
RenderDotC for Windows '95

Beginners should get started with RenderDotC by going through the functions by category.

Experienced users can get answers quickly from the alphabetical listing of RenderDotC funtions.

RenderDotC functions by category

Blocks
These functions come in pairs: one which starts a new state, and one which ends it.    The nesting of
these blocks must be strictly maintained.    They define the structure of a RenderDotC scene.    It is
recommended that you indent the lines between each pair so that the structure is clearly visible.

rdcFrameBegin
rdcFrameEnd
rdcSceneBegin
rdcSceneEnd
rdcAttributePop
rdcAttributePush
rdcMatrixPop
rdcMatrixPush
rdcObjectBegin
rdcObjectEnd

Parameters
Parameters apply to everything in the scene.    Therefore, they must be set prior to calling rdcSceneBegin.
Attempting to change a parameter within a scene block results in an error.    Parameters are only saved
by rdcFrameBegin and restored by rdcFrameEnd.

rdcRasterViewport
rdcRasterAspect
rdcImageAspect
rdcImageWindow
rdcImageCrop
rdcViewIdentity
rdcViewOrthographic
rdcViewPerspective
rdcClip
rdcSampleUniform
rdcSampleJitter
rdcSampleAdaptive
rdcFilter, rdcCustomFilter
rdcFilterWidth
rdcColorGain
rdcColorGamma
rdcColorQuantize
rdcDepthQuantize
rdcColorJitter
rdcDepthJitter
rdcOutputDisplay
rdcOutputFile
rdcOutputSamples
rdcHider
rdcColorSpace
rdcTune

Attributes
Attributes apply to primitives and may be changed during the scene block.    They may also be set prior to
the scene block, sort of overriding the default values with the user's defaults.    Attributes are saved and
restored by frame blocks, scene blocks, object blocks, and of course attribute blocks.

rdcColor

rdcOpacity
rdcLightSource, rdcLightSourceV
rdcLightSwitch
rdcSurface, rdcSurfaceV
rdcAtmosphere, rdcAtmosphereV
rdcShadingRate
rdcShadingModel
rdcMatteObject
rdcBound
rdcFlatness
rdcOrientation
rdcBackface
rdcObjectName
rdcGroupName

Transformations
Technically, the current matrix is an attributes also.    It is always saved and restored along with attributes.
However, it may be saved and restored independently of attributes with a matrix block.    The current
matrix defines a coordinate space.    At various times when describing a scene, the current matrix is used
to define a built-in coordinate space.

The following functions transform the current matrix:

rdcLoadIdentity
rdcLoadMatrix
rdcMultMatrix
rdcPerspective
rdcTranslate
rdcRotate
rdcScale
rdcSkew

These functions allow you to work within custom coordinate spaces:

rdcMarkSpace
rdcProjectPoints

Polygons
There are two types of polygons: convex and general.    Both must be planar.    General polygons may be
concave and/or have holes.    Convex polygons are rendered more efficiently.    If the current coordinate
space is left handed, then the side of the polygon from which the vertices appear in clockwise order will
be the front face.    Vertices for holes in general polygons must be specified in the opposite order.    For the
purposes of interpolating shading variables, polygons are broken down into triangles without introducing
new vertices.    Polygon meshes are a compact way of specifying multiple polygons which share vertices.

rdcPolygon, rdcPolygonV
rdcPolygonMesh, rdcPolygonMeshV
rdcGeneralPolygon, rdcGeneralPolygonV
rdcGeneralPolygonMesh, rdcGeneralPolygonMeshV

Patches and NURBs
There are two types of patches: bilinear and bicubic.    Bicubic patches use the basis matrices specified
by rdcBasis.    NURBs are more flexible than bicubic patches in that the order need not be 3, the knots
need not be uniformly distributed in parametric space, and they may also be rational (solve for w as well
as x, y, and z).

rdcBasis, rdcCustomBasis
rdcPatch, rdcPatchV
rdcPatchMesh, rdcPatchMeshV
rdcNurb, rdcNurbV
rdcNurbMesh, rdcNurbMeshV

Quadrics
Quadric primitives are created by sweeping a line or curve about the z-axis.    If the handedness of the
current coordinate space matches the current orientation (set by rdcOrientation) then the surface normals
will point away from the z axis.    Quadrics may be turned inside out by specifying negative arguments,
such as tmax.    Quadrics have four corners.    You may think of a quadric surface as a square rubber
sheet which has been stretched and contorted into position.    All angles are in degrees.

rdcSphere, rdcSphereV
rdcCone, rdcConeV
rdcCylinder, rdcCylinderV
rdcDisk, rdcDiskV
rdcTorus, rdcTorusV
rdcParaboloid, rdcParaboloidV
rdcHyperboloid, rdcHyperboloidV

Other primitives

rdcProcedural
rdcObjectCall

Miscellaneous

rdcQuark
rdcErrorHandler, rdcCustomErrorHandler
rdcLastError
rdcComment

Alphabetical listing of all RenderDotC functions

rdcAtmosphere, rdcAtmosphereV
rdcAttributePop
rdcAttributePush
rdcBackface
rdcBasis
rdcBound
rdcClip
rdcColor
rdcColorGain
rdcColorGamma
rdcColorJitter
rdcColorQuantize
rdcColorSpace
rdcComment
rdcCone, rdcConeV
rdcCustomBasis
rdcCustomErrorHandler
rdcCustomFilter
rdcCylinder, rdcCylinderV
rdcDepthJitter
rdcDepthQuantize
rdcDisk, rdcDiskV
rdcErrorHandler
rdcFilter
rdcFilterWidth
rdcFlatness
rdcFrameBegin
rdcFrameEnd
rdcGeneralPolygon, rdcGeneralPolygonV
rdcGeneralPolygonMesh, rdcGeneralPolygonMeshV
rdcGroupName
rdcHider
rdcHyperboloid, rdcHyperboloidV
rdcImageAspect
rdcImageCrop
rdcImageWindow
rdcLastError
rdcLightSource, rdcLightSourceV
rdcLightSwitch
rdcLoadIdentity
rdcLoadMatrix
rdcMarkSpace
rdcMatrixPop
rdcMatrixPush
rdcMatteObject
rdcMultMatrix
rdcNurb, rdcNurbV
rdcNurbMesh, rdcNurbMeshV
rdcObjectBegin
rdcObjectCall
rdcObjectEnd
rdcObjectName
rdcOpacity

rdcOrientation
rdcOutputDisplay
rdcOutputFile
rdcOutputSamples
rdcParaboloid, rdcParaboloidV
rdcPatch, rdcPatchV
rdcPatchMesh, rdcPatchMeshV
rdcPerspective
rdcPolygon, rdcPolygonV
rdcPolygonMesh, rdcPolygonMeshV
rdcProcedural
rdcProjectPoints
rdcQuark
rdcRasterAspect
rdcRasterViewport
rdcRotate
rdcSampleAdaptive
rdcSampleJitter
rdcSampleUniform
rdcScale
rdcSceneBegin
rdcSceneEnd
rdcShadingModel
rdcShadingRate
rdcSkew
rdcSphere, rdcSphereV
rdcSurface, rdcSurfaceV
rdcTorus, rdcTorusV
rdcTranslate
rdcTune
rdcViewIdentity
rdcViewOrthographic
rdcViewPerspective

Quarks

When using the RenderDotC C language binding, quarks are used to represent strings efficiently as
integers.    Essentially, the string is hashed and associated with an integer.    From then on, the integer, or
"quark", is used in place of the original string.

Quarks have the following advantages over strings:
Quarks can be compared quickly (integer compare).
Integers consume less space when copies are made.
Typographical errors are caught at compile time rather than run time.

Quarks are more flexible than enumerators in that the user can extend the set of quarks by defining more.
While most of the quarks you will need are predefined in the header file rdc.h,
you may define new quarks if necessary by using the rdcQuark function.

When using the RDC binding, use the full string surrounded by quotations marks.    Predefined quarks
follow an easy naming convention best seen by example: RDC_PLASTIC is "plastic" in RDC bytestream.
Even though quarks are represented by the full string in the RDC file, new quarks must be declared
before use.

Aside: Why are they called "quarks"?
The name comes from X-Windows.    First, there were "atoms", which were integers that represented
strings that needed to be communicated between the client and server.    Integers are much cheaper than
strings when communications are involved.    When the concept was carried over to strings which only
needed to be represented on the client side, they were called "quarks" because they were smaller than
atoms.

Argument lists

Some RDC functions take an optional list of additional arguments after the fixed, required arguments.   
This is where the user can specify additional information and override default values.    The format of this
list is a series of quark-value pairs.    The quark identifies which internal variable you wish to override, and
the value is the new value you wish to assign to that internal variable.

Those RDC functions which take an argument list will have two C bindings.    The first one has a signature
ending with ellipses (...) and the second one has the same name as the first but with a capital V suffix.

Here is how you would use the first form to add color and opacity which varied across the surface of a
sphere:

RDCcolor four_colors[4];
RDCcolor four_opacities[4];
rdcSphere(1, -1, 1, 360,

RDC_COLOR, (RDCvoid *)four_colors,
RDC_OPACITY, (RDCvoid *)four_opacities,
);

This form takes advantage of the C's variable argument support in <stdarg.h>.    First note that the values
must all be cast to RDCvoid pointers.    This is because the compiler cannot perform type
checking/conversion to arguments passed through the stdarg method.    Second, note that the list must be
terminated with RDC_NULL even if the list is empty.    This is the way RenderDotC recognizes the end of
the list.

Here is the same example only using the second form of rdcSphere:

RDCcolor four_colors[4];
RDCcolor four_opacities[4][;
RDCquark quarks[] = {RDC_COLOR, RDC_OPACITY};
RDCvoid *values[] = {four_colors, four_opacities};
rdcSphereV(1, -1, 1, 360, 2, quarks, values);

This form takes the count of quark-value pairs, an array of quarks, and an array of values.    The two
arrays must have at least the number of elements given as the count and the order of the quarks must
match that of the values (i.e. quarks[i] goes with values[i]).

There is only one RDC binding for functions with argument lists.    Here is the same example in RDC:

rdcSphere 1 -1 1 360
"color" [0 1 0    0 1 0    0 0 1    0 0 1]
"opacity" [1 1 1    1 1 1    .9 .9 .9    .9 .9 .9]

Shading variables

Shading variables are quarks that are associated with values.    The quark acts as the name of the
variable and the user provides the values.    Like variables in a programming language, each shading
variable has a class and a type.

The class of a shading variable may be const, vary, or vertex.    The class determines how many values
are needed to fully specify a variable with respect to a primitive.    Shading variables with class const need
only one value per primitive, because the same value applies over the entire surface of the primitive.   
Class vary indicates that the value varies over the surface.    Except in the case of polygons, shading
variables of class vary will need an array of four values, one for each corner.    For polygons, the size of
the array of values must equal the number of vertices.    Values at the interior of the primitive surface are
linearly interpolated    Finally, shading variables with class vertex specify vertex positions and naturally
must have as many values as there are vertices in a polygon, patch, or NURB (or meshes of the same).

The type of a shading variable may be float, integer, string, pair, point, pointw, or color.    Types float,
integer and string expect values of types (RDCint *), (RDCfloat *), and (char *), respectively.    Types pair,
point, and pointw expect arrays of RDCfloat of sizes 2, 3, and 4 respectively.    A pointw is a
"homogeneous" or "affine" point where the fourth dimension is called w.    Type color expects an array of
RDCfloat of the same size as that set with rdcColorSpace, 3 by default.

Here are all of the predefined shading variables:

Name Class Type Floats Quadric Polygon Patch NURB
"point" vertex point 3 x x x

"pointw" vertex pointw 4 x
"height" vertex float 1 x x
"normal" vary point 3 x x x x
"plane" const point 3 x x x x
"color" vary color 3* x x x x

"opacity" vary color 3* x x x x
*Can be changed with rdcColorSpace.

Polygons, patches, and NURBs (and meshes of the same) require that the position of each vertex be
given by a shading variable of class vertex.    With polygons, the only choice is "point".    With patches, you
may also specify a height field using "height".    This just gives the z component of each vertex.    The x
and y components are spaced evenly over the unit square.    NURBs may be specified with either of the
above variables or with "pointw".    The latter is recommended because it's the "w" that makes a NURB
rational.

By default, normal vectors are computed automatically at every shading point from the underlying surface
geometry.    If you wish to override the computed value, you may use "normal" or "plane".    The difference
between the two is that "normal" is of class vary and "plane" is const.    The "plane" normal will be used
across the entire surface which most useful for polygons and bilinear patches.

By default, color and opacity are taken from the attributes set by rdcColor and rdcOpacity.    These values
may be overridden by the shading variables "color" and "opacity".    One advantage of overriding is that
the color/opacity may vary across the face of the primitive.

rdcAtmosphere

Name
rdcAtmosphere, rdcAtmosphereV - set current atmospheric shader

C Binding
RDCvoid rdcAtmosphere(RDCquark name,

...)
RDCvoid rdcAtmosphereV(RDCquark name,

RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcAtmosphere name arguments

Parameters
name

Name of atmospheric shader.    Accepted values are RDC_NULL, RDC_DEPTHCUE, and
RDC_FOG.    RDC_NULL turns off all atmospheric effects which is the default state.    The other
values are described below.

arguments
The argument list depends upon the name as described below.

Description
rdcAtmosphere applies an atmospheric shader to subsequently defined primitives.    Note that the
atmospheric shader is an attribute which can vary from primitive to primitive.

Depth-cueing
RDCfloat hither = 0;
RDCfloat yon = 1;
RDCcolor background = {0, 0, 0};
rdcAtmosphere(RDC_DEPTHCUE,

RDC_HITHER, (RDCvoid *)&hither,
RDC_YON, (RDCvoid *)&yon,
RDC_BACKGROUND, (RDCvoid *)background,
RDC_NULL);

Surfaces closer than hither are unaffected by this atmospheric shader.    Surfaces further than yon fade
completely to background.    Surfaces at distances in between get their surface color linearly mixed
with background.    The default values are shown in the example above.

Fog
RDCcolor background = {0, 0, 0};
RDCfloat distance = 1;
rdcAtmosphere(RDC_FOG,

RDC_BACKGROUND, (RDCvoid *)background,
RDC_DISTANCE, (RDCvoid *)&distance,
RDC_NULL);

All surfaces are affected by this atmosphere.    The amount of color which is blended with the surface
color is given by the exponential decay (1 - e-surfacedepth/distance) where surfacedepth is the actual
distance from the eye to the surface.    A surface right at the eye point would be unobscured by fog.   
Even objects at a great distance will retain some of their surface color, assymtotically approaching

background with distance.    The default values are shown in the example above.

rdcAttributePop

Name
rdcAttributePop - restore all attributes from stack

C Binding
RDCvoid rdcAttributePop()

RDC Binding
rdcAttributePop

Description
Restores all of the attributes to their state prior to the matching call to rdcAttributePush.    Note that this
does not affect parameters.    It is an error to pop when the stack is empty or when there has been an
intervening call to start a new state (e.g. rdcMatrixPush) which has not been properly nested.

Example
rdcAttributePop();

rdcAttributePush

Name
rdcAttributePush - save all attributes on stack

C Binding
RDCvoid rdcAttributePush()

RDC Binding
rdcAttributePush

Description
Saves all of the attributes on the attribute stack.    The attributes may then be changed arbitrarily and
later restored with rdcAttributePop.    Note that this does not affect parameters.    Pushing and popping
attributes must be nested properly within other calls which change the graphics state (e.g.
rdcMatrixPush and rdcMatrixPop).    The stack is initially empty.    There is no arbitary limit on maximum
stack size.

Example
rdcAttributePush();

rdcBackface

Name
rdcBackface - turn backface removal on or off

C Binding
RDCvoid rdcBackface(RDCboolean onoff)

RDC Binding
rdcBackface onoff

Parameters
onoff

RDC_TRUE to turn backface removal on.    RDC_FALSE to turn backface removal off.

Description
With backface removal on, only the "outside" facing surfaces are visible.    Note that the notion of
"outside" can be changed with rdcOrientation.    Also, quadric primitives can sometimes be turned
inside-out by using a negative sweep angle, etc.

Backface removal is off by default, which results in both the "inside" and "outside" facing surfaces
being visible.

Turning backface removal on improves rendering speed only marginally, and must be used care to
ensure that the desired face is the one that is visible.

Example
rdcBackface(RDC_TRUE);

rdcBasis, rdcCustomBasis

Name
rdcBasis, rdcCustomBasis - load built in or custom basis for bicubic patches

C Binding
RDCvoid rdcBasis(RDCenum which,

RDCenum basis)
RDCvoid rdcCustomBasis(RDCenum which,

const RDCfloat matrix[4][4],
RDCint step)

RDC Binding
rdcBasis which basis
rdcCustomBasis which matrix step

Parameters
which

specifies which cubic basis matrix you wish to change:
RDC_UBASIS change the basis matrix to be used in the u direction.
RDC_VBASIS change the basis matrix to be used in the v direction..
RDC_UVBASIS use the same basis matrix for both directions.

basis
identifies a built-in basis matrix:

RDC_POWERBASIS use the Power (identity) basis.
RDC_HERMITEBASIS use the Hermite basis.
RDC_CATMULLROMBASIS use the Catmull-Rom basis.
RDC_BSPLINEBASIS use the B-spline basis.
RDC_BEZIERBASIS use the Bezier basis.

matrix
user defined basis matrix.    This advanced feature gives the user the power to define new cubic
basis matrices and use them for evaluating patches and patch meshes.    Controls such as tension
and gain can be factored in to the matrix.

step
When evaluating a curve comprised of multiple segments, step is the number of control points
which affect the first curve segment but not the second.    This number must be at least 1 but no
more than 4.

For example, it takes 7 control points to define two consecutive Bezier curve segments.    Points 1
through 4 define the first segment while points 4 through 7 define the second.    Only point 4 is
shared by the two segments.    The step for a Bezier basis is therefore 3 because we must advance
from point 1 to point 4 to evaluate the next segment.

B-splines, on the other hand, only require 5 control points to define two curve segments.    Points 2,
3, and 4 are shared by the two segments.    The B-spline step is 1.

Description
Use these functions in conjunction with the bicubic variety of rdcPatch and rdcPatchMesh.    The
default basis matrix is Bezier for both the u and v directions.    Note that you may define a bicubic
patch which uses a different basis matrix in each direction.

Typically, one of the built-in basis matrices will be sufficient and will be used in both the u and v
direction.

Examples
rdcBasis(RDC_UVBASIS, RDC_BSPLINE);

RDCfloat basis[4][4] = {
{-0.01, 0.37, -0.86, 0.51},
{0.04, -0.41, 0.37, 0},
{-0.04,-0.42, 0.46, 0},
{0.01, 0.48, 0.51, 0}

};
rdcCustomBasis(RDC_UVBASIS, basis, 1);

rdcBound

Name
rdcBound - tighten bounding box

C Binding
RDCvoid rdcBound(const RDCfloat *bound)

RDC Binding
rdcBound bound

Parameters
bound

six RDCfloats which describe a 3-Dimensional box in object coordinates: {xmin, xmax, ymin, ymax,
zmin, zmax}

Description
Promises the renderer that subsequent primitives will lie completely within the box in object
coordinates.    Any surface not within the box may be rendered partially or not at all.

While the renderer computes bounding boxes for all primitives, sometimes the bounds are not as tight
as possible and can be trimmed by the user.    The bounding box actually used is the intersection
between the bound given and the bound automatically computed.

The default bounding box is infinite in all directions (boundless).    Note that you may not make the
renderer's bounds any looser, only tighter.

Example
RDCbound bound = {0.1, 1, 0.2, 3, 0, 1};
rdcBound(bound);

rdcClip

Name
rdcClip - set front and back clipping planes

C Binding
RDCvoid rdcClip(RDCfloat hither,

RDCfloat yon)

RDC Binding
rdcClip hither yon

Parameters
hither

distance from the eye to the near clipping plane

yon
distance from the eye to the far clipping plane

Description
Sets the near and far clipping plane along the direction of view.    hither must be greater than or equal
to RDC_EPSILON and less than yon.    Yon must be greater than hither and less than or equal to
RDC_INFINITY.

Surfaces between the near and far clipping planes are not rendered.    By default, hither is
RDC_EPSILON and yon is RDC_INFINITY.    Using clipping planes which fit the scene more tightly is
recommended because it can improve performance and image quality.

In image and raster coordinates, points at the near clipping plane are represented by z = 0 and points
at the far clipping plane have z = 1, with points in between interpolated linearly.

Example
rdcClip(0.3, RDC_INFINITY);

rdcColor

Name
rdcColor - set the current color

C Binding
RDCvoid rdcColor(const RDCfloat *color)

RDC Binding
rdcColor color

Parameters
color

an array array of floats (usually 3) which define a color in the current color space

Description
Subsequent primitives will use this color as their surface color unless it is explicitly overriden in the
primitive's argument list.

By default, the color space has three components: red, green, and blue.    This may be changed by a
call to rdcColorSpace.    The default color is white: {1, 1, 1}

Example
RDCcolor green = {0, 0.7, 0.1};
rdcColor(green);

rdcColorGain

Name
rdcColorGain - control gain applied to colors

C Binding
RDCvoid rdcColorGain(RDCfloat gain)

RDC Binding
rdcColorGain gain

Parameters
gain

scalar which multiplies colors linearly in the exposure process

Description
Colors will be multiplied by gain during the exposure process.    This happens after sampling but before
quantization to integers.    The default is no gain: 1.0

Example
rdcColorGain(3.1);

rdcColorGamma

Name
rdcColorGamma - control gamma correction applied to colors

C Binding
RDCvoid rdcColorGamma(RDCfloat gamma)

RDC Binding
rdcColorGamma gamma

Parameters
gamma

inverse of exponent to which colors are raised in the exposure process

Description
Colors will be raised to the power 1/gamma during the exposure process.    This happens after
sampling but before quantization to integers.    The default is no gamma correction: 1.0

Gamma correction is often used to control brightness when displayed on a monitor.    While the
"correct" value of gamma varies with each monitor, 2.1 is a typical value.

Example
rdcColorGamma(2.1);

rdcColorJitter

Name
rdcColorJitter - control random jitter applied to colors

C Binding
RDCvoid rdcColorJitter(RDCfloat ampl)

RDC Binding
rdcColorJitter ampl

Parameters
ampl

absolute value of the maximum random jitter delta that should be added to color samples after
quantization

Description
Controls random jitter applied to colors.    Jittering colors replaces Mach banding (contours, color
aliasing) with noise.    Increasing ampl decreases the Mach band effect but increases the noise in color
spectrum.    The default value is 0.5, which can cause the color to bump up or down one integer
quantization level.

Example
rdcColorJitter(0.9);

rdcColorQuantize

Name
rdcColorQuantize - control mapping of colors from real to integer

C Binding
RDCvoid rdcColorQuantize(RDCint one,

RDCint min,
RDCint max)

RDC Binding
rdcColorQuantize one min max

Parameters
one

scalar which multiplies real colors (RDCfloat samples) when converting to integer samples.    To
disable quantization and store floating point values, set one to 0.

min
the lowest allowable integer value for a color sample (usually 0).    Ignored if one is 0.

max
the highest allowable integer value for a color sample (usually the same as one).    Ignored if one is
0.

Description
During rendering, colors are computed with floating point accuracy (32 bits per channel).    When it
comes time to display or store the image, the colors are usually converted to integers.    This function
controls the process of converting real color samples to integers, known as color quantization.

The first parameter, one, multiplies each color sample, scaling it to fit the desired integer range.    After
the color sample is multiplied by one and converted to an integer, it is clamped between the other two
parameters, min and max.    If one is 0, color quantization is turned off and floating point samples are
output.

The floating point representation of a color channel is usually in the range 0 to 1.    By default, one is
255, min is 0, and max is 255, scaling the range 0-1 up to 0-255 which can be represented by 8 bits
per channel.    Note that you may define real colors in the range 0.0 to 255.0 and set one to 1 for the
same results.

Example
rdcColorQuantize(15, 0, 15);

rdcColorSpace

Name
rdcColorSpace - define a custom space in which colors are described

C Binding
RDCvoid rdcColorSpace(RDCint n,

const RDCfloat *nRGB,
const RDCfloat *RGBn)

RDC Binding
rdcColorSpace n nRGB RGBn

Parameters
n

the new number of components per color.

nRGB
an array of n by 3 RDCfloats, which converts colors in the new space to RGB.

RGBn
an array of 3 by n RDCfloats, which convert RGB colors to the new space.

Description
After defining a new color space, all color values passed to the renderer must have n components.   
The renderer will convert the color to RGB for further calculations.

Example
RDCfloat nRGB[] = {0.2, 0.3, 0.5};
RDCfloat RGBn[] = {1, 1, 1};
rdcColorSpace(1, nRGB, RGBn);

rdcComment

Name
rdcComment - add a comment to the output bytestream

C Binding
RDCvoid rdcComment(const char *fmt,

...)

RDC Binding
none

Parameters
fmt

a format string in the style of printf.    The format string cannot contain a newline (\n) character.

Description
When linking with the RDC bytestream output library, this is a way to add a comment line to the RDC
bytestream.    The format string will be evaluated just as in printf: the % tokens will be replaced with
arguments which follow.    The entire line will be prefixed by the RDC comment character and a space:
"# ".    The line will be automatically terminated with a newline.

Example
rdcComment("Frame Number %d", framenum);

rdcCone, RdcConeV

Name
rdcCone, rdcConeV - draw a cone

C Binding
RDCvoid rdcCone(RDCfloat radius,

RDCfloat height,
RDCfloat zmax,
RDCfloat tmax,
...)

RDCvoid rdcConeV(RDCfloat radius,
RDCfloat height,
RDCfloat zmax,
RDCfloat tmax,
RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcCone radius height zmax tmax argumentlist

Parameters
radius

the radius of the cone at the bottom

height
the height of the apex of the cone

zmax
if less than height, where to truncate the top of the cone

tmax
sweep angle about Z-axis

argumentlist
see Shading Variables

Description
The base of the cone lies in the X-Y plane and is open.    The apex of the cone is on the Z-axis at z =
height.    If zmax >= height, the apex of the cone is visible. If zmax < height, the top of the cone is cut
off.    zmax will be clamped between the range [0, height].    tmax can vary from - 360 to +360 to render
sections of the cone.

Variables which vary over the surface (such as RDC_COLOR) must have four components.

Example
RDCcolor fourcolors[4] = {

{0.2, 0.9, 0.1},
{0, 0.1, 0.5},
{0.3, 0.4, 0.5},
{0.3, 0.3, 0.3}

};
rdcCone(0.2, 1, 0.9, 360, RDC_COLOR,    (RDCvoid *)fourcolors, RDC_NULL);

rdcCylinder, rdcCylinderV

Name
rdcCylinder, rdcCylinderV - draw a cylinder

C Binding
RDCvoid rdcCylinder(RDCfloat radius,

RDCfloat zmin,
RDCfloat zmax,
RDCfloat tmax,
...)

RDCvoid rdcCylinderV(RDCfloat radius,
RDCfloat zmin,
RDCfloat zmax,
RDCfloat tmax,
RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcCylinder radius zmin zmax tmax argumentlist

Parameters
radius

the radius of the cylinder

zmin
the z coordinate of the bottom of the cylinder

zmax
the z coordinate of the top of the cylinder

tmax
sweep angle about Z-axis

argumentlist
see Shading Variables

Description
The top and bottom of the cylinder are parallel with the X-Y plane and are open.    The bottom is at z =
zmin and the top is at z = zmax.    tmax can vary from - 360 to +360 to render sections of the cylinder.

Variables which vary over the surface (such as RDC_COLOR) must have four components.

Example
RDCcolor fourcolors[4] = {

{0.2, 0.9, 0.1},
{0, 0.1, 0.5},
{0.3, 0.4, 0.5},
{0.3, 0.3, 0.3}

};
rdcCylinder(0.5, 0, 5, 180, RDC_COLOR, (RDCvoid *)fourcolors, RDC_NULL);

rdcDepthJitter

Name
rdcDepthJitter - control random jitter applied to depth values

C Binding
RDCvoid rdcDepthJitter(RDCfloat ampl)

RDC Binding
rdcDepthJitter ampl

Parameters
ampl

the amplitude of the random jitter value added to depth values.

Description
By default, the depth jitter is 0 for no jittering of depth values.    Jittering depth can affect the hidden
surface removal algorithm and generally does not improve the quality of the image.    It is included here
for completeness and is only recommended if one is producing a greyscale depth map image, in which
case, the depth will be represented as a color and is subject to Mach banding.

Example
rdcDepthJitter(0.5);

rdcDepthQuantize

Name
rdcDepthQuantize - control mapping of depth values from real to integer

C Binding
RDCvoid rdcDepthQuantize(RDCint one,

RDCint min,
RDCint max)

RDC Binding
rdcDepthQuantize one min max

Parameters
one

scalar which multiplies real depth values (RDCfloat samples) when converting to integer samples.
To disable quantization and store floating point values, set one to 0.

min
the lowest allowable integer value for a depth sample (usually 0).    Ignored if one is 0.

max
the highest allowable integer value for a depth sample (usually the same as one).    Ignored if one is
0.

Description
During rendering, depth values are computed with floating point accuracy (32 bits).    If depth values
are to be displayed or stored, they may be converted to integers.    This function controls the process
of converting real depth values to integers, known as depth quantization.

The first parameter, one, multiplies each depth sample, scaling it to fit the desired integer range.    After
the depth sample is multiplied by one and converted to an integer, it is clamped between the other two
parameters, min and max.    If one is 0, depth quantization is turned off and floating point samples are
output.

The floating point representation of a depth sample lies in the range 0 to 1.    By default, one is 0 and
depth quantization is turned off.

Example
rdcDepthQuantize(65535,    0, 65535);

rdcDisk, rdcDiskV

Name
rdcDisk, rdcDiskV - draw a disk

C Binding
RDCvoid rdcDisk(RDCfloat innerradius,

RDCfloat outerradius,
RDCfloat tmax,
...)

RDCvoid rdcDiskV(RDCfloat innerradius,
RDCfloat outerradius,
RDCfloat tmax,
RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcDisk innerradius outerradius tmax argumentlist

Parameters
innerradius

the radius of the hole in the middle of the disk (0 for no hole)

outerradius
the radius of the outer rim of the disk

tmax
sweep angle about Z-axis

argumentlist
see Shading Variables

Description
The disk lies in the X-Y plane.    If innerradius > 0, there is a hole in the center.    innerradius must be
less than outerradius.    tmax can vary from - 360 to +360 to render sections of the disk.

Variables which vary over the surface (such as RDC_COLOR) must have four components.

Example
rdcDisk(3,    6,    360, RDC_NULL);

rdcErrorHandler, rdcCustomErrorHandler

Name
rdcErrorHandler, rdcCustomErrorHandler - use built in or custom error handler

C Binding
RDCvoid rdcErrorHandler(RDCenum severitymask,

RDCenum handler)
RDCvoid rdcCustomErrorHandler(RDCenum severitymask,

RDCerrorFunc function)

RDC Binding
rdcErrorHandler severitymask handler
(none for rdcCustomErrorHandler)

Parameters
severitymask

Which types of errors to be handled this way.    Predefined    severity masks include RDC_INFO,
RDC_WARNING, RDC_ERROR, RDC_SEVERE and all combinations thereof.    RDC_IWES is all
of the above.    Other possible combinations are RDC_IW, RDC_IE, RDC_IS, RDC_IWE,
RDC_IWS, RDC_IES, RDC_WE, RDC_WS, RDC_WES, and RDC_ES.

handler
a built-in error handler:
RDC_ERRORIGNORE - the error is ignored and rendering continues
RDC_ERRORPRINT - an error message is printed and rendering continues
RDC_ERRORABORT - an error message is printed and rendering is aborted

function
pointer to a user defined error handling function.    The required signature is:
RDCvoid function(RDCint code, RDCint severity, const char *msg);

Description
There are four classes of errors which might arise at run time:

RDC_INFO - rendering progress, statistics, etc.
RDC_WARNING - warnings such as unimplemented feature.
RDC_ERROR - user input error such as a parameter out of range.
RDC_SEVERE - severe errors such as out of memory, renderer should abort.

You may specify how you want each type of error handled.    By default, RDC_INFO errors are ignored,
RDC_WARNING and RDC_ERROR are printed, and RDC_SEVERE are aborted.    You may choose
one of the built-in error handling function or write your own.

Example
rdcErrorHandler(RDC_IWES, RDC_ERRORIGNORE);

rdcFilter, rdcCustomFilter

Name
rdcFilter, rdcCustomFilter - use built in or custom filter function

C Binding
RDCvoid rdcFilter(RDCenum filter)
RDCvoid rdcCustomFilter(RDCfilterFunc filterfunc)

RDC Binding
rdcFilter filter
(none for rdcCustomFilter)

Parameters
filter

a predefined filter for filtering supersamples:
RDC_BOXFILTER use a box filter.
RDC_TRIANGLEFILTER use a triangle filter.
RDC_CATMULLROMFILTER use a Catmull-Rom filter.
RDC_GAUSSIANFILTER use a Gaussian filter.
RDC_SINCFILTER use a sinc filter.

filterfunc
a user defined filter function for filtering supersamples.    The required signature is:
RDCfloat filterfunc(RDCfloat x, RDCfloat y, RDCfloat xwidth, RDCfloat ywidth)
where x and y are the signed distances from the pixel center to the sample and xwidth and ywidth
give the support width of the filter.

Description
For each pixel, all samples within the support width from the center of the pixel are weighted and
averaged.    The filter function determines the weighting.    The support width is given by rdcFilterWidth.
The default filter is Gaussian.

Example
rdcFilter(RDC_TRIANGLEFILTER);

rdcFilterWidth

Name
rdcFilterWidth - Set support width of filter function

C Binding
RDCvoid rdcFilterWidth(RDCfloat xwidth,

RDCfloat ywidth)

RDC Binding
rdcFilterWidth xwidth ywidth

Parameters
xwidth

x component of the width of the filter function

ywidth
y component of the width of the filter function

Description
Describes a rectangle with dimensions xwidth by ywidth which will be placed symmetrically about the
center of each pixel.    Any samples which fall within that rectangle will be passed to the filter function
specified by rdcFilter or rdcCustomFilter.    Depending on which filter is called, the increasing the width
may affect the shape of the filter (stretch it) or it may just cause the same function to be evaluated at
further points.

Note that if a filter width is greater than 1, then the same sample may affect more than one final pixel
color.    If a filter width is less than 1, then some samples may be missed entirely.

By default, both widths are 2.

Example
rdcFilterWidth(1, 1);

rdcFlatness

Name
rdcFlatness - set tesselation threshhold for geometry

C Binding
RDCvoid rdcFlatness(RDCfloat value)

RDC Binding
rdcFlatness value

Parameters
value

the maximum allowable deviation in pixels between the actual surface and its polygonal
approximation.

Description
Polygon tesselation is most noticable around the silhouette edges.    Even if you intentionally make the
tesselation coarse with rdcShadingRate, you may still want the silhouette to look smooth.    The
renderer takes both of these factors into consideration when adaptively tesselating a curved surface.

The default flatness is 0.5 which means that the approximated surface will never miss the true surface
by more than half a pixel.    Decreasing this value increases the number of polygonal facets, especially
at the silhouette edges.

Example
rdcFlatness(0.1);

rdcFrameBegin

Name
rdcFrameBegin - start another frame of animation

C Binding
RDCvoid rdcFrameBegin()

RDC Binding
rdcFrameBegin

Description
If you are rendering an animated sequence, you make break up your scene into a series of blocks
bracketed by rdcFrameBegin and rdcFrameEnd.    Each block is repsonsible for rendering one frame
of animation.    The advantage to this approach is that elements common to all frames may be
initialized once and for all before the first rdcFrameBegin.

rdcFrameBegin saves the current parameters, attributes, and transformation on their respective
stacks.    Frame blocks may not be nested.

Example
rdcFrameBegin();

rdcFrameEnd

Name
rdcFrameEnd - end a frame of animation

C Binding
RDCvoid rdcFrameEnd()

RDC Binding
rdcFrameEnd

Description
Ends a block started by rdcFrameBegin.    Parameters, attributes, and transformation are restored to
their previous states.    It is an error to call rdcFrameEnd without a previously unmatched
rdcFrameBegin or if intervening calls to state changing functions (e.g. rdcAttributePush) have not been
properly nested.

Example
rdcFrameEnd();

rdcGeneralPolygon, rdcGeneralPolygonV

Name
rdcGeneralPolygon, rdcGeneralPolygonV - draw a general polygon

C Binding
RDCvoid rdcGeneralPolygon(RDCint nloops,

const RDCint *nverts,
...)

RDCvoid rdcGeneralPolygonV(RDCint nloops,
const RDCint *nverts,
RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcGeneralPolygon nloops nverts argumentlist

Parameters
nloops

the number of loops.    The perimeter counts as one loop, so nloops must be at least 1.    Each hole
counts as an additional loop.

nverts
the number of vertices in each loop.    The number of vertices in the perimeter loop is given by
nverts[0].    Likewise for each hole.

argumentlist
The argument list must contain at least point information, RDC_POINT.    There must be as many
points as the sum of all the elements in nverts.    Also see Shading Variables.

Description
Draw a general planar, concave polygon with or without holes.    The first loop specified is the outer
boundary of the polygon.    All other loops are holes.    The holes must be specified in the reverse order
of the outer boundary (i.e. the holes are counterclockwise if the outer boundary is clockwise.)

Example
RDCint nverts = {4, 3};
RDCpoint points = {{0, 0, 0}, {0, 1, 0}, {0, 1, 1}, {0, 0, 1},

{0, 0.25, 0.5}, {0, 0.75, 0.75}, {0, 0.75, 0.25}};
rdcGeneralPolygon(2, nverts, RDC_POINT, (RDCvoid *)points, RDC_NULL);

rdcGeneralPolygonMesh, rdcGeneralPolygonMeshV

Name
rdcGeneralPolygonMesh, rdcGeneralPolygonMeshV - draw a mesh of general polygons

C Binding
RDCvoid rdcGeneralPolygonMesh(RDCint npolys,

const RDCint *nloops,
const RDCint *nverts,
const RDCint *verts,
...)

RDCvoid rdcGeneralPolygonMeshV(RDCint npolys,
const RDCint *nloops,
const RDCint *nverts,
const RDCint *verts,
RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcGeneralPolygonMesh npolys nloops nverts verts argumentlist

Parameters
npolys

number of general polygons in the mesh

nloops
number of loops in each polygon in the mesh.    The perimeter of a polygon counts as one loop.   
Each hole counts as another.    The number of loops in polygon i is given by nloops[i].    There must
be as many entries in this array as there are polygons in the mesh.

nverts
number of vertices in each loop.    The order is to specify the number of vertices for each loop in a
polygon before proceeding to the next polygon.    There must be as many entries in this array as
the sum of all the entries in the nloops array.

verts
indeces into the vertex array.    Since polygons in the mesh may share vertices, a set of actual
vertices need only be declared once (in the argument list).    The vertices for each loop are then
specified as indeces into the actual vertex array.

argumentlist
The argument list must contain at least point information, RDC_POINT.    There must be as many
points as the largest value in verts plus one.    Also see Shading Variables.

Description
Draws a mesh of general concave polygons, with or without holes.    Holes must be specified in the
reverse order of the outer boundary (i.e. the holes are counterclockwise if the outer boundary is
clockwise.)

Example
RDCint nloops = {2, 2};
RDCint nverts = {4, 3, 4, 3};
RDCint verts = {0, 1, 4, 3, 6, 8, 7, 1, 2, 5, 4, 9, 11, 10};
RDCpoint points = {{0, 0, 1}, {0, 1, 1}, {0, 2, 1}, {0, 0, 0}, {0, 1, 0}, {0, 2, 0},

{0, 0.25, 0.5}, {0 0.75, 0.75}, {0, 0.75, 0.25}, {0, 1.25, 0.5},

{0, 1.75, 0.75}, {0, 1.75, 0.25}};
rdcGeneralPolygonMesh(2, nloops, nverts, verts,

RDC_POINT, (RDCvoid *)points,
RDC_NULL);

rdcGroupName

Name
rdcGroupName - name a group of objects

C Binding
RDCvoid rdcGroupName(const char *name)

RDC Binding
rdcGroupName name

Parameters
name

name to give the group.

Description
For debugging purposes, a name may be associated with a group.    This name will be printed out with
error messages which occur during rendering.    This can help identify which group of primitives is
causing the error.

Example
rdcGroupName("Bronze Objects");

rdcHider

Name
rdcHider - select a hidden surface removal technique

C Binding
RDCvoid rdcHider(RDCenum type)

RDC Binding
rdcHider type

Parameters
type

one of the predefined hidden surface removal techniques:
RDC_ZBUFFER - use the Z-buffer hidden surface removal technique.
RDC_PAINT - use manual hidden surface removal.    The user is responsible for declaring
primitives in a back to front order.
RDC_NULL - produce no output.    Used to verify scene correctness.

Description
The default hidden surface removal technique is Z-buffer, which will automatically resolve hidden
surfaces.    Manual hidden surface removal reduces the resources required for rendering and puts the
burden of hidden surface removal on the user, who must specify primitives in a back to front order.

Example
rdcHider(RDC_PAINT);

rdcHyperboloid, rdcHyperboloidV

Name
rdcHyperboloid, rdcHyperboloidV - draw a hyperboloid

C Binding
RDCvoid rdcHyperboloid(const RDCfloat *point1,

const RDCfloat *point2,
RDCfloat tmax,
...)

RDCvoid rdcHyperboloidV(const RDCfloat *point1,
const RDCfloat *point2,
RDCfloat tmax,
RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcHyperboloid point1 point2 tmax argumentlist

Parameters
point1, point2

define a line segment which will be swept about the Z-axis.

tmax
sweep angle about Z-axis

argumentlist
see Shading Variables

Description
creates a hyperboloid by taking a line segment between point1 and point2 and sweeping it around the
Z-axis by tmax degrees.

Example
RDCcolor fourcolors[4] = {

{0.2, 0.9, 0.1},
{0, 0.1, 0.5},
{0.3, 0.4, 0.5},
{0.3, 0.3, 0.3}

};
RDCfloat point1 = {0.3, 1.2, 2};
RDCfloat point2 = {1.3, 3.2, 5};
rdcHyperboloid(point1, point2, 360, RDC_COLOR, (RDCvoid *)fourcolors, RDC_NULL);

rdcImageAspect

Name
rdcImageAspect - set the aspect ratio of the image window

C Binding
RDCvoid rdcImageAspect(RDCfloat aspect)

RDC Binding
rdcImageAspect aspect

Parameters
aspect

the aspect ratio of the image window (width divided height.)

Description
The image window is the rectangle on the image plane which gets mapped to the raster viewport for
display or storage.    The image plane is always 1 unit away from the eye (focal length is 1).    By
default, the image window has the same aspect ratio as the raster viewport (after taking into account
the raster aspect ratio).    You may override that default by specifying the image aspect ratio.    In either
case, the image window is centered along the line of sight:

If image aspect ratio aspect is greater than 1, then the image window is given by {-aspect, aspect,
-1, 1}.    If aspect is less than 1, the image window given by {-1, 1, -1/aspect, 1/aspect}

Note that rdcImageWindow will override rdcImageAspect.

Example
rdcImageAspect(2.0);

rdcImageCrop

Name
rdcImageCrop - crop the image window

C Binding
RDCvoid rdcImageCrop(RDCfloat xmin,

RDCfloat xmax,
RDCfloat ymin,
RDCfloat ymax)

RDC Binding
rdcImageCrop xmin ymax ymin ymax

Parameters
xmin

the left edge of the crop window

xmax
the right edge of the crop window

ymin
the top edge of the crop window

ymax
the bottom edge of the crop window

Description
Identifies rectangular subregion of the image window to be rendered by specifying the minimum and
maximum x and y components.    The rest of the image will be left black.    These components range
from 0 to 1.    0 is the left side of the screen and 1 is the right side of the screen.    0 is the top of the
screen and 1 is the bottom of the screen.    There may only be one crop window in effect for an entire
image.

Example
rdcImageCrop(0, 0.1,    0.4, 1);

rdcImageWindow

Name
rdcImageWindow - explicitly set the window on the image plane

C Binding
RDCvoid rdcImageWindow(RDCfloat left,

RDCfloat right,
RDCfloat bot,
RDCfloat top)

RDC Binding

Parameters
left

the left edge of the window

right
the right edge of the window

bot
the bottom edge of the window

top
the top edge of the window

Description
The image window is the rectangle on the image plane which gets mapped to the raster viewport for
display or storage.    The image plane is always 1 unit away from the eye (focal length is 1).    By
default, the image window has the same aspect ratio as the raster viewport (after taking into account
the raster aspect ratio) and is centered about the line of sight.

rdcImageWindow explicitly sets the window on the image plane, by bounding it with the left, right, top
and bot parameters.    If left > right, or bot > top, the image is inverted.    For image windows symmetric
about the line of sight, use rdcImageAspect.

Example
rdcImageWindow(-1, 1, 0, 1);

rdcLastError

Name
rdcLastError - recall number of most recent error

C Binding
RDCint rdcLastError()

RDC Binding
none

Description
Initially, the last error number is RDC_NOERROR.    All of the built-in error handlers save the number
of the last error for later use.    Custom error handlers have no effect on rdcLastError.

Example
RDCint errno = rdcLastError();

rdcLightSource, rdcLightSourceV

Name
rdcLightSource, rdcLightSourceV - add a light to the scene

C Binding
RDClight *rdcLightSource(RDCquark name,

...)
RDClight *rdcLightSourceV(RDCquark name,

RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcLightSource name number argumentlist

Parameters
name

Name of light source shader. Accepted values are RDC_AMBIENT, RDC_DISTANT, RDC_OMNI,
and RDC_SPOT.

number
Because light handles cannot be passed back when processing RDC bytestream, each light must
be given a unique number between 0 and 65535.    This number may be refernced later when
turning the light on and off.    Low, sequential numbers are recommended as any drastic jump in
light numbers will produce a warning message.

argmentlist
The argument list depends upon the name as described below.

Description
Adds a light source to the scene for the duration of the frame (permanently if defined outside of any
frame.)    Returns a handle to the light so that it may be turned on and off with rdcLightSwitch.    Lights
are on by default.    Note that the list of lights which are on is an attribute.

Ambient lights
RDCfloat intensity = 1;
RDCcolor lightcolor = {1, 1, 1};
RDClight *handle = rdcLightSource(RDC_AMBIENT,

RDC_INTENSITY, (RDCvoid *)&intensity,
RDC_LIGHTCOLOR, (RDCvoid *)lightcolor,
RDC_NULL);

Ambient light models random, atmospheric light which illuminates objects from all directions.    It is
used to make visible parts of the model which are not directly illuminated by other lights.    The default
values for intensity and lightcolor are shown in the above example.

Distant lights
RDCfloat intensity = 1;
RDCcolor lightcolor = {1, 1, 1};
RDCpoint from = {0, 0, 0};
RDCpoint to = {0, 0, 1};
RDClight *handle = rdcLightSource(RDC_DISTANT,

RDC_INTENSITY, (RDCvoid *)&intensity,
RDC_LIGHTCOLOR, (RDCvoid *)lightcolor,
RDC_FROM, (RDCvoid *)from,

RDC_TO, (RDCvoid *)to,
RDC_NULL);

Distant lights are characterized by a shower of parallel light rays.    The classic example is light coming
to earth from the sun.    Such light has only a direction, not a position.    The direction is given by the
vector from the point RDC_FROM to the point RDC_TO.    Note that these points are influenced by the
prevailing transformation at the time the light is added to the scene.    The default values are shown in
the example above.

Omni lights
RDCfloat intensity = 1;
RDCcolor lightcolor = {1, 1, 1};
RDCpoint from = {0, 0, 0};
RDClight *handle = rdcLightSource(RDC_OMNI,

RDC_INTENSITY, (RDCvoid *)&intensity,
RDC_LIGHTCOLOR, (RDCvoid *)lightcolor,
RDC_FROM, (RDCvoid *)from,
RDC_NULL);

Omnidirectional lights have a position from which light emanates in all directions (also known as point
light sources).    The intensity of light from omni light sources follows the inverse square law: the
intensity is proportional to the recipricol of the distance squared.    Therefore, the intensity of these
lights is often greater than 1.    Note that RDC_FROM is influenced by the prevailing transformation at
the time the light is added to the scene.The default values are shown in the example above.

Spot lights
RDCfloat intensity = 1;
RDCcolor lightcolor = {1, 1, 1};
RDCpoint from = {0, 0, 0};
RDCpoint to = {0, 0, 1};
RDCfloat coneangle = 30;
RDCfloat conedeltaangle = 5;
RDCfloat beamdistribution = 2;
rdcLightSource(RDC_SPOT,

RDC_INTENSITY, (RDCvoid *)&intensity,
RDC_LIGHTCOLOR, (RDCvoid *)lightcolor,
RDC_FROM, (RDCvoid *)from,
RDC_TO, (RDCvoid *)to,
RDC_CONEANGLE, (RDCvoid *)&coneangle,
RDC_CONEDELTAANGLE, (RDCvoid *)&conedeltaangle,
RDC_BEAMDISTRIBUTION, (RDCvoid *)&beamdistribution,
RDC_NULL);

Spot lights emit light in the shape of a cone from a point in a certain direction.    The origin is given by
RDC_FROM and the cone will be centered about a vector from RDC_FROM to RDC_TO.    Note that
these points are influenced by the prevailing transformation at the time the light is added to the scene.

RDC_CONEANGLE gives the angle in degrees from the center axis of the cone to one edge.    No light
will be cast outside of this cone.    The entire width of the cone (from one edge to the opposite) is 2 *
RDC_CONEANGLE degrees.

Light from a spot light is brightest at the axis of the cone.    At angles theta off the center axis, the
intensity is given by (cos(theta))RDC_BEAMDISTRIBUTION.    That is, there is an exponential falloff of
intensity towards the edges of the cone.

Finally, the intensity is multiplied by a smooth falloff function whenever the angle is within

RDC_CONEDELTAANGLE degrees from the edge of the cone.    This last function is 1 at
RDC_CONEANGLE - RDC_CONEDELTAANGLE and drops off via smooth Hermite interpolation to 0
at RDC_CONEANGLE.    This produces a penumbra effect at the edges of the spotlight.

Like point light sources, spot lights follow the inverse square law with respect to distance.    The default
values for all of these variables are given in the example above.

rdcLightSwitch

Name
rdcLightSwitch - turn a light on or off

C Binding
RDCvoid rdcLightSwitch(const RDClight *light,

RDCboolean onoff)

RDC Binding
rdcLightSwitch lightnumber onoff

Parameters
light

a handle to a light previously created with rdcLightSource

lightnumber
in RDC bytestream, the sequence number assigned to a light previously created with
rdcLightSource

onoff
RDC_TRUE to turn the light on, RDC_FALSE to turn it off

Description
Lights are on by default when created.    Lights may be turned off and back on with rdcLightSwitch.    In
order to do this, you must save the handle (or number, in the case of RDC bytestream) for later
reference.    This list of lights which are on is an attribute which can be saved and restored with
rdcAttributePush and rdcAttributePop.    Lights are only destroyed when defined within a frame and
rdcFrameEnd is called.

Example
rdcLightSwitch(light1, RDC_FALSE);

rdcLoadIdentity

Name
rdcLoadIdentity - reset the current matrix to the identity

C Binding
RDCvoid rdcLoadIdentity()

RDC Binding
rdcLoadIdentity

Description
Explicitly sets the current transformation matrix to the identity.

Example
rdcLoadIdentity();

rdcLoadMatrix

Name
rdcLoadMatrix - explicitly set the current matrix

C Binding
RDCvoid rdcLoadMatrix(const RDCfloat matrix[4][4])

RDC Binding
rdcLoadMatrix matrix

Parameters
matrix

the matrix to be loaded

Description
Sets the current transformation matrix to the one given.

Example
RDCfloat matrix[4][4] = {

{0, 1, 1, 1},
{2 , 0, 1, 2},
{3, 1, 1, 1},
{5, 3, 2, 2.1}

};
rdcLoadMatrix(matrix);

rdcMarkSpace

Name
rdcMarkSpace - name the current coordinate space

C Binding
RDCvoid rdcMarkSpace(RDCquark name)

RDC Binding
rdcMarkSpace name

Parameters
name

a quark representing the name you wish to give the current coordinate space

Description
You may mark the current coordinate space with a name so that later, when another coordinate space
is in effect, you may project points to or from the old coordinate space with rdcProjectPoints.

Example
RDCquark myspace = rdcQuark("myspace");
rdcMarkSpace(myspace);

rdcMatrixPop

Name
rdcMatrixPop - restore matrix from stack

C Binding
RDCvoid rdcMatrixPop()

RDC Binding
rdcMatrixPop

Description
Restores the current transformation matrix to its state prior to the matching call to rdcMatrixPush.    It is
an error to pop when the stack is empty or when there has been an intervening call to start a new state
(e.g. rdcAttributePop) which has not been properly nested.

Example
rdcMatrixPop();

rdcMatrixPush

Name
rdcMatrixPush - save the current matrix on stack

C Binding
RDCvoid rdcMatrixPush()

RDC Binding
rdcMatrixPush

Description
Saves the current transformation on the matrix stack.    The current transformation may then be
changed arbitrarily and later restored with rdcMatrixPop.    Pushing and popping matrices must be
nested properly within other calls which change the graphics state (e.g. rdcAttributePush and
rdcAttributePop).    The stack is initially empty.    There is no arbitary limit on maximum stack size.

Example
rdcMatrixPush();

rdcMatteObject

Name
rdcMatteObject - turn the matte object flag on or off

C Binding
RDCvoid rdcMatteObject(RDCboolean onoff)

RDC Binding
rdcMatteObject onoff

Parameters
onoff

RDC_TRUE to turn on the matte object flag, RDC_FALSE to turn it off

Description
By default, the matte object flag is off.    With the matte object flag on, subsequent objects are
rendered as black 3D objects which hide objects behind them.    In the final image, matte objects are
black in color and transparent in alpha.    Objects in front of matte objects are rendered normally.

This unusual combination is used in special effects for motion pictures where live action will be matted
in with computer generated imagery.    The matte objects "stand in" for the live action actors, props, or
sets.

Example
rdcMatteObject(RDC_TRUE);

rdcMultMatrix

Name
rdcMultMatrix - transform by an arbitrary matrix

C Binding
RDCvoid rdcMultMatrix(const RDCfloat matrix[4][4])

RDC Binding
rdcMultMatrix matrix

Parameters
matrix

a transformation matrix to multiply

Description
Premultiplies the current transformation matrix by the matrix given.

Example
RDCfloat matrix[4][4] = {

{0, 1, 1, 1},
{2 , 0, 1, 2},
{3, 1, 1, 1},
{5, 3, 2, 2.1}

};
rdcMultMatrix(matrix);

rdcNurb, rdcNurbV

Name
rdcNurb, rdcNurbV - draw a Non-Uniform Rational B-spline patch

C Binding
RDCvoid rdcNurb(RDCint uorder,

const RDCfloat *uknot,
RDCfloat umin,
RDCfloat umax,
RDCint vorder,
const RDCfloat *vknot,
RDCfloat vmin,
RDCfloat vmax,
...)

RDCvoid rdcNurbV(RDCint uorder,
const RDCfloat *uknot,
RDCfloat umin,
RDCfloat umax,
RDCint vorder,
const RDCfloat *vknot,
RDCfloat vmin,
RDCfloat vmax,
RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcNurb uorder uknot umin umax vorder vknot vmin vmax argumentlist

Parameters
uorder

the degree of the polynomial plus 1 in the u direction

uknot
array of knots in the u direction.    There must be 2 * uorder knots in non-decreasing order.

umin
the minimum value of u where surface is defined.    Must be less than umax and greater than or
equal to uknot[uorder - 1].

umax
the maximum value of u where surface is defined.    Must be greater than umin and less than or
equal to uknot[uorder].

vorder
the degree of the polynomial plus 1 in the v direction

vknot
array of knots in the v direction.    There must be 2 * vorder knots in non-decreasing order.

vmin
the minimum value of v where surface is defined.    Must be less than vmax and greater than or
equal to vknot[vorder - 1].

vmax

the maximum value of v where surface is defined.    Must be greater than vmin and less than or
equal to vknot[vorder].

argumentlist
The argument list must contain at least point information, RDC_POINTW or RDC_POINT.    If you
use RDC_POINT, then w is assumed to be 1 for all points and the result is a Non-Uniform Non-
Rational B-spline (NUNB?).    There must be uorder times vorder points in the array.    Also see
Shading Variables.

Description
Draws the tensor product of the rational splines defined in the u and v directions.    The order need not
be the same for u and v.    The surface is defined over the range [umin, umax] and [vmin, vmax].    Note
that umin and umax must lie between the middle two elements in the uknot array.    Likewise for vmin
and vmax.

Example
RDCfloat uknot[] = {0, 0, 0, 1, 1, 1};
RDCfloat vknot[] = {0, 0, 1, 1};
RDCpointw points[] = {{1, 0, 0, 1}, {1, 1, 0, 1}, {0, 2, 0, 2},

{-1, 1, 0, 1}, {-1, 0, 0, 1}, {-1, -1, 0, 1}};
rdcNurb(3, uknot, 0, 1, 2, vknot, 0, 1, RDC_POINTW, (RDCvoid *)points, RDC_NULL);

rdcNurbMesh, rdcNurbMeshV

Name
rdcNurbMesh, rdcNurbMeshV - draw a mesh of Non-Uniform Rational B-spline patches

C Binding
RDCvoid rdcNurbMesh(RDCint nu,

RDCint uorder,
const RDCfloat *uknot,
RDCfloat umin,
RDCfloat umax,
RDCint nv,
RDCint vorder,
const RDCfloat *vknot,
RDCfloat vmin,
RDCfloat vmax,
...)

RDCvoid rdcNurbMeshV(RDCint nu,
RDCint uorder,
const RDCfloat *uknot,
RDCfloat umin,
RDCfloat umax,
RDCint nv,
RDCint vorder,
const RDCfloat *vknot,
RDCfloat vmin,
RDCfloat vmax,
RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcNurbMesh nu uorder uknot umin umax nv vorder vknot vmin vmax argumentlist

Parameters
nu

the number of control points in the u direction.    Must be greater than or equal to uorder.

uorder
the degree of the polynomial plus 1 in the u direction

uknot
array of knots in the u direction.    There must be nu * uorder knots in non-decreasing order.

umin
the minimum value of u where surface is defined.    Must be less than umax and greater than or
equal to uknot[uorder - 1].

umax
the maximum value of u where surface is defined.    Must be greater than umin and less than or
equal to uknot[nu].

nv
the number of control points in the v direction.    Must be greater than or equal to vorder.

vorder

the degree of the polynomial plus 1 in the v direction

vknot
array of knots in the v direction.    There must be nv * vorder knots in non-decreasing order.

vmin
the minimum value of v where surface is defined.    Must be less than vmax and greater than or
equal to vknot[vorder - 1].

vmax
the maximum value of v where surface is defined.    Must be greater than vmin and less than or
equal to vknot[nv].

argumentlist
The argument list must contain at least point information, RDC_POINTW or RDC_POINT.    If you
use RDC_POINT, then w is assumed to be 1 for all points and the result is a Non-Uniform Non-
Rational B-spline (NUNB?).    There must be nu times nv points in the array.    Also see Shading
Variables.

Description
Draws the tensor product of the extended rational splines defined in the u and v directions.    The order
need not be the same for u and v.    The surface is defined over the range [umin, umax] and [vmin,
vmax].    Note the relationship between the min and max values and the values contained in the knot
arrays.

Example
RDCfloat uknot = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4};
RDCfloat vknot = {0, 0, 1, 1};
RDCpoint points = {{1, 0, 0, 1}, {1, 1, 0, 1}, {0, 2, 0, 2},

{-1, 1, 0, 1}, {-1, 0, 0, 1}, {-1, -1, 0, 1},
{0, -2, 0, 2}, {1, -1, 0, 1}, {1, 0, 0, 1},
{1, 0, -3, 1}, {1, 1, -3, 1}, {0, 2, -6, 2},
{-1, 1, -3, 1}, {-1, 0, -3, 1}, {-1, -1, -3, 1},
{0, -2, -6, 2}, {1, -1, -3, 1}, {1, 0, -3, 1}};

rdcNurb(9, 3, uknot, 0, 4, 2, 2, vknot, 0, 1, RDC_POINTW, (RDCvoid *)points, RDC_NULL);

rdcObjectBegin

Name
rdcObjectBegin - start defining an object

C Binding
RDCobject *rdcObjectBegin()

RDC Binding
rdcObjectBegin number

Parameters
number

Because object handles cannot be passed back when processing RDC bytestream, each object
must be given a unique number between 0 and 65535.    This number may be refernced later when
calling the object.    Low, sequential numbers are recommended as any drastic jump in object
numbers will produce a warning message.

Description
Objects are not added to the scene when they are defined.    They are merely recorded for later use.   
You may even define them before rdcSceneBegin or before a series of frame blocks.    Save the object
handle (or number in the case of RDC bytestream) to recall the object later and add it to the scene.   
When called, objects will inherit the prevailing matrix and attributes at the time.

Only primitives may be added to an object and they must all be of the same type.    Objects may not be
nested.

Example
RDCobject *object1 = rdcObjectBegin();

rdcObjectCall

Name
rdcObjectCall - draw a previously defined object

C Binding
RDCvoid rdcObjectCall(const RDCobject *handle)

RDC Binding
rdcObjectCall number

Parameters
handle

a handle to a previously defined object

number
number of a previously defined object

Description
Objects are not added to the scene when they are defined.    They are merely recorded for later use.   
You may even define them before rdcSceneBegin or before a series of frame blocks.    When called,
objects will inherit the prevailing matrix and attributes at the time.

Example
rdcObjectCall(object1);

rdcObjectEnd

Name
rdcObjectEnd - finish defining an object

C Binding
RDCvoid rdcObjectEnd()

RDC Binding
rdcObjectEnd

Description
Turns off the recording of an object started with rdcObjectBegin.    It is an error to end an object without
a previous, unmatched call to rdcObjectBegin.

Example
rdcObjectEnd();

rdcObjectName

Name
rdcObjectName - name an object

C Binding
RDCvoid rdcObjectName(const char *name)

RDC Binding
rdcObjectName name

Parameters
name

name to give the object

Description
For debugging purposes, a name may be associated with an object.    This name will be printed out
with error messages which occur during rendering.    This can help identify which object is causing the
error.

Example
rdcObjectName("teapot");

rdcOpacity

Name
rdcOpacity - Set the current opacity

C Binding
RDCvoid rdcOpacity(const RDCfloat *color)

RDC Binding
rdcOpacity color

Parameters
color

an array array of floats (usually 3) which define an opacity in the current color space

Description
Subsequent primitives will use this opacity as their surface opacity unless it is explicitly overriden in
the primitive's argument list with RDC_OPACITY.

By default, the color space has three components: red, green, and blue.    This may be changed by a
call to rdcColorSpace.    The default opacity is completely opaque: {1, 1, 1}.    Note that opacity may
vary in each color channel.

Example
RDCcolor half = {0.5, 0.5, 0.5};
rdcOpacity(half);

rdcOrientation

Name
rdcOrientation - set the rule for which side is outside

C Binding
RDCvoid rdcOrientation(RDCenum orientation)

RDC Binding
rdcOrientation orientation

Parameters
orientation

desired orientation of surfaces.    Accepted values are RDC_LH, RDC_RH, RDC_INSIDE,
RDC_OUTSIDE, and RDC_REVERSE.

Description
The outside face of a primitive is the side where the normal vector points outward.    It is especially
important to know which side is outside when using rdcBackface.    It could also affect shading, but all
of the built-in surface shaders are careful to shade both the inside and outside surfaces identically.

A reflection transformation, such as rdcScale(-1, 1, 1), reverses the handedness of the current
coordinate space.    The renderer automatically compensates for all such transformations and
preserves the meaning of outside.

The orientation is RDC_LH by default to match the renderer's default coordinate system.    You may
explicitly set the orientation to RDC_LH or RDC_RH, but remember that the important thing is the
relationship to the current coordinate system.    Setting the orientation to RDC_OUTSIDE actually sets
the orientation to RDC_LH or RDC_RH, whichever is the handedness of the current coordinate space.
RDC_INSIDE does the opposite.    RDC_REVERSE toggles the current orientation between RDC_LH
and RDC_RH.

Example
rdcOrientation(RDC_OUTSIDE);

rdcOutputDisplay

Name
rdcOutputDisplay - elect to draw directly to the display

C Binding
RDCvoid rdcOutputDisplay(const char *windowname)

RDC Binding
rdcOutputDisplay windowname

Parameters
windowname

name which will be displayed in the caption bar of the image window

Description
By default, images are rendered to the display in a window named "RenderDotC".    Use this function
to set the name in the caption bar of the image window.

Example
rdcOutputDisplay("Utah Teapot");

rdcOutputFile

Name
rdcOutputFile - direct file output

C Binding
RDCvoid rdcOutputFile(RDCenum format,

const char *filename)

RDC Binding
rdcOutputFile format filename

Parameters
format

the file format of the output file.    May be RDC_TIFF for image files, or RDC_BYTESTREAM for
converting an RDC program to RDC bytestream.

filename
the name of the file to be saved

Description
There are two distinct purposes of this function.

First, is directing the renderer to save the image as a file in a particular graphics file format.    Currently,
the only supported file format is TIFF.    Note that the free demo version is not capable of saving
graphics files and must use rdcOutputDisplay.

Second, when linking with the RDC bytestream output library, this is the way to specify the file name
for the RDC bytestream file.    The default is to send it to stdout, which isn't very useful under Windows.
Make sure this function is called before any other RDC functions to ensure the entire bytestream is
saved in the same file.

Examples
rdcOutputFile(RDC_TIFF, "teapot.tif");
rdcOutputFile(RDC_BYTESTREAM, "teapot.rdc");

rdcOutputSamples

Name
rdcOutputSamples - select which samples should be drawn

C Binding
RDCvoid rdcOutputSamples(RDCenum samples)

RDC Binding
rdcOutputSamples samples

Parameters
samples

which samples should be output to the display or file.    Accepted values are RDC_RGB,
RDC_RGBA, RDC_RGBAZ, RDC_A, RDC_AZ, and RDC_Z.

Description
Any combination of color, alpha, and depth information may be selected for output.    However, device
limitations may result in something less.    For instance, the display device (monitor) is capable of
showing color or depth (as a greyscale), but not both at the same time.    Whenever a device is
incapable of granting your request, RGB will be given preference to A and Z, and A will be given
preference to Z.

A TIFF file is capable of handling all of the combinations.    However, each sample needs to have the
same format.    You may set the format of RGB and A with rdcColorQuantize.    Likewise, the format of
Z is set with rdcDepthQuantize.    If samples of different formats are requested to be output, the lesser
format is promoted to the greater format.    Among integer formats, the one with the greater number of
bits is the greater format.    Floating point is considered greater than any integer format.

Example
rdcOutputSamples(RDC_RGBA);

rdcParaboloid, rdcParaboloidV

Name
rdcParaboloid, rdcParaboloidV - Draw a paraboloid

C Binding
RDCvoid rdcParaboloid(RDCfloat rmax,

RDCfloat zmin,
RDCfloat zmax,
RDCfloat tmax,
...)

RDCvoid rdcParaboloidV(RDCfloat rmax,
RDCfloat zmin,
RDCfloat zmax,
RDCfloat tmax,
RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcParaboloid rmax zmin zmax tmax argumentlist

Parameters
rmax

the radius at the top of the paraboloid (z = zmax)

zmin
where the bottom of the paraboloid will be truncated

zmax
where the top of the paraboloid will be truncated

tmax
sweep angle about Z-axis

argumentlist
see Shading Variables

Description
The apex of the paraboloid lies at the origin, opening upward around the Z-axis.    If zmin is between 0
and zmax, then the apex of the paraboloid is cut off.    tmax can vary from - 360 to +360 to render
sections of the paraboloid.

Variables which vary over the surface (such as RDC_COLOR) must have four components.

Example
RDCcolor fourcolors[4] = {

{0, 0.9, 0.1},
{0, 0, 0.5},
{0.3, 0, 0},
{0.3, 0, 0.3}

};
rdcParaboloid(5.1, 0, 4, -180, RDC_COLOR, (RDCvoid *)fourcolors, RDC_NULL);

rdcPatch, rdcPatchV

Name
rdcPatch, rdcPatchV - draw a bilinear or bicubic patch

C Binding
RDCvoid rdcPatch(RDCenum type,

...)
RDCvoid rdcPatchV(RDCenum type,

RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcPatch type argumentlist

Parameters
type

the type of patch.    Accepted values are RDC_BILINEAR and RDC_BICUBIC.

argumentlist
The argument list must contain at least point information, RDC_POINT, RDC_POINTW or
RDC_HEIGHT.    Also see Shading Variables.

Description
It takes 4 points to specify a bilinear patch and 16 to specify a bicubic patch.    The points are given in
u major order (u varies faster than v).    Note that the order for a bilinear patch is different than that of a
polygon.    Bicubic patches use the basis matrices specified by rdcBasis or rdcCustomBasis.

Example
RDCfloat corners[] = {1, 0, 0, 1};
rdcPatch(RDC_BILINEAR, RDC_HEIGHT, (RDCvoid *)corners, RDC_NULL);

rdcPatchMesh, rdcPatchMeshV

Name
rdcPatchMesh, rdcPatchMeshV - draw a mesh of bilinear or bicubic patches

C Binding
RDCvoid rdcPatchMesh(RDCenum type,
RDCint nu,
RDCenum uwrap,
RDCint nv,
RDCenum vwrap,
...)

RDCvoid rdcPatchMeshV(RDCenum type,
RDCint nu,
RDCenum uwrap,
RDCint nv,
RDCenum vwrap,
RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcPatchMesh type nu uwrap nv vwrap argumentlist

Parameters
type

the type of patches in the mesh.    Accepted values are RDC_BILINEAR and RDC_BICUBIC.

nu
the number of control points in the u direction

uwrap
whether the mesh wraps around in the u direction.    Acceptable values are RDC_WRAP and
RDC_NOWRAP.

nv
the number of control points in the v direction

vwrap
whether the mesh wraps around in the v direction.    Acceptable values are RDC_WRAP and
RDC_NOWRAP.

argumentlist
The argument list must contain at least point information, RDC_POINT, RDC_POINTW or
RDC_HEIGHT.    Also see Shading Variables.

Description
Each patch in the mesh will be rendered just as if it had been specified with rdcPatch.    The number of
control points is nu * nv.    The points are given in u major order (u varies faster than v).    Bicubic
patches use the basis matrices specified by rdcBasis or rdcCustomBasis.

Patches may wrap around in the u direction, v direction, or both.    When wrapping around, 1 to 3 rows
(or columns) of control points from the beginning will be used again at the end.    The actual number
repeated depends on the step of the basis matrix.

The total number of patches depends on type, uwrap, vwrap, and the steps of the basis matrices.

Example
RDCpoint points[28];
RDCpoint two_pts[2];
RDCcolor six_colors[6];
rdcPatchMesh(RDC_BICUBIC, 7, RDC_NOWRAP, 4, RDC_NOWRAP,

RDC_POINT, (RDCvoid *)points,
RDC_PLANE, (RDCvoid *)two_pts,
RDC_COLOR, (RDCvoid *)six_colors,
RDC_NULL);

rdcPerspective

Name
rdcPerspective - transform by a perspective matrix

C Binding
RDCvoid rdcPerspective(RDCfloat fov)

RDC Binding
rdcPerspective fov

Parameters
fov

the field of view in degrees

Description
The current transformation matrix is premultiplied by a perspective matrix.    The perspective matrix is
formed from the field of view fov, near clipping plane at distance 1, and far clipping plane at
RDC_INFINITY.    Depth values between the clipping planes are projected to the range 0 to 1 in a
nonlinear fashion.

You may achieve your own perspective view by using rdcViewIdentity and rdcPerspective.    However,
this is not recommended because of the poor, nonlinear mapping of depth values.

Example
rdcPerspective(15);

rdcPolygon, rdcPolygonV

Name
rdcPolygon, rdcPolygonV - draw a convex polygon

C Binding
RDCvoid rdcPolygon(RDCint nverts,

...)
RDCvoid rdcPolygonV(RDCint nverts,

RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcPolygon nverts argumentlist

Parameters
nverts

the number of vertices in the polygon

argumentlist
The argument list must contain at least point information, RDC_POINT.    There must be nverts
points.    Also see Shading Variables.

Description
The polygon must be planar and convex.    For concave polygons or polygons with holes, use
rdcGeneralPolygon.    For non-planar quadrilaterals, see the bilinear variety of rdcPatch.

Example
RDCpoint points[] = {{0, 0, 0}, {0, 1, 0}, {1, 1, 0}, {1, 0, 0}};
rdcPolygon(4, RDC_POINT, (RDCvoid *)points, RDC_NULL);

rdcPolygonMesh, rdcPolygonMeshV

Name
rdcPolygonMesh, rdcPolygonMeshV - draw a mesh of convex polygons

C Binding
RDCvoid rdcPolygonMesh(RDCint npolys,

const RDCint *nverts,
const RDCint *verts,
...)

RDCvoid rdcPolygonMeshV(RDCint npolys,
const RDCint *nverts,
const RDCint *verts,
RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcPolygonMesh npolys nverts verts argumentlist

Parameters
npolys

number of polygons in the mesh

nverts
number of vertices in each polygon.    There must be npolys entries in this array.

verts
indeces into the vertex array.    There must be as many entries in this array as the sum of all the
entries in nverts.    Since polygons in the mesh may share vertices, a set of actual vertices need
only be declared once (in the argument list).    The vertices for each polygon are then specified as
indeces into the actual vertex array.

argumentlist
The argument list must contain at least point information, RDC_POINT.    There must be as many
points as the largest value in verts plus one.    Also see Shading Variables.

Description
All polygons in the mesh are drawn as if they had been specified individually with rdcPolygon.    The
polygons must all be planar and convex.    For concave polygons or polygons with holes, use
rdcGeneralPolygonMesh.    For non-planar quadrilaterals, see the bilinear variety of rdcPatchMesh.

Example
RDCint nverts[] = {3, 3, 3};
RDCint verts[] = {0, 3, 2, 0, 1, 3, 1, 4, 3};
RDCpoint points[] = {{0, 1, 1}, {0, 3, 1}, {0, 0, 0}, {0, 2, 0}, {0, 4, 0}};
RDCcolor five_colors[] = {{0, 0.6, 0.1}, {0, 0.3, 0.1}, {0, 0, 0}, {0, 0.2, 0}, {0, 0.4, 0}};
rdcPolygon(3, nverts, verts,

RDC_POINT, (RDCvoid *)points,
RDC_COLOR, (RDCvoid *)five_colors,
RDC_NULL);

rdcProcedural

Name
rdcProcedural - draw a procedural primitive

C Binding
RDCvoid rdcProcedural(RDCvoid *data,

const RDCfloat *bound,
RDCsubdivideFunc subdivfunc,
RDCfreeFunc freefunc)

RDC Binding
none

Parameters
data

a pointer to a block of user data

bound
the bounding box of the primitive in object space.    All derived primitives must lie within this box.

subdivfunc
the procedure to subdivide the primitive into smaller procedural primitives or into any various non-
procedural primitives.    The required signature is:

RDCvoid subdividefunc(RDCvoid *data, RDCfloat area)
where data is the pointer to the user data and area is the on-screen area of the primitive in pixels.

freefunc
a procedure to free the data when no longer needed.    The required signature is:

RDCvoid freefunc(RDCvoid *data)
where data is the pointer to the user data.

Description
Allows user to define a primitive by a procedure which is called during rendering.

The user specified bounding box is used to determine when the portion of the image containing the
procedural primitive is being rendered.    Then the user's subdivide function is called with the data
pointer and on-screen area, in pixels, as arguments.

The subdivide function may call rdcProcedural again with smaller models, define other primitives, or
both.    The recursive nature of calling rdcProcedural from the subdivide function must terminate
eventually, even if the area is always RDC_INFINITY.    This is important for the case when you are
generating an RDC bytestream and the actual on-screen area is unknown.

The free function is usually called immediately after the subdivide function.    Therefore, the same data
pointer should not be passed back to rdcProcedural from within the subdivide function.    Otherwise,
the free function will be called more than once on the same data pointer.    This is fine if your free
function does nothing, of course.

rdcProjectPoints

Name
rdcProjectPoints - project points from one coordinate space to another

C Binding
RDCpoint *rdcProjectPoints(RDCquark fromspace,

RDCquark tospace,
RDCint n,
RDCpoint *points)

RDC Binding
none

Parameters
fromspace

quark representing the coordinate space to project from

tospace
quark representing the coordinate space to project to

n
the number of points being projected

points
an array of points to be projected

Description
Projects points from one coordinate space to another.    If the projection is successful, points
is returned, now containing the projected points.    If the transformation is unsuccessful, for instance,
because of a non-invertible matrix, NULL is returned.

The quarks fromspace and tospace may either be built-in coordinate spaces or user defined spaces or
one of each.    The built-in coordinate spaces are RDC_RASTER, RDC_IMAGE, RDC_EYE,
RDC_WORLD, and RDC_MODEL.    User defined coordinate spaces are created with rdcMarkSpace.

Example
RDCpoint five_pts[5];
rdcProjectPoints(RDC_EYE, myspace, 5, five_pts);

rdcQuark

Name
rdcQuark - define a new quark

C Binding
RDCquark rdcQuark(const char *string)

RDC Binding
rdcQuark string

Parameters
string

the string which the new quark will represent

Description
This is how the user may extend the set of quarks by defining new ones.    See the discussion on
quarks.

Example
rdcQuark("GlowLight");

rdcRasterAspect

Name
rdcRasterAspect - specify the aspect ratio of the physical pixels

C Binding
RDCvoid rdcRasterApsect(RDCfloat aspect)

RDC Binding
rdcRasterAspect aspect

Parameters
aspect

the physical pixel aspect ratio (width divided by height)

Description
The default raster aspect ratio is 1, which represents square pixels.    If you are rendering an image for
a specific piece of hardware which does not have square pixels, set the raster aspect ratio to the
actual pixel width divided by the actual pixel height.

Example
rdcRasterAspect(.667);

rdcRasterViewport

Name
rdcRasterViewport - set the viewport

C Binding
RDCvoid rdcRasterViewport(RDCint left,

RDCint right,
RDCint top,
RDCint bot)

RDC Binding
rdcRasterViewport left right bottom top

Parameters
left

the left edge of the viewport in raster coordinates

right
the right edge of the viewport in raster coordinates

top
the top edge of the viewport in raster coordinates

bot
the bottom edge of the viewport in raster coordinates

Description
The viewport is the rectangle on the display where the rendered image is shown (often called a
"window", which used to mean something else).    The total width of the image in pixels will be right -
left + 1.    For an image 640 pixels wide, use a value of right which is 639 greater than left.

left and top are usually both 0.    When rendering to the display under Windows, they are both ignored
and the viewport is opened in the default position with the given width and height.    When saving to a
TIFF, however, the left and top coordinates are correctly stored.    It is then up to the tool which reads
the TIFF file to correctly intrepret the data.

The default values are 0, 639, 0, and 479.

Example
rdcRasterViewport(0, 199, 0, 124);

rdcRotate

Name
rdcRotate - transform by a rotate matrix

C Binding
RDCvoid rdcRotate(RDCfloat angle,

RDCfloat dx,
RDCfloat dy,
RDCfloat dz)

RDC Binding
rdcRotate angle dx dy dz

Parameters
angle

the angle of rotation in degrees

dx
x component of the axis of rotation

dy
y component of the axis of rotation

dz
z component of the axis of rotation

Description
Premultiplies the current transformation matrix by a rotation matrix.    The axis of rotation goes from the
origin through the point (dx, dy, dz).    The angle is in degrees.    If the current coordinate space is left
handed (the default), then the rotation follows the left-hand rule.

Example
rdcRotate(30, 1, 0, 0);

rdcSampleAdaptive

Name
rdcSampleAdaptive - select adaptive sampling

C Binding
RDCvoid rdcSampleAdaptive(RDCfloat variation)

RDC Binding
rdcSampleAdaptive variation

Parameters
variation

the maximum allowable estimated variance between the true color a pixel should be and the
approximated color

Description
By default, adaptive sampling is off and four supersamples are taken at each pixel, as in
rdcSampleUniform(2, 2).    With adaptive sampling on, a different number of supersamples may be
taken for each pixel, depending on the complexity of the scene at that pixel.    Areas of constant color,
for example, will need fewer samples than at an edge where color changes dramatically.

You specify how accurate the result must be with the argument variation.    Assuming that colors range
from 0 to 1 before quantization and 0 to 255 after, a variation of 1.0/255.0 means that the estimated
color should be within one quantization level of the true color.    Of course, if the renderer knew for sure
what the true color was, it would use it.    Instead, it uses statistical methods to achieve a 99%
probability that the threshhold is met.

The good news is that adaptive sampling puts the effort where it is most needed.    The bad news is
that it takes some effort to determine that a pixel is uninteresting and needn't be sampled further.    A
minimum of 8 samples are taken per pixel.    That's twice more than the default 2 by 2 uniform
sampling.    You will usually get better performance even with 3 by 3 uniform sampling.    Consider
adaptive sampling only if the quality is not sufficient.

Example
rdcSampleAdaptive(1.0/255.0);

rdcSampleJitter

Name
rdcSampleJitter - control random jitter applied to sample locations

C Binding
RDCvoid rdcSampleJitter(RDCfloat ampl)

RDC Binding
rdcSampleJitter ampl

Parameters
ampl

amplitude of the jitter sampling

Description
Used with uniform sampling to add some randomness to the location of the supersamples.    Evenly
spaced samples are subject to aliasing, even if applied at the subpixel level.    Jitter sampling
approximates a Poisson distribution, replacing aliasing with noise.

A supersample is initially placed at the center of a cell.    The x and y positions are then jittered by a
random number between -0.5 and +0.5 times the width of the cell times the jitter amplitude.    The
default amplitude is 0.5, which places the sample somewhere between 25% and 75% across the cell.

Example
rdcSampleJitter(1);

rdcSampleUniform

Name
rdcSampleUniform - Select uniform sampling

C Binding
RDCvoid rdcSampleUniform(RDCfloat xsamples,

RDCfloat ysamples)

RDC Binding
rdcSampleUniform xsamples ysamples

Parameters
xsamples

specifies the sampling rate in the x direction

ysamples
specifies the sampling rate in the y direction

Description
Uniform sampling causes supersamples to be taken the same way for each pixel.    The number of
samples per pixel is xsamples * ysamples.    Each pixel is subdivided into an xsamples by ysamples
grid of cells.    Then, a sample is placed at the center of each cell and jittered by the amount specified
in rdcSampleJitter.

The default for xsamples and ysamples is 2.    Sampling rates less than 1 are clamped to 1.    The
alternative to uniform sampling is adaptive sampling.

Example
rdcSampleUniform(3, 3);

rdcScale

Name
rdcScale - Apply a scale transformation

C Binding
RDCvoid rdcScale(RDCfloat sx,

RDCfloat sy,
RDCfloat sz)

RDC Binding
rdcScale sx sy sz

Parameters
sx

the x component of scaling

sy
the y component of scaling

sz
the z component of scaling

Description
Premultiplies the current transformation matrix by a scale matrix.    The x component of all points is
multiplied by sx.    Likewise for sy and sz.

A reflection scale such as rdcScale(-1, 1, 1) reverses the handedness of the current coordinate
system.    The handedness of the current coordinate system is tracked by the renderer so that the
sense of "outside" is preserved.

Example
rdcScale(0.1, 2, 3.1);

rdcSceneBegin

Name
rdcSceneBegin - start describing scene

C Binding
RDCvoid rdcSceneBegin()

RDC Binding
rdcSceneBegin

Description
This is the dividing line between setting parameters and defining primitives.    Parameters may only be
set before rdcSceneBegin and primitives may only be defined between rdcSceneBegin and
rdcSceneEnd.    There should be exactly one scene block per frame.    Scene blocks may not be
nested.

Example
rdcSceneBegin();

rdcSceneEnd

Name
rdcSceneEnd - finish describing scene

C Binding
RDCvoid rdcSceneEnd()

RDC Binding
rdcSceneEnd

Description
When all of the primitives have been added to the scene, rdcSceneEnd performs the actual rendering.
Rendering starts when you call rdcSceneEnd and finishes before it returns.    It is an error to call
rdcSceneEnd without a previous unmatched call to rdcSceneBegin or if there is an intervening call to a
state changing function (i.e. rdcAttributePush) which has not been properly nested.

Example
rdcSceneEnd();

rdcShadingModel

Name
rdcShadingModel - select how polygons will be colored

C Binding
RDCvoid rdcShadingModel(RDCenum type)

RDC Binding
rdcShadingModel type

Parameters
type

method of coloring polygons.    Accepted values are RDC_FLAT and RDC_GOURAUD.

Description
The renderer adaptively tesselates surfaces to polygonal facets which meet the constraints set by
rdcShadingRate and rdcFlatness.    Typically these facets are very small, on the order of 1/4 pixel.    At
such a small size, it is usually acceptable to compute a single color for the facet, since it will just be
sampled and filtered with the neighboring polygons anyway.

However, if you loosen the constraints in rdcShadingRate and/or rdcFlatness, you may see the
polygonal facets as large polygons in the image.    A relatively inexpensive way to improve the quality
of such an image is to use Gouraud shading.

By default, the shading model is RDC_FLAT, with a single color and opacity being used for a facet.   
With RDC_GOURAUD, four colors/opacities are computed for each facet and are then linearly
interpolated across the face.

Example
rdcShadingModel(RDC_GOURAUD);

rdcShadingRate

Name
rdcShadingRate - set minimum tesselation threshhold for shading

C Binding
RDCvoid rdcShadingRate(RDCfloat size)

RDC Binding
rdcShadingRate size

Parameters
size

the area, in pixels, of the largest acceptable polygonal facet

Description
The renderer adaptively subdivides surfaces into polygonal facets, each of which is shaded once.    It
tries to make the facets equal in area in raster space, so that surfaces perpendicular to the viewing
direction are subdivided more than those which are nearly parallel to the viewing direction.    This puts
the shading effort to best use.

rdcShadingRate sets the maximum allowable area in pixels for a polygonal facet.    Surfaces will be
shaded at least as often as the given size.    The default value is 0.25, which means surfaces are
shaded four times per pixel (the Nyquist limit).    Note that this is not the same as the uniform sampling
rate.

If your model consists entirely of constant or diffuse shaded polygons and ambient and/or distant
lights, then it is perfectly logical to set the shading rate to RDC_INFINITY.    This way, your polygon
primitives will be shaded the fewest times without sacrificing quality (this sort of scene is rather crude
to begin with).

The other constraint which affects facet size is rdcFlatness.

Example
rdcShadingRate(1);

rdcSkew

Name
rdcSkew - apply a skew transformation

C Binding
RDCvoid rdcSkew(RDCfloat angle,

RDCfloat dx1,
RDCfloat dy1,
RDCfloat dz1,
RDCfloat dx2,
RDCfloat dy2,
RDCfloat dz2)

RDC Binding
rdcSkew angle dx1 dy1 dz1 dx2 dy2 dz2

Parameters
angle

specifies the angle of skew in degrees

dx1
the x component of the source vector

dy1
the y component of the source vector

dz1
the z component of the source vector

dx2
the x component of the destination vector

dy2
the y component of the destination vector

dz2
the z component of the destination vector

Description
rdcSkew applies a skew transformation by shifting all points along lines parallel to (dx2, dy2, dz2).   
Points along (dx1, dy1, dz1) are mapped onto the vector (x, y, z), where angle specifies the angle
between (dx1, dy1, dz1) and (x, y, z).    It is an error to specify an angle that is greater than or equal to
the angle between them.    An error also occurs if a negative angle is less than 180° minus the angle
between the two axes.

Example
rdcSkew(10, 1, 1, 1, 2, 1, 2);

rdcSphere, rdcSphereV

Name
rdcSphere, rdcSphereV - draw a sphere

C Binding
RDCvoid rdcSphere(RDCfloat radius,

RDCfloat zmin,
RDCfloat zmax,
RDCfloat tmax,
...)

RDCvoid rdcSphereV(RDCfloat radius,
RDCfloat zmin,
RDCfloat zmax,
RDCfloat tmax,
RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcSphere radius zmin zmax tmax argumentlist

Parameters
radius

the radius of the sphere

zmin
if greater than -radius, where to truncate the bottom of the sphere

zmax
if less than radius, where to truncate the top of the sphere

tmax
sweep angle about Z-axis

argumentlist
see Shading Variables

Description
The sphere is center at the origin with the given radius.    tmax ranges from -360 to 360.    If tmax is
anywhere in between, the sides are open.    If zmin > -radius or zmax < radius, the bottom or top of the
sphere is also open.

Example
rdcSphere(3, -2, 2.5, 360, RDC_NULL);

rdcSurface, rdcSurfaceV

Name
rdcSurface, rdcSurfaceV - specify surface type

C Binding
RDCvoid rdcSurface(RDCquark name,

...)
RDCvoid rdcSurfaceV(RDCquark name,

RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcSurface name argumentlist

Parameters
name

Name of the surface shader.    Accepted values are RDC_CONSTANT, RDC_DIFFUSE,
RDC_METAL and RDC_PLASTIC.

argumentlist
The argument list depends upon name as described below.

Description
rdcSurface applies a surface shader to subsequently defined primitives.    The shader is evaluated at
least once for each polygonal facet whose size is determined from rdcShadingRate and rdcFlatness.

Constant
rdcSurface(RDC_CONSTANT,

RDC_NULL);

This shader takes no argument list (but it still must be terminated by RDC_NULL).    The current color
and opacity are used as the shaded output color without regard to any light sources.

Diffuse
RDCfloat ka = 1;
RDCfloat kd = 1;
rdcSurface(RDC_DIFFUSE,

RDC_KA, (RDCvoid *)&ka,
RDC_KD, (RDCvoid *)&kd,
RDC_NULL);

This shader takes two arguments: the coefficients of ambient and diffuse lighting.    Incident ambient
light is scaled by RDC_KA, diffuse by RDC_KD.    The default values are shown in the example above.
Diffuse surfaces (also called Lambertian and matte) are not shiny at all.    This shader does not take
into account the position of the viewer, only the position of the surface with respect to the lighting
conditions.

Metal
RDCfloat ka = 1;
RDCfloat ks = 1;
RDCfoat roughness = 0.1;
rdcSurface(RDC_METAL,

RDC_KA, (RDCvoid *)&ka,
RDC_KS, (RDCvoid *)&ks,

RDC_ROUGHNESS, (RDCvoid *)&roughness,
RDC_NULL);

This surface has only ambient and specular components.    The coefficients of which are given by
RDC_KA and RDC_KS, respectively.    RDC_ROUGHNESS controls the sharpness of the specular
highlight.    Low values give a sharp highlight point.    The above examples shows all the default values.

Plastic
RDCfloat ka = 1;
RDCfloat kd = 0.5;
RDCfloat ks = 0.5;
RDCfloat roughness = 0.1;
RDCcolor specularcolor = {1, 1, 1};
rdcSurface(RDC_PLASTIC,

RDC_KA, (RDCvoid *)&ka,
RDC_KD, (RDCvoid *)&kd,
RDC_KS, (RDCvoid *)&ks,
RDC_ROUGHNESS, (RDCvoid *)&roughness,
RDC_SPECULARCOLOR, (RDCvoid *)specularcolor,
RDC_NULL);

Plastic is the combination of all of the above shaders.    It has ambient, diffuse, and specular
components scaled by RDC_KA, RDC_KD, and RDC_KS, respectively.    RDC_ROUGHNESS
controls the sharpness of the specular highlight.    Low values give a sharp highlight point.    The color
of the specular highlight on plastic is not affected by the surface color at all.    Instead, it is the product
of the light color and RDC_SPECULARCOLOR.

rdcTorus, rdcTorusV

Name
rdcTorus, rdcTorusV - draw a torus

C Binding
RDCvoid rdcTorus(RDCfloat majrad,

RDCfloat minrad,
RDCfloat phimin,
RDCfloat phimax,
RDCfloat tmax,
...)

RDCvoid rdcTorusV(RDCfloat majrad,
RDCfloat minrad,
RDCfloat phimin,
RDCfloat phimax,
RDCfloat tmax,
RDCint n,
const RDCquark *quarks,
RDCvoid *const *parms)

RDC Binding
rdcTorus majrad minrad phimin phimax tmax argumentlist

Parameters
majrad

the distance from the origin to the center of the tube

minrad
the distance from the center of the tube to the surface

phimin
when orbiting the minor radius, where to begin defining surface

phimax
when orbiting the minor radius, where to end defining surface

tmax
sweep angle about Z-axis

argumentlist
see Shading Variables

Description
The torus is defined in the X-Y plane around the origin.    If the difference of phimax and phimin is less
than 360, there will be an open groove running around the "length" of the torus.    If the difference of
phimax and phimin is greater than 360, phimax will be adjusted so that the difference is exactly 360.   
tmax ranges from -360 to 360.    If tmax is anywhere in between, the length of the torus will not
completely wrap around.

Example
rdcTorus(0.5, 1, 0, 360, 360, RDC_NULL);

rdcTranslate

Name
rdcTranslate - apply a translate transformation

C Binding
RDCvoid rdcTranslate(RDCfloat dx,

RDCfloat dy,
RDCfloat dz)

RDC Binding
rdcTranslate dx dy dz

Parameters
dx

x component of translation vector

dy
y component of translation vector

dz
z component of translation vector

Description
Premultiplies the current transformation matrix by a translation matrix.    dx is added to the x
component of all points.    Likewise for dy and dz.

Example
rdcTranslate(1.2, 2, 3.1);

rdcTune

Name
rdcTune - tune rendering parameters for better performance

C Binding
RDCvoid rdcTune(RDCint maxtess,

RDCint xbucket,
RDCint ybucket)

RDC Binding
rdcTune maxtess xbucket ybucket

Parameters
maxtess

maximum allowable tesselation

xbucket
x dimension of buckets in pixels

ybucket
y dimension of buckets in pixels

Description
Tunes the rendering parameters to utilize your memory configuration for better rendering performance.
maxtess has to do with the way the renderer adaptively tesselates primitives into polygonal facets.   
xbucket and ybucket are the sizes of the rectangular regions on the screen which the renderer
processes one at a time.

If you notice thrashing on your hard disk, you should set these values down to minimize your rendering
time.    If you rarely need to swap memory pages to the hard disk, then setting theses values up may
improve performance.    This function has no effect on quality.    The default values for maxtess,
xbucket, and ybucket are 32, 12, and 12, respectively.

Example
rdcTune(16, 10, 10);

rdcViewIdentity

Name
rdcViewIdentity - use the identity viewing projection

C Binding
RDCvoid rdcViewIdentity()

RDC Binding
rdcViewIdentity

Description
The identity matrix may be used as the viewing projection matrix.    If so, the user is responsible for
mapping depth values to the range 0 to 1 and any projections such as perspective.    This function
saves the current coordinate space as the RDC_EYE space and resets the current transformation
matrix to the identity.

The default view is orthographic.

Example
rdcViewIdentity();

rdcViewOrthographic

Name
rdcViewOrthographic - use an orthographic viewing projection

C Binding
RDCvoid rdcViewOrthographic()

RDC Binding
rdcViewOrthographic

Description
The orthographic projection simply maps depth values between the near and far clipping plane linearly
to the range 0-1 and leaves x and y coordinates unchanged.    It saves the current coordinate space as
the RDC_EYE space and resets the current transformation matrix to the identity.

This is the default view.    However, it is still a good idea to use this function to separate eye space
from world space.

Example
rdcViewOrthographic();

rdcViewPerspective

Name
rdcViewPerspective - use a perspective viewing projection

C Binding
RDCvoid rdcViewPerspective(RDCfloat fov)

RDC Binding
rdcViewPerspective fov

Parameters
fov

the field of view in degrees

Description
The perspective projection maps the space filling the field of view to the square between -1 and 1 on
the image plane.    It also maps depth values between the near and far clipping plane linearly to the
range 0-1.    fov must be less than 180.

The default view is orthographic.

Example
rdcViewPerspective(40);

