int NextHidden (INT, INT);
int PrevHidden (INT, INT)

4

FUNCTION
These functions changes the current entry to the next/previous
entry in the FrexxEd internal list. If ’"Mask’ is specifed, it
will chose the next buffer that macthes that bit mask! The functions
can be called with none, one or two parameters. Without parameter
they default to change from the current entry.

INPUTS
FromBufferID - Entry ID of the buffer to change from. 0 is the
current entry. -1 or an illegal value will change
from the start of the internal list.

Mask - Buffer selection mask
bit 0 - Regular file buffer
bit 1 - macro buffer
bit 2 - block buffer
bit 3 - invisible buffer

RESULT

Returns the new buffer ID, or zero if someting went wrong.

SEE ALSO
NextBuffer (), PrevBuffer (), NextView(), PrevView()
The ’'type’ info variable

1.96 NextView()

NAME
NextView - Move to next view.
PrevView - Move to previous view.

SYNOPSIS
View = NextView (FromView, Mask);
View = PrevView (FromView, Mask);

int NextView (INT, INT);

Functions 70/107

int PrevView (INT, INT);

FUNCTION
These functions returns the entry ID of the next (lower) or previous
(upper) view. The functions can be called one, two or none parameter.

Without parameter, they default to read the one from the current view
to any type.

INPUTS
FromView - Entry ID of the view to move from. 0 means current.
-1 to NextView () returns entry ID of the bottommost
-1 to PrevView() returns entry ID of the uppermost
Mask - Buffer selection mask
bit 0 - Regular file buffer
bit 1 - macro buffer
bit 2 - block buffer
bit 3 - invisible buffer
RESULT

Returns the new entry ID, or 0 (zero) if the entry wasn’t a view.
SEE ALSO

NextBuffer (), PrevBuffer (), NextEntry (), PrevEntry ()
The ’'type’ info variable

1.97 Output()

NAME
Output - Print text in buffer.

SYNOPSIS
Num = Output (Text);

int Output (string);

FUNCTION
This function outputs the given string at the current position.

INPUTS
Text - String to insert in the buffer.

RESULT
The number of bytes actually written in the buffer.

SEE ALSO
Delete ()

1.98 PageDown()

Functions

71/107

NAME
PageDown - Move down a screenful of lines.
PageUp - Move up a screenful of lines.

SYNOPSIS
Actual PageDown (Number);
Actual = PageUp (Number);

int PageDown (INT);
int PageUp (INT);

FUNCTION
These functions move the current location a screenful of lines up or
down, one or specified number of times. If the functions are called
without parameter it defaults to 1. If the end or beginning of buffer
is reach before the screenful lines could be reached, it will put the
cursor on the first or last line.

INPUTS
Number - The number of PageUps or PageDowns that is to be done.

RESULT
The actual number of rounds that were performed before it ended. If
the beginning or end of buffer is reached before the ’'Number’ is
reached, it will end.

SEE ALSO
ScrollUp (), ScrollDown ()

1.99 PlaceCursor()

NAME
PlaceCursor - Place cursor on screen.

SYNOPSIS
PlaceCursor (X, Y);

void PlaceCursor (int, int);

FUNCTION
Put cursor on the specified coordinates in the current view. "X’ is
the column and 'Y’ is the line counted from the upper left corner.

NOTE
If called alone, without parameters, when a mousebutton is pressed,
FrexxEd will fill in the parameters before calling this function.
This can be used in a line like:
AssignKey ("PlaceCursor();", "mouseleft");

INPUTS
X - Horizontal position

Y - Vertical position
RESULT

Functions 72/107

SEE ALSO
GotoLine ()

1.100 PrintLine()

NAME

PrintLine - Print a string on the screen.
SYNOPSIS

PrintLine (Text, Viewline, BufferID);

void PrintLine (string, int, INT);
FUNCTION

The specified text is written in the view. The output does not affect
the contents of the buffer but is purely visual.

If you PrintLine() some text and then scroll the screen until that
text is no longer visible, there is no way to yet again see that text.
The text information is stored on screen only.

INPUTS
Text - The text you want in the view.
Viewline - The line number of the view in which you would like

to output your text.

BufferID - The ID of the view where you want the text.
RESULT

None
SEE ALSO

Output (), RedrawScreen ()

1.101 Prompt()

NAME
Prompt - Interactive FPL program execution.

SYNOPSIS
Prompt ();

void Prompt ();

FUNCTION
Prompt presents a requester with a list of all in memory existing
FPL functions, even functions that has been declared and exported
as common FPL code. In the input field of the requester, a FPL
program may be entered and when pressing ’'OK’, the program will
be interpreted by the FPL interpreter.

Functions 73/107

INPUTS
RESULT

SEE ALSO
ExecuteString (), ExecuteFile ()
Introduktion to FPL

1.102 PromptBuffer()

NAME
PromptBuffer - Get buffer from user.
PromptEntry - Get entry from user.

SYNOPSIS
BufferID = PromptBuffer (Header, Mask);
EntryID = PromptEntry (Header, Mask);

int PromptBuffer (STRING, INT);
int PromptEntry (STRING, INT);

FUNCTION
These function presents a requester with the ’Header’ parameter
as window title, holding a list with all buffers/entries currently in
memory that fits the type mask.

(The actual difference of buffers and entries are appearant when using
these functions. There can be more than one entry to each buffer.)

These functions can be called with none, one or two parameters.

INPUTS
Header - String to write in the window title.
Mask - Buffer selection mask
bit 0 - Regular file buffer
bit 1 - macro buffer
bit 2 - block buffer
bit 3 - invisible buffer
RESULT

Returns the buffer/entry ID of the selected entry, or zero if the
requester was cancelled or a non-matching string was entered.

SEE ALSO
Activate (), CurrentBuffer (), GetBufferID(), GetEntryID()

1.103 PromptFile()

Functions 74 /107

NAME
PromptFile - Get file name from user.

SYNOPSIS
File = PromptFile (Defaultfile, Header, Pattern, Flags, Array);

string PromptFile (STRING, STRING, STRING, STRING, REFERENCE);

FUNCTION
This function presents a file requester with the ’Header’ parameter
as window title and the ’'Defaultfile’ as the name already present
in the string gadget, viewing all files matching ’'Pattern’. The
"Flags’ parameter enables you to make the requester a ’save’ requester
(thus enabling a ’'make dir’ button) and/or a ’directory’ requester
(which only allows a directory to get selected).

If no "Header’ is specified, ’'Pick a file’ will be used.
This function can be called with none to four parameters.

The pattern used in the requester can both be set and read with the
"request_pattern’ info variable.

INPUTS
Defaultfile - The default file selection.

Header - String to write in the window title.

Pattern - AmigaDOS pattern to use when viewing files.

Flags - A ’s’ in this string makes it a ’save’ requester.
A ’'d" in this string makes it a ’'directory’ requester.
A ’'m’ in this string makes it a 'multi’ requester. Use
it with an string array sent in as the fifth function
parameter, and it’1ll be filled up with all selections.

When used, this function will return number of
selected files.

Array - String array reference for multi requester returns.

NOTE
Only one file/directory name can be selected.

RESULT
The file/directory name that the user selected/entered, or if anything
went wrong or the user didn’t select a file, a zero length string ("")
is returned.

SEE ALSO
Load (), InsertFile()

Functions 75/107

1.104 PromptFont()

NAME
PromptFont - Get font from user.

SYNOPSIS
Font = PromptFont (Header, Type);

string PromptFont (STRING, INT);

FUNCTION
This function presents a font requester with the ’Header’ parameter
as window title. The ’'Type’ parameter specifies whether proportional
fonts are allowed seletions or not. If no header parameter is
specified ’Select a font’ will be used, no type parameter will make
all fonts selectable.

INPUTS

Header - String to write in the window title.

Type - Font type. 1 - not proportional, 2 - either type.
RESULT

The font will be returned as a string in the format " <size>"
since that happens to be how the info variables ’system_font’ and
"request_font’ want their string to look like! If no font was
selected, a zero length string ("") is returned.

SEE ALSO
The ’system_font’ and ’'request_font’ info variables

1.105 Prompt for integer or string

NAME
PromptInt - Get integer from user.
PromptString - Get string from user.

SYNOPSIS
Integer = PromptInt (Title, DefaultInt, Text);
String = PromptString (Default, Title, Text);

int PromptInt (STRING, INT, STRING);
string PromptString (STRING, STRING, STRING);

FUNCTION
Present a requester to the user and receive the input. The ’'Text’
will be presented in the body of the requester, or if no such
is specified, no text will appear.
These functions both can be called with any number of parameters.

PromptInt () - Requires the user to write an integer number.

PromptString () - Requires the user to write a string.

Functions

76 /107

INPUTS
Default - The default string to appear in the requester.

DefaultInt - The default value of the input field.

Text - Text string that appears in the requester, above the
input field, below the window title.

Title - The string to appear in the window title.
RESULT
PromptInt () returns an integer. If zero is returned, GetErrNo() must

be called to see if the return value was due to an error of if the
user actually entered ’'0'.

PromptString () returns string. If a zero length string ("") is
returned, GetErrNo() must be called to see if the return string was

due to an error of if the user actually didn’t enter a string.

SEE ALSO
PromptFile (), PromptFont ()

1.106 Promptinfo()

NAME
PromptInfo - Bring up an info variable window.
SYNOPSIS
PromptInfo(BufferID, Title, IncludeMask, ExcludeMask, Variable, ...);
void PromptInfo(int, STRING, INT/STRING, INT/STRING, STRING, ...);
FUNCTION

Brings up a window with the default or specified settings. By altering
the "BufferID’ parameter, you can select from Local, All local or
Global settings.

By altering the ’'IncludeMask’, you set the bitmask of which setting
types you want in the window. If this is set to 0, no masks are
functional (but the default which depends on the ’'BufferID’ parameter),
-1 selects all.

By altering the ’ExcludeMask’ you can exclude setting types from the
selected ones. Use 0 to not exclude anything.

Both masks can negate the masks. That will give you all types but the
negated one. You do that by preceeding the mask name with a ’!’
character within the parentheses.

"Title’ is the window title of the setting window.
If ’'Variable’ is specified with a list of info variables that should

be visible in the window. They are added to the one already matched
by the masks.

Functions

777107

Specify settings to include by simply writing their name (as in
"changes"), and exclude settings by preceding the name with a "!’/
character (as in "!changes"). When excluding, you can specify a ’"+*’ as
a kind-of wildcard. All settings that match the string before that ’«’
will be excluded (as in "!colourx").

If no settings match, no requester will appear!
This function can be called with one or more parameters.

INPUTS
BufferID - BufferID of the settings.

0 Globals (default IncludeMask " (global)" and default
ExcludeMask " (local) (read) (hidden)")

-1 current locals (default IncludeMask " (local)" and default
ExcludeMask " (global) (read) (hidden)")

-2 all locals (default IncludeMask " (local)" and default
ExcludeMask " (global) (read) (hidden)")

Title - Window title of the settings requester.

IncludeMask - Which setting types that should be included. Avaiable
types are:

Display - Display matters (eg. ’'cursor_x')

IO - 0OS interactions (eg. ’expand_path’)

Screen - Screen oriented variable (eg. ’'window’)
System - Misc (eg. "autosave’, ’language’)

User - User created info variable

Hidden - Hidden variable. By default not visualized.
Global - Global variable.

Local - Local variable.

Read - Read-only variable. Cannot get modified.

They should be written within parentheses right next
to each other. (see example)

ExcludeMask - Which setting types that should be excluded from the
ones that matched the include mask. See ’'IncludeMask’
for available masks.

Variable - A list of settings to include in the requester
window.

NOTE
Both masks can negate the masks. That will give you all types but the
negated one. You do that by preceeding the mask name with a ’!’
character within the parentheses. (see example)

CAUTION
If too many selections are done, the window will grow very large, and
might even become too big to get visualized on the screen of the user!

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

Functions 78 /107

EXAMPLE
Bring up a requester holding all local info variables:
PromptInfo (-1);

Bring up a requester with all globals including hidden, but excluding
"system" variables:
PromptInfo (0, "Globals", " (global) (hidden)", " (!system)");

Bring up a requester holding three specified variables:
PromptInfo (-1, "mixed", -1, -1, "comment", "keymap",
"save_icon");

SEE ALSO

ReadInfo (), SetInfol()
The settings chapter

1.107 Random()

NAME
Random - Get a random number.

SYNOPSIS
value = Random ();
int Random ();
FUNCTION

Returns a 32-bit random number. This value is to be looked upon as
a true random value. It will hardly be the same between two identical
FrexxEd, or even system, startups.

INPUTS

RESULT
See description

EXAMPLE
Display a random line in a requester to the user:
{

string lines[4] = {
"You’re a fool!",
"Ding, ding, ding",
"Press OK quick or your computer will fry!",
"Another interesting requester"

}

int display = Random()$%4; /* get number from 0 to 3 */

Request (lines[display 1); /* pop up requester x/

SEE ALSO

1.108 RedrawScreen()

Functions 79/107

NAME

RedrawScreen - Update the screen image
SYNOPSIS

RedrawScreen (Switch);

void RedrawScreen (INT);
FUNCTION

Forces FrexxEd to update the screen. The optional parameter is for
future use, nothing but 0 should be entered.

INPUTS
Switch - What to update. Only 0 makes sence today.

RESULT

SEE ALSO
Visible ()

1.109 QuitAll()

NAME
QuitAll - Quit FrexxEd. [#*]

SYNOPSIS
QuitAll ();

void QuitAll ();

FUNCTION
This is the last function invoke of a running FrexxEd. After a call
to this function, FrexxEd frees all buffers and used resources and

exits.
INPUTS
RESULT
FrexxEd never returns from this function.

SEE ALSO
Kill ()

1.110 Readinfo()

NAME
ReadInfo - Get buffer information. [*]

SYNOPSIS

Functions

80/107

Holds = ReadInfo (Setting, BufferID, [Extral [, ...]1);
int / string ReadInfo (string, INT, ...);

FUNCTION
Returns the contents of a specified info variable. It can be of
either string, integer, boolean, cyclic kind, and the returning
variable type will become that type (cycle and boolean kinds will

be returned as integers).

INPUTS
BufferID - A valid buffer Id number

Setting - The specified setting to read. Avaiable variables
are as follows.

Extra - A possible extra parameter.
INFO VARIABLES

K is for Kind of info variable:

S - String
C - Cycle

I - Integer
B - Boolean)

E is for Existance:
G - Global
L - Local)

S is for Specials:
R - Read-only
W — Write in default file
H - Hidden

T is for Type:
D - Display

I - IO
S — Screen
Y - System
Name K E S T Description

appicon B GW I Whether to create an Applcon.

appwindow B G W I Whether to make the window an AppWindow.

arexx_port S G RH I FrexxEd’s ARexx port name.

auto_resize B G W S Whether to ajust the window so that there is
no extra pixels below the bottom status
line.

autosave B L W I Whether to generate the ’"AutoSave’ exception.
See the "exceptions" chapter.

autosave_interval IGW I The number of changes that is required before

the "AutoSave’ exception is generated.

autoscroll B G WH S Whether a screen larger than the display should
scroll automatically when the pointer reaches
the display edge.

block_begin_x I L R Y Start column of the current block.

Functions

81/107

block_begin_y
block_end_x I
block_end_y I

block_exist C

I L R Y Start line of the current block.
L R Y End column of the current block.

L R Y End line of the current block.

L R Y If a marked block exists.

0 - No block exist.

1 - A block is marked at the cursor.

2 — A block is marked and released from the
cursor.

block_id I G RH Y Block ID of the current block.
block_type I L RH Y l=normal, 2=rectangle

buffers

I G R D Number of buffers in memory.
byte_position I L H D The actual byte position of the current line.

That means that xall* characters are read as

one single byte,

independent of what the

characters may look like in the editor.

changes I L

it was
colour0 IG
colourl IG
colour? IG
colour3 IG
column IL
comment S L
comment_begin

a file
comment_end S

a file
counter IG

without nothing

current_screen
cursor_x I L
of the
cursor_y I L
of the
default_file

H

Y Number of changes done in the buffer since

loaded or last saved.

WH
WH
WH
WH
H

S LW

S

H O n n n

Color
Color
Color
Color

The column number of the current position.

0
1
2
3

(4 bits/color RGB)

Range:

0

File comment to the current buffer.

I The string preceding fold information when

is saved.

L W

I The string following fold information when

is saved.

15

RH Y This is a continuosly increasing counter
variable that increases one step on every
internal action of FrexxEd. Can be used in
functions that prevents invokations twice

FrexxEd was

directory S G
disk_name S G
display_id I
ds_Days I L
ds_Minute I L
ds_Tick I L
entries IG
expand_path C
from di
the pat

S G R
RH D The cursor position relative the left border
view.
RH D The cursor position relative the upper border
view.
S G R I Name of the default file that was read when
started.
W I Default directory.
HR I Name of the volume mounted by this FrexxEd.
G WH S Intuition display ID.
H I Number of days since 1 Jan 1978.
H I Number of minutes.
H I Number of ticks.
R S Number of entries that exist in FrexxEd.
G W I How to treat the path name when reading files
sk. = "Off", don’t do anything with
h, 1 - "Relative", expand all file

in between, and other

names that does not contain any colon
leave assign as they are written, 2 -
always expand the entire path to get the

+*realx name of the file entered. No assigns
will ever stay part of the file path!

the "Off" version makes it possible to change

things.

r .7

"All n ,

Using

current directory of FrexxEd and then store

and

S Name of the screen which FrexxEd is opened on.

Functions 82/107

all files loaded relative in different dirs
than they were loaded from. Version "Relative"
enables the user to change the destination of
an assign in the middle of an editing session
and then saved files will use the new dir.
"Off" will disable all chances of storing the
file in a different dir that it was brought
from. It will use the exact volume name, even
changing diskette in df0: will be denied!
fact S L W S Which FACT to use in the current entry.
file_name S L R I File name of the buffer.
file number I L R I Number of the file if there are more than one
buffer using the same names.
file_path S L R I Directory path to the file.
fold_save B G W I Should folds be saved or read when loaded.
fold width I G W D Width of the fold margin. Range 0-8.
fpl_debug B G Y FPL execution debug mode. If enabled, all FPL
programs executed will be run in debug mode.
Read more in the debugging FPL chapter!

fpl_path S G W I Directory search path for FPL file
executions. Separate each directory with a
vertical bar ’'|’. End all directory names
with a colon ’:’ or slash ’'/’.

fragmentation I L RH Y Number of framentations of the buffer,
fragmentation_size ILRHY Total size of all the fragmentations.
full _file_name S L I The entire file name including path.
iconify B G RH D Holds 1 if FrexxEd is iconified!
insert_mode B L W D Insert mode on/off. Should written characters
insert themselves at the current position or
should they overwrite the existing text.
keymap S G W I Should be the name of a valid keymap to use
within FrexxEd, or not set at all (a zero
length string) to use the system default
keymap.
language S G R Y Which language this system uses! "english"
is the built-in.
line I L RH D Which line number is the current position.
line_counter B L W D Line numbering on/off. Line numbering means
that the left side of the view will show a
line number on every line.
line_counter_width IGW D The width of the line numbering field.
Default is 5. Range 2 - 8.
line_length I L R D The length in number of bytes of the current

line.
lines I L R D Number of lines in the buffer.
macro_key S L Y If this is a buffer created as a macro, this

variable contains the key sequence that will
execute it.
macro_on B G Y This tells whether macro recording is on.
marg_left I L D Number of character that is left margin.
marg_lower I W D Number of character that is lower margin.
marg_right T W D Number of character that is right margin.
marg_upper I W D Number of character that is upper margin.
mouse_Xx I GR Y In which column of the view the mouse button
was pressed. -1 if a button wasn’t pressed.
mouse_y I GR Y In which line of the view the mouse button
was pressed. -1 if a button wasn’t pressed.

HEe e =W

Functions 83/107

move_screen I G W D Number of characters to move the screen at a
time when scrolling horizontally. Min 1.

overscan I G WH S Overscan type according to Intuition. Only
used when opening FrexxEd as a screen.

pack_type S L W I Pack type string. This string should hold a
four-letter valid XPK packing type. "PP20"
will make FrexxEd use powerpacker when
saving. Read more in the ’'File handling->
Compression’ chapter.

page_length I G W D Length of a regular page in lines. This is
used to calculate page number (optionally
displayed on the status line).

password S L I Password used when this file was loaded and
also password to use then this file is to be
saved. See the ’'File handling->Encryption’
chapter.

pen_info I G W S The pen number that should be used for the
information text on right half of the status
line. -1 gives the same as the left part.

popup_view C G W D Which way a new view should be presented on
screen. 0 - Replace the current view, 1 -
Split the current view or 2 - Open as the
only view on screen. Default is 1.

protection S L W I The protection bits of the buffer as a string.
Each bit has its own letter. They can all be
specified in any order. The existing valid
letters are as for the AmigaDOS command

"protect’: "RWEDSPAH". Default is "RWED".
protectionbits I G H I The protection bits of the buffer.

1 - delete

2 - execute

4 - write

8 - read

16 - archive

32 - pure

64 - script
(See also "include:dos/dos.h")
public_screen S G R S Which screen FrexxEd should open on and get
information from with the CloneWB() function.
real_screen_height IGR S These 'real_#7?’ settings are the actual
results of the settings without the ’'real_’
prefix. Those without ’"real_’ tells FrexxEd
how the user wants it to be, these tells the
actual numbers used.
real_screen_width I G R S
real_window_height I G R S
real_window_width I G R S
real_window_xpos I G R S
real_window_ypos I G R S
replace_buffer S G R Y The string in the ’'replace buffer’.
reqg_ret_mode B G HW Y Makes FrexxEd accept the ’'return’ key to go to
the following field and then ’'OK’ in dual-
string field requesters like search/replace!
NOTE: this variable is hidden!
request_font S G W S The request and menu font of FrexxEd. Default
is "Topaz 8".
request_pattern S G H I Filerequest pattern. Default is "".

Functions 84/107

right_mbutton B G W I If this is TRUE, the right mouse button will
not bring up the menus if pressed in a the
FrexxEd view. Only if pressed in the window
title. This allows programming of the right
as well as the left mouse button.
rwed_sensitive B G W I FrexxEd reacts on the protection bits of the
file it loads.
safe_save B G W I If enabled, all save operations in FrexEd will
first write a temporary file and then rename
it to the destination file name. When this is
disabled, all writes to disk will be done
using the real name at once. Switch off this
setting to enable saving to a filelink.
save_icon C L W I "always" (1) if a .info file should be
created/ updated whenever this buffer is
saved. "never" (0) if no icons should be
created, and "parent" (2) if icons should be
created if the directory the file is written
in has an icon!
screen_depth I G W S Depth of the FrexxEd screen in bitplanes. 1 - 8
(1 = clone the WB depth)
screen_height I G W S Height of the FrexxEd screen in pixels. Min: 100
screen_width I G W S Width of the FrexxEd screen in pixels. Min: 320
search_block B G H Y Search/replace flag.
search_buffer S G R Y The string in the ’search bufffer’. If a third
parameter is given, that place in the search
history is returned.
search_case B G H Y Search/replace flag.
search_flags I GH Y All search and replace flags represented as
an integer. Do not assumpt that the bits
represent flags identical all the time.
search_fold B G H Y Search/replace flag.
search_forward B G H Y Search/replace flag.
search_limit B G H Y Search/replace flag.
search_prompt B G H Y Search/replace flag.
search_wildcard B G H Y Search/replace flag.
search_word B G H Y Search/replace flag.
shared I L R Y Number of entries of the same buffer.
shared_number I L RH D Number of the entry among the entries to the
same buffer.
show_path B G W D Show the file path in the status line.
size I L R Y Size of the current buffer.
slider C GW S How to visualize the vertical slider. 0 - Off,
1 - Right side, 2 - Left side. Default is 1.
On windows, it will always be on the right
side.
startup_file S G W I The FPL file to execute at startup. More than
one file can be spciefied by separating them
with ' |’ . Default is "FrexxEd.FPL".
system_font S G W S FrexxEd’s general text font. Default is
the system’s screen font or "Topaz 8"
tab_size I L W D Width of a TAB character. Default is 8.
Range 1 - 1000.
taskpri I GW Y Priority of the FrexxEd task. Default is 1.
Range -25 - 25.
topline I L H D The number of the topmost line of the view.
top_offset I L H S The line of the window that the current view

Functions

85/107

starts at.
type IL Y Buffer type.
Bit 0 = standard file buffer
Bit 1 macro buffer
Bit 2 = block buffer
Bit 3 invisible buffer
undo B LW Y Undo on/off for this buffer.
undo_lines I L RH Y Number of lines stored in the undo buffer.
undo_max I G W Y Maximum number of bytes that the undo buffer
is allowed to use.
undo_memory I L RH Y Number of bytes used by the undo buffer.

undo_steps I G W Y Maximum number of undo steps stored.

unpack B G W I Unpack packed files if possible,

version I GR Version number of FrexxEd. This is returned
as Version x 10000 + Revision.

version_id S G R This FrexxEd’s version ID string!

view_columns I L RH D Number of columns in the view.
view_lines I L RH D Number of lines in the view.

views I G RH D Number of views in the window.

visible I L RH D Holds non-zero if the entry is visible.

window C GW S How to open FrexxEd. 0 - Screen, 1 - Window,
2 - Backdrop window, 3 - WinScreen.

window_height I G W S Window height in pixels. Default is 250. Min 18.

window_pos C G W S How to position the window when FrexxEd is
started. 0 - Visible (FrexxEd will open in
the visible area of the screen) 1 - Absolute.

window_title S G W S Window title. Only possible to change on
registered FrexxEd versions.

window_width I G W S Window width in pixels. Default is 640. Min 18.

window_xpos I G W S Window x position. Default is O.

window_ypos I G W S Window y position. Default is O.

RESULT
The contents of the setting.

SEE ALSO
SetInfo (), PromptInfol()

1.111 RemoveView()

NAME

RemoveView - Take away a view from screen.
SYNOPSIS

RemoveView ();

void RemoveView ();

FUNCTION
This function removes the current or specified view. The view above
the removed view will become larger. This function can be called with
or without argument.

If the current view is the only one left or the only non-hidden,
nothing will happen.

Functions 86/107

INPUTS
RESULT

SEE ALSO
MaximizeView (), ResizeView /()

1.112 Rename()

NAME

Rename - Change name of the buffer.
SYNOPSIS

Rename (NewName);

void Rename (string);
FUNCTION

This function changes the name of the current buffer.

INPUTS
NewName - The new name of the buffer.

RESULT

SEE ALSO
Load (), Save ()

1.113 Replace()

NAME
Replace - Replaces strings in buffer.

SYNOPSIS
Fail = Replace (Prompt, Search, Replace, Flags, Range);

int Replace (INT, STRING, STRING, STRING, INT);

FUNCTION
This function searches for the occurence of the ’SearchString’ in the
current buffer (or if not specified, the previous SearchString). The
found string will be replaced with the ’"ReplaceString’ parameter (or
if not specified, the previous ReplaceString). For details, check out
the "Search and Replace" chapter.

All parameters are optional.

INPUTS

Functions 87 /107

Prompt - Specify if you want a query before actually performing
any replace. -1 - default, 0 - query, 1 - no query,
2 - replace once. Default is set with the
"search_prompt’ info variable through the ReplaceSet ()
function.

Search - String to search for. A zero length string ("") means

that the previous SearchString will be used.

Replace - String to replace the search string with.

Flags - Flags specified as to the ReplaceSet ().

Range - Maximum number of bytes to check for match.
RESULT

Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
ReplaceSet (), Search(), SearchSet ()
Search and replace
Regular expressions

1.114 ReplaceMatch()

NAME
ReplaceMatch - Match pattern and generate replacement.

SYNOPSIS
Result = ReplaceMatch (Pattern, Replacement, Range, Flags);

string ReplaceMatch (string, string, INT, STRING);

FUNCTION
Matches the current position with the ’'Pattern’ specified. If it
matches, the ’"Replacement’ parameter will be used to generate a
replacement string which is returned.

"Pattern’ is a Regular Expression string.

"Replacement’ is a valid wildcard replace string, which means \<num>
and \& are supported to insert parts of the match string in the
result string.

Setting 'Range’ to -1 means until end of buffer.

INPUTS
Pattern - A FrexxEd Regular Expression string.

Replacement - String to "replace" the ’'Pattern’ with.

Range - is the number of bytes that this function should be
allowed to search to find a match.

Functions

88/107

Flags - Standard FrexxEd search flags telling the function
how to search.

RESULT
The replace string, if the pattern matched the current position,
otherwise an empty string (""). If the replace string can be an empty
string, Errno() should be used to check whether it was OK or an error!
SEE ALSO

Replace (), Search(), SearchSet /()
Search and replace
Regular expressions

1.115 ReplaceSet()

NAME
ReplaceSet - Set search string, replace string and options.
SearchSet - Set search string, replace string and options.
SYNOPSIS

ret = ReplaceSet (Flags, SearchString, ReplaceString);
ret SearchSet (Flags, SearchString, ReplaceString);

int ReplaceSet (STRING, STRING, STRING);
int SearchSet (STRING, STRING, STRING);

FUNCTION
These functions set the search/replace options. The search and replace
string and the flags. If invoked with any parameter missing, a
requester will be presented to the user to be filled out. For a more
detailed description, see the Search and replace chapter.

The flags are readable and modifiable through the info variables named:
Name Same as Flag:

search_block Db’

search_case ’'c’

search_forward £’

search_limit "1’
search_prompt ’'p’
search_wildcard 'w
search_word ’'o’
search_fold "i’

4

NOTE
This function adds the specified strings to the search history that
appears in their requesters.

INPUTS
SearchString - String to search for. A zero length string ("") means
that the previous SearchString will be used.

ReplaceString - String to replace the search string with.

Flags - A string specifying the replace options. Flags are

Functions 89/107

set by specifying '+’ after any number of flags,
cleared by setting "-’ and if ’'=’ is specified, all
flags are cleared. The string is read in a strict
left-to-right order. Available flags are:
— Enable wildcard search and replace
— Case sensitive search
- Only search for entire words
— Only search within the marked block
Search forward (does not affect Replace())
— Prompt replace
— Limit wildcards to be line oriented
— Inside folds

F- =0 O 0 Q =
|

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

EXAMPLE
Set the wildcard and switch off the forward flag:

SearchSet ("=w+f-");
SEE ALSO
Replace (), Search(), ReadInfo()

Search and replace
Regular expressions

1.116 Request()

NAME

Request - Presents a multi-button requester.
SYNOPSIS

Choice = Request (Text, Header, Buttons);

int Request (STRING, STRING, STRING);

FUNCTION
This function presents a requester with the ’'Text’ parameter as body
text and ’"Header’ as window title. The buttons are specified in one
string separated with a vertical bar sign (|) like: "OK|Cancel" or
"OK|Both|Cancel". There is not limit in the number of possible buttons
but the width of the screen the requester appears on.

INPUTS
Text - Body text of the requester
Header - Window title
Buttons - "Buttonl|Button2|Button3|..."
RESULT

If the leftmost button was pressed, this function returns 1, and for
each consecutive response will return 1 more. The rightmost response
will return 0. A five button requester will then return 1,2,3,4,0.

Functions

90/107

SEE ALSO
PromptInt (), PromptString(), reqgtools.library/rtEZRequest ()

1.117 RequestWindow()

NAME

RequestWindow — User defined request window.
SYNOPSIS

Ok = RequestWindow (Title, [Width], Name, Type, Ref, ...);

int RequestWindow (string, [INT], string, string, string/int, ...);
FUNCTION

Presents a window with user-defined gadgets. The gadgets can be of
different kinds (string, boolean, cycle, integer, array) and the
results from the users alterations are received in the variable
sent to the function as variable references.

When presenting an array style gadget (listview), a string input
field will follow it right below.

INPUTS
Title - Request window title.

Width - If this is a number, this is the default with in

characters.
Name - Name of gadget to put in the window.
Type - Gadget type. This is a string holding one or more
of the following characers (case insensitive):
"i" - integer
"s" - string
"c" - cycle (requires additional parameter!)
"b" - boolean
"r" - read-only
"a" - array (the 'Name’ will be present just above the input

field) This tag requires two extra arguments, the
default string (of the input field) and the number of
elements in the list.

The variable reference should be a string array!

If this is used a second time, it forces a second array
string field to appear! (To make a name appear above
this second field, there must be a name above the first)
see example!

Ref - FPL variable reference.

RESULT
1 if the "OK" button was pressed, otherwise 0.

EXAMPLE
Present a request window and prompt the user for some informations
regarding his/hers personal status:

Functions 91/107

{
int age=23; /* age storage variable, 23 is default age! «/
string name="Kjell"; /x name storage variable, "kjell" is
default name */
int sex=0; /+ sex storage variable, default is 0 (male) =*/
int stupid=1l; /% stupid storage variable, default is 1
(true) =/
RequestWindow ("Status",
"age", "i", &age,
"name", "s", &name,
"sex", "c", &sex, "male|female", /* extra parameter =/
"stupid", "b", &stupid);
}

Present a listview, default width is 20 characters:
{
string arrstr="array";
string arrstr2="array2";
string arr[6]={"choice 1", "choice 2",
"choice 3", "choice 4",
"FrexxWare", "choice 6"};

RequestWindow ("Window Title", 20,

"Right", "A", &arr, &arrstr, 6
"Left", "A", &arrstr2
) ;

SEE ALSO
PromptInt (), PromptString(), Request ()

1.118 ResizeView()

NAME
ResizeView - Make a view change size.

SYNOPSIS
Actual = ResizeView (NewSize, BufferID);

int ResizeView (INT, INT);
FUNCTION
Changes the size of the current view or specified view. Can be called

with no, one or two parameters.

Brings up a requester if invoked without parameter.

INPUTS
NewSize — The new size of the view.
BufferID - A valid buffer/entry ID of the view that should be

resized.

Functions

92/107

RESULT

The actual size that the view was set to. May differ to the requested

due to limits in screen and window sizes. 0 is returned
disappeared.

SEE ALSO
RemoveView (), MaximizeView ()

1.119 ReturnStatus()

NAME
ReturnStatus - Status line message at return.

SYNOPSIS
ReturnStatus (Text/FailCode);

void ReturnStatus (string/int);

FUNCTION
This message sets the string that appears at the status

if the view

line when the

program exits. If the parameter is an integer, it is supposed to be a
general FrexxEd error code, and the appropriate error message is then
being displayed. The message that will appear is the one that is set

with ReturnStatus () last.

INPUTS
Text - A text string to visualize in the status line.
FailCode - A regular FrexxEd error code.

RESULT

SEE ALSO
GetErrNo (), GetReturnMsg()

1.120 Save()

NAME
Save - Write buffer to disk.

SYNOPSIS
ret = Save (Filename, Packmode);

int Save (STRING, STRING);

FUNCTION

This function writes the contents of the buffer to disk using the
buffer name or the specified name. Using a specified name will *notx
rename the buffer. The ’'Packmode’ parameter enables forced packmodes

or non-packmodes.

Functions 93/107

If you try to ’Save ()’ an unnamed buffer without the ’'Filename’
parameter set, a requester will appear prompting for a file name. The
buffer will then get renamed to that name.

This function can be invoked with none, one or two parameters.

INPUTS
Filename - File name of the file (instead of the default). If ""
is specified, the current name is used.

Packmode - A four letter XPK packmode description or "" for
no packing at all.

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
Load (), SaveString()

1.121 SaveString()

NAME

SaveString - Store string on disk. [x*]
SYNOPSIS

ret = SaveString (Filename, Data);

int SaveString (string, string);
FUNCTION

This function writes a string to a file.

INPUTS
Filename - Full path name of the file to create.
Data - The string to write.

RESULT

Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
Save (), LoadString()

1.122 Screenmode()

NAME
Screenmode - Change screenmode.

SYNOPSIS
ret = Screenmode ();

Functions 94 /107

int Screenmode () ;

FUNCTION
This function brings up a requester to enable the user to change
screenmode of the FrexxEd screen. This function does not do anything
if FrexxEd isn’t opened on a screen.

NOTE
This requester features a ’'colour’ field which can contain 1 when
the requester pops up. If that colour isn’t changed, FrexxEd will
clone the screen depth of the Workbench screen at startup instead
of using a static depth.

INPUTS

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
The settings chapter

1.123 Scroll up or down

NAME
ScrollDown - Scroll down screen
ScrollUp - Scroll up screen
SYNOPSIS
Actual = ScrollDown (Steps);

Actual = ScrollUp (Steps);

int ScrollDown (INT);
int ScrollUp (INT);

FUNCTION
These functions move the screen upwards or downwards a specified
number of steps without letting the cursor change visual row.

INPUTS
Steps - The requested number of steps to scroll. Specifying more than
it is possible to scroll, will make it scroll as much as
possible.
RESULT

The actual number of steps that the screen scrolled.

SEE ALSO
PageUp (), PageDown ()

Functions 95/107

1.124 Search()

NAME
Search - Search for string

SYNOPSIS
Fail = Search (Text, Flags, Range);

int Search (STRING, STRING, INT);

FUNCTION
This function searches for the specified or previously specified
substring in the current buffer from the current position. If found,
the cursor will be put on the first character of the found string.

NOTE
When using this function and a specified text to search for, no
text will be added to the search history that appears in the

SearchSet () requester!
INPUTS
Text - What to search for.

Flags - Search flags specified as to the SearchSet ().
Range - Maximum number of bytes to check for match.

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.
Extra information; which line and byte position the found string
ends on, can be read with ’GetList ("extra", &arrayl]);’

SEE ALSO
SearchSet (), Replace(), ReplaceSet ()
Search and replace, GetList ()
Regular expressions

1.125 SetEnv()

NAME
SetEnv - Set the value of an environment variable.

SYNOPSIS
progress = GetEnv(Name, Contents);

int SetEnv(string, string);

FUNCTION
Sets the value of an environment variable. If the variable doesn’t
already exist, it’1ll be created before set.

INPUTS
Name - Name of the variable to set.

Functions

96 /107

Contents - The new contents of the variable.

RESULT
Non-zero if OK, zero if something went wrong.

EXAMPLE
Set, and read an environment variable:

SetEnv ("test", "foobar");
Request (GetEnv ("test"));

SEE ALSO
GetEnv ()

1.126 Setinfo()

NAME
SetInfo - Set info variables. [*]

SYNOPSIS
ret = SetInfo (BufferID, Setting, Value [, Setting, Value [, ...]]

int SetInfo (int, STRING, STRING or INT, ...);

FUNCTION
With this function you can set info variables.

All internal info variables are listed and described in ReadInfo().

Setting a boolean variable to -1 will make it toggle from false to
true and from true to false.

INPUTS
BufferID - A valid buffer ID, or:
0 to change the default settings for globals and
default values
-1 to change current buffer
-2 to change all buffer settings

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
ReadInfo (), PromptInfol()

1.127 SetSave()

NAME
SetSave - Save settings

Functions

97 /107

SYNOPSIS
ret = SetSave (Filename, BufferID);

int SetSave (STRING, INT);

FUNCTION
Generate an FPL program with the specified file name that when run
will set all saved info variables to their current values.

Invoked without argument (or file specified as "") will bring up a
file requester.

Info variables, created by FPL programs, that have their "write" bit
set, will get created when that program is run.

If the "BufferID’ parameter is set, the specified buffer’s settings
will be stored with the local settings. By default (if the parameter
is left out or set to 0), the local settings will get their "default"
value when stored using this function.

INPUTS

Filename - Name of the file to write.

BufferID - A valid buffer ID. -1 = current, 0 = default
RESULT

Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
ExecuteFile ()

1.128 Sort()

NAME
Sort - Sort an array

SYNOPSIS
ret = Sort (Array, NumOfItems, Flags);

int Sort (&stringl[], INT, INT);

FUNCTION
This function sorts a one-dimensional string array in a lexigographic
order.

INPUTS
Array - A valid reference to a one-dimensional string array.
If should be written like ’&<array name>’, i.e if the
array variable is called ’foobar’ it is ’&foobar’.

NumOfItems - If not all items are to get sorted, this specified the
amount of sorted items from the start of the array.
If it is negative, left out or too large, it will sort

Functions

98/107

all items.

Flags - Defines sorting details. Set the following bits to
enable the functions:
0 case insensitive

1 - backwards sort

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

EXAMPLE
Sort the three first items in an array:

string array[4]={"one", "two", "three", "four"};
Sort (&array, 3);

SEE ALSO
BlockSort (), BSearch()

1.129 Status()

NAME
Status - Write text on the status line

SYNOPSIS
Status (EntryID, Text, Update);

void Status (INT, STRING, INT);

FUNCTION
Outputs the specified string on the default or specified status line,
immediately. No string or "" means that the default status line will

be updated. The ’Update’ parameter control which part of the status
line to update or to make the ’'Text’ appear in.

If the entry isn’t visible, the text will appear in the status line
at the bottom of the FrexxEd window.

Can be called with none to three parameters.
INPUTS

ViewID - Entry ID of the status line to write on. 0 is the
current view.

Text - The string to write in the status line.

Update - Flags telling which part of the status line to
update or put the ’"Text’ in. Set bit 0 for the left
part, bit 1 for the right part or both for
both parts!

RESULT

EXAMPLE

Functions

99/107

Update the right part of the current status line:
Status (0, "", 2);

SEE ALSO
ReturnStatus ()

1.130 Stcgfn() and Stfgfp()

NAME
Stcgfn - Returns the file name part of an entire path string.
Stcgfp - Returns the path part of an entire path string.

SYNOPSIS
FileName = Stcgfn (EntirePath);
DirName = Stcgfp (EntirePath);

string = Stcgfn (string);
string Stcgfp (string);

FUNCTION
Stcgfn () returns the file part of a string that specifies the full
search path to a file. Stcgfp() returns the path part of the same
string.

INPUTS
EntirePath - A string holding the full path name of a string. I.e,
"disk:foobar/test/myfile.txt".
RESULT
The string according the function.

SEE ALSO
ReadInfo ()

1.131 Stricmp()

NAME
Stricmp - Compare strings case insensitive. [x]

SYNOPSIS
Result = Stricmp (Stringl, String2, Length);

int Stricmp (string, string, INT);
FUNCTION
This function compares two strings using the ASCII collating sequence,

but does not distinguish between uppercase and lowercase.

If "Length’ is specified, not more than ’Length’ characters are
compared.

The relative collating sequence of the strings is indicated by the

Functions 100/107

sign of the return value, as follows:
Sign Meaning

negative first string is below the second
zero strings are equal
positive first string is above the second

This function can be called with two or three parameters

INPUTS
Stringl - The string being compared to String2.

String2 - The string being compared to Stringl.
Length - Number of characters to compare.
RESULT
The sign of the return value indicates the relative collating

sequence of the strings, as noted above.

SEE ALSO
strcmp ()

1.132 StringChangeCase(), StringToLower(), StringToUpper()

NAME
StringChangeCase - Change case of string.
StringToUpper - Upper case string.
StringToLower - Lower case string.
SYNOPSIS
NewString = StringChangeCase (Original, FACT);

NewString = StringToUpper (Original, FACT);
NewString StringToLower (Original, FACT);

int StringChangeCase (string, STRING);
int StringToUpper (string, STRING);
int StringToLower (string, STRING);
FUNCTION
These functions conver the specified the input string according to

the specified or current FACT.

StringChangeCase () swaps all lower case letters into upper case
versions and all upper case letter into lower case versions.

StringToUpper () makes all letters upper case.
StringToLower () makes all letters lower case.
These functions can be called with one or two parameters

INPUTS
Original - Text to convert.

Functions

101 /107

FACT - Name of the FACT to use.

RESULT
The converted string.

SEE ALSO
DownCase (), SwapCase (), UpCase()

1.133 StringToBlock()

NAME
StringToBlock - Copy string to block. [x]
StringToBlockAppend - Append string to block. [x]

SYNOPSIS
ret = StringToBlock (String, BlockID);
ret StringToBlockAppend (String, BlockID);

int StringToBlock (string, INT);
int StringToBlockAppend (string, INT);

FUNCTION
StringToBlock copies the specified string to the default or specified
block. StringToBlockAppend appends the specified string to end of the
default or specified block. These functions can be called with one or
two parameters.

INPUTS
String - The string to copy.

BlockID - ID of the destination block. By specifying 0 (zero),
the default block will be used.

RESULT
Regular FrexxEd error code. If zero or a positive number is returned,

everything is OK, otherwise something went wrong.

SEE ALSO
StringToClip (), ClipToString(), GetBlock()

1.134 StringToClip()

NAME
StringToClip - Copy string to clipboard. [x]

SYNOPSIS
ret = StringToClip (Unit, String);

int StringToClip (int, string);

Functions 102/107

FUNCTION
Copies the specified string to clipboard.device with the specified
unit (likely to be 0 (zero) since interprocess use of clipboard
most often uses that unit).

CRIPPLE
Unregistered versions of FrexxEd are not able to use this.

INPUTS
Unit - clipboard.device unit number.
String - String to send to clipboard.
RESULT

Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
ClipToString()

1.135 Strmfp()

NAME
Strmfp - Merge a path string with a file string.

SYNOPSIS
Path = Strmfp (Directory, File);

string Strmfp (string, string);

FUNCTION
Merges the directory part and the file part and returns the full
path name. A slash will be entered as separator if the directory
part didn’t end with a colon or slash.

INPUTS
Directory - String holding the directory name.
File - String holding the file name.

RESULT

The full path name of the merged parts.

SEE ALSO
Stcgfp (), Stcgfn()

1.136 System()

NAME
System — Perform a system command. [x*]

SYNOPSIS

Functions 103/107

Progress = System (Command, Input, Output);

int System (string, STRING, STRING);

FUNCTION
This is a standard system call. ’'Command’ will be executed as it was
written on a standard shell (CLI). The function is synchronous. If

n "

you want it to run asynchronously, start the command line with "run
"Input’ and ’Output’ are two optional parameters that specify from
where to read input and from where to send output. An empty string is
like no parameter.

NOTE
AmigaOS does have a huge (IMHO) weakness in programs launched from WB
don’t inherrit the Workbench process’ path. FrexxEd tries to solve
that problem by cloning the Workbench’s path if invoked from it.

INPUTS
Command - Shell command line to perform.

Input - File to get input from.
Output - File to send output to.
RESULT

Standard AmigaDOS error code from the executed System() call.

SEE ALSO
dos.library/System()

1.137 TimerAdd()

NAME
TimerAdd - Start timer execution.
SYNOPSIS
TimerID = TimerAdd (Repeat, FPLprogram, Seconds, Micros);

int TimerAdd (int, string, int, INT);

FUNCTION
Set up a string to get executed after a specified time. The execution
can be made to repeat the same interval or to do it only once.

Timer controlled executions will run as fast as possible after the
time has passed. FrexxEd’s synchronos operations can prevent it to
run vituyally as long as it wants to!

INPUTS
Repeat - 0 - only once

1 - repeat this!

FPLprogram - Valid FPL program.

Functions 104 /107

Seconds - Number of seconds before execution.

Micros - Optional number of additional micro seconds before the
execution.

RESULT
0 if anything went wrong, otherwise a non-zero number to be used for
e.g TimerDelete () .

SEE ALSO
TimerDelete ()

1.138 TimerDelete()

NAME

TimerDelete — Remove a timer execution.
SYNOPSIS

TimerDelete (TimerID);

void TimerDelete (int);
FUNCTION

Cancels an added timer execution with the specified TimerID. The
TimerID specified as parameter is the number received from the
TimerAdd () function call.

INPUTS
TimerID - A valid TimerAdd() return code. Invalid codes are ignored.
-1 will cancel xallx timers!

RESULT

SEE ALSO
TimerAdd ()

1.139 Undo()

NAME
Undo - Undos changes.

SYNOPSIS
Actual = Undo (Steps);

int Undo (INT);
FUNCTION
This function undoes the latest or a specified number of changes.

If called without parameter, it defaults to 1.

INPUTS
Steps — Number of undos to do.

Functions

105/107

RESULT
The actual number of undos that was performed.

SEE ALSO
UndoRestart ()
Undo concept

1.140 UndoRestart()

NAME
UndoRestart - Restart an undo session.

SYNOPSIS
Actual = UndoRestart (Steps);

int UndoRestart (INT);

FUNCTION
This function restarts the undo session and performs one or a
specified number of undos. This lets you undo previous undos.
If called with no parameter, it defaults to one step.

INPUTS
Steps - Number of undos to do.

RESULT
The actual number of undos that was performed.

SEE ALSO
Undo ()
Undo concept

1.141 Visible()

NAME
Visible - Turn visualization on or off.

SYNOPSIS
Prev = Visible (Visual);

int Visible (INT);

FUNCTION
This function toggles visibilty of what is changed in the buffer. If
set to zero (0), nothing will be seen when changed, but if set to

non-zero, all changes will be instantly visualized. Multiple changes
may be done invisible and result in a great time reduction spent
doing those changes. This function can be called without parameter,
but will then only return the current state without changing it.

INPUTS

Functions

106 /107

Visual - On (1) or off (0).

RESULT
Returns the previous visual state, the state which was the current
before you called Visible() .

SEE ALSO
RedrawScreen () ;

1.142 WindowToFront()

NAME
WindowToFront - Bring FrexxEd to front.

SYNOPSIS
WindowToFront (Mode);

void WindowToFront (INT);

FUNCTION
This function asks intuition to bring FrexxEd’s screen and window
in front of all other screens and windows.
This function can get called with no or one parameter. When called
without parameter, it acts as if called with Mode set to '0'.

INPUTS
Mode - 0 bring window to front and activate window
1 simply bring window to front without activating it
2 simply activate the window
-1 Make a WindowToBack/ScreenToBack and deactivate the window

RESULT

SEE ALSO
intuition.library/WindowToFront ()

1.143 Yank()

NAME
Yank - Paste the yank buffer.

SYNOPSIS
ret = Yank (Number);

int Yank (INT);

FUNCTION
This function outputs the yank buffer a specified number of times.
default, one. The yank buffer was contructed by multiple character
deleting functions that were invoked in one uninterrupted sequence.
This function can be called with or without parameter.

Functions 107 /107

INPUTS
Number - Number of outputs.

RESULT

Regular FrexxEd error code. If zero or a positive number is returned,
everything is OK, otherwise something went wrong.

SEE ALSO
Delete (), DeletelLine()

	Functions
	Function documentation
	FPL Function Reference
	Function description syntax
	About()
	Activate()
	ARexxRead()
	ARexxResult()
	ARexxSend()
	ARexxSet()
	AssignKey()
	Backspace()
	BackspaceWord()
	BlockChange()
	BlockCopy(), BlockCut(), BlockDelete()
	BlockCreate()
	BlockMark()
	BlockMove()
	BlockPaste()
	BlockSort()
	BSearch()
	CConvertString()
	CenterView()
	Check()
	Clean()
	Clear()
	ClipToString()
	CloneWB()
	ColorAdjust()
	ConstructInfo()
	ColorReset()
	CurrentBuffer()
	CursorActive()
	Cursor movements
	CursorStack
	Delay()
	Deiconify()
	Delete()
	DeleteEol()
	DeleteInfo()
	DeleteKey()
	DeleteLine()
	DisplayBeep()
	DuplicateEntry()
	Change case
	Execution functions
	FACT()
	FACTClear()
	FACTCreate()
	FACTDelete()
	FACTConvertString()
	FACTString()
	FindPort()
	Fold()
	FoldDelete()
	FoldHide()
	FoldShow()
	GetBlock()
	GetBufferID()
	GetByte()
	GetChar()
	GetCursor()
	GetDate()
	GetEnv()
	GetErrNo()
	GetFileList()
	GetKey()
	GetLine()
	GetList()
	GetReturnMsg()
	GetWord()
	GotoChange()
	GotoLine()
	Hook functions
	HookClear()
	Iconify()
	InsertFile()
	InverseLine()
	FACT reading functions
	Isfold()
	KeyPress()
	Kill()
	Load()
	LoadString()
	LogSetting()
	MacroRecord()
	MatchParen()
	MaximizeView()
	MenuAdd()
	MenuBuild()
	MenuClear()
	MenuDelete()
	MenuRead()
	New()
	NextBuffer()
	NextEntry()
	NextView()
	Output()
	PageDown()
	PlaceCursor()
	PrintLine()
	Prompt()
	PromptBuffer()
	PromptFile()
	PromptFont()
	Prompt for integer or string
	PromptInfo()
	Random()
	RedrawScreen()
	QuitAll()
	ReadInfo()
	RemoveView()
	Rename()
	Replace()
	ReplaceMatch()
	ReplaceSet()
	Request()
	RequestWindow()
	ResizeView()
	ReturnStatus()
	Save()
	SaveString()
	Screenmode()
	Scroll up or down
	Search()
	SetEnv()
	SetInfo()
	SetSave()
	Sort()
	Status()
	Stcgfn() and Stfgfp()
	Stricmp()
	StringChangeCase(), StringToLower(), StringToUpper()
	StringToBlock()
	StringToClip()
	Strmfp()
	System()
	TimerAdd()
	TimerDelete()
	Undo()
	UndoRestart()
	Visible()
	WindowToFront()
	Yank()

