Oracle7 Server SQL Reference

Oracle7™ Server SQL Reference

CHAPTER 1. Introduction

CHAPTER 2. Elements of Oracle7 SQL

CHAPTER 3. Operators, Functions, Expressions, Conditions
CHAPTER 4. Commands

APPENDIX A. Differences From Previous Versions
APPENDIX B. Oracle and Standard SQL

APPENDIX C. Operating System-Specific Dependencies

This help file created via:

Oracle Book to Microsoft Help Version 1.0w
© 1994 Oracle Corporation Inc.

Authored by KM .

Oracle Client Software Manager

Preface

Chapter 1 Introduction

Chapter 2 Elements of Oracle7 SQL

Chapter 3 Operators, Functions, Expressions, Conditions
Chapter 4 Commands

Appendix A Differences From Previous Versions
Appendix B Oracle and Standard SQL

Appendix C Operating System - Specific Dependencies

Oracle7™ Server SQL Reference

Release 7.2

Part No. A20325-2

ORACLE"

Primary Author: Brian Linden
Contributing Author: Brian Quigley

Contributors: Andrea Borr, Bill Bridge, Geroge Chang, Stephen Faris, John Frazzini, Jyotin Gautam,
Gary Hallmark, Michael Hartstein, Terry Hayes, Merrill Holt, Ken Jacobs, Jonathan Klein, Bob Kooi,
Andrew Mendelsohn, Mark Moore, Maria Pratt, Hari Sankar, Phil Shaw, Marc Simon, Lynne Thieme,
Randall Whitman

Preface

This manual contains a complete description of the Structured Query Language (SQL) used to manage
information in an Oracle7 database.

Oracle7 SQL is a superset of the American National Standards Institute (ANSI) and the International
Standards Organization (ISO) SQL92 standard at entry level conformance.

This manual notes any features that require the distributed option, Parallel Server option, Parallel Query
option, or PL/SQL to be installed. Also noted are parts of Oracle7 SQL that are only used with the Trusted

Oracle7 Server. For information on PL/SQL, Oracle's procedural language extension to SQL, see PL/SQL
User's Guide and Reference.

Brief descriptions of Oracle7 embedded SQL are included in this manual. Detailed descriptions of Oracle7
embedded SQL can be found in Programmer's Guide to the Oracle Precompilers.

BT T | ST

1 []
Oracle7 Server Adminisbrator's Guide . Oracle? Server Concepls . Oracle? Server Applicalion
Developer's Guide
1 []
Oracle? Server Ulilities . Oracle? Server Migraion . -
PLISOL User’s Guide and Reference
1 []
Server Hanager Documentation 1 Oracle? Server Tuning * ' | Programmer’s Guide bo te
. . Oracle Call Interface
\ Oracle? Server Messages \
\ \ Programmer’s Guide bo the
Oracle? Server SOL Reference Ovacle Gall Interface for Ada
1 []
L} [] _
Oracle? Server Reference Languages Documentation
1 []

Parallel Server oplion SOL*Module User's Guide

1 [|
Oracle7 Parallel Server
! ! Prngrammer’s Guide to e

Pro*GICH Precompiler

diskibuted oplion

o Programmer's Guide to the
' Oracle? Server Diskibubed ' Pro*Ada Precompiler
' Systems, Yol | .

' Programmer’s Guide to the
Oracle Precompilers

(I replication oplion [
' Oracle? Server Disbribubed ' Pro*COBOL Supplement to the
' Systems, Vol ll ' Oracle Precompilers Guide

o Trusted Oracle? ' Pro*FORTRAN Supplement bo the

\ \ Oracle Precompilers Guide
Trusted Oracle? Adminishrator’s Guide
Grey box denobes ['

documentation For

:
other products ' b Tools Documentation
5 : :
x paralikel query o oo s | Hebwork Products Documenkaion .:- I e L LT 7
Encumented i Drack? %
Serer Tuning T g "

Figure 1. Oracle Server Documentation Set and Related Documents

Reading Guide to the Oracle7 Server Library

This section describes the Oracle7 Server library and helps you decide which manuals in the library to
read. It also recommends reading paths, which are diagramed in Figure 1.

Manuals for All Users

All users should begin with the manuals at the top of the diagram, Oracle7 Server Concepts and Oracle7
Server Migration. Oracle7 Server Concepts gives a brief description of each Oracle7 feature and presents
the concepts that a new user must understand before reading other manuals. Oracle7 Server Migration
lists the differences between each release of the Oracle Server. Current users should read Oracle7
Server Migration before upgrading to new releases of Oracle.

Administrator and Developer Paths

After reading Oracle7 Server Concepts and/or Oracle7 Server Migration, the reading path splits into the
"Database Administrator's Path" and the "Application Developer's Path." Choose the appropriate path (or
paths) for the tasks you need to do. For example, backing up the database is an administrative task, so it
is documented in the Oracle7 Server Administrator's Guide. However, creating stored procedures is an
application developer's task, so it is documented in the Oracle7 Server Application Developer's Guide.

Whichever path you follow, you might need to refer to the Oracle Network Products documentation. If you
use Oracle in a networked environment (either client/server or distributed database), you use SQL*Net
and other network products. For more information, see your Network Products documentation.

Administrator's Path

Typically, database administrators do a set of tasks related to the maintenance, security, and performance
of the database. The manuals in the Administrator's Path explain the role of the database administrator
and describe in detail how to do administrator's tasks.

Database administrators should become familiar with the Oracle7 Server Administrator's Guide. This
manual contains most of the information that a database administrator needs. Oracle7 Server Utilities
describes the auxiliary utilities provided with the Oracle Server, such as SQL*Loader, the Import utility,
and the Export Utility.

Another manual that might be useful to database administrators is the Oracle Server Manager User's
Guide. Server Manager is a graphical user interface for doing administrative tasks. If you are using Server
Manager, you should refer to the Oracle Server Manager User's Guide.

Application Developer's Path

As an application developer, you should learn about the many Oracle7 features that can ease application
development and improve performance.

The Oracle7 Server Application Developer's Guide describes all the Oracle7 Server features that relate to
application development. The PL/SQL User's Guide and Reference describes PL/SQL, a high-level
programming language, which is Oracle Corporation's procedural extension to SQL. The Programmer's
Guide to the Oracle Call Interface describes the Oracle Call Interface, with which you can build third-
generation language (3GL) applications that access Oracle.

Oracle Corporation also provides the Pro* series of 3GL precompilers, which allow you to embed SQL
and PL/SQL in your application programs. If you program in Ada, C/C++, COBOL, or FORTRAN, refer to
the corresponding precompiler manual. For example, if you program in C or C++, refer to the

Programmer's Guide to the Oracle Pro*C/C++ Precompiler.
Oracle CDE is a cooperative development environment that provides several tools including a form

builder, reporting tools, and a debugging environment for PL/SQL. If you use Oracle CDE, refer to the
appropriate Tools documentation.

Reference Manuals for All Users

Certain manuals provide reference material and guidance for both database administrators and
application developers. After reading the appropriate manuals in each user path, you might want to refer
to one of the reference manuals from time to time.

Oracle7 Server Tuning shows you how to diagnose performance problems and take corrective action.
Oracle7 Server Messages lists all the messages and codes that Oracle can return. Oracle7 Server SQL
Reference provides syntax diagrams and usage notes for all SQL used with the Oracle Server. Oracle7

Server Reference describes the Oracle data dictionary tables, initialization parameters, national language
support features, and so on.

Manuals for Oracle Options
You can purchase the Oracle Server with several options, which are described in separate manuals. If
you purchased Oracle with one or more options, besides reading other manuals in the Oracle7 Server

library, you should read the manuals that describe those options. For example, the manual that describes
the Parallel Server option is Oracle7 Parallel Server.

Other Information

Oracle Corporation also publishes a file commonly named README.DOC, which is available on your
distribution media. This file describes differences between minor releases of Oracle software that are not
documented in new manuals. The exact name and location of this file vary by operating system. Read this
file to learn about software changes that are not documented in the manuals.

For system-specific information about the Oracle Server, see your installation or user's guide and any
available system release bulletins.

Audience

This Manual is intended for all users of Oracle7 SQL.

How this Manual is Organized
This Manual is divided into the following parts:

Chapter 1: Introduction--This chapter defines SQL and describes its history as well as the advantages of
using it to access relational databases.

Chapter 2: Elements of Oracle7 SQL--This chapter describes the basic building blocks of an Oracle7
database and the Oracle7 SQL.

Chapter : Operators, Functions, Expressions, Conditions--This chapter describes how to use SQL
operators and functions to combine data into expressions and conditions.

Chapter 4: Commands--This chapter lists and describes all of the SQL commands in alphabetical order.

Appendix A: Differences From Previous Versions--This appendix lists differences in Release 7.2 and

previous releases of Oracle7 SQL.

Appendix B: Oracle7 and Standard SQL--This appendix describes Oracle7 compliance with ANSI and
ISO standards and lists Oracle7 extensions beyond the standards.

Appendix C: Operating System-Specific Dependencies--This appendix notes places in this manual
referring to operating system-specific documentation.

Conventions Used in this Manual
This section explains the conventions used in this Manual including:
e icons
e text
¢ syntax diagrams and notation
e examples
e example data
Icons
This manual uses the following icons:

Additional Information: This icon indicates information that is contained within Oracle operating system-
specific documentation. Such references are noted in Appendix C.

Warning: This icon warns you of a possible danger when using a feature.
Text
The text in this manual adheres to the following conventions:

UPPERCASE Uppercase text is used to call attention to names of Oracle7 tools commands, keywords,
filenames, and initialization parameters.
italics Italicized text is used call to attention to definitions of terms and parameters of SQL commands.

Syntax Diagrams and Notation

The syntax diagrams and notation in this manual show the complete syntax for SQL commands,
functions, and other elements. This section describes syntax diagrams and gives examples of how to
write SQL statements. Syntax diagrams are made up of these items:

Keywords Keywords are words that have special meanings in the SQL language. In the syntax
diagrams in this manual, keywords appear in uppercase. You must use keywords in your SQL statements
exactly as they appear in the syntax diagram, except that they can be either uppercase or lowercase. For
example, you must use the CREATE keyword to begin your CREATE TABLE statements just as it
appears in the CREATE TABLE syntax diagram.

Parameters Parameters act as place holders in syntax diagrams. They appear in lowercase.
Parameters are usually names of database objects, Oracle7 datatype names, or expressions. When you
see a parameter in a syntax diagram, substitute an object or expression of the appropriate type in your
SQL statement. For example, to write a CREATE TABLE statement, use the name of the table you want
to create, such as EMP, in place of the table parameter in the syntax diagram. Note that parameter names

appear in italics in the text.

This lists shows parameters that appear in the syntax diagrams in this manual and examples of the
values you might substitute for them in your statements:

Parameter
table

‘text’

char

condition

dated

expr

integer

label

number mn

raw

Description

The substitution value must be
the name of an object of the
type specified by the
parameter. For a list of all
types of objects, see the
section, "Schema Objects" on
page 2 - 2.

The substitution value must be
a single character from your
database character set.

The substitution value must be
a text string in single quotes.
See the syntax description of
‘text' on page 2 - 17.

The substitution value must be
an expression of datatype
CHAR or VARCHAR2 or a
character literal in single
quotes.

The substitution value must be
a condition that evaluates to
TRUE or FALSE. See the
syntax description of condition
The substitution value must be
a date constant or an
expression of DATE datatype.
The substitution value can be
an expression of any datatype
as defined in the syntax
description of expr.

The substitution value must be
an integer as defined by the
syntax description of integer
on page 2 - 18.

The substitution value must be
an expression of datatype
MLSLABEL. For information
on such expressions, see the
Trusted Oracle7 Server
Administration guide.

The substitution value must be
an expression of NUMBER
datatype or a number constant
as defined in the syntax
description of number on page
2-19.

The substitution value must be
an expression of datatype
RAW.

Examples
emp

Ts

'Employee records'

ename'Smith’

ename >'A'

TO_DATE('01-Jan-1994','DD-
MON-YYYY")

sal + 1000

72

TO_LABEL('SENSITIVE:ALPH
A)

AVG(sal)15 * 7

HEXTORAW('7D')

rowid The substitution value must be 00000462.0001.0001
an expression of datatype

ROWID.
subquery The substitution value must be SELECT ename
a SELECT statement, which FROM emp

will be used in another SQL
statement. See the syntax
description of subquery on
page 4 - 432.
:host_variable The substitution value must be :employee_number
the name of a variable
declared in an embedded SQL
program. This manual also
uses :host_integer
and :host_string to indicate
specific datatypes.
cursor The substitution value must be cursl
the name of a cursor in an
embedded SQL program.
db_name The substitution value must be sales_db
the name of a non-default
database in an embedded
SQL program.
db_string The substitution value must be
the database identification
string for a SQL*Net database
connection. For details, see
the user's guide for your
specific SQL*Net protocol.
statement_nameblock _name The substitution value must be sl1bl
an identifier for a SQL
statement or PL/SQL block.

Syntax Diagrams

This manual uses syntax diagrams to show SQL commands in Chapter 4, "Commands," and to show
other elements of the SQL language in Chapter 2, "Elements of SQL," and Chapter 3, "Operators,
Functions, Expressions, Conditions." These syntax diagrams use lines and arrows to show syntactic
structure. The following list shows the lines and arrows used and their syntactical meaning.

Structire Meaning

- The beginning of a diagram.

The diagram continues on the next
line.

L J

¥

The diagram continues from the
previous line.

- The end of a diagram.

DELETE A required item (parameter or
kevword). You must use this itemn.
An opticnal item. You can use the
I— FUBLIC A item or omit it.

C |:|1Jumn | You can optionally repeat the item

multiple times. Consecutive items
must be separated by a comma.

__ ENAELE You must use one of the items.
| DISAEBLE
L COMPILE
You can opticnally use only one of
| EECLUSTIVE _ the iterns. If there is a default itern,
| PARALLEL ___ | it is underlined.
—¢—— INITIAL integer —J— A list of specific items. Each item
| NEXT integer can only appear once, unless
| MINEXTENTS integer otherwise specified. The items can
| MAXEXTENTS integer | be listed in any order.
| PCTINCREASE integer
| OPTIMAL integer
_I:HULL
| FREELISTS integer
| FREELIST GROUPS integer __|

Examples

This manual also contains many examples of SQL statements. These examples show you how to use
elements of SQL. The following example shows a CREATE TABLE statement:

CREATE TABLE accounts (accno NUMBER, owner VARCHAR2(10),
balance NUMBER(7,2))

Note that examples appear in a different font than the text.

Examples follow these case conventions:
e Keywords, such as CREATE and NUMBER, appear in uppercase.

¢ Names of database objects and their parts, such as ACCOUNTS and ACCNO, appear in
lowercase, although they appear in uppercase in the text.

SQL is not case-sensitive (except for quoted identifiers), so you need not follow these conventions when
writing your own SQL statements, although your statements may be easier for you to read if you do.

Some Oracle? tools require you to terminate SQL statements with a special character. For example, SQL
statements issued through SQL*Plus may be terminated with a semicolon (;). If you issue these examples
statements to Oracle7, you must terminate them with the special character expected by the Oracle7 tool
you are using.

Example Data

Many of the examples in this manual operate on sample tables. The definitions of some of these tables
appear in a SQL script available on your distribution media. On most operating systems the name of this
script is UTLSAMPL.SQL , although its exact name and location may vary depending on your operating
system. This script creates sample users and creates these sample tables in the schema of the user
SCOTT:

CREATE TABLE dept

(deptno NUMBER(2) CONSTRAINT pk_dept PRIMARY KEY,
dname VARCHAR2(14),
loc VARCHAR2(13))
CREATE TABLE emp
(empno NUMBER(4) CONSTRAINT pk_emp PRIMARY KEY,
ename VARCHARZ2(10),
job VARCHAR2(9),
mgr NUMBER(4),
hiredate DATE,
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(2) CONSTRAINT fk_deptno REFERENCES emp)
CREATE TABLE bonus
(ename VARCHAR2(10),
job VARCHAR2(9),
sal NUMBER,
comm NUMBER)
CREATE TABLE salgrade
(grade NUMBER,
losal NUMBER,
hisal NUMBER)

The script also fills the sample tables with this data:

SELECT * FROM dept
DEPTNO DNAME LOC
10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS

SELECT FROM emp

*

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

7369 SMITH CLERK 7902 17-DEC-80 800 20

7499 ALLEN SALESMAN 7698 20-FEB-81 1600 30

7521 WARD SALESMAN 7698 22-FEB-81 1250 300 30

7566 JONES MANAGER 7839 02-APR-81 2975 500 20

7654 MARTIN SALESMAN 7698 28-SEP-81 1250 30

7698 BLAKE MANAGER 7839 01-MAY-81 2850 1400 30

7782 CLARK MANAGER 7839 09-JUN-81 2450 10

7788 SCOTT ANALYST 7566 19-APR-87 3000 20

7839 KING PRESIDEN 17-NOV-81 5000 10
T

7844 TURNER SALESMAN 7698 08-SEP-81 1500 30

7876 ADAMS CLERK 7788 23-MAY-87 1100 20

7900 JAMES CLERK 7698 03-DEC-81 3000 950 30

7902 FORD ANALYST 7566 03-DEC-81 3000 20

7934 MILLER CLERK 7782 23-JAN-82 1300 10

SELECT * FROM salgrade

GRADE LOSAL HISAL

1 700 1200

2 1201 1400

3 1401 2000

4 2001 3000

5 3001 9999

To perform all the operations of the script, run it when you are logged into Oracle7 as the user SYSTEM.

Your Comments Are Welcome

We value and appreciate your comments as an Oracle7 user and reader of the manuals. As we write,
revise, and evaluate, your opinions are the most important input we receive. At the back of this manual is
a Reader's Comment Form that we encourage you to use to tell us both what you like and what you
dislike about this (or other) Oracle7 manuals. If the form has been used, or you would like to contact us,
please use the following address or fax number:

Oracle7 Server Documentation Manager

Oracle Corporation

500 Oracle Parkway
Redwood City, CA 94065
U.S.A.

FAX: 415-506-7200

CHAPTER 1. Introduction

Structured Query Language (SQL), pronounced "sequel," is the set of commands that all programs and
users must use to access data within the Oracle7 database. Application programs and Oracle? tools often
allow users to access the database without directly using SQL, but these applications in turn must use
SQL when executing the user's request. This chapter provides background information on SQL used by
most relational database systems. Topics include:

¢ history of SQL

e SQL standards

¢ benefits of SQL

e embedded SQL

¢ |exical conventions

¢ tools support

History of SQL

The paper, "A Relational Model of Data for large Shared Data Banks," by Dr. E. F. Codd, was published in
June 1970 in the Association of Computer Machinery (ACM) journal, Communications of the ACM. Codd's
model is now accepted as the definitive model for relational database management systems (RDBMS).
The language, Structured English Query Language (SEQUEL) was developed by IBM Corporation, Inc. to
use Codd's model. SEQUEL later became SQL. In 1979, Relational Software, Inc. (now Oracle

Corporation) introduced the first commercially available implementation of SQL. Today, SQL is accepted
as the standard RDBMS language.

SQL Standards

Oracle7 SQL complies with industry accepted standards. Oracle Corporation ensures future compliance
with evolving SQL standards by actively involving key personnel in SQL standards committees. Industry
accepted committees are the American National Standards Institute (ANSI) and the International
Standards Organization (ISO) affiliated with the International Electrotechnical Commission (IEC)
both of which have accepted SQL as the standard language for relational databases. When a new SQL
standard is simultaneously published by these organizations, the names of the standards conform to
convention used by the organization, but the technical details are exactly the same.

The latest SQL standard published by ANSI and ISO is often called SQL-92 (and sometimes SQL2).
The formal names of the new standard are:

e ANSI X3.135-1992, "Database Language SQL"

e |SO/IEC 9075:1992, "Database Language SQL"
SQL-92 defines three levels of compliance, Entry, Intermediate, and Full. Oracle7, Release 7.2 conforms
to Entry level compliance, and many has many features that conform to Intermediate or Full level

compliance.

Release 7.2 conformance to Entry Level SQL-92 was tested by the National Institute for Standards and
Technology (NIST) using the Federal Information Processing Standard (FIPS), FIPS PUB 127-2 .

Benefits of SQL

This section describes many of the reasons for SQL's widespread acceptance by relational database
vendors as well as end users. The strengths of SQL benefit all ranges of users including application
programmers, database administrators, management, and end users.

Non-procedural Language
SQL is a non-procedural language because it:

e processes sets of records rather than just one at a time

e provides automatic navigation to the data
SQL allows you to work with higher level data structures. Rather than manipulating single rows, you
manage sets of rows. SQL commands accept sets of rows as input and return sets as output. The set
property of SQL allows the results of one SQL statement to be used as input to another.
SQL does not require you to specify the access method to the data. This feature makes it easier for you
to concentrate on obtaining the desired results. All SQL statements use the optimizer , a part of Oracle7

that determines the fastest means of accessing the specified data. The optimizer knows what indexes
exist and uses them appropriately. When accessing a table, you need not know about its indexes.

A Language for All Users

SQL is used for all types of database activities by all types of users including:

e system administrators

database administrators

e security administrators

e application programmers

¢ decision support system personnel

¢ many other types of end users
SQL provides easy-to-learn commands that are both consistent and applicable for all users. The basic
SQL commands can be learned in a few hours and even the most advanced commands can be mastered
in a few days.
Unified Language
SQL provides commands for a variety of tasks including:

e querying data

e inserting, updating, and deleting rows in a table

e creating, replacing, altering, and dropping objects

e controlling access to the database and its objects

e guaranteeing database consistency and integrity
SQL unifies all of the above tasks in one consistent language.
Common Language for All Relational Databases
Because all major relational database management systems support SQL, you can transfer all skills you

have gained with SQL from one database to another. In addition, since all programs written in SQL are
portable, they can often be moved from one database to another with very little modification.

Embedded SQL

Embedded SQL refers to the use of standard SQL commands embedded within a procedural
programming language. Embedded SQL is a collection of these commands:

e all SQL commands, such as SELECT and INSERT, available with SQL with interactive tools

¢ flow control commands, such as PREPARE and OPEN, which integrate the standard SQL
commands with a procedural programming language

Embedded SQL also includes extensions to some standard SQL commands. Chapter 4, "Commands,"
presents these commands in both standard form and embedded SQL form.

Embedded SQL is supported by the Oracle precompilers. The Oracle precompilers interpret embedded
SQL statements and translate them into statements that can be understood by procedural language
compilers.

Each of these Oracle precompilers translates embedded SQL programs into a different procedural
language:

e the Pro*Ada precompiler

e the Pro*C/C++ precompiler

e the Pro*COBOL precompiler

e the Pro*FORTRAN precompiler
¢ the Pro*Pascal precompiler

e the Pro*PL/I precompiler

For a definition of the Oracle precompilers, see Programmer's Guide to the Oracle Precompilers.

Embedded SQL Terms
The following embedded SQL terms are used throughout this manual:

:host_variable is a language variable declared according to the rules of the procedural language and
used in a SQL statement. A host variable can be a predefined type or a user-defined array and can
include an associated indicator variable.

You can only use host variables in place of numeric or character expressions. You must precede each
host variable by a colon (;) to distinguish it from a schema object name. You cannot use host variables in
place of SQL keywords or schema object names.

This manual also uses terms for host variables with specific datatypes, such as :host_integer
and :host_string.

cursor is an identifier for a cursor.
db_name is an identifier for a non-default database.
db_string is the database identification string for a SQL*Net

connection. For more information about connect strings, see
the SQL*Net documentation for your operating system.

statement_name block_name designates an identifier for a SQL statement or PL/SQL
block.

Lexical Conventions

The following lexical conventions for issuing SQL statements apply specifically to Oracle's implementation
of SQL, but are generally acceptable in all other SQL implementations.

When you issue a SQL statement, you can include one or more tabs, carriage returns, spaces, or
comments anywhere a space occurs within the definition of the command. Thus, Oracle7 evaluates the
following two statements in the same manner:

SELECT ENAME,SAL*12,MONTHS_BETWEEN(HIREDATE,SYSDATE) FROM EMP

SELECT ENAME
SAL * 12,
MONTHS_BETWEEN(HIREDATE, SYSDATE)
FROM
EMP

Case is insignificant in reserved words, keywords, identifiers and parameters. However, case is
significant in text literals and quoted names. See the syntax description of 'text' on page 2 - 17.

Tools Support

Most Oracle? tools support all features of Oracle's SQL. However, not all tools support all features. This
manual describes the complete functionality of SQL. If the Oracle? tool that you are using does not
support this complete functionality, you can find a discussion of the restrictions in the manual describing

the tool, such as PL/SQL User's Guide and Reference.

CHAPTER 2. Elements of Oracle7_SQL

This chapter contains reference information on the basic elements of Oracle7 SQL. Before using any of
the commands described in Chapter 4, "Commands," you should familiarize yourself with the concepts
covered in this chapter:

e database objects

¢ object names and qualifiers

¢ referring to objects and parts

¢ literals

e text

e integer

e number

e (datatypes

e nulls

e pseudocolumns

e comments

Database Objects

Schema Objects
A schema is a collection of logical structures of data, or schema objects. A schema is owned by a
database user and has the same name as that user. Each user owns a single schema. Schema objects
can be created and manipulated with SQL and include the following types of objects.

e clusters

e database links

e database triggers*

¢ indexes

e packages*

* sequences

e snapshots*+

e snapshot logs*

e stored functions*

e stored procedures*

* synonyms

e tables

* views
* These objects are available only if PL/SQL is installed.
+ These objects are available only if the distributed option is installed.

Non-Schema Objects

Other types of objects are also stored in the database and can be created and manipulated with SQL, but
are not contained in a schema:

e profiles

e roles

¢ rollback segments
e tablespaces

* users

Most of these objects occupy space in the database. In this manual, each type of object is briefly defined

in Chapter 4, "Commands" in the section describing the command that creates the database object.
These commands begin with the keyword CREATE. For example, for the definition of a cluster, see the
CREATE CLUSTER command on page 4 - 164. For an overview of database objects, see Oracle7 Server
Concepts.

You must provide names for most types of objects when you create them. These names must follow the
rules listed in the following sections.

Parts of Objects

Some objects are made up of parts that you must also name, such as:
e columns in a table or view
¢ integrity constraints on a table

e packaged procedures, packaged stored functions, and other objects stored within a package

Object Names and Qualifiers

This section tells provides:

¢ rules for naming objects and object location qualifiers

e guidelines for naming objects and qualifiers

Object Naming Rules

The following rules apply when naming objects:

1. Names must be from 1 to 30 characters long with these exceptions:

¢ Names of databases are limited to 8 characters.

¢ Names of database links can be as long as 128 characters.

2. Names cannot contain quotation marks.
3. Names are not case-sensitive

4. A name must begin with an alphabetic character from your database character set unless surrounded
by double quotation marks.

5. Names can only contain alphanumeric characters from your database character set and the
characters _, $, and #. You are strongly discourage from using $ and #.

If your database character set contains multi-byte characters, It is recommended that each name for a
user or a role contain at least one single-byte character.

Names of database links can also contain periods (.) and ampersands (@).

6. Aname cannot be an Oracle7 reserved word. The following list contains these reserved words.
Words followed by an asterisk (*) are also ANSI reserved words.

Note: You cannot use special characters from European or Asian character sets in a database name,
global database name, or database link names. For example, the umlaut is not allowed.

Reserved words

ACCESS ELSE MAXEXTENTS SELECT*
ADD EXCLUSIVE MINUS SESSION
ALL EXISTS* MINUS SET*
ALTER FILE MODE SHARE
AND* FLOAT* MODIFY SIZE

ANY* FOR* NOAUDIT SMALLINT*
AS* FROM* NOCOMPRESS START
ASC* GRANT* NOT* SUCCESSFUL
AUDIT GROUP* NOWAIT SYNONYM
BETWEEN* HAVING* NULL* SYSDATE
BY* IDENTIFIED NUMBER TABLE*
CHAR* IMMEDIATE OF* THEN
CHECK* IN* OFFLINE TO*

CLUSTER INCREMENT ON* TRIGGER
COLUMN INDEX ONLINE uiD
COMMENT INITIAL OPTION* UNION*
COMPRESS INSERT* OR* UNIQUE*
CONNECT INTEGER* ORDER* UPDATE*
CREATE* INTERSECT PCTFREE USER~*
CURRENT* INTO* PRIOR VALIDATE
DATE IS* PRIVILEGES* VALUES*
DECIMAL LEVEL PUBLIC* VARCHAR
DEFAULT* LIKE* RAW VARCHAR2
DELETE* LOCK RENAME VIEW*
DESC* LONG RESOURCE WHENEVER
DISTINCT* REVOKE WHERE*
DROPROW ROWID WITH*

ROWLABEL

ROWNUM

ROWS

Depending on the Oracle product you plan to use to access a database object, names might be further
restricted by other product-specific reserved words. For a list of a product's reserved words, see the
manual for the specific product, such as PL/SQL User's Guide and Reference.

7. The word DUAL should not be used as a name for an object or part. DUAL is the name of a dummy
table frequently accessed by Oracle7 tools such as SQL*Plus and SQL*Forms.

8. The Oracle7 SQL contains other keywords that have special meanings. Because these keywords
are not reserved, you can also use them as names for objects and object parts. However, using them as
names may make your SQL statements more difficult for you to read.

The following list contains keywords. Keywords marked with asterisks (*) are also ANSI reserved
words. For maximum portability to other implementations of SQL, do not use the following words as object

names.

Keywords
ADMIN DATABASE KEY* OFF SAVEPOINT
AFTER DATAFILE OLD SCHEMA* ALLOCATE
DBA LANGUAGE* ONLY SCN ANALYZE
DEC* LAYER OPTIMAL SECTION* ARCHIVE
DECLARE* LINK OPEN* SEGMENT ARCHIVEL
oG
DISABLE LISTS OWN SEQUENCE AUTHORIZ
ATION*
DISMOUNT LOGFILE SHARED AVG* DOUBLE*
MANAGE PACKAGE SNAPSHOT BACKUP DUMP
MANUAL PARALLEL SOME* BEGIN* MAX*
PASCAL* SORT BECOME EACH MAXDATAFI
LES
PCTINCREASE = SQLCODE* BEFORE ENABLE MAXINISTA
NCES
PLAN SQLERROR* BLOCK END* MAXLOGFI
LES
PLI* STATEMENT_ID BODY ESCAPE* MAXLOGHI
STORY
PRECISION* STATISTICS EVENTS MAXLOGMEMBER PRIMARY*

S

STOP
STORAGE

SUM*
SWITCH
CHARACTER*

EXTENT

MOUNT

REAL*
RECOVER
REFERENCES*

REFERENCING
RESETLOGS
RESTRICTED

REUSE

ROLE
UNDER
CYCLE
NORMAL
NUMERIC*
INITRANS

A name must be unique across its namespace

names.

Figure 2 - 1 shows the namespaces for schema objects. Objects in the same namespace are grouped by

CACHE
CANCEL

CASCADE
CHANGE
EXECUTE

MODULE*

READ

TEMPORARY
THREAD
TIME

TRACING
TRANSACTION
TRIGGERS

TRUNCATE

COUNT*
CURSOR*
GO*

USE
INCLUDING
INSTANCE

EXCEPT
EXCEPTIONS

EXEC*
EXPLAIN
MINVALUE

TABLES

TABLESWHENPAC
E

COMMIT*
COMPILE
CONSTRAINT

CONSTRAINTS
CONTENTS
CONTINUE*

CONTROLFILE

FUNCTION
NOORDER
NORESETLOGS
GROUPS
WRITE

INT*

MAXTRANS
MAXVALUE

MIN*
MINEXTENTS
QUOTA

CLOSE*
COBOL*

FLUSH
FREELIST
FREELISTS

FORCE
FOREIGN*
FORTRAN*

FOUND*

NONE
ROLLBACK*
UNTIL
NOSORT
INDICATOR*

PRIVATE
PROCEDU
RE*
PROFILE
SYSTEM
CHECKPOI
NT
EXTERNAL
LY
FETCH*

NEXT

NEW
NOARCHIV
ELOG
NOCACHE
NOCYCLE
NOMAXVAL
UE
NOMINVAL
UE

ROLES
UNLIMITED
GOTO*
USING
WORK*

. Objects in the same namespace must have different

solid lines. Because tables and views are in the same namespace, a table and a view in the same

schema cannot have the same name. However, because tables and indexes are in different namespaces,

a table and an index in the same schema can have the same name.

Each schema in the database has its own namespaces for the objects it contains. This means, for

example, that two tables in different schemas are in different namespaces and can have the same name.

TABLES (INODEXES >
VIEWS
SEQUENCES (CONSTRANTS)
PRIVATE SYNONYMS
(CLUSTERS >
STORED PROCEDURES
STORED FUNCTIONS (DATABASE TRIGGERS)
PACKAGES
SNAPSHOTS < PRIVATE DATABASE LINKS >

Figure 2 - 1. Namespaces For Schema Objects

Figure 2 - 2 shows the namespaces for other objects. Because the objects in these namespaces are
not contained in schemas, these namespaces span the entire database.

LUSER
(POLES) (TABLESPACES)
(PUBLIC SYNONYMS > (ROLLBACK SEGMENTS)
(PUBLIC DATABASE LINKS) < PROFILES >

Figure 2 - 2. Namespaces For Other Objects

Columns in the same table or view cannot have the same name. However, columns in different
tables or views can have the same name.

Procedures or functions contained in the same package can have the same name, provided that
their arguments are not of the same number and datatypes. Creating multiple procedures or functions
with the same name in the same package with different arguments is called overloading the procedure
or function .

9. Aname can be enclosed in double quotation marks . Such names can contain any combination of
characters including spaces, ignoring rules 3 through 7 in this list. This exception is allowed for portability,
but it is recommended that you do not break rules 3 through 7.

Once you have given an object a name enclosed in double guotation marks, you must use double
quotation marks whenever you refer to the object.

You may want to enclose a nhame in double quotation marks for any of these reasons:
¢ if you want it to contain spaces
¢ if you want it to be case-sensitive

e if you want it to begin with a character other than an alphabetic character, such as a numeric
character

e if you want it to contain characters other than alphanumeric characters and _, $, and #
e if you want to use a reserved word as a hame

By enclosing names in double quotation marks, you can give the following names to different objects
in the same namespace:

emp emp" "Emp" "EMP"

Note that Oracle? interprets the following names the same, so they cannot be used for different
objects in the same namespace:

emp EMP "EMP"
If you give a user or password a quoted name, the name cannot contain lowercase letters.
Database link names cannot be quoted.

Examples
The following are valid examples of names:

enamehorsescott.hiredate"EVEN THIS & THAT!"a_very long_and_valid_name

Although column aliases, table aliases, usernames, or passwords are not objects or parts of objects, they
must also follow these naming rules with these exceptions

e Column aliases and table aliases only exist for the execution of a single SQL statement and are
not stored in the database, so rule 9 does not apply to them.

e Passwords do not have hamespaces, so rule 9 does not apply to apply to them.

e Do not use quotation marks to make usernames and passwords case-sensitive. For additional
rules for naming users and passwords, see the CREATE USER command on page 4 - 267.

Object Naming Guidelines
There are several helpful guidelines for naming objects and their parts:
e Use full, descriptive, pronounceable names (or well-known abbreviations).
e Use consistent naming rules.
¢ Use the same name to describe the same entity or attribute across tables.
When naming objects, balance the objective of keeping hames short and easy to use with the objective of

making name as long and descriptive as possible. When in doubt, choose the more descriptive name
because the objects in the database may be used by many people over a period of time. Your counterpart

ten years from now may have difficulty understanding a database with names like PMDD instead of
PAYMENT_DUE_DATE.

Using consistent naming rules helps users understand the part that each table plays in your application.
One such rule might be to begin the names of all tables belonging to the FINANCE application with FIN_.

Use the same names to describe the same things across tables. For example, the department number
columns of the EMP and DEPT tables are both named DEPTNO.

Referring to Objects and Parts
This section tells you how to refer to objects and their parts in the context of a SQL statement. This
section shows you:
¢ the general syntax for referring to an object
e how Oracle7 resolves a reference to an object
¢ how to refer to objects in schemas other than your own
¢ how to refer to objects in remote databases
This syntax diagram shows the general syntax for referring to an object or a part:

ohject

" |_ schema. J |_ .part J I_@d]:llink J >

where:

object is the name of the object.
schemais the schema containing the object. The schema qualifier allows you to refer to an object in a
schema other than your own.

Note that you must be granted privileges to refer to objects in other schemas. If you omit this qualifier,
Oracle7 assumes that you are referring to an object in your own schema.

Only schema objects can be qualified with schema. Schema objects are shown in Figure 2 - 1 on
page 2 - 7. Other objects, shown in Figure 2 - 2 on page 2 - 8, cannot be qualified with schema because
they are not schema objects, except for public synonyms which can optionally be qualified with "PUBLIC"
(quotation marks required).

partis a part of the object. This identifier allows you to refer to a part of a schema object, such as a
column of a table. Note that not all types of objects have parts.

dblink applies only to those using Oracle7 with the distributed option. This is the name of the database
containing the object. The dblink qualifier allows you to refer to an object in a database other than your
local database. If you omit this qualifier, Oracle7 assumes that you are referring to an object in your local
database. Note that not all SQL statements allow you to access objects on remote databases.

You can include spaces around the periods separating the components of the reference to the object, but
it is conventional to omit them.

How Oracle7 Resolves Object References

When you refer to an object in a SQL statement, Oracle7 considers the context of the SQL statement and
locates the object in the appropriate namespace. If the named object cannot be found in the appropriate
namespace, Oracle? returns an error message. After locating the object, Oracle7 performs the
statement's operation on the object.

The following example illustrates how Oracle7 resolves references to objects within SQL statements.
Consider this statement that adds a row of data to a table identified by the name DEPT:

INSERT INTO dept VALUES (50, 'SUPPORT', 'PARIS")
Based on the context of the statement, Oracle7 determines that DEPT can be:

e atable in your own schema

e aview in your own schema

e a private synonym for a table or view

e a public synonym
Oracle7 always attempts to resolve an object reference within the namespaces in your own schema
before considering namespaces outside your schema. In this example, Oracle7 attempts to resolve the
name DEPT in these ways:
1. Oracle7 first attempts to locate the object in the namespace in your own schema containing tables,
views, and private synonyms (see Figure 2 - 1 on page 2 - 7). If the object is a private synonym, Oracle7
locates the object for which the synonym stands. This object could be in your own schema, another

schema, or on another database. The object could also be another synonym, in which case Oracle7
locates the object for which this synonym stands.

If the object is in the namespace, Oracle7 attempts to perform the statement on the object. In this
example, Oracle7 attempts to add the row of data to DEPT. If the object is not of the correct type for the
statement, Oracle? returns an error message. In this example, DEPT must be a table, view, or a private
synonym resolving to a table or view. If DEPT is a sequence, Oracle7 returns an error message.

2. If the object is not in the namespace searched in Step 1, Oracle7 searches the namespace containing
public synonyms (see Figure 2 - 2 on page 2 - 8). If the object is in the namespace, Oracle7 attempts to
perform the statement on it. If the object is not of the correct type for the statement, Oracle7 returns an
error message. In this example, if DEPT is a public synonym for a sequence, Oracle7 returns an error
message.

Referring to Objects in Other Schemas

To refer to objects in schemas other than your own, prefix the object name with the schema name:
schema.object

For example, this statement drops the EMP table in the schema SCOTT:

DROP TABLE scott.emp

Referring to Objects in Remote Databases
To refer to objects in databases other than your local database, follow the object name with the name of
the database link to that database. A database link is a schema object that causes Oracle7 to connect to
a remote database to access an object there. This section tells you:

¢ how to create database links

¢ how to use database links in your SQL statements

Creating Database Links

You can create a database link with the CREATE DATABASE LINK command described in Chapter 4,
"Commands," of this manual. The command allows you to specify this information about the database
link:

¢ the name of the database link

¢ the connect string to access the remote database

¢ the username and password to connect to the remote database
Oracle7 stores this information in the data dictionary.
Names When you create a database link, you must specify its name. The name of a database link can
be as long as 128 bytes and can contain periods (.) and the special character @. In these ways, database
link names are different from names of other types of objects.
The name that you give to a database link must correspond to the name of the database to which the

database link refers and the location of that database in the hierarchy of database names. The following
syntax diagram shows the form of the name of a database link:

dhlink :=
[database -
|_ Fconnection_gqualifier J
L .domain |
where:
database specifies the name of the remote database to which the database link connects. The

name of the remote database is specified by its initialization parameter DB_NAME.

domain specifies the domain of the remote database to which the database link connects. If you omit the
domains from the name of a database link, Oracle7 expands the name by qualifying database with the
domain of your local database before storing it in the data dictionary. The domain of a database is
specified by the value of its initialization parameter DB_ DOMAIN.

connection_qualifier allows you to further qualify a database link. Using connection qualifiers, you can
create multiple database links to the same database. For example, you can use connection qualifiers to
create multiple database links to different instances of the Oracle7 Parallel Server that access the same
database.

Username and Password The username and password are used by Oracle7 to connect to the remote
database. The username and password for a database link are optional.

Database String The database string is the specification used by SQL*Net to access the remote
database. For information on writing database connect strings, see the SQL*Net documentation for your
specific network protocol. The database string for a database link is optional.

Referring to Database Links

Database links are available only to those using Oracle7 with the distributed option. When you issue a
SQL statement that contains a database link, you can specify the database link name in one of these
forms:

complete is the complete database link name as stored in the data dictionary including the

database, domain, and optional connection_qualifier components.
partial contains the database and optional connection_qualifier components, but not the domain
component.

Oracle7 performs these tasks before connecting to the remote database:

1. If the database link name specified in the statement is partial, Oracle7 expands the name to contain
the domain of the local database (specified by the initialization parameter DB_DOMAIN).

2. Oracle7 first searches for a private database link in your own schema with the same name as the
database link in the statement, and then, if necessary, searches for a public database link with the same
name.

2.1 Oracle7 always determines the username and password from the first matching database link
(either private or public). If the first matching database link has an associated username and password,
Oracle7 uses it. If it does not have an associated username and password, Oracle7 uses your current
username and password.

2.2 If the first matching database link has an associated database string, Oracle7 uses it. If not, Oracle7
searches for the next matching (public) database link. If there is no matching database link, or if no
matching link has an associated database string, Oracle7 returns an error message.

3. Oracle7 uses the database string to access the remote database. After accessing the remote
database, Oracle7 verifies that both of these conditions are true:

¢ The name of the remote database (specified by its initialization parameter DB_NAME) must match
the database component of the database link name.

¢ The domain (specified by the initialization parameter DB_DOMAIN) of the remote database must
match the domain component of the database link name.

If both of these conditions are true, Oracle7 proceeds with the connection, using the username and
password chosen in step 2a. If not, Oracle7 returns an error message.

4. If the connection using the database string, username, and password is successful, Oracle7 attempts
to access the specified object on the remote database using the rules for resolving object references and
referring to objects in other schemas presented earlier in this section.

You can enable and disable Oracle7 resolution of nhames for remote objects using the initialization
parameter GLOBAL_NAMES and the GLOBAL_NAMES parameter of the ALTER SYSTEM and ALTER
SESSION commands.

For more information on remote name resolution, see the "Database Administration” chapter of Oracle7
Server Distributed Systems, Volume I.

Literals

The terms literal and constant value are synonymous in this manual and refer to a fixed data value. For
example, 'JACK', 'BLUE ISLAND', and '101' are all character literals. 5001 is a numeric literal. Note
that character literals are enclosed in single quotation marks. The quotation marks allow Oracle7 to
distinguish them from schema object names.

Many SQL statements and functions require you to specify character and numeric literal values. You can
also specify literals as part of expressions and conditions. You can specify character literals with the 'text’
notation and numeric literals with the integer or number notation, depending on the context of the literal.
The syntactic forms of these notations appear in the following sections.

Text

Purpose

To specify a text or character literal. You must use this notation to specify values whenever 'text' or char
appear in expressions, conditions, SQL functions, and SQL commands in other parts of this manual.

Syntax

Keywords and Parameters

c is any member of the user's character set, except a single quotation mark (').
" are two single quotation marks. Because a single quotation mark is used to begin and end text
literals, you must use two single quotation marks to represent one single quotation mark within a literal.

Usage Notes

A text literal must be enclosed in single quotation marks. This manual uses the terms text literal and
character literal interchangeably.

Text literals have properties of both the CHAR and VARCHAR?2 datatypes:

¢ Within expressions and conditions, Oracle7 treats text literals as though they have the datatype
CHAR by comparing them using blank-padded comparison semantics.

e Atext literal can have a maximum length of 2000 bytes.

Examples
'Hello'

'ORACLE.dbs"Jackie"s raincoat"09-MAR-92'
Related Topics

The syntax description of expr.

Integer

Purpose

To specify a positive integer. You must use this notation to specify values whenever integer appears in
expressions, conditions, SQL functions, and SQL commands described in other parts of this manual.

Syntax

[; digit =

Keywords and Parameters

digit isoneof0,1,2,3,4,5,6,7,8,09.

Usage Notes
An integer can store a maximum of 38 digits of precision.

Examples
7

255

Related Topics

The syntax description of expr.

Number

Purpose

To specify an integer or a real number. You must use this notation to specify values whenever number
appears in expressions, conditions, SQL functions, and SQL commands in other parts of this manual.

Syntax
L digit |
- I digit

¥
¥

¥

¥

Keywords and Parameters

+, - indicates a positive or negative value. If you omit the sign, a positive value is the
default.

digit isoneof0,1,2,3,4,5/6,7,80r9.

e E indicates that the number is specified in scientific notation. The digits after the E

specify the exponent. The exponent can range between -130 and 125.

Usage Notes

A number can store a maximum of 38 digits of precision.

If you have established a decimal character other than a period (.) with the initialization parameter
NLS_NUMERIC_CHARACTERS, you must specify numeric literals with 'text' notation. In such cases,
Oracle7 automatically converts the text literal to a numeric value.

For more information on this parameter, see Oracle7 Server Reference.

Examples
25

+6.340.525e-03-1
Related Topics

The syntax description of expr on page.

Datatypes

Each literal or column value manipulated by Oracle7 has a datatype. A value's datatype associates a fixed
set of properties with the value. These properties cause Oracle7 to treat values of one datatype differently
from values of another. For example, you can add values of NUMBER datatype, but not values of RAW
datatype.

When you create a table or cluster, you must specify an internal datatype for each of its columns. When
you create a procedure or stored function, you must specify an internal datatype for each of its
arguments. These datatypes define the domain of values that each column can contain or each argument
can have. For example, DATE columns cannot accept the value February 29 (except for a leap year) or
the values 2 or 'SHOE'. Each value subsequently placed in a column assumes the column's datatype. For
example, if you insert '01-JAN-92' into a DATE column, Oracle7 treats the '01-JAN-92' character string as
a DATE value after verifying that it translates to a valid date.

Table 2 - 1 summarizes Oracle7 internal datatypes. The rest of this section describes these datatypes in
detail.

Note: The Oracle precompilers recognize other datatypes in embedded SQL programs. These datatypes
are called external datatypes and are associated with host variables. Do not confuse the internal
datatypes with external datatypes. For information on external datatypes, including how Oracle7 converts
between internal and external datatypes, see Programmer's Guide to the Oracle Precompilers.

Code Internal Datatype Description

1 VARCHAR2(size) Variable length character
string having maximum length
size bytes. Maximum size is
2000, and minimum is 1. You
must specify size for a
VARCHAR2

2 NUMBER(p,s) Number having precision p
and scale s. The precision p
can range from 1 to 38. The
scale s can range from -84 to
127.

8 LONG Character data of variable
length up to 2 gigabytes, or
231 -1 bytes.

12 DATE Valid date range from January
1, 4712 BC to December 31,
4712 AD.

23 RAW(size) Raw binary data of length size
bytes. Maximum size is 255
bytes. You must specify size
for a RAW value.

24 LONG RAW Raw binary data of variable
length up to 2 gigabytes.
69 ROWID (see note below) Hexadecimal string

representing the unique
address of a row in its table.
This datatype is primarily for
values returned by the ROWID
pseudocolumn.

96 CHAR(size) Fixed length character data of
length size bytes. Maximum
size is 255. Default and
minimum size is 1 byte.

106 MLSLABEL Binary format of an operating
system label. This datatype is
used with Trusted Oracle?7.

Table 2 - 1. Internal Datatype The codes listed for the

Summary datatypes are used internally
by Oracle7. The datatype code
of a column is returned when
you use the DUMP function.

Note: The DESCRIBE

embedded SQL command and

the ODESCR call of the Oracle

Call Interfaces (OCIs) returns

a code of 11 for the ROWID

datatype.

Character Datatypes

Character datatypes are used to manipulate words and free-form text. These datatypes are used to store
character (alphanumeric) data in the database character set. They are less restrictive than other
datatypes and consequently have fewer properties. For example, character columns can store all
alphanumeric values, but NUMBER columns can only store numeric values.

Character data is stored in strings with byte values corresponding to the character set, such as 7-bit
ASCII or EBCDIC Code Page 500, specified when the database was created. Oracle7 supports both
single-byte and multi-byte character sets.

These datatypes are used for character data:
¢ CHAR
e VARCHARZ2
The character datatypes in Oracle7 are different from those in Oracle Version 6. For a summary of the

differences and compatibility issues, see Appendix C "Operating System-Specific Dependencies" of this
manual.

CHAR Datatype

The CHAR datatype specifies a fixed length character string. When you create a table with a CHAR
column, you can supply the column length in bytes. Oracle7 subsequently ensures that all values stored
in that column have this length. If you insert a value that is shorter than the column length, Oracle7 blank-
pads the value to column length. If you try to insert a value that is too long for the column, Oracle7 returns
an error.

The default for a CHAR column is 1 character and the maximum allowed is 255 characters. A zero-length
string can be inserted into a CHAR column, but the column is blank-padded to 1 character when used in
comparisons. For information on comparison semantics, see the section "Datatype Comparison Rules" on
page 2 - 31.

VARCHAR2 Datatype

The VARCHAR2 datatype specifies a variable length character string. When you create a VARCHAR2

column, you can supply the maximum number of bytes of data that it can hold. Oracle7 subsequently
stores each value in the column exactly as you specify it, provided it does not exceed the column's
maximum length. This maximum must be at least 1 byte, although the actual length of the string stored is
permitted to be zero. If you try to insert a value that exceeds the specified length, Oracle7 returns an
error.

You must specify a maximum length for a VARCHAR2 column. The maximum length of VARCHAR2 data
is 2000 bytes. Oracle7 compares VARCHAR?2 values using non-padded comparison semantics. For
information on comparison semantics, see the section "Datatype Comparison Rules" on page 2 - 31.
VARCHAR Datatype

The VARCHAR datatype is currently synonymous with the VARCHAR2 datatype. It is recommended that
you use VARCHAR2 rather than VARCHAR. In a future version of Oracle7, VARCHAR might be a

separate datatype used for variable length character strings compared with different comparison
semantics.

NUMBER Datatype

The NUMBER datatype is used to store zero, positive and negative fixed and floating point numbers with
magnitudes between 1.0 x 10-130 and 9.9...9 x 10125 (38 9s followed by 88 0s) with 38 digits of
precision. If you specify an arithmetic expression whose value has a magnitude greater than or equal to
1.0 x 10126, Oracle7 returns an error.

You can specify a fixed point number using the following form:

NUMBER(p,s)

where:

p is the precision, or the total number of digits. Oracle7 guarantees the portability of numbers with
precision ranging from 1 to 38.

S is the scale, or the number of digits to the right of the decimal point. The scale can range from
-84 to 127.

You specify an integer using the following form:

NUMBER(p) s a fixed point number with precision p and scale 0. (Equivalent to NUMBER(p,0).)

You specify a floating point number using the following form:

NUMBER is a floating point number with precision 38. Note that a scale value is not applicable for
floating point numbers.

Scale and Precision
Specify the scale and precision of a fixed point number column for extra integrity checking on input.
Specifying scale and precision does not force all values to a fixed length. If a value exceeds the precision,

Oracle? returns an error. If a value exceeds the scale, Oracle? rounds it.

The following examples show how Oracle7 stores data using different precisions and scales.

Actual Data Specified As Stored As
7456123.89 NUMBER 7456123.89
7456123.89 NUMBER(9) 7456124

7456123.89 NUMBER(9,2) 7456123.89

7456123.89 NUMBER(9,1) 7456123.9

7456123.8 NUMBER(6) exceeds precision
7456123.8 NUMBER(15,1) 7456123.8
7456123.89 NUMBER(7,-2) 7456100
7456123.89 NUMBER(-7,2) exceeds precision

Negative Scale

If the scale is negative, the actual data is rounded to the specified number of places to the left of the
decimal point. For example, a specification of (10,-2) means to round to hundreds.

Scale Greater than Precision

You can specify a scale that is greater than precision, although it is uncommon. In this case, the precision
specifies the maximum number of digits to the right of the decimal point. As with all number datatypes, if
the value exceeds the precision, Oracle7 returns an error message. If the value exceeds the scale,
Oracle7 rounds the value. For example, a column defined as NUMBER(4,5) requires a zero for the first
digit after the decimal point and rounds all values past the fifth digit after the decimal point. The following
examples show the effects of a scale greater than precision:

Actual Data Specified As Stored As
.01234 NUMBER(4,5) 01234
.00012 NUMBER(4,5) .00012
.000127 NUMBER(4,5) .00013
.0000012 NUMBER(2,7) .0000012
.00000123 NUMBER(2,7) .0000012

Floating Point Numbers

Oracle7 also allows you to specify floating point numbers. A floating point value either can have a decimal
point anywhere from the first to the last digit or can omit the decimal point altogether. A scale value is not
applicable to floating point numbers because there is no restriction on the number of digits that can
appear after the decimal point.

You can specify floating point numbers with the appropriate forms of the NUMBER datatype discussed in
the section "NUMBER Datatype" on page 2 - 23. Oracle7 also supports the ANSI datatype FLOAT . You
can specify this datatype using one of these syntactic forms:

FLOAT specifies a floating point number with decimal precision 38, or a binary precision of 126.
FLOAT(b) specifies a floating point number with binary precision b. The precision b can range from
1to 126.

To convert from binary to decimal precision, multiply b by 0.30103. To convert from

decimal to binary precision, multiply the decimal precision by 3.32193. The maximum of 126 digits of
binary precision is roughly equivalent to 38 digits of decimal precision.

LONG Datatype

LONG columns store variable length character strings containing up to 2 gigabytes, or 231-1 bytes .
LONG columns have many of the characteristics of VARCHAR2 columns. You can use LONG columns to
store long text strings. Oracle7 uses LONG columns in the data dictionary to store the text of view
definitions. The length of LONG values may also be limited by the memory available on your computer.

You can reference LONG columns in SQL statements in these places:

e SELECT lists

* SET clauses of UPDATE statements
¢ VALUES clauses of INSERT statements
The use of LONG values are subject to some restrictions:
¢ Atable cannot contain more than one LONG column.

¢ LONG columns cannot appear in integrity constraints (except for NULL and NOT NULL
constraints).

e LONG columns cannot be indexed.
e A stored function cannot return a LONG value.

¢ Within a single SQL statement, all LONG columns, updated tables, and locked tables must be
located on the same database.

Also, LONG columns cannot appear in certain SQL statements:
e CREATE SNAPSHOT
Also, LONG columns cannot appear in certain parts of SQL statements:

¢ WHERE, GROUP BY, ORDER BY, or CONNECT BY clauses or with the DISTINCT operator in
SELECT statements

¢ UNIQUE clause of a SELECT statement

¢ the column datatype clause of a CREATE CLUSTER statement
e SQL functions (such as SUBSTR or INSTR)

e expressions or conditions

¢ select lists of queries containing GROUP BY clauses

¢ select lists of subqueries or queries combined by set operators

¢ select lists of CREATE TABLE AS SELECT statements

select lists in subqueries in INSERT statements
Triggers can use the LONG datatype in the following manner:

e A SQL statement within a trigger can insert data into a LONG column.

¢ If data from a LONG column can be converted to a constrained datatype (such as CHAR and
VARCHAR?2), a LONG column can be referenced in a SQL statement within a trigger. Note that the
maximum length for these datatypes is 32 Kbytes.

e \Variables in triggers cannot be declared using the LONG datatype.

e :NEW and :OLD cannot be used with LONG columns.

You can use the Oracle Call Interfaces to retrieve a portion of a LONG value from the database. See
Programmer's Guide to the Oracle Call Interface.

DATE Datatype

The DATE datatype is used to store date and time information. Although date and time information can
be represented in both CHAR and NUMBER datatypes, the DATE datatype has special associated
properties.

For each DATE value the following information is stored:

e century

e year

e month

e day

e hour

* minute

e second

To specify a date value, you must convert a character or numeric value to a data value with the

TO_DATE function. Oracle7 automatically converts character values that are in the default date format
into date values when they are used in date expressions. The default date format is specified by the
initialization parameter NLS_DATE_FORMAT and is a string such as 'DD-MON-YY'. This example date
format includes a two-digit number for the day of the month, an abbreviation of the month name, and the

last two digits of the year.

If you specify a date value without a time component, the default time is 12:00:00a.m. (midnight). If you
specify a date value without a date, the default date is the first day of the current month.

The date function SYSDATE returns the current date and time. For information on the SYSDATE and
TO_DATE functions and the default date format, see Chapter "Operators, Functions, Expressions,
Conditions" of this manual.

Date Arithmetic

You can add and subtract number constants as well as other dates from dates. Oracle7 interprets
number constants in arithmetic date expressions as numbers of days. For example, SYSDATE + 1 is
tomorrow. SYSDATE - 7 is one week ago. SYSDATE + (10/1440) is ten minutes from now. Subtracting
the HIREDATE column of the EMP table from SYSDATE returns the number of days since each
employee was hired. You cannot multiply or divide DATE values.

Oracle7 provides functions for many of the common date operations. For example, the ADD_MONTHS
function allows you to add or subtract months from a date. The MONTHS_BETWEEN function returns the
number of months between two dates. The fractional portion of the result represents that portion of a 31-
day month. For more information on date functions, see the section "Date Functions".

Because each date contains a time component, most results of date operations include a fraction. This
fraction means a portion of one day. For example, 1.5 days is 36 hours.

Using Julian Dates

A Julian date is the number of days since Jan 1, 4712 BC. Julian dates allow continuous dating from a
common reference. You can use the date format model "J" with date functions TO_DATE and TO_CHAR
to convert between Oracle7 DATE values and their Julian equivalents.

Example
This statement returns the Julian equivalent of January 1, 1992:

SELECT TO_CHAR(TO_DATE('01-01-1992', 'MM-DD-YYYY"),'J)
FROM DUAL
TO_CHAR(TO_DATE('01-01-1992' 'MM-DD-YYYY),J")

2448623
RAW and LONG RAW Datatypes

The RAW and LONG RAW datatypes are used for data that is not to be interpreted (not converted when
moving data between different systems) by Oracle. These datatypes are intended for binary data or byte
strings. For example, LONG RAW can be used to store graphics, sound, documents, or arrays of binary
data; the interpretation is dependent on the use.

RAW is a variable-length datatype like the VARCHAR?2 character datatype, except that SQL*Net (which
connects user sessions to the instance) and the Import and Export utilities do not perform character
conversion when transmitting RAW or LONG RAW data. In contrast, SQL*Net and Import/Export
automatically convert CHAR, VARCHARZ2, and LONG data between the database character set to the
user session character set (set by the NLS_LANGUAGE parameter of the ALTER SESSION command), if
the two character sets are different.

When Oracle automatically converts RAW or LONG RAW data to and from CHAR data, the binary data is
represented in hexadecimal form with one hexadecimal character representing every four bits of RAW
data. For example, one byte of RAW data with bits 11001011 is displayed and entered as 'CB'.

LONG RAW data cannot be indexed, but RAW data can be indexed.
ROWID Datatype

Each row in the database has an address . You can examine a row's address by querying the
pseudocolumn ROWID. Values of this pseudocolumn are hexadecimal strings representing the address of
each row. These string have the datatype ROWID. For more information on the ROWID pseudocolumn,
see the section "Pseudocolumns” on page 2 - 41. You can also create tables and clusters that contain
actual columns having the ROWID datatype. Oracle7 does not guarantee that the values of such columns
are valid ROWIDs.

Character values representing ROWIDs:
block.row.file
where:

block is a hexadecimal string identifying the data block of the data file containing the row. The length of
this string may vary depending on your operating system.

row is a four-digit hexadecimal string identifying the row in the data block. The first row in the block
has the number 0.

file is a hexadecimal string identifying the database file containing the row. The first data file has the
number 1. The length of this string may vary depending on your operating system.

Example
Consider this ROWID value:

0000000F.0000.0002

The row corresponding to this ROWID is the first row (0000) in the fifteenth data block (0000000F) of the

second data file (0002).

MLSLABEL Datatype

The MLSLABEL datatype is used to store the binary format a label used on a secure operating system.
Labels are used by Trusted Oracle7 to mediate access to information. You can also define columns with
this datatype if you are using the standard Oracle7 Server. For more information on Trusted Oracle7,
including this datatype and labels, see Trusted Oracle7 Server Administrator's Guide.

ANSI, DB2, and SQL/DS Datatypes

SQL commands that create tables and clusters can also both ANSI datatypes and datatypes from
IBM's products SQL/DS and DB2. Oracle7 creates columns with Oracle7 datatypes based on the

conversions defined in Table 2 - 2 and Table 2 - 3.

ANSI SQL Datatype

CHARACTER(n)CHAR(N)

CHARACTER VARYING(n)CHAR VARYING(n)
NUMERIC(p,s)DECIMAL(p,s)
INTEGERINTSMALLINT

FLOAT(b) 2DOUBLE PRECISION 3REAL 4

Oracle7 Datatype
CHAR(n)
VARCHAR(n)
NUMBER(p,s)
NUMBER(38)
NUMBER

Table 2 - 2. ANSI Datatypes Converted to Oracle7 Datatypes

SQL/DS or DB2 Datatype
CHARACTER(n)
VARCHAR(n)

LONG VARCHAR(n)
DECIMAL(p,s) 1
INTEGER

NUMBER(38)

NUMBER

Table 2 - 3.

Oracle7 Datatype
CHAR(n)
VARCHAR(n)
LONG
NUMBER(p,s)
SMALLINT
FLOAT(b) 2

SQL/DS and DB2 Datatypes Converted to Oracle7 Datatypes

1 The NUMERIC, DECIMAL, and DEC datatypes can specify only fixed point numbers. For these

datatypes, s defaults to 0.

2 The FLOAT datatype is a floating point number with a binary precision b. This default precision for this

datatype is 126 binary, or 38 decimal.

3 The DOUBLE PRECISION datatype is a floating point number with binary precision 126.

4 The REAL datatype is a floating point number with a binary precision of 63, or 18 decimal.

Do not define columns with these SQL/DS and DB2 datatypes because they have no corresponding
Oracle7 datatype:

e GRAPHIC
e | ONG VARGRAPHIC
* VARGRAPHIC
e TIME
e TIMESTAMP
Note that data of type TIME and TIMESTAMP can also be expressed as Oracle7 DATE data.
Datatype Comparison Rules
This section describes how Oracle7 compares values of each datatype.
Number Values

A larger value is considered greater than a smaller one. All negative numbers are less than zero and all
positive numbers. Thus, -1 is less than 100; -100 is less than -1.

Date Values

A later date is considered greater than an earlier one. For example, the date equivalent of '29-
MAR-1991' is less than that of '05-JAN-1992' and '05-JAN-1992 1:35pm' is greater than '05-JAN-1992
10:09am’'.

Character String Values
Character values are compared using one of these comparison rules:

¢ Dblank-padded comparison semantics

¢ non-padded comparison semantics
The following sections explain these comparison semantics. The results of comparing two character
values using different comparison semantics may be different. Table 2 - 4 shows the results of comparing
five pairs of character values using each comparison semantic. The last comparison in the table illustrates
the differences between the blank-padded and non-padded comparison semantics.
The results of blank-padded and non-padded comparisons is shown in Table 2 - 4. Usually, the results of
blank-padded and non-padded comparisons are the same. However, note the exception highlighted in

bold in Table 2 - 4 where blanks are considered less than any character, which is true in most character
sets.

Blank-Padded Non-Padded
'‘ab' > 'aa’ '‘ab' > 'aa’
'‘ab' > 'aU’ '‘ab' > 'al’
‘ab' > 'a’ '‘ab' > 'a'

‘ab’ = "ab’ ‘ab’ = 'ab’

au' ='a’ au' >'a’

Table 2 - 4. Results of Comparisons with Blank-Padded and Non-Padded Comparison Semantics

Blank-Padded Comparison Semantics If the two values have different lengths, Oracle7 first adds
blanks to the end of the shorter one so their lengths are equal. Oracle7 then compares the values
character by character up to the first character that differs. The value with the greater character in the first
differing position is considered greater. If two values have no differing characters, then they are
considered equal. This rule means that two values are equal if they differ only in the number of trailing
blanks. Oracle7 uses blank-padded comparison semantics only when both values in the comparison are
either expressions of datatype CHAR, text literals, or values returned by the USER function .

Non-Padded Comparison Semantics Oracle7 compares two values character by character up to the
first character that differs. The value with the greater character in that position is considered greater. If two
values of different length are identical up to the end of the shorter one, the longer value is considered
greater. If two values of equal length have no differing characters, then the values are considered equal.
Oracle7 uses non-padded comparison semantics whenever one or both values in the comparison have
the datatype VARCHARZ2.
Single Characters
Oracle7 compares single characters according to their numeric values in the database character set. One
character is greater than another if it has a greater numeric value than the other in the character set. In
Table 2 - 4, blanks are considered less than any character, which is true in most character sets.
These are some common character sets:

e 7-bit ASCII (American Standard Code for Information Interchange)

e EBCDIC (Extended Binary Coded Decimal Interchange Code) Code Page 500

e |SO 8859/1 (International Standards Organization)

e JEUC Japan Extended UNIX
Portions of the ASCII and EBCDIC character sets appear in Table 2 - 5 and Table 2 - 6. Note that

uppercase and lowercase letters are not equivalent. Also, note that the numeric values for the characters
of a character set may not match the linguistic sequence for a particular language.

ASCII Character Set

Table 2 - 5 lists the 7-bit ASCII character set.

Decimal value Symbol Decimal value Symbol
32 blank 59 ;

33 ! 60 <
34 " 61 =
35 # 62 >
36 $ 63 ?
37 % 64 @
38 & 65-90 A-Z
39 ' 91 [
40 (92 \
41) 93]

42 * 94 AN
43 + 95 _
44 , 96 :

45 - 97-122 a-z

46 . 123 {
47 / 124 |
48-57 0-9 125 }
58 : 126 ~

Table 2 - 5. ASCII Character Set

EBCDIC Character Set

Table 2 - 6 lists a common portion of the EBCDIC character set.

Decimal value Symbol Decimal value Symbol
64 blank 108 %
74 ¢ 109 B
75 . 110 >
76 < 111 ?
77 (122 :

78 + 123 #
79 | 124 @
80 & 125 '

90 ! 126 =
91 $ 127 "
92 * 129-137 a-i
93) 145-153 j-r
94 ; 162-169 S-z
95 ' 193-201 A-l
96 - 209-217 J-R
97 / 226-233 S-Z

Table 2 - 6. EBCDIC Character Set

Data Conversion

Generally an expression cannot contain values of different datatypes. For example, an expression
cannot multiply 5 by 10 and then add 'JAMES'. However, Oracle7 supports both implicit and explicit
conversion of values from one datatype to another.

Implicit Data Conversion

Oracle7 automatically converts a value from one datatype to another when such a conversion makes
sense. Oracle7 performs datatype conversions in these cases:

e When an INSERT or UPDATE statement assigns a value of one datatype to a column of another,
Oracle7 converts the value to the datatype of the column.

e When you use a SQL function or operator with an argument with a datatype other than the one it
accepts, Oracle7 converts the argument to the accepted datatype.

e When you use a comparison operator on values of different datatypes, Oracle7 converts one of the
expressions to the datatype of the other.

Example |

The text literal '10' has datatype CHAR. Oracle7 implicitly converts it to the NUMBER datatype if it
appears in a numeric expression as in the following statement:

SELECT sal + '10' FROM emp

Example Il

When a condition compares a character value and a NUMBER value, Oracle7 implicitly converts the
character value to a NUMBER value, rather than converting the NUMBER value to a character value. in
the following statement, Oracle7 implicitly converts '7936' to 7936:

SELECT ename FROM emp WHERE empno = 7936’

Example 11l

In the following statement, Oracle? implicitly converts '12-MAR-1993' to a DATE value using the default
date format 'DD-MON-YYYY"

SELECT ename FROM emp WHERE hiredate = '12-MAR-1993'

Example IV

In the following statement, Oracle7 implicitly converts the text literal '00002514.0001.0001' to a ROWID

value:

SELECT ename FROM emp
WHERE ROWID ='00002514.0001.0001"

Explicit Data Conversion

You can also explicitly specify datatype conversions using SQL conversion functions. Table 2 - 7 shows
SQL functions that explicitly convert a value from one datatype to another.

TOFROM CHAR NUMBER DATE RAW ROWID
CHAR unnecessary TO_NUMBER TO_DATE HEXTORAW CHARTOROWID
NUMBER TO_CHAR unnecessary TO_DATE
(number,'J")
DATE TO_CHAR TO_CHAR(date,'J") unnecessary
RAW RAWTOHEX unnecessary
ROWID ROWIDTOCHAR unnecessary

Table 2 - 7. SQL Functions for Datatype Conversion

For information on these functions, see the section "Conversion Functions".

Note: Note that Table 2 - 7 does not show conversions from LONG and LONG RAW values because it is
impossible to specify LONG and LONG RAW values in cases in which Oracle7 can perform implicit
datatype conversion. For example, LONG and LONG RAW values cannot appear in expressions with
functions or operators. For information on the limitations on LONG and LONG RAW datatypes, see the
section "LONG Datatype" on page 2 - 25.

Implicit vs. Explicit Data Conversion

It is recommended that you specify explicit conversions rather than rely on implicit or automatic
conversions for these reasons:

e SQL statements are easier to understand when you use explicit datatype conversions functions.

e Automatic datatype conversion can have a negative impact on performance, especially if the
datatype of a column value is converted to that of a constant rather than the other way around.

¢ Implicit conversion depends on the context in which it occurs and may not work the same way in
every case.

e Algorithms for implicit conversion are subject to change across software releases and among
Oracle products. Behavior of explicit conversions is more predictable.

Nulls

If a column in a row has no value, then column is said to be null, or to contain a null. Nulls can appear in
columns of any datatype that are not restricted by NOT NULL or PRIMARY KEY integrity constraints. Use
a null when the actual value is not known or when a value would not be meaningful.

Oracle7 currently treats a character value with a length of zero as null. However, this may not continue to
be true in future versions of Oracle?.

Do not use null to represent a value of zero, because they are not equivalent. Any arithmetic expression
containing a null always evaluates to null. For example, null added to 10 is null. In fact, all operators
(except concatenation) return null when given a null operand.

Nulls in SQL Functions

All scalar functions (except NVL and TRANSLATE) return null when given a null argument. The NVL
function can be used to return a value when a null occurs. For example, the expression NVL(COMM,0)
returns 0 if COMM is null or the value of COMM if it is not null.

Most group functions ignore nulls. For example, consider a query that averages the five values 1000, null,
null, null, and 2000. Such a query ignores the nulls and calculates the average to be (1000+2000)/2 =
1500.

Nulls with Comparison Operators

To test for nulls, only use the comparison operators IS NULL and IS NOT NULL. If you use any other
operator with nulls and the result depends on the value of the null, the result is UNKNOWN. Because null
represents a lack of data, a null cannot be equal or unequal to any value or to another null. However, note
that Oracle7 considers two nulls to be equal when evaluating a DECODE expression. For information on
the DECODE syntax, see the section "Expr".

Nulls in Conditions

A condition that evaluates to UNKNOWN acts almost like FALSE. For example, a SELECT statement with
a condition in the WHERE clause that evaluates to UNKNOWN will return no rows. However, a condition
evaluating to UNKNOWN differs from FALSE in that further operations on an UNKNOWN condition
evaluation will evaluate to UNKNOWN. Thus, NOT FALSE evaluates to TRUE, but NOT UNKNOWN
evaluates to UNKNOWN.

Table 2 - 8 shows examples of various evaluations involving nulls in conditions. If the conditions
evaluating to UNKNOWN were used in a WHERE clause of a SELECT statement, then no rows would be
returned for that query.

IfAlis: Condition Evaluates to:
10 a lS NULL FALSE

10 a IS NOT NULL TRUE

NULL a IS NULL TRUE

NULL a IS NOT NULL FALSE

10 a = NULL UNKNOWN

10 a !'= NULL UNKNOWN

NULL a = NULL

NULL a!= NULL
NULL a=10
NULL a'=10

Table 2 - 8. Conditions Containing Nulls

UNKNOWN
UNKNOWN
FALSE
FALSE

Pseudocolumns

A pseudocolumn behaves like a table column, but is not actually stored in the table. You can select from
pseudocolumns, but you cannot insert, update, or delete their values. This section describes these
pseudocolumns:

¢ CURRVAL

NEXTVAL

LEVEL

ROWID

ROWNUM

CURRVAL and NEXTVAL

A sequence is a schema object that can generate unique sequential values. These values are often
used for primary and unique keys. You can refer to sequence values in SQL statements with these
pseudocolumns:;

CURRVAL returns the current value of a sequence.
NEXTVAL increments the sequence and returns the next value.

You must qualify CURRVAL and NEXTVAL with the name of the sequence:
sequence.CURRVALsequence.NEXTVAL

To refer to the current or next value of a sequence in the schema of another user, you must have been
granted either SELECT object privilege on the sequence or SELECT ANY SEQUENCE system privilege
and you must qualify the sequence with the schema containing it:

schema.sequence.CURRVALschema.sequence.NEXTVAL

To refer to the value of a sequence on a remote database, you must qualify the sequence with a complete
or partial name of a database link:

schema.sequence. CURRVAL@dblinkschema.sequence.NEXTVAL@dblink

For more information on referring to database links, see the section "Referring to Objects in Remote
Databases” on page 2 - 13.

If you are using Trusted Oracle7 in DBMS MAC mode, you can only refer to a sequence if your DBMS
label dominates the sequence's creation label or if one of these criteria is satisfied:

¢ |f the sequence's creation label is higher than your DBMS label, you must have READUP and
WRITEUP system privileges

¢ |f the sequence's creation label is lower than your DBMS label, you must have WRITEDOWN
system privilege.

¢ |If the sequence's creation label and your DBMS label are not comparable, you must have
READUP, WRITEUP, and WRITEDOWN system privileges.

If you are using Trusted Oracle7 in OS MAC mode, you cannot refer to a sequence with a lower creation
label than your DBMS label.

Using Sequence Values
You can use CURRVAL and NEXTVAL in these places:
e the SELECT list of a SELECT statement that is not contained in a subquery, snapshot or view
e the SELECT list of a subquery in an INSERT statement
e the VALUES clause of an INSERT statement
e the SET clause of an UPDATE statement
You cannot use CURRVAL and NEXTVAL in these places:
e asubqueryin a DELETE, SELECT, or UPDATE statement
e aview's query or snapshot's query
e a SELECT statement with the DISTINCT operator
e a SELECT statement with a GROUP BY or ORDER BY clause

e a SELECT statement that is combined with another SELECT statement with the UNION,
INTERSECT, or MINUS set operator

¢ the WHERE clause of a SELECT statement
e DEFAULT value of a column in a CREATE TABLE or ALTER TABLE statement
¢ the condition of a CHECK constraint

Also, within a single SQL statement, all referenced LONG columns, updated tables, and locked tables
must be located on the same database.

When you create a sequence, you can define its initial value and the increment between its values. The
first reference to NEXTVAL returns the sequence's initial value. Subsequent references to NEXTVAL
increment the sequence value by the defined increment and return the new value. Any reference to
CURRVAL always returns the sequence's current value, which is the value returned by the last reference
to NEXTVAL. Note that before you use CURRVAL for a sequence in your session, you must first initialize
the sequence with NEXTVAL.

If a statement contains more than one reference to NEXTVAL for a sequence, Oracle7 increments the
sequence once and returns the same value for all occurrences of NEXTVAL. If a statement contains
references to both CURRVAL and NEXTVAL, Oracle7 increments the sequence and returns the same
value for both CURRVAL and NEXTVAL regardless of their order within the statement.

A sequence can be accessed by many users concurrently with no waiting or locking. For information on
sequences, see the CREATE SEQUENCE command on page 4 - 225.

Example |
This example selects the current value of the employee sequence:

SELECT empseq.currval
FROM DUAL

Example 1l
This example increments the employee sequence and uses its value for a new employee inserted into
the employee table:

INSERT INTO emp
VALUES (empseq.nextval, 'LEWIS', 'CLERK',
7902, SYSDATE, 1200, NULL, 20)

Example 11l
This example adds a new order with the next order number to the master order table and then adds
sub-orders with this number to the detail order table:

INSERT INTO master_order(orderno, customer, orderdate)
VALUES (orderseqg.nextval, 'Al"s Auto Shop', SYSDATE)

INSERT INTO detail_order (orderno, part, quantity)
VALUES (orderseg.currval, 'SPARKPLUG', 4)

INSERT INTO detail_order (orderno, part, quantity)
VALUES (orderseq.currval, 'FUEL PUMP', 1)

INSERT INTO detail_order (orderno, part, quantity)
VALUES (orderseq.currval, 'TAILPIPE', 2)

LEVEL

For each row returned by a hierarchical query, the LEVEL pseudocolumn returns 1 for a root node, 2 for
a child of a root, and so on. A root node is the highest node within an inverted tree. A child node is any
non-root node. A parent node is any node that has children. A leaf node is any node without children.
Figure 2 - 3 shows the nodes of an inverted tree with their LEVEL values.

Level 1 rook!
parent

Level 2 parent! child?

child leaf
Level 3 ¢ hild! parent! child! parent!

le af child le af child

Level 4 child? child? child!

leaf leaf leaf

Figure 2 - 3. Hierarchical Tree

To define a hierarchical relationship in a query, you must use the START WITH and CONNECT BY
clauses. For more information on using the LEVEL pseudocolumn, see the SELECT command on page 4_
- 406.

ROWID

For each row in the database, the ROWID pseudocolumn returns a row's address. ROWID values
contain information necessary to locate a row:

¢ which data block in the data file
e which row in the data block (first row is 0)
¢ which data file (first file is 1)

Usually, a ROWID value uniquely identifies a row in the database. However, rows in different tables that
are stored together in the same cluster can have the same ROWID.

Values of the ROWID pseudocolumn have the datatype ROWID. For information on the ROWID datatype,
see the section "ROWID Datatype" on page 2 - 29.

ROWID values have several important uses:

¢ They are the fastest way to access a single row.

¢ They can show you how a table's rows are stored.

¢ They are unique identifiers for rows in a table.
A ROWID does not change during the lifetime of its row. However, you should not use ROWID as a
table's primary key. If you delete and reinsert a row with the Import and Export utilities, for example, its
ROWID may change. If you delete a row, Oracle7 may reassign its ROWID to a new row inserted later.
Although you can use the ROWID pseudocolumn in the SELECT and WHERE clauses of a query, these
pseudocolumn values are not actually stored in the database. You cannot insert, update, or delete a value

of the ROWID pseudocolumn.

Example
This statement selects the address of all rows that contain data for employees in department 20:

SELECT ROWID, ename
FROM emp
WHERE deptno = 20

ROWID ENAME
0000000F.0000.0002 SMITH
0000000F.0003.0002 JONES
0000000F.0007.0002 SCOTT
0000000F.000A.0002 ADAMS
0000000F.000C.0002 FORD

ROWNUM

For each row returned by a query, the ROWNUM pseudocolumn returns a number indicating the order in
which Oracle7 selects the row from a table or set of joined rows. The first row selected has a ROWNUM
of 1, the second has 2, and so on.

You can use ROWNUM to limit the number of rows returned by a query, as in this example:

SELECT *
FROM emp
WHERE ROWNUM < 10

You can also use ROWNUM to assign unique values to each row of a table, as in this example:

UPDATE tabx
SET coll = ROWNUM

Oracle7 assigns a ROWNUM value to each row as it is retrieved, before rows are sorted for an ORDER
BY clause, so an ORDER BY clause normally does not affect the ROWNUM of each row. However, if
an ORDER BY clause causes Oracle7 to use an index to access the data, Oracle7 may retrieve the rows
in a different order than without the index, so the ROWNUMs may differ than without the ORDER BY
clause.

Note that conditions testing for ROWNUM values greater than a positive integer are always false. For
example, this query returns no rows:

SELECT * FROM emp
WHERE ROWNUM > 1

The first row fetched is assigned a ROWNUM of 1 and makes the condition false. The second row to be
fetched is now the first row and is also assigned a ROWNUM of 1 and makes the condition false. All rows
subsequently fail to satisfy the condition, so no rows are returned.

Comments

You can associate comments with SQL statements and schema objects.
Comments Within SQL Statements

Comments within SQL statements do not affect the statement execution, but they may make your
application easier for you to read and maintain. You may want to include a comment in a statement that
describes the statement's purpose within your application.

A comment can appear between any keywords, parameters or punctuation marks in a statement. You can
include a comment in a statement using either of these means:

e Begin the comment with /*. Proceed with the text of the comment. This text can span multiple lines.
End the comment with */. The opening and terminating characters need not be separated from the text by
a space or a line break.

e Begin the comment with -- (two hyphens). Proceed with the text of the comment. This text cannot
extend to a new line. End the comment with a line break.

A SQL statement can contain multiple comments of both styles. The text of a comment can contain any
printable characters in your database character set.

You can use comments in a SQL statement to pass instructions, or hints, to the Oracle7 optimizer. The
optimizer uses these hints to choose an execution plan for the statement. For more information on hints,
see the "Tuning SQL Statements" chapter of Oracle7 Server Tuning.

Note that you cannot use these styles of comments between SQL statements in a SQL script. You can
use the Server Manager or SQL*Plus REMARK command for this purpose. For information on these
commands, see Oracle Server Manager User's Guide or SQL*Plus User's Guide and Reference.

Example
These statements contain many comments:

SELECT ename, sal + NVL(comm, 0), job, loc
[* Select all employees whose compensation is
greater than that of Jones.*/
FROM emp, dept
/*The DEPT table is used to get the department name.*/
WHERE emp.deptno = dept.deptno
AND sal + NVL(comm,0) > [* Subquery: */
(SELECT sal + NLV(comm,0)
[* total compensation is sal + comm */
FROM emp
WHERE ename ="'JONES")

SELECT ename, -- select the name
sal + NVL(comm, 0) -- total compensation
job -- job
loc -- and city containing the office
FROM emp, -- of all employees
dept

WHERE emp.deptno = dept.deptno
AND sal + NVL(comm, 0) > -- whose compensation

-- is greater than
(SELECT sal + NVL(comm,0) -- the compensation
FROM emp
WHERE ename ="'JONES’) -- of Jones.

Comments on Schema Objects

You can associate a comment with a table, view, snapshot, or column using the COMMENT command
described in Chapter 4, "Commands" of this manual. Comments associated with schema objects are
stored in the data dictionary.

CHAPTER 3. Operators, Functions, Expressions, Conditions
This chapter describes methods of manipulating individual data items. For example, standard arithmetic
operators such as addition and subtraction are discussed as well as less common functions such as
absolute value or string length. Topics include:

e operators

e SQL functions

e user functions

e format models

e expressions

e conditions

Operators

An operator is used to manipulate individual data items and return a result. These items are called
operands or arguments. Operators are represented by special characters or by keywords. For example,
the multiplication operator is represented by an asterisk (*) and the operator that tests for nulls is

represented by the keywords IS NULL. The tables in the following sections of this chapter list SQL
operators.

Unary and Binary Operators

There are two general classes of operators:

unary A unary operator operates on only one operand. A unary operator typically appears with its
operand in this format:

operator operand

binary A binary operator operates on two operands. A binary operator appears with its
operands in this format:

operandl operator operand2

Other operators with special formats accept more than two operands. If an operator is given a null
operator, the result is always null. The only operator that does not follow this rule is concatenation (||).

Precedence

An important property of an operator is its precedence. Precedence is the order in which Oracle7
evaluates different operators in the same expression. When evaluating an expression containing multiple
operators, Oracle7 evaluates operators with higher precedence before evaluating those with lower
precedence. Oracle7 evaluates operators with equal precedence from left to right within an expression.

Table 3-1 lists the levels of precedence among SQL operators from high to low. Operators listed on the
same line have the same precedence.

Highest Precedence

Unary + - arithmetic operators PRIOR Operator
* [arithmetic operators
Binary = - arithmetic operators || character operators

All comparison operators
NOT logical operator
AND logical operator

OR logical operator

Lowest Precedence
Table 3-1. SQL Operator Precedence

You can use parentheses in an expression to override operator precedence. Oracle7 evaluates
expressions inside parentheses before evaluating those outside.

SQL also supports set operators (UNION, UNION ALL, INTERSECT, and MINUS) which combine sets of
rows returned by queries, rather than individual data items. All set operators have equal precedence.

Exargggellowing expression multiplication has a higher precedence than addition, so Oracle7 first
multiplies 2 by 3 and then adds the result to 1.
1+2*3
Arithmetic Operators
You can use an arithmetic operator in an expression to negate, add, subtract, multiply, and divide

numeric values. The result of the operation is also a numeric value. Some of these operators are also
used in date arithmetic. Table 3-2 lists arithmetic operators.

Operator Purpose Example

+ - Denotes a positive or negative SELECT * FROM orders
expression. These are unary WHERE qtysold =
operators. -1SELECT * FROM emp

WHERE -sal <0

*/ Multiplies, divides. These are UPDATE emp SET sal = sal
binary operators. *1.1

+ - Adds, subtracts. These are SELECT sal + comm FROM
binary operators. empWHERE SYSDATE -

hiredate > 365
Table 3 - 2. Arithmetic Operators
Do not use consecutive minus signs with no separation (- -) in arithmetic expressions to indicate double
negation or the subtraction of a negative value. The characters - - are used to begin comments within

SQL statements. You should separate consecutive minus signs with a space or a parenthesis. For more
information on comments within SQL statements, see the section "Comments" on page 2 - 46.

Character Operators

Character operators are used in expressions to manipulate character strings. Table 3-3 lists the single
character operator.

Operator Purpose Example
I Concatenates character SELECT 'Name is ' || ename
strings. FROM emp

Table 3 - 3. Character Operators

The result of concatenating two character strings is another character string. If both character strings are
of datatype CHAR, the result has datatype CHAR and is limited to 255 characters. If either string is of
datatype VARCHARZ, the result has datatype VARCHAR?2 and is limited to 2000 characters. Trailing
blanks in character strings are preserved by concatenation, regardless of the strings' datatypes. For more
information on the differences between the CHAR and VARCHAR?2 datatypes, see the section "Character
Datatypes" on page 2 - 22.

On most platforms, the concatenation operator is two solid vertical bars, as shown in Table 3-3. However,
some IBM platforms use broken vertical bars for this operator. When moving SQL script files between
systems having different character sets, such as between ASCIl and EBCDIC, vertical bars might not
be translated into the vertical bar required by the target Oracle7 environment. Because it may be difficult

or impossible to control translation performed by operating system or network utilities, the CONCAT
character function is provided as an alternative to the vertical bar operator. Its use is recommended in
applications that will be moved to environments with differing character sets.

Although Oracle7 treats zero-length character strings as nulls, concatenating a zero-length character
string with another operand always results in the other operand, so null can only result from the
concatenation of two null strings. However, this may not continue to be true in future versions of Oracle?7.
To concatenate an expression that might be null, use the NVL function to explicitly convert the expression
to a zero-length string.

Example

This example creates a table with both CHAR and VARCHAR2 columns, inserts values both with and
without trailing blanks, and then selects these values, concatenating them. Note that for both CHAR and
VARCHAR?2 columns, the trailing blanks are preserved.

CREATE TABLE tab1 (coll VARCHAR2(6), col2 CHAR(6),
col3 VARCHAR2(6), col4 CHAR(6));

Table created.

INSERT INTO tabl (coll, col2, col3, col4)
VALUES (‘abc','def ', 'ghi ', 'jkl");

1 row created.

SELECT coll||col2]||col3]|col4 "Concatenation”
FROM tab1l,;

Concatenation

abcdef
ghi
ikl

Comparison Operators

Comparison operators are used in conditions that compare one expression to another. The result of
comparing one expression to another can be TRUE, FALSE, or UNKNOWN. For information on
conditions, see the section "Condition".

Operator Purpose Example

? Equality test. SELECT * FROM emp
WHERE sal = 1500

! Inequality test. All forms of the SELECT * FROM emp

< > inequality operator may not be WHERE sal |= 1500
available on all platforms.

> "Greater than" and "less than" SELECT * FROM emp

< tests. WHERE sal >

1500SELECT * FROM emp

WHERE sal < 1500

>= "Greater than or equal to" and SELECT * FROM emp
<= "less than or equal to" tests. WHERE sal >=

NOT IN

ANYSOME

ALL

[NOT] BETWEEN x AND y

EXISTS

x [NOT] LIKE y
[ESCAPE 'z]

"Equal to any member of" test.
Equivalent to "= ANY".

Equivalent to "I=ALL".
Evaluates to FALSE if any
member of the set is NULL.

Compares a value to each
value in a list or returned by a
qguery. Must be preceded by
=, 1=, >, <, <=, >=, Evaluates
to FALSE if the query returns
No rows.

Compares a value to every
value in a list or returned by a
guery. Must be preceded by
=, 1=, >, <, <=, >=. Evaluates
to TRUE if the query returns
Nno rows.

[Not] greater than or equal to x
and less than or equal to y.

TRUE if a subquery returns at
least one row.

TRUE if x does [not] match the
pattern y. Within y, the
character "%" matches any
string of zero or more
characters except null. The
character "_" matches any
single character. Any
character, excepting percent
(%) and underbar (_) may
follow ESCAPE; a wilcard
character will be treated as a
literal if preceded by the
escape character.

1500SELECT * FROM emp
WHERE sal >= 1500

SELECT * FROM emp
WHERE job IN

('CLERK'ANALYST")SELECT

* FROM emp
WHERE sal IN
(SELECT sal

FROM emp WHERE

deptno = 30)

SELECT * FROM emp
WHERE sal NOT IN
(SELECT sal
FROM emp
WHERE deptno =

30)SELECT* FROM emp
WHERE job NOT IN
('CLERK', ANALYST")

SELECT * FROM emp
WHERE sal = ANY
(SELECT sal FROM

emp WHERE deptno = 30)

SELECT * FROM emp
WHERE sal >= ALL
(1400, 3000)

SELECT * FROM emp
WHERE sal
BETWEEN 2000

AND 3000)

SELECT dname, deptno
FROM dept
WHERE EXISTS
(SELECT *

FROM emp

WHERE
dept.deptno

= emp.deptno)

See the section "LIKE

Operator".SELECT *

FROM tabl

WHERE coll LIKE

'A_C/%E%' ESCAPE
I/I

IS [NOT] NULL Tests for nulls. This is the only SELECT dname, deptno

operator that should be used FROM emp
to test for nulls. See the WHERE comm IS
section "Nulls". NULL

Table 3 - 4. (continued) Comparison Operators

NOT IN Operator

All rows evaluate to UNKNOWN (and no rows are returned) if any item in the list following a NOT IN
operation is null. For example, the following statement returns the string TRUE":

SELECT 'TRUE'
FROM emp
WHERE deptno NOT IN (5,15)
However, the following statement returns no rows:
SELECT 'TRUE'
FROM emp
WHERE deptno NOT IN (5,15,null)
The above example returns no rows because the WHERE clause condition evaluates to:

deptno != 5 AND deptno != 15 AND deptno != null

Because all conditions that compare a null result in null, the entire expression results in a null. This
behavior can easily be overlooked, especially when the NOT IN operator references a subquery.

LIKE Operator

The LIKE operator is used in character string comparisons with pattern matching. The syntax for a
condition using the LIKE operator is shown in this diagram:

LIKE condition ({Form ¥II) ::=

[charl LIEE chari

I_NI:IT J LESEE&PE ‘c’ J ”

where:

charl is a value to be compared with a pattern. This value can have datatype CHAR
or VARCHAR2.

NOT logically inverts the result of the condition, returning FALSE if the condition
evaluates to TRUE and TRUE if it evaluates to FALSE.

char2 is the pattern to which charl is compared. The pattern is a value of datatype
CHAR or VARCHAR2 and can contain the special pattern matching characters
% and _.

ESCAPE identifies a single character as the escape character. The escape character can

be used to cause Oracle7? to interpret % or _literally, rather than as a special
character, in the pattern.

If you wish to search for strings containing an escape character, you must
specify this character twice. For example, if the escape character is '/, to search
for the string 'client/server', you must specify, ‘client//server'.

While the equal (=) operator exactly matches one character value to another, the LIKE operator matches
a portion of one character value to another by searching the first value for the pattern specified by the
second. Note that blank padding is not used for LIKE comparisons.

With the LIKE operator, you can compare a value to a pattern rather than to a constant. The pattern can
only appear after the LIKE keyword. For example, you can issue the following query to find the salaries of
all employees with names beginning with 'SM'":

SELECT sal
FROM emp
WHERE ename LIKE 'SM%'

The following query uses the = operator, rather than the LIKE operator, to find the salaries of all
employees with the name 'SM%'":

SELECT sal
FROM emp
WHERE ename = 'SM%'

The following query finds the salaries of all employees with the name 'SM%'. Oracle7 interprets 'SM%' as
a text literal, rather than as a pattern, because it precedes the LIKE operator:

SELECT sal
FROM emp
WHERE 'SM%' LIKE ename

Patterns usually use special characters that Oracle7 matches with different characters in the value:

e Anunderscore (_) in the pattern matches exactly one character (as opposed to one byte in a multi-
byte character set) in the value.

e Apercent sign (%) in the pattern can match zero or more characters (as opposed to bytes in a
multi-byte character set) in the value. Note that the pattern '%' cannot match a null.

Case Sensitivity and Pattern Matching Case s significant in all conditions comparing character
expressions including the LIKE and equality (=) operators. You can use the UPPER() function to perform
a case insensitive match, as in this condition:

UPPER(ename) LIKE 'SM%'

Pattern Matching on Indexed Columns When LIKE is used to search an indexed column for a pattern,
Oracle7 can use the index to improve the statement's performance if the leading character in the pattern
is not "%" or "_". In this case, Oracle7 can scan the index by this leading character. If the first character in
the pattern is "%" or "_", the index cannot improve the query's performance because Oracle7 cannot scan
the index.

Example |
This condition is true for all ENAME values beginning with "MA":

ename LIKE 'MA%'

All of these ENAME values make the condition TRUE:

MARTIN, MA, MARK, MARY

Since case is significant, ENAME values beginning with "Ma," "ma,"” and "mA" make the condition
FALSE.

Example Il
Consider this condition:

ename LIKE 'SMITH_'
This condition is true for these ENAME values:
SMITHE, SMITHY, SMITHS

This condition is false for 'SMITH', since the special character
ENAME value.

must match exactly one character of the

ESCAPE Option You can include the actual characters "%" or " " in the pattern by using the ESCAPE
option. The ESCAPE option identifies the escape character. If the escape character appears in the
pattern before the character "%" or " _" then Oracle7 interprets this character literally in the pattern, rather
than as a special pattern matching character.

Example 11l
To search for any employees with the pattern 'A_B' in their name:

SELECT ename
FROM emp
WHERE ename LIKE '%A_B%' ESCAPE '\'

The ESCAPE option identifies the backslash (\) as the escape character. In the pattern, the escape
character precedes the underscore (). This causes Oracle7 to interpret the underscore literally, rather
than as a special pattern matching character.

Patterns Without % If a pattern does not contain the "%" character, the condition can only be TRUE if
both operands have the same length.

Example IV
Consider the definition of this table and the values inserted into it:

CREATE TABLE freds (f CHAR(6), v VARCHAR2(6))
INSERT INTO freds VALUES (FRED', 'FRED)

Because Oracle7 blank-pads CHAR values, the value of F is blank-padded to 6 bytes. V is not blank-
padded and has length 4. Table 3-5 shows conditions that evaluate to TRUE and FALSE.

Logical Operators

A logical operator combines the results of two component conditions to produce a single result based
on them or to invert the result of a single condition. Table 3-5 lists logical operators.

Operator Function Example
NOT Returns TRUE if the following SELECT *
condition is FALSE. Returns FALSE FROM emp
if itis TRUE. If it is UNKNOWN, it WHERE NOT (job IS NULL)

remains UNKNOWN SELECT *

AND

OR

Returns TRUE if both component
conditions are TRUE. Returns
FALSE if either is FALSE.
Otherwise returns UNKNOWN.
Returns TRUE if either component
condition is TRUE. Returns FALSE
if both are FALSE. Otherwise
returns UNKNOWN.

FROM emp

WHERE NOT (sal BETWEEN
1000 AND 2000)
SELECT *

FROM emp

WHERE job = 'CLERK'

AND deptno = 10
SELECT *

FROM emp

WHERE job = 'CLERK'

OR deptno = 10

Table 3 - 5. Logical Operators

For example, in the WHERE clause of the following SELECT statement, the AND logical operator is used
to ensure that only those hired before 1984 and earning more than $1000 a month are returned:

SELECT *
FROM emp

WHERE hiredate < TO_DATE('01-JAN-1984', 'DD-MON-YYYY")
AND sal > 1000

NOT Operator

Table 3-6 shows the result of applying the NOT operator to a condition.

NOT TRUE FALSE UNKNOWN
FALSE TRUE UNKNOWN

Table 3-6. NOT Truth Table
AND Operator

Table 3-7 shows the results of combining two expressions with AND.
AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN
Table 3-7. AND Truth Table
OR Operator

Table 3-8 shows the results of combining two expressions with OR.
OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

Table 3-8. OR Truth Table

Set Operators

Set operators combine the results of two component queries into a single result. Queries containing set

operators are called compound queries. Table 3-9 lists SQL set operators.

Operator Returns

UNION All rows selected by either query.

UNION ALL All rows selected by either query, including all
duplicates.

INTERSECT All distinct rows selected by both queries.

MINUS All distinct rows selected by the first query but

not the second.
Table 3-9. Set Operators

All set operators have equal precedence. If a SQL statement contains multiple set operators, Oracle7
evaluates them from the left to right if no parentheses explicitly specify another order. To comply with
emerging SQL standards, a future version of Oracle7 will give the INTERSECT operator greater
precedence than the other set operators, so you should use parentheses to explicitly specify order of
evaluation in queries that use the INTERSECT operator with other set operators.

The corresponding expressions in the select lists of the component queries of a compound query must
match in number and datatype. If component queries select character data, the datatype of the return
values are determined as follows:

¢ If both queries select values of datatype CHAR, the returned values have datatype CHAR.

e |If either or both of the queries select values of datatype VARCHARZ2, the returned values have
datatype VARCHAR2.

Examples
Consider these two queries and their results:

SELECT part
FROM orders_listl

SPARKPLUG
FUEL PUMP
FUEL PUMP TAILPIPE

SELECT part
FROM orders_list2

CRANKSHAFT
TAILPIPE
TAILPIPE

The following examples combine the two query results with each of the set operators.
UNION Example
The following statement combines the results with the UNION operator, which eliminates duplicate

selected rows:

SELECT part

FROM orders_listl
UNION
SELECT part

FROM orders_list2

SPARKPLUG
FUEL PUMP
TAILPIPE
CRANKSHAFT

The following statement shows how datatype must match when columns do not exist in one or the other
table:

SELECT part, parthum, to_date(null) date_in
FROM orders_listl

UNION

SELECT part, to_null(null), date_in
FROM orders_list2

PART PARTNUM DATE_IN
SPARKPLUS 3323165
SPARKPLUS 10/24/98
FUEL PUMP 3323162
FUEL PUMP 12/24/99
TAILPIPE 1332999
TAILPIPE 01/01/01
CRANKSHAFT 9394991
CRANKSHAFT 09/12/02

UNION ALL Example
The following statement combines the results with the UNION ALL operator which does not eliminate
duplicate selected rows:

SELECT part
FROM orders_listl
UNION ALL SELECT part
FROM orders_list2

SPARKPLUG
FUEL PUMP
FUEL PUMP
TAILPIPE
CRANKSHAFT
TAILPIPE
TAILPIPE

Note that the UNION operator returns only distinct rows that appear in either result, while the UNION ALL
operator returns all rows. A PART value that appears multiple times in either or both queries (such as
'FUEL PUMP") is returned only once by the UNION operator, but multiple times by the UNION ALL
operator.

INTERSECT Example
The following statement combines the results with the INTERSECT operator which returns only those
rows returned by both queries:

SELECT part

FROM orders_listl
INTERSECT
SELECT part

FROM orders_list2

TAILPIPE

MINUS Example
The following statement combines the results with the MINUS operator which returns only those rows
returned by the first query but not in the second:

SELECT part
FROM orders_listl
MINUS SELECT part
FROM orders_list2

SPARKPLUG
FUEL PUMP

Other Operators

Table 3-10 lists other SQL operators.

Operator Purpose Example

(+) Indicates that the preceding column is the SELECT ename, dname
outer join column in a join. See the section FROM emp, dept
"Outer Joins" on page 4 - 426. WHERE dept.deptno

= emp.deptno(+)

PRIOR Evaluates the following expression for the SELECT empno, ename, mgr
parent row of the current row in a FROM emp
hierarchical, or tree-structured, query. In such CONNECT BY
a query, you must use this operator in the PRIOR empno = mgr

CONNECT BY clause to define the
relationship between parent and child rows.
You can also use this operator in other parts
of a SELECT statement that performs a
hierarchical query. The PRIOR operator is a
unary operator and has the same precedence
as the unary + and - arithmetic operators.
See the section "Hierarchical Queries" on
page 4 - 412.

Table 3 -10. Other SQL Operators

SQL Functions

A SQL function is similar to an operator in that it manipulates data items and returns a result. SQL
functions differ from operators in the format in which they appear with their arguments. This format allows
them to operate on zero, one, two, or more arguments:

function(argument, argument, ...)

If you call a SQL function with an argument of a datatype other than the datatype expected by the SQL
function, Oracle7 implicitly converts the argument to the expected datatype before performing the SQL
function. See the section "Data Conversion" on page 2 - 36.

If you call a SQL function with a null argument, the SQL function automatically returns null. The only SQL
functions that do not follow this rule are CONCAT, DECODE, DUMP, NVL, and REPLACE.

SQL functions should not be confused with user functions written in PL/SQL. User functions are described
on page 3-102.

In the syntax diagrams for SQL functions, arguments are indicated with their datatypes following the
conventions described in the Preface of this manual.

SQL functions are of these general types:
¢ single row (or scalar) functions
e group (or aggregate) functions

The two types of SQL functions differ in the number of rows upon which they act. A single row function
returns a single result row for every row of a queried table or view, while a group function returns a single
result row for a group of queried rows.

Single row functions can appear in select lists (provided the SELECT statement does not contain a
GROUP BY clause), WHERE clauses, START WITH clauses, and CONNECT BY clauses.

Group functions can appear in select lists and HAVING clauses. If you use the GROUP BY clause in a
SELECT statement, Oracle7 divides the rows of a queried table or view into groups. In a query containing
a GROUP BY clause, all elements of the select list must be either expressions from the GROUP BY
clause, expressions containing group functions, or constants. Oracle7 applies the group functions in the
select list to each group of rows and returns a single result row for each group.

If you omit the GROUP BY clause, Oracle7 applies group functions in the select list to all the rows in the
queried table or view. You use group functions in the HAVING clause to eliminate groups from the output
based on the results of the group functions, rather than on the values of the individual rows of the queried
table or view. For more information on the GROUP BY and HAVING clauses, see the section "GROUP BY
Clause" on page 4 - 417 and the section "HAVING Clause" on page 4 - 418.

Single Row Functions

The following functions are single row functions grouped together by the datatypes of their arguments and
return values.

Number Functions

Number functions accept numeric input and return numeric values. This section lists the SQL number
functions. Most of these functions return values that are accurate to 38 decimal digits. The transcendental

functions (COS, COSH, EXP, LN, LOG, SIN, SINH, SQRT, TAN, TANH) are accurate to 36 decimal digits.

ABS
Syntax ABS(n)
Purpose Returns the absolute value of n
Example SELECT ABS(-15) "Absolute"
FROM DUAL
Absolute

15
CEIL
Syntax CEIL(n)
Purpose Returns smallest integer greater than or equal to n.
Example SELECT CEIL(15.7) "Ceiling"

FROM DUAL

Ceiling

16
Ccos
Syntax COSs(n)
Purpose Returns the cosine of n (an angle expressed in radians).
Example SELECT COS(180 * 3.14159265359/180)

"Cosine of 180 degrees"
FROM DUAL
Cosine of 180 degrees
-1

COSH
Syntax COSH(n)
Purpose Returns the hyperbolic cosine of n.
Example SELECT COSHY(0) "Hyperbolic cosine of 0"

FROM DUAL

Hyperbolic cosine of 0

1

EXP
Syntax

Purpose
Example

FLOOR
Syntax

Purpose
Example

LN
Syntax

Purpose
Example

LOG

Syntax

Purpose

EXP(n)

Returns e raised to the nth power; e = 2.71828183 ...
SELECT EXP(4) "e to the 4th power"

FROM DUAL

e to the 4th power

54.59815

FLOOR(n)
Returns largest integer equal to or less than n.

SELECT FLOOR(15.7) "Floor"
FROM DUAL

LN(n)
Returns the natural logarithm of n, where n is greater than 0.
SELECT LN(95) "Natural log of 95"
FROM DUAL

Natural log of 95

4.55387689

LOG(m,n)

Returns the logarithm, base m, of n. The base m can be any positive

number other than 0 or 1 and n can be any positive number.

Example

MOD
Syntax

Purpose
Example

SELECT LOG(10,100) "Log base 10 of 100"
FROM DUAL

Log base 10 of 100

2

MOD(m,n)

Returns remainder of m divided by n. Returns mif nis 0.
SELECT MOD(11,4) "Modulus"

FROM DUAL

Note This function behaves differently from the classical mathematical modulus function when m is
negative. The classical modulus can be expressed using the MOD function with this formula:

m - n * FLOOR(m/n)

Example The following statement illustrates the difference between the MOD function and the
classical modulus:

SELECT m, n, MOD(m, n),
m - n * FLOOR(m/n) "Classical Modulus"
FROM test_mod_table

M N MOD (M,N) Classical Modulus

11 4 3

-11 4 -3 1

11 -4 -3 -1

-11 -4 3 -3

POWER

Syntax POWER(m, n)

Purpose Returns m raised to the nth power. The base m and the exponent n can be any numbers,

but if m is negative, n must be an integer.

Example SELECT POWER(3,2) "Raised"
FROM DUAL
Raised
........... 9
ROUND
Syntax ROUND(n[,m])
Purpose Returns n rounded to m places right of the decimal point; if m is omitted, to O places. m

can be negative to round off digits left of the decimal point. m must be an integer.

Example SELECT ROUND(15.193,1) "Round"
FROM DUAL

Example SELECT ROUND(15.193,-1) "Round"
FROM DUAL

Round

20

SIGN
Syntax SIGN(n)
Purpose If n<0, the function returns -1; if n=0, the function returns 0; if n>0, the function returns 1.
Example SELECT SIGN(-15) "Sign"
FROM DUAL
Sign
___________ :i;______
SIN
Syntax SIN(n)
Purpose Returns the sine of n (an angle expressed in radians).
Example SELECT SIN(30 * 3.14159265359/180)
"Sine of 30 degrees"
FROM DUAL
Sine of 30 degrees
5
SINH
Syntax SINH(n)
Purpose Returns the hyperbolic sine of n.
Example SELECT SINH(1) "Hyperbolic sine of 1"
FROM DUAL
Hyperbolic sine of 1
1.17520119
SQRT
Syntax SQRT(n)
Purpose Returns square root of n. The value n cannot be negative. SQRT returns a "real" result.
Example SELECT SQRT(26) "Square root"
FROM DUAL

Square root

5.09901951

TAN

Syntax TAN(n)
Purpose Returns the tangent of n (an angle expressed in radians).
Example SELECT TAN(135 * 3.14159265359/180)

"Tangent of 135 degrees"

FROM DUAL

Tangent of 135 degrees

-1

TANH
Syntax TANH(n)
Purpose Returns the hyperbolic tangent of n.
Example SELECT TANHY(.5) "Hyperbolic tangent of .5"

FROM DUAL

Hyperbolic tangent of .5

462117157
TRUNC
Syntax TRUNC(n[,m])
Purpose Returns n truncated to m decimal places; if m is omitted, to O places. m can be negative

to truncate (make zero) m digits left of the decimal point.

Examples SELECT TRUNC(15.79,1) "Truncate"
FROM DUAL

Truncate

SELECT TRUNC(15.79,-1) "Truncate"
FROM DUAL

Truncate
Character Functions

Single row character functions accept character input and can return both character and number
values.

Character Functions Returning Character Values

This section lists character functions that return character values. Unless otherwise noted, these functions

all return values with the datatype VARCHARZ2 and are limited in length to 2000 bytes. Functions that
return values of datatype CHAR are limited in length to 255 bytes. If the length of the return value
exceeds the limit, Oracle7 truncates it and returns the result without an error message.

CHR
Syntax CHR(n)
Purpose Returns the character having the binary equivalent to n in the database character set.
Example SELECT CHR(67)||CHR(65)||CHR(84) "Dog"
FROM DUAL

Dog

CAT
CONCAT
Syntax CONCAT(charl, char2)
Purpose Returns charl concatenated with char2. This function is equivalent to the concatenation

operator (||). For information on this operator, see the section "Character".

Example This example uses nesting to concatenate three character strings:
SELECT CONCAT(CONCAT(ename, 'is a '), job) "Job"

FROM emp
WHERE empno = 7900

Job

JAMES is a CLERK

INITCAP
Syntax INITCAP(char)
Purpose Returns char, with the first letter of each word in uppercase, all other letters in lowercase.

Words are delimited by white space or characters that are not alphanumeric.

Example SELECT INITCAP('the soap') "Capitals"
FROM DUAL
Capitals
:I%_;_S-oap
LOWER
Syntax LOWER(char)
Purpose Returns char, with all letters lowercase. The return value has the same datatype as the

argument char (CHAR or VARCHAR2).

Example SELECT LOWER('MR. SAMUEL HILLHOUSE') "Lowercase"

FROM DUAL
Lowercase
mr. samuel hillhouse
LPAD
Syntax LPAD(charl,n [,char2])
Purpose Returns charl, left-padded to length n with the sequence of characters in char2; char2

defaults to a single blank. If charl is longer than n, this function returns the portion of charl that fits in n.

The argument n is the total length of the return value as it is displayed on your terminal screen. In most
character sets, this is also the number of characters in the return value. However, in some multi-byte
character sets, the display length of a character string can differ from the number of characters in the
string.

Example SELECT LPAD('Page 1',15,.") "LPAD example"
FROM DUAL

LPAD example

*****Page 1

LTRIM
Syntax LPAD(charl,n [,char2])
Purpose Removes characters from the left of char, with all the leftmost characters that appear in

set removed; set defaults to a single blank. Oracle7 begins scanning char from its first character and
removes all characters that appear in set until reaching a character not in set and then returns the result.

Example SELECT LTRIM('xyxXxyLAST WORD','xy") "LTRIM example"
FROM DUAL

LTRIM example

Xxy LAST WORD

NLS_INITCAP
Syntax NLS_INITCAP(char [, 'nlsparams'])
Purpose Returns char, with the first letter of each word in uppercase, all other letters in lowercase.

Words are delimited by white space or characters that are not alphanumeric. The value of 'nlsparams’ can
have this form:

'‘NLS_SORT = sort'

where sort is either a linguistic sort sequence or BINARY. The linguistic sort sequence handles special
linguistic requirements for case conversions. Note that these requirements can result in a return value of
a different length than the char. If you omit 'nlsparams', this function uses the default sort sequence for
your session. For information on sort sequences, see Oracle7 Server Reference.

Example SELECT NLS_INITCAP(ijsland’, 'NLS_SORT = XDutch') "Capitalized”

FROM DUAL
Capital
Wsland
NLS_LOWER
Syntax NLS_LOWER(char [, 'nlsparams'])
Purpose Returns char, with all letters lowercase. The 'nlsparams' can have the same form and

serve the same purpose as in the NLS_INITCAP function.

Example SELECT NLS_LOWER('CITTA"™, 'NLS_SORT = XGerman')
"Lowercase”
FROM DUAL
Lower
citta
NLS_UPPER
Syntax NLS UPPER(char [, 'nlsparams)
Purpose Returns char, with all letters uppercase. The 'nlsparams' can have the same form and

serve the same purpose as in the NLS_INITCAP function.

Example SELECT NLS_UPPER('gro?e’, 'NLS_SORT = Xgerman') "Uppercase"
FROM DUAL
Upper
EI;OSS
REPLACE
Syntax REPLACE(char, search_string[,replacement_string])
Purpose Returns char with every occurrence of search_string replaced with replacement_string. If

replacement_string is omitted or null, all occurrences of search_string are removed. If search_string is
null, char is returned. This function provides a superset of the functionality provided by the TRANSLATE
function. TRANSLATE provides single character, one to one, substitution. REPLACE allows you to
substitute one string for another as well as to remove character strings.

Example SELECT REPLACE('JACK and JUE','J''BL") "Changes"
FROM DUAL

BLACK and BLUE
RPAD

Syntax RPAD(charl, n [,char2])

Purpose Returns charl, right-padded to length n with char2, replicated as many times as
necessary; char2 defaults to a single blank. If charl is longer than n, this function returns the portion of
charl that fits in n.

The argument n is the total length of the return value as it is displayed on your terminal screen. In most
character sets, this is also the number of characters in the return value. However, in some multi-byte
character sets, the display length of a character string can differ from the number of characters in the
string.

Example SELECT RPAD(ename,12,'ab") "RPAD example"
FROM emp
WHERE ename = 'TURNER'

RPAD example

TURNERababab
RTRIM
Syntax RTRIM(char [,set]
Purpose Returns char, with all the rightmost characters that appear in set removed; set defaults to
a single blank. RTRIM works similarly to LTRIM.
Example SELECT RTRIM('TURNERyxXxy','xy") "RTRIM e.g."
FROM DUAL
RTRIM e.g
TURNERyxX
SOUNDEX
Syntax SOUNDEX(char)
Purpose Returns a character string containing the phonetic representation of char. This function

allows you to compare words that are spelled differently, but sound alike in English.

The phonetic representation is defined in The Art of Computer Programming, Volume 3: Sorting and
Searching, by Donald E. Knuth, as follows:

¢ retain the first letter of the string and remove the following letters: a, e, h, i, 0, w, y

e assign the numbers to the remaining letters as follows:

O=a,e h,i,o,wy
1=b,f,p,Vv
2=c,e,0,),k 0,5 x,2
3=d,t=

4=

5=m,n

r=6

¢ if two or more of the numbers are in sequences, remove all but the first

e return the first four bytes padded with O

Example SELECT ename

FROM emp

WHERE SOUNDEX(ename)

= SOUNDEX('SMYTHE)

ENAME
SMITH
SUBSTR
Syntax SUBSTR(char, m [,n])
Purpose Returns a portion of char, beginning at character m, n characters long. If mis 0, it is

treated as 1. If m is positive, Oracle7 counts from the beginning of char to find the first character. If m is
negative, Oracle7 counts backwards from the end of char. If n is omitted, Oracle7 returns all characters to
the end of char. If nis less than 1, a null is returned.

Floating point numbers passed as arguments to substr are automatically converted to integers.

Example SELECT SUBSTR('ABCDEFG',3.1,4) "Subs"
FROM DUAL
Subs
-(;II-)EF
SELECT SUBSTR('ABCDEFG',-5,4) "Subs"
FROM DUAL
Subs
CDEF
SUBSTRB
Syntax SUBSTRB(char, m [,n])
Purpose The same as SUBSTR, except that the arguments m and n are expressed in bytes,

rather than in characters. For a single-byte database character set, SUBSTRB is equivalent to SUBSTR.

Floating point numbers passed as arguments to substrb are automatically converted to integers.

Example Assume a double-byte database character set:
SELECT SUBSTRB('ABCDEFG',5,4.2) "Substring with bytes"
FROM DUAL
Sub
CD
TRANSLATE

Syntax TRANSLATE(char, from, to)

Purpose Returns char with all occurrences of each character in from replaced by its corresponding
character in to. Characters in char that are not in from are not replaced. The argument from can contain
more characters than to. In this case, the extra characters at the end of from have no corresponding
characters in to. If these extra characters appear in char, they are removed from the return value. You
cannot use an empty string for to to remove all characters in from from the return value. Oracle7
interprets the empty string as null, and if this function has a null argument, it returns null.

Examples The following statement translates a license number. All letters 'ABC...Z" are translated to
'X"and all digits '012...9" are translated to '9":

SELECT TRANSLATE('2KRW229',

'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ',

'9999999999 XXX XXX XX XXX XXX XXX XXXXXXXXX") "Licence"
FROM DUAL

Translate example

9XXX999
The following statement returns a license humber with the characters removed and the digits remaining:
SELECT TRANSLATE('2KRW229',

'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ', '0123456789")
"Translate example"

FROM DUAL
Translate example
2229
UPPER
Syntax UPPER(char)
Purpose Returns char, with all letters uppercase. The return value has the same datatype as the
argument char.
Example SELECT UPPER('Large') "Uppercase”
FROM DUAL
Uppercase
LARGE

Character Functions Returning Number Values

This section lists character functions that return number values.

ASCII
Syntax ASCIl(char)
Purpose Returns the decimal representation in the database character set of the first byte of char.

If your database character set is 7-bit ASCII, this function returns an
ASCII value. If your database character set is EBCDIC Code Page 500, this function returns an EBCDIC

value. Note that there is no similar EBCDIC character function.

Example SELECT ASCII('Q")
FROM DUAL
ASCII('Q")
"""""" 81
INSTR
Syntax INSTR(charl,char2[,n[,m]])
Purpose Searches charl beginning with its nth character for the mth occurrence of char2 and

returns the position of the character in charl that is the first character of this occurrence. If n is negative,
Oracle7 counts and searches backward from the end of charl. The value of m must be positive. The
default values of both n and m are 1, meaning Oracle7 begins searching at the first character of charl for
the first occurrence of char2. The return value is relative to the beginning of charl, regardless of the value
of n, and is expressed in characters. If the search is unsuccessful (if char2 does not appear m times after
the nth character of charl) the return value is 0.

Examples SELECT INSTR('CORPORATE FLOOR','OR’, 3, 2) "Instring"
FROM DUAL
Instring
14

SELECT INSTR('CORPORATE FLOOR','OR’, -3, 2)
"Reversed Instring”
FROM DUAL

Reversed Instring

2
INSTRB
Syntax INSTRB(charl,char2[,n[,m]])
Purpose The same as INSTR, except that n and the return value are expressed in bytes, rather

than in characters. For a single-byte database character set, INSTRB is equivalent to INSTR.
Example SELECT INSTRB('CORPORATE FLOOR','OR',5,2)
"Instring in bytes"
FROM DUAL
Instring in bytes
LENGTH
Syntax LENGTH(char)

Purpose Returns the length of char in characters. If char has datatype CHAR, the length includes

all trailing blanks. If char is null, this function returns null.

Example SELECT LENGTH('CANDIDE') "Length in characters”
FROM DUAL

Length in characters

7
LENGTHB
Syntax LENGTHB(char)
Purpose Returns the length of char in bytes. If char is null, this function returns null. For a single-

byte database character set, LENGTHB is equivalent to LENGTH.
Example Assume a double-byte database character set:

SELECT LENGTH('CANDIDE') "Length in bytes"

FROM DUAL
Length in bytes
14
NLSSORT
Syntax NLSSORT(char [, 'nlsparams'])
Purpose Returns the string of bytes used to sort char. The value of 'nilsparams' can have the form

'NLS_SORT = sort'

where sort is a linguistic sort sequence or BINARY. If you omit 'nlsparams', this function uses the default
sort sequence for your session. If you specify BINARY, this function returns char. For information on sort
sequences, see the "National Language Support" chapter of Oracle7 Server Reference.

Example This function can be used to specify comparisons based on a linguistic sort sequence
rather on the binary value of a string:

SELECT * FROM emp

WHERE NLSSORT(ename,'NLS_SORT = German’)
> NLSSORT('B','NLS_SORT = German)

Date Functions

Date functions operate on values of the DATE datatype. All date functions return a value of DATE
datatype, except the MONTHS_BETWEEN function, which returns a number.

ADD_MONTHS
Syntax ADD_MONTHS(d,n)
Purpose Returns the date d plus n months. The argument n can be any integer. If d is the last day

of the month or if the resulting month has fewer days than the day component of d, then the result is the
last day of the resulting month. Otherwise, the result has the same day component as d.

Example SELECT TO_CHAR(
ADD_MONTHS(hiredate, 1),
'DD-MON-YYYY') "Next month"
FROM emp
WHERE ename = 'SMITH'

Next Month

17-JAN-1981

LAST_DAY

Syntax LAST_DAY(d)

Purpose Returns the date of the last day of the month that contains d. You might use this function

to determine how many days are left in the current month.

Example SELECT SYSDATE,
LAST_DAY(SYSDATE) "Last",
LAST_DAY(SYSDATE) - SYSDATE "Days Left"

FROM DUAL
SYSDATE Last Days Left
10-APR-95 30-APR-95 20

SELECT TO_CHAR(
ADD_MONTHS(
LAST_ DAY (hiredate),5),
'DD-MON-YYYY') "Five months"
FROM emp
WHERE ename = 'MARTIN'

Five months
28-FEB-1982
SELECT TO_CHAR(ADD_MONTHS(hiredate,1),
'DD-MON-YYYY") "Next month"
FROM emp
WHERE ename = 'SMITH'

Next month

17-JAN-1981

MONTHS_BETWEEN

Syntax MONTHS_BETWEEN(d1, d2)

Purpose Returns number of months between dates d1 and d2. If d1 is later than d2, result is
positive; if earlier, negative. If d1 and d2 are either the same days of the month or both last days of

months, the result is always an integer; otherwise Oracle7 calculates the fractional portion of the result
based on a 31-day month and considers the difference in time components of d1 and d2.

Example SELECT MONTHS_BETWEEN(
TO_DATE('02-02-1995','MM-DD-YYYY"),
TO_DATE('01-01-1995''MM-DD-YYYY")) "Months"

FROM DUAL
Months
103225806
NEW_TIME
Syntax NEW_TIME(d, z1, z2)
Purpose Returns the date and time in time zone z2 when date and time in time zone z1 are d. The

arguments z1 and z2 can be any of these text strings:

AST/ADT Atlantic Standard or Daylight Time

BST/BDT Bering Standard or Daylight Time

CST/CDT Central Standard or Daylight Time

EST/EDT Eastern Standard or Daylight Time

GMT Greenwich Mean Time

HST/HDT Alaska-Hawaii Standard Time or Daylight Time.
MST/MDT Mountain Standard or Daylight Time

NST Newfoundland Standard Time

PST/PDT Pacific Standard or Daylight Time

YST/YDT Yukon Standard or Daylight Time

NEXT_DAY
Syntax NEXT_DAY(d, char)
Purpose Returns the date of the first weekday named by char that is later than the date d. The

argument char must be a day of the week in your session's date language. The return value has the same
hours, minutes, and seconds component as the argument d.
Example This example returns the date of the next Tuesday after March 15, 1992.

SELECT NEXT_DAY('15-MAR-92' TUESDAY") "NEXT DAY"

FROM DUAL
NEXT DAY
17-MAR-92
ROUND
Syntax ROUND(d[,fmt])
Purpose Returns d rounded to the unit specified by the format model fmt. If you omit fmt, d is

rounded to the nearest day.
For details on ROUND and TRUNC, see the section "ROUND and TRUNC".
Example SELECT ROUND(TO_DATE('27-OCT-92"),'YEAR")

"FIRST OF THE YEAR"
FROM DUAL

FIRST OF THE YEAR

01-JAN-93

SYSDATE

Syntax SYSDATE

Purpose Returns the current date and time. Requires no arguments. In distributed SQL

statements, this function returns the date and time on your local database. You cannot use this function in
the condition of a CHECK constraint.
Example SELECT TO_CHAR(SYSDATE, 'MM-DD-YYYY HH24:MI:SS') NOW

FROM DUAL

10-29-1993 20:27:11.

TRUNC
Syntax TRUNC(d,[fmt])
Purpose Returns d with the time portion of the day truncated to the unit specified by the format

model fmt. If you omit fmt, d is truncated to the nearest day. See the next section "ROUND and TRUNC."

Example SELECT TRUNC(TO_DATE('27-OCT-92', 'DD-MON-YY"), 'YEAR")
"First Of The Year"
FROM DUAL

FIRST OF THE YEAR

01-JAN-92
ROUND and TRUNC
Table 3-11 lists the format models to be used with the ROUND and TRUNC date functions and the

units to which they round and truncate dates. The default model, 'DD’, returns the date rounded or
truncated to the day with a time of midnight.

Format Model Rounding or Truncating Unit

CC, SCC Century

SYYYY, YYYY, YEAR, SYEAR, YYY, YY, Y Year (rounds up on July 1)

IYYY, 1Y, 1Y, | ISO Year

Q Quarter (rounds up on the sixteenth day of the
second month of the quarter)

MONTH, MON, MM, RM Month (rounds up on the sixteenth day)

ww Same day of the week as the first day of the
year.

Iw Same day of the week as the first day of the
ISO year.

w Same day of the week as the first day of the
month.

DDD, DD, J Day

DAY, DY, D Starting day of the week

HH, HH12, HH24 Hour

Ml Minute
Table 3 - 11. Date Format Models for the ROUND and TRUNC Date Functions
The starting day of the week used by the format models DAY, DY, and D is specified implicitly by the

initialization parameter NLS_TERRITORY. For information on this parameter, see the "National Language
Support" chapter of Oracle7 Server Reference.

Conversion Functions
Conversion functions convert a value from one datatype to another. Generally, the form of the function

names follows the convention datatype TO datatype. The first datatype is the input datatype; the last
datatype is the output datatype. This section lists the SQL conversion functions.

CHARTOROWID
Syntax CHARTOROWID(char)
Purpose Converts a value from CHAR or VARCHAR?2 datatype to ROWID datatype.
Example SELECT ename
FROM emp
WHERE ROWID = CHARTOROW!ID('0000000F.0003.0002")
ENAME
SMITH
CONVERT
Syntax CONVERT(char, dest_char_set [,source_char_set])
Purpose Converts a character string from one character set to another.

The char argument is the value to be converted.
The dest_char_set argument is the name of the character set to which char is converted.

The source_char_set argument is the name of the character set in which char is stored in the database.
The default value is the database character set.

Both the destination and source character set arguments can be either literals or columns containing the
name of the character set.

For complete correspondence in character conversion, it is essential that the destination character set
contains a representation of all the characters defined in the source character set. Where a character
does not exist in the destination character set, a replacement character appears. Replacement characters
can be defined as part of a character set definition.

Common character sets include:

US7ASCII US 7-bit ASCII character set

WESDEC DEC West European 8-bit character set
WES8HP HP West European Laserjet 8-bit character set
F7DEC DEC French 7-bit character set

WESEBCDIC500 IBM West European EBCDIC Code Page 500

WES8PC850 IBM PC Code Page 850

WES8ISO8859P1 ISO 8859-1 West European 8-bit character set
Example SELECT CONVERT('GroR', 'WE8HP', '‘WESDEC")
"Conversion"

FROM DUAL
Conversion
Grol3
HEXTORAW
Syntax HEXTORAW(char)
Purpose Converts char containing hexadecimal digits to a raw value.
Example INSERT INTO graphics (raw_column)

SELECT HEXTORAW('7D")

FROM DUAL

RAWTOHEX
Syntax RAWTOHEX((raw)
Purpose Converts raw to a character value containing its hexadecimal equivalent.
Example SELECT RAWTOHEX(raw_column) "Graphics"

FROM graphics
Graphics
7D
ROWIDTOCHAR
Syntax ROWIDTOCHAR((rowid)
Purpose Converts a ROWID value to VARCHAR?2 datatype. The result of this conversion is always
18 characters long.
Example SELECT ROWID

FROM graphics

WHERE

ROWIDTOCHAR(ROWID) LIKE '%F38%'

ROWID

00000F38.0001.0001

TO_CHAR, date conversion

Syntax TO_CHAR([, fmt [, 'nlsparams’])

Purpose Converts d of DATE datatype to a value of VARCHAR?2 datatype in the format specified

by the date format fmt. If you omit fmt, d is converted to a VARCHAR2 value in the default date format.
For information on date formats, see the section "Format Models".

The 'nisparams’ specifies the language in which month and day names and abbreviations are returned.
This argument can have this form:

'NLS_DATE_LANGUAGE = language'
If you omit nlsparams, this function uses the default date language for your session.
Example SELECT TO_CHAR(HIREDATE, 'Month DD, YYYY")
"New date format"
FROM emp
WHERE ename ='SMITH'

New date format

December 17, 1980

TO_CHAR, label conversion

Syntax TO_CHAR(label [, fmt])

Purpose Converts label of MLSLABEL datatype to a value of VARCHAR2 datatype, using the
optional label format fmt. If you omit fmt, label is converted to a VARCHAR2 value in the default label
format.

For more information on this function, see Trusted Oracle7 Server Administrator's Guide.

TO_CHAR, number conversion

Syntax TO_CHAR(n [, fmt [, 'nlsparams']])

Purpose Converts n of NUMBER datatype to a value of VARCHAR2 datatype, using the optional
number format fmt. If you omit fmt, n is converted to a VARCHAR?Z value exactly long enough to hold its
significant digits. For information on number formats, see the section "Format Models".

The 'nlsparams' specifies these characters that are returned by number format elements:

e decimal character

* group separator

¢ |ocal currency symbol

e international currency symbol

This argument can have this form:

¢ 'NLS_NUMERIC_CHARACTERS = "dg"

e NLS_CURRENCY = "text"

e NLS_ISO_CURRENCY = territory '

The characters d and g represent the decimal character and group separator, respectively. They must be

different single-byte characters. Note that within the quoted string, you must use two single quotation
marks around the parameter values. Ten characters are available for the currency symbol.

If you omit 'nisparams' or any one of the parameters, this function uses the default parameter values for
your session.

Example | SELECT TO_CHAR(-10000,'L99G999D99MI") "Amount”
FROM DUAL

Amount

$10,000.00-

Note how the output above is blank padded to the left of the currency symbol.

Example Il SELECT TO_CHAR(-10000,'L99G999D99MI',
'NLS_NUMERIC_CHARACTERS =",."
NLS CURRENCY = "AusDollars") "Amount"

FROM DUAL
Amount
AusDollars10.000,00-
TO_DATE
Syntax TO_DATE(char [, fmt [, 'nlsparams']])
Purpose Converts char of CHAR or VARCHAR?2 datatype to a value of DATE datatype. The fmt is

a date format specifying the format of char. If you omit fmt, char must be in the default date format. If fmt
is 'J', for Julian, then char must be an integer. For information on date formats, see the section "Format
Models".

The 'nisparams' has the same purpose in this function as in the TO_CHAR function for date conversion.

Do not use the TO_DATE function with a DATE value for the char argument. The returned DATE value
can have a different century value than the original char, depending on fmt or the default date format.

For information on date formats, see the section "Format Models".

Example INSERT INTO bonus (bonus_date)
SELECT TO_DATE(
‘January 15, 1989, 11:00 A.M.",
'‘Month dd, YYYY, HH:MI A.M.",
'NLS_DATE_LANGUAGE = American')

FROM DUAL
TO_LABEL
Syntax TO_LABEL(char [,fmt])
Purpose Converts char, a value of datatype CHAR or VARCHAR2 containing a label in the format

specified by the optional parameter fmt, to a value of MLSLABEL datatype. If you omit fmt, char must be
in the default label format. For more information on this function, see Trusted Oracle7 Server
Administrator's Guide.

TO_MULTI_BYTE

Syntax TO_MULTI_BYTE(char)

Purpose Returns char with all of its single-byte characters converted to their corresponding multi-
byte characters. Any single-byte characters in char that have no multi-byte equivalents appear in the
output string as single-byte characters. This function is only useful if your database character set contains
both single-byte and multi-byte characters.

TO_NUMBER
Syntax TO_NUMBER(char [,fmt [, 'nlsparams']])
Purpose Converts char, a value of CHAR or VARCHAR?Z datatype containing a number in the

format specified by the optional format model fmt, to a value of NUMBER datatype.
Example UPDATE emp
SET sal = sal +
TO_NUMBER('100.00', '9G999D99")
WHERE ename = 'BLAKE'

The 'nisparams' has the same purpose in this function as in the TO_CHAR function for number
conversion.

Example SELECT TO_NUMBER(-AusDollars100','L9G999D99",
"NLS_NUMERIC_CHARACTERS =",."
NLS_CURRENCY = "AusDollars"
") "Amount"
FROM DUAL
Amount
-100

TO_SINGLE_BYTE

Syntax TO_SINGLE_BYTE(char)

Purpose Returns char with all of its multi-byte characters converted to their corresponding single-
byte characters. Any multi-byte characters in char that have no single-byte equivalents appear in the

output as multi-byte characters. This function is only useful if your database character set contains both
single-byte and multi-byte characters.

Other Functions

DUMP
Syntax DUMP (expr[,return_format[,start_position[,length]]])
Purpose Returns a VARCHAR2 value containing the datatype code, length in bytes, and internal

representation of expr. The argument return_format specifies the format of the return value and can have
any of these values:

8 returns result in octal notation.
10 returns result in decimal notation.
16 returns result in hexadecimal notation.

17 returns result as single characters.

The arguments start_position and length combine to determine which portion of the internal
representation to return. The default is to return the entire internal representation in decimal notation.

If expr is null, this function returns 'NULL".
For the datatype corresponding to each code, see Table 2 - 1 on page 2 - 21.
Examples SELECT DUMP(ename, 8, 3, 2) "OCTAL"

FROM emp

WHERE ename ='SCOTT'

OCTAL

Type=1 Len=5: 117,124

SELECT DUMP(ename, 10, 3, 2) "ASCII"
FROM emp
WHERE ename ='SCOTT'

ASCII

Type=1 Len=5: 79,84

SELECT DUMP(ename, 16, 3, 2) "HEX"
FROM emp
WHERE ename ='SCOTT'

HEX

Type=1 Len=5: 4f 54

SELECT DUMP(ename, 17, 3, 2) "CHAR"
FROM emp
WHERE ename ='SCOTT'

CHAR

Type=1 Len=5: O,T

GREATEST
Syntax GREATEST(expr [,expr] ...)
Purpose Returns the greatest of the list of exprs. All exprs after the first are implicitly converted to

the datatype of the first exprs before the comparison. Oracle7 compares the exprs using non-padded
comparison semantics. Character comparison is based on the value of the character in the database
character set. One character is greater than another if it has a higher value. If the value returned by this
function is character data, its datatype is always VARCHAR?2.

Example SELECT GREATEST(HARRY',HARRIOT''HAROLD") "GREATEST"
FROM DUAL

GREATEST

GREATEST_LB

Syntax GREATEST_LB(label [,label] ...)

Purpose Returns the greatest lower bound of the list of labels. Each label must either have
datatype MLSLABEL or RAW MLSLABEL or be a quoted literal in the default label format. The return
value has datatype RAW MLSLABEL.

For the definition of greatest lower bound and examples of this function, see Trusted Oracle7 Server
Administrator's Guide.

LEAST
Syntax LEAST(expr [,expr] ...)
Purpose Returns the least of the list of exprs. All exprs after the first are implicitly converted to the

datatype of the first expr before the comparison. Oracle7 compares the exprs using non-padded
comparison semantics. If the value returned by this function is character data, its datatype is always
VARCHAR?2.

Example SELECT LEAST(HARRY',HARRIOT''HAROLD") "LEAST"
FROM DUAL
LEAST
HAROLD
LEAST_UB
Syntax LEAST_UB(label [,label] ...)
Purpose Returns the least upper bound of the list of labels. Each label must have datatype

MLSLABEL or be a quoted literal in the default label format. The return value has datatype RAW
MLSLABEL. For the definition of least upper bound and examples of this function, see Trusted Oracle7
Server Administrator's Guide.

NVL
Syntax NVL(exprl, expr2)
Purpose If exprl is null, returns expr2; if exprl is not null, returns exprl. The arguments exprl and

expr2 can have any datatype. If their datatypes are different, Oracle7 converts expr2 to the datatype of
exprl before comparing them. The datatype of the return value is always the same as the datatype of
exprl, unless exprl is character data in which case the return value's datatype