Default

Default

COLLABORATORS
TITLE :
Default
ACTION NAME DATE SIGNATURE
WRITTEN BY July 20, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Default iii

Contents

1 Default 1
1.1 games.ibrary L e e 1
1.2 games.library/Init_GPL e 3
1.3 games.library/Remove_GPI 4
1.4 games.library/Read_Mouse 4
1.5 games.library/Read_JoyPort L e 5
1.6 games.library/Read_JoyStick L 6
1.7 games.library/Read_Analog 7
1.8 games.library/Read_JoyPad e 8
1.9 games.library/Read_SegaPad e 8
1.10 games.library/Read_Key e 9
1.11 games.library/FastRandom 10
1.12 games.library/SlowRandom e 11
1.13 games.library/Wait_LMB 11
1.14 games.library/Wait_Fire 12
1.15 games.library/Wait_Time 12
1.16 games.library/Wait_VBL e 12
1.17 games.library/Wait_OSVBL e 13
1.18 games.library/Wait_Rastline L 13
1.19 games.library/NORequesters o i i e e e 14
1.20 games.library/SetFilter L 15
1.21 games.library/Add_InputHandler L 15
1.22 games.library/Rem_InputHandler L 15
1.23 games.library/Add_Interrupt L e 16
1.24 games.library/Rem_Interrupt L e 16
1.25 games.library/SmartLoad e e e 17
1.26 games.library/QuickLoad 18
1.27 games.library/SmartUnpack e 18
1.28 games.library/SetUserPri e 19
1.29 games.library/SetGMSPrefs e 19

Default iv
1.30 games.library/GetPicInfo L 20
1.31 games.library/SetPassword L e e 20
1.32 games.library/AllocMemBlock 20
1.33 games.library/FreeMemBlock e 21
1.34 games.library/Add_Screen 22
1.35 games.library/Delete_Screen L. e e e 25
1.36 games.library/Show_Screen 26
1.37 games.library/Hide_Screen L e 26
1.38 games.library/SwapBuffers L 27
1.39 games.library/Remake_Screen L e e 27
1.40 games.library/HWScroll_Horizontal e 28
1.41 games.library/HWScroll_Vertical e 28
1.42 games.library/B12_FadeToBlack o e 29
1.43 games.library/B12_FadeToWhite e e 30
1.44 games.library/B12_FadeToPalette e 30
1.45 games.library/B12_FadeToColour e e e 31
1.46 games.library/24BIT_FadeToBlack e 31
1.47 games.library/24BIT_FadeToWhite e 32
1.48 games.library/B24_FadeToPalette e 32
1.49 games.library/B24_FadeToColour e e e e 33
1.50 games.library/Change_Colours e 33
1.51 games.library/Blank_Colours e e e e e e 34
1.52 games.library/Init_RasterList 34
1.53 games.library/Update_RasterList e e e 36
1.54 games.library/Remove_RasterList oL o 37
1.55 games.library/Hide_RasterList e e e e e 37
1.56 games.library/Show_RasterList oL e 38
1.57 games.library/Init_Sprite e e e e e e e e e 38
1.58 games.library/Update_Sprite e 39
1.59 games.library/Move_Sprite e e e e e e e e 40
1.60 games.library/Remove_Sprite 40
1.61 games.library/Update_SpriteList e e e 41
1.62 games.library/Remove_SpriteListo 41
1.63 games.library/Remove_AlISprites e 42
1.64 games.library/Return_AllSprites L 42
1.65 games.library/Init_BOB e 43
1.66 games.library/Init. BOBList e 43
1.67 games.library/Blit_. BOB e 44
1.68 games.library/Blit. BOBList e 44

Default

v
1.69 games.library/ 45
1.70 games.library/o e e e 45
L.71 games.library/ L e e e e 45
1.72 games.library/ oL e 46
1.73 games.library/ e 46
1.74 games.library/AllocAudio e e e 46
1.75 games.library/FreeAudio e 47
1.76 games.library/InitSound 47
1.77 games.library/CheckChannel e 48
1.78 games.library/PlaySound L e e e e 48
1.79 games.library/PlaySoundDACX e 49
1.80 games.library/PlaySoundPriDACK e 49
1.81 games.library/PlaySoundPri e 50
1.82 games.library/ L e e e e 51

Default

1/51

Chapter 1

Default

1.1 games.library

Name: GAMES .LIBRARY AUTODOC

Version: 0.2 Beta.

Date: 07 July 1996

Author: Paul Manias

Copyright: DreamWorld Productions, 1996. All rights reserved.

Notes: This document is still being written and will contain errors

in a number of places.

The information here is definitely not

official - you have been warned!

Init_GPI()
Remove_GPI ()
Read_Mouse ()
Read_JoyPort ()
Read_JoyStick ()
Read_JoyPad ()
Read_SegaPad()
Read_Analog()
Read_Key ()
FastRandom ()
SlowRandom ()
Wait_LMB ()
Wait_Fire ()
Wait_Time ()
NoRequesters ()
SetFilter ()
Add_InputHandler ()
Rem_InputHandler ()
Add_Interrupt ()
Rem_Interrupt ()
SmartLoad ()
QuickLoad ()
SmartUnpack ()
SetUserPri ()
SetGMSPrefs ()
UnpackPic ()
GetPicInfo ()
SetPassword()
AllocMemBlock ()

Default 2 /51

FreeMemBlock ()

SCREENS.GPI
Add_Screen ()
Delete_Screen|()
Show_Screen ()
Hide_Screen ()
SwapBuffers ()
Remake_Screen ()
Move_Screen ()
HWScroll_Horizontal ()
HWScroll_ Vertical ()
HWScroll_Reset ()
Bl2_FadeToBlack ()
Bl2_FadeToWhite ()
B12_FadeToPalette()
B12_FadeToColour ()
B24 FadeToBlack ()
B24_FadeToWhite ()
B24_FadeToPalette ()
B24_FadeToColour ()
Change_Colours ()
Blank_Colours ()

Init_RasterList ()
Update_RasterList ()
Update_RastLines ()
Update_RastCommand ()
Update_RastAllCommands ()
Remove_RasterList ()
Hide_RasterList ()
Show_RasterList ()

Init_Sprite()
Update_Sprite ()
Move_Sprite ()
Remove_Sprite ()
Update_Spritelist ()
Remove_SpriteList ()
Remove_AllSprites ()
Return_AllSprites()

BLITTER.GPI (Work in progress)
Init_BOB()
Init_BOBList ()
Blit_BOB ()
Blit_BOBList ()
Clear_BOB()

Clear_ BOBList ()
Blit_VerticalSeries|()
Blit_ScaledBMap ()
Blit_Pattern ()
Blit_Line ()
Blit_Bitmap ()
SnR_Backgrounds ()
Clear_Screen ()
Clear_ScreenArea()

Default

3 /51

SOUND.GPI
AllocAudio ()
FreeAudio ()
InitSound ()
CheckChannel ()
PlaySound ()
PlaySoundDAC1 (
PlaySoundDAC2 (
PlaySoundDAC3 (
PlaySoundDAC4 (
PlaySoundPri ()
PlaySoundPriDACI ()
PlaySoundPriDAC2 ()
0)
0

)
)
)
)

PlaySoundPriDAC3
PlaySoundPriDAC4
SetVolume ()
FadeVolume ()
InitSTPlayer ()
P1aySTMOD ()
StopSTPlayer ()

VECTORS .GPI
NETWORK.GPI

DEBUG.GPI

1.2 games.library/Init_GPI

games.library/Init_GPI
NAME Init_GPI - Load in a GPI and initialise it for function calls.

SYNOPSIS
GPIBase = Init_GPI (GPINumber).
do do

APTR Init_GPI (UWORD GPI_ID);

FUNCTION
Loads in a GPI and initialises it ready for function calls.
Currently there are three GPI’s that require initialisation if you
want to use them:

Debug.GPI
Network.GPI
Vectors.GPI

If GPIBase returns with an address pointer then the initialisation
was successful and the GPI’s functions are ready to use.

NOTE The GPIBase is the same as a library base pointer. Because of this
it 1is perfectly 1legal to make direct calls to the GPI itself.
However you should only do this if you have very good reason to, eg

Default

4 /51

if you are developing a new GPI.

As the Debug, Network and Vector GPI’s are not present yet, this
function is a bit useless for the moment :-)

INPUTS GPINumber - A recognised GPI ID Number, which is one of:

GPI_SCREENS =
GPI_BLITTER
GPI_SOUND =
GPI_NETWORK
GPI_VECTORS
GPI_DEBUG =

g w NP O

RESULT GPIBase - Ptr to the GPIBase or NULL if error.

SEE ALSO
Remove_GP1I

1.3 games.library/Remove_GPI

games.library/Remove_GPI

NAME Remove_GPI —-- Remove a GPI that was previously initialised.
SYNOPSIS
Remove_GPI (GPIBase)
a0

ULONG Remove_GPI (APTR GPIBase);

FUNCTION
Informs the Games.Library that vyou no longer wish to use the
specified GPI’s functions. You cannot make any calls to the GPI

after removing it.
INPUTS GPIBase - Ptr to a valid GPIBase returned from Init_GPI ().

SEE ALSO
Init_GPI

1.4 games.library/Read_Mouse

games.library/Read_Mouse

NAME Read_Mouse —-- Gets the current mouse co-ordinates and button states.
SYNOPSIS
XYCoord = Read_Mouse (PortName)
do do

ULONG Read_Mouse (UWORD PortName) ;

Default 5/51

FUNCTION
Reads the mouse port and returns its current co-ordinates. Mouse
movement 1is restricted to the current screen’s height and width.

NOTE The range of the co-ordinates is redefined each time you open a

screen. You <can alter the mouse limits by changing the relative
values 1in the GMSBase. Remember, unlike the Jjoyport routines this
function returns screen relative co-ordinates, rather than X/Y

direction switches.
INPUT PortName = JPORT1 or JPORT2.
RESULT XYCoord - (XCoord)<<1l6+ (YCoord).

MouseXx, MouseY¥x and MouseButtonsx and also updated accordingly in
the GMSBase.

SEE ALSO
games/gamesbase. i

1.5 games.library/Read_JoyPort

games.library/Read_JoyPort

NAME Read_JoyPort —-- Reads any joystick device in a given joyport.
SYNOPSIS
JoyStatus = Read_JoyPort (PortName, ReturnType)
do do dl

ULONG Read_JoyPort (UWORD PortName, UWORD ReturnType)

FUNCTION
Reads the joyport and returns its status in the required format,
regardless of what playing device 1is plugged in. Currently
supported devices are standard JoySticks, Analog JoySticks,
SegaPads and CD32 JoyPads. The mouse 1is not supported by this
function.

Unlike the 1lowlevel.library equivalent of this function, this
version is much faster and does not need to evaluate what device is
currently plugged in. It simply reads the specified joy type from
GMSPrefs and jumps to the correct routine.

Future devices may Dbe added to this function - this will be
transparent to your program so that you can support devices that do
not exist yet.

INPUTS PortName - JPORT1, JPORTZ2, JPORT3 or JPORTA4.
ReturnType - JT_SWITCH: JoyStatus returns with switched bitflags.
JT_ZBXY: JoyStatus returns with the ZBXY format.

RESULT JoyStatus - Status of the JoyPort 1in one of the following two
formats:

Default 6/51

For JT_SWITCH : JS_LEFT =0
JS_RIGHT =1
JS_UP =2
JS_DOWN =3
JS_ZIN = 4
JS_7z0OUT =5
JS_FIREL = 6
JS_FIRE2 =7
JS_PLAY =8
JS_RWD =9
JS_FFW = 10
JS_GREEN = 11
JS_YELLOW = 12

For JT_ZBXY

BYTE | BIT RANGE | DATA

_____ T
1 | 0o - 7 | Y Direction
2 | 8 - 15 | X Direction
3 | 16 - 23 | Button status bits.
4 | 23 - 31 | Z Direction (currently not supported)

JB_FIREl = 16
JB_FIRE2 17

SEE ALSO
Read_JoyStick, Read_JoyPad, Read_SegaPad, Read_Analog, games/games.i

1.6 games.library/Read_JoyStick

games.library/Read_JoyStick

NAME Read_Joystick —-- Read the joystick status from a given joyport.
SYNOPSIS
JoyStatus = Read_JoyStick (PortName)
do do

ULONG Read_JoyStick (UWORD Portname) ;

FUNCTION
Interprets the current status of a Jjoystick in the given port.
Ports 3 and 4 are recognised as extended joysticks in the parallel
port. If the user was not using the joystick, then JoyStatus will
return a NULL value.

NOTE Try to wuse Read_JoyPort (), as that gives the same results, but
supports Joypads, Analog joysticks etc.

INPUTS PortName - JPORT1l, JPORT2, JPORT3 or JPORTA4.

RESULT JoyStatus - The current joystick status bits. These are:

Default

7 /51

JS_LEFT
JS_RIGHT
JS_UP =
JS_DOWN =
JS_FIREl1 =
JS_FIRE2

Il
<~ o w Nk o

SEE ALSO
Read_JoyPort, Read_JoyPad, Read_SegaPad, Read_Analog, games/games.i

1.7 games.library/Read_Analog

games.library/Read_Analog

NAME Read_Analog —-- Read an analog joystick from the given port.
SYNOPSIS
ZBXYStatus = Read_Analog (PortName)
do do

ULONG Read_Analog (UWORD PortName) ;

FUNCTION
Reads an analog joystick in either port 1 or port 2. The status of
the joystick 1is returned in ZXBYStatus (a packed state). If the

user was not using the joystick, then ZBXYStatus will return a NULL
value.

JoyPorts 3 and 4 are not supported by this function.
INPUTS PortName - JPORT1 or JPORTZ2.
RESULT ZBXYStatus - Current status of the analog joystick.
The status data looks like this:

BYTE | BIT RANGE | DATA

,,,,, o
1 | o - 7 | Y Direction
2 | 8 - 15 | X Direction
3 | 16 = 23 | Button status bits.
4 | 23 - 31 | Z Direction (currently not supported)

Note that the further the joystick is pushed in a given direction,
the higher the wvalue returned for the relevant byte. Negative
values denote a push in the opposite direction.

eg. If (ZXBYStatus&$0000f££f00)>>8 = -3, then this signals an X
change of 3 places left.

If (ZXBYStatus&$000000ff) = 4, then this signals a Y change of

4 places down.

BUGS NOT IMPLEMENTED YET.

Default

8 /51

SEE ALSO
Read_JoyPort, Read_JoyStick, Read_SegaPad, Read_JoyPad.

1.8 games.library/Read_JoyPad

games.library/Read_JoyPad

NAME Read_JoyPad —-- Reads a CD32 joypad from a specified port number.
SYNOPSIS
JoyStatus = Read_JoyPad (PortName)
do do

ULONG Read_JoyPad (UWORD PortName) ;

FUNCTION
Reads a standard Amiga JoyPad (ie a CD32 joypad) and returns its
current status 1in the JoyStatus bit format. If the user was not

using the joypad, then JoyStatus will return a NULL value.
INPUTS PortName - JPORT1 or JPORT2.
RESULT JoyStatus - Current joypad status bits. These are:

JS_LEFT
JS_RIGHT =
JS_UP =
JS_DOWN =
JS_RED =
JS_BLUE =
JS_PLAY =
JS_RWD =9
JS_FFW =10
JS_GREEN = 11
JS_YELLOW = 12

O ~Jo W N O

The red and blue buttons are the equivalent of fire buttons 1 and 2
on a standard joystick.

BUGS I have not tested this!
SEE ALSO

Read_JoyPort, Read_JoyStick, Read_SegaPad, Read_Analog,
games/games. i

1.9 games.library/Read_SegaPad

games.library/Read_SegaPad

NAME Read_SegaPad - Reads a Sega joypad from a specified port number.

SYNOPSIS

Default

9/51

JoyStatus = Read_SegaPad (PortName)
do do

ULONG Read_SegaPad (UWORD PortName)

FUNCTION
Reads a standard Sega JoyPad and returns its current status in the
JoyStatus bit format. If the user was not using the SegaPad, then
JoyStatus will return a NULL value.

INPUTS PortName - JPORT1 or JPORT2.
RESULT JoyStatus - Current joypad status bits. The flags are:

JS_LEFT =
JS_RIGHT =
JS_UP =
JS_DOWN =
JS_FIRE1l =
JS_FIRE2 =

~ o W N O

BUGS This has not even been tested by me! Probably doesn’t work -
someone send me a reader that has been tested please.

SEE ALSO
Read_JoyPort, Read_JoyStick, Read_JoyPad, Read_Analog, games/games.i

1.10 games.library/Read_Key

games.library/Read_Key

NAME Read_Key —-—- Reads the keyboard and returns any new keypresses.
SYNOPSIS
KeyValues = Read_Key (KeyStruct)
do ao

ULONG Read_Key (struct KeyStruct x);

FUNCTION
Checks to see 1f there was a keypress since the last time you
called this routine. If there were no keypresses then KeyValues

will return a null value.

Most key values are returned as ANSI, which is of the range 1-127.
Special keys (eg Cursor Keys, function Keys etc) are held in the
range of 128-255.

A shift qualifier has an automatic effect on the ANSI value (eg
shift+c will return "C"). Alt keys, Ctrl keys, and Amiga keys
have no effect on the ANSI value.

The KeyStruct 1s also updated for future reference. A KeyStruct
will hold up to three keys since your previous check. For this
reason you should call Read_Key every VBL when the user is required

Default

10/ 51

to enter more than a few characters (eg their name). Otherwise you
could lose some of their input.

INPUT KeyStruct - Pointer to a valid KeyStruct. This structure is in the
form of:

STRUCTURE KP, 00

UWORD KP_1ID ;Updated by function, ignore.
UBYTE KP_Qualifierl ;Latest key press.

UBYTE KP_Keyl

UBYTE KP_Qualifier2 ;Older key press.

UBYTE KP_Key2

UBYTE KP_Qualifier3 ;O0ldest key press.

UBYTE KP_Key3
RESULT KeyValues - Contains the latest keypress value in the first byte
bits) and 1its qualifier in the wupper byte (bits 9 - 16). A
previous keypress may also Dbe held in the upper word if it was
missed. Visually:

(Qualifier2<<8+Key2)<<1l6 + (Qualifierl<<8+Keyl)

KeyStruct - Updated to hold new key data. You can test for a third
keypress inside here.

SEE ALSO
Add_InputHandler, games/games.i

1.11 games.library/FastRandom

games.library/FastRandom

NAME FastRandom -- Create a random number from a given range.
SYNOPSIS
Random = FastRandom (Range)
do.w dl

WORD FastRandom (UWORD Range) ;

FUNCTION
Creates a random number as quickly as possible. The routine only
has one divide to determine the range and will automatically change
the randseed value each time you call it.

This routine will generally get all the numbers in fairly random
sequences.

Remember that all generated numbers fall BELOW the Range, ie the
Range 1is an "unreachable" number. Add 1 to your range if you want
this number included.

INPUTS Range - A range Dbetween 1 and 32767. An invalid range of 0 will

result in a division by zero error.

(8

Default 11 /51

RESULT Random — A number greater or equal to 0, and less than Range.

SEE ALSO
SlowRandom, examples/random.c

1.12 games.library/SlowRandom

games.library/SlowRandom

NAME SlowRandom —-- Create a random number from a given range.
SYNOPSIS
Random = SlowRandom (Range)
do dl

ULONG SlowRandom (UWORD Range) ;

FUNCTION
Creates a very good random number in a relatively short amount of
time. The routine takes approximately two times longer than
FastRandom, but is guaranteed of giving good random number
sequences.

Remember that all generated numbers fall BELOW the Range, ie the
Range is an "unreachable" number. Add 1 to your range if you want
this number included.

INPUTS Range - A range between 1 and 32767.

RESULT Random - A number greater or equal to 0, and less than Range.

SEE ALSO
FastRandom, examples/random.c

1.13 games.library/Wait_LMB

games.library/Wait_LMB
NAME Wait_IMB -- Wait for the user to hit the left mouse button.

SYNOPSIS
Wait_LMB ()

void Wait_LMB (void);

FUNCTION
Waits for the wuser to hit the left mouse button. It will not
return to your program until this event occurs. Multi-tasking time

will be increased while waiting and an implanted AutoOSReturn ()
call supports screen switching.

SEE ALSO

Default 12 /51

Read_Mouse, Wait_Fire.

1.14 games.library/Wait_Fire

games.library/Wait_Fire

NAME Wait_Fire —-- Wait for the user to hit a fire button.
SYNOPSIS
Wait_Fire (PortName)
do

void Wait_Fire (UWORD PortName) ;

FUNCTION
Waits for the user to hit the fire button. It will not return to
your ©program until this event occurs. Multi-tasking time will be
increased while waiting and an implanted AutoOSReturn() call
supports screen switching.

INPUTS PortName - JPORT1l, JPORT2, JPORT3 or JPORTA4.

SEE ALSO
Read_Joystick, Read_JoyPad, Read_SegaPad, Wait_LMB, games.i

1.15 games.library/Wait_Time

games.library/Wait_Time

NAME Wait_Time —-- Wait for a specified amount of micro-seconds.
SYNOPSTIS
Wait_Time (MicroSeconds)
do

void Wait_Time (UWORD MicroSeconds) ;

FUNCTION
Waits for a specified amount of micro-seconds. During this time it
will reduce the task priority and make regular calls to

AutoOSReturn () for you.

SEE ALSO
Wait_VBL, Wait_OSVBL

1.16 games.library/Wait_VBL

games.library/Wait_VBL

NAME Wait_VBL -- Waits for a vertical blank.

Default

13/ 51

SYNOPSIS
Wait_ VBL()

void Wait_VBL (void) ;

FUNCTION
This 1s a wvery intelligent routine and will wait for the exact
position of the VBL. Even if you move your screen around using

Reposition_Screen, the wait 1line will move along with it, giving
you more (or less) VBL space.

NOTE Use Wait_OSVBL if you want automatic screen switching checks.

SEE ALSO
Wait_RastLine, Wait_OSVBL.

1.17 games.library/Wait_ OSVBL

games.library/Wait_OSVBL
NAME Wait_OSVBL -- Waits for a vertical blank.

SYNOPSIS
Wait_OSVBL()

void Wait_OSVBL (void) ;

FUNCTION
This 1s a wvery intelligent routine and will wait for the exact
position of the VBL. Even if you move your screen around using

Reposition_Screen, the wait 1line will move along with it, giving
you more (or less) VBL space.

This version has an implanted AutoOSReturn call to make screen
switching very easy to implement.

SEE ALSO
Wait_RastLine, Wait_VBL.

1.18 games.library/Wait_RastLine

games.library/Wait_RastLine

NAME Wait_RastLine —-- Waits for the strobe to reach a specific line.
SYNOPSIS
Wait_RastLine (LineNumber)
do

void Wait_RastLine (UWORD LineNumber)

Default 14 /51

FUNCTION
This routine waits for the strobe to reach the scan-line specified
in LineNumber. The recognised range is 1-311 lo-res pixels for a

PAL screen.

Wait_Rastline 1is a <clever routine. All the VBL wait routines I
have ever seen never consider the fact that somtimes an interrupt
can be activated while vyou’re waiting for the line to come up.
This causes you to completely miss the VBL, and you are stalled for
an extra frame which can have horrible effects on screen.
Unfortuntely there is also a bug in the hardware which makes this a
difficult problem to avoid!

Luckily I’ve managed to fix all this so rest assured that this
function works very well.

NOTES Here is the bug in the hardware concerning VPOSR and VHPOSR. When
the strobe reaches line 255, this happens:

Line: 254
Line: 255

Line: 000 <- Bug here.
Line: 256

Line: 257

Line:

If your VBL synchronisations have failed in the past, now you know
why... Yet another good reason to use library routines!

INPUTS LineNumber - Vertical beam position to wait for.

BUGS If vyou enter a large value beyond the range limit, like #400 for a
non—-interlaced PAL screen, the strobe will never reach this line
because 1line 400 doesn’t even exist. This will cause your program
to lock up. So make sure you keep your values between 1 and 310

for normal screens and 1 - 511 for interlaced screens.

SEE ALSO
Wait_OSVBL, Wait_VBL.

1.19 games.library/NoRequesters

games.library/NoRequesters
NAME NoRequesters —- Shuts down all requesters.

SYNOPSTIS
NoRequesters ()

void NoRequesters (void);
FUNCTION

Shuts down all requesters in a system-friendly way. If you intend
to load/save files through DOS, you should call this function at

Default 15/ 51

the start of your program.

1.20 games.library/SetFilter

games.library/SetFilter

NAME SetFilter —— Set the LED/Sound filter to an ON or OFF state.
SYNOPSIS
SetFilter (NewStatus)
do

void SetFilter (UWORD NewStatus)

FUNCTION
Sets the sound filter to the required state. The power LED will
dim or brighten to reflect the change.

INPUT NewStatus - Either FILTER_ON or FILTER_OFF

1.21 games.library/Add_InputHandler

games.library/Add_InputHandler
NAME Add_InputHandler —-- Add an input handler to the system.

SYNOPSIS
Add_InputHandler ()

void Add_InputHandler (void)

FUNCTION
Add an input handler at the highest priority to delete all system
input events. The idea behind this is to prevent input falling

through to system screens and to give you more CPU time by killing
all inputs.

If you are going to use Read_Key () then it is wvital that this
function 1s active. This is because Read_Key () is hooked into the
input handler routine that this function provides.

NOTE By default this function 1s always <called Dby Show_Screen().
Therefore you only need to call this routine if you are using some

other screen opening routine.

SEE ALSO
Rem_TInputHandler

1.22 games.library/Rem_InputHandler

Default

16/ 51

games.library/Rem_InputHandler
NAME Rem_InputHandler —-- Remove the active input handler.

SYNOPSIS
Rem_InputHandler ()

void Rem_InputHandler (void)

FUNCTION
Removes the active input handler from the system. As a result this
will also deactivate the Read_Key () function.

NOTE Delete_Screen() automatically calls this function so that any input
handlers set up by Show_Screen() are removed.

SEE ALSO
Add_InputHandler

1.23 games.library/Add_Interrupt

games.library/Add_Interrupt

NAME Add_Interrupt -- Activate a custom written hardware interrupt.
SYNOPSIS
IntBase = Add_Interrupt (Interrupt, IntNum, IntPri)
do ao do dl

ULONG Add_Interrupt (APTR Interrupt, UWORD IntNum, BYTE IntPri)

FUNCTION
Initialises a system-friendly hardware interrupt and activates it
immediately. See the SetIntVector () and AddIntServer () descrip-

tions in the exec.library for more details on system interrupts.

INPUTS Interrupt - Ptr to your interrupt routine.
IntNum - The hardware interrupt bit.
IntPri - The priority of the interrupt, -126 to +127.

RESULT IntBase - Ptr to the interrupt base, you have to save this address

and pass it back to Rem_Interrupt () before your program exits.

SEE ALSO
Rem_Interrupt, exec/SetVector, hardware/custom.i, games/games.i

1.24 games.library/Rem_Interrupt

games.library/Rem_Interrupt

NAME Rem_Interrupt -- Remove an active interrupt.

Default 17 /51

SYNOPSIS
Rem_Interrupt (IntBase)
do

volid Rem_Interrupt (ULONG IntBase)

FUNCTION
Disable and remove an active interrupt from the system. This
function is identical to RemIntServer () in the exec.library, but is

a little easier to handle.
INPUT IntBase - Ptr to an interrupt base returned from Add_Interrupt().

SEE ALSO
Add_Interrupt, games.i

1.25 games.library/SmartLoad

games.library/SmartLoad

NAME SmartLoad —-- Load in a file and depack it if possible.
SYNOPSIS
MemLocation = SmartLoad (FileName, Destination, MemType)
do al al do

ULONG SmartLoad (APTR FileName, APTR Destination, ULONG MemType)

FUNCTION
Load 1in a file and depack it if necessary. If the function cannot
find a recognised packer for the file then it will assume that it
is not packed, and load it in without alteration.

If you pass NULL as the Destination address, SmartLoad() will
allocate the memory for vyou but you must give the MemType (see

exec/memory.h) .

If you do give the Destination you do not have to pass this
function the MemType.

NOTE This function is not fully working yet!

INPUTS FileName - Ptr to a null terminated string containing a file name.
Destination - Destination for unpacked data or NULL for allocation.
MemType - Memory Type (only required if Destination is NULL)

RESULT MemLocation - Ptr to the loaded data or NULL if failure.

SEE ALSO
QuickLoad, SmartUnpack, SetPassword, exec/memory.i

Default 18 /51

1.26 games.library/QuickLoad

games.library/QuickLoad

NAME QuickLoad —-- Load in a file without any depacking.
SYNOPSIS
MemLocation = QuickLoad(FileName, Destination, MemType)
do ao al do

APTR QuickLoad (STRPTR FileName, APTR Destination, ULONG MemType)

FUNCTION
Loads 1in a file without attempting to depack it. The advantage of
this function is that it will assess the file size and load it all
in for you. It can also allocate the memory space if required.

If you pass NULL as the Destination address, SmartUnpack () will
allocate the memory for vyou but you must give the MemType (see

exec/memory.h) .

If you do give the Destination vyou do not have to pass this
function the MemType.

NOTE TIf vyou wanted the allocation you will have to free it with
FreeMemBlock () when you are finished with it.

INPUTS FileName - Ptr to a null terminated string containing a file name.
Destination - Destination for unpacked data or NULL for allocation.
MemType - Memory Type (only required if Destination is NULL)

RESULT MemLocation - Ptr to the loaded data or NULL if failure.

SEE ALSO
SmartLoad, SmartUnpack, exec/memory.i

1.27 games.library/SmartUnpack

games.library/SmartUnpack

NAME SmartUnpack -- Unpack data from one memory location to another.
SYNOPSIS
MemLocation = SmartUnpack (Source, Destination, MemType)
do a0 al do

APTR SmartUnpack (APTR Source, APTR Destination, ULONG MemType)

FUNCTION
Attempts to unpack a data area if it can assess the packing method
used. The data should begin with an ID number followed by the size
of the original data before it was packed. The data itself must be
found after this.

Default 19/ 51

If you pass NULL as the destination address, SmartUnpack() will
allocate the memory for vyou but you must give the MemType (see
exec/memory.h) . If you give the destination you do not have to
pass this function the MemType.

NOTE Currently this function only supports the RNC packer type. It will
support the XPK library very soon so that other files can depacked.

If you wanted the allocation you will have to free it with
FreeMemBlock () when you are finished with it.

INPUTS Source - Ptr to start of packed data (must be an ID header).
Destination - Destination for unpacked data or NULL for allocation.
MemType - Memory type (only required if Destination is NULL) .

RESULT MemLocation - Ptr to the unpacked data.

SEE ALSO
SmartLoad, exec/memory.1i

1.28 games.library/SetUserPri

games.library/SetUserPri
NAME SetUserPri —-- Set your task to a user selected priority.

SYNOPSIS
SetUserPri ()

void SetUserPri (void)

FUNCTION
Sets your task to a user selected priority. This priority will
depend on the UserPri setting in GMSBase, which comes from the

ENV:GMSPrefs file. The priority setting can be altered in the
GMSPrefs utility.

1.29 games.library/SetGMSPrefs

games.library/SetGMSPrefs

NAME SetGMSPrefs —-- Initialise a new set of preferences.
SYNOPSIS
ErrorCode = SetGMSPrefs (PrefsStruct)
do ao

UWORD SetGMSPrefs (APTR PrefsStruct)

FUNCTION
Initialise a new set of GMS preferences in the games.library. This
will overwrite the prefs previously set in memory.

Default

20/ 51

INPUT PrefsStruct - Ptr to a valid preferences structure. Details of

this structure are not available to you for the moment, so you
can’t actually make any use of this function just yet :-)

RESULT ErrorCode - Returns NULL if successful.

1.30 games.library/GetPiclnfo

games.library/GetPicInfo

NAME GetPicInfo -- Get the information on a recognised picture header.
SYNOPSIS
ErrorCode = GetPicInfo (Picture, PicInfo)
do al a2

UWORD GetPicInfo (APTR Picture, APTR PicInfo)

FUNCTION
NOT IMPLEMENTED YET.

INPUT

RESULT ErrorCode - Returns NULL if successful.

1.31 games.library/SetPassword

games.library/SetPassword

NAME SetPassword -- Set a password for unpacking/decrypting files in
SmartLoad and SmartUnpack.

SYNOPSIS
SetPassword (Password)
do

void SetPassword (ULONG Password)

FUNCTION
Set a password for the decryption of specially packed files. For
example the RNC packer type allows you to use an encryption key in
the packing/depacking of files.

INPUT Password - A password/encryption key of 4 bytes (1 longword).

SEE ALSO
SmartLoad, SmartUnpack

1.32 games.library/AllocMemBlock

Default 21 /51

games.library/AllocMemBlock

NAME AllocMemBlock —-- Allocate a new memory block.
SYNOPSIS
MemBlock = AllocMemBlock (Size, MemType)
do do dl

APTR AllocMemBlock (ULONG Size, ULONG MemType)

FUNCTION
Allocates a memory block from the system - this function is almost,
or probably is identical to AllocVec(). It exists here because
AllocVec () is only available on V36+ machines.
See AllocMem() 1in the exec.library for more details on memory
allocation.

INPUT Size - Size of the required memblock in bytes.
MemType - The type of memory as outlaid in exec/memory.i

RESULT MemBlock - Ptr to the start of your allocated memblock or NULL if

failure. If the allocation was the successful then -4 (MemBlock)
will contain the size of your allocated memory. You can read
this wvalue, but DON’T write to it! You can do whatever you like

to the rest of your memory block of course.

SEE ALSO
FreeMemBlock, exec/memory.i

1.33 games.library/FreeMemBlock

games.library/FreeMemBlock

NAME FreeMemBlock —-- Free a previously allocated mem block.
SYNOPSIS
FreeMemBlock (MemBlock)
a0

void FreeMemBlock (APTR MemBlock)

FUNCTION
Frees a memory area allocated by AllocMemBlock (). This function is
essentially the same as FreeVec (), but works on all Amigas.

NOTE Never free the same MemBlock twice.

INPUT MemBlock - Points to the start of a memblock.

SEE ALSO
AllocMemBlock

Default

22/51

1.34 games.library/Add_Screen

games.library/Add_Screen

NAME Add_Screen —-- Sets up a screen from given parameters.
SYNOPSIS
ErrorCode = Add_Screen (GameScreen)
do a0
FUNCTION

Initialises a GameScreen structure by allocating the screen memory
and making the copperlist. A little more complex than it sounds...

After calling this function you need to call Show_Screen() to get

the screen on the display.

INPUTS GameScreen - Ptr to a valid GameScreen structure. Currently the

structure look like this:

STRUCTURE GameScreen, 0 ;A GameScreen structure
ULONG SS_VERSION ;Vesion — "GSvV1"
APTR SS_MemPtrl ;Ptr to screen 1
APTR SS_MemPtr2 ;Ptr to screen 2 (if buffered).
APTR SS_MemPtr3 ;Ptr to screen 3 (triple buffer!!)
APTR SS_ScreenLink ;Ptr to a linked screen.
APTR SS_Palette ;Ptr to the requested palette.
APTR SS_RasterlList ;Ptr to a raster list (or not).
ULONG SS_AmtColours ; The amount of colours on screen.
UWORD SS_Scr_Height ; The height of the visible screen.
UWORD SS_Scr_width ; The width of the visible screen.
UWORD SS_Scr_ByteWidth ;Width of the screen in xbytesx.
UWORD SS_Pic_Height ; The height of the entire screen.
UWORD SS_Pic_Width ; The width of the entire screen.
UWORD SS_Pic_ByteWidth ;Width of the entire screen, bytes.
UWORD SS_Planes ; The amount of planes in da screen.
WORD SS_TopOfScrX ;Hardware co-ordinate for TOS.
WORD SS_TopOfScrY ;Hardware co-ordinate for LOS.
UWORD SS_ScrollBuffer ;Scroll buffer in pixels.
WORD SS_ScrollXCount ;Offset of the horizontal axis.
WORD SS_ScrollYCount ;Offset of the vertical axis.
ULONG SS_ScrAttrib ;Special Attributes are?
UWORD SS_ScrMode ;What screen mode is it?
UBYTE SS_ScrType ;Interleaved/Planar/Chunky?
UBYTE SS_Displayed ;Am I currently displayed?
APTR SS_Extended ;jFor extended tag lists, not used.
APTR SS_ScreenStats ;Reserved, do not touch.

Here follows a description of each field:

SS_VERSION

The wversion of the structure. Currently this is "GSV1". 1In the
future as the structure grows, vyou will Dbe able to use other

structure versions, but for now this is what you’re stuck with.

SS_MemPtrl, SS_MemPtr2, SS_MemPtr3

Default 23/ 51

These fields point to the screen display data. They should be NULL
if vyou want this function to allocate the memory for you (highly
recommended) . Otherwise Add_Screen() will assume that the wvalues
are valid pointers to video memory and use them as such.

SS_Screenlink

If you want to set up a second screen at a different position in
the viewport, or create an extra (double) playfield, point to the
next GameScreen structure here.

SS_Palette
Points to the palette for this screen, or NULL if you want to
install a <clear palette (all colours Dblack). By default your

palette structure must be in 12 bit colours, unless you set the
_24BITCOL flag in SS_ScrAttrib.

SS_RasterList

Points to a valid rasterlist structure, or NULL. RasterlLists are
made up of instructions that are executed as the monitor beam
travels down the screen. See Init_RasterList () for more

information on rasterlists.

SS_AmtColours
The amount of colours 1in the screen palette, as pointed to by

SS_Palette. If vyou set this value to NULL then Add_Screen() will
fill it in for you, via a check to SS_Planes. This parameter
exists so that vyou can set colours that can’t be accessed by the
screen’s bitmap. For example, if your screen is 16 colours but you

want to set the colours for the sprites, then you can use a 32
colour palette.

SS_ScrHeight, SS_ScrWidth, SS_ScrByteWidth

Defines the screen height and width. This is the "window" that the
picture data is displayed through. The width of the screen must be
divisible by 16, and the byte width is defined as the ScreenWidth
divided by 8.

SS_PicHeight, SS_PicWidth, SS_PicByteWidth

Defines the picture height and width. The picture is the display
data that shows through on screen. It can be larger than the
screen area, but must never be smaller than the screen area. If
the picture 1s the same size as your screen, Jjust duplicate the
screen values here. Remember the width of the picture must be
divisible by 16, and the byte width is defined as the PicWidth
divided by 8.

SS_Planes
Specifies the amount of bitplanes that will be used by this screen.
The amount of colours you can use is completely dependent on this

value. For interleaved or planar screens you can calculate the
amount of colours you get with the formula 2”n, where n is the
amount of planes. If you are going to set up a 256 colour chunky

screen, you must specify only 1 plane here.

SS_TopOfScrX, SS_TopOfScrY
Specifies the hardware offset for the screen, in lo-res pixels only
(even if the screen itself is in hi-res). These two values are

Default 24 /51

added to the user’s screen offset in GMSPrefs. For this reason a
setting of 0,0 is usually sufficient, unless you are going to
create an extra large screen (eg overscan). Negative values are
permissable.

SS_ScrollBuffer

Controls the amount of blank space at the left of the screen. This
is here only for horizontal hardware scrolling. It is normally set
to 2 bytes (gives 16 blank pixels)

SS_ScrollXCount, SS_ScrollYCount

Counters for wvertical and horizontal scrolling. These values are
altered Dby HWScroll_Horizontal() and HWScroll_Vertical() - you are
not expected to put anything in these parameters. The idea is that
you can check them to see how many pixels you have scrolled in
either direction. You should reset them to 0,0 before calling
Add_Screen() 1if vyou are going to make use of these values in your
code.

SS_ScrAttrib
Defines the special attributes for the screen. Current available
are:

DBLBUFFER

Allocates an extra screen buffer which is placed in
SS_MemPtr2. See the SwapBuffers() function for more
information on double buffering.

TPLBUFFER - Allocates two extra buffers which are placed in
SS_MemPtr2 and SS_MemPtr3. See the SwapBuffers () for
more information on triple buffering.

Note: Never set the DBLBUFFER flag in conjunction
with the TPLBUFFER flag!

PLAYFIELD - Must be set if this screen forms part of a playfield.

HSCROLL - Set 1if you want to wuse full horizontal hardware
scrolling. This will allocate extra memory for safe
scrolling outside of the picture’s boundary.

VSCROLL - Set if you want to use vertical hardware scrolling.

SPRITES — Set if you intend to use sprites with this screen.

NOBURST - Enforce AGA burst modes to OFF.

BLKBDR - Turns all colours outside of the display window to
black.

NOSPRBDR - Allows sprites to appear outside of the screen dis-—

play window.

SS_ScrMode

Defines the display mode for the screen. If you do not fill in
this field, vyou will get the default of Lo-Res, Planar, PAL, and
12Bit colours.

Default 25/51

LORES — Specifies a lo-resolution screen. This is the def-
ault, so you do not have to specify it if you don’t
want to.

HIRES — Specifies a hi-resolution screen (double width).

SHIRES — Specifies a superhi-resolution screen (quad width) .

INTERLACED - Creates an interlaced display (double height).

NTSC — Forces an NTSC style display. The default is PAL if
you do not set this bit.

HAM - HAM mode. The amount of colours you get is depen-—
dant on the amount of planes in the screen.

_24BITCOL - Inform GMS that we will be using 24 bit colours with

If the wuser
display freque
mode promotion

SS_ScrType

this screen.

has selected mode promotion in GMSPrefs, then the
ncies will be altered accordingly. You cannot force
from inside your program.

The display data type - either PLANAR, INTERLEAVED or CHUNKY.

Descriptions o
autodoc, try th

RESULT ErrorCode

BUGS If vyou se
something this
features are
shouldn’t be to

SEE ALSO
Delete_Screen,

f these display types are out of the scope of this
e RKM’s for more information on this.

- NULL if successful.
t up your screen structure incorrectly or try to do
routine doesn’t, you will run into trouble. Not all

working even though the flags are present, but it
o long before this function is finished.

Show_Screen, Hide_Screen, games/games.i

1.35 games.library/Delete_Screen

games.library/Del
NAME Delete_Scre

SYNOPSIS

ete_Screen

en —-- Deactivates a screen, returns memory, etc.

Delete_Screen (GameScreen)

a0

void Delete_Screen (struct GameScreen x);

FUNCTION

This function

initialised whe

If the screen

will deallocate/deactivate everything that was
n you called Add_Screen().

you delete is currently active when you call this

Default 26/ 51

function, intution will be given back the display. If you want to
get around this initialise and display your next screen and then
delete the old one.

This function will clear SS_MemPtrl, SS_MemPtr2 and SS_MemPtr3 in
the GameScreen structure.

INPUTS GameScreen — Pointer to an initialised GameScreen structure.

SEE ALSO
Add_Screen, Hide_Screen, Show_Screen

1.36 games.library/Show_Screen

games.library/Show_Screen

NAME Show_Screen -- Displays an initialised game screen.
SYNOPSIS
Show_Screen (GameScreen)
a0

void Show_Screen (struct GameScreen =)

FUNCTION
Displays an initialised GameScreen. A GameScreen is incompatible
with intuition screens so all system screens will be disabled as a

result.

This function makes a call to Add_InputHandler () to prevent input
falling through to intuition screens.

It 1s perfectly admissable to call this function when another
GameScreen is already being displayed.

INPUTS GameScreen — Pointer to an initialised GameScreen structure.

SEE ALSO
Hide_Screen, Add_Screen, Delete_Screen.

1.37 games.library/Hide_Screen

games.library/Hide_Screen
NAME Hide_Screen -- Hides any displayed GameScreen from view.

SYNOPSIS
Hide_Screen()

void Hide_Screen (void)

FUNCTION

Default

27 /51

Hides a displayed screen from view. This will cause the 0S
viewport to Dbe returned, but your game will still be running "in
the background".

On 1its own this 1s not a good multi-tasking function - use the
special screen switching functions for that.

NOTE It i1s not necessary to pass a GameScreen to this function, it will
return the system screens’ regardless of what is being displayed.

This makes the function quite useful for external debuggers.

SEE ALSO
Show_Screen, Add_Screen, Delete_Screen.

1.38 games.library/SwapBuffers

games.library/SwapBuffers

NAME SwapBuffers —-- Switch the screen display buffers.
SYNOPSIS
SwapBuffers (GameScreen)
a0

void SwapBuffers (struct GameScreen x)

FUNCTION
Swaps SS_MemPtrl and SS_MemPtr2 and activates the new bitmap for
the display. If triple Dbuffered, then all three MemPtr’s are

switched. Visually:

BEFORE AFTER

MemPtrl MemPtr2
MemPtr2 —--——--> MemPtr3
MemPtr3 MemPtrl

You can get the addresses contained in these values, but you must
never change these pointers once you have called Add_Screen().

INPUTS GameScreen — Ptr to an initialised GameScreen structure.

1.39 games.library/Remake_Screen

games.library/Remake_Screen

NAME Remake_Screen —-- Remakes the screen display according to its size,
width, and position on the monitor.

SYNOPSIS
Remake_Screen (GameScreen)
a0

Default

28 /51

FUNCTI

ON

Remakes the GameScreen’s display window as quickly as possible.
Extreme or invalid wvalues are not checked for, so it is your
responsibility to ensure all values are within their limits.

If
time

You
colo

INPUTS

SEE AL
Move

1.40

games.
NAME

SYNOPS
HWSc

void

FUNCTI
This
dire
actu
exam

If t
rout
This

If
just

the GameScreen is hidden then the changes will show up the next
you call Show_Screen() .

cannot change the display mode, screen type or amount of screen

urs with this function.

GameScreen — Ptr to an initialised GameScreen structure.
S0
_Screen

games.library/HWScroll_Horizontal

library/ScrollScr_Horizontal

HWScroll_ Horizontal —-- Scrolls the screen left and right.
Is
roll_Horizontal (GameScreen, XShift)
ao do

HWScroll_Horizontal (struct GameScreen =%, UWORD XShift);
ON

is the &routine for hardware scrolling 1in the left/right
ction. You MUST have a knowledge of what hardware scrolling
ally does before attempting to use this routine. See some

ples to get a kickstart in this direction.

he graphics hardware does not support hardware scrolling, this
ine will Dblit the entire screen in the required direction.
is very slow but is the only other option.

you have opened a picture larger than the screen display and
want to scroll around inside of that, vyou can use this

function for that purpose.

INPUTS
XShi

BUGS

GameScreen — Ptr to an initialised GameScreen structure.
ft - The amount of pixels to move on the X axis.
If you move the screen more than 50 screens in either the left or

right direction, you will start overwriting something else’s

memo

ry. If vyour levels are 100 screens wide though, I seriously

think vyou should 1look at what your idea of "gameplay" is, though

i)

1.41

games.library/HWScroll_Vertical

Default 29/ 51

games.library/HWScroll_Vertical
NAME HWScroll_Vertical - Scrolls the screen up and down.
SYNOPSTIS
HWScroll_Vertical (GameScreen, YShift)
a0 do
void HWScroll_Vertical (struct GameScreen %, UWORD YShift);
FUNCTION
Scrolls the screen vertically Jjust by altering the required
hardware bits.
If the graphics hardware does not support hardware scrolling, this
routine will instead blit the entire screen 1in the required

direction. This is very slow but is the only other option.

NOTE Unlike horizontal scrolling, there is no scroll limit for this
function.

INPUTS GameScreen — Ptr to an initialised GameScreen structure.
YShift - Amount of pixels to shift. -Ve shifts up, +Ve shifts down.

1.42 games.library/B12_FadeToBlack

games.library/ B12_FadeToBlack

NAME Bl2_FadeToBlack —- Fade all colours to black.
SYNOPSIS
FadeState = B1l2_FadeToBlack (GameScreen)
do a0

UWORD Bl2_FadeToBlack (struct GameScreen =)

FUNCTION
Fades all the colours in the specified screen to black. Once you
call this function, you have to keep on calling it until it gives
you a result of NULL. This allows you to put this function in a
loop and do other things while the fade is active.
For a 24 bit palette use B24_FadeToBlack() .

INPUTS GameScreen - An initialised GameScreen structure.

RESULT FadeState - Returns NULL if fade has finished.

SEE ALSO
B24 FadeToBlack.

Default

30/ 51

1.43 games.library/B12_FadeToWhite

games.library/ Bl12_FadeToWhite

NAME Bl2_FadeToWhite —- Fade (flash) all colours to white.
SYNOPSIS
FadeState = Bl2_FadeToBlack (GameScreen, StartCol, AmtCols)
do a0 do dl

UWORD Bl2_FadeToWhite (struct GameScreen *, UWORD StartCol,
UWORD AmtCols) ;

FUNCTION
Fades the colours in the specified screen to white. Once you call
this function, you have to keep on calling it until it gives you a
result of NULL. This allows you to put this function in a loop and
do other things while the fade is active.

For a 24 bit palette use B24_FadeToWhite() .

EXAMPLE
In assembler, of course :-)

Fade: CALL Wait_OSVBL
lea GameScreen (pc),al
moveq #00,d0
moveq #32,d1
CALL Bl2_FadeToWhite
tst.w do
bne.s Fade

INPUTS GameScreen — Ptr to an initialised GameScreen structure.
StartCol - The colour to start the fade from.
AmtCols - The amount of colours to fade from StartCol.

RESULT FadeState - Returns NULL if the fade has finished.

SEE ALSO
B24_FadeToWhite

1.44 games.library/B12_FadeToPalette

games.library/ Bl2_FadeToPalette

NAME {ub} Bl2_FadeToPalette —-- Fade the current palette to another palette.

SYNOPSIS

FadeState = Bl2_FadeToPalette (GameScreen, Palette, StartCol, AmtCols)

do a0 al do dl

UWORD Bl2_FadeToPalette (struct GameScreen x, APTR Palette,
UWORD StartCol, UWORD AmtCols);

Default

31/51

FUNCTION
This 1s what some may call a "palette morph" function. It will
take the given screen’s internal palette and fade it to the one
given 1in Palette(al). This function is quite useful for fading in

from black screens.

INPUTS GameScreen — Ptr to an initialised GameScreen structure.
Palette - Ptr to a valid palette (colour array).

RESULT FadeState - Returns NULL if the fade has finished.

SEE ALSO
B24_FadeToPalette

1.45 games.library/B12_FadeToColour

games.library/ B12_FadeToColour

NAME Bl2_FadeToColour —-- Fade all the colours in a screen to a single

colour value.

SYNOPSIS
FadeState = B1l2_FadeToColour (GameScreen, RGB)
do ao do

UWORD B24_FadeToColour (struct GameScreen #*, ULONG RRGGBB) ;

FUNCTION
Fades the colours in the given screen to a single colour type.
Once vyou call this function, you have to keep on calling it until
it gives vyou a result of NULL. This allows you to put this

function in a loop and do other things while the fade is active.

INPUTS GameScreen - Ptr to an initialised GameScreen structure.
RGB - The colour to fade to, in Red-Green-Blue format.

RESULT FadeSate — Returns NULL if the fade has finished.

SEE ALSO
B24 FadeToColour

1.46 games.library/24BIT_FadeToBlack

games.library/ 24BIT_FadeToBlack

NAME B24_FadeToBlack —-— Fade all the colours in a screen to black.
SYNOPSIS
FadeState = B24_FadeToBlack (GameScreen, Speed)
do a0 do

UWORD B24_FadeToBlack (struct GameScreen *, UWORD Speed)

Default

32/51

FUNCTION
Fades all the colours in the
call this function, you have
you a result of NULL. This
loop and do other things while

specified screen to black. Once you
to keep on calling it until it gives
allows you to put this function in a
the fade is active.

INPUTS GameScreen — Ptr to an initialised GameScreen structure.

Speed - Determines the rate

at which the fade will execute. The

higher the value, the less you will need to call this routine.

RESULT FadeSate — Returns NULL if the fade has finished.

SEE ALSO
B12_FadeToBlack

1.47 games.library/24BIT_FadeToWhite

games.library/ B24_FadeToWhite

NAME B24_FadeToWhite -- Fade all the colours in a screen to white.

SYNOPSIS

FadeState = B24_FadeToWhite (GameScreen)

do

a0

UWORD B24_FadeToWhite (struct GameScreen x)

FUNCTION
NOT IMPLEMENTED YET.

INPUTS GameScreen — Ptr to an initialised GameScreen structure.

RESULT FadeSate — Returns NULL if the fade has finished.

SEE ALSO
Bl2_FadeToWhite

1.48 games.library/B24_FadeToPalette

games.library/ B24_FadeToPalette

NAME B24_FadeToPalette —-—- Fade a screen palette to a new set of values.

SYNOPSIS

FadeState = B24_FadeToPalette (GameScreen, Palette)

do
UWORD B24_FadeToPalette (struct

FUNCTION
This 1s what some may call

a0 al

GameScreen x, APTR Palette)

a "palette morph" function. It will

Default 33/ 51

take the given screen’s internal palette and fade it to the one
given 1in Palette(al). This function is quite useful for fading in
from black screens.
INPUTS GameScreen — Ptr to an initialised GameScreen structure.
Palette - Ptr to a 24 bit palette with the same amount of colours
as are in the screen.

RESULT FadeSate - Returns NULL if the fade has finished.

SEE ALSO
Bl2_ FadeToPalette

1.49 games.library/B24_FadeToColour

games.library/ B24_FadeToColour

NAME B24_FadeToColour —-- Fade a screen palette to a specific colour.
SYNOPSIS
FadeState = B24_FadeToColour (GameScreen, Colour)
do a0 do

UWORD B24_FadeToColour (struct GameScreen *, Colour)
FUNCTION
NOT IMPLEMENTED YET.

INPUTS GameScreen — Ptr to an initialised GameScreen structure.
Colour — A 24Bit colour, ie $SOORRGGBB format.

RESULT FadeSate - Returns NULL if the fade has finished.

SEE ALSO
Bl2_FadeToColour

1.50 games.library/Change_Colours

games.library/Change_Colours

NAME Change_Colours —-- Change a set of colours in a GameScreen’s internal
palette.
SYNOPSIS
Change_Colours (GameScreen, Colours, StartColour, AmtColours)
a0 al do dl

void Change_Colours (struct GameScreen *, APTR Colours,
ULONG StartColour, ULONG AmtColours) .

FUNCTION

Default 34 /51

Changes all colours within the set range. No alterations will be
made to your external palette (SS_Palette) by this function, all
changes are internal.

It 1is important to only use 12 bit or 24 bit colours as indicated
in your GameScreen structure.

INPUTS GameScreen — Ptr to an initialised GameScreen structure.

Colours - Ptr to a list of colours, either 12 bit or 24 depending
on screen type.

StartColour - The first colour to be affected by the change. NB:
The first colour is defined as 0.

AmtColours - The amount of colours to be affected by the change.
Must be at least 1.

1.51 games.library/Blank_Colours

games.library/Blank_Colours

NAME Blank_Colours —-- Drives all screen colours to zero (black).
SYNOPSIS
Blank_Colours (GameScreen)
a0

void Blank_Colours (struct GameScreen x)
FUNCTION
Drives all the colours to zero, which should give a black screen.

You won’t be able to see any pixels after calling this routine.

INPUTS GameScreen — Ptr to an initialised GameScreen structure.

1.52 games.library/Init_RasterList

games.library/Init_RasterList

NAME 1Init_RasterlList —-- Initialise a new rasterlist.
SYNOPSIS
ErrorCode = Init_RasterList (GameScreen)
do a0

UWORD Init_RasterlList (struct GameScreen =)

FUNCTION
Initialises a new rasterlist in a GameScreen structure. You have
to make sure that SS_RasterList points to a valid rasterlist before
calling this function.

Default 35/ 51

A rasterlist 1is a group of commands executed at specific areas of
the display. On current Amiga’s, rasterlists are executed by the
copper (copperlist’s) at preset lines on the screen. When you call
this function a copperlist will be set up according to the commands
you give 1in vyour rasterlist structure. In the past creating
copperlists was a major compatibility concern because you need to
pass the copper direct hardware addresses. Thankfully with the
Games.Library this is no longer such a problem.

There 1s still the issue of gfx boards not having a copper style
chip on them. Luckily all these commands can in some way be
emulated, so all is not lost on that front. All instructions work
perfectly on OCS, ECS and AGA of course.

Current valid commands are:

WAITLINE <Line>
Waits for the vertical beam to reach the specified screen position.
It 1is perfectly 1legal to enter numbers that go outside of your
screens Y limits (ie negative numbers and numbers greater than the
screen height) .

The <Line> parameter is the vertical position on the screen where
the command will be executed. This is always specified in lo-res
pixels, even if the screen is in hi-res. Although line 0 starts at
the top of your screen, negative numbers are still allowed, as are
numbers that exceed the screen height.

COL12 <ColNum>, <RGB>
Changes a 12 bit colour value to another. Stick within the range

COL24 <ColNum>, <RRGGBB>

Same as the COL12 command, but uses 24 bit colours. Do not use
this command unless you have set the _24BITCOL flag in
SS_ScrAttrib.

COL12LIST <Line>, <Skip>, <ColNum>, <RGB>

Allows you to generate the classic coloured lines used by games and
demos everywhere. This command is mostly useful for sky/background
effects, although vyou could probably wuse it for all sorts of
things.

COL24LIST <Line>,<Skip>, <ColNum>, <RRGGBB>
Allows you to generate the classic coloured lines used by games and

demos everywhere. This command is mostly useful for sky/background
effects, although vyou could probably wuse it for all sorts of
things. Do not use this command unless you have set the _24BITCOL

flag in SS_ScrAttrib.

SPRITE <SpriteStruct>
Re—activates a sprite bank at the specified line. This is commonly
known as sprite-splitting. This function is considered "dangerous"
and will not work on many gfx boards (although emulation is a
certain possibility).

REPOINT <Bitmap>

Default

36 /51

Repoints the screen bitmap to another area in chip ram, causing a
screen split at the point that this command is executed.

SCROLL <Offset>
Alters the scroll position of a bitplane to within 16 pixels. This
is really only useful for scrolling parallax landscapes.

FSCROLL <Offsetl>,<Offset2>

Alters the scroll position of a bitplane to within 16 + 4 quarter
pixels. This 1is really only wuseful for scrolling parallax
landscapes.

FLOOD

A special effect that reverses the bitplane modulo, causing the
bitplane to repeat itself. This effect is used as a novel way of
"fading in" the screen.

MIRROR
Similar to Flood, but does a complete reversal of the modulo so
that the Dbitplane is "flipped over". See examples/AGAMirror.s to

see how this works.

RASTEND
You must terminate your rasterlist with this command.

[If you have any other ideas for commands, mail me. - Paul]
INPUTS
GameScreen — Ptr to an initialised GameScreen structure.

SS_RasterList in this structure must contain a ptr to a standard
rasterlist.

Look at the examples 1in this package to help you with designing
your rasterlists.

RESULT ErrorCode - Is NULL if the initialisation was successful. Otherwise
it will return one of the following values:

ERR_NOMEM = No memory could be allocated for
ERR_NOPTR = You didn’t put a ptr in SS_RasterList.

ERR_INUSE = A rasterlist is still in use by this screen (remove
the old one).

SEE ALSO

Update_RasterList, Show_RasterList, Hide_RasterList, Remove_RasterlList,
games/games. i

1.53 games.library/Update_RasterList

games.library/Update_RasterList

NAME Update_RasterList —-- Update an existing rasterlist.

Default 37 /51

SYNOPSIS
Update_RasterList (GameScreen)
a0

void Update_RasterList (struct GameScreen x)

FUNCTION
Completely update a raster 1list’s commands and line pointers to
whatever values they may hold. The length of time to do this

depends on how big your rasterlist is (generally, it will do the
update very fast though).

If only want to update the lines or the command datas, then you can
call Update_RastCommands or UpdateRastLines, which is a bit faster.

INPUTS GameScreen — Ptr to an initialised GameScreen structure.
SEE ALSO

Init_RasterList, Show_RasterlList, Hide_RasterList, Remove_RasterlList,
Update_RastCommands, Update_RastLines, games/games.i

1.54 games.library/Remove_RasterList

games.library/Remove_RasterList
NAME Remove_RasterList —-—- Hide and delete RasterList from memory.
SYNOPSIS

Remove_RasterList (GameScreen)

a0

void Remove_RasterList (struct GameScreen x)
FUNCTION

Remove a rasterlist’s copper set up from memory. It will not

affect RasterList data, but will clear the SS_RasterList pointer.

Once this function is called the rasterlist is gone - if you want
to redisplay your rasterlist, reinitialise it with Init_RasterList.

Remember that 1if vyou want to re-initialise the same rasterlist
later on you will have to repoint SS_RasterList.

INPUTS GameScreen — Ptr to an initialised GameScreen structure.
SEE ALSO

Init_RasterList, Show_RasterlList, Hide_RasterlList, Remove_RasterlList,
games/games. i

1.55 games.library/Hide_RasterList

Default 38/ 51

games.library/Hide_RasterList

NAME Hide_RasterList —-—- Hide a rasterlist from the display.
SYNOPSIS
Hide_RasterlList (GameScreen)
a0

void Hide_RasterList (struct GameScreen =)

FUNCTION
Hides a rasterlist from the screen display. This function does not
delete an initialised raster or change the GameScreen structure in
any way. You can return the list to the display simply by calling
Show_RasterList ().

NOTE There 1is a VBL delay to prevent the rasterlist from being removed
when the beam is still executing its instructions.

INPUTS GameScreen — Ptr to an initialised GameScreen structure.
SEE ALSO

Init_RasterList, Remove_RasterList, Show_RasterList, Hide_RasterlList,
Update_RasterList

1.56 games.library/Show_RasterList

games.library/Show_RasterList

NAME Show_RasterList —-- Display a rasterlist on screen.
SYNOPSIS
Show_RasterList (GameScreen)
a0

void Show_RasterList (struct GameScreen =)

FUNCTION
Display a rasterlist on the screen. The ptr to the rasterlist must
lie in SS_RasterList and Dbe initialised, either from a previous
call to Add_Screen() or Update_RasterList()??

INPUTS GameScreen — Ptr to an initialised GameScreen structure.
SEE ALSO

Init_RasterList, Hide_RasterList, Show_RasterList, Remove_RasterlList,
Update_RasterList

1.57 games.library/Init_Sprite

games.library/Init_Sprite

Default 39/ 51

NAME Init_Sprite —-- Initialise a sprite structure.
SYNOPSIS
Init_Sprite (GameScreen, SpriteStruct)
al

void Init_Sprite(struct GameScreen =*,struct SpriteStruct =)

FUNCTION
Initialises a sprite ready for placement on the screen. After
calling this function you can use sprite functions such as
Update_Sprite, Move_Sprite etc.

NOTE Colour Dbank selections are not permitted under ECS/OCS chipsets,
so please use the default start colour of 16 if you can.

Under AGA 1f any 16 colour sprites exist then all sprites use the
same colour bank.

INPUTS GameScreen - Ptr to an initialised GameScreen structure.
SpriteStruct - Looks like this:

STRUCTURE SpriteStruct, 0

UWORD SPR_Number ;Sprite number.
APTR SPR_Address ;jPointer to Sprite graphic.
WORD SPR_XPos ;X position (screen relative).
WORD SPR_YPos ;Y position (screen relative).
UWORD SPR_Frame ;Current frame number.
UWORD SPR_Width ;Width in pixels.
UWORD SPR_Height jHeight in pixels.
UWORD SPR_AmtColours ;4/16
UWORD SPR_ColStart ;000/016/032/064/096/128/160/192/224
UWORD SPR_Planes ;2/4
UWORD SPR_Resolution ;HIRES/LORES/SHIRES/XLONG
ULONG SPR_SpriteSize ;Reserved.
ULONG SPR_FrameSize ; Reserved.

SEE ALSO

Move_Sprite, Update_Sprite, Update_Spritelist, Remove_Spritelist,
games/games. i

1.58 games.library/Update_Sprite

games.library/Update_Sprite
NAME Update_Sprite -- Place a sprite on the screen.

SYNOPSIS
Update_Sprite (GameScreen, SpriteStruct)

void Update_Sprite(struct GameScreen x, struct SpriteStruct «)

FUNCTION
Updates the sprite co-ordinates (screen location) and recalculates

Default 40/ 51

the sprite image pointers for animation.

INPUTS GameScreen — Ptr to an initialised GameScreen structure.
SpriteStruct - Ptr to an initialised SpriteStruct.

SEE ALSO
Init_Sprite, Move_Sprite

1.59 games.library/Move_Sprite

games.library/Move_Sprite

NAME Move_Sprite —-- Move a sprite to a new screen location.
SYNOPSIS
Move_Sprite (GameScreen, SpriteStruct)
a0 al

void Move_Sprite(struct GameScreen %, struct SpriteStruct x)

FUNCTION
Moves a sprite to a new screen location according to the X and Y
co-ordinates found in the SpriteSruct. This function does not act

on any other SpriteStruct values and is intended for non-animated
sprites.

NOTES On graphics hardware where sprites are not supported, the sprite
may be drawn to screen as a BOB.

There 1is no Move_Spritelist available as static sprites are a
rarity in games.

INPUTS GameScreen - Ptr to an initialised GameScreen structure.
SpriteStruct - Ptr to an initialised SpriteStruct.

SEE ALSO
Init_Sprite, Update_Sprite

1.60 games.library/Remove_Sprite

games.library/Remove_Sprite

NAME Remove_Sprite —-—- Remove a sprite from the screen display.
SYNOPSIS
Remove_Sprite (GameScreen, SpriteStruct)
a0 al

void Remove_Sprite (struct GameScreen %, struct SpriteStruct)

FUNCTION
Removes a sprite from the screen display.

Default 41 /51

INPUTS GameScreen — Ptr to an initialised GameScreen structure.
SpriteStruct - Ptr to an initialised SpriteStruct.

SEE ALSO
Remove_Spritelist

1.61 games.library/Update_SpriteList

games.library/Update_SpriteList

NAME Update_Spritelist —— Update a list of initialised sprites.
SYNOPSIS
Update_SpritelList (GameScreen, Spritelist)
al al

void Update_Spritelist (struct GameScreen x, APTR Spritelist «)

FUNCTION
Update a series of initialised sprites according to a Spritelist.
This function 1is provided as an alternative to making constant
calls to Update_Sprite(), which can be quite time consuming.

INPUTS GameScreen - Ptr to an initialised GameScreen structure.
SpriteStruct - Ptr to a Spritelist containing a list of up to 8
initialised sprites. The list must be terminated by a -1, eg:
SpritelList:

dc.1l SpriteStructl
dc.1l SpriteStruct2
dc.1l SpriteStruct3
dc.1l SpriteStruct4
dc.1l -1

SEE ALSO

Update_Sprite

1.62 games.library/Remove_SpriteList

games.library/Remove_SpritelList

NAME Remove_SpritelList —-- Remove sprites as specified by a Spritelist.
SYNOPSIS
Remove_Spritelist (GameScreen, Spritelist)
a0 al

void Remove_SpritelList (struct GameScreen x, APTR Spritelist «x)

FUNCTION
Remove a series of currently displayed sprites from the screen.

Default

42 /51

This function 1is provided as an alternative to making constant
calls to Remove_Sprite (), which can be quite time consuming.

INPUTS GameScreen - Ptr to an initialised GameScreen structure.
SpriteStruct - Ptr to a Spritelist containing a list of up to 8

initialised sprites. The list must be terminated by a -1, eg:
SpritelList:
dc.1l SpriteStructl
dc.1l SpriteStruct2
dc.1l SpriteStruct3
dc.1l SpriteStruct4
dc.1 -1
SEE ALSO

Remove_Sprite

1.63 games.library/Remove_AllSprites

games.library/Remove_AllSprites
NAME Remove_AllSprites —— Remove all sprites from the display.
SYNOPSIS

Remove_AllSprites (GameScreen)

a0

volid Remove_AllSprites (struct GameScreen x)

FUNCTION
Temoves all displayed sprites from the screen simply by altering
the DMACONtroller. This is the fastest way to remove all sprites

from the display quickly and easily.

NOTE After vyou have called this function you cannot see any visible
changes to sprites until you call Return_AllSprites().

INPUTS GameScreen — Ptr to an initialised GameScreen structure.

SEE ALSO
Return_AllSprites

1.64 games.library/Return_AlISprites

games.library/Return_AllSprites
NAME Return_AllSprites —-—- Return all sprites to the display.
SYNOPSIS

Return_AllSprites (GameScreen)
a0

Default

43 /51

vold Return_AllSprites (struct GameScreen x)
FUNCTION

Returns all sprites that were previously removed by Remove_All
Sprites() .

INPUTS GameScreen — Ptr to an initialised GameScreen structure.

SEE ALSO
Remove_AllSprites

1.65 games.library/Init_BOB

games.library/Init_BOB
NAME 1Init_BOB -- Initialise a BOB structure.
SYNOPSIS
Init_BOB (GameScreen, BOBStruct)
a0 al

void Init_BOB(struct GameScreen *, APTR BOBStruct)

FUNCTION
!DO NOT USE ANY BLITTER FUNCTIONS YET!

INPUTS GameScreen — Ptr to an initialised GameScreen structure.
BOBStruct - Ptr to a BOB structure.

SEE ALSO
Init_BOBList

1.66 games.library/Init_BOBList

games.library/Init_BOBList
NAME Init_BOBList -- Initialise a list of BOB structures.
SYNOPSIS
Init_BOBList (GameScreen, BOBList)
a0 al

void Init_BOBList (struct GameScreen *, APTR BOBList)

FUNCTION
!DO NOT USE ANY BLITTER FUNCTIONS YET!

INPUTS GameScreen — Ptr to an initialised GameScreen structure.

BOBList - Ptr to a BOBList, looks like this. The list must be terminated by a

-1, eg:

<_)

Default 44 / 51
BOBList:
dc.1 BOBStructl
dc.1 BOBStruct2
dc.1l BOBStruct3
dec.1 BOBStruct4
dc.1 -1
SEE ALSO
Init_ BOB

1.67 games.library/Blit_BOB

games.library/Blit_BOB

NAME Blit_BOB —-- Blit a BOB to a GameScreen display.
SYNOPSIS
Blit_BOB (GameScreen, BOBStruct)
a0 al

void Blit_BOB(struct GameScreen =*, struct BOBStruct)

FUNCTION
!DO NOT USE ANY BLITTER FUNCTIONS YET!

INPUTS GameScreen — Ptr to an initialised GameScreen structure.
BOBStruct - Ptr to an initialised BOB structure.

SEE ALSO
Init_BOB, Init_BOBList, Blit_BOBList

1.68 games.library/Blit_BOBList

games.library/Blit_BOBList

NAME Blit_BOBList —-- Blit to a GameScreen from a list of BOB structures.

SYNOPSIS
Blit_BOBList (GameScreen, BOBList)
a0 al
void Blit_BOBList (struct GameScreen *, APTR BOBList)
FUNCTION
!'DO NOT USE ANY BLITTER FUNCTIONS YET!
INPUTS GameScreen - Ptr to an initialised GameScreen structure.

BOBList - Ptr to a BOBList containing a list of ptrs to BOBStructs.
The list must be terminated by a -1, eg:

Default

45/ 51

BOBList:
dc.
dc.
dc.
dc.
dc.

1

el

SEE ALSO

Init_BOB,

1.69 games.library/

BOBStructl
BOBStruct?2
BOBStruct3
BOBStruct4
-1

Init_BOBList,

games.library/

NAME

SYNOPSIS

FUNCTION

INPUTS

SEE ALSO

1.70 games.library/

games.library/

NAME

SYNOPSIS

FUNCTION

INPUTS

SEE ALSO

1.71

games.library/

games.library/

NAME

SYNOPSIS

FUNCTION

INPUTS

Default

46 /51

SEE ALSO

1.72 games.library/

games.library/
NAME

SYNOPSIS
FUNCTION
INPUTS

RESULT

SEE ALSO

1.73 games.library/

games.library/
NAME

SYNOPSIS
FUNCTION
INPUTS

RESULT

SEE ALSO

1.74 games.library/AllocAudio

games.library/AllocAudio

NAME AllocAudio —-- Attempt to allocate the audio channels.

SYNOPSIS

ErrorCode = AllocAudio ()

do

UWORD AllocAudio (void)

FUNCTION

Attempts to allocate all the audio channels for your own use.
the function cannot
errorcode of ERR_INUSE.

channels, will return with an

If the call is successful

Default 47/ 51

can safely use all the sound functions within the games.library.

This function should be called at the start of your program, and if
successful you must call FreeAudio () before your program exits.

RESULT ErrorCode - NULL if successful or ERR_INUSE if unsuccessful.

SEE ALSO
FreeAudio

1.75 games.library/FreeAudio

games.library/FreeAudio
NAME FreeAudio —-- Free the audio channels for system use.

SYNOPSIS
FreeAudio ()

void FreeAudio (void)

FUNCTION
Frees the audio channels so that the system can use them again.
You cannot make use of any of the audio channels after calling this

function.

SEE ALSO
AllocAudio

1.76 games.library/InitSound

games.library/InitSound

NAME InitSound —-- Initialise a sound structure that is not of type RAW.
SYNOPSIS
ErrorCode = InitSound (SoundStruct)
do

UWORD InitSound (APTR SoundStruct)

FUNCTION
This function is mostly here for convenience. It is not necessary
to call this function for every sound that you wish to use. But,
if you are loading IFF sounds from disk it is quite wise to use
this function. This would enable the user to change sounds as he
sees fit without affecting your program.

Once called this function will fill in the following fields in the
SoundStruct, BUT only if they have no values in them (ie they equal
zero) .

Default 48 / 51

SAM Length
SAM_Period
SAM_Volume
If vyou don’t want some or all of these fields written too, simply
fill them 1in before-hand. Similarly you should ensure that the

fields that do need to be filled out, are initialised to zero.

NOTE If the sound is in RAW format, then this function will have no
effect (ie you have to set up all the fields yourself).

INPUTS SoundStruct - Ptr to a valid sound structure.

SEE ALSO
InitSoundList

1.77 games.library/CheckChannel

games.library/CheckChannel

NAME CheckChannel —-- Checks the current activity of a sound channel.
SYNOPSIS
Status = CheckChannel (Channel)
do do.w

UWORD CheckChannel (UWORD Channel)

FUNCTION
Checks the specified channel to see if it has any data playing
through it. If it does, then the function will return a value of
NULL.

INPUTS Channel - Either 1, 2, 3 or 4.
RESULT Status - The current status of the channel, a result of NULL

indicates that the channel is free. Any other result indicates
that the channel is busy.

1.78 games.library/PlaySound

games.library/PlaySound
NAME PlaySound -- Play a sound through an audio channel.
SYNOPSIS
PlaySound (SoundStruct)
al

void PlaySound (APTR SoundStruct)

FUNCTION

Default

49 /51

Plays a sound according to the settings in the sound structure.
This function executes immediately, and ignores all channel/sound

priorities.
INPUTS SoundStruct - Ptr to a valid sound structure.

SEE ALSO
PlaySoundDACx, PlaySoundPri, PlaySoundPriDACx

1.79 games.library/PlaySoundDACx

games.library/PlaySoundDACx

NAME PlaySoundDACx —-- Play a sound ignoring the setting in SAM_ Channel.

SYNOPSIS
PlaySoundDACx (SoundStruct)
a0

void PlaySoundDACx (APTR SoundStruct)

Where ’'x’ is either 1, 2, 3 or 4, which is a direct reference to

the channel number.

FUNCTION

DAC stands for Direct Access to Channel. This is the fastest way
to play a sound as it goes directly to that channel’s sound
routine, but it 1s not very -easy to work with. This function
exists for intelligently changing from full channel access for

sound effects, to one channel access while music is playing.

When setting up your sounds you should make sure that you
four channels in vyour structures. If the music is off,
normal PlaySoundPri () function. If the music is on, and if
all but one of the channels, use this function to re-route
sound effects through the spare channel.

NOTE This function ignores sound priorities, and will play the sound

regardless of wether the channel is busy or not.
INPUTS SoundStruct - Ptr to a valid sound structure.

SEE ALSO
PlaySound, PlaySoundPri, PlaySoundPriDACx, games/games.i

1.80 games.library/PlaySoundPriDACXx

games.library/PlaySoundPriDACx

NAME PlaySoundPriDACx —-- Play a sound ignoring the setting in SAM_Channel.

SYNOPSIS

use all
use the
it uses
all the

Default 50/ 51

PlaySoundPriDACx (SoundStruct)
ao

void PlaySoundPriDACx (APTR SoundStruct)

Where ’'x’ is either 1, 2, 3 or 4, which is a direct reference to
the channel number.

FUNCTION
DAC stands for Direct Access to Channel. This is the fastest way
to play a prioritised sound as it goes directly to that channel’s
sound routine, but it is not very easy to work with. This function

exists for intelligently changing from full channel access for
sound effects, to one channel access while music is playing.

When setting up your sounds you should make sure that you use all
four channels 1in vyour structures. If the music is off, use the
normal PlaySoundPri () function. If the music is on, and if it uses
all but one of the channels, use this function to re-route all the
sound effects through the spare channel.

INPUTS SoundStruct - Ptr to a valid sound structure.

SEE ALSO
PlaySoundDACx, PlaySound, PlaySoundPri, games/games.i

1.81 games.library/PlaySoundPri

games.library/PlaySoundPri

NAME PlaySoundPri -- Play a sound if it can equal or better a channel’s
priority.

SYNOPSIS
PlaySoundPri (SoundStruct)
a0

void PlaySoundPri (struct SoundStruct x)

FUNCTION
Plays a sound according to the settings in the sound structure, IF
it equals or betters the channel’s current priority setting.
Prioritisation of sounds allows you to play sound effects according
to their importance. Make sure that you take care in ordering your
sounds so that they play effectively!

INPUTS SoundStruct - Ptr to a valid sound structure.

SEE ALSO
PlaySound, PlaySoundPriDACx, PlaySoundDACx, games/games.i

Default

51/51

1.82 games.library/

games.library/
NAME

SYNOPSIS
FUNCTION
INPUTS

RESULT

SEE ALSO

	Default
	games.library
	games.library/Init_GPI
	games.library/Remove_GPI
	games.library/Read_Mouse
	games.library/Read_JoyPort
	games.library/Read_JoyStick
	games.library/Read_Analog
	games.library/Read_JoyPad
	games.library/Read_SegaPad
	games.library/Read_Key
	games.library/FastRandom
	games.library/SlowRandom
	games.library/Wait_LMB
	games.library/Wait_Fire
	games.library/Wait_Time
	games.library/Wait_VBL
	games.library/Wait_OSVBL
	games.library/Wait_RastLine
	games.library/NoRequesters
	games.library/SetFilter
	games.library/Add_InputHandler
	games.library/Rem_InputHandler
	games.library/Add_Interrupt
	games.library/Rem_Interrupt
	games.library/SmartLoad
	games.library/QuickLoad
	games.library/SmartUnpack
	games.library/SetUserPri
	games.library/SetGMSPrefs
	games.library/GetPicInfo
	games.library/SetPassword
	games.library/AllocMemBlock
	games.library/FreeMemBlock
	games.library/Add_Screen
	games.library/Delete_Screen
	games.library/Show_Screen
	games.library/Hide_Screen
	games.library/SwapBuffers
	games.library/Remake_Screen
	games.library/HWScroll_Horizontal
	games.library/HWScroll_Vertical
	games.library/B12_FadeToBlack
	games.library/B12_FadeToWhite
	games.library/B12_FadeToPalette
	games.library/B12_FadeToColour
	games.library/24BIT_FadeToBlack
	games.library/24BIT_FadeToWhite
	games.library/B24_FadeToPalette
	games.library/B24_FadeToColour
	games.library/Change_Colours
	games.library/Blank_Colours
	games.library/Init_RasterList
	games.library/Update_RasterList
	games.library/Remove_RasterList
	games.library/Hide_RasterList
	games.library/Show_RasterList
	games.library/Init_Sprite
	games.library/Update_Sprite
	games.library/Move_Sprite
	games.library/Remove_Sprite
	games.library/Update_SpriteList
	games.library/Remove_SpriteList
	games.library/Remove_AllSprites
	games.library/Return_AllSprites
	games.library/Init_BOB
	games.library/Init_BOBList
	games.library/Blit_BOB
	games.library/Blit_BOBList
	games.library/
	games.library/
	games.library/
	games.library/
	games.library/
	games.library/AllocAudio
	games.library/FreeAudio
	games.library/InitSound
	games.library/CheckChannel
	games.library/PlaySound
	games.library/PlaySoundDACx
	games.library/PlaySoundPriDACx
	games.library/PlaySoundPri
	games.library/

