
    WebEdit Help
Welcome to Kenn Nesbitt's WebEdit(TM), the easiest and most powerful way to create pages for
the World Wide Web!

This help file is divided into the following six sections:

About WebEdit
General information about WebEdit and Nesbitt Software.

Getting Started With WebEdit
Who WebEdit is designed for and how to create simple documents

WebEdit HTML Reference
Information about HTML, tags, attributes, and the various versions of HTML

WebEdit General Reference
Help on dialog boxes, menu selections, buttons, etc.

Frequently Asked Questions
Answers to common questions

Learning HTML
Finding out more about Hypertext Markup Language

Introduction

What is WebEdit?
WebEdit is a Windows-based text editor specifically designed to ease the editing of hypertext markup
language (HTML) documents.

If you are not familiar with HTML, there are many places to learn the basics.    For example, your local
bookstore should carry quite a few HTML books.    In addition, there are many tutorial and reference
documents available on the web that can get you started quickly.    Some of these web sites are listed
in this Help file in the topic What is HTML?

WebEdit strives to be the best Windows-based HTML editor available. Specifically, we have tried to
include support for every feature of every version of the HTML specification, from HTML version 1
through HTML 3.2, including optional features and special non-standard extensions supported by
browsers such as Netscape and Internet Explorer.

Note: HTML 3.x is a moving target. However, as the standard evolves, we will release minor upgrades
to WebEdit that support the current syntax. Additionally, you can add any elements you like with
WebEdit's User-Defined Tags dialog.

Moreover, WebEdit tries to make all of these features available in a consistent, well-organized
fashion, with a minimum number of keystrokes, allowing you to create HTML documents as rapidly as
possible.

WebEdit features

Design Intentions
WebEdit is a professional tool, designed for those seeking to:

· accelerate the process of document creation
· support the most current HTML specification
· advance to an expert level in Web publishing

In addition, if you are new to the Web, you will find that WebEdit can help you learn HTML quickly
and proficiently.    By automatically generating much of your HTML for you, WebEdit can "show
you how it's done."

Creating an HTML Document with WebEdit
One obvious benefit of WebEdit for those just getting started is its ability to create starter
documents with the click of a button.    A good minimal HTML document looks like this:

<HEAD>
<TITLE>Page Title</TITLE>
</HEAD>

<BODY>
<H1>First Heading</H1>
Add body text here.
<HR>
Last Updated: Friday, June 16, 1996
</BODY>

</HTML>

Keep in mind that this help file includes an HTML reference listing each HTML command along
with a short description, so whenever you see a command that is not familiar (like most of the
above example, probably) you can find out what it does by looking up the relevant section in the
help. As a reminder, remember that you can cut & paste from the examples included with this help

file.

The Add Minimal HTML Button
To create the above document with WebEdit click on the Add Minimal HTML button (looks like a
big '+').    Add some text to the body of the document and save the file.    It will be saved with
an .html extension.    Without the .html extension your browser would present it exactly as it
appears above;    the .html extension tells the browser to follow the HTML commands embedded
in the document.    Using your browser, open the file to see the formatted document.

If you prefer, you can edit the default minimal HTML document by editing the file MINIMAL.HTML
located in the WebEdit directory.

Tag Index

<A>                Anchor
<ADDRESS> Address
<BASE> Base
<BLOCKQUOTE> Block Quote
<BODY> Body

 Line Break
<DD> Definition Item
<DIR> Directory List
<DL> Definition List
<DT> Definition Title
<H> Headings
<HEAD> Head
<HR> Horizontal Rule
<HTML> HTML
 Image
<ISINDEX> Is Index
 List Item
<LINK> Links
<MENU> Menu List
<META> Meta
<NEXTID> Next ID
 Ordered List
<P>                Paragraph
<PRE> Preformatted
<TITLE> Title
 UnOrdered List
<!-- --> Comment
<!DOCTYPE> Document Type

<BOLD> Bold
<CITE> Citation
<CODE> Code
 Emphasis
<I> Italic
<KBD> Keyboard
<SAMP> Sample
 Strong Emphasis
<TT> Typewriter Text
<VAR> Variable

<FORM> Form
<INPUT> Input
<OPTION> Option
<P>                      Paragraph

<SELECT> Select
<TEXTAREA> Text Area

<ABBREV> Abbreviation
<ACRONYM> Acronym
<ARG> Argument
<BYLINE> Byline
<DFN> Defining Instance
<LIT> Literal
<PERSON>                Person
<Q>            Inline Quote
<RANGE> Range
<SPOT> Spot
<STYLE> Style
<TAB> Tab

<APPLET> Applet
<BIG> Big
<CAPTION> Table Caption
<CENTER> Center
<DIV> Division
 Font
<FRAME> Frame
<FRAMESET> Frame Set
<MAP> Client Side Mapping
<NOFRAMES> No Frames
<PARAM> Param
<SMALL> Small
<STRIKE> Strikethrough
<SUB> Subscript
<SUP> Superscript
<TABLE> Table
<TH> Table Header
<TD> Table Data
<TR> Table Row
<U> Underline

<BASEFONT> Base Font
<BLINK> Blink
<NOBR> No Break
<WBR> Word Break

<BGSOUND> Background Sound
<MARQUEE> Marquee

<ALIAS> Alias
<OBJECT> Object
<PARAM> Param

About WebEdit

Webedit is your tool to create wonderful World Wide Web Pages. It allows you to directly manipulate
all aspects of the HyperText Markup Language (HTML) on which Web pages are based. When used
in combination with Web browsers like Netscape and Mosaic you'll be making professional (or just
fun!) looking Web pages in no time!

WebEdit provides many features for both novice and experienced Web authors. For those just getting
into the waters of Web page creation WebEdit offers easy to use buttons and menus to shield you
from the many complexities of HTML. For experienced authors WebEdit will give you easy access to
the most in depth aspects of HTML.

WebEdit grows with you. WebEdit allows you to create and save your own HTML tags, or add newly
defined tags. WebEdit keeps you on the cutting edge!

About the Authors

WebEdit Features

System Requirements

Ordering WebEdit

Upgrading WebEdit

Where to Find Us

License Agreement and Copyright Information

About the Authors

Kenn Nesbitt is President of Nesbitt Software Corporation, developers of WebEdit.    Formerly with
Microsoft Consulting Services, Kenn has specialized in applications for Microsoft Windows and
the Internet.    He is a Contributing Editor to Internet Advisor magazine and Data Based Advisor
magazine.    He has written more than 150 articles for computer magazines all over the world,
presented at many database and application development conferences, and is co-author of the
book Power Shortcuts...Paradox for Windows published by MIS Press.

Scot is our hotshot programmer who thinks he can't possibly be a hotshot programmer since he
just graduated college. These days, most of the actual programming of WebEdit is done by Scot.
He has recently finished up his BA/BS degree in Computer Science at Western Oregon State
College. His hobbies include driving his Miata with the top down (hard to do in Oregon!),
collecting old videogame systems, and programming in Delphi (C++? Yuck!). Before joining
Nesbitt Software he served six years in the United States Marine Corps spending time in such
sunny locales as California, Hawaii, and Saudi Arabia. Before that he met his wife Bobbi (10
years now!) who is far too lenient on letting him have his toys.... His latest faves are playing
games on the Playstation, coding to Juliana Hatfield, Rush, Patty Smyth and Suzanne Vega, and
getting his private pilots license. Now if he only could find enough free time to have a life!

Jay is our catch-all guy who seems to inherit all of the programming tasks that nobody else wants.
In a past life he served four years with the United States Marine Corps and worked as a
programmer for the Bureau of Land Management before joining the corporate world at Intel
Corporation.    After a short stint with technical support, Jay is now pursuing his first love:    coding.
In his free time, Jay enjoys playing basketball, thinking of ways to prolong learning OLE, and
riding his mountain bike in Forest Park.

WebEdit features

WebEdit offers the following features:

· Unlimited number and size of documents (32-bit versions only) - WebEdit's rich interface lets
you work on an unlimited number of HTML documents simultaneously. The size of each
document is limited only by your computer's memory.

· HTML Dialogs - WebEdit has specially designed dialog boxes for defining anchors and links,
inline images and figures, forms, tables, etc., including a URL Builder for rapid creation of Uniform
Resource Locators. Additionally, WebEdit saves every URL you enter, letting you choose from a
list rather than retyping the same URLs over and over.

· Quick Previewer - WebEdit's quick preview utility is a quick and easy way to preview your HTML
documents. It supports all HTML tags up to and including HTML 2.0. It also supports HTML 3.0
Forms and Tables.

· Browser Support - Whatever Windows-based browser you use, you can link it into WebEdit to
test your HTML documents at the click of a button. WebEdit allows you to instantly choose from
any number of browsers.

· Home Page Wizard - Helps you create your first page in a flash!

· Modules (Professional version only) - WebEdit supports third party module plug-ins via an API.
Purchase modules or write you own!.

· HTML tag checker
· WYSIWYG frame wizard
· WYSIWYG form designer
· FTP upload facility
· Link validation wizard
· Table of contents wizard

· HTML 3.2, Netscape 3.0 and Internet Explorer 3.0 tags - WebEdit supports all the latest tags
keeping your Web pages on the cutting edge!

· Document Structure Elements - Document structure tags such as <HTML>, <HEAD>,
<TITLE>, <BODY>, etc. are all supported, including HTML 3 and Netscape-specific attributes.

· Block Formatting Elements - WebEdit supports all HTML block formatting tags, such as
<ADDRESS>, <BLOCKQUOTE>, and <PRE>, plus HTML 3 extensions such as <NOTE>.

· Logical Font Formatting Elements - Every logical formatting tag and attribute from HTML
version 1 through HTML version 3.2 is included, from standard tags such as code and citation, to
new proposed tags such as person, acronym, etc.

· Physical Font Formatting Elements - Blinking text, bold, italics, underlining, typewriter text,
emphasis, strong emphasis, font sizing, etc. It's all in here.

· List and Miscellaneous Elements - Select a block of text and choose Numbered List or Un-
numbered List, and WebEdit automatically inserts list-item tags on each line. WebEdit also
includes all standard insertion tags such as <P>, <HR>,
, etc.

· Special Characters - WebEdit includes support for the entire ISO Latin character set, allowing
you to easily insert extended ANSI characters into your documents. WebEdit also includes

support for special characters such as "<", ">", "&", non-breaking spaces, and more.

· Form Elements - Create web forms quickly and easily with WebEdit's built-in Form support.

· Table Elements - HTML 3.2 defines a new syntax for displaying tabular information. Netscape
now supports this syntax and even extends it.

· WYSIWYG table builder (Standard and Professional versions only) - To simplify the creation
of HTML tables, WebEdit also includes a WYSIWYG table builder; you simply enter your data in a
spreadsheet-style grid, and WebEdit writes the HTML for you.

· Client-Side image mapping (Standard and Professional versions only) - WebEdit's Map
Builder allows you to visually divide images into different hotspots.

· User-Defined Elements (Standard and Professional versions only) - If there are any HTML
tags or other text you enter regularly that are not already built-into WebEdit, you can add them to
WebEdit's User-Defined Tags dialog box for easy insertion into your documents. You can even
add filenames into the dialog box for larger "insertion macros". Selecting a filename in the User-
Defined Tags dialog tells WebEdit to insert the contents of the file into the current document.

· Non-standard tags and attributes - WebEdit includes support for non-standard tags and
attributes, such as those recognized by Netscape (font sizing, special image alignment, etc.) and
HTML 3.2. These tags and attributes are ignored by most browsers, but are included in WebEdit
in case you need them.

· HTML Removal - WebEdit lets you quickly and easily remove HTML tags from any document or
portion of a document. Simply highlight the text from which to remove HTML tags, and click the
Remove HTML Tags button.

· Spell Checker (Standard and Professional versions only) - Correct the spelling of your
documents directly within WebEdit using our built-in spell checker.

· Document Export (Standard and Professional versions only) - WebEdit allows you to save
your HTML documents in either UNIX or Macintosh format. No more strange characters when
using different platforms!

· Shortcut Keys - We have provided shortcut keys (e.g., Ctrl-B for Boldface) for all of the most
common tags, allowing you to enter HTML codes in your documents as quickly as possible.

· Configurable Toolbars (Standard and Professional versions only) - Configure WebEdit to
work the way you do! Put whatever buttons you want, in any order, on the toolbar by dragging
and dropping.

· Project Support (Professional version only) - Organize all of your HTML files into projects and
then load all of those files with the click of a button!

· Tooltips - Every field on every dialog has popup tooltips that provide a brief explanation of the
purpose or use of the field, reducing the amount of time you will spend looking things up.

· Right-Click Menu - Right-clicking on any document pops up a menu that allows you to close or
save the file, or choose from a list of the most common HTML tags to insert in your document.

How to Order WebEdit

If you are using the evaluation version of Kenn Nesbitt's WebEdit, you must purchase a license to
continue using it beyond the 30-day evaluation period.

After your order has been processed, you will receive a software key to "unlock" the software and
eliminate the "nag" screen. Registering will also give you the following benefits:

· Priority online technical support
· Automatic email notification of product updates
· Free minor updates
· Discounts on major upgrades

You may order WebEdit from any of the following distributors:

United States
Compuserve
Germany, Austria and Switzerland
Italy
Japan
Netherlands
Sweden
United Kingdom

If you are using the Standard version of WebEdit you should look at the advantages that
upgrading to the Professional version gives you.

WebEdit Professional Upgrade Information

As a WebEdit 2.0 user, you are probably already aware of WebEdit's many benefits, including its well-
designed and easy-to-use interface, numerous web creation tools and great online support.    What
you may not yet be aware of are the benefits of moving up from WebEdit 2.0 to the commercially
available WebEdit PRO.

WebEdit PRO has an enhanced feature set that goes well beyond the capabilities of WebEdit 2.0,
including the following:

WebEdit PRO contains all the features of WebEdit 2.0 plus:
· Multi-file project support
· Syntax highlighting
· HTML tag syntax checker
· WYSIWYG frame wizard
· WYSIWYG form designer
· FTP upload facility
· Link validation wizard
· Table of contents wizard
· Third party add-in module support
· Sample source files and templates
· Images, graphics, sounds and multimedia files
· and more

Whether it's for business or just for fun, WebEdit includes the tools you need to create exciting and
dynamic web sites.

We've priced WebEdit PRO to be affordable to everyone, so it's definitely an investment worth
making. WebEdit PRO is just $129.95 (SRP).    The software only price when downloading from our
website is just $109.95 (manual and disks are extra).    In addition, volume licensing is available for all
size organizations.    Place your order now, or visit your local software retailer. If you wish to try it
before you buy it, download a 30-day trial version of    WebEdit PRO from our web site at:
http://www.nesbitt.com

For more information visit our web site or call (800) 582-4022.

System Requirements

WebEdit is a very efficient program - if your computer can run Windows it should run WebEdit just
fine. WebEdit requires approximately 3 Mb of disk space.

WebEdit 2.0 comes in both 16 and 32 bit versions. The 16-bit version runs under Windows 3.1,
Windows for Workgroups, and Windows 95. The 32-bit version runs under Windows 95 and Windows
NT.

If you use WebEdit on any other Operating System please drop us a line and we'll update this list!

A list of known compatibility issues and other problems is posted at http://www.nesbitt.com/bugs.html.

United States

Link sandiego.com, Inc.

The English-language version of Kenn Nesbitt's WebEdit is distributed worldwide by Link
sandiego.com, Inc. (formerly Data Transfer Group).

Link sandiego.com, Inc.
2251 San Diego Avenue, Suite A-141
San Diego, CA    92110
USA

Voice: +1 (619) 220-8601
Fax: +1 (619) 220-8324
Email: orderdesk@thegroup.net
Web: http://www.nesbitt.com/

For current versions and pricing, or to place an order, please see our online order form at:

Online order form: http://www.nesbitt.com/order.html

Compuserve

CompuServe

You may order Kenn Nesbitt's WebEdit online on CompuServe in the Shareware Registration
forum (GO SWREG).

For current versions follow these instructions:
1. GO SWREG
2. Choose "Register Shareware"
3. Agree to the Registration Agreement
4. Choose your Geographic Region (e.g., United States)
5. Search for the Keyword "WebEdit"

If you have any questions or difficulty using SWREG to order WebEdit, please send email to
76100,57.

Germany, Austria and Switzerland

Michael Kalus Soft- und Hardwarehandel
Die Deutsche Version von Kenn Nesbitt's WebEdit wird von Michael Kalus Soft- und
Hardwarehandel vertrieben. Für mehr Informationen wenden Sie sich bitte an:

Michael Kalus
Soft- und Hardwarehandel
Reinsburgstr. 44
70178 Stuttgart
GERMANY
Voice: 0711-618022 / International: +49-711-618022
Fax: 0711-618031 / International: +49-711-618031
Email: webedit@aol.com
CompuServe: 100265,3065

Preis: DM 139,- DM inkl. MwSt. für die Deutsche Vollversion.
DM    39,- DM inkl. MwSt. für das Update von einer Englischen WebEdit
Version auf die Deutsche.
DM    69,- DM inkl. MwSt. für Studenten, Schüler, Schulen und
Bildungseinrichtungen (Nachweis erforderlich).
Für Informationen über Netzwerklizenzen und Mengen Discount, rufen Sie
bitte an oder schicken Sie eine E-Mail.

Michael Kalus Soft-und Hardwarehandel akzeptiert die VISA Karte, oder eine Überweisung auf
folgendes Konto:

Michael Kalus
Soft- und Hardwarehandel
Kontonr.: 1267567
BLZ: 600 501 01
Bei: Landesgirokasse Stuttgart

Bitte schicken Sie uns eine E-Mail, wenn Sie die Überweisung gemacht haben, damit wir wissen
wohin wir den Key schicken müssen.

CompuServe
Sie können die Deutsche Version von WebEdit auch Online über CompuServe bestellen. Dazu
gehen Sie bitte SWREG und wählen die folgenden IDs aus:

Email: 100265,3065
Deutsche Version: US$99.00    (Registration ID #9200)

Deutsche Schulversion: US$49.00    (Registration ID #9201)
Update auf die Deutsche Version: US$28.00    (Registration ID #9202)

WebEdit 2.0 Pro Deutsch: US$120.00    (Registration ID #11548)
WebEdit 2.0 Standard Deutsch: US$99.00    (Registration ID#11549)

Update von 1.x Deutsch auf 2.0 Pro Deutsch: US$35.00    (Registration ID #11550)
Update von 1.x Englisch auf 2.0 Pro Deutsch: US$64.00    (Registration ID#11551)

Italy

Studio Sikorsky
The English language version of WebEdit is available from Studio Sikorsky in Italy.

For more information, please contact:

Studio Sikorsky
Attn. Eng. J. Sikorsky
Via S. Antonio 2/B - Fossoli
41010 Carpi (Mo)
ITALY
Tel: +39,59,669287
Fax: +39,59,660838
Email: webedit@studios.it
Web: http://www.studios.it/webedit/

Japan

The Japanese version of Kenn Nesbitt's WebEdit is now available.    For more information, please
contact:

Personal Data Factory
Shimoueki-cho 451-3
Isesaki-shi
Gunma-ken 372
JAPAN
Voice: +81 0270-26-1513
Fax: +81 0270-26-1636
Email: 101153.21@compuserve.com

Netherlands

Kenn Nesbitt's Webedit kan in Nederland besteld worden via:

Solution Consultancy
Postbus 127
8252 AC Dronten
The Netherlands

Voice: 0321-381121 / International: +31-321-381121
Fax: 0321-380698 / International: +31-321-380698
Email: peterv@solcon.nl
CompuServe: 100103,3500
Excalibur BBS: 0321-381560 / Internet: @solcon.nl
WEB: http://www.solcon.nl
Banknummer: 40.78.98.581
Gironummer: 7215282

Prices:   Alleen software

WebEdit 2.0 (Win 3.1,win95)                        f        87,45        f      69,95*
WebEdit 2.0 Handleiding f        14,00
WebEdit 2.0 Disk Set (Incl. handleiding) f        17,50
WebEdit PRO f    227,45        f    192,45*
WebEdit PRO Handleiding f        26,25
WebEdit PRO Disk Set (Incl. handleiding) f        35,00

Bovengenoemde prijzen zijn excl. 17,5 % btw.
*Alleen de software. De software kan worden gedownload van onze    website http://www.solcon.nl of
via ons Excalibur BBS.

Voor Informatie over netwerklicenties of kwantumkorting kunt u direct
contact met ons opnemen.

Hoe kan ik WebEdit registreren?

1) Met uw creditcard:

Solution Consultancy accepteert VISA, AMERICAN EXPRESS, MASTERCARD en DINERSCLUB.
Via onze website http://www.solcon.nl kunt u een bestelformulier uitprinten. Vul dit formulier in en
zend het per fax naar: 0321-380698. U kunt dit bestelformulier ook telefonisch aanvragen 0321-
381121. Wij zenden het formulier dan per fax of per post naar u toe. Na ontvangst van het
bestelformulier ontvangt u van ons per omgaande uw unlock code voor WebEdit. On-line registratie,
gebruik makend van uw creditcard, is ook mogelijk via ons Excalibur BBS: 0321-381560, internet:
@solcon.nl.

2) Via incassomachtiging:

Print het incasso/bestelformulier uit dat u kunt vinden op onze website http://www.solcon.nl of ons
Excalibur bbs: 0321-381560. Vul dit formulier in en zend het per fax naar: 0321-380698. U kunt het
bestelformulier ook telefonisch aanvragen 0321-381121. Wij zenden het formulier dan per fax of per
post naar u toe. Na ontvangst van het bestelformulier ontvangt u van ons per omgaande uw unlock
code voor WebEdit.

Customers inside the European Union please add 17,5 % VAT to get your purchase price.

United Kingdom

Grey Matter Ltd.
The English-language version of Kenn Nesbitt's Webedit is distributed in the UK and Europe by:

Grey Matter Ltd.
Prigg Meadow, Ashburton
Devon TQ13 7DF
ENGLAND
Voice: 01364 654100 / International +44 1364 654100
Fax: 01364 654200 / International +44 1364 654200
Email: maildesk@greymatter.co.uk

For current pricing information please email maildesk@greymatter.co.uk, putting in the subject
line "PLEASE send WebEdit pricing information"

E.G.
To: maildesk@greymatter.co.uk
Subject: PLEASE send WebEdit pricing information

To find the best UK mirror sites for Nesbitt Software Corporation, please refer to:   
http://www.nesbitt.com

For UK-oriented "New to HTML" information, try: http://www.demon.co.uk/dita/new2html.html

License Agreement and Copyright Information

Copyright Notice
Kenn Nesbitt's WebEdit(TM) is Copyright © 1996, Nesbitt Software Corporation,. All Rights
Reserved. WebEdit is a Trademark of Nesbitt Software Corporation. The Sentry Spelling-Checker
Engine Copyright © 1993 Wintertree Software Inc.

License Agreement
GRANT.    Subject to the provisions contained herein, Nesbitt
Software Corporation, (herein "NSC") hereby grants you a non-exclusive 30-day license to use its
accompanying proprietary software ("Software"),    described as Kenn Nesbitt's WebEdit, free of
charge for the sole purpose of evaluating whether to purchase an ongoing license to the
Software.

You may evaluate the software for not more than 30 days.    At the end of 30 days you must
purchase a license in order to continue using the Software. If you do not fit within the description
above, a license fee is due to NSC and no license is granted herein. If you are using a 'Lite' or
evaluation version of the Software, you will not be entitled to technical support.

SOFTWARE AND DOCUMENTATION.    NSC shall furnish the Software to you electronically or
on media in machine-readable object code form.    If you receive your first copy of the Software
electronically, and a second copy on media, the second copy may be used for backup and
archive purposes only.    This license does not grant you any right to any enhancement or update
to the Software and Documentation. Enhancements and updates, if available, may be obtained by
you at NSC's then-current standard pricing, terms, and conditions.

RESTRICTED USE.    You may not lend, rent, lease or otherwise transfer the Software.    The
Software is protected by the copyright laws of the United States and international copyright
treaties.    This license is valid for only one user on only one computer.

TITLE.    Title, ownership rights, and intellectual property rights in and to the Software and
Documentation shall remain in NSC and/or its suppliers.    This Agreement does not include the
right to copy or sublicense the Software and is personal to you and therefore may not be
assigned (by operation of law or otherwise) or transferred without the prior written consent of
NSC.    You acknowledge that the Software in source code form remains a confidential trade
secret ofNSC and/or its suppliers and therefore you agree not to attempt to decipher, decompile,
disassemble or reverse engineer the Software or allow others to do so, except to the extent
applicable laws specifically prohibit such restriction.    You further agree not to modify or create
derivative works of the Software.

CONTENT.    Title, ownership rights, and intellectual property rights in and to the content
accessed through the Software is the property of the applicable content owner and may be
protected by applicable copyright or other law.    This License gives you no rights to such content.

DISCLAIMER OF WARRANTY.    Since the Software is provided free of charge, the Software is
provided on an "AS IS" basis, without warranty of any kind, including without limitation the
warranties of merchantability, fitness for a particular purpose and non-infringement.    The entire
risk as to the quality and performance of the Software is borne by you.

Should the Software prove defective, you and not NSC assume the entire cost of any service and
repair.

This disclaimer of warranty constitutes an essential part of the agreement.    SOME STATES DO
NOT ALLOW EXCLUSIONS OF AN IMPLIED WARRANTY, SO THIS DISCLAIMER MAY NOT
APPLY TO YOU AND YOU MAY HAVE OTHER LEGAL RIGHTS THAT VARY FROM STATE TO

STATE OR BY JURISDICTION.

LIMITATION OF LIABILITY.    UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY,
TORT, CONTRACT, OR OTHERWISE, SHALL NSC OR ITS SUPPLIERS OR RESELLERS BE
LIABLE TO YOU OR ANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES OF ANY CHARACTER INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER FAILURE OR
MALFUNCTION, OR ANY AND ALL OTHER COMMERCIAL DAMAGES OR LOSSES.    IN NO
EVENT WILL NSC BE LIABLE FOR ANY DAMAGES IN EXCESS OFNSC'S LIST PRICE FOR A
LICENSE TO THE SOFTWARE, EVEN IF NSC SHALL HAVE BEEN INFORMED OF THE
POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.    THIS
LIMITATION OF LIABILITY SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT APPLICABLE LAW PROHIBITS SUCH LIMITATION.   
FURTHERMORE, SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THIS LIMITATION AND EXCLUSION MAY
NOT APPLY TO YOU.

EXPORT CONTROLS.    You may not download or otherwise export or reexport the Software or
any underlying information or technology except in full compliance with all United States and
other applicable laws and regulations.    In particular, but without limitation, none of the Software
or underlying information or technology may be downloaded or otherwise exported or reexported
(i) into (or to a national or resident of) Cuba, Haiti, Iraq, Libya, North Korea, Iran, Syria or any
other country to which the U.S. has embargoed goods; or (ii) to anyone on the U.S. Treasury
Department's list of Specially Designated Nationals or the U.S. Commerce Department's Table of
Deny Orders.    By downloading or using the Software, you are agreeing to the foregoing and you
are representing and warranting that you are not located in, under the control of, or a national or
resident of any such country or on any such list.

TERMINATION.    Either party may terminate this Agreement immediately in the event of default
by the other party.    Upon any termination of this Agreement, you shall immediately discontinue
the use of the Software and shall within ten (10) days return to NSC all copies of the Software
and Documentation.    You may also terminate this Agreement at any time by destroying the
Software and Documentation and all copies thereof.    Your obligations to pay accrued charges
and fees shall survive any termination of this Agreement.

MISCELLANEOUS.    This Agreement represents the complete and exclusive statement of the
agreements concerning this license between the parties and supersedes all prior agreements and
representations between them. It may be amended only by a writing executed by both parties.   
THE ACCEPTANCE OF ANY PURCHASE ORDER PLACED BY YOU IS EXPRESSLY MADE
CONDITIONAL ON YOUR ASSENT TO THE TERMS SET FORTH HEREIN, AND NSC AGREES
TO FURNISH THE SOFTWARE AND DOCUMENTATION ONLY UPON THESE TERMS AND
NOT THOSE CONTAINED IN YOUR PURCHASE ORDER.    If any provision of this Agreement is
held to be unenforceable for any reason, such provision shall be reformed only to the extent
necessary to make it enforceable, and such decision shall not affect the enforceability (i) of such
provision under other circumstances or (ii) of the remaining provisions hereof under all
circumstances.    Headings shall not be considered in interpreting this Agreement.    This
Agreement shall be governed by and construed under California law as such law applies to
agreements between California residents entered into and to be performed entirely within
California, except as governed by Federal law.    This Agreement will not be governed by the
United Nations Convention of Contracts for the International Sale of Goods, the application of
which is hereby expressly excluded.

U.S. Government Restricted Rights.    Use, duplication or disclosure by the Government is subject
to restrictions set forth in subparagraphs (a) through (d) of the Commercial Computer-Restricted
Rights clause at FAR 52.227-19 when applicable, or in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013, and in similar clauses in

the NASA FAR Supplement.

Contractor/manufacturer is Nesbitt Software Corporation.

Contact:
    Nesbitt Software Corporation
    http://www.nesbitt.com/

Sweden

Pihlström IT Service
Kenn Nesbitt's WebEdit Skandinavien distributör

Den svenska versionen av Kenn Nesbitts WebEdit distribueras i Sverige och Skandinavien av
Pihlström IT Service:

Pihlström IT Service
Bildradiogatan 45
421 34    Västra Frölunda
SWEDEN
Voice: 0705 477377 / Internationellt +46 705 477377
Fax: 031 472919 / Internationellt +46 31 472919
Email: webedit@pits.se

För mer information om beställning, se svenska hemsidan för WebEdit, tryck
http:///www.pits.se/Webedit

Where to Reach Us

The best way to reach us is online.    The WebEdit home page is on the World Wide Web at:
http://www.nesbitt.com/

Technical support is available to all registered users by sending email to techsupt@nesbitt.com.

WebEdit has grown so popular that we now have our own Mailing List! To subscribe, send mail to
majordomo@thegroup.net with the words 'Subscribe WebEdit-List me@myaddress' in the body of
the message.

In addition to the mailing list, you can get support for WebEdit on usenet in the group
alt.html.editors.webedit, and on CompuServe in the Internet Publishing forum (GO INETPUB).    If
your usenet server doesn't have alt.html.editors.webedit, please ask your service provider to carry
it.

See Also
How to Order WebEdit
About the Authors

WebEdit Reference

HTML
Tag Index

Document Structure
Block Style Tags
Logical Font Style Tags
Physical Font Style Tags
Headings
Special Characters
Form Elements
List Elements
Miscellaneous Tags
Table Elements
Java Tags
Object Tags
Links / Anchors
Inline Images
Uniform Resource Locators (URLs)
User-Defined Tag s

Learning HTML

Miscellaneous Features
Spelling Checker
Quick Previewer

Document Structure Tags

HTML Document Structure Tags
HTML provides methods for organizing and navigating within HTML documents using the
following elements:

The Banner element is used for graphic elements that shouldn't be scrolled with the rest of the
form.

The Base element is for establishing a location context for other URLs referenced.

The Body element determines the start and finish of the document's body.

The Division element is used to reresent different types on containers.

The Document Type element describes to what level of HTML the document is written for.

The Frame element defines a single frame in a frameset.

The Frame Set element defines the main container for a frame.

The Head element determines the start and finish of the document's body.

The HTML element shows where the entire HTML documents starts and finishes.

The Is Index element indicates that the document supports CGI script for searches.

The Meta element is a method for including extra information about your document.

The Next ID element indicates the next Web page after the current one. This allows for document
chaining.

The No Frames element specifies alternative content that is viewable by non-frame-capable
clients.

The Range element marks the range of the document.

The Spot element is used to insert IDs at arbitrary places.

The Style element allows for the inclusion of rendering information using a specified style
notation.

The Title element specifies the title of the document.

In HTML documents, tags define the start and end of headings, paragraphs, lists, character
highlighting and links etc. Most HTML elements are identified in a document as a start tag, which
gives the element name and attributes, followed by the content, followed by the end tag. Start
tags are delimited by < and >, while end tags are delimited by </ and >. For example:

 <title>This is a Title</title>
 <h1>This is a Heading</h1>
 <P>This is a paragraph.

As can be seen from the <P>, not every tag has an end tag.

Every HTML document as a minimum must have a title. To identify the document as being HTML
3.0, it is recommended that documents start with the prologue:

<!doctype HTML public "-//W3O//DTD W3 HTML 3.0//EN">

When absent, this prologue is implied by the MIME content type for HTML 3.0 together with the
associated version parameter.

Document Structure
HTML 3.0 documents formally have the following structure:

<HTML>
<HEAD> head elements ...
<BODY> body elements ...
</HTML>

In most cases, the HTML, HEAD and BODY tags can be safely omitted.

Base

Description
The Base element allows the URL of the document itself to be recorded in situations in which the
document may be read out of context. URLs within the document may be in a "partial" form
relative to this base address.    Where the base address is not specified, the reader will use the
URL it used to access the document to resolve any relative URLs.

Attributes
HREF - A URL.

TARGET - Links in any window can refer to another window by name using the TARGET
attribute. When you click the link, the document you requested will appear in that named window. If the
window is not already open, the browser will open and name a new window for you.

Example
<BASE HREF="http://www.nesbitt.com/webedit/webedit.htm">

Body

Description
The Body element contains all the information which is part of the document, as opposed
information about the document which is in the Head.    The elements within the Body element are
in the order in which they should be presented to the reader. Place the <BODY> and </BODY>
tags above and below the body of the text (not including the Head) of your HTML document.

Example
<HTML>
<HEAD>
<TITLE>Page Title</TITLE>
</HEAD>
<BODY>
Add body text here.
</BODY>
</HTML>

Attributes
BACKGROUND -     Specifies the image tile to appear in the document
background.

BGPROPERTIES - Specifies a watermark, which is a background picture that does not scroll.
<BODY BACKGROUND="linoleum.gif" BGPROPERTIES=FIXED>
The background on this page is fixed so that it does not
scroll.</BODY>

BGCOLOR= #rrggbb or colorname

.    Sets the background color of the page. rrggbb is a hexadecimal number denoting a red-
green-blue color value (the pound sign is optional). BGCOLOR and each of the other color attributes here

can also be set to a colorname.
<BODY BGCOLOR=#ff0000>This page has a red background.</BODY>
or
<BODY BGCOLOR=RED>This page also has a red background.</BODY>

LINK=#rrggbb or colorname. Sets the color of shortcuts that have not yet been
visited.

<BODY LINK=#0000ff>This page has blue shortcuts</BODY>

TEXT=#rrggbb or colorname. Sets the color of text on the page.
<BODY TEXT=FUCHSIA>This text is fuchsia.</BODY>

ALINK=#rrggbb or colorname. Sets color of shortcuts that are active.
<BODY ALINK=#ff0000>Active shortcuts</BODY>

VLINK=#rrggbb or colorname. Sets color of shortcuts that have already been
visited.

<BODY VLINK=#00ff00>This page has green visited
shortcuts</BODY>

Division

Description
The DIV element is used with the CLASS attribute to represent different kinds of containers, e.g.
chapter, section, abstract, or appendix. Use the DIV element together with header elements when you
want to make the hierarchical structure of a document explicit. This is needed as header elements
themselves only contain the text of the header, and do not imply any structural division of documents
into sections. Header elements have the same content model as paragraphs, that is text and
character level markup, such as character emphasis, inline images, form fields and math.

Attributes
ID -    An SGML identifier used as the target for hypertext links or for naming particular
elements in associated style sheets. Identifiers are NAME tokens and must be unique within the
scope of the current document.
LANG -    This is one of the ISO standard language abbreviations, e.g. "en.uk" for the
variation of English spoken in the United Kingdom. It can be used by parsers to select language
specific choices for quotation marks, ligatures and hypenation rules etc. The language attribute is
composed from the two letter language code from ISO 639, optionally followed by a period and a
two letter country code from ISO 3166.

CLASS -    This a space separated list of SGML NAME tokens and is used to subclass tag
names. For instance, <DIV CLASS=APPENDIX> defines a division that acts as an appendix. By
convention, the class names are interpreted hierarchically, with the most general class on the left and the
most specific on the right, where classes are separated by a period. The CLASS attribute is most
commonly used to attach a different style to some element, but it is recommended that where practical
class names should be picked on the basis of the element's semantics, as this will permit other uses,
such as restricting search through documents by matching on element class names. The conventions for
choosing class names are outside the scope of this specification.

ALIGN -    The ALIGN attribute can be used to explicitly specify the horizontal alignment
of paragraphs within a division:

align=left - Paragraphs are rendered flush left (the default).

align=center - Paragraphs are centered.

align=right - Paragraphs are rendered flush right.

align=justify - Text lines are justified where practical, otherwise this gives the same
effect as the default align=left setting.

NOWRAP -    The NOWRAP attribute is used when you don't want the browser to
automatically wrap lines. You can then explicitly specify line breaks in paragraphs using

the BR element.
CLEAR - This attribute is common to all block-like elements. When text flows
around a figure or table in the margin, you sometimes want to start the division below the
figure rather than alongside it. The CLEAR attribute allows you to move down
unconditionally:

clear=left - move down until left margin is clear

clear=right - move down until right margin is clear

clear=all - move down until both margins are clear
Alternatively, you can decide to place the element alongside the figure just so long as
there is enough room. The minimum width needed is specified as:

clear="40 en" - move down until there is at least 40 en units free

clear="100 pixels" - move down until there is at least 100 pixels free
The style sheet (or browser defaults) may provide default minimum widths for each
class of block-like elements.

Example
<DIV CLASS=Abstract>
<P>TheChieftain product range is the white hot hope for the
coming year. This report sets out how to position Chieftain
against competing products.
</DIV>

Head

Description
The Head element contains all information about the document in general. It contains HTML elements
that describe the document's title, usage and relationship with other documents.    It does not contain any
text which is part of the document - this is in the Body. Within the Head element, only certain elements are
allowed.

Attributes
None

Example
<HTML>
<HEAD>
<TITLE>Page Title</TITLE>
</HEAD>
<BODY>
Add body text here.
</BODY>
</HTML>

Document Type

Short Non-Technical Description
To formally identify the file as containing HTML elements, the beginning of the file should contain a line
identifying the version of HTML being used - this is the DocType tag.

To just state only that the document is HTML:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

To state exactly what level of HTML it is:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 1.0//EN">
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 3.0//EN">
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML Level 0//EN">
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML Level 1//EN">
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML Level 2//EN">
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML Level 3//EN">

Formal Variants of HTML 3.0
The HTML 3.0 document type definition includes two flags for controlling how prescriptive or how
lax the language is.

HTML Recommended
Certain features of the language are necessary for compatibility with widespread usage, but they
may compromise the structural integrity of a document. The HTML.Recommended entity should
be defined as INCLUDE in the DTD subset to enable a more prescriptive version of HTML 3 that
eliminates the above features. For example:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 3.2//EN"
[<!ENTITY % HTML.Recommended "INCLUDE">] >

In particular, this prevents text from appearing except within block elements.

HTML Deprecated
By default, for backwards compatibility, the %HTML.Deprecated entity is defined as INCLUDE,
enabling certain features which are now deprecated. These features can be eliminated by
defining this entity as IGNORE in the DTD subset. For example:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 3.2//EN" [
<!ENTITY % HTML.Deprecated "IGNORE">] >

Note: defining %HTML.Recommended as INCLUDE automatically sets %HTML. Deprecated to
IGNORE.
In the spirit of being liberal in what you accept and strict in what you generate, HTML user agents
are recommended to accept syntax corresponding to the specification with %HTML.Deprecated
turned on, while HTML user agents generating HTML are recommended to generate documents

that conform to the specification with %HTML. Recommended turned on.

Frame

Description
This tag defines a single frame in a frameset.

Attributes
SRC - The SRC attribute takes as its value the URL of the document to be displayed in this
particular frame. FRAMEs without SRC attributes are displayed as a blank space the size the frame
would have been.

NAME - The NAME attribute is used to assign a name to a frame so it can be targeted by links in
other documents (These are usually from other frames in the same document.) The NAME attribute is
optional; by default all windows are unnamed. Names must begin with an alphanumeric character.
However, several reserved names have been defined, which start with an underscore.

These are currently:
_blank Always load this link into a new, unnamed window.
_self Always load this link over yourself.
_parent Always load this link over your parent. (becomes self if you have no parent).
_top Always load this link at the top level. (becomes self if you are at the top).
All other names starting with '_' will be ignored.

MARGINWIDTH -    The MARGINWIDTH attribute is used when the document author
wants some control of the margins for this frame. If specified, the value for MARGINWIDTH is in
pixels. Margins can not be less than one-so that frame objects will not touch frame edges-and can not
be specified so that there is no space for the document contents. The MARGINWIDTH attribute is
optional; by default, all frames default to letting the browser decide on an appropriate margin width.

MARGINHEIGHT -    The MARGINHEIGHT attribute is just like MARGINWIDTH
above, except it controls the upper an lower magins instead of the left and right margins.

SCROLLING -    The SCROLLING attribute is used to describe if the frame should have a
scrollbar or not. Yes results in scrollbars always being visible on that frame. No results in scrollbars never
being visible. Auto instructs the browser to decide whether scrollbars are needed, and place them where

necessary. The SCROLLING attribute is optional; the default value is auto.

NORESIZE -    The NORESIZE attribute has no value. It is a flag that indicates that
the frame is not resizable by the user. Users typically resize frames by dragging a frame edge to a
new position. Note that if any frame adjacent to an edge is not resizable, that entire edge will be
restricted from moving. This will effect the resizability of other frames. The NORESIZE attribute is
optional; by default all frames are resizable.

Example (Courtesy Netscape Communications)

This example compares Frame syntax and TABLE syntax.

+--+
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| |-----------------------------+
| | |
| | |
| | |
| | |
+----------------------------| |
| | |
| | |
| | |
| | |
| |-----------------------------+
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
+--+

THE ABOVE LAYOUT USING TABLES

<TABLE WIDTH="100%" HEIGHT="100%" BORDER>
 <TR><TD ROWSPAN=2>CELL1</TD><TD>CELL2</TD></TR>
 <TR><TD ROWSPAN=2>CELL3</TD></TR>
 <TR><TD ROWSPAN=2>CELL4</TD></TR>
 <TR><TD>CELL5</TD></TR>
</TABLE>

THE ABOVE LAYOUT USING FRAMES

<FRAMESET COLS="50%,50%">
 <FRAMESET ROWS="50%,50%">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
 </FRAMESET>
 <FRAMESET ROWS="33%,33%,33%">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
 </FRAMESET>
</FRAMESET>

THE ABOVE LAYOUT USING NOFRAMES INFO

<FRAMESET COLS="50%,50%">

<NOFRAMES>
<h1 align=center><blink>Frame ALERT!</blink></h1>
<p>
This document is designed to be viewed using Netscape 2.0's
Frame features. If you are seeing this message, you are using
a frame <i>challenged</i> browser.
</p>
<p>
A Frame-capable browser can be gotten from
Netscape Communications.
</p>
</NOFRAMES>

<FRAMESET ROWS="50%,50%">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
</FRAMESET>
<FRAMESET ROWS="33%,33%,33%">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
</FRAMESET>

</FRAMESET>

Overview of Frames

Frames are a way of specifying multiple, independent, scrollable regions within a display window.
Each frame can contain a separate HTML document. Users can scroll and resize frames, at the
choice of the page creator. Each frame can also be given NAME values, so they can be targeted by
links in other documents or other frames. These features provide a powerful new way of presenting
documents.

Properties of frames:
· A frame can be given an individual URL, so it can load information independent of the other

frames on the page;
· A frame can be given a NAME, allowing it to be targeted by other URLs, and;
· A Frame can resize dynamically if the user changes the window's size. (Resizing can also be

disabled, ensuring a constant frame size.)

These properties offer new possibilities:
· Elements that the user should always see, such as control bars, copyright notices, and title

graphics can be placed in a static, individual frame. As the user navigates the site in "live"
frames, the static frame's contents remain fixed, even though adjoining frames redraw.

· Table of contents are more functional. One frame can contain TOC links that, when clicked,
display results in an adjoining frame.

· Frames side-by-side design allows queries to be posed and answered on the same page, with
one frame holding the query form, and the other presenting the results.

Frame Set

Description
This is the main container for a Frame. It has 2 attributes ROWS and COLS. A frame document has no
BODY, and no tags that would normally be placed in the BODY can appear before the FRAMESET tag, or
the FRAMESET will be ignored. The FRAMESET tag has a matching end tag, and within the FRAMESET
you can only have other nested FRAMESET tags, FRAME tags, or the NOFRAMES tag.

The FRAMESET tag can be nested inside other FRAMESET tags. In this case the complete subframe is
placed in the space that

would be used for the corresponding frame if this had been a FRAME tag instead of a nested
FRAMESET.

Attributes

ROWS -    The ROWS attribute takes as its value a comma separated list of values.
These values can be absolute pixel values, percentage values between 1 and 100, or relative scaling
values. The number of rows is implicit in the number of elements in the list. Since the total height of all
the rows must equal the height of the window, row heights might be normalized to achieve this. A
missing ROWS attribute is interpreted as a single row arbitrarily sized to fit.

Syntax of value list.
value
A simple numeric value is assumed to be a fixed size in pixels. This is the most dangerous type of
value to use since the size of the viewer's window can and does vary substantially. If fixed pixel
values are used, it will almost certainly be necessary to mix them with one or more of the relative
size values described below. Otherwise the client engine will likely override your specified pixel
value to ensure that the total proportions of the frame are 100% of the width and height of the
user's window.

value%
This is a simple percentage value between 1 and 100. If the total is greater than 100 all
percentages are scaled down. If the total is less than 100,    and relative-sized frames exist, extra
space will be given to them. If there are no relative-sized frames, all percentages will be scaled
up to match a total of 100%.

value*
The value on this field is optional. A single '*' character is a "relative-sized" frame and is
interpreted as a request to give the frame all remaining space. If there exist multiple relative-sized
frames, the remaining space is divided evenly among them. If there is a value in front of the '*',
that frame gets that much more relative space. "2*,*" would give 2/3 of the space to the first
frame, and 1/3 to the second.

Example for 3 rows, the first and the last being smaller than the center row:
<FRAMESET ROWS="20%,60%,20%">

Example for 3 rows, the first and the last being fixed height, with the remaining space assigned to
the middle row:
<FRAMESET ROWS="100,*,100">

COLS -    The COLS attribute takes as its value a comma separated list of values that
is of the exact same syntax as the list described above for the ROWS attribute.

Example (Courtesy Netscape Communications)

This example compares Frame syntax and TABLE syntax.

+--+
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| |-----------------------------+
| | |
| | |
| | |
| | |
+----------------------------| |
| | |
| | |
| | |
| | |
| |-----------------------------+
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
+--+

THE ABOVE LAYOUT USING TABLES

<TABLE WIDTH="100%" HEIGHT="100%" BORDER>
 <TR><TD ROWSPAN=2>CELL1</TD><TD>CELL2</TD></TR>
 <TR><TD ROWSPAN=2>CELL3</TD></TR>
 <TR><TD ROWSPAN=2>CELL4</TD></TR>
 <TR><TD>CELL5</TD></TR>
</TABLE>

THE ABOVE LAYOUT USING FRAMES

<FRAMESET COLS="50%,50%">
 <FRAMESET ROWS="50%,50%">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
 </FRAMESET>
 <FRAMESET ROWS="33%,33%,33%">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
 </FRAMESET>
</FRAMESET>

THE ABOVE LAYOUT USING NOFRAMES INFO

<FRAMESET COLS="50%,50%">

<NOFRAMES>
<h1 align=center><blink>Frame ALERT!</blink></h1>
<p>
This document is designed to be viewed using Netscape 2.0's
Frame features. If you are seeing this message, you are using
a frame <i>challenged</i> browser.
</p>
<p>
A Frame-capable browser can be gotten from
Netscape Communications.
</p>
</NOFRAMES>

<FRAMESET ROWS="50%,50%">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
</FRAMESET>
<FRAMESET ROWS="33%,33%,33%">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
</FRAMESET>

</FRAMESET>

HTML

Description
The HTML identifier defines the document as containing HTML elements. It contains only the Head and
Body elements.

Attributes
None

Example
<HTML>
<HEAD>
<TITLE>Page Title</TITLE>
</HEAD>
<BODY>
Add body text here.
</BODY>
</HTML>

Is Index

Description
The Is Index Element informs the reader that the document is an index document. As well as reading
it, the reader may use a keyword search.    The node may be queried with a keyword search by
suffixing the node address with a question mark, followed by a list of keywords separated by plus
signs.    Note that this tag is normally generated automatically by a server. If it is added by hand to an
HTML document, then the client will assume that the server can handle a search on the document.
Obviously the server must have this capability for it to work: simply adding <ISINDEX> in the
document is not enough to make searches happen if the server does not have a search engine!

Attributes

ACTION - filename.    Specifies the gateway program to which the string in the text
box should be passed.

PROMPT - "prompt text".    Specifies a prompt to be used instead of the above.

Example
<ISINDEX ACTION = "Search" PROMPT="Type in keywords here">

Meta

Description
The META element is used within the HEAD element to embed document meta-information not
defined by other HTML elements. Such information can be extracted by servers/clients for use in
identifying, indexing and cataloging specialized document meta-information.

Although it is generally preferable to use named elements that have well defined semantics for
each type of meta-information, such as title, this element is provided for situations where strict
SGML parsing is necessary and the local DTD is not extensible.

In addition, HTTP servers can read the contents of the document head to generate response
headers corresponding to any elements defining a value for the attribute HTTP-EQUIV. This
provides document authors with a mechanism (not necessarily the preferred one) for identifying
information that should be included in the response headers of an HTTP request.

Attributes

NAME - Used to name a property such as author, publication date etc. If
absent, the name can be assumed to be the same as the value of HTTP-EQUIV.

CONTENT - Used to supply a value for a named property.

HTTP-EQUIV - This attribute binds the element to an HTTP response header. If the
semantics of the HTTP response header named by this attribute is known, then the contents can be
processed based on a well defined syntactic mapping, whether or not the DTD includes anything about it.
HTTP header names are not case sensitive. If absent, the NAME attribute should be used to identify this
meta-information and it should not be used within an HTPP response header.

Examples:
If the document contains:

<META HTTP-EQUIV=Expires CONTENT="Tue, 04 Dec 1993 21:29:02 GMT">
<META HTTP-EQUIV="Keywords" CONTENT="Nanotechnology, Biochemistry">
<META HTTP-EQUIV="Reply-to" CONTENT="dsr@w3.org (Dave Raggett)">

The server will include the following response headers:

Expires: Tue, 04 Dec 1993 21:29:02 GMT
Keywords: Nanotechnology, Biochemistry
Reply-to: dsr@w3.org (Dave Raggett)

When the HTTP-EQUIV attribute is absent, the server should not generate an HTTP response
header for this meta-information, e.g.

<META NAME="IndexType" CONTENT="Service">

Do not use the META element to define information that should be associated with an existing
HTML element.

Example of an inappropriate use of the META element:

<META NAME="Title" CONTENT="The Etymology of Dunsel">

Do not name an HTTP-EQUIV attribute the same as a response header that should typically only
be generated by the HTTP server. Some inappropriate names are "Server", "Date", and "Last-
Modified". Whether a name is inappropriate depends on the particular server implementation. It is
recommended that servers ignore any META elements that specify HTTP equivalents (case
insensitively) to their own reserved response headers.

Next ID

Description
The Next ID element takes a single attribute which is the number of the next document-wide numeric
identifier to be allocated.    When modifying a document, old anchor ids should not be reused, as there
may be references stored elsewhere which point to them. This is read and generated by hypertext
editors. Human writers of HTML usually use mnemonic alphabetical identifiers.    Browser software
may ignore this tag.

Attributes

N - number of the next document-wide numeric identifier to be allocated.

Example
<NEXTID N=27>

No Frames

This tag is for content providers who want to create alternative content that is viewable by non-Frame-
capable clients. A Frame-capable Internet client ignores all tags and data between start and end
NOFRAMES tags.

Example

This example compares Frame syntax and TABLE syntax.

+--+
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| |-----------------------------+
| | |
| | |
| | |
| | |
+----------------------------| |
| | |
| | |
| | |
| | |
| |-----------------------------+
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
+--+

THE ABOVE LAYOUT USING TABLES

<TABLE WIDTH="100%" HEIGHT="100%" BORDER>
 <TR><TD ROWSPAN=2>CELL1</TD><TD>CELL2</TD></TR>
 <TR><TD ROWSPAN=2>CELL3</TD></TR>
 <TR><TD ROWSPAN=2>CELL4</TD></TR>
 <TR><TD>CELL5</TD></TR>
</TABLE>

THE ABOVE LAYOUT USING FRAMES

<FRAMESET COLS="50%,50%">
 <FRAMESET ROWS="50%,50%">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
 </FRAMESET>
 <FRAMESET ROWS="33%,33%,33%">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
 </FRAMESET>
</FRAMESET>

THE ABOVE LAYOUT USING NOFRAMES INFO

<FRAMESET COLS="50%,50%">

<NOFRAMES>
<h1 align=center><blink>Frame ALERT!</blink></h1>
<p>
This document is designed to be viewed using Netscape 2.0's
Frame features. If you are seeing this message, you are using
a frame <i>challenged</i> browser.
</p>
<p>
A Frame-capable browser can be gotten from
Netscape Communications.
</p>
</NOFRAMES>

<FRAMESET ROWS="50%,50%">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
</FRAMESET>
<FRAMESET ROWS="33%,33%,33%">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
 <FRAME SRC="cell.html">
</FRAMESET>

</FRAMESET>

Range

Description
The RANGE element is used to mark a range of the document, for example for highlighting
regions of the document matching some search criteria, or which are the subject of an annotation
etc.

<RANGE CLASS=Search FROM=spot01 UNTIL=spot02>

The FROM and UNTIL attributes specify positions in the document using SGML identifiers. Most
elements in the document body can define such identifiers using ID attributes. The SPOT element
is useful in this regard, as it allows search software etc. to insert IDs at random places:

<SPOT ID=spot01> ... <SPOT ID=spot02>

Attributes

ID - An SGML identifier used to name the range element.

CLASS - A character string used to subclass the range element.

FROM - References an SGML identifier for an element in the document body. It identifies
the start of the marked range.

UNTIL - References an SGML identifier for an element in the document body. It identifies
the end of the marked range.

Spot

Description
The SPOT element is used to insert IDs at arbitrary places, e.g., for end points of a marked range
(see RANGE).

Attributes

ID - An SGML identifier used to name the range element.

CLASS - A character string used to subclass the range element.

FROM - References an SGML identifier for an element in the document body. It identifies
the start of the marked range.

UNTIL - References an SGML identifier for an element in the document body. It identifies
the end of the marked range.

Example
<RANGE CLASS=Search FROM=spot01 UNTIL=spot02>

The FROM and UNTIL attributes specify positions in the document using SGML identifiers. Most
elements in the document body can define such identifiers using ID attributes. The SPOT element
is useful in this regard, as it allows search software etc. to insert IDs at random places:

<SPOT ID=spot01> ... <SPOT ID=spot02>

Style

Description
The STYLE element provides a means for including rendering information using a specified style
notation. Information in the STYLE element overrides client defaults and that of linked style
sheets. It allows authors to specify overrides, while for the most part using a generic style sheet,
and as such improves the effectiveness of caching schemes for linked style sheets.    Stylistic
rules will in general match tag names and attribute values for elements in the document body.
Context sensitive rules may be used for such purposes as rendering drop down capitals for the
initial letter in the first paragraph following a header.

Attributes

Notation - specifies an entity identifying an SGML notation in the HTML 3.0 DTD.

Example
<style notation=dsssl-lite>
some dsssl-lite stuff ...
</style>

Title

Description
The Title element specifies the title of a document. The TITLE element should occur in the HEAD
of the document.    There may only be one title in any document. It should identify the content of
the document in a fairly wide context.    The title is not part of the text of the document, but is a
property of the whole document. It may not contain anchors, paragraph marks, or highlighting.
The title may be used to identify the node in a history list, to label the window displaying the node,
etc. It is not normally displayed in the text of a document itself. Contrast titles with headings . The
title should ideally be less than 64 characters in length. That is, many applications will display
document titles in window titles, menus, etc. where there is only limited room. While there is no
limit on the length of a title (as it may be automatically generated from other data), information
providers are warned that it may be truncated if long.    A title should be short, yet, descriptive.   
The important thing to remember about a title is that when someone, hopefully, adds your home
page to their "hotlist", the title is saved and helps them remember what it was that was so hot.

Attributes
None

Examples
Appropriate titles:

<TITLE>Rivest and Neuman. 1989(b)</TITLE>
<TITLE>A Recipe for Maple Syrup Flap-Jack</TITLE>
<TITLE>Introduction -- AFS user's Guide</TITLE>

Inappropriate titles are only meaningful within context, for example,

<TITLE>Introduction</TITLE>

or too long,

<TITLE>Remarks on the Quantum-Gravity effects of "Bean Pole"
diversification in Mononucleosis patients in Developing Countries
under Economic Conditions Prevalent during the Second half of the
Twentieth Century, and Related Papers: a Summary</TITLE>

Banner

Description
The BANNER element is used for corporate logos, navigation aids, disclaimers and other information
which shouldn't be scrolled with the rest of the document. It provides an alternative to using the LINK
element in the document head to reference an externally defined banner.

Attributes
ID - An SGML identifier used as the target for hypertext links or for naming particular
elements in associated style sheets. Identifiers are NAME tokens and must be unique
within the scope of the current document.

LANG - This is one of the ISO standard language abbreviations, e.g. "en.uk" for the
variation of English spoken in the United Kingdom. It can be used by parsers to select
language specific choices for quotation marks, ligatures and hypenation rules etc. The
language attribute is composed from the two letter language code from ISO 639,
optionally followed by a period and a two letter country code from ISO 3166.

CLASS - This a space separated list of SGML NAME tokens and is used to subclass tag
names. By convention, the class names are interpreted hierarchically, with the most
general class on the left and the most specific on the right, where classes are separated
by a period. The CLASS attribute is most commonly used to attach a different style to
some element, but it is recommended that where practical class names should be picked
on the basis of the element's semantics, as this will permit other uses, such as restricting
search through documents by matching on element class names. The conventions for
choosing class names are outside the scope of this specification.

Example
<BANNER>July 4th, 1776</BANNER>

Using LINK to include a Document Banner
The LINK element can be used with REL=Banner to reference another document to be used as
banner for this document. This is typically used for corporate logos, navigation aids, and other
information which shouldn't be scrolled with the rest of the document. For example:

<LINK REL=Banner HREF=banner.html>

The use of a LINK element in this way, allows a banner to be shared between several
documents, with the benefit of being able to separately cache the banner. Rather than using a
linked banner, you can also include the banner in the document itself, using the Banner
element.

Block Style Tags

HTML Block Text Formats
HTML provides for the formatting of blocks of text with the following elements.

The Address element is for address information, signatures, authorship, etc., often at the top or
bottom of a document.

The Blockquote element allows text quoted from another source to be rendered specially.

The Byline element is used to denote authorship.

The Centered element is an extension supported by NetScape 1.x for centering blocks of text.

The Literal    element works like the Preformatted element, except that it is rendered in a
proportional font.

The Paragraph element is used for normal text.

The Preformatted text element is used for displaying computer output or plain text files.    It is
usually rendered in a fixed-pitch font with carriage returns and spacing left intact.

Address

Description
The Address element is for address information, signatures, authorship, etc., often at the top or
bottom of a document.    Typically, an address element is italic and/or right justified or indented.
The address element implies a paragraph break. Paragraph marks within the address element do
not cause extra white space to be inserted.

Attributes
None

Examples
<ADDRESS>A.N.Other</ADDRESS>
<ADDRESS>
Newsletter editor<p>
J.R. Brown<p>
JimquickPost News, Jumquick, CT 01234<p>
Tel (123) 456 7890
</ADDRESS>

Blockquote

Description
The Blockquote element allows text quoted from another source to be rendered specially.    A
typical rendering might be a slight extra left and right indent, and/or italic font.    Blockquote
causes a paragraph break, and typically a line or so of white space will be allowed between it and
any text before or after it.    Single-font rendition may for example put a vertical line of ">"
characters down the left margin to indicate quotation in the Internet mail style.

Attributes
None

Example
I think it ends
<BLOCKQUOTE>Soft you now, the fair Ophelia. Nymph, in thy
orisons, be all my sins remembered.
</BLOCKQUOTE>
but I am not sure.

Admonishment

The NOTE element is designed for use as admonishments such as notes, cautions or warnings, as
commonly used in technical documentation. The CLASS attribute specifies the type of the element and is
typically associated with different graphics such as a road traffic warning sign. The graphic can be
customized with the SRC attribute.

Attributes

SRC - Specifies an image to appear preceding the note. The image is specified as a
URI. This attribute may appear together with the MD attribute.

MESSAGE DIGEST - Specifies a message digest or cryptographic checksum for the
associated graphic specified by the SRC attribute. It is used when you want to be sure that a linked object
is indeed the same one that the author intended, and hasn't been modified in any way. For instance,
MD="md5:jV2OfH+nnXHU8bnkPAad/mSQlTDZ", which specifies an MD5 checksum encoded as a
base64 character string. The MD attribute is generally allowed for all elements which support URI based
links.

ROLE - The role names NOTE, CAUTION and WARNING are recommended for standard
admonishments. In the absence of the ROLE attribute, a NOTE element is typically rendered indented,
without an accompanying graphic. Some browsers expect the CLASS attribute in place of the ROLE
attribute - useage is the same.

CLEAR - This attribute is common to all block-like elements. When text flows
around a figure or table in the margin, you sometimes want to start the division below the
figure rather than alongside it. The CLEAR attribute allows you to move down unconditionally:

clear=left - move down until left margin is clear
clear=right - move down until right margin is clear
clear=all - move down until both margins are clear
Alternatively, you can decide to place the element alongside the figure just so long as there is enough
room. The minimum width needed is specified as:
clear="40 en" - move down until there is at least 40 en units free

clear="100 pixels" - move down until there is at least 100 pixels free
The style sheet (or browser defaults) may provide default minimum widths for each class of

block-like elements.

Example
<NOTE ROLE=WARNING>Please check with the local weather service before
starting your climb. The mountain weather is subject to rapid
deterioration. It is essential to carry a good map and compass.</NOTE>

 

Byline

Description
The Byline element is used to denote authorship.

Attributes
None

Example
<BYLINE>by Mark Twain</BYLINE>

Center

Description
The Center element is used for centering blocks of text.

Attributes
None

Note
This tag was previously a Netscape tag before becoming adopted in HTML 3.2
The Center tag is shorthand for <DIV ALIGN=center>

Example

<CENTER>
This text should appear in the horizontal center of the page.
</CENTER>

Here is alternate way of centering text in HTML 3:

<P ALIGN=center>
This text should appear in the horizontal center of the page.
</P>

Literal

Description
The Literal element works like the Preformatted element, except that it is rendered in a proportional font.
The ability to set tab stops in literal text makes it much easier to write filters that convert documents
written on word processors into HTML 3. Tab stops can be set with the Tab element and apply for the
scope of the Literal element.

Attributes
None

Example
<LIT>
 ROYAL TEA

Today the Earl of Sandwich
 is having lunch with me,
and then His Highness, Earl Grey,
 is visiting for tea.

At dinnertime, the good Sir Loin
 will sit down at my table.
And Lady Fingers, for dessert,
 will come if she is able.

I think, of all the royalty
 who joined me as I ate,
the ones I liked the least of all
 were Count Your-Crumbs and Baron Plate.

 Copyright © 1995, Kenn Nesbitt
</LIT>

Paragraph

Description
The Paragraph element is used for normal text.    Normal text is automatically wrapped by the
browser at the current window margin and adapts to changes in window size.    The text is
generally shown in a proportional font.    HTML level 0 has only a <P> tag, but no </P> tag.    In
HTML 2 and HTML 3 the P element acts as a container for the text between the start tag <P> and
the end tag </P>. However, you don't need to give the end tag as it is implied by the context, e.g.
the following <P> tag. If you wish, you may think of the <P> tag as a paragraph separator. This
works since HTML formally doesn't require you to wrap text up as paragraphs.

Status
Basic <P> tag is HTML 0.

Block Element <P>...</P> is HTML 2.

Attributes
The following attributes are part of the current HTML 3 draft specification.

ID - An identifier for the current paragraph.

ALIGN - The alignment of the paragraph (e.g., left, right, justify, center or indent)

NOWRAP - Can be set to OFF to prevent automatic word-wrapping of text.

Example
<P>This is a regular paragraph</P>
<P ALIGN=center>This paragraph is centered.</P>

The text that makes up your paragraph in HTML does not rely on carriage returns.    Multiple
spaces and carriage returns or reduced to a single space.

This will all appear
 as only one continuous sentence. <P>

Would    do exactly what it says.    Web browsers pay no attention to line breaks and start new

paragraphs only if they reach a <P> tag.    Just make sure that you do separate paragraphs with
<P>.

Preformatted

Description
Preformatted text between the start and end PRE tag is rendered using a fixed width font, in
addition whitespace characters are treated literally. The spacing and line breaks are rendered
directly, unlike other elements, for which repeated whitespace characters are collapsed to a single
space character and line breaks introduced automatically.

Line breaks within the text are rendered as a move to the beginning of the next line. The
exceptions are line breaks immediately following the starting PRE tag or immediately preceding
the ending PRE tag, which should be ignored.

The <P> tag should be avoided, but for robustness, user agents are recommended to treat these
tags as line breaks.

Anchor elements, and character highlighting elements may be used.

FORM elements may be included, and the fixed width font exploited to control layout (the TAB or
TABLE elements give similar control for normal text though).

Block-like elements such as headers, lists, FIG and TABLES should be avoided.

The horizontal tab character (encoded in US ASCII and ISO 8859-1 as decimal 9) should be
interpreted as the smallest nonzero number of spaces which will leave the number of characters
so far on the line as a multiple of 8.

Attributes

WIDTH - specifies the width of the presentation.

ID - An SGML identifier used as the target for hypertext links or for naming particular
elements in associated style sheets. Identifiers are NAME tokens and must be unique within the scope of
the current document.

LANG - This is one of the ISO standard language abbreviations, e.g. "en.uk" for the
variation of English spoken in the United Kingdom. It can be used by parsers to select language specific
choices for quotation marks, ligatures and hypenation rules etc. The language attribute is composed from
the two letter language code from ISO 639, optionally followed by a period and a two letter country code
from ISO 3166.

CLASS - This a space separated list of SGML NAME tokens and is used to subclass tag
names. By convention, the class names are interpreted hierarchically, with the most general class on the
left and the most specific on the right, where classes are separated by a period. The CLASS attribute is
most commonly used to attach a different style to some element, but it is recommended that where
practical class names should be picked on the basis of the element's semantics, as this will permit other
uses, such as restricting search through documents by matching on element class names. The
conventions for choosing class names are outside the scope of this specification.

CLEAR - This attribute is common to all block-like elements. When text
flows around a figure or table in the margin, you sometimes want to start the preformatted
text below the figure rather than alongside it. The CLEAR attribute allows you to move
down unconditionally:

clear=left move down until left margin is clear

clear=right move down until right margin is clear

clear=all move down until both margins are clear

Alternatively, you can decide to place the element alongside the figure just so long as
there is enough room. The minimum width needed is specified as:

clear="40 en" move down until there is at least 40 en units free

clear="100 pixels" move down until there is at least 100 pixels free

· The style sheet (or browser defaults) may provide default minimum widths for each class of block-like
elements.

Example
 A verse from Shelley (To a Skylark):
<PRE>
 Higher still and higher
 From the earth thou springest
 Like a cloud of fire;
 The blue deep thou wingest,
And singing still dost soar, and soaring ever singest.</PRE>

which is rendered as:

              Higher still and higher
                  From the earth thou springest
              Like a cloud of fire;
                  The blue deep thou wingest,
And singing still dost soar, and soaring ever singest.

Logical Font Style Tags

HTML Logical Font Style Text Formats
HTML provides for the formatting of blocks of text with the following elements.

The Abbrev element is used to markup abbreviations.

The Acronym element is used to markup acronyms.

The Argument element is used for logically denoting program function arguments.

The Cite element specifies a citation. Sections tagged with the CITE element are typically
rendered in italics.

The Code element indicates an example of code; typically rendered in a mono-spaced font. Do
not confuse with PRE.

The DFN element indicates the defining instance of a term.

The Person element is used for names of people to allow these to be extracted automatically by
indexing programs.

The Q element is used for a short quotation. It is typically shown enclosed in quotation marks as
appropriate to the language context. For English these would be matching double or single
quotation marks, alternating for nested quotes. The language context is set by the LANG
attribute.

The Samp (Sample) element indicates a sequence of literal characters.

The Var element indicates a variable name, and might typically be used in an instruction manual.

Description
HTML distinguishes between two groups of character-formatting tags; Logical character-attribute
tags and Physical character-attribute tags.    It may help to think of Physical character-attribute
tags as closely related to the direct formatting you could apply to text from a word processor, e.g.,
bold.    The appearance of HTML text formatted with Physical character-attribute tags is more
likely to remain constant from one browser to another.    Logical character-attribute tags in HTML
can be thought of as "styles" in a word processor, i.e., the appearance of the text formatted with a
style in a word processor depends on how that style is defined in that word processor.    Similarly,
the appearance of HTML text formatted with Logical character-attribute tags depends upon that
browsers interpretation of that Logical character-attribute tag.

Examples
This text contains an emphasized word.
Don't assume that it will be italic!
It was made with the <code>EM</code> element. A cite is
often italic and has no formally required structure:
<cite>Moby Dick</cite> is a book title.

HTML source code giving examples of various HTML Logical Font Style Tags.

<HTML>
<HEAD>
<TITLE>Logical Font Style Tags</TITLE>
</HEAD>
<BODY>
<H3>Logical Font Style Tags</H3>
<ABBREV>Abreviation</ABBREV>

<ACRONYM>Acronym</ACRONYM>

<ARG>Argument</ARG>

<CITE>Citation</CITE>

<CODE>Code</CODE>

<DFN>Defining Instance</DFN>

<Q>Inline Quote</Q>

<PERSON>Person</PERSON>

<SAMP>Sample</SAMP>

<VAR>Variable</VAR>

<HR>
</BODY>
</HTML>

Abbreviation

Description
The Abbreviation element is used for logically denoting abbreviations.

Attributes
None

Example
<ABBREV>SW 100th St.</ABBREV>

Acronym

Description
The Acronym element is used for logically denoting acronyms.

Attributes
None

Example
<ACRONYM>HTML</ACRONYM>

Argument

Description
The Argument element is used for logically denoting program function arguments.

Attributes
None

Example
LPSTR lstrcpy(<ARG>lpszString1</ARG>, <ARG>lpszString2</ARG>);

Citation

Description
The Citation element is used to logically denote citations and is typically rendered in italic.

Attributes
None

Example
<CITE>Hahn, Harley (1996),
<U>The Internet Yellow Pages, Third Edition</U>,
Osborne McGraw-Hill.</CITE>

Code

Description
The Code element is used to logically denote an inline example of program code and is typically
rendered in a fixed pitch font.    This is a text formatting element and not a block formatting
element.    To format multiple lines of code, use the Preformatted element.

Attributes
None

Example
To copy a string, use the <CODE>LPSTR lstrcpy(lpszString1,
lpszString2);</CODE> function.

Defining Instance

Description
The Defining Instance element is used to logically denote the defining instance of a term.

Attributes
None

Example
Fear of computers is often called <DFN>technophobia</DFN>.

Inline Quote

Description
The Inline Quote element is used in place of double quotation marks to denote a short inline
quotation.    For longer quotations, use the Block Quote element.

Since Inline Quotes is HTML 3, and doesn't work in Internet Explorer or Netscape we recommend
that you use simple quotation marks, or the " element.

Example

Thus spake Master Rinzei: "Truly excellent programs need no
advertising; word of mouth is sufficient."

Attributes
None

Example
As Duke once said, <Q>Come get some!!</Q>

Person

Description
The Person element is used to logically denote a proper name.

Attributes
None

Example
"Green Eggs and Ham" was written by <PERSON>Dr. Suess</PERSON>.

Sample

Description
The Sample element is used to logically denote sample output or a sequence of literal characters.

Attributes
None

Example
The report will have a title such as <SAMP>1996 Crop Report</SAMP>.

Variable

Description
The Variable element is used to logically denote a variable name, and is typically rendered in
italic.

Attributes
None

Example
The variables <VAR>X</VAR> and <VAR>Y</VAR> represent a point on the
grid.

Physical Font Style Tags

HTML Logical Font Style Text Formats
HTML provides for the formatting of blocks of text with the following elements.

The Big element changes the physical rendering of the contents of the element to a bigger font
than normal text, if practical.

The Blink element specifies that the enclosed text should blink.

The B (Boldface) element specifies that the enclosed text should be displayed in a boldface. If
this is not practical, an alternative mapping is allowed.

The EM element provides typographic emphasis, typically italics. While and <I> often give
the same effect, use except where it is necessary in the text to refer to the formatting, as in
"The italic parts are mandatory". This will help to ensure consistency between documents from
various sources if (for example) the reader prefers to use color in place of italics for emphasis.

The I (Italic)    element specifies that the enclosed text should be displayed, if practical, in an italic
font (or slanted).

The KBD    element indicates text typed (keyboarded) by the user. It might typically be used in an
instruction manual.

The S (Strike through) element specifies that the enclosed text should be displayed with a
horizontal line striking through the text. If this is not practical, an alternative mapping is allowed.

The Small element changes the physical rendering of the contents of the element to a smaller
font than normal text, if practical.

The STRONG    element provides strong typographic emphasis, typically bold.

The SUB (Subscript) element specifies that the enclosed text should be displayed as a subscript,
and if practical, using a smaller font (compared with normal text). The ALIGN attribute for SUB is
only meaningful within the MATH element.

The SUP (Superscript) element specifies that the enclosed text should be displayed as a
superscript, and if practical, using a smaller font (compared with normal text). The ALIGN attribute
for SUP is only applicable within the MATH element.

The TT (TeleType) element specifies that the enclosed text should be displayed, if practical, in a
fixed-pitch typewriter font.

The U (Underline) element specifies that the enclosed text should be displayed, if practical, as
underlined.

Description

HTML distinguishes between two groups of character-formatting tags; Physical character-attribute
tags and Logical character-attribute tags.    It may help to think of Physical character-attribute tags
as closely related to the direct formatting you could apply to text from a word processor, e.g.,
bold.    The appearance of HTML text formatted with Physical character-attribute tags is more
likely to remain constant from one browser to another.    Physical character-attribute tags may be
nested within one another, but browsers may not always be able to combine the different tags
predictably.    Logical character-attribute tags in HTML can be thought of as "styles" in a word
processor, i.e., the appearance of the text formatted with a style in a word processor depends on
how that style is defined in that word processor.    Similarly, the appearance of HTML text
formatted with Logical character-attribute tags depends upon that browsers interpretation of that
Logical character-attribute tag.

Examples
This text contains some <i>bold italic</i> text, some
<S>struck through</S> text and some <SMALL>small print</SMALL>.

HTML source code giving examples of various HTML Physical Font Style Tags.

<H2>Physical Font Style Tags produced on Netscape 1.1</H2>
<BLINK>Blink</BLINK>

Bold

Emphasis

<I>Italic</I>

<KBD>Keyboard</KBD>

<S>Strikethrough</S>

Strong Emphasis

_{Subscript}

^{Superscript}

<TT>Typewriter Text</TT>

<U>Underlined</U>

Blink actually does blink in Netscape, but Subscript, Superscript and Underlined are not
supported.

Blink

Description
The Blink <BLINK> element specifies that the enclosed text should blink.    This is supported in
Netscape 1.1 and has not been officially incorporated in the HTML 3.0 specification.

Attributes
None

Example
Click here to <BLINK>download new
files</BLINK>.

Big

Description
The Big <BIG> element changes the physical rendering of the contents of the element to a bigger
font than normal text, if practical.

Attributes
None

Example
This is small<BIG>This is big</BIG>

Bold

Description
The Bold element specifies that the enclosed text should be displayed in a boldface. If this is
not practical, an alternative mapping is allowed.

Attributes
None

Example
Click here to download new files.

Emphasis

Description
The Emphasis element provides typographic emphasis, typically italics. While and
<I> often give the same effect, use except where it is necessary in the text to refer to the
formatting, as in "The italic parts are mandatory". This will help to ensure consistency between
documents from various sources if (for example) the reader prefers to use color in place of italics
for emphasis.

Attributes
None

Example
It is recommended that you register your shareware.

Italic

Description
The Italic <I> element specifies that the enclosed text should be displayed, if practical, in an italic font (or
slanted).

Attributes
None

Example
He found the <I>dialectic</I> of hermeneutics historicity redundant
historicity while other aspects seemed mere exigencies.

Keyboard

Description
The <KBD> element indicates text typed (keyboarded) by the user. It might typically be used in an
instruction manual.

Attributes
None

Example
Select <KBD>File</KBD> and press <KBD>Enter</KBD>.

Strikethrough

Description
The Strikethrough <STRIKE> element specifies that the enclosed text should be displayed with a
horizontal line striking through the text. If this is not practical, an alternative mapping is allowed.

Attributes
None

Example
Some aspects of editing should <S>never</S> not be revealed.

Small

Description
The Small <SMALL> element changes the physical rendering of the contents of the element to a
smaller font than normal text, if practical.

Attributes
None

Example
This is normal <SMALL>This is small</SMALL>

Strong Emphasis

Description
The Strong element provides strong typographic emphasis, typically bold.

Attributes
None

Example
It is strongly recommended that you register your
software.

Subscript

Description
The Subscript <SUB> element specifies that the enclosed text should be displayed as a
subscript, and if practical, using a smaller font (compared with normal text). The ALIGN attribute
for SUB is only meaningful within the MATH element.

Attributes
None

Example
When you get thirsty your best drink value is H₂O.

Superscript

Description
The Superscript<SUP> element specifies that the enclosed text should be displayed as a
superscript, and if practical, using a smaller font (compared with normal text). The ALIGN attribute
for SUP is only applicable within the MATH element.

Attributes
None

Example
Force = Mass X Velocity², but E=MC².

Typewriter Text

Description
The Typewriter Text<TT> element specifies that the enclosed text should be displayed, if
practical, in a fixed-pitch typewriter font.

Attributes
None

Example
The message read <TT>All questions must be submitted in writing.</TT>

Underlined

Description
The Underlined <U> element specifies that the enclosed text should be displayed, if practical, as
underlined. Not widely supported

Attributes
None

Example
Why didn't <U>somebody</U> think of this years ago.

Font

Description
The Font tag sets a fonts size and typeface.    Within the bounds of the Basefont tag, the Font
Size tag may be used to override the Basefont.

Attributes

SIZE=n SIZE=+n or -n Specifies font size between 1 and 7 (7 is largest). A
plus or minus before the number indicates a size relative to the current BASEFONT setting.
Note: Relative font sizes are not cumulative. Putting two tags in a row does
not result in the font size being increased by 2.

FACE="name [,name2] [,name3]" - Sets the font. A list of font names can be specified. If
the first font is available on the system, it will be used, otherwise the second will be tried, and so on. If
none are available, a default font will be used.

COLOR=#rrggbb or COLOR=color name - Sets text color. rrggbb is a
hexadecimal number denoting a red-green-blue color value (the pound sign is optional). Can
also be set to a colorname.

Example.
<TD BGCOLOR="Black"></TD>
Cell color is black

<TD BGCOLOR="#FF0000"></TD>
Cell color is red

<BASEFONT SIZE=3> This sets the base font size to 3.
 Now the font size is 7.
 Now the font size is 2.
Now the font size is 5.
Now the font size is 1.

A second example to demonstrate when the tags are effective

<BASEFONT SIZE=4>Some text at the Basefont size of 4.
Some text at the specified font size
And some more text at the Basefont size.</BASEFONT>

 This text will be in
either Arial, Lucida Sans, or Times Roman, depending on which fonts
you have installed on your system.

Base Font

Description
The Basefont tag sets a font size over a range of text.    Within the bounds of the Basefont tag, the
Font Size tag may be used to override the Basefont.

Attributes

SIZE=n - Specifies font size between 1 and 7 (7 is largest).

Example
<BASEFONT SIZE=4>Some text at the Basefont size of 4.
Some text at the specified font size
And some more text at the Basefont size.

Headings

Description
HTML uses six levels of headings, with heading one being the largest and heading six being the
smallest.    For example the coding for a level six heading would be <H6>Heading</H6>.    A
heading element implies all the font changes, paragraph breaks before and after, and any white
space necessary to render the heading. The heading elements are H1, H2, H3, H4, H5, and H6
with H1 being the highest (or most important) level and H6 the least.

Use the DIV element together with header elements when you want to make the hierarchical
structure of a document explicit. This is needed as header elements themselves only contain the
text of the header, and do not imply any structural division of documents into sections. Header
elements have the same content model as paragraphs, that is text and character level markup,
such as character emphasis, inline images, form fields and math.

Headers play a related role to lists in structuring documents, and it is common to number headers
or to include a graphic that acts like a bullet in lists. HTML 3.0 recognizes this with attributes that
assist with numbering headers and allow authors to specify a custom graphic.

The numbering style is controlled by the style sheet, e.g.

The style sheet specifies whether headers are numbered, and which style is used to render the
current sequence number, e.g. arabic, upper alpha, lower alpha, upper roman, lower roman or a
numbering scheme appropriate to the current language.

Whether the parent numbering is inherited, e.g. "5.1.d" where 5 is the current sequence number
for H1 headers, 1 is the number for H2 headers and 4 for H3 headers.

The seqnum and skip attributes can be used to override the default treatment of header sequence
numbers, and provide for a continuity with numbered lists.

The dingbat or src attribute may be used to specify a bullet-like graphic to be placed adjacent to
the header. The positioning of this graphic is controlled by the style sheet. The graphic is for
decorative purposes only and silently ignored on non-graphical HTML user agents.

Example
<HTML>
<HEAD>
<TITLE>Sample Headings</TITLE>
</HEAD>
<BODY>

<H1>Heading 1</H1>
<HR>
<H2>Heading 2</H2>
<HR>
<H3>Heading 3</H3>
<HR>
<H4>Heading 4</H4>
<HR>
<H5>Heading 5</H5>
<HR>
<H6>Heading 6</H6>
<HR>
</BODY>
</HTML>

Miscellaneous Tags

HTML Miscellaneous Tags
HTML provides the means for defining miscellaneous types of control over the appearance of
HTML documents.

The Line Break element specifies that there should be a line break at that tag.

The No Break element specifies that there should be no line breaks for any text between the
<NOBR>and</NOBR> tags.

The Word Break element specifies that there should be a break within the <NOBR>and</NOBR>
tags.

The Horizontal Rule element specifies that there should be a horizontal line drawn across the
screen.

The Comment    element specifies that the text between the tags should not be displayed.

The Tab element specifies tab stop positioning.

The BGSound element specifies a background sound to play when the page is displayed.

The Marquee element specifies a scrolling line of text at the tag location.

The Marquee tag specifies that there be a scrolling line of text.

Line Break

Description
The Line Break element and tab elements can be used when you need a little more control over
how the browser renders the text. The
 element is used to force a line break. Remember
that browsers are free to wrap lines at whitespace characters so as to ensure lines fit within the
current window size. Use the entity for the non-breaking space character, when you want
to make sure that a line isn't broken! Alternatively, use the NOWRAP attribute to disable word
wrapping and the
 element to force line breaks where desired.

Netscape includes two tags: <NOBR>...</NOBR>, and <WBR>. The former turns off word-
wrapping between the start and end NOBR tag, while WBR is for the rare case when you want to
specify where to break the line if needed. At some point HTML 3.0 may provide an equivalent
mechanism to WBR, (either a tag or an entity), but It currently is not implemented.

Note: Do not use empty paragraphs to add white space around headings, lists or other elements.
White space is added by the rendering software.

Example
This is the first line

and this is the second

and this is the third

No Break

Description
Netscape includes two tags: <NOBR>...</NOBR>, and <WBR>. The former turns off
wordwrapping between the start and end NOBR tag, while WBR is for the rare case when you
want to specify where to break the line if needed. At some point HTML 3.0 may provide an
equivalent mechanism to WBR, (either a tag or an entity), but It currently is not implemented.

The NOBR element stands for NO BReak. This means all the text between the start and end of
the NOBR elements cannot have line breaks inserted between them. While NOBR is essential for
those odd character sequences you really don't want broken, please be careful; long text strings
inside of NOBR elements can look rather odd.

Note: Do not use empty paragraphs to add white space around headings, lists or other elements.
White space is added by the rendering software.

Word Break

Description
Netscape includes two tags: <NOBR>...</NOBR>, and <WBR>. The former turns off
wordwrapping between the start and end NOBR tag, while WBR is for the rare case when you
want to specify where to break the line if needed. At some point HTML 3.0 may provide an
equivalent mechanism to WBR, (either a tag or an entity), but It currently is not implemented.

The WBR element stands for Word BReak. This is for the very rare case when you have a NOBR
section and you know exactly where you want it to break. Also, any time you want to give the
Netscape Navigator help by telling it where a word is allowed to be broken. The WBR element
does not force a line break (BR does that) it simply lets the Netscape Navigator know where a line
break is allowed to be inserted if needed.

Note: Do not use empty paragraphs to add white space around headings, lists or other elements.
White space is added by the rendering software.

Horizontal Rule

Description
The Horizontal Rule <HR> element is used for making lines that act as dividers between sections.

Attributes

SIZE - The SIZE tag lets the author give an indication of how thick they
wish the horizontal rule to be.<HR SIZE=number>

WIDTH - The default horizontal rule is always as wide as the page. With the WIDTH tag,
the author can specify an exact width in pixels, or a relative width measured in percent of document
width. <HR WIDTH=number|percent>

ALIGN - Now that horizontal rules do not have to be the width of the page we need to
allow the author to specify whether they should be pushed up against the left margin, the right margin, or
centered in the page. <HR ALIGN=left|right|center>

NOSHADE - Finally, for those times when you really want a solid bar, the
NOSHADE tag lets you specify that you do not want any fancy shading of your horizontal
rule. <HR NOSHADE>

Comment

Description
To include comments in an HTML document that will be ignored by the parser, surround them with
<!-- and -->. Comments cannot be nested.

Example
<HEAD>
<TITLE>Comment Usage</TITLE>
<!-- Id: 06/18/95 11:03:35 AM -->
</HEAD>

Tabs

The TAB element can be used when you want fine control over the horizontal positioning. The TAB
element is used with the <tab id=name> attribute to define named tab stops. Subsequently, you can use
the TAB element with the <tab to=name> attribute to move to the previously defined tab stop. This
approach avoids the need to know the font metrics in advance. The TAB element, together with style
sheets, allows conversion software to preserve layout information when importing documents created
with conventional word processing software.

Example

<p>noct<tab id=t1>ambulant - walking at night

<tab to=t1>(from Latin: <i>nox noctis</i> night + <i>ambulare</i> walk)

which is rendered as:

noctambulant - walking at night
 (from Latin: nox noctis night + ambulare walk)

The tab stop name (t1 in the example) should be unique within the current document and composed
from an initial letter followed by letters, digits or hyphens.

Sometimes, you want to make the remainder of the line flush right while leaving the earlier words
unmoved. This is possible with the align attribute. For example:

Left part of line<tab align=right>and right part of line.

which is rendered as:

Left part of line and right part of line.

Attributes

ID - An SGML identifier used to name a new tab stop at the current position. The
scope of the tab stop is the rest of the document.

INDENT - Specifies the number of en units before the tab stop. The en is a typographical
unit equal to half the point size. It allows authors to control the leading indent before text, e.g. in poetry,

one might use: <TAB INDENT=6> to indent six en units at the start of a line. The INDENT attribute is not
meaningful when combined with the TO attribute.

TO - Specifies a previously defined tab stop (see ID attribute).

ALIGN - Lines are usually rendered according to the alignment option for the enclosing
paragraph element. The ALIGN attribute can be used to explicitly specify the horizontal alignment:

          align=left
                    Following text starts immediately after the designated tab stop (the default).
          align=center

Following text up to next tab or line break is centered on the designated tab stop. If the TO
attribute is missing, it centers the text between the current left and right margins.

          align=right
Following text up to the next tab or line break is rendered flush right to the designated tab
stop. If the TO attribute is missing, it renders the text flush right against the current right
margin.

          align=decimal
The following text is searched for the first occurrence of the character representing the
decimal point. The text up to the next tab or line break is then aligned such that the decimal
point starts at the designated tab stop. If the TO attribute is missing, the tab element is
treated as a single space character.

DP - This specifies the character to be used for the decimal point with the ALIGN
attribute, e.g. dp="." (the default) or dp=",". The default may be altered by the language context,
as set by the LANG attribute on enclosing elements.

Note: if the specified alignment and tab stop would cause text to overlap preceding text, then the tab
element may be treated as a single space character.

Marquee

Description
The MARQUEE tag allows you to create pages with scrolling text messages.

Attributes

ALIGN - Specifies how the text around the marquee should align with the top, bottom
or middle of the marquee.

<MARQUEE ALIGN=TOP>The following words, "Hi there!", will be aligned
with the top of this marquee.</MARQUEE> Hi there!

BEHAVIOR - Specifies how the text should behave. SCROLL (the default) means
start completely off one side, scroll all the way across and completely off, and then start again. SLIDE
means start completely off one side, scroll in, and stop as soon as the text touches the other margin.
ALTERNATE means bounce back and forth within the marquee.

<MARQUEE BEHAVIOR=SCROLL>This text will scroll all the way on and then
all the way off.</MARQUEE>
<MARQUEE BEHAVIOR=SLIDE>This marquee will scroll in and
"stick."</MARQUEE>
<MARQUEE BEHAVIOR=ALTERNATE>This text will bounce back and
forth.</MARQUEE>

BGCOLOR - Specifies a background color for the marquee, either as a RGB triple or
using a "friendly" colorname

<MARQUEE BGCOLOR=#FF0000>This marquee has a red background!</MARQUEE>

DIRECTION - Specifies which direction the text should scroll. The default is LEFT,
which means scrolling to the left from the right.

<MARQUEE DIRECTION=RIGHT>This marquee will scroll from the left in a
rightward direction.</MARQUEE>

HEIGHT - Specifies the height of the marquee either in percentage of screen size or
in pixels.

<MARQUEE HEIGHT=50% WIDTH=80%>This marquee is half the height of the
screen and 80% of the width.</MARQUEE>

WIDTH - Specifies the width of the marquee either in percentage of screen size or in
pixels.

<MARQUEE HEIGHT=50% WIDTH=80%>This marquee is half the height of the
screen and 80% of the width.</MARQUEE>

HSPACE - Specifies the left and right margins for the outside of the marquee in pixels.
<MARQUEE HSPACE=10 VSPACE=10> This marquee will beseparated from the
surrounding text by a 10-pixel border.</MARQUEE>

VSPACE - Specifies the top and bottom margins for the outside of the marquee in
pixels.

<MARQUEE HSPACE=10 VSPACE=10>This marquee will be separated from the
surrounding text by a 10-pixel border.</MARQUEE>

LOOP - Specifies how many times a marquee will loop when activated. If n=-1, or if
LOOP=INFINITE is specified, it will loop indefinitely.

<MARQUEE LOOP=5>This marquee will loop five times.</MARQUEE>

SCROLLAMOUNT - Specifies the number of pixels between each successive draw of
the marquee text.

<MARQUEE SCROLLDELAY=5 SCROLLAMOUNT=2>This is a very slow
marquee.</MARQUEE>

SCROLLDELAY - Specifies the number of milliseconds between each successive
draw of the marquee text.

<MARQUEE SCROLLDELAY=5 SCROLLAMOUNT=50>This is a very fast
marquee.</MARQUEE>

Background Sound

Description
The BGSOUND tag allows you to create pages with background sounds or "soundtracks." Sounds
can either be samples (.wav or .au format) or MIDI (.mid format). Be careful with the size of the sound
file you choose (large files take longer to download) - the user of your page might be already on to
your next page before the sound loads!

Attributes

SRC - Specifies the address of a sound to be displayed.
<BGSOUND SRC="boing.wav">
The user will hear a boinging noise as soon as the page is loaded by the browser.

LOOP - Specifies how many times a sound will loop when activated. If n=-1, or if
LOOP=INFINITE is specified, it will loop indefinitely.

<BGSOUND SRC="boing.wav" LOOP=5>

You will hear a boinging noise five times in a row.
<BGSOUND SRC="boing.wav" LOOP=INFINITE>

You will hear boinging noises as long as the page is active.

Character Format

Extended Characters
Math Symbols
Special Characters

Special Characters

Certain characters may be interpreted by a Web browser as markup or may not be accessible from
your keyboard.    WebEdit makes it simple to use these characters by letting you select them from a
dialog box.    Simply click on the desired character and WebEdit inserts the character as they should
be "escaped"; that is, represented by markup -- numeric character or entity references.

Special Characters
Certain characters are taken to have special meaning within the context of an HTML document.

Space
Interpreted as a word space in all contexts except <PRE>.

Interpreted as a no-break space within <PRE>.

The character entities   and   denote an en space and an em space respectively,
where an en space is half the point size and an em space is equal to the point size of the current
font. For fixed pitch fonts, the user agent can treat the en space as being equivalent to a single
space character, and the em space as being equivalent to two space characters.

Non-breaking Space ()
This should be treated in the same way as the space character (ASCII character code 32
decimal), except that the user agent should never break lines at this point. It is useful when you
want to ensure that neighboring words always stay together and don't get split across lines.

Hyphen
Interpreted as a hyphen glyph in all contexts.

Interpreted as a potential word space by hyphenation engine.

The character entities &endash; and &emdash; denote dash marks with the same widths as the
  and   entities respectively.

Control Characters
Control characters are non-printable characters that are typically used for communication and
device control, as format effectors, and as information separators.

In SGML applications, the use of control characters is limited in order to maximize the chance of
successful interchange over heterogeneous networks and operating systems. In HTML, there are
only three control characters which are used. The remaining 55 control characters are shunned
and should not appear in an HTML document. The valid control characters and their interpretation
are:

Horizontal Tab (HT - 9 dec)
Interpreted as a word space in all contexts except <PRE>.

Within <PRE>, the tab should be interpreted to shift the horizontal column position to the next
position which is a multiple of 8 on the same line; that is, col := (col+8) mod 8.

Line Feed (LF - 10 dec)
Interpreted as a word space in all contexts except <PRE>.

Within <PRE>, the tab should be interpreted as a shift to the start of a new line; that is, col := 0;
row := row+1

Carriage Return (CR - 13 dec)
Interpreted as a word space in all contexts except <PRE>.

Within <PRE>, the tab should be interpreted as a shift to the start of the line; that is, col := 0;

Extended Characters

Certain characters may be interpreted by a Web browser as markup or may not be accessible from
your keyboard.    WebEdit makes it simple to use these characters by letting you select them from a
dialog box.    Simply click on the desired character and WebEdit inserts the character as they should
be "escaped"; that is, represented by markup -- numeric character or entity references.

Additions

 ® -> Registered Trademark -> ®

 © -> Copyright -> ©
Numeric Character References

Any printing character within the 8-bit character encoding of ISO 8859/1 (256 character positions)
or the 7-bit character encoding of ISO 646 (128 character positions) may be represented within
the text of an HTML document by a numeric character reference, e.g. é is a small e with an
acute accent. It is recommended that character entity references such as é are used in
preference to numeric character references.

Math Symbols

Certain characters may be interpreted by a Web browser as markup or may not be accessible from your
keyboard.    WebEdit makes it simple to use these characters by letting you select them from a dialog box.
Simply click on the desired character and WebEdit inserts the character as they should be "escaped"; that
is, represented by markup -- numeric character or entity references.

Description
The <MATH> element is used to include math expressions in the current line. HTML math is
powerful enough to describe the range of math expressions you can create in common word
processing packages, as well as being suitable for rendering to speech. When rendering to fixed
pitch text-only media, simple text graphics can be used for math symbols such as the integration
sign, while other symbols can be rendered using their entity names. The SGML SHORTREF
capability is used to provide abbreviations for hidden brackets, subscripts and superscripts.

HTML math follows general practice in mathematical typesetting by rendering functions, numbers
and other constants in an upright font, while variables are rendered in an italic font. You can set
particular terms in a bold face, and for chemical formulae, you can force the use of an upright
font. Limits for symbols like the integral and summation signs are placed directly above (below)
the symbol or to the immediate right depending on the symbol.

Spacing between constants, variables and operators is determined automatically. Additional
spacing can be inserted with entities such as   &sp; and &quadsp;. White space in the
markup is used only to delimit adjacent variables or constants. You don't need spaces before or
after binary operators or other special symbols, as these are recognized by the HTML math
tokeniser. White space can be useful, though, for increased legibility while authoring.

Math Markup
The following elements are permitted within MATH elements:

BOX - Used for hidden brackets, stretchy delimiters, and placing one expression over another
(e.g. numerators and denominators).

SUB, SUP - Subscripts and superscripts. Also used for limits.

ABOVE - Used to draw an arrow, line or symbol above an expression.

BELOW - Used to draw an arrow, line or symbol below an expression.

VEC, BAR, DOT, DDOT, HAT, TILDE - These are convenience tags for common accents as an
alternative to using ABOVE.

SQRT, ROOT - For square roots and other roots of an expression.

ARRAY - For matrices and other kinds of arrays.

TEXT - Used to include a short piece of text within a math element, and often combined with SUB
or SUP elements.

B, T, BT - These elements are used override the default rendering. B renders the enclosed
expression in an bold face. T designates a term to be rendered in an upright font, while BT
designates a term to be rendered in a bold upright font. The class attribute can be used to
describe the kind of term, e.g. vector, tensor, or matrix.

HTML Math Entities
Functions

Operators

Continuation Dots

Greek Letters

Relations

Accents, arrows, and pointers

Delimiters

Other symbols

Spacing entities

Note: In practice, only a limited range of font sizes are suitable, as a result, deeply nested
expressions like continued fractions can't use ever smaller fonts. This is simply handled by a
parameter to the ParseExpression routine that sets the font size to be used for that expression.
ParseExpression is called recursively for nested expressions and uses the next smaller font until
it bottoms out with the smallest font available. The size parameter corresponds to an enumeration
of the available font sizes.

Attributes
ID - An SGML identifier used as the target for hypertext links or for naming particular
elements in associated style sheets. Identifiers are NAME tokens and must be unique
within the scope of the current document.

Class This a space separated list of SGML NAME tokens and is used to subclass tag
names. By convention, the class names are interpreted hierarchically, with the most
general class on the left and the most specific on the right, where classes are separated
by a period.
For the MATH element, CLASS can be used to describe the kind of math expression
involved. This can be used to alter the way formulae are rendered, and to support
exporting the expression to symbolic math software. The class "chem" is useful for
chemical formulae which use an upright font for variables rather than the default italic
font.

Examples
$Fe_2_^2+^Cr_2_O_4_$

  2+
which is rendered as    Fe    Cr    O
  2      2    4

The integral from a to b of f(x) over 1+x

 <MATH>∫_a_^b^{f(x)<over>1+x} dx</MATH>

which can be rendered on a fixed pitch text-only medium as:

 b
 / f(x)
 | ------- dx
 / 1 + x
 a

The example uses { and } as shortrefs for <BOX> and </BOX> respectively. This is used
for invisible brackets, stretchy delimiters and integral signs, and placing one thing over
another. The shortref characters "_" and "^" are used for subscripts and superscripts
respectively.

Form Tags

HTML Form Tags
HTML provides the means for passing information from HTML documents.

The Form element indicates the beginning and end of a form. HTML fill-out forms can be used for
questionnaires, etc. The form is specified as part of an HTML document.    Every form must be
enclosed within a FORM element. There can be several forms in a single document, but the
FORM element can't be nested.

The Input element is used to specify a simple input element inside a FORM.    It is a standalone
tag; it does not surround anything and there is no terminating tag.

The Option element is used within SELECT tags to present a number of options for the user to
select.

The Select element is used inside <FORM>...</FORM>, any number of SELECT tags are
allowed, freely intermixed with other HTML elements (including INPUT and TEXTAREA elements)
and text (but not additional forms).

The Textarea element can be used to place a multiline text entry field with optional default
contents in a fill-out form.

Forms

Description
HTML fill-out forms can be used for questionnaires, hotel reservations, order forms, data entry
and a wide variety of other applications. The form is specified as part of an HTML document. The
user fills in the form and then submits it. The user agent then sends the form's contents as
designated by the FORM element. Typically, this is to an HTTP server, but you can also email
form contents for asynchronous processing.

Note    You are not allowed to nest FORM elements!

Every form must be enclosed within a FORM element. There can be several forms in a single
document, but the FORM element can't be nested. The browser is responsible for handling the
input focus, i.e. which field will currently get keyboard input. Many platforms have existing
conventions for forms, for example, using Tab and Shift-Tab to move the keyboard focus forwards
and backwards between fields, and using the Enter key to submit the form.

This standard defines and requires support for the HTTP access protocol only. Under any
protocol, the submitted contents of the form logically consist of a list of name/value pairs where
the names are given by the NAME attributes of the various fields in the FORM. Each field will
normally be given a distinct name. Several radio buttons can share the same name, as this is how
you specify that they belong to the same control group - at any time, only one button in the group
can be selected.

Note    The contents list of name/value pairs excludes unselected radio buttons and checkboxes.
In general, any field with a null value can be omitted from the contents list.

Forms are created by placing input fields within paragraphs, preformatted text, lists and tables.
This gives considerable flexibility in designing the layout of forms.

HTML 3.0 supports the following kinds of fields:

- Simple text fields

- Multi-line text fields

- Radio buttons

- Checkboxes

- Range controls (sliders, or knobs)

- Single/multiple choice menus

- Scribble on image

- File widgets for attaching files to forms.

- Submit buttons for sending form contents

- Reset buttons for resetting fields to their initial values

- Hidden fields for book keeping information

It is expected that future revisions to HTML will add support for audio fields, multi-row entry of
database tables, and extending multi-line text fields to support a range of other data types, in
addition to plain text. Client-side scripts will provide the means to constrain field values and to add
new field types.

Attributes
ACTION - The ACTION attribute is a URL specifying the location to which the contents of
the form is submitted to elicit a response. If the ACTION is missing, the URL for the document
itself is assumed. The way data is submitted varies with the access protocol of the URL, and with
the values of the METHOD and ENCTYPE attributes.

METHOD - This specifies variations in the protocol used to send the form contents. It is currently
restricted to GET (the default) or POST. The attribute was introduced to inform user agents which HTTP
methods the server supports.

ENCTYPE - This attribute specifies the MIME content type to be used to encode the form
contents. It defaults to the string: "application/x-www-form-urlencoded"

SCRIPT - This can be used to give a URI for a script. The scripting language and the interface with the
user agent is not part of the HTML 3.0 specification.

Example
This fictitious example is a questionnaire. It uses the INPUT element for simple text fields, radio
buttons, checkboxes, and the submit and reset buttons. The TEXTAREA field is used for a multi-
line text entry field. The form fields are laid out with several paragraph elements and an
unordered list. Notice the use of the NAME attribute to name each field:

<TITLE>Sample Questionnaire</TITLE>
<H1>Sample Questionnaire</H1>
<P>Please fill out this questionnaire:
<FORM METHOD=post ACTION="http://www.hal.com/sample">
<P>Your name: <input name="name" size="48">
<P><input name="male" type=radio> Male
<P><input name="female" type=radio>Female
 Number in family: <input name="family" type=int>
<P>Cities in which you maintain a residence:
<UL PLAIN>
<input name="city" type=checkbox value="kent"> Kent
<input name="city" type=checkbox value="miami"> Miami
Others <textarea name="other" cols=48 rows=4></textarea>

<P>Nickname: <INPUT NAME="nickname" size ="42">
<P>Thank you for responding to this questionnaire.
<P><INPUT TYPE=SUBMIT> <INPUT TYPE=RESET>
</FORM>

Input

Description
The INPUT element is used to specify a simple input element inside a FORM.    It is a standalone
tag; it does not surround anything and there is no terminating tag.

Attributes
TYPE - must be one of:

"text" (text entry field; this is the default)

"password" (text entry field; entered characters are represented as asterisks)

"checkbox" (a single toggle button; on or off)

"radio" (a single toggle button; on or off; other toggles with the same NAME are grouped into
"one of many" behavior)

"submit" (a pushbutton that causes the current form to be packaged up into a query URL and
sent to a remote server)

"reset" (a pushbutton that causes the various input elements in the form to be reset to their
default values)

NAME - the symbolic name (not a displayed name -- normal HTML within the form is
used for that) for this input field.    This must be present for all types    except "submit" and "reset",
as it is used when putting together the query string that gets sent to the remote server when the
filled-out form is submitted.

VALUE - for a text or password entry field, can be used to specify the default contents of the field.
For a checkbox or a radio button, Value specifies the value of the button when it is checked    (unchecked
checkboxes are disregarded when submitting queries);    can be used to specify the label for the
pushbutton.

CHECKED - (no value needed) specifies that this checkbox or radio button is
checked by default; this is only appropriate for checkboxes and radio buttons.

SIZE - the physical size of the input field in characters; this is only appropriate for text
entry fields and password entry fields.    If this is not present, the default is 20.    Multiline text entry fields
can be specified as SIZE=width,height; e.g., SIZE=60,12.    Note: the SIZE attribute should not be used to
specify multiline text entry fields now that the TEXTAREA tag is available.

MAXLENGTH - the maximum number of characters that are accepted as input;
this is only appropriate for text entry fields and password entry fields (and only for single-line text
entry fields at that).    If this is not present, the default will be    unlimited.    The text entry field is
assumed to scroll appropriately if MAXLENGTH is greater than SIZE.

Example
<TITLE>Sample Questionnaire</TITLE>
<H1>Sample Questionnaire</H1>
<P>Please fill out this questionnaire:
<FORM METHOD=post ACTION="http://www.hal.com/sample">
<P>Your name: <input name="name" size="48">
<P><input name="sex" type=radio value="male"> Male
<P><input name="sex" type=radio value="female"> Female
 Number in family: <input name="family" type=int>
<P>Cities in which you maintain a residence:
<UL PLAIN>
<input name="city" type=checkbox value="kent"> Kent
<input name="city" type=checkbox value="miami"> Miami
Others <textarea name="other" cols=48 rows=4></textarea>

<P>Nickname: <INPUT NAME="nickname" size ="42">
<P>Thank you for responding to this questionnaire.
<P><INPUT TYPE=SUBMIT> <INPUT TYPE=RESET>
</FORM>

Option

Description
OPTION tags are used within SELECT tags to present a number of options for the user to select.

Attributes

PLAIN - specifies that this option is not disabled or specified.

SELECTED - specifies that this option is selected by default.    If the SELECT allows
multiple selections (via the MULTIPLE attribute), multiple options can be specified as SELECTED.

DISABLED - specifies that this option is visible but not selectable.    It should appear
"greyed-out".

Example
<SELECT NAME="FooBar">
<OPTION>First Option
<OPTION SELECTED>Second Option
<OPTION DISABLED>Third Option
</SELECT>

Select

Description
Inside <FORM>...</FORM>, any number of SELECT tags are allowed, freely intermixed with
other HTML elements (including INPUT and TEXTAREA elements) and text (but not additional
forms).

Unlike    INPUT, SELECT has both opening and closing tags.    Inside SELECT, only a sequence
of OPTION tags -- each followed by an arbitrary amount of plain text (no HTML markup) -- is
allowed.

Attributes

NAME - the symbolic name for this SELECT element.    This must be present, as it
is used when putting together the query string for the submitted form.

SIZE - if SIZE is 1 or if the SIZE attribute is missing, by default the SELECT will be

MULTIPLE - if present (no value), specifies    that the SELECT should allow multiple
selections (n of many behavior).    The presence of MULTIPLE forces the SELECT to be represented by a
scrolled list, regardless of the value of SIZE.

Example
<SELECT NAME="FooBar">
<OPTION>First Option
<OPTION SELECTED>Second Option
<OPTION DISABLED>Third Option
</SELECT>

Text Area

Description
The TEXTAREA tag can be used to place a multiline text entry field with optional default contents
in a fill-out form.

Attributes

NAME - the symbolic name of the text entry field.

ROWS - the number of rows (vertical height in characters) of the text entry field.

COLS - the number of columns (horizontal width in characters) of the text entry field.

WRAP - Specifies how to handle word-wrapping in text input areas in forms.
<TEXTAREA WRAP=OFF> -- the default setting
Wrapping doesn't happen. Lines are sent exactly as typed.
<TEXTAREA WRAP=VIRTUAL>
The display word-wraps, but long lines are sent as one line without new-lines.
<TEXTAREA WRAP=PHYSICAL>
The display word-wraps, and the text is transmitted at all wrap points.

TEXTAREA fields automatically have scrollbars; any amount of text can be entered in them.

The TEXTAREA element requires both an opening and a closing tag.    A TEXTAREA with no
default contents looks like this:

<TEXTAREA NAME="foobar" ROWS=3 COLS=20></TEXTAREA>

A TEXTAREA with default contents looks like this
<TEXTAREA NAME="foobar2" ROWS=4 COLS=20>
Default contents go here
</TEXTAREA>

The default contents must be straight ASCII text.    New lines are respected (so in the above
example there will be a new line both before and after "Default contents go here.").

List Tags

HTML List Tag Formats
HTML provides the means for defining different types of lists in HTML documents.

The Ordered List element specifies that the following list items should be ordered, i.e., numbered.
WebEdit provides a dialog for selecting the type of numbering to be used.

The Unordered List element specifies that the following list items should be unordered, i.e.,
unnumbered, (bulleted). WebEdit provides a dialog for selecting the type of bulleting to be used.

The Menu List element specifies that the following list items should appear as simple bulleted
menu items.

The Directory List element specifies that the following list items should appear as simple bulleted
menu items.

The List Item element specifies each of the items included in a certain list.

The Definition List element specifies that the following items will include Definition Titles and
Definition Items, i.e., words and their definitions.

The Definition Title element specifies that the following item is a Definition Title, i.e., a word to be
defined.

The Definition Item element specifies that the following item is a Definition Item, i.e., the definition
of a word (Definition Title).

Ordered List

Description
An ordered list typically is a numbered list of items. Additions to HTML 0 give you the ability to
control the sequence number - to continue where the previous list left off, or to start at a particular
number. The numbering style is left to associated style sheets, e.g. whether nested lists
contribute to a compound item number, e.g. "3.1.5", or whether numbers are rendered as arabic,
upper or lower case roman numerals or using the numbering scheme appropriate to the language
context.

The opening list tag must be . It is followed by an optional list header (<LH>caption</LH>)
and then by the first list item ().

Example:

 <LH>Meeting Agenda</LH>
 Minutes of the last meeting
 Do we need yet more meetings?
 Any other business

which could be rendered as:

Meeting Agenda
1. Minutes of the last meeting
2. Do we need yet more meetings?
3. Any other business

Attributes

ID - An SGML identifier used as the target for hypertext links or for
naming particular elements in associated style sheets. Identifiers are NAME tokens and
must be unique within the scope of the current document.

LANG - This is one of the ISO standard language abbreviations, e.g. "en.uk" for the
variation of English spoken in the United Kingdom. It can be used by parsers to select language specific
choices for quotation marks, ligatures and hypenation rules etc. The language attribute is composed from
the two letter language code from ISO 639, optionally followed by a period and a two letter country code
from ISO 3166.

CLASS - This a space separated list of SGML NAME tokens and is used to subclass tag
names. By convention, the class names are interpreted hierarchically, with the most general class on the
left and the most specific on the right, where classes are separated by a period. The CLASS attribute is
most commonly used to attach a different style to some element, but it is recommended that where
practical class names should be picked on the basis of the element's semantics, as this will permit other
uses, such as restricting search through documents by matching on element class names. The
conventions for choosing class names are outside the scope of this specification.

CLEAR - This attribute is common to all block-like elements. When text
flows around a figure or table in the margin, you sometimes want to start an element like
a header, paragraph or list below the figure rather than alongside it. The CLEAR attribute
allows you to move down unconditionally:

clear=left move down until left margin is clear

clear=right move down until right margin is clear
clear=all move down until both margins are clear
Alternatively, you can decide to place the element alongside the figure just so long as there is enough
room. The minimum width needed is specified as:

clear="40 en" move down until there is at least 40 en units free
clear="100 pixels" move down until there is at least 100 pixels free
The style sheet (or browser defaults) may provide default minimum widths for each class of block-like
elements.

CONTINUE - Don't restart the sequence number, i.e. continue where previous list left off,
e.g. <OL CONTINUE>

SEQNUM - Set the starting sequence number for the first item, e.g. <OL SEQNUM=23>
COMPACT - The presence of this attribute indicates the user agent should use reduced
inter-item spacing. In practice, there are several ways to increase the compactness of
lists: reduced vertical interitem spacing, smaller font size, or even to avoid line breaks
between items. This is best handled through associated style sheets and the class
attribute.

TYPE - Specifies whether list items are marked with: capital letters
(TYPE=A), small letters (TYPE=a), large roman numerals (TYPE=I), small roman
numerals (TYPE=i), or the default numbers (TYPE=1).

START - Specifies the starting count. START is always specified in the
default numbers, and will be converted based on TYPE before display. Thus START=5
would display either an 'E', 'e', 'V', 'v', or '5' based on the TYPE tag.

Un-ordered List

Description
An unordered list typically is a bulleted list of items. HTML 3.0 gives you the ability to customize
the bullets, to do without bullets and to wrap list items horizontally or vertically for multicolumn
lists.

The opening list tag must be . It is followed by an optional list header (<LH>caption</LH>)
and then by the first list item ().

Example

 <LH>Table Fruit</LH>
 apples
 oranges
 bananas

which could be rendered as:

Table Fruit
· apples
· oranges
· bananas

Note: Some legacy documents may include headers or plain text before the first LI element.
Implementors of HTML 3.0 user agents are advised to cater for this possibility in order to handle
badly formed legacy documents.

Attributes

ID - An SGML identifier used as the target for hypertext links or for
naming particular elements in associated style sheets. Identifiers are NAME tokens and
must be unique within the scope of the current document.

LANG - This is one of the ISO standard language abbreviations, e.g. "en.uk" for the
variation of English spoken in the United Kingdom. It can be used by parsers to select language specific
choices for quotation marks, ligatures and hypenation rules etc. The language attribute is composed from
the two letter language code from ISO 639, optionally followed by a period and a two letter country code
from ISO 3166.

CLASS - This a space separated list of SGML NAME tokens and is used to subclass tag
names. By convention, the class names are interpreted hierarchically, with the most general class on the
left and the most specific on the right, where classes are separated by a period. The CLASS attribute is
most commonly used to attach a different style to some element, but it is recommended that where
practical class names should be picked on the basis of the element's semantics, as this will permit other
uses, such as restricting search through documents by matching on element class names. The
conventions for choosing class names are outside the scope of this specification.

CLEAR - This attribute is common to all block-like elements. When text
flows around a figure or table in the margin, you sometimes want to start an element like
a header, paragraph or list below the figure rather than alongside it. The CLEAR attribute
allows you to move down unconditionally:

clear=left move down until left margin is clear

clear=right move down until right margin is clear
clear=all move down until both margins are clear
Alternatively, you can decide to place the element alongside the figure just so long as there is enough
room. The minimum width needed is specified as:

clear="40 en" move down until there is at least 40 en units free
clear="100 pixels" move down until there is at least 100 pixels free
The style sheet (or browser defaults) may provide default minimum widths for each class of block-like
elements.

PLAIN - The presence of this attribute suppresses the display of bullets, e.g. <UL PLAIN>.

SRC - Specifies an image for use as a bullet. The image is specified as a URI. This
attribute may appear together with the MD attribute.

MD - Specifies a message digest or cryptographic checksum for the
associated graphic specified by the SRC attribute. It is used when you want to be sure
that a linked object is indeed the same one that the author intended, and hasn't been
modified in any way. For instance, MD="md5:jV2OfH+nnXHU8bnkPAad/mSQlTDZ",
which specifies an MD5 checksum encoded as a base64 character string. The MD
attribute is generally allowed for all elements which support URI based links.

DINGBAT - Specifies an iconic image for use as a bullet. The icon is specified as an entity
name.

WRAP - The WRAP attribute is used for multicolumn lists. Use wrap=vert if you want to
arrange the list items down the page before wrapping to the next column. Use wrap=horiz if you want to
arrange the items across the page (less useful). The user agent is responsible for determining how many
columns are appropriate.

COMPACT - The presence of this attribute indicates the user agent
should use reduced interitem spacing. In practice, there are several ways to increase the
compactness of lists: reduced vertical interitem spacing, smaller font size, or even to
avoid line breaks between items. This is best handled through associated style sheets
and the class attribute.

TYPE    - Specifies the shape of the bullet.

Menu List

Description
Both MENU and DIR consist of one or more LI elements, similar to UL. MENU lists are typically
rendered without bullets in a more compact style than UL. You can get the same effect with <UL
PLAIN>.

Example
<MENU>Minimum Configuration
Dual Pentium 150
9 Gig Hard Drive
8 Meg Video Card
</MENU>

Directory List

Description
DIR lists are used to present lists of items containing up to 20 characters each. Items in a DIR list
are arranged in columns. You can get the same effect with <UL PLAIN WRAP=HORIZ>.

Example
<DIR>List Of Items
Apples
Oranges
Peaches</DIR>

List Item

Description
The List Item element specifies each of the items included in any of the list types except the
Definition List.

Example
<DIR>List Of Items
Peaches
Pears
Prunes</DIR>

Definition List

Description
A definition list is a list of terms and corresponding definitions. Definition lists are typically
formatted with the term on the left with the definition following on the right or on the next line. The
definition text is typically indented with respect to the term.

An alternative format places the term left aligned in a wide margin and the definition on one or
more lines to the right of the term. If the DT term does not fit in the DT column (one third of the
display area), it may be extended across the page with the DD section moved to the next line, or
it may be wrapped onto successive lines of the left hand column.

The opening list tag must be <DL>. It is followed by an optional list header (<LH>caption</LH>)
and then by term names (<DT>) and definitions (<DD>).

Example:
<DL>
<LH>List Header</LH>
<DT>Term 1<dd>This is the definition of the first term.
<DT>Term 2<dd>This is the definition of the second term.
</DL>

which could be rendered as:

List Header

Term 1 This is the definition of the first term.

Term 2 This is the definition of the second term.

The definition list element can take the COMPACT attribute, which suggests that a compact
rendering be used, and is appropriate if the list elements are small and/or the entire list is large.

Note: Use the NOTE element when you want to have an indented note. The practice of using
<DD> elements without corresponding <DT> elements is deprecated.

Attributes

ID - An SGML identifier used as the target for hypertext links or for
naming particular elements in associated style sheets. Identifiers are NAME tokens and
must be unique within the scope of the current document.

LANG - This is one of the ISO standard language abbreviations, e.g. "en.uk" for the
variation of English spoken in the United Kingdom. It can be used by parsers to select language specific
choices for quotation marks, ligatures and hypenation rules etc. The language attribute is composed from
the two letter language code from ISO 639, optionally followed by a period and a two letter country code
from ISO 3166.

CLASS - This a space separated list of SGML NAME tokens and is used to subclass tag
names. By convention, the class names are interpreted hierarchically, with the most general class on the
left and the most specific on the right, where classes are separated by a period. The CLASS attribute is
most commonly used to attach a different style to some element, but it is recommended that where
practical class names should be picked on the basis of the element's semantics, as this will permit other
uses, such as restricting search through documents by matching on element class names.

CLEAR - This attribute is common to all block-like elements. When text
flows around a figure or table in the margin, you sometimes want to start an element like
a header, paragraph or list below the figure rather than alongside it. The CLEAR attribute
allows you to move down unconditionally:

clear=left move down until left margin is clear

clear=right move down until right margin is clear

clear=all move down until both margins are clear

Alternatively, you can decide to place the element alongside the figure just so long as
there is enough room. The minimum width needed is specified as:

clear="40 en" move down until there is at least 40 en units free

clear="100 pixels" move down until there is at least 100 pixels free

The style sheet (or browser defaults) may provide default minimum widths for each class
of block-like elements.

COMPACT - The presence of this attribute indicates the user agent
should use reduced interitem spacing. The COMPACT attribute may also reduce the
width of the left-hand (DT) column. In practice, there are several ways to increase the
compactness of lists: reduced vertical interitem spacing, smaller font size, or even to
avoid line breaks between items. This is best handled through associated style sheets
and the class attribute.
The opening list tag must be DL COMPACT. It must be immediately followed by the first
term (DT).

Example

<DL compact>
<DT>Term<DD>This is the first definition in compact format.
<DT>Term<DD>This is the second definition in compact format.

</DL>

Definition Title

Description
The Definition Title <DT> element specifies that the following item is a Definition Title, i.e., a word
to be defined.

Example
<DL>
<LH>List Header</LH>
<DT>Term 1<dd>This is the definition of the first term.
<DT>Term 2<dd>This is the definition of the second term.
</DL>

which could be rendered as:

List Header

Term 1 This is the definition of the first term.

Term 2 This is the definition of the second term.

Definition Item

Description
The Definition Item <DD> element specifies that the following item is a Definition Item, i.e., the
definition of a word (Definition Title).

Example
<DL>
<LH>List Header</LH>
<DT>Term 1<dd>This is the definition of the first term.
<DT>Term 2<dd>This is the definition of the second term.
</DL>

which could be rendered as:

List Header

Term 1 This is the definition of the first term.

Term 2 This is the definition of the second term.

Table Specification

HTML Table Specification Formats
HTML provides for the arranging of data into tables for clearer displays of information.

The Table element by default sizes a table automatically according to the cell contents and the
current window size.

The Caption element is optional and used at the start of a table followed by one or more rows.

The Table Header element is used for naming columns and rows of data.

The Table Data element specifies information to be included in a certain cell.

The Table Row element determines the row count - any rows implied by cells spanning rows
beyond this should be ignored.

Description
The HTML table model was chosen for its simplicity and flexibility. By default the table is
automatically sized according to the cell contents and the current window size. The COLSPEC
attribute can be used when needed to exert control over column widths, either by setting explicit
widths or by specifying relative widths. You can also specify the table width explicitly or as a
fraction of the current margins (see WIDTH attribute).

Tables start with an optional caption followed by one or more rows. Each row is formed by one or
more cells, which are differentiated into header and data cells. Cells can be merged across rows
and columns, and include attributes assisting rendering to speech and Braille, or for exporting
table data into databases. The model provides little direct support for control over appearance, for
example border styles and margins, as these can be handled via subclassing and associated
style sheets.

Tables can contain a wide range of content, such as headers, lists, paragraphs, forms, figures,
preformatted text and even nested tables. When the table is flush left or right, subsequent
elements will be flowed around the table if there is sufficient room. This behavior is disabled when
the noflow attribute is given or the table align attribute is center (the default), or justify.

Example
<TABLE BORDER>
 <CAPTION>A test table with merged cells</CAPTION>
 <TR><TH ROWSPAN=2><TH COLSPAN=2>Average
 <TH ROWSPAN=2>other
category<TH>Misc
 <TR><TH>height<TH>weight
 <TR><TH ALIGN=LEFT>males<TD>1.9<TD>0.003
 <TR><TH ALIGN=LEFT ROWSPAN=2>females<TD>1.7<TD>0.002
</TABLE>

There are several points to note:

· By default, header cells are centered while data cells are flush left. This can be overridden by
the ALIGN attribute for the cell; the COLSPEC attribute for the TABLE element; or the ALIGN
attribute on the enclosing row's TR element (from the most specific to the least).

· Cells may be empty.
· Cells spanning rows contribute to the column count on each of the spanned rows, but only

appear in the markup once (in the first row spanned).
· If the column count for the table is greater than the number of cells for a given row (after

including cells for spanned rows), the missing cells are treated as occurring on the right hand
side of the table, and rendered as empty cells.

· The row count is determined by the TR elements - any rows implied by cells spanning rows
beyond this should be ignored.

· The user agent should be able to recover from a missing <TR> tag prior to the first row as the
TH and TC elements can only occur within the TR element.

· It is invalid to have cells overlap, see below for an example. In such cases, the rendering is
implementation dependent.

· Table data can be lists, images, Forms, and other elements.
· TH element is typically rendered as bold text.
· TD element is typically rendered as regular weight text.
· Always use TR's as "holders" for TH's and TD's.
· The browser sets the number of columns in a table to be the greatest number of columns in

all the row. Blank cells are used to fill any extra columns in the rows.

An example of an invalid table:
<table border>
<tr><tdrowspan=2>1<td>2<td>3<td>4<td>5
<tr><td rowspan=2>6
<tr><td colspan=2>7<td>8
</table>

which looks something like:

 /------------------- | 1 | 2 | 3 | 4 | 5 |
 | |---------------|
 | | 6 | | | | The cells labeled 6 and 7 overlap!
 |---|...|-----------|
 | 7 : | 8 | | |
 \-------------------/

Borderless tables are useful for layout purposes as well as their traditional role for tabular data,
for instance with fill-out forms:

 name: [John Smith]
card number: [4619 693523 20851]
 expires: [03] / [97]
 telephone: [212 873 2739]

This can be represented as a table with one row and two columns. The first column is right
aligned, while the second is left aligned. This example could be marked up as:

<table>
 <tr valign=baseline>
 <td align=right>
 name:

 card number:

 expires:

 telephone:
 <td align=left>
 <input name="name" size=18>

 <input name="cardnum" size=18>

 <input name="expires-month" size=2> /
 <input name="expires-year" size=2>

 <input name="phone" size=18>

</table>

The use of such techniques is one of the motivations for using nested tables, where borderless
tables are used to layout cell contents for an enclosing table

Hint: You can achieve a similar effect to the above by using decimal alignment and using the DP
attribute to set the alignment character to a convenient character, for example:

<table>
 <tr align=decimal dp=":">
 <td>
 name: <input name="name" size=18>

 card number: <input name="cardnum" size=18>

 expires: <input name="expires-month" size=2> /
 <input name="expires-year" size=2>

 telephone:<input name="phone" size=18>

</table>

Each line in the table is then indented so that all the colons are positioned under one another.

Attributes

ID - An SGML identifier used as the target for hypertext links or for naming
particular elements in associated style sheets. Identifiers are NAME tokens and must be unique
within the scope of the current document.

LANG - This is one of the ISO standard language abbreviations, e.g. "en.uk" for the
variation of English spoken in the United Kingdom. It can be used by parsers to select language specific
choices for quotation marks, ligatures and hypenation rules etc. The language attribute is composed from
the two letter language code from ISO 639, optionally followed by a period and a two letter country code
from ISO 3166.

CLASS - This a space separated list of SGML NAME tokens and is used to subclass tag
names. By convention, the class names are interpreted hierarchically, with the most general class on the
left and the most specific on the right, where classes are separated by a period. The CLASS attribute is
most commonly used to attach a different style to some element, but it is recommended that where
practical class names should be picked on the basis of the element's semantics, as this will permit other
uses, such as restricting search through documents by matching on element class names. The
conventions for choosing class names are outside the scope of this specification.

CLEAR - When there is a figure or another table in the margin, you sometimes
want to start another table below the figure rather than alongside it. The CLEAR attribute allows
you to move down unconditionally:
clear=left move down until left margin is clear

clear=right move down until right margin is clear

clear=all move down until both margins are clear

Alternatively, you can decide to place the table alongside the figure just so long as there is
enough room. The minimum width needed is specified as:

clear="40 en" move down until there is at least 40 en units free

clear="100 pixels" move down until there is at least 100 pixels free

The style sheet (or browser defaults) may provide default minimum widths for each class of
block-like elements.

NOFLOW - The presence of this attribute disables text flow around the table. It
avoids the need to use the CLEAR or NEEDS attributes on the following element.

ALIGN - Specifies horizontal alignment of the table (not its contents):

BLEEDLEFT - Flush left with the left (window) border.

LEFT - Flush left with the left text margin.

CENTER - The table is centered between the text margins and text flow around the table
is disabled. This is the default setting for ALIGN.

RIGHT - Flush right with the right text margin.

BLEEDRIGHT - Flush right with the right (window) border

JUSTIFY - When applicable the table should be sized to fill the space between the left
and right text margins. Text flow around the table is disabled for align=justify.

UNITS - Specifies the choice of units for the COLSPEC attribute:
units=en - Specifies en units (a typographical unit equal to half the point size). This is the
default setting and allows user agents to render the table a row at a time without waiting until
all of the table's data has been received.

units=relative - Used to set the relative width of columns. The user agent sums the values to
determine the proportional width of each column.

units=pixels - The least useful!

A design issue for user agents is how to handle cases where cell contents won't fit into the
specified column widths. One approach is to clip the contents to the given column width, another
is to resize the columns to fit the contents regardless of the COLSPEC attribute (its best to wait
until all of the table's data has been processed before resizing).

COLSPEC - The colspec attribute is a list of column widths and alignment
specifications. The columns are listed from left to right with a capital letter followed by a number,
e.g. COLSPEC="L20 C8 L40". The letter is L for left, C for center, R for right alignment of cell
contents. J is for justification, when feasible, otherwise this is treated in the same way as L for left
alignment. D is for decimal alignment, see DP attribute. Capital letters are required to avoid a
particularly common error when a lower case L is confused with a one. Column entries are
delimited by one or more space characters. The number specifies the width in en's, pixels or as a
fractional value of the table width, as according to the associated units attribute. This approach is
more compact than used with most SGML table models and chosen to simplify hand entry. The
width attribute allows you to specify the width of the table in pixels, em units or as a percentage of
the space between the current left and right margins.

DP - This specifies the character to be used for the decimal point with the COLSPEC attribute,
e.g. dp="." (the default) or dp=",". The default may be altered by the language context, as set by
the LANG attribute on enclosing elements.

WIDTH - This specifies the width of the table according to the UNITS attribute. If
units=relative, the width is taken as a percentage of the width between the current left and right
margins. The user agent should disregard this attribute if it would result in columns having less
than their minimum widths.

BORDER - This presence of this attribute instructs the user agent to render borders
around tables. For instance: <TABLE BORDER>. The precise appearance, along with the size of margins
around cells, can be controlled by associated style sheets, or via information in the STYLE element in the

document head. Subclassing tables, rows and cells is particularly useful in this regard.
NOWRAP - The NOWRAP attribute is used when you don't want the browser to automatically
wrap lines. You can then explicitly specify line breaks in paragraphs using the BR element.

Table Header

Description
The Table Header element <TH> is used for naming columns and rows of data.

Attributes

ALIGN -    The ALIGN attribute can be used to explicitly specify the horizontal
alignment of paragraphs within a table row:

align=left - Paragraphs are rendered flush left (the default).

align=center - Paragraphs are centered.

align=right - Paragraphs are rendered flush right.

align=justify - Text lines are justified where practical, otherwise this gives the same
effect as the default align=left setting.

VALIGN -    vertical alignment of material in a cell. Values include "top,"
"middle," "bottom," "baseline."

COLSPAN -    the number of columns the cell spans.

ROWSPAN -    the number of rows the cell spans.

NO WRAP -    prevents the browser from wrapping the contents of the cell.

COLOR=#rrggbb or COLOR=color name - Sets cell color. rrggbb is a hexadecimal
number denoting a red-green-blue color value (the pound sign is optional). Can also be set to
a colorname.

Example:
<TD BGCOLOR="Black"></TD>
Cell color is black

<TD BGCOLOR="#FF0000"></TD>

Cell color is red

Example
<TH>Widgets</TH>

Table Data

Description
The Table Data element is for inserting a data point into a Table.

Attributes

ALIGN -    The ALIGN attribute can be used to explicitly specify the horizontal
alignment of paragraphs within a table row:

align=left - Paragraphs are rendered flush left (the default).

align=center - Paragraphs are centered.

align=right - Paragraphs are rendered flush right.

align=justify - Text lines are justified where practical, otherwise this gives the same effect as
the default align=left setting.

VALIGN -    vertical alignment of material in a cell. Values include "top," "middle,"
"bottom," "baseline."

COLSPAN -    the number of columns the cell spans.

ROWSPAN -    the number of rows the cell spans.

NO WRAP -    prevents the browser from wrapping the contents of the cell.

WIDTH -    This specifies the width of the table according to the UNITS attribute. If
units=relative, the width is taken as a percentage of the width between the current left and right
margins. The user agent should disregard this attribute if it would result in columns having less
than their minimum widths.

COLOR=#rrggbb or COLOR=color name - Sets cell color. rrggbb is a hexadecimal number
denoting a red-green-blue color value (the pound sign is optional). Can also be set to a colorname.

Example:

<TD BGCOLOR="Black"></TD>
Cell color is black

<TD BGCOLOR="#FF0000"></TD>
Cell color is red

Examples
<TR><TH ALIGN=LEFT>males<TD>1.9<TD>0.003

Table Row

Description
The Table Row element is for defining a row of data that will presumably be filled with data points.

Attributes

ALIGN -    The ALIGN attribute can be used to explicitly specify the horizontal
alignment of paragraphs within a table row:

align=left - Paragraphs are rendered flush left (the default).

align=center - Paragraphs are centered.

align=right - Paragraphs are rendered flush right.

align=justify - Text lines are justified where practical, otherwise this gives the same
effect as the default align=left setting.

VALIGN -    vertical alignment of material in a cell. Values include "top,"
"middle," "bottom," "baseline."

COLOR=#rrggbb or COLOR=color name - Sets cell color. rrggbb is a
hexadecimal number denoting a red-green-blue color value (the pound sign is optional). Can also
be set to a colorname.

Example:
<TD BGCOLOR="Black"></TD>
Cell color is black

<TD BGCOLOR="#FF0000"></TD>
Cell color is red

Example
<TR><TH ALIGN=LEFT>males<TD>1.9<TD>0.003

Table

Description
The TABLE element defines a series of rows of table cell elements. The contents of the TABLE
element contains a sequence of elements which describe various parts of the table. The order in the
sequence is important and consists of: at most one CAPTION element, possibly some COL or
possibly some COLGROUP elements, at most one THEAD element, at most one TFOOT element,
and finally at least one TBODY element or at least one TR element.

Attributes

ALIGN -      the horizontal alignment of the table on the screen (not the contents of the
table). Possible values are:

bleedleft: aligned at the left window border
left: at the left text margin
center: centered between text margins
right: at the right text margin
bleedright: aligned at the right window border
justify: table should fill space between text margins

BORDER -    causes browser to render a border around the table; if missing, the table
has no grid around it or its data.

WIDTH -    specifies how wide the table will be; if given as "NN%", the width is NN% of the
width of the display.

COLSPEC -    specifies the alignment of items in the columns; for example, Colspec="Lnn
Rnn Cnn" specifies that column contents of column 1 are to be aligned left, column 2 right, and column 3
centered. The "nn" specifies the column width in Units.

CELLSPACING -    defines spacing between cells.

CELLPADDING -    defines spacing within cells.

COLOR=#rrggbb or COLOR=color name - Sets cell color. rrggbb is a
hexadecimal number denoting a red-green-blue color value (the pound sign is optional). Can also
be set to a colorname.

Example:
<TD BGCOLOR="Black"></TD>
Cell color is black

<TD BGCOLOR="#FF0000"></TD>
Cell color is red

Example
<TABLE Border>
 <CAPTION>January Standings</CAPTION>
 <TR><TH Rowspan="5"><TH Colspan="1">Totals</TR>
 <TR><TH>Wins<TH>Losses</TR>
 <TR><TH Align="left">Bears<TD>22<TD>55</TR>
 <TR><TH Align="left">Bengals<TD>84</TD><TD>8</TD></TR>
</TABLE>

Caption

Description
The CAPTION element is used for putting a Title above the Table.

Attributes

ALIGN - Take values TOP or MIDDLE or BOTTOM, defining whether the top or
middle or bottom of the graphic should be aligned with the baseline for the text line in which the
Table element appears. With ALIGN=LEFT, the caption will float down and over to the current left
margin, and subsequent text will wrap around the right hand side of the caption. Likewise for
ALIGN=RIGHT, the caption aligns with the current right margin and, and text wraps around the
left.

Example
<CAPTION>A test table with merged cells</CAPTION>

Anchors and Links

Description
The A element brackets (or anchors) a piece of text (and/or image) which is identified as a
hypertext link. The A element must have either an HREF attribute or a NAME attribute. The
HREF attribute identifies a destination URL, and the bracketed text is rendered as a hypertext
link to the URL. Browsers will display the contents of an A element with an HREF attribute in
a special manner to indicate that if the contents are selected, the browser will execute that
hypertext link. The NAME attribute identifies a destination tag, and the bracketed text is
thereby identified as an available hypertext target within this document. Browsers do not
display the contents of an A element with a NAME attribute in any special way. However, an A
element with an HREF attribute can now be constructed by using the document URL suffixed
with #name.

This will load the document, but will position the display starting at the location of this NAME
tag. An A element with an HREF attribute can also be constructed to jump directly to this
destination tag within the same document by a URL consisting solely of #name The presence
of REL=relation in document A with HREF to document/object B identifies a relationship that
B has to A that A recognizes/authorizes/verifies.The presence of REV=relation of the identical
relation in document B with HREF to document/object A identifies a desired/expected/claimed
relationship that B has to A, but must be verified by checking with A.

The LINK element indicates a relationship between the document and some other object. A
document may have any number of LINK elements. The LINK element is empty (does not have a
closing tag), but takes the same attributes as the anchor element.

Attributes

ID - An SGML identifier used as the target for hypertext links or for
naming particular elements in associated style sheets. Identifiers are NAME tokens and
must be unique within the scope of the current document. This attribute supersedes the
"NAME" attribute, see below.
For example, the following paragraph is defined as an anchor named "charles":

<P ID="charles">The Charles river flows into Boston harbor,
and played an important role in opening up the hinterland
to early settlers...

Elsewhere, you can define a link to this paragraph, as follows:

Boston is a historic city and
a thriving center of commerce and higher education.

The reader can select the link labeled "Boston" to see further information on the Boston
area.

LANG - This is one of the ISO standard language abbreviations, e.g.
"en.uk" for the variation of English spoken in the United Kingdom. It can be used by
parsers to select language specific choices for quotation marks, ligatures and hypenation
rules etc. The language attribute is composed from the two letter language code from ISO
639, optionally followed by a period and a two letter country code from ISO 3166.

CLASS - This a space separated list of SGML NAME tokens and is used to subclass tag
names. By convention, the class names are interpreted hierarchically, with the most general class on the
left and the most specific on the right, where classes are separated by a period. The CLASS attribute is
most commonly used to attach a different style to some element, but it is recommended that where
practical class names should be picked on the basis of the element's semantics, as this will permit other
uses, such as restricting search through documents by matching on element class names. The
conventions for choosing class names are outside the scope of this specification.

HREF - The HREF attribute implies that the anchor acts as the start of a
hypertext link. The destination is designated by the value of the HREF attribute, which is
expressed in the Universal Resource Identifier (URI) notation.

MD - Specifies a message digest or cryptographic checksum for the linked document
designated by the HREF attribute. It is used when you want to be sure that a linked object is indeed the
same one that the author intended, and hasn't been modified in any way. For instance,
MD="md5:jV2OfH+nnXHU8bnkPAad/mSQlTDZ", which specifies an MD5 checksum encoded as a
base64 character string. The MD attribute is generally allowed for all elements which support URI based
links.

NAME - This attribute is used to define a named anchor for use as the
destination of hypertext links. For example, the following defines an anchor than can be
used as the destination of a jump into a description of the Boston area.

The Potomac river flows into Boston
harbor.

Note: the NAME attribute has been superseded by the ID attribute.

SHAPE - This attribute is used within figures to define shaped hotzones
for graphical hypertext links. Full details of how to use this feature will be given with the
description of the figure element. The attribute value is a string taking one of the following
forms:

"default" - Used to define a default link for the figure background.

"circle x, y, r" - Where x and y define the center and r specifies the radius.

"rect x, y, w, h" - Where x, y define the upper left corner and w, h define the width and
height respectively

"polygon x1, y1, x2, y2, ..." - Given n pairs of x, y coordinates, the polygon is closed by
a line linking the n'th point to the first. Intersecting polygons use the non-zero winding
number rule to determine if a point lies inside the polygon.

If a pointer event occurs in a region where two or more shapes overlap, the distance from
the point to the center of gravity of each of the overlapping shapes is computed and the
closest one chosen. This feature is useful when you want lots of closely spaced
hotzones, for example over points on a map, as it allows you to use simple shapes
without worrying about overlaps.

Note: The x coordinate increases to the right, and the y coordinate increases downwards
in the same way as IMG and image maps. If both numbers are integers, the coordinates
are interpreted as pixel offsets from the upper left corner of the figure. Otherwise, the
coordinates are interpreted as scaled values in the range 0.0 to 1.0 across the figure.
Note the syntax is tolerant of repeated white space characters between tokens.

TARGET - Links in any window can refer to another window by name using
the TARGET attribute. When you click the link, the document you requested will appear in
that named window. If the window is not already open, the browser will open and name a new
window for you.

TITLE - This is informational only and describes the object specified with
the HREF attribute. It can be used for object types that don't possess titles, such as
graphics, plain text and Gopher menus.

REL - Used to describe the relationship of the linked object specified with the HREF
attribute. The set of relationship names is not part of this specification, although "Path" and "Node" are
reserved for future use with hypertext paths or guided tours. The REL attribute can be used to support
search for links serving particular relationships.

 Extensions to the Rel attribute; Rel can be used to define a series of values for browser
toolbar or other buttons:

                    Rel = Home; defines the home page link relative to this document
                    Rel = ToC; table of contents link
                    Rel = Index; an index
                    Rel = Glossary; the glossary of terms
                    Rel = Copyright; the copyright statement
                    Rel = Up; the parent document
                    Rel = Next; the next document to visit in a "tour"
                    Rel = Previous; the previous document in a "tour"
                    Rel = Help; a link to a help document or service

Rel = Bookmark. Bookmarks are used to provide direct links to key entry points into
an extended document. The TITLE attribute may be used to label the bookmark.
Several bookmarks may be defined in each document, and provide a means for
orienting users in extended documents.

                    Rel = StyleSheet; a stylesheet to control the rendering of the current document

REV - This defines a reverse relationship. A link from document A to
document B with REV=relation expresses the same relationship as a link from B to A with
REL=relation. REV=made is sometimes used to identify the document author, either the

author's email address with a mailto URI, or a link to the author's home page. Tables of
contents can use anchors with REV="ToC" to allow software to insert page numbers
when printing hypertext documents. The plain text version of this specification was
generated in this way!

URN - This indicates the Uniform Resource Name of the document.

Examples
Anchors in other documents

Download WebEdit Now
the text Download WebEdit Now would appear in color and/or underlined indicating it is
a link.

Anchors in parts of other documents
If you wanted to create a link from one document to another, specific section of a second
document you need to create a named anchor in the second document.    For example, to
set up an anchor named "Support" in the second document you would type,    Welcome
to Tech Support.Then just create a link to it from document one,
including the filename and the named anchor, separated by a hash mark (#).
For example,

This is your link to the second
document.

Anchors in the same document
This is handled in the same manner as linking to part of another document except that
there is no need to include the filename.
For example, to link to the Support anchor from the same file (second document), you
could use:

This is your link within the second
document.

URL's

URL's are used by the World Wide Web to specify the location of files on other servers.    For
example to create a link to a file on another server you could use:

Download WebEdit
Now

A URL consists of several parts:

· a resource type,
· a server name,
· a port number,
· a file name, and
· an anchor

The resource type specifies whether the link points to a Web page, a gopher server, a file on an
ftp server, an email address, etc.    For example, in the above tag, "http://" is the resource type.   
This indicates that the file is a Web page.    If the file were on an ftp server, the resource type
would be "ftp://".    Gopher resources are specified with "gopher://". Some browsers such as
NetScape even support extended resource types like "mailto:" for sending email, etc.

A server name is the name of a host on the Internet.    As an example, Microsoft has a web server
at www.microsoft.com.    You can usually connect to a remote host with nothing more than a
resource type and a server name. Specifying http://www.microsoft.com/ will provide a hotlink to
Microsoft's Web home page.

Ordinarily, resources are on "well-known" ports.    Web resources are on port 80, ftp files on port
79 and so on.    Sometimes though, a resource will be on a non-standard port.    In this case, the
hotlink needs to include the port number as part of the server name, separated by a colon, as in
this example:

http://www.lysator.liu.se:7500/

If you want your link to point at a specific resource on the server, you will need to include a file
name.    For example, WebEdit is located at http://www.nesbitt.com/webedit.zip. The webedit.zip
is the file name,

Sometimes, you will also need to specify a directory path as well, as in
http://www.geom.umn.edu/apps/gallery.html.    This indicates that the file gallery.html is in the
subdirectory /apps.

Lastly, if the file is an HTML file, it can have bookmarks within the file, called anchors, allowing
you to point not just to a file, but to a specific point within the file.    Anchors are tagged onto the
end of the filename, separated by a pound sign, as in myfile.html#myanchor. In most cases, URLs
consist of just three parts: a resource type, a server name and a file name.

Java Tags

HTML Java Tags
HTML provides these means for defining ways of interacting with Java.

The Applet element identifies and invokes a JAVA application.

TheParam (Java)    element is a mechanism to define general purpose parameters to be passed
to APPLET applications.

Applet

Description
The APPLET element replaced the APP element as the mechanism to identify and invoke a JAVA(tm)
application. A browser that understands this element will ignore everything in the content of the APPLET
element except the PARAM elements. Browsers that do not understand this element should ignore it and
the PARAM elements and instead process the content of the element. Thus the content is the alternate
HTML if the application is not invoked.

Attributes

CODE -    the name of the file that contains the compiled Applet subclass. This name
is relative to the base URL of the applet and cannot be an absolute URL.

CODEBASE -    specifies the base URL of the applet.

ALT -    specifies parsed character data to be displayed if the brower understands the
APPLET tag but can't/won't run them. NAME specifies a name for the applet instance, which allows
applets on the same page to commuicate with each other.

WIDTH and HEIGHT -    give the initial width and height (in pixels) of the applet display
area.

ALIGN -    specifies the display alignment.

VSPACE and HSPACE -    specify the reserved space around the applet (in pixels).

Param (Java)

Description
The PARAM element is a mechanism to define general purpose parameters to be passed to APPLET
applications.

Attributes

NAME - the name of the parameter.

VALUE - value obtained by the applet with the getParameter() method.

Object Tags

HTML Object Tag Formats

This specification extends HTML to support the insertion of multimedia objects including Java
applets, Microsoft Component Object Model (COM) objects (e.g. OLE Controls and OLE
Document embeddings), and a wide range of other media plug-ins. The approach allows objects
to be specified in a general manner and provides the ability to override the default implementation
of objects.

The Object    element is used to insert an object into an HTML document.

The Alias element is used to define an object without inserting it into the document.

The Param element allows a list of named property values (used to initialize a OLE control, plug-
in module or Java applet) to be represented as a sequence of PARAM elements.

Object

Description
The OBJECT element is used to insert an object into an HTML document. It requires both start and end
tags. The OBJECT element has the same content model as the HTML BODY element, except that one or
more optional PARAM, or EVENT elements can be placed immediately after the OBJECT start tag and
used to initialize the inserted object. The content of the OBJECT element is rendered if the object
specified by the data, code or classid attributes can't be rendered (user agents may choose to display the
content of the OBJECT element if displaying the actual element will take a long time to render). This
provides for backwards compatibility with existing browsers, and allows authors to specify alternative
media via nested OBJECT elements.

Note that this doesn't provide the same level of flexibility as would be provided by a richer description
of resource variants. For instance when a resource in available are several media types and for each
such type in English, Spanish, French and German.

Attributes
CODE - This specifies a URL referencing where to find the code which implements the
object's behaviour. If this URL is insufficient to locate the intended object, when for instance, a file
contains the implementations for several classes, the CLASSID may be used to supply a
disambiguating class identifier.

DATA - Specifies a URL referencing the object's data. This could be a GIF file or the pickled data
representing an object's state. In many cases the media type or the data itself contains sufficient
information to identify what code is needed to initialize the object. Note that an object's data can even be
included inline for super efficient loading. This specification proposes a new URL scheme "data:". The rest
of the URL is a base64 encoded character string that specifies the object's data as an opaque byte
stream. On its own, this would be meaningless. If the DATA attribute appears without a CODE or
CLASSID attribute, then a TYPE attribute may be sufficient to interpret the data. For instance a Microsoft
COM object can be asked to write its state using the WriteClassStream procedure. This inserts the
object's class id as the first 16 bytes of the stream. If the TYPE attribute indicates that the data is in the
COM persistent stream format, then the class id can be retrieved from the DATA attribute and used to find
the code implementing the object's behaviour. The CLASSID attribute can be used to override the default
implementation as implied by the DATA attribute. For example, you may have the pickled data for an

Excel spread sheet but want to view it with the "SuperGraph" package. You would then use the DATA
attribute to point to the Excel spreadsheet data, and the CLASSID or CODE attribute to point to the
SuperGraph plug-in. The CLASSID, CODE and DATA attributes specify URLs. Any fragment identifier
included as part of these URLs should be passed to the object, either directly, or by callback.

TYPE - This specifies an Internet Media Type (see RFC 1590) for the object's data. The
attribute can be used to allow user agents to quickly skip media they don't support, and instead to
render the contents of the OBJECT element. It is also useful when loading objects off local drives as it
allows the media type to be specified explicitly rather than being derived from the file extension. The
following grammar for media types is a superset of that for MIME because it does not restrict itself to
the official IANA and x-token types.

              media-type          = type "/" subtype *(";" parameter)
              type                      = token
              subtype                = token

          where token is defined by:

              token                    =    1*<any (ASCII) CHAR except SPACE, CTLs, or tspecials>
              tspecials            = <one of the set>      () < > @ , ; : \ " / [] ? =

          Parameters may follow the type/subtype in the form of attribute/value pairs.

              parameter            = attribute "=" value
              attribute            = token
              value                    = token | quoted-string

The type, subtype, and parameter attribute names are case-insensitive. Parameter values may or may
not be case-sensitive, depending on the semantics of the parameter name. White space characters must
not be included between the type and subtype, nor between an attribute and its value. If a given media-
type value has been registered by the IANA, any use of that value must be indicative of the registered
data format. Although HTML allows the use of non-registered media types, such usage must not conflict
with the IANA registry. Data providers are strongly encouraged to register their media types with IANA via
the procedures outlined in RFC 1590.    All media-type's registered by IANA must be preferred over
extension tokens. However, HTML does not limit applications to the use of officially registered media
types, nor does it encourage the use of an "x-" prefix for unofficial types outside of explicitly short
experimental use between consenting applications.

STYLE - The STYLE attribute allows you to include rendering information.

CLASSID - This can be used to specify a class identifier for an object. This could be a
DCE universally unique object identifier (uuid), Java class name, or another type of class name as
appropriate to the object system, e.g. Corba. This allows effective use of caching, as the user agent can
use simple string comparison to check whether two objects are the same independent of their location.
The CLASSID attribute value takes the form of a URL scheme prefix separated by a colon from the
character string defining the class identifier. The prefix is used to identify the object system for the class
identifier, for example classid="clsid:{663C8FEF-1EF9-11CF-A3DB-080036F12502}" gives the (clsid) uuid
for a Microsoft COM object, using the CLSID name space, while classid="java:Animator.class" gives the
class name for Java applet. CLASSID may be sufficient for the user agent to locate the code
implementing the object. However, the CODE attribute can be used with CLASSID to provide a hint as to
where to look for this code. The search mechanism will in general depend on the object system the
identifier belongs to. Note that the value specified with CLASSID takes precedence over a class identifier
derived from the object's data stream. When searching for the implementation of an object, the CLASSID

attribute takes precedence over the DATA/TYPE attributes. A decision tree giving further details on this
resolution procedure appears later on in this specification. In the absence of CLASSID a value for the
class identifier may be derivable from the DATA attributes, for instance the Internet media type for the
DATA may sufficient, e.g. when the data is for a GIF encoded image.

DIR - Human writing systems are grouped into scripts, which determine amongst
other things, the direction the characters are written. Elements of the Latin script are nominally left to
right, while those of the Arabic script are nominally right to left. These characters have what is called
strong directionality. Other characters can be directionally neutral (spaces) or weak (punctuation). The
DIR attribute specifies an encapsulation boundary which governs the interpretation of neutral and
weakly directional characters. It does not override the directionality of strongly directional characters.
The DIR attribute value is one of LTR for left to right, or RTL for right to left, e.g. DIR=RTL.

ALIGN - This determines where to place the object. The ALIGN attribute allows
objects to be placed as part of the current text line, or as a distinct unit, aligned to the left, center or
right. The following values are chosen for their ease of implementation, and their independence of
other graphics occurring earlier on the same line:

For ALIGN=TEXTTOP, the top of the object is vertically aligned with the top of the current font.
For ALIGN=MIDDLE, the middle of the object is vertically aligned with the baseline.

For ALIGN=TEXTMIDDLE, the middle of the object is vertically aligned with the position midway
between the baseline and the x-height for the current font. The x-height is defined as the top of a
lower case x in western writing systems. If the text font is an all-caps style then use the height of a
capital X. For other writing systems, align the middle of the object with the middle of the text.
For ALIGN=BASELINE, the bottom of the object is vertically aligned with the baseline of the text line
in which the object appears.
For ALIGN=TEXTBOTTOM, the bottom of the object is vertically aligned with the bottom of the
current font.

The following alignment values allow the object to float rather than being treated as part of the current
line:

For ALIGN=LEFT, the object is floated down and over to the current left margin. Subsequent text is
flowed past the right hand side of the visible area of the object.
For ALIGN=CENTER, the object is floated to after the end of the current line and centered between
the left and right margins. Subsequent text starts at the beginning of the next line.
For ALIGN=RIGHT, the object is floated down and over to the current right margin. Subsequent text is
flowed past the left hand side of the visible area of the object.

WIDTH - This gives the suggested width of a box enclosing the visible area of the
object. The width is specified in standard units. User agents may use this value to scale an object to
match the requested width if appropriate. Smooth scaling a small image to a larger size provides an
effective solution to reducing the time needed to download an image, offering better subjective results
when compared to color reduction.

HEIGHT - This gives the suggested height of a box enclosing the visible area of the
object. The height is specified in standard units. User agents may use this value to scale an object to
match the requested height if appropriate.

BORDER - This attribute applies to the border shown when the object forms part of a

hypertext link, as specified by an enclosing anchor element. The attribute specifies the suggested width of
this border around the visible area of the object. The width is specified in standard units. For BORDER=0
no border should be shown. This is normally used when such a border would interfere with the visual
affordances presented by the object itself. For instance, the object could render itself as a number of
beveled buttons.

HSPACE - The suggested width of the space to the left and right of the box enclosing
the visible area of the object. The width is specified in standard units. This attribute is used to alter the
separation of preceding and following text from the object.

VSPACE - The suggested height of the space to the top and bottom of the box enclosing
the visible area of the object. The height is specified in standard units.

DECLARE - Used to indicate that the object is not to be instantiated, only declared.

Alias

Description
The ALIAS element is used to define an object without inserting it into the document. It is used with
the valueref attribute of the PARAM element to allow an object to be passed as parameter, when
initializing an object associated with another OBJECT or ALIAS element. The attributes take exactly
the same meaning as for the OBJECT element. The ALIAS element is a container and requires both
start and end tags. It can be placed anywhere in the document HEAD or BODY. The contents are
limited to PARAM and ALIAS elements, although it is anticipated that this may be extended to cover
the same content model as OBJECT at some point in the future.

Note that the object isn't created until its needed by something that references it (i.e. late binding).
Each such reference when bound creates a separate copy of the object. In other words, the alias
element is treated as a declaration for making an object. When another object is being created and
has an alias as a parameter, the declaration defined by the alias is then used to create a new object.
Notice that a given object class may be used by different aliases to create multiple instances of that
class with different data.

If the aliased object isn't supported, or fails to load, the user agent should try the contents of the
ALIAS element, which is currently restricted to another ALIAS element. The TYPE attribute can be
used to specify the Internet Media Type for the object as a hint for this situation.

Like the OBJECT, ALIAS elements are limited in scope to the document in which they appear. The
objects created for these elements have a life time at least equal to that of the document. So if the
user clicks on a link to move to another document, the objects are not destroyed and can be seen
again when the user backtracks to the original document.

Attributes

ID - Used to define a document-wide identifier. This can be used for naming positions
within documents as the destination of a hypertext link. It may also be used by style sheets for
rendering an element in a unique style. An ID attribute value is an SGML NAME token. NAME tokens
are formed by an initial letter followed by letters, digits, "-" and "." characters. The letters are restricted
to A-Z and a-z. It may also be used by the user agent or other objects in the document to find and
communicate with objects on the document.

CODE - This specifies a URL referencing where to find the code which implements
the object's behaviour. If this URL is insufficient to locate the intended object, when for instance, a file
contains the implementations for several classes, the CLASSID may be used to supply a
disambiguating class identifier.

DATA - Specifies a URL referencing the object's data. This could be a GIF file or the
pickled data representing an object's state. In many cases the media type or the data itself contains
sufficient information to identify what code is needed to initialize the object. Note that an object's data can
even be included inline for super efficient loading. This specification proposes a new URL scheme "data:".
The rest of the URL is a base64 encoded character string that specifies the object's data as an opaque
byte stream. On its own, this would be meaningless. If the DATA attribute appears without a CODE or
CLASSID attribute, then a TYPE attribute may be sufficient to interpret the data. For instance a Microsoft
COM object can be asked to write its state using the WriteClassStream procedure. This inserts the
object's class id as the first 16 bytes of the stream. If the TYPE attribute indicates that the data is in the
COM persistent stream format, then the class id can be retrieved from the DATA attribute and used to find
the code implementing the object's behaviour. The CLASSID attribute can be used to override the default
implementation as implied by the DATA attribute. For example, you may have the pickled data for an
Excel spread sheet but want to view it with the "SuperGraph" package. You would then use the DATA
attribute to point to the Excel spreadsheet data, and the CLASSID or CODE attribute to point to the
SuperGraph plug-in. The CLASSID, CODE and DATA attributes specify URLs. Any fragment identifier
included as part of these URLs should be passed to the object, either directly, or by callback.

TYPE - This specifies an Internet Media Type (see RFC 1590) for the object's data.
The attribute can be used to allow user agents to quickly skip media they don't support, and instead
to render the contents of the OBJECT element. It is also useful when loading objects off local drives
as it allows the media type to be specified explicitly rather than being derived from the file extension.
The following grammar for media types is a superset of that for MIME because it does not restrict
itself to the official IANA and x-token types.

              media-type          = type "/" subtype *(";" parameter)
              type                      = token
              subtype                = token

          where token is defined by:

              token                    =    1*<any (ASCII) CHAR except SPACE, CTLs, or tspecials>
              tspecials            = <one of the set>      () < > @ , ; : \ " / [] ? =

          Parameters may follow the type/subtype in the form of attribute/value pairs.

              parameter            = attribute "=" value
              attribute            = token
              value                    = token | quoted-string

The type, subtype, and parameter attribute names are case-insensitive. Parameter values may or may
not be case-sensitive, depending on the semantics of the parameter name. White space characters must
not be included between the type and subtype, nor between an attribute and its value. If a given media-
type value has been registered by the IANA, any use of that value must be indicative of the registered
data format. Although HTML allows the use of non-registered media types, such usage must not conflict
with the IANA registry. Data providers are strongly encouraged to register their media types with IANA via
the procedures outlined in RFC 1590.    All media-type's registered by IANA must be preferred over
extension tokens. However, HTML does not limit applications to the use of officially registered media

types, nor does it encourage the use of an "x-" prefix for unofficial types outside of explicitly short
experimental use between consenting applications.

CLASSID - This can be used to specify a class identifier for an object. This could be a
DCE universally unique object identifier (uuid), Java class name, or another type of class name as
appropriate to the object system, e.g. Corba. This allows effective use of caching, as the user agent
can use simple string comparison to check whether two objects are the same independent of their
location. The CLASSID attribute value takes the form of a URL scheme prefix separated by a colon
from the character string defining the class identifier. The prefix is used to identify the object system
for the class identifier, for example classid="clsid:{663C8FEF-1EF9-11CF-A3DB-080036F12502}"
gives the (clsid) uuid for a Microsoft COM object, using the CLSID name space, while
classid="java:Animator.class" gives the class name for Java applet. CLASSID may be sufficient for
the user agent to locate the code implementing the object. However, the CODE attribute can be used
with CLASSID to provide a hint as to where to look for this code. The search mechanism will in
general depend on the object system the identifier belongs to. Note that the value specified with
CLASSID takes precedence over a class identifier derived from the object's data stream. When
searching for the implementation of an object, the CLASSID attribute takes precedence over the
DATA/TYPE attributes. A decision tree giving further details on this resolution procedure appears later
on in this specification. In the absence of CLASSID a value for the class identifier may be derivable
from the DATA attributes, for instance the Internet media type for the DATA may sufficient, e.g. when
the data is for a GIF encoded image.

Param

Description
The PARAM element allows a list of named property values (used to initialize a OLE control, plug-in
module or Java applet) to be represented as a sequence of PARAM elements. Note that PARAM is an
empty element and should appear without an endtag.

Attributes

NAME - defines the property name. The case sensitivity of the name is dependent on the
code implementing the object.

VALUE -    used to specify the property value. It is an opaque character string whose
meaning is determined by the object based on the property name. Note that CDATA attribute values
need characters such as & to be escaped using the standard SGML character entities, e.g. & for
"&". It is also essential to escape the > character to defend against incorrect handling by many
existing browsers (use >).

VALUEREF - used when the property is itself an object. A distinct attribute is needed as in
some cases the property type cannot be deduced from the property name. VALUEREF typically provides
a URL based reference to an OBJECT DECLARE element that defines the object itself. VALUEREF can
also be used to specify an object directly. For example valueref=foo.gif. Another possibility is to use inline
data with the "data:" URL scheme. Both of these options save having to include an associated ALIAS
element.

The VALUEREF attribute of PARAM allows properties to be "object valued"; the property is an object
itself. For example, Windows provides a standard Font object that is exposed as a COM object. Any
OLE Control can use the "font object type" as the type of the "Font" property. The following Visual
Basic example illustrates how a programmer would manipulate such a property:

Set x = CreateObject("Button")
x.Text = "Press me"
x.BackColor = vbWhite
x.Font.Face = "Courier New"
x.Font.Bold = True

x.Font.Size = 12

The equivalent OBJECT tag would look like this:

<object id="x" classid=#CLSID-CoolButton>
 <object declare id=Btn1Font classid=#CLSID-StdFont>
 <param name="Face" value="Courier New">
 <param name="Bold" value="True">
 <param name="Size" value=12>
 </object>
 <param name="Text" value="Press me">
 <param name="BackColor" value=0xFFFFFF >
 <param name="Font" valueref=Btn1Font>
</object>

TYPE - required when the "data:" URL scheme is used. It specifies the media type for
the data stream and allows the user agent to decode the stream, e.g. to pick out an embedded class
identifier.

Image

Description
The tag is used to incorporate in-line graphics (typically icons or small graphics) into an
HTML document. This element is NOT intended for embedding other HTML text.

Additions
There have been two major additions to the functionality of the IMG tag. Client-Side Image
Mapping and AVI Video.

Attributes

ALIGN - Takes values TOP or MIDDLE or BOTTOM, defining whether the top or
middle or bottom of the graphic should be aligned with the baseline for the text line in which the
IMG element appears. With ALIGN=LEFT, the graphic will float down and over to the current left
margin, and subsequent text will wrap around the right hand side of the graphic. Likewise for
ALIGN=RIGHT, the graphic aligns with the current right margin and, and text wraps around the
left. It is inappropriate to use this feature for larger graphics as these are best represented with
the FIG element.

Additions

ALIGN=texttop does what many people thought top should do which is align

itself with the top of the tallest text in the line (this is usually but not always the same as
ALIGN=top).

ALIGN=absmiddle does what middle should have done which is align the middle of the
current line with the middle of the image.

ALIGN=baseline aligns the bottom of the image with the baseline of the current line.

ALIGN=bottom does just what it always did (which is identical to ALIGN=baseline but
baseline is a better name).

ALIGN=absbottom does what bottom should have done which is align the
bottom of the image with the bottom of the current line.

ALT (Alternate text) - Optional alternative text as an alternative to the graphics
for display in text-only environments. The alt text can contain entities e.g. for accented characters
or special symbols, but it can't contain markup. The latter is possible, however, with the FIG
element.ID - An SGML identifier used as the target for hypertext links or for naming particular
elements in associated style sheets. Identifiers are NAME tokens and must be unique within the
scope of the current document.

BORDER - This lets the document author control the thickness of the border
around an image displayed. Warning: setting BORDER=0 on images that are also part of anchors
may confuse your users as they are used to a colored border indicating an image is an anchor.

CLASS - This a space separated list of SGML NAME tokens and is used to
subclass tag names. By convention, the class names are interpreted hierarchically, with the most
general class on the left and the most specific on the right, where classes are separated by a
period. The CLASS attribute is most commonly used to attach a different style to some element,
but it is recommended that where practical class names should be picked on the basis of the
element's semantics, as this will permit other uses, such as restricting search through documents
by matching on element class names. The conventions for choosing class names are outside the
scope of this specification.

HEIGHT - Optional suggested height for the image. By default, this is given in pixels. If
specified, the viewer of the document will not have to wait for the image to be loaded over the network
and its size calculated.

HSPACE - specifies horizontal margins for the image. Similar to BORDER, except
the margins are not painted with color when the image is a hyperlink.

This image has five pixels of space on its left and right, and 10 pixels of space above and
below.

LANG - This is one of the ISO standard language abbreviations, e.g. "en.uk" for
the variation of English spoken in the United Kingdom. It can be used by parsers to select
language specific choices for quotation marks, ligatures and hypenation rules etc. The language
attribute is composed from the two letter language code from ISO 639, optionally followed by a
period and a two letter country code from ISO 3166.

MD - Specifies a message digest or cryptographic checksum for the associated graphic
specified by the SRC attribute. It is used when you want to be sure that the image is indeed the same one
that the author intended, and hasn't been modified in any way. For instance,
MD="md5:jV2OfH+nnXHU8bnkPAad/mSQlTDZ", which specifies an MD5 checksum encoded as a
base64 character string. The MD attribute is generally allowed for all elements which support URI based
links.

SRC - The SRC attribute specifies the URI for the image to be embedded. Its syntax is the
same as that of the HREF attribute of the <A> tag. SRC is mandatory.

TARGET - Links in any window can refer to another window by name using the TARGET
attribute. When you click the link, the document you requested will appear in that named window. If the
window is not already open, the browser will open and name a new window for you.

UNITS - This optional attribute specifies the units for the width and height
attributes. It is one of: units=pixels (the default) or units=en (half the point size).

USEMAP - See Client Side Image Mapping.

VSPACE- specifies vertical margins for the image. Similar to BORDER, except
the margins are not painted with color when the image is a hyperlink.

This image has five pixels of space on its left and right, and 10 pixels of space above and
below.

WIDTH - Optional suggested width for the image. By default, this is given in
pixels. If specified, the viewer of the document will not have to wait for the image to be loaded
over the network and its size calculated.

XALTSRC - If the browser supports it, this will display an image that uses the Johnson-Grace
ART image compression standard. For more information than what follows see
http://www.jgc.com.

To add a graphic image to your Web pages, you use the IMG tag. Its basic format is

And here's an example that references a GIF file:

In the relatively simple case where your entire audience is using ART-enabled Web browsers
and you don't care about supporting "old-style" (non-ART-enabled) browsers, you can use a
URL that directly references an ART image. Here's an example:

In this case, an ART-enabled browser would easily recognize the ART file format and do the
right thing. But an old-style browser would not recognize the format and therefore would
display no image at all, clearly a problem if you have a diverse audience and are unable to
predict what vintage browsers they might be using. In fact, what you'd probably like to see
happen for users of old-style browsers is that they would see a GIF or JPEG image rather
than no image at all. To handle this situation, Johnson-Grace and the major browser

companies have come up with alternative, actually a companion, to the SRC attribute.

The X-ALTSRC Attribute
To allow newer browsers to access ART images while still allowing old-style browsers to
access non-ART images, Johnson-Grace and many of the major browser companies have
settled on a new attribute for the IMG tag. Here's its general form:

When used in conjunction with the SRC attribute, this new attribute allows you to specify an
alternate source file that can be used to display a graphic image. For ART-enabled browsers,
this means that the browser would automatically select an ART image. Old-style browsers
continue to work as before. Here's an example:

In this case, ART-enabled browsers would read the entire IMG tag and use
/images/daytona.art instead of /images/daytona.gif. Old-style browsers, who know nothing of
X-ALTSRC, would use /images/daytona.gif. We call this "dual encoding", and it is the easiest
and safest way to incorporate support for ART images into your HTML scripts.

The optional [mime/type;] portion of the attribute bears a little explaining. It lets you explicitly
tell the browser the format of the file that follows, rather than having the browser determine
the format based on the file extension, its default behavior. Here's a variation of the previous
example that illustrates how this works:

<IMG X-ALTSRC="image/x-art;/images/daytona.v1"
SRC="/images/daytona.gif">

In this case, the browser knows that the file format is ART based on the mime/type, and the
file extension is ignored.

Examples
Here are some more examples of how to use the new X-ALTSRC attribute.

Here's another example that illustrates how different browsers might behave:

<IMG X-ALTSRC="image/x-art;/images/picture.art"
SRC="/images/picture.xbm">

In this example, old-style browsers that know nothing of X-ALTSRC would use
/images/picture.xbm, provided they recognize the XBM format. (In case you're wondering,
XBM is an X-Windows graphics format.) ART-enabled browsers would use
/images/picture.art, unless the XBM format is known to the browser and the user had
somehow set the browser's preferences to indicate that XBM files were more desirable than
ART files.

This next example illustrates how your knowledge of your target audience might affect your
use of the SRC and X-ALTSRC attributes.

<IMG X-ALTSRC="image/x-art;triangle.art" X-ALTSRC="triangle.tif"
SRC="triangle.gif" ALT="Warning:"> Be very careful.

Suppose all the members of your target audience were using a sophisticated ART-enabled
browser capable of displaying a fallback image if another image could not be successfully
displayed. In this case, depending on the preferences that the user had set, the browser

might attempt to select the ART file, then TIFF, then GIF. If for some reason it had trouble
displaying all of the images, it would display the text associated with the ALT attribute.

Client-Side Image Mapping

Introduction
Image maps allow users to access documents by clicking on different areas in an image.

Tutorial
There is a tutorial available for the Map Builder.

Syntax
Adding a USEMAP attribute to an IMG element indicates that it is a client-side image map.    The
argument to USEMAP specifies which map to use with the image, in a format similar to the HREF
attribute on anchors. If the argument to USEMAP starts with a '#', the map is assumed to be in the
same document as the IMG tag.

The different regions of the image are described using a MAP element. The map describes each
region in the image and indicates where it links to. The basic format for the MAP element is as
follows:

<MAP NAME="name">
<AREA [SHAPE="shape"] COORDS="x,y,..." [HREF="reference"] [NOHREF]>
</MAP>

The name specifies the name of the map so that it can be referenced by an IMG element. The shape
gives the shape of this area. Currently the only shape defined is "RECT", but the syntax is defined in
such a way to allow other region types to be added. If the SHAPE tag is omitted, SHAPE="RECT" is
assumed. The COORDS tag gives the coordinates of the shape, using image pixels as the units. For
a rectangle, the coordinates are given as "left,top,right,bottom". The rectangular region defined
includes the lower-right corner specified, i.e. to specify the the entire area of a 100x100 image, the
coordinates would be "0,0,99,99".

The NOHREF tag indicates that clicks in this region should perform no action. An HREF tag specifies
where a click in that area should lead. Note that a relative anchor specification will be expanded using
the URL of the map description as a base, rather than using the URL of the document from which the
map description is referenced. If a BASE tag is present in the document containing the map
description, that URL will be used as the base.

An arbitrary number of AREA tags may be specified. If two areas intersect, the one which appears
first in the map definition takes precedence in the overlapping region. For example, a button bar in a
document might use a 160 pixel by 60 pixel image and appear like this:

<MAP NAME="buttonbar">
<AREA SHAPE="RECT" COORDS="10,10,49,49" HREF="about_us.html">
<AREA SHAPE="RECT" COORDS="60,10,99,49" HREF="products.html">
<AREA SHAPE="RECT" COORDS="110,10,149,49" HREF="index.html">
<AREA SHAPE="RECT" COORDS="0,0,159,59" NOHREF>
</MAP>

This example includes a region encompassing the entire image with a NOHREF tag, but this is
actually redundant. Any region of
the image that is not defined by an AREA tag is assumed to be NOHREF.

Examples:

This states that when picture1.gif is clicked on, the browser will look up the map file (map1) found
inside maps.html to determine what action to take.

This is very similiar to above except that the map file (map1) is looked for in the current HTML
document rather than an external file.

 <IMG SRC="../images/picture3.gif"
USEMAP="maps.html#map3">

This allows for browsers that do not support client-side image mapping. In such a browser clicking on
picture3.gif will access the no_csim.html document.

Map Builder Tutorial

After starting the Map Builder choose the new session button. Now select the image that will be used as
the basis for the map. The picture will load and new buttons and text boxes will appear. Give your map a
name by entering it in the Map Name box located in the upper right hand corner. Next, select an area with
the mouse. Now we must assign a URL to be called when this area is selected. Do this by entering a URL
in the lower left hand text box (the URL builder button, located to the right of the URL text box can be
used to quickly build a URL). Optionally, a comment can be added describing the purpose of this area.
More areas can be added - to move from area to area use the arrow buttons. The currently selected area
will be outlined in white. If your image is composed of mostly light colors it might make the areas easier to
see by selecting the black area fill button.

At any time you can view the current text of the map file by clicking on the view map tags button.
When finished creating areas either of the two large buttons on the bottom of the form will return you
to the image window. 'Exit and place map in document' will place the map text you have created into
the html document you are currently working on. There is no limit to the number of maps withing a
single document, but be sure that each map has a distictive name. When using this button you will
also be prompted to save the map to a file - this is simply to back up your map file so that it can be
reloaded at a later time, it does not affect the how the map file is used. The 'Exit and use external
map file' button will place the map text into a seperate file; in this case the IMAGE tag in your
document will reference this external file to read the map information.

Because client-side mapping is an HTML 3.0 feature be aware that not all browsers support it.
WebEdit's quick preview, being only HTML 2.0 compatable, does not allow you to test your map;
however, using the 'View Document with Browser' feature along with an HTML 3.0 compatable
browser such as Netscape 2.0 will.

AVI Video

Description
These attributes allow you to embed .avi (Audio Video Interleave) video clips in HTML pages.

Attributes

CONTROLS - If a video clip is present, a set of controls is displayed under the clip.

The above video has a set of transport controls under it.

DYNSRC=URL - Specifies the address of a video clip or VRML world to be displayed
in the window. Stands for Dynamic Source.

If your browser supports inline video, you will see the movie Test.avi; otherwise you will see the
picture Sample.gif.

LOOP=n, LOOP=INFINITE - Specifies how many times a video clip will loop when
activated. If n=-1, or if LOOP=INFINITE is specified, it will loop indefinitely.

The above video will loop three times when activated.

The above video will loop indefinitely until stopped.

START= FILEOPEN and/or MOUSEOVER - For video clips: specifies when the file
should start playing. FILEOPEN means start playing as soon as the file is done opening. This is the
default. MOUSEOVER means start playing when the user moves the mouse cursor over the
animation.

The above video will start playing as soon as it is opened.

The above video will start playing when the user moves the mouse over it, and will loop five times
before stopping. IExplore The user can specify both together.

<IMG SRC="preview3.gif" DYNSRC="windsurfing.avi"
START=MOUSEOVER,FILEOPEN>

The above video will play once as soon as it opens and thereafter will play whenever the user
moves the mouse over it.

User-Defined Tags

Description
User-Defined Tags are one way of ensuring that WebEdit allows you to stay absolutely current
with the latest feature of HTML.    Suppose, for example, that your favorite browser software
develops a tag of their own that is not included with your version of WebEdit.    Or you might
frequently nest certain tags. With User-Defined Tags you can create your own.    To create a User-
Defined Tag select New... and type in the tag exactly as you want it, then select OK.    Whenever
you need to use this tag again just come back to User Defined Tags and select the tag, it will be
inserted into the open HTML document at the cursor.

You can also specify the name of a text file, e.g., MYFILE.HTM.    Choosing this tag and clicking
OK causes the contents of the file MYFILE.HTM to be inserted into the active document and the
current insertion point.

Example
Some browser that you want to write HTML for might support a feature of their own called NEON.
You could create the NEON User-Defined Tag.

<NEON></NEON>

Quick Previewer

WebEdit's quick preview utility is a quick and easy way to preview your HTML documents. It supports
all HTML tags up to and including HTML 2.0, plus Tables, Forms and Fonts from HTML 3.2. To view
browser specific tags such as Netscape Navigator or Internet Explorer specific tags you can use
WebEdit's 'View Document with Browser' button in combination with a browser that supports the
features you need.

Spelling Checker

To check the spelling of a document, select Tools|Spelling... or press the F7 key.    The Check Spelling
Dialog appears if a word requiring your attention is detected. You can use the dialog to specify whether
the word should be ignored or replaced.

Add: Causes the reported word to be added to the dictionary selected in the Add Words To list. Use the
add button if correctly spelled word you use often is reported as a misspelling (e.g., your family name). If
the word is not used frequently, you may want to select the Ignore or Ignore All buttons instead.

Add words to: Indicates which user dictionary words will be added to when you select the Add
button. The Add Words To list shows all ignore-type user dictionaries currently open. You can open or
close other dictionaries via the Dictionaries dialog, which is accessible by selecting the Dictionaries
button.

Cancel: Stops the current spell-checking operation.

Change: Causes the reported word to be replaced with the word in the Change To field. Only this
occurrence of the reported word is replaced. If you want this and all following occurrences of the word
replaced, select the Change All button.

Change all: Causes this and all following occurrences of the reported word to be replaced with the
word in the Change To field. If you want only this occurrence of the word to be replaced, use the
Change button. If the reported word is one you frequently misspell, you might consider adding it to a
change-type or suggest-type dictionary via the Dictionaries dialog. You can display the Dictionaries
dialog by selecting the Dictionaries button.

Change to: Contains a word which will replace a misspelled word when you select the Replace or
Replace All buttons. You can enter a word in the Change to field by typing, or you can select one of
the suggested replacements from the Suggestions list.

Consider changing: Contains a word which may be misspelled or otherwise incorrect, and is
presented with a candidate replacement word. You can change the word by selecting the Change
button, or skip it by selecting the Ignore button.

Dictionaries: Causes the Dictionaries dialog to be displayed. You can use the Dictionaries dialog to
open or close user dictionaries, and to edit the contents of user dictionaries.

Ignore: Causes this occurrence of a misspelled word to be skipped. If the same misspelled word
appears later, it will be reported.

Ignore All: Causes this and all further occurrences of a misspelled word to be skipped. You might use
this button if the word reported as a misspelling is actually correctly spelled. If the word is one you use
frequently, you may wish to ignore it permanently by selecting the Add button.

Mixed case: Indicates that a word containing an unusual combination of upper- and lower-case
letters was detected. Examples of such words include "hapPy," "PrintScreen," and "DoT." Words
containing mixed case are reported only if the "Report words with mixed case" option is enabled.

Not in dictionary: Indicates that a misspelled word was detected. The word is considered misspelled
because it coult not be located in any open dictionaries, or was located in an exclude-type dictionary.

Options: Causes the Options dialog to be displayed. You can use the Options dialog to set spelling-
checker options.

Suggest: Causes a set of suggested replacements for misspelled words to be added to the
Suggestions list. This button is enabled only if the Always Suggest option is disabled. Each time you
select the Suggest button, a more intensive search for replacements is conducted. Once all possible
suggestions are located, the Suggest button is disabled.

Suggestions: Contains a list of suggested replacements for the word reported as misspelled. If you
have enabled the Always Suggest option, this list will be filled in automatically when a misspelled
word is reported. Otherwise, the list is filled in when you select the Suggest button. You can use the
words in the list to select a replacement for the misspelled word.
Dictionaries Dialog

The Dictionaries Dialog allows you to open and close user dictionaries, and to edit the contents of an
open user dictionary. The contents of dictionaries are saved in disk files. You can open some or all of
your user dictionary files at any time. Only open dictionaries are checked during a spell-checking
operation.

Add File: Opens a user dictionary file. When you select the Add File button, a dialog appears which
you can use to select the dictionary file to open. The set of open dictionary files is remembered, so
once you add a dictionary file you don't need to add it again. If you need to create a new user
dictionary, use the New button.

Add Word: Causes the word entered in the edit area of the Words list to be added to the currently
selected dictionary. Note that if the dictionary type is "auto change" or "conditionally change," you
must enter a word and a replacement, separated by a colon (e.g., "teh:the").

Close: Closes the Dictionaries dialog.

Delete Word: Causes the word appearing in the edit area of the Words list to be removed from the
currently selected dictionary. If the dictionary type is "auto change" or "conditionally change," enter
just the word without the colon or replacement word.

Export: Saves the contents of the currently selected dictionary to a text file. When you select the
Export button, a dialog appears which you can use to select the name of the text file to which words
in the dictionary will be exported. The words are written to the file one per line. If the dictionary type is
"auto change" or "conditionally change," words and their replacements are written, separated by a
colon.

Files: Contains the list of open dictionary files.

Import: Adds the words contained within a text file to the currently selected dictionary. When you
select the Import button, a dialog appears which you can use to select the text file to be imported.
Each word in the selected file is loaded into the dictionary. If the dictionary type is "auto change" or

"conditionally change," words in the file must be in word:replacement form (e.g., "teh:the").

Language: Displays the language (e.g., English or French) of the words in the currently selected
dictionary.

New: Creates a new user dictionary file. When you select the New button, a dialog appears which you
can use to specify attributes of the new dictionary. See the New Dictionary dialog for details.

Remove File: Closes the currently selected dictionary file. Closed dictionaries are not checked during
a spelling check. Although the file is closed, it is not deleted. Closed dictionary files can be later
reopened using the Add File button.

Type: Displays the type or purpose of the currently selected user dictionary. The dictionary type
indicates what will happen if a word is located in the dictionary during a spelling check. For
information about the specific types, see Dictionary Types.

Words: Contains the list of words in the currently selected user dictionary. If the dictionary type is
"auto change" or "conditionally change," then the list contains words and their replacements,
separated by colons.
Options Dialog

You can use the Options Dialog to specify various spelling-checker options. These options affect the
way the spelling checker operates.

Ignore Capitalized Words: When enabled, any words beginning with a capital letter are ignored (i.e.,
are skipped over without being checked). You might enable this option if the text being checked
contains many proper names.

Ignore All-Caps Words: When enabled, any words containing all capital letters are ignored (i.e., are
skipped without being checked). You might enable this option if the text being checked contains many
acronyms.

Ignore Words with Numbers: When enabled, any words containing embedded digits are ignored
(i.e., are skipped without being checked). Examples of such words include "Win95" and "Q4." You
might enable this option if the text being checked contains many code-words or other symbols
containing digits.

Ignore Words with Mixed Case: When enabled, any words containing an unusual mixture of upper-
and lower-case letters are ignored (i.e., are skipped without being checked). Examples of such words
include "MicroHouse" and "CapsLock." You might enable this option if the text being checked contains
many variable names or other symbols which use case changes to distinguish words.

Report Words with Mixed Case: When enabled, any words containing an unusual mixture of upper-
and lower-case letters are reported via the Check-Spelling Dialog. Examples of such words include
"THe" and "MonDay."

Report Doubled Words: When enabled, any word appearing twice in a row is reported via the
Check-Spelling Dialog.

Always Suggest: When enabled, a list of suggested replacements fis automatically displayed when a
misspelled word is reported. If this option is disabled, a list of suggestions can be obtained by
selecting the Suggest button in the Check-Spelling dialog.

OK: Closes the Options Dialog, and saves any changes made to the option settings.

Cancel: Closes the Options Dialog, and discards any changes made to the option settings.

New Dictionary Dialog

You can use the New Dictionary Dialog to specify the attributes of a new user dictionary.

Browse: Displays a dialog which shows the names of other user dictionary files. You can use the
dialog to view the names of existing dictionary files, and to enter the name of the new dictionary file.

Cancel: Closes the New Dictionary Dialog without creating a new dictionary.

File Name: Contains the name of the disk file used to hold the new dictionary's contents. You can
enter a name here or use the Browse button to display a dialog showing the names of other dictionary
files.

Language: Specifies the language (e.g., French, English) of the words the new user dictionary will
contain. If the language you want to use is not listed, select "Other."

OK: Closes the New Dictionary Dialog and creates the new dictionary.

Type: Specifies the type or purpose of the new user dictionary. The type defines what happens when
a word is located in the dictionary during a spelling check. For information on the different dictionary
types, see Dictionary Types.
Dictionary Types

User dictionaries can be in several different types. The type indicates what happens when a word is
found in the dictionary during a spelling check.

Auto Change: Words found in an Auto Change dictionary are automatically replaced with other
words. Typically, Auto Change dictionaries hold frequently misspelled words and their correct
replacements. For example, an Auto Change dictionary might contain the misspelled word "recieve"
and its replacement "receive." Each entry in an Auto Change dictionary contains a word and the
replacement, separated by a colon (e.g., "recieve:receive").

Conditional Change: Words found in a Conditional Change dictionary are presented to you as
candidates for replacement, and are replaced with other words if you request. Typically, Conditional
Change dictionaries hold potentially misspelled words and their usual replacements. Each entry in a
Conditional Change dictionary contains a word and the replacement, separated by a colon (e.g.,
"recieve:receive").

Exclude: Words found in an Exclude dictionary are always considered misspelled, even if they are
defined in other dictionaries. Typically, Exclude dictionaries hold words you may use but don't want to
appear in your writing. You might also use an Exclude dictionary to hold words you type by accident --
for example, you might enter "newt" in an Exclude dictionary if you occassionally type "newt" when
you mean to type "neat."

Ignore: Words found in an Ignore dictionary are considered correctly spelled. Typically, Ignore
dictionaries hold words you use but which don't appear in the other dictionaries. For example, you
may add your family name or street name to an Ignore dictionary.

Additional Lexicons
The WebEdit spelling checker supports optional lexicons in various languages.    These additional
lexicons can be downloaded from the WebEdit download page at:

    http://www.nesbitt.com/download.html

If you plan to use multiple lexicons, you should also download the WebEdit lexicon manager.    The
lexicon manager makes it easy activate and deactivate installed lexicons.    The lexicon manager is

also available from the WebEdit download page.

The Sentry Spelling-Checker Engine Copyright © 1993 Wintertree Software Inc.

Learning HTML

What is HTML?
Getting Started With HTML
HTML Elements
HTML 3.2 Document Structure
Glossary of Terms
Index of Tags

Getting Started With HTML

Getting Connected
An Internet service provider can get you connected to the Internet.    The package they provide
you with may not include a browser but it will almost always include an ftp utility.    With ftp you
can login to various file servers and download the current shareware versions of popular
browsers.

If you don't know where to begin, there are many good books that can help you get started.    In
particular, we recommend The Internet Complete Reference    andThe Internet Yellow Pages,
both by Harley Hahn.

Browse The Web
Although you can use WebEdit without any experience at writing HTML, you probably would not
have a clear idea of the Web page you want to create.    You would not try to publish a book
without ever having looked through a book.    Similarly, you should spend as many hours as
possible browsing the Web and learning all the features of your browser.    Spend your time
wisely, with an eye towards style.    Find pages with a look and feel that appeals to you and add
them to your "bookmarks" (in Netscape), or "hotlist" (in Mosaic). Also, some browsers allow you to
see the underlying HTML source when you are viewing a Web page -    if you are using Netscape
select 'Source' under the 'View' menu.

WebEdit Home Page
Once you are browsing the Web you have the means to view Web page tutorials on the subject of
HTML.    There are many HTML primers and tutorials available on the World Wide Web.    If you
are new to HTML you will almost certainly find these documents indispensable.    The WebEdit
home page provides hotlinks to several of these.    You can connect to the WebEdit home page at:
http://www.nesbitt.com/

Find a Good Example
One way to get started with HTML is to browse the Web until you find a Web page you like.   
Select Save As from your browsers file menu and save the file on your hard drive.    You can now
open this file with WebEdit and modify it.    Make some simple changes to the text and save it.   
Select Open Local File from the File menu of your browser.    If you see the changes you made
then you have successfully modified an HTML document.    At this point you may want to study
over the document you just modified so that you can learn how to change the structure of the
document as well as its content. One of the best ways to learn is by taking and modifying an
existing Web page, notice what effect each of your changes has.

View the page as you create it
WebEdit offers two ways for you to visually see your Web page. The first is WebEdit's built in
Quick Previewer. The second is the Check Document button. This provides an ideal way to check
the progress of your Web page.    From the Options menu of WebEdit choose the item Browser .
Change to the directory for your browser and select the executable file, e.g.,    netscape.exe.   
Once you have a browser configured you can check the appearance of your HTML document and
test its functionality by clicking on the Check button. This will automatically load up your browser
and pass it your Web page to display.

Defining Your Home Page
You can have an HTML document load automatically by making it your default home page.    To
do this select Preferences from your browsers Options menu and enter the path to your local file,
e.g., file:///c:|webedit/welcome.html.

HTML Elements

Description
Tags indicate the beginning and end of titles, headings, paragraphs and links.    HTML elements
are identified as a start tag, giving the element name and attributes, then the content, then the
end tag.    Start tags are indicated with <element>, and end tags are indicated with </element>.   
For example:

<H1>Level One Heading</H1>
<P>A very short paragraph.

Some elements consist of only a start tag.    A line break, for instance, is simply
.    Also
some elements do not require end tags, e.g., P, LI, because the end tag is implied by the context.
The content of an element consists of characters or other nested elements.

Names
The element name immediately follows the tag open delimiter. An element name consist of a
letter followed by up to 72 letters, digits, periods, or hyphens. Names are not case sensitive. For
example, H1 is equivalent to h1. This limit of 72 characters is set by the NAMELEN parameter in
the SGML declaration for HTML 3.0.

Attributes
In a start tag, white space and attributes are allowed between the element name and the closing
delimiter. An attribute typically consists of an attribute name, an equal sign, and a value (although
some attributes may be just a value). White space is allowed around the equal sign.

The value of the attribute may be either:

· A string literal, delimited by single quotes or double quotes
· A name token (a sequence of letters, digits, periods, or hyphens)

In this example, A is the element name, HREF is the attribute name, and http://host/dir/file.html is
the attribute value:

Some implementations consider any occurrence of the > character to signal the end of a tag. For
compatibility with such implementations, when > appears in an attribute value, you may want to
represent it with an entity or numeric character reference, such as:

 b">

To put quotes inside of quotes, you can use single quotes if the outer quotes are double or vice
versa, as in:

Alternatively, you use the character representation " as in:

The length of an attribute value (after replacing entity and numeric character references) is limited
to 1024 characters. This number is defined by the LITLEN parameter in the SGML declaration for
HTML 3.0.

Note: Some implementations allow any character except space or > in a name token. Attributes
values must be quoted only if they don't satisfy the syntax for a name token.

Attributes with a declared value of NAME (e.g. ISMAP, COMPACT) may be written using a
minimized syntax. The markup:

<UL COMPACT="compact">

can be written as:

<UL COMPACT>

Note: Unless you use the minimized syntax, some implementations won't understand.

Special Characters
The characters between the tags represent text in the ISO-Latin-1 character set, which is a
superset of ASCII. Because certain characters will be interpreted as markup, they should be
represented by markup -- entity or numeric character references, for instance the character "&"
must be represented by the entity &

Comments
To include comments in an HTML document that will be ignored by the parser, surround them with
<!-- and -->. After the comment delimiter, all text up to the next occurrence of --> is ignored.
Hence comments cannot be nested. White space is allowed between the closing -- and >, but not
between the opening <! and --.
For example:

<HEAD>
<TITLE>HTML Guide: Recommended Usage</TITLE>
<!-- Id: Text.html,v 1.6 1994/04/25 17:33:48 connolly Exp -->
</HEAD>

HTML 3.2 Document Structure

The Structure of HTML 3.2 Documents

Every HTML 3.2 document begins with the following <!DOCTYPE> declaration (to distinguish
HTML 3.2 from other versions of HTML), followed by HEAD and BODY elements. The TITLE tags
are required. All other tags are optional.

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
 <HTML>
 <HEAD>
 <TITLE>A study of population dynamics</TITLE>
 ... other head elements
 </HEAD>
 <BODY>
 ... document body
 </BODY>
 </HTML>

Note that in practice, many documents don't contain a <!DOCTYPE> declaration. This makes it
difficult for browsers, validation tools, and other software to determine the version of HTML used
in the document.

The HEAD element

This contains the document head, but you can always omit both the start and end tags for HEAD.
The following elements belong to the document head:

TITLE defines the document title, and is always needed.
ISINDEX for simple keyword searches, see PROMPT attribute.
BASE defines absolute URL for resolving relative URLs.
STYLE reserved for future use with style sheets.
SCRIPT reserved for future use with scripting languages.
META used to supply meta info as name/value pairs.
LINK used to define relationships with other documents.

TITLE, STYLE and SCRIPT are containers and requires both start and end tags. The other
elements are not containers so that end tags are forbidden. Note that conforming browsers won't
render the contents of STYLE and SCRIPT elements.

The BODY element

This contains the document body. Both start and end tags for BODY may be omitted. The key
attributes are: BACKGROUND, BGCOLOR, TEXT, LINK, VLINK and ALINK. These can be used
to set a repeating background image, plus background and foreground colors for normal text and
hypertext links. Colors are
 given in RGB as hexadecimal numbers (e.g. "#C0FFC0") or as one of 16 widely understood color
names:

 aqua, black, blue, fuchsia, gray, green, lime, maroon,
 navy, olive, purple, red, silver, teal, white, and yellow

These colors were originally picked as being the standard 16 colors supported with the Windows
VGA palette.

Block and Text level elements

Most elements that can appear in the document body fall into one of two groups: block level
elements which cause paragraph breaks, and text level elements which don't. Common block
level elements include H1 to H6 (headers), P (paragraphs) LI (list items), and HR (horizontal
rules). Common text l evel elements include EM, I, B and FONT (character emphasis), A
(hypertext links), IMG and APPLET (embedded objects) and BR (line breaks). Note that block
elements generally act as containers for text level and other block level elements (excluding
headings and address elements), while text leve l elements can only contain other text level
elements. The exact model depends on the element.

Headings

H1, H2, H3, H4, H5 and H6 are used for document headings. You always need the start and end
tags. H1 elements are more important than H2 elements and so on, so that H6 elements define
the least important level of headings. More important headings are generally rendered in a larger
font than less
 important ones. Use the ALIGN attribute to set the text alignment within a heading, e.g.

 <H1 ALIGN=CENTER> ... centered heading ... </H1>

ADDRESS

The ADDRESS element is used for information about the author of the document. It requires start
and end tags.

Block elements

P paragraphs
The paragraph element requires a start tag, but the end tag can always be omitted. Use the
ALIGN attribute to set the text alignment within a paragraph, e.g. <P ALIGN=RIGHT>

UL unordered lists
These require start and end tags, and contain one or more LI elements representing individual list
items.

OL ordered (i.e. numbered) lists
These require start and end tags, and contain one or more LI elements representing individual list
items.

DL definition lists
These require start and end tags and contain DT elements that give the terms, and DD elements
that give corresponding definitions.

PRE preformatted text
Requires start and end tags. These elements are rendered with a monospaced font and preserve
layout defined by whitespace and line break characters.

DIV document divisions
Requires start and end tags. It groups related elements together and can be used with the ALIGN
attribute to set the text alignment of the block elements it contains. ALIGN can be one of LEFT,
CENTER or RIGHT.

CENTER text alignment

Requires start and end tags. It is used to center text lines enclosed by the CENTER element. See
DIV for a more general solution.

BLOCKQUOTE quoted passage
Requires start and end tags. It is used to enclose extended quotations and is typically rendered
with indented margins.

FORM fill-out forms
Requires start and end tags. This element is used to define a fill-out form for processing by HTTP
servers. The attributes are ACTION, METHOD and ENCTYPE. Form elements can't be nested.

ISINDEX primitive HTML forms
Not a container, so the end tag is forbidden. This predates FORM and is used for simple kinds of
forms which have a single text input field, implied by this element.

HR horizontal rules
Not a container, so the end tag is forbidden. attributes are ALIGN, NOSHADE, SIZE and WIDTH.

TABLE can be nested
Requires start and end tags. Each table starts with an optional CAPTION followed by one or more
TR elements defining table rows. Each row has one or more cells defined by TH or TD elements.
Attributes for TABLE elements are WIDTH, ALIGN, BORDER, CELLSPACING and
CELLPADDING.

Lists

List items can contain block and text level items, although headings and address elements are
excluded.

Unordered lists take the form:

 ... first list item
 ... second list item
 ...

The TYPE attribute can be used to set the bullet style on UL and LI elements.

Ordered (i.e. numbered) lists take the form:

 ... first list item
 ... second list item
 ...

The OL START attribute can be used to initialize the sequence number. You can reset it later on
with the VALUE attribute on LI elements.

Definition lists take the form:

 <DL>
 <DT> term name
 <DD> term definition

 ...
 </DL>

DT elements can only act as containers for text level elements, while DD elements can hold block
level elements as well, excluding headings and address elements.

Tables

These take the general form:

 <TABLE BORDER=3 CELLSPACING=2 CELLPADDING=2 WIDTH="80%">
 <CAPTION ALIGN=bottom> ... table caption ... </CAPTION>
 <TR><TD> first cell <TD> second cell
 <TR> ...
 ...
 </TABLE>

The attributes on TABLE are all optional. By default, the table is rendered without a surrounding
border. The table is generally sized automatically to fit the contents, but you can also set the table
width using the WIDTH attribute. BORDER, CELLSPACING and CELLPADDING provide further
control ov er the table's appearence. The ALIGN attribute can be used to position the table to the
LEFT, CENTER or RIGHT. The CAPTION element is used for captions. These are rendered at
the top or bottom of the table depending on the optional ALIGN attribute.

Each table row is contained in a TR element, although the end tag can always be omitted. Table
cells are defined by TD elements for data and TH elements for headers. Like TR, these are
containers and can be given without trailing end tags. TH and TD support several attributes:
ALIGN and VALIGN f or aligning cell content, ROWSPAN and COLSPAN for cells which span
more than one row or column. A cell can contain a wide variety of other block and text level
elements including form fields and other tables.

Text level elements

These don't cause paragraph breaks. Text level elements that define character styles can
generally be nested. They can contain other text level elements but not block level elements.

Font style elements

These all require start and end tags, e.g.

 This has some bold text.

TT teletype or monospaced text
I italic text style
B bold text style
U underlined text style
STRIKE strike-through text style
BIG places text in a large font
SMALL places text in a small font
SUB places text in subscript style
SUP places text in superscript style

Phrase Elements

These all require start and end tags, e.g.

 This has some emphasized text.

EM basic emphasis typically rendered in an italic font
STRONG strong emphasis typically rendered in a bold font
DFN defining instance of the enclosed term
CODE used for extracts from program code
SAMP used for sample output from programs, and scripts etc.
KBD used for text to be typed by the user
VAR used for variables or arguments to commands
CITE used for citations or references to other sources

Form fields

INPUT, SELECT and TEXTAREA

INPUT elements are not containers and so the end tag is forbidden. INPUT, SELECT and
TEXTAREA are only allowed within FORM elements. INPUT can be used for a variety of form
fields including single line text fields, password fields, checkboxes, radio buttons, submit and
reset buttons, hidden fiel ds, file upload, and image buttons. SELECT elements require start and
end tags and contain one or more OPTION elements. SELECT elements are used for single or
multi-selection menus. TEXTAREA elements require start and end tags, and are used to define
multi-line text fields. The content of the el ement is used to initialize the field.

Special Text level Elements

Anchors, IMG, APPLET, FONT, BR and MAP.

The A (anchor) element

Used to define hypertext links and also to define named locations for use as targets for hypertext
links, e.g.

 The best cat.

The attributes are: NAME, HREF, REL, REV and TITLE. HREF is used to supply a URL
identifying the linked document or image etc. NAME is used to associate a name with this part of
a document for use with URLs that target a named section of a document. Anchors can't be
nested.

IMG

e.g.

Used to insert images. This is an empty element and so the end tag is forbidden. The attributes
are: SRC, ALT, ALIGN, WIDTH, HEIGHT, BORDER, HSPACE, VSPACE, USEMAP and ISMAP.
Images can be positioned vertically relative to the current textline or floated to the left or right. See
BR with the CLE AR attribute for control over textflow.

APPLET

Requires start and end tags. This element is supported by all Java enabled browsers. It allows
you to embed a Java applet into HTML documents, e.g. to include an animation. The contents of
the element are used as a fallback if the applet can't be loaded. The attributes are: CODE,
CODEBASE, NAME,
 ALT, ALIGN, WIDTH, HEIGHT, HSPACE and VSPACE. APPLET uses associated PARAM

elements to pass parameters to the applet.

FONT

Requires start and end tags. This allows you to change the font size and/or color for the enclosed
text. The attributes are: SIZE, COLOR. Colors are given as RGB in hexadecimal notation or as
one of 16 widely understood color names.

BR

Used to force a line break. This is an empty element and so the end tag is forbidden. The CLEAR
attribute can be used to move down past floating images on either margin, e.g. <BR
CLEAR=LEFT>.

MAP

Requires start and end tags. This allows you to define client-side image maps. MAP elements
contain one or more AREA elements that specify hotzones on the associated image and bind
these hotzones to URLs.

Glossary of Terms

Attribute - A characteristic quality of an element, other than type or content.

Browser - A tool used to read HTML documents. Common browsers include Netscape and
Mosiac.

CGI - Common Gateway Interface. The format and syntax for passing information from browsers
to servers via forms or document based queries in HTML.

Document - For the purposes of this standard, an HTML instance.

DTD - Document Type Definitions (DTD). A written specification of the HTML language,

Element - A component of the hierarchical structure defined by the document type definition; it is
identified in a document instance by descriptive markup, usually a start-tag and an end-tag.

HTML - HyperText Markup Language.

HTTP - A generic stateless object-oriented protocol, which may be used for many similar tasks by
extending the commands, or "methods", used. For example, you might use HTTP for name
servers and distributed object-oriented systems, With HTTP, the negotiation of data
representation allows systems to be built independent of the development of new representations.

Internet Explorer - Microsoft's browser.

Markup - Text added to the data of a document to convey information about it. There are four
different kinds of markup: descriptive markup (tags), references, markup declarations, and
processing instructions.

MIME - Multipurpose Internet Mail Extensions.

Netscape - A browser from NetScape Communications.

Representation - The encoding of information for interchange. For example, HTML is a
representation of hypertext.

Rendering - Formatting and presenting information to human readers.

SGML - Standard Generalized Markup Language.

Tag - Descriptive markup. There are two kinds of tags; start-tags and end-tags. e.g. <StartTag>
</EndTag>

URI - Universal Resource Identifiers.

URL - Universal Resource Locators.

W3 (WWW) - The World-Wide Web.

General Reference

MENUS

FILE

Open Location
Export
Project Manager

INSERT

(All Tags)
User-Defined Tags
Special Characters
ID / Class / Language
Anchor / Link
Image
Current Date/Time

TOOLS

Spelling Checker
Easy Images
Easy Links
Extended Chars -> Tags
Tags -> Extended Chars
Modules
Tag Checker

OPTIONS

Configure

File

Open Location

Open Location allows you to download a document from the Net into WebEdit. The details button will
allow you to see all of the information going back and forth from the remote location.

Export

Export allows you to save your documents in different formats so that they can be read correctly by
other operating systems. While these other operating systems will read files saved by WebEdit they
may have strange characters at the end of each line.

Export has two options:

Unix
This replaces the MS-DOS standard Carriage Return/Line Feed markers at the end of every line
with UNIX standard Line Feeds only.

Macintosh
This replaces the MS-DOS standard Carriage Return/Line Feed markers at the end of every line
with Macintosh standard Carriage Returns only.

Project

WebEdit's project manager allows you to keep multiple files together in groups for easier, quicker access.

There are five buttons across the top of the Project Manager - from left to right they allow you to:

Add the current document to the project
Add a file to the project.
Remove a document from the project.
Open the selected documents.
Display the full path and filename or just the filename.

You may use a combination of Shift and Control keys to select or deselect multiple files.

WebEdit can be set to close all open documents in WebEdit that belong to the project when the
project is closed. See the Configure section.

The Project Manager can visually display information on each file.

 C:\Filename A standard file.
 C:\Filename The file is loaded.
 C:\Filename The file is loaded and has been modified.
 C:\Filename The file could not be found.

These extra abilites of the Project Manager slow it down somewhat - users with slower machines may
wish to turn these functions off. See the Configure section.

Insert

Current Date/Time

Inserts the current date and time at the cursor position

ID / Class / Language

In HTML 3.2, most tags within the Body element can have ID, CLASS and LANG attributes.

ID - An SGML identifier used as the target for hypertext links or for naming particular elements in
associated style sheets. Identifiers are NAME tokens and must be unique within the scope of the current
document.

LANG - This is one of the ISO standard language abbreviations, e.g. "en.uk" for the variation of English
spoken in the United Kingdom. It can be used by parsers to select language specific choices for quotation
marks, ligatures and hypenation rules etc. The language attribute is composed from the two letter
language code from ISO 639, optionally followed by a period and a two letter country code from ISO
3166.

CLASS - This a space separated list of SGML NAME tokens and is used to subclass tag names. By
convention, the class names are interpreted hierarchically, with the most general class on the left and the
most

specific on the right, where classes are separated by a period. The CLASS attribute is most
commonly used to attach a different style to some element, but it is recommended that where
practical class names should be picked on the basis of the element's semantics, as this will permit
other uses, such
as restricting search through documents by matching on element class names. The conventions for
choosing class names are outside the scope of this specification.

Tools

Extended Chars -> Tags

This will scan the HTML document changing all special characters into a form that browsers can
process. The character output is the same as if the Special Characters dialog was used.

Examples:

The character    'ó' would be changed to 'ó'

The character    'ü' would be changed to 'ü'

Tags -> Extended Chars

This will scan the HTML document changing all HTML character tags into special characters.

Examples:

The tag 'ó'would be changed to character    'ó'

The tag 'ü'would be changed to character    'ü'

Modules

These are plug-in programs that extend the functionality of WebEdit. WebEdit ships with different
Modules depending on the version of WebEdit you are using. All versions come with the Home Page
Wizard. You can also write your own Modules.

Tag Checker

Introduction
The tag checker does a basic validation of the HTML tags in the current document against several
well-known standards.    The tag checker does not validate attribute parameters, nor does it enforce a
particular HTML markup style outside of checking for required tags.

Supported Standards
The tag checker allows you to check the tags of your document against the HTML 2.0 standard as
well as extensions supported by Netscape Navigator 1.1, Netscape Navigator 2.0, and Microsoft
Internet Explorer 2.0.

Usage
To check your tags, activate the tag checker by selecting 'Tag Checker' from the 'Tools' menu.    Select
a standard to compare the tags against by clicking on the appropriate radio button in the 'HTML
Standard' box.    Then, click on the 'Check' button to begin checking the tags

Output
The tag checker will scan through the document and alert you of 'Warnings' and 'Errors'.    Since most
browsers will simply ignore tags and attributes that it doesn't understand, a Warning is printed if the
tag checker finds a tag that does not comply with the selected standard.    The tag checker will alert
you of an error, however, when it finds something that is not proper HTML markup, such as the
absence of a <TITLE> tag. Double Click on the message in the tag checker and the cursor in the
WebEdit editor will go to the offending line.

Notes
The tag checker will only check the document that was current when the tag checker was activated.   
To check a new document, you must first close the tag checker window, then re-open it as described
above.

Options

Configure

This is where you can configure WebEdit to your personal preferences.

The Configuration box has eight pages
Preferences
Color
Font
Files
Previewer
Carriage Returns
Tags and Paths
Project Manager    (Professional version)

Preferences

Editor

Drag and Drop Behavior
This setting controls what WebEdit does in response to having a file or files dropped onto it.
There are two options:

Insert file as tag
A tag is inserted according to the type of file or files. A picture file will produce <IMG
SRC="PICTURE.JPG">, any other file will produce

Open file as new document
The file or files will be opened, ready for editing.

Lowercase Filenames
Selects whether all filenames should hold their original case or be all lowercase. This is used
primarily for compatibility reasons with Unix - some older versions of Unix require that filenames
contain only lower case characters.

Word Wrap
When selected this causes the window text to automatically wrap around to the next line when
the edge of the window is reached. This is useful while editing in order to see all of the text
without scrolling the window around.

Open new document at startup

Selects whether a new document should be opened up each time WebEdit is run.

Syntax Highlighting
This tells WebEdit to highlight HTML tags a different color from the normal text. This version of
WebEdit only highlights tags when the document is first loaded.

Toolbar

Show Toolbars
Determines if the chosen toolbar should be visible.

Configure Toolbar
Opens up the User toolbar configuration box to allow the changing of buttons on the User toolbar.

See Toolbars for more information.

Browsers

Internet Explorer version
Microsoft's Internet Explorer accepts files from other programs using two different formats. Set
this button according to which version of Internet Explorer you are using to check your documents
with. If you are not using Internet Explorer this setting is not used.

Add or Edit browser
Brings up the Browsers screen to allow the addition or editing of third-party browsers.

Color

This is where you can change some of the colors that WebEdit uses.

Element
Select the text you whose color you wish to modify. Hint: you can also click on the text in the example
boxes.

Editor
Document Text: the standard text in your document
Document Tag: the HTML tags in your document. Make sure to turn on Syntax Highlighting to see
the color. (Professional version only)

Previewer
Previewer Text: the text in the quick previewer whose color has not been explicitly set using
HTML tags.
Previewer Hotspot: the text designating a link.

Color
Use the left mouse button to select the foreground color or the right button to select the background
color (if applicable).

Use default colors
This will set the color back to a 'standard color'. Standard colors are black for the Document and
Previewer text, green for Document tags, and blue for Previewer Hotspots.

Font

This selects the font that the HTML text is displayed in on YOUR system. This does NOT determine
the font it will be seen in on the Web. Use the tag to change the font as it is viewed in a
browser. You can type in the sample box to see what a particular word or arrangement of letters looks
like in the selected font.

Files

Determines the save path for all configuration files that WebEdit generates - an example being URL
files. A URL file is generated the first time a dialog box containing a URL button is used. These files
allow you to quickly and easily pull up URLs that you have used in the past, thus saving you much
typing!

The Default extension for opening files lets you select between having WebEdit default to loading
either '*.HTML and *.HTM' or just '*.HTML' files. This adjustment is provided for users of certain
versions of Windows NT who experience the problem of having the same file repeated twice in the
File Open box.

Previewer

Settings

Display Preview
Determines whether the quick viewer should be visible. A quicker way to accomplish this is to use
the yellow 'lightning bolt' button on the Document Toolbar.

Full window Preview
If set, this displays the quick previewer using the whole WebEdit screen.

Automatically Update Previewer
This allows you to see in realtime any changes that you make to your document. Be aware that if
you have large images on your page it may lag behind your typing.

Show Pictures
If set, the quick previewer will display pictures specified by the HTML tags. If not set, the
Previewer will display a placeholder.

Orientation

Vertical & Horizontal
Vertical displays the quick previewer to the side of the document while Horizontal displays it to the
bottom.

Carriage Returns

This allows you to have WebEdit automatically place a Carriage Return and Line Feed either before or
after the selected type of HTML tag.

Tags and Paths

Tags

Tag Case
This selects between uppercase and lowercase tags. This only affects tags that WebEdit
generates from that point on - it does not change any existing tags in the document.

Pathing

Path
This selection determines what type of pathing WebEdit should use when a file is selected for use
in an HTML tag.

As an example let's say this is how a hard drive is laid out:

The current document in WebEdit is located at:
'C:\My HTML Documents\Home Page\Page1.html'

The file you are adding as a background is located at:
'C:\Pictures\Kitten.gif'

You have selected a fixed directory (see below) of:
'C:\My HTML Documents\Common Pictures\Construction.gif'

The filenames generated by each pathing option

None
No path is used.
'Kitten.gif'

Absolute
Only the path of the picture is used.
'C:\Pictures\Kitten.gif'

Relative
A path to the picture relative to the documents' path.
'..\..\Pictures\Kitten.gif'

Relative to a fixed directory
'..Common Pictures\Construction.gif'

Fixed Directory
This is where you select the fixed directory which is used with 'Relative to a fixed directory'
pathing.

Reverse Slashes
If selected, Unix '/' slashes are used, otherwise DOS slashes '\' are used.

Browser

The browser feature allows you to preview your document using whichever browser you specify.

To add a browser, click the add button and enter the name of the browser and the location of it's program
file. If your browser requires any switches (ex. Mosaic takes a '-s' to operate in stand-alone mode) enter
them after the filename.

You can have any number of browsers in the browser list but only the first ten will appear when the Check
Document button is pressed.

Toolbars

WebEdit has four toolbars:

Document
This shows the operations common to all documents, such as File Open, Save, Find and Print.

User
This toolbar contains the user chosen buttons.

Menu
This is where the drop down menus reside.

Status
This reports on the status of the current document.

Cursor Position | Cursor Mode (Insert or Overwrite) | Has the file been modified? | Full path and filename |
Last status message

OPTIONS

Show Toolbar
Each toolbar can be either visible or hidden determined by the presence of a checkmark next to the
name of the toolbar.

Alignment
Most toolbars can be moved to either the top, bottom, left or right side of the document. The
alignment of each toolbar can be changed by right-clicking anywhere on the toolbar.

Configure
This only applies to the user toolbar. To configure the toolbar right click on it and select Configure or
go up to the main menu and select Options > Toolbars > Configure > User. Also, this may be chosen
through the Options box. The Toolbar Configuration box will appear.

To add a button simply left click on it, and while holding down the left mouse button drag it to the User
toolbar.

To remove a button from the user toolbar simply left click on it, and while holding down the left mouse

button drag it to the Toolbar Configuration box and let go of the button.

To re-arrange existing buttons of the user toolbar just left click on them and drag them to the new location.

Project Manager

Close open documents on Project Manager shutdown.
When you close down Project Manager it will close down every file that belongs to the project, or
not, depending on the setting of this check box.

Extended Functionality
The Project Manager can visually display information on each file.

 C:\Filename A standard file.

 C:\Filename The file is loaded into WebEdit.

 C:\Filename The file is loaded into WebEdit and has been modified.

 C:\Filename The file could not be found.

These extra abilites of the Project Manager slow it down somewhat - users with slower machines
may wish to turn these functions off.

Frequently Asked Questions

How can I get my Web pages onto the Web?

What is HTML?

How come some of my pictures don't show up?

How come some of the tags I use don't work?

How can I test my HTML page?

Where can I learn more about the Internet?

Can I write my own plug-in Modules to use with WebEdit?

Do you have any tips for using WebEdit?

What is HTML?

HTML, hypertext markup language, is a relatively standardized hypertext page description language,
primarily used for creating hypertext pages for the World Wide Web (WWW).

Before you begin using WebEdit, you should have an understanding of HTML fundamentals. If you
already know the basics, you will find that using WebEdit will help you learn HTML more thoroughly
because it does much of the work for you, letting you choose HTML tags from menus and toolbars,
and offering the attributes appropriate to each tag in dialog boxes.

To help you further we recommend the following documents:

Introductory Documents
· A Beginner's Guide to HTML

http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html
· How to Write HTML Files

http://www.ucc.ie/info/net/htmldoc.html
· Introduction to HTML

http://melmac.harris-atd.com/about_html.html

Style Guides
· Composing Good HTML

http://www.willamette.edu/html-composition/strict-html.html
· CERN's style guide for online hypertext

http://www.w3.org/hypertext/WWW/Provider/Style/Introduction.html

Reference Documents
· The HTML Quick Reference Guide

http://kuhttp.cc.ukans.edu/lynx_help/HTML_quick.html
· The Official HTML Specification

http://www.w3.org/pub/WWW/MarkUp
· A Description of SGML

httphttp://www.w3.org/pub/WWW/MarkUp/SGML/
· Mosaic for X 2.0 Fill-Out Form Support

http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/fill-out-forms/overview.html
· NetScape Extensions to HTML

http://home.netscape.com/assist/net_sites/html_extensions.html
· Thalia Guide: The Background FAQ

http://www.sci.kun.nl/thalia/guide/color/faq.html
· Mosaic Backgrounds

http://www.ncsa.uiuc.edu/SDG/Software/WinMosaic/Backgrnd/
· An Instantaneous Introduction to CGI Scripts and HTML Forms

http://kufacts.cc.ukans.edu/info/forms/forms-intro.html
· The Web Browser Torture Test

http://www.cnet.com/Content/Reviews/Compare/Browsers/Test/index.html

Browser Information
· Yahoo's list of Windows Web browsers

http://www.yahoo.com/Computers/Internet/World_Wide_Web/Browsers/
· Microsoft's Internet Explorer
http://www.microsoft.com/ie/msie.htm
· Netscape

http://home.netscape.com

· Mosaic
http://www.ncsa.uiuc.edu/SDG/Software/Mosaic

Here are some additional useful places to find the above documents and learn more about HTML:
http://www.gov.nb.ca/hotlist/htmldocs.htm

An amazing site with all the HTML documentation you could want!
http://www.physics.auburn.edu/html.html

Guides and examples
http://www.loc.gov/global/html.html

Library of Congress site

http://www.dai.ed.ac.uk/html/
http://www.peinet.pe.ca:2080/1/HTML
http://www.sbcc.cc.ca.us/web/htmlinfo.html
http://www-star.stanford.edu/instructions.html
http://www.wsu.edu:8000/lsl.www.tech.res.html
http://www.utirc.utoronto.ca/HTMLdocs/NewHTML/bibliography.html

How can I get my Web pages onto the World Wide Web?

In most cases you will need to contact your Internet Service Provider and find out their procedures for
placing your pages on the Web.

How come some of my pictures don't show up?

Chances are that your Web page cannot find your pictures.

WebEdit allows you to place links to your pictures in two different ways:

The first way is called a 'relative reference'. This is when your picture is located in the same directory
as your Web page. If you include a link to a picture called "MYPIC.GIF" that is located in the same
directory as your page, WebEdit will insert the HTML tag

The second approach is called an 'absolute reference'. This is used when your picture is not    located
in the same directory as your page. If you wished to include the picture "MYPIC.GIF" located in the
"C:\PICTURES\" directory, WebEdit would insert the HTML tag <IMG SRC="file://c:
\pictures\mypic.gif">

Both these methods should work just fine on the computer you are using. Difficulties arise when you
place your page on the Web. Chances are that the computer your Web pages will reside on does not
have the same directories as your own computer. In this case absolute references will not work
properly - you will need to change them all to match the other computers' directory structure.

The simplest way to use pictures is to just keep your pictures in the same directory as your Web page
that uses them.

How come some of the tags I use don't work?

Tags belong to different levels of HTML. Different browsers support different levels of HTML. The trick
is to make sure the browser you use supports that level tag. Usually a browser will support all of the
tags previous to its' level of HTML.

For example, Netscape 2.0 supports most of HTML 0,1,2,3 and Netscape 1.1 in addition to the new
Netscape 2.0 tags, but does not support the Internet Explorer tags..

When you find a tag you want to use. look at its HTML level. If the browser you use is farther down
the list than the tag it should support that tag. An example being: Why doesn't the MARQUEE tag
work in Netscape 2.0? Well by looking up the tag we see that it is Internet Explorer 2.0 level. Looking
at the chart it states that the only two browsers that support the MARQUEE tag are Internet Explorer
2 and Internet Explorer 3.

There are always exceptions to rules - check your browser's documentation to see exactly what tags
it supports.

How can I test my HTML page?

There are several HTML validation services on the Web. These can not only help you spot problems
in your documents, but they can also help you learn to write better HTML documents. Here are a few
we have seen:

WebLint
http://www.unipress.com/cgi-bin/WWWeblint

WebTech's HTML Validation Service
http://www.webtechs.com/html-val-svc/

Gerald Oskoboiny's "Kindler, Gentler Validator
http://ugweb.cs.ualberta.ca/~gerald/validate/

Where can I learn more about the Internet?

For those of you who would like to learn more about the Internet and the World Wide Web, including
how it works and what resources are available, we strongly recommend the following books:

The Internet Complete Reference
The Internet Complete Reference is one of the most comprehensive and fun-to-read books ever
written about the Internet.    This book provides thorough and clear explanations of the Net and its
various resources, including Usenet, mail, the world wide web, gopher, telnet, wais, archie, etc.

Author: Harley Hahn
Publisher: Osborne McGraw-Hill
ISBN: 0-07-882138-X
Price: US$32.95

Note: Be sure to get the second edition.

The Internet Yellow Pages
If there is a "roadmap" for the Internet, this is it. The Internet Yellow Pages, Second Edition is
indespensible when it comes to finding and accessing what's on the Net.    This book contains well
over 5,000 entries.    We strongly encourage everyone who uses the Internet, from beginner to
advanced user, to pick up a copy of this book.

Author: Harley Hahn
Publisher: Osborne McGraw-Hill
ISBN: 0-07-882192-7
Price: US$29.95

Note: Be sure to get the third edition.

Can I write my own plug-In Modules for WebEdit?

Yes you can! We have developed an API for programmers to follow that allows their programs to
interface with WebEdit. If you write a Module to this API it should work on future versions of
WebEdit. To download the latest version of this API go to the WebEdit Home Page
http://www.nesbitt.com/.

Do you have any tips for using WebEdit?

Well we have put many, many features into WebEdit - if you blink you might miss some of them!

Have you tried:

· Right-clicking on the toolbars and in dialog boxes like the Custom Tags and Project Manager?
· Alt - Right Arrow and Alt - Left Arrow?
· Shift - Enter and Control - Enter?
· Control - < or > (with more than one document open)?
· Highlighting text and selecting a list tag?
· Configuring the user toolbar?
· Dragging and Dropping a file onto WebEdit?

