AssignList

Markus Adamski

AssignList

] COLLABORATORS
TITLE :
AssignList
ACTION NAME DATE SIGNATURE
WRITTEN BY Markus Adamski July 20, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

AssignList iii

Contents

1 AssignList 1
1.1 AssignList- Overview e e 1
1.2 About Assignliist e e e e e e e 1
1.3 Requirements ottt e e e 1
1.4 How toinstall AssignList ? L e e e e 2
1.5 Gettingstarted e e e e e e e e e e 2
1.6 Main window e e 3
1.7 Listof all definied assigns L e e e e 3
1.8 ASSIZNNAME o it s e e e e e e e e e e e e e e e e e 4
1.9 Assignpath 4
110 Assignmode e e 4
1.11 Execute adefinition L e e 5
1.12 Execute partial list L L e e 5
1.13 List of temporary assigns v v v v it e e e e e e e e e e e e e e e e e e 5
1.14 Execute all temporary assigns« o oottt e e e e e e e e e e e e 5
1.15 Execute marked temporary assign e e e e 6
1.16 Delete marked temporary assign e e e e e 6
1.17 Append temporary assigntomain list oL 6
1.18 Delete temporary assigns vt i i e e e e e e e e e e e e e e e e e 6
1.19 Add currentdefinition to list L e 6
1.20 Delete current definition oL e e e e e 6
121 Save list o o o 7
1.22 Saveandend e e 7
1.23 End programo e e e e e e e e e 7
1.24 Currentfile e 7
125 Themenu e e e e 7
1.26 Definition-file’s Structure L. e e e e 8
127 Todo... . . o o o e e e 8
1.28 AREXX SUPPOIT . . o o v v ot e 8
1.29 ARexx: AddItem L 8
130 Uber MUL o o e e e e e e 9

AssignList

Chapter 1

AssignList

1.1 AssignList - Overview

AssignList
Define assigns via GUI
Copyright © 1996 by Markus Adamski
- Freeware -
About AssignList
Requirements
How to install AssignList ?
Getting started
Main window
Menu
ARexx support

Definition—-file’s structure

History
To do...

About MUI

1.2 About AssignList

Use AssignlList to execute as many assigns as you want at
boot-time Dby one single call.

1.3 Requirements

AssignList

AssignList requires at least 0OS 2.04 or higher and MUI
version 3.1 or higher if the GUI should be used.

To call AssignlList at Dboot-time only dos.library version 37
or higher is required.

Any 680x0 cpu is supported.

1.4 How to install AssignList ?

Just double-click on that installer-icon in the drawer Install
in your preferred langnguage.

All files will be copied and your wuser-startup file
will be modified.

1.5 Getting started

There are two ways to start AssignList:
1. From Shell or within your user-startup file:

- Just type "AssignList" in your shell window or call it
from within your user-startup and AssignList will start.
Some arguments are supported:

* HELP or °?
Prints usage.

* <Filename>
The file <filename> will be loaded automatically.

* <Filename> USE
The file <filename> will be loaded, all contained
assign definitions
and afterwards AssignList terminates.
For this MUI is not required.
Also this is the standard configuration if you chose
to modify your user-startup file on installation

1. From workbench:
- Simply double-click on the AssignList-icon. You may put
AssignlList in the WBStartup-drawer as well.
Some tooltypes are supported:
* DONOTWAIT
If AssignList is installed in the WBStartup-drawer tell

the system not to wait for AssignlList to terminate.

* CX_POPKEY=<Keys>

AssignList 3/9

Defines a sequence of keys to pop up the main window
if AssignList was iconified.

* CX_POPUP=<YES |NO>
Open the main window or show an icon on
the workbench screen only.

* FILE=
Load file specified after "=" automatically.

* MAKEICONS=<YES|NO>
Create an icon automatically when saving a definition
file. A double-click on a created icon would start

AssignList and load the attached file.
(See also menu item "Create icon".)

1.6 Main window

The main window has the following structure:

\ Assign: Mode |
| to:
assign-modes |

If the pointer remains for a couple of seconds over one button a
short help text will pop up.

1.7 List of all definied assigns

Here you find all added definitions.

In the first column you find the assign- mode . Single entries may
be moved around the list and placed where ever you want. One click
on an entry makes it the current. A double-click will copy the entry
into the name , path und mode gadgets below the list.

AssignList

4/9

The second column contains the name associated to the path
in the third column.

1.8 Assign name

Type here the name associated to a path

The name is limited to 31 characters.

1.9 Assign path

Type here the path associated to a namen

The path is limited to 127 characters.

1.10 Assign mode

Define the type of assign to be used:

Locked =

Add =

Path =

Late =

Usual method. A path is attached to a name. An old
definition will be overwritten.

Addes a path to an already defined name. With this you
can read from different paths by using only one single
name. For example:

Assign Locked Test: RAM:

Assign Add Test: Work:

"Dir Test:" would print all files contained in the

drawers RAM: and Work: as 1if they where all in

one single drawer.
Though, a file would be saved in the drawer that was
assigned locked.

This is a not binding definition, though similar to
mode locked. A name will be attached to a path, but
with every use of that name, the path will be newly
identified. For example:
Assign Path FONTS: DFO:FONTS
"Dir FONTS:" will print all files in the fonts-
drawer of the disk currently in df0: but it will
not ask for the initially inserted disk, when the
assign was called.

Similar to mode locked, but the associated path will be
evaluated on first use.

AssignList

5/9

1.11 Execute a definition

A requester opens to choose one from these options:
1. Input:
The path will be attached to the name

regarding the assign- mode

2. All:
The whole list will be executed.

3. Part

4. Abort
Close requester without any further action.

1.12 Execute partial list

The execute window has following structure:

\
\
| List of temporary assigns Delete
\
\
\

Drag items from the list in the main window onto this list by mouse.
Proceed as follows:

Click on one item, hold down left mouse button and drag the item off
right or left the listview gadget’s boundaries. The item will then
not appear ghosted any more. Now release the left mouse button when
the pointer is over this listview gadget and the item will be added.

Proceed reverse to drag items from this onto the main window’s
listview gadget.

Attention: In this procedure no testing will be done to verify
wether an added name has already been definied or not.

1.13 List of temporary assigns

In opposite to the 1list of all definied assigns this list,
as you already assumed, 1s only temporary, so it can not be saved
directly.

1.14 Execute all temporary assigns

AssignList 6/9

All in the temporary list definied assigns will be executed one
after another.

Error handling will be done.

1.15 Execute marked temporary assign

Only the marked assign will be executed.

1.16 Delete marked temporary assign

The mark temporary assign will be removed from the list without
any further request.

(See also delete marked definition.)

1.17 Append temporary assign to main list

Appends the temporary list to the main list

1.18 Delete temporary assigns

The temporary list will be removed from memory and the execute
window will be closed.

1.19 Add current definition to list

The definitions of name , path and mode will be added
to the list. If the name is already definied, a warning will be
displayed.

In addition, this definition will also be added to the

temporary assign list automatically. No verifying will be
done, wether the name has already been definied or not.

1.20 Delete current definition

The marked definition will be removed from the list with
a warning.

AssignList

1.21 Save list

The list will be saved with the current filename . Is the current
filename empty, a file requester will pop up.

1.22 Save and end

The list will be saved with the current filename and the
program terminates.

1.23 End program

AssignList will terminate without saving the list. Though, if the
list has been modified a requester will pop up.

1.24 Current file

Shows the name, that will be used when the file is saved.

1.25 The menu

The menu-strip contains two items, that will provide you with almost
the same functions as the main window.

1. Project:

* New: The list will be deleted. If it has been modified,
a requester will pop up.

* Load: Loads a definition file. If the current list has
been modified, a requester will pop up.

* Insert: A definition file will be attached to the end of
the current list. If names where used twice,
a warning will be displayed.

* Save

* Save as: See Save except, that a file requester will pop up.

* About: A copyright information will be displayed.

* About Project: Informations about the current project
will be displayed.

* About MUI: An information about MUI will be displayed.

AssignList 8/9

* Quit
2. Options:

* Create icons: Determines wether an icons will be created
when a file is saved or not. (See also tooltypes.)

* MUI: Starts MUI -preferences.

1.26 Definition-file’s structure

A definition file may be as well created using a simple text editor.
Every line must be structured as follows:

A line starts with a key word locked, add, path or late.
(See also assign mode .)

Then separated by a "," follows the assign name and again
separated by a "," follows the associated path

The line must be ended by a LineFeed (CHRS$(10)).

Just print a definition file using for example "type".

1.27 To do...

7?7

1.28 ARexx support

Command Template

AddItem MODE/A,NAME/A,PATH/A,FORCE/S

1.29 ARexx: Addltem

This adds an item to the main and the temporary list. The parameters
are as follows:

MODE=[Locked|Add|Path|Late]
NAME=Name
PATH=Path

FORCE Force adding.

AssignList

9/9

Return values:

RC = 0: Adding was successful.
RC = b5: If FORCE was submitted:
Item added to lists successfully, though name
was already used.
Else:
Name was already used and the item has not
been added.
RC = 10: MODE was invalid.

1.30 Uber MUI

This application uses

MUI - MagicUserInterface

(c) Copyright 1993/94 by Stefan Stuntz

MUI is a system to generate and maintain graphical user interfaces. With
the aid of a ©preferences program, the user of an application has the
ability to customize the outfit according to his personal taste.

MUI is distributed as shareware. To obtain a complete package containing
lots of examples and more information about registration please look for
a file called "muiXXusr.lha" (XX means the latest version number) on
your local bulletin boards or on public domain disks.

If you want to register directly, feel free to send

DM 30.- or USS$ 20.-
to

Stefan Stuntz
Eduard-Spranger—-StralBe 7
80935 Miinchen
GERMANY

	AssignList
	AssignList - Overview
	About AssignList
	Requirements
	How to install AssignList ?
	Getting started
	Main window
	List of all definied assigns
	Assign name
	Assign path
	Assign mode
	Execute a definition
	Execute partial list
	List of temporary assigns
	Execute all temporary assigns
	Execute marked temporary assign
	Delete marked temporary assign
	Append temporary assign to main list
	Delete temporary assigns
	Add current definition to list
	Delete current definition
	Save list
	Save and end
	End program
	Current file
	The menu
	Definition-file's structure
	To do...
	ARexx support
	ARexx: AddItem
	Über MUI

