IPDial

Stefan Gybas

IPDial

COLLABORATORS
TITLE :
IPDial
ACTION NAME DATE SIGNATURE
WRITTEN BY Stefan Gybas July 20, 2024

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

IPDial i

Contents

1 IPDial 1
1.1 IPDial 2.1 Documentation ot i e e e e e 1
1.2 Introductionto IPDial e 1
1.3 Featuresof IPDial 2
1.4 Installing IPDial on your COMPULETr o v v i it e it e e e e e e e e e e e e e e e 2
1.5 Updating from IPDial I.x and 2.0 L e 2
1.6 Using IPDial e 4
1.7 TPDial’s scriptlanguage e e e e e e e e 5
1.8 IPDial’s script language: DELAY e 6
1.9 IPDial’s script language: DEVICE 6
1.10 IPDial’s script language: ECHO e 7
1.11 TIPDial’s script language: EXIT o e 7
1.12 IPDial’s script language: GOTO e 8
1.13 IPDial’s script language: ON STATUS GOTO e e e 8
1.14 TPDial’s script language: SCAN L L e e 9
1.15 TPDial’s script language: SEND L . o e e 10
1.16 IPDial’s script language: SETVAR o o e 10
1.17 IPDial’s script language: SYSTEM L e 10
1.18 IPDial’s script language: TERMINAL e 11
1.19 IPDial’s script language: WAIT L L e 11
1.20 Common problems with IPDial e 12
1.21 Development of IPDial e 12
1.22 Some ideas for the future of IPDial e 15
1.23 Thanks o o e e e e e 15
1.24 Howtoreachtheauthors e 15

IPDial 1/16

Chapter 1

IPDial

1.1 IPDial 2.1 Documentation

IPDial V2.1

A dialer for SLIP/PPP connections with shell terminal program, released under
the GNU General Public License (see included file COPYING) .

Introduction What’s all this about?

Features What makes IPDial different from other dialers?
License GNU General Public License

Installation How to install IPDial on your machine

Updating Read this if you have used IPDial before

Using IPDial How can IPDial be started?

Script commands IPDial’s own script language

Common problems Read this if you script does not work

History What has changed between the releases?

Future What might be implemented next?

Acknowledgements Thanks go to...
Authors Who wrote all this?

The authors give ABSOLUTELY NO warranty that the program described in this
documentation and the results produced by them are correct. The authors
cannot be held responsible for any damage resulting from the use of this
software.

1.2 Introduction to IPDial

IPDial is used to establish a SLIP, CSLIP or PPP connection to an ISP
(Internet service provider). This is done using a script file which consists
of commands like SEND "ATZ" or WAIT "CONNECT". After the connection is

IPDial

2/16

established, IPDial usually logs in with your user account and activates
SLIP/PPP on the remote machine. When all this is successfully done, IPDial
exits and your SLIP/PPP device takes over the line.

When you want to disconnect, you can also use IPDial to make to modem
physically hang up the line after SLIP/PPP has terminated.

Furthermore, IPDial has a built-in terminal mode which uses the current
shell window. If something fails while IPDial is trying to establish a
connection, you can just press Ctrl-F to enter the terminal mode and log in
manually.

1.3 Features of IPDial

IPDial has several features that many other dialers lack:

— built-in shell terminal mode: You can always interrupt your dial script
if something went wrong or enter a secret password without writing it into
your dial script file.

— IPDial can read the serial configuration (device, unit, baud rate and
handshake protocol) from a SANA configuration file. If you ever want to
use a different device, unit or baud rate, just change it for your SANA
device and IPDial will automatically use your new settings.

- own script language: Simple but powerful BASIC-like language. You can,
for example, scan the input stream for dynamic IP addresses and store them
in environment variables.

- very small: IPDial is less than 23 KB small and uses very little memory
while running.

- sample scripts included: Just adapt one of the example scripts to your
needs. You don’t have to write your own programs!

— IPDial is absolutely free of charge with full source code included (see
the GNU General Public License for details).

1.4 Installing IPDial on your computer

To install IPDial on your machine Jjust copy the executable IPDial to a
directory in your command path. If you are using AmiTCP, AmiTCP:bin might be
a good choice.

Next, adapt one of the supplied example login scripts (Login-SLIP.IPDial or
Login-PPP.IPDial) and the hangup script Hangup.IPDial to your needs and

copy them to your hard disk (AmiTCP:db might be a good place). For a list of
script commands, see chapter Script commands.

1.5 Updating from IPDial 1.x and 2.0

IPDial

3/16

IPDial 2.1 is based on IPDial 1.7, the last release from Jochen. The changes
from IPDial 1.8/1.9 have not been included - if you really need the delay
after DoIO() (as in IPDial 1.8/1.9) Jjust recompile IPDial with a delay wvalue
set in IPDial.h.

You can use your old dial scripts but you might have to change them because
IPDial 2.1 is not 100% compatible to IPDial 1.x and 2.0:

— the DELAY command now takes 2 arguments: seconds and milliseconds. If you
haven’t used decimals before, you don’t have to change anything. Otherwise
change e.g.

DELAY 1.5 to DELAY 1 500
DELAY 0.25 to DELAY 0 250
and so on.

— the arguments of the SEND command are now separated by spaces (as the ECHO
command alway did). If you have only been using quoted strings you don’t
have to change anything. Otherwise change e.g.

SEND $MyUsername \r to SEND $MyUsername\r
SEND a b ¢ d to SEND abcd
and so on.

- if you have used multiple arguments for one command, either put them in
one paar of quotes or don’t use quotes at all. Things like
SYSTEM "Copy" "ENV:MYVAR ENVARC:MYVAR"
won’t work - use
SYSTEM "Copy ENV:MYVAR ENVARC:MYVAR"
of
SYSTEM Copy ENV:MYVAR ENVARC:MYVAR
instead.

- the SHOWPARAMS and SET commands have been removed in IPDial 2.1. Some
options of the SET command (baud, protocol) have been moved to the DEVICE
command. The other options are not needed IMHO. If you have use SET before,

change

DEVICE serial.device UNIT=0
SET BAUD=38400 PROTOCOL=7WIRE [...]

to

IPDial

4/16

DEVICE serial.device UNIT=0 BAUD=38400 7WIRE
and remove all lines containing a SET or SHOWPARAMS command.
I recommend using the new SANADEV command line option and removing the

DEVICE command from your dial script. This way, you don’t have to change
your dial script, if your serial device changes.

1.6 Using IPDial

SYNOPSIS

IPDial SCRIPT,DEVICE/K,PROTOCOL/K,UNIT/K/N,BAUD/K/N, SANADEV/K,
TERMINAL/S,ECHO/S, VERBOSE/S, RAW/S

ARGUMENTS

SCRIPT: Script file to execute [S]
DEVICE: Device to use (default: "serial.device") [T]
PROTOCOL: Protocol to use: XONXOFF, 7WIRE (default) or NONE [T]
UNIT: Unit to use (default: 0) [T]
BAUD: Baud rate to use (default is taken from serial prefs) [T]
SANADEV: SANA config file to read serial config from [T, S]
TERMINAL: Run in terminal mode (i.e. don’t execute script)
ECHO: Show modem replies [S]

Use local echo mode [T]
VERBOSE : Show all operations the program performs [T, S]
RAW: Use character mode instead of line mode [T]

If IPDial is called with TERMINAL switch given, SANADEV or (if SANADEV
is not given) DEVICE, UNIT, BAUD and PROTOCOL are used to open the
serial device. Once it 1is opened, the program acts like a very simple
shell terminal program (terminal mode) .

If TERMINAL is omitted, the given SCRIPT file is read and the commands
inside are executed line by line (script mode).

[S]: argument is used in script mode, [T]: argument is used in terminal
mode

EXAMPLES
IPDial AmiTCP:db/Login-PPP.IPDial SANADEV=pppO
reads DEVICE, UNIT, BAUD and PROTOCOL from ENV:sana2/pppO.config (the
configuration file for PPP.device unit 0) and starts IPDial in script
mode. All commands in AmiTCP:db/Login-PPP.IPDial are executed line by
line until the end of file or an EXIT command is reached.

IPDial DEVICE=artser.device BAUD=38400 TERMINAL RAW

opens artser.device unit 0 (default) with 38400 baud and 7WIRE handshake

IPDial 5/16

(default) and acts like a simple shell terminal program (character mode).
Each character entered is immediately sent to artser.device (the modem),
while each received character is printed to the shell window.

CALLING IPDIAL FROM SHELL SCRIPTS

IPDial is normally called from a shell script when you want to make a
connection to your Internet provider. I recommend writing a small script
called "DialSLIP" or "DialPPP" (e.g. in AmiTCP:bin) which contains the
following lines (replace pppO0 with your SANA interface):

AmiTCP:bin/IPDial AmiTCP:db/Login-PPP.IPDial SANADEV=ppp0
If NOT WARN

Execute AmiTCP:bin/StartNet
EndIf

To call your provider just enter "DialPPP" or "DialSLIP". To hangup your
connection, create a second script called "StopPPP" or "StopSLIP" which
contains the following lines (again replace pppO0 with your

SANA interface):

Execute AmiTCP:bin/StopNet
AmiTCP:bin/IPDial AmiTCP:db/Hangup.IPDial SANADEV=ppp0

TERMINAL MODE

If something went wrong with your dial script you can always enter
terminal mode by pressing Ctrl-F and try to activate SLIP/PPP manually.
When in terminal mode, you have several ways to leave:

- Ctrl-C: exit IPDial with return code 5 (WARN)

- Ctrl-F: exit IPDial with return code 0

— Ctrl-\: continue script (if terminal mode was activated by a
TERMINAL command in a dial script)

If you failed to manually log in, Jjust leave with Ctrl-C to tell your
shell script not to start AmiTCP. Otherwise use Ctrl-F to let your shell
script know that everything is fine and AmiTCP with SLIP/PPP might be
started.

1.7 IPDial’s script language

— Any line of the script file may contain only one command. In general
command arguments are parsed with ReadArgs (), thus they may look like CLI
command line arguments: The characters "" may surround a string which
contains blanks.

Note, that ReadArgs() treats the character ’'x’ as an escape sequence: Thus
you have to write ECHO "x«+" if you want to print a single ’"x’.

- Empty lines or lines beginning with a semicolon are assumed to be comments
and thus ignored.

IPDial 6/16

— Lines may begin with a label, an alphanumeric word followed by a colon.
Labels are ignored, except that they may be used as destinations for
GOTO instructions. Anyone said BASIC? Yes, it is. :-)

- Labels are case-sensitive, commands are case-insensitive.
— This is the list of possible commands:

DELAY SECS/A/N,MILLISECS/N

DEVICE NAME/A,UNIT/K/N,BAUD/K/N, HANDSHAKE
ECHO TEXT/A/F

EXIT RETURNCODE/N

GOTO LABEL/A

ON STATUS GOTO LABELS/A/M

SCAN FORMAT/A, GLOBAL/S, SAVE/S

SEND TEXT/A/F

SETVAR NAME/A,VALUE/A, GLOBAL/S, SAVE/S
SYSTEM COMMAND/A/F

TERMINAL EOF,NOECHO/S,RAW/S

WAIT TIMEOUT/A/K/N,TEXT/A/M

See the scripts Login-SLIP.IPDial, Login-PPP.IPDial, T-Online.IPDIAL and
Hangup.IPDial as examples.

1.8 IPDial’s script language: DELAY

SYNOPSIS
DELAY SECS/A/N,MILLISECS/N
DESCRIPTION
Delays the given number of seconds (plus milliseconds if given). While

waiting, IPDial may be aborted with Ctrl-C (exit with RC 5) or Ctrl-F
(enter terminal mode) .

EXAMPLES
DELAY 0 500 -— waits 0.5 seconds
DELAY 2 -— waits 2 seconds

1.9 IPDial’s script language: DEVICE

SYNOPSIS
DEVICE NAME/A,UNIT/K/N, BAUD/K/N, HANDSHAKE
DESCRIPTION
Opens the given device NAME, unit UNIT (default 0) at the given baud rate

(default 9600). This device must be compatible to the serial.device.
HANDSHAKE may be one of XONXOFF, RTSCTS (default), 7WIRE (equal to RTSCTS)

IPDial 7/16

or NONE.

The DEVICE command should in general be the first command of each script
unless you use the command line option SANADEV.

EXAMPLES
DEVICE serial.device —— opens serial.device unit 0 at 9600 baud with
RTSCTS handshake
DEVICE bscisdn.device UNIT=1 BAUD=64000 -- opens bscisdn.device unit 1 at

64000 baud with RTSCTS

1.10 IPDial’s script language: ECHO

SYNOPSIS
ECHO TEXT/A/F

DESCRIPTION
This command will write the given line to stdout. Note that the text may
contain patterns like \r (Carriage Return), \n (Line Feed), \\
(Backslash) or \037 (octal digits, representing the character ASCII 31).
Sequences like S$VAR or ${VAR} will be replaced with the value of the
environment variable VAR (local or global). If VAR doesn’t exist, nothing
is inserted. Use $$ to get the $ character itself. Please note that $VAR
will only work, if the name VAR consists of alphanumeric characters and
the name is separated with a non-alphanumeric character from the
following characters. For example, S$SVAR+NAME means S$VAR and not S$SVAR+NAME.
On the other hand S$VARNAME means S$SVARNAME and not S$VAR.

Note that ECHO does not write any Line Feeds or Carriage Returns unless
you explicitly request it with the respective patterns.

EXAMPLES
ECHO Hello, world!\n
ECHO S$USER "has logged in\n"

ECHO The variable \"S$SSVAR\" contains ${VAR}\n

1.11 IPDial’s script language: EXIT

SYNOPSIS
EXIT RETURNCODE/N

DESCRIPTION

IPDial

8/16

Terminates the program, returns the given RETURNCODE (default O0).

EXAMPLES
EXIT —— exits IPDial with RC O
EXIT 5 —— exit IPDial with RC 5 (WARN)

1.12 IPDial’s script language: GOTO

SYNOPSIS

GOTO LABEL/A
DESCRIPTION

Jumps to the given label and continues the script at that point.
EXAMPLES

GOTO Logon —— jumps to the label Logon (a line starting with

"Logon:") and executes the following commands.
Look at the ON command for a better example.

1.13 IPDial’s script language: ON STATUS GOTO

SYNOPSIS
ON STATUS GOTO LABELS/A/M
DESCRIPTION

An ON command must follow a WAIT or SCAN command, because ON reads the
value of the STATUS variable (set by WAIT and SCAN) and jumps to the first
label if STATUS is -1, to the second label if STATUS is 0 and so on.

You don’t have to supply a label for each possible value of STATUS. If no
lable is given, ON will suppress jumping and continue on the next line.

EXAMPLES

DialAgain:
[...]
WAIT TIMEOUT=10 "Login:" "Busy"
ON STATUS GOTO TimeOut Login Busy

Login:
[...]
EXIT O

TimeOut:
ECHO "Timeout happened, aborting.\n"

IPDial

9/16

EXIT 10

Busy:
ECHO "Remote busy, delaying...\n"
DELAY 25

ECHO "Trying again.\n"
GOTO DialAgain

1.14 IPDial’s script language: SCAN

SYNOPSIS
SCAN FORMAT/A,GLOBAL/S, SAVE/S
DESCRIPTION

The SCAN command is used to scan the buffer read by the last WAIT
command for certain words. This may be used set environment
variables with a part of the received text. The format string may
contain the following patterns:

%${WORD%} Ignores any characters until WORD is found in
the buffer. Use %% to insert the ’'%’ character
into WORD.

Ignores any number (including 0) and kind (blank,
tab, line feed, carriage return, form feed) of
white space characters.

$[VAR%]% (SUFFIX%) Reads the next word from the buffer until
the first white space character and stores it into
the environment variable VAR.
The optional SUFFIX is a sequence of characters
to be removed from the end of the word.
Any other characters in the format string are simply
ignored.

Usually environment variables are local (for IPDial and child processes
only). Use the GLOBAL and SAVE (0OS 3.0 only) keywords to store them in
ENV: and ENVARC:, respectively. Note, that SAVE implies GLOBAL.

Please note that you can use the SCAN command more than once on the same
buffer.

The SCAN command stores the number of created environment variables in
the STATUS variable, which can later be used by the ON command. Note,
that the value -1 is never stored in the STATUS variable, you have to
use a dummy label in the ON command.

EXAMPLES

SCAN "% {Your IP address is%} $[IPADDRESS%]%(.%)"

scans the buffer for a sentence like

IPDial

10/16

Your IP address is 145.2.1.34.

and stores the value 145.2.1.34 into the variable IPADDRESS. Note that
the character .’ is removed.

1.15 IPDial’s script language: SEND

SYNOPSIS
SEND TEXT/A/F

DESCRIPTION
This command sends the given strings to the serial device using
DoIO (). These strings may contain the same patterns as described
in the ECHO command.

EXAMPLES

SEND "ATZ\n"

SEND $PASSWORD\n

1.16 IPDial’s script language: SETVAR

SYNOPSIS
SETVAR NAME/A,VALUE/A,GLOBAL/S, SAVE/S

DESCRIPTION
Sets environment variable NAME to VALUE. If you set the GLOBAL switch,
your variable will be set in ENV: and not in the programs local
environment. The SAVE switch forces copying to ENVARC: (OS 3.x only).
Note, that SAVE implies GLOBAL.

EXAMPLES

SETVAR USERNAME "Joe User" GLOBAL —— sets the global variable USERNAME
to "Joe User" (without quotes)

1.17 IPDial’s script language: SYSTEM

SYNOPSIS
SYSTEM COMMAND/A/F
DESCRIPTION

Executes the command given by COMMAND. The arguments will be parsed like

IPDial

11/16

ECHO arguments (you may insert \ and $ patterns).
EXAMPLES
SYSTEM Echo Hello!

SYSTEM "C:List #?.IPDial >RAM:IPDial-Files"

1.18 IPDial’s script language: TERMINAL

SYNOPSIS
TERMINAL EOF,NOECHO/S,RAW/S
DESCRIPTION

Enters terminal mode: What you enter at the keyboard will be sent to
the serial device and likewise the program will display any input from
the serial.device to you. The TERMINAL command will be finished, if
you enter EOF (Ctrl-\).

The NOECHO and EOF options can be used to enter a password, if you
don’t like to include it into your login file: NOECHO makes your input
invisible and the EOF string terminates terminal mode as soon, as you
type in the first character of the string.

Usually you can send only complete lines to the modem, especially this
means that you have all editing capabilities of the shell available.
This is not the case in RAW mode: Every character you type will be sent
immediately to the modem without any buffering or conversions. NOECHO
mode implies RAW mode.

EXAMPLES
WAIT TIMEOUT=10 "Password:"
ON STATUS GOTO TimeOut

ECHO "Enter login password: "
TERMINAL EOF="\r" NOECHO

1.19 IPDial’s script language: WAIT

SYNOPSIS
WAIT TIMEOUT/A/K/N, TEXT/A/M
DESCRIPTION

This command waits until either one of the given strings is read from
the serial device or the number of seconds given by TIMEOUT has gone.

A variable called STATUS indicates what happened: It contains either
-1 for timeout or the number of the string that was read, beginning

IPDial 12/16

with 0. This variable may be used by the ON statement.
WAIT arguments are parsed like ECHO arguments.
EXAMPLES

WAIT TIMEOUT=10 "CONNECT" "BUSY" "NOCARRIER"
ON STATUS GOTO TimeOut Connect Busy NoCarrier

1.20 Common problems with IPDial

— There might be problems with Executive (the task scheduler) if IPDial’s
priority is too low to get all characters from your serial device (see
Executive’s manual for further details). To prevent these problems either
start IPDial with a priority above Executive’s catch range (e.g. 3) or
tell Executive to keep IPDial’s priority above its schedule range.

- The following part of a dial script does not work:
WAIT TIMEOUT=3 "IP address"
ON STATUS GOTO TIMEOUT
SCAN "% {Your IP address is%} $[IPADDRESS%]%(.%)" GLOBAL
The SCAN command works on the buffer that was received until the previous
WAIT command exited (either a string was found or timeout). You are trying
to wait for "IP address" which is sent to you before the IP address, so
it might not be in the received buffer.
This seems to work in IPDial 1.x but that is not true: IPDial 2.0 is more
optimized and faster than IPDial 1.x, so the WAIT command is left

more quickly.

To solve the above problem, wait for a string that is sent to you after
the IP address. In some cases

WAIT TIMEOUT=3 ".\n" or WAIT TIMEOUT=3 ".\r"

might be a solution. If that does not work, wait for the whole line that
is sent to you right before the IP address, e.g. use

WAIT TIMEOUT=3 "SLIP ready. Your IP address is "
If that still does not work, use something like
WAIT TIMEOUT=10 "a string that will never be sent to me"

and hope that 10 seconds are enough to get your IP address.

1.21 Development of IPDial

IPDial

13/16

Changes in IPDial 1.1 to 1.7

v 1.1 23.11.94

v 1.2 27.02.95

v 1.3 09.03.95

v 1.4 21.04.95

v 1.5 30.04.95

V1.6 26.06.95

v 1.7 21.07.95

Initial version

Added terminal mode
Now using ReadArgs () for command line parsing.

Added environment variable support to "send"
command. Added unit support. Suggested by Quarvon
(Jirgen Lang)

Added "system" command. Suggested by Gutgolf
(Michael Bauer)

Added environment variable support to "echo" command.
Terminal mode now converts LF to CR/LF, so that modem
recognizes commands. (Let’s hope, that will still
work for entering passwords.)

Added "scan" command.

"delay" command supporting ticks; ParseString()
supporting octal characters; "wait" command using

ParseString (). Suggested by Will Bow.

Fixed bug in SerialSend() :
*.io_Device = *.io_Unit

Added NOECHO, RAW and EOF options to "terminal" command.
Suggested by Klaus Heinz

Added BAUD option to command line.

Added "setvar" command.

Changes in IPDial 2.0 (06.03.96)

+ new command line option SANADEV/K (reads serial device, unit, baud and

handshake from
IPDial.c/main ()

= SETVAR command:

SANA configuration file)
, IPDial.c/Usage (), added SanaConfig.c

struct for args was too short: using GLOBALONLY saved the

variable to ENVARC:, using SAVE caused a crash. removed LOCALONLY/S and
replaced GLOBALONLY/S by GLOBAL=GLOBALONLY/S (as described in the docs)
SAVE now only works on AmigaOS 3.0 and above

IPDial.c/SetVarFunc (), removed setvar.c

+ compiled with NOCHECKABORT (SAS/C), so Cleanup() is always called when
IPDial terminates

+ DELAY now takes two arguments (seconds and milliseconds) and can be
aborted with Ctrl-C (exit) and Ctrl-F (terminal mode)
IPDial.c/DelayFunc (), added Serial.c/TimerWait ()

+ When IPDial is waiting for a string from serial.device and aborted with

IPDial 14 /16

Ctrl-C, CRLF is sent to hangup the modem in case it was dialing
Serial.c/SerialWait ()

- no more Delay () after DoIO (as in IPDial 1.8/1.9). This delay made the
character terminal mode unusable. Compile with DELAY AFTER IO defined
(IPDial.h) to use a delay again.

DeviceIO.c/DeviceIODo ()

= ECHO, SEND and SYSTEM now use ARGS/F instead of ARGS/M -> arguments are
one single string. Adapted ParseString() to remove extra quotes.
IPDial.c/EchoFunc (), IPDial.c/SendFunc (), IPDial.c/SystemFunc/(),
IPDial.c/ParseString()

- no more parameter "Length" in SerialSend (it wasn’t used anyway)
Serial.c/SerialSend()

+ command line option ECHO now works for terminal mode, too
IPDial.c/main ()

- removed HELP/S command line option ("?" will do, too)

+ VERBOSE is now a bit more verbose
Serial.c/SerialOpen (), IPDial.c/WaitFunc (), IPDial.c/=*

- removed Buffer.c/BufferExpand() - was never called

+ $VAR and ${VAR} now work for local (shell) and global variables
IPDial.c/ParseString()

+ pressing Ctrl-F while a DELAY or WAIT command is running gets you into
terminal mode (character mode without local echo)
Serial.c/SerialWait (), Serial.c/TimerWait ()

+ Ctrl-C now exits terminal mode with RC 5, Ctrl-F with RC 0 (useful
for shell scripts)

Serial.c/SerialTerminal ()

= added global scratch buffer -> many local buffers removed
IPDial.c/ParseFile (), IPDial.c/ParseString()

+ included second example dial script, improved hangup script

= rewrote documentation (now AmigaGuide)

Changes in IPDial 2.1 (16.04.96)

= fixed a couple of errors in the documentation (please reread the Updating
and Common problems sections)

+ included dial script for the German T-Online (examples/T-Online.IPDial)

= EXIT now checks its arguments
IPDial.c/ExitFunc ()

+ the serial buffer size is now set to 4096 bytes when a device is opened.
Serial.c/SerialOpen ()

IPDial 15/16

+ cleaned up code a little bit (executable is now 2 KB smaller)
IPDial.c/PrintError (), IPDial.c/CleanupAndExit ()

- removed SET and SHOWPARAMS commands. Some options from the SET command were
moved to the DEVICE command.
IPDial.c/SetFunc (), IPDial.c/ShowParmsFunc (), IPDial.c/DeviceFunc(),
Serial.c/SerialOpen (), Serial.c/SerialShowParms(),
Serial.c/SerialSetDataBits (), Serial.c/SerialSetStopBRits(),
Serial.c/SerialSetParity (), Serial.c/SerialSetProtocol ()

= TIMEOUT in WAIT command is now optional (default: 5 seconds)
IPDial.c/WaitFunc ()

+: new feature
bugfix / change
removed feature

1.22 Some ideas for the future of IPDial

The next steps in IPDial will be a logfile (suggestions welcome) and support
for OwnDevUnit.library. If you have any other enhancement requests, please
send me an email.

1.23 Thanks

Michael ’Mick’ Hohmann, Angela Schmidt

for their icons (taken from the Meeting Pearls III CD ROM)

Kai Kohlmorgen

for the T-Online dial script

and everybody else who sent me bugreports and suggestions.

1.24 How to reach the authors

IPDial 1.1 to 1.7 was written by
Jochen Wiedmann <wiedmann@neckar-alb.de>
WWW: http://www.neckar—-alb.de/iss/jochen/
Changes in IPDial 2.x by

Stefan Gybas <cab@studbox.uni-stuttgart.de>
WWW: http://home.pages.de/~cab/

IPDial 16/16

IPDial WWW support pages

http://wwwcip.rus.uni-stuttgart.de/~infl11108/support/ipdial.html

	IPDial
	IPDial 2.1 Documentation
	Introduction to IPDial
	Features of IPDial
	Installing IPDial on your computer
	Updating from IPDial 1.x and 2.0
	Using IPDial
	IPDial's script language
	IPDial's script language: DELAY
	IPDial's script language: DEVICE
	IPDial's script language: ECHO
	IPDial's script language: EXIT
	IPDial's script language: GOTO
	IPDial's script language: ON STATUS GOTO
	IPDial's script language: SCAN
	IPDial's script language: SEND
	IPDial's script language: SETVAR
	IPDial's script language: SYSTEM
	IPDial's script language: TERMINAL
	IPDial's script language: WAIT
	Common problems with IPDial
	Development of IPDial
	Some ideas for the future of IPDial
	Thanks
	How to reach the authors

