
krsnake

krsnake ii

COLLABORATORS

TITLE :

krsnake

ACTION NAME DATE SIGNATURE

WRITTEN BY July 20, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

krsnake iii

Contents

1 krsnake 1

1.1 krsnake.doc . 1

1.2 krsnake.library/---overview--- . 1

1.3 krsnake.library/KsDeleteSoundObject . 4

1.4 krsnake.library/KsGetClientSig . 4

1.5 krsnake.library/KsPlaySoundObject . 5

1.6 krsnake.library/KsReadEvent . 5

1.7 krsnake.library/KsReadKRSNAkePrefs . 6

1.8 krsnake.library/KsReadSoundObject . 6

1.9 krsnake.library/KsRegisterClient . 7

1.10 krsnake.library/KsRemoveClient . 7

1.11 krsnake.library/KsWaitForEvent . 8

1.12 krsnake.library/KsWriteKRSNAkePrefs . 8

krsnake 1 / 9

Chapter 1

krsnake

1.1 krsnake.doc

---overview---()
KsDeleteSoundObject()
KsGetClientSig()
KsPlaySoundObject()
KsReadEvent()
KsReadKRSNAkePrefs()
KsReadSoundObject()
KsRegisterClient()
KsRemoveClient()
KsWaitForEvent()
KsWriteKRSNAkePrefs()

1.2 krsnake.library/---overview---

WRITING KRSNAKE CLIENTS

KRSNAke clients need to communicate with the main program. This is
done through krsnake.library. A client would call
KsRegisterClient() in order to receive messages from KRSNAke, wait
around for the client’s signal to arrive, act upon the received
message, repeat that until a SNAKE_QUIT message arrives, then call
KsRemoveClient(). There’s nothing more to it.

A KRSNAke client might look like this:

client = KsRegisterClient();
...
KsWaitForEvent(client);
KsReadEvent(client,&event,&data);
...

KsRemoveClient(client);

Although more commonly you’d want to listen to other ports as
well, for instance that of a window:

krsnake 2 / 9

client = KsRegisterClient();
...
mask = (1<<KsGetClientSig(client))|(1<<windowsigbit);
Wait(mask);
KsReadEvent(client,&event,&data);
...

KsRemoveClient(client);

If you experience difficulties following my explanation (which I
suppose is entirely possible), try looking at the sources of the
clients I’ve written. Sources speak more eloquently than words. If
you don’t read E - tough luck, you’re stuck with my explanation.

NOTE ABOUT THE INTERFACE

Clients should never open any interface window, or generally give
off any clue whatsoever that they exist, until told to do so by
KRSNAke. Clients should do general initialisation, attach them-
selves to KRSNAke, then wait around for a SNAKE_SHOWINTERFACE event
to be broadcast. At THIS point, they should render. Of course,
when dealing with particularly weird users, this could never
happen. Be prepared for everything.

EVENT CODES

KRSNAke broadcasts the following event codes (with data codes in
parentheses):

SNAKE_QUIT (no data)

If your client receives SNAKE_QUIT, remove it as soon as
possible. This means KRSNAke is trying to quit - and it
can’t until you’ve removed your client. Generally, this
message doesn’t just mean "call KsRemoveClient()", it
means "quit your program".

SNAKE_NEWSCORE (current score)

This message is broadcast whenever the score (the length
of the snake) changes.

SNAKE_GAMEOVER (final score)

When the snake crashes, SNAKE_GAMEOVER is broadcast, along
with the snake’s final length.

SNAKE_NEWGAME (no data)

This message is broadcast when the player begins a new
game.

SNAKE_PAUSED (no data)

This message is broadcast when the game is paused.

SNAKE_RESTARTED (no data)

krsnake 3 / 9

This message is broadcast when the game is resumed after a
pause.

SNAKE_EATEN (fruit’s value)

When the snake eats a fruit, this code is broadcast along
with the fruit’s value.

SNAKE_MOVES (head’s coordinates)

Each time the snake’s position changes (its head moves),
this message is broadcast along with the new coordinates
of the head. The coordinates are broadcast as a word,
where the most significant byte is the Y coordinate
(between 0 and 31), and the least significant byte is the
X coordinate (also between 0 and 31).

SNAKE_NEWCHUNK (fruit data; see below)

Whenever a new fruit arrives (either at the start of the
game, or when the snake eats a fruit), this message is
broadcast along with all info about the new fruit. The
data is coded as a longword, each value represented as a
byte as follows, most significant byte first: fruit value
(between 1 and 9), fruit colour (between 0 and 3; RGB
values can be obtained from KRSNAke’s prefs file), fruit Y
coordinate (between 0 and 31), and fruit X coordinate
(between 0 and 31).

SNAKE_SHOWINTERFACE (no data)

When this message is broadcast, the client should open its
window. If the window is already open, do nothing - but
make sure you handle the message, because these messages
are sent occasionally just to be sure the client really
did get the message.

SNAKE_HIDEINTERFACE (no data)

When this message is broadcast, the client should close
its window and anything similar. The same applies here as
to SNAKE_SHOWINTERFACE - duplicate messages do occur!
It’s generally unwanted that your client creates an AppIcon
or something similar for itself when it’s hidden - all
show/hide info should come from KRSNAke.

NOTE

Generally, it’s a bad idea to call any of the server functions
from your own code. Only KRSNAke should do this; at any one time,
there can be only one server in existence, and this server should
be owned by KRSNAke’s main task. This library is not intended as
a multipurpose client/server library - it’s only for KRSNAke.

In fact, I’ve removed the docs for the server functions below.
Just be a nice fellow and don’t call them, OK?

krsnake 4 / 9

YOU HAVE BEEN WARNED!

"We hear what you say,
we see what you do;
we know everything we need to know about you."

1.3 krsnake.library/KsDeleteSoundObject

NAME
KsDeleteSoundObject -- delete a sound object

SYNOPSIS
KsDeleteSoundObject(object)

D0

void KsDeleteSoundObject(APTR);

FUNCTION
Deletes a sound object created with KsReadSoundObject().

INPUTS
object - pointer to an object returned from KsReadSoundObject()

SEE ALSO
KsPlaySoundObject(), KsReadSoundObject()

1.4 krsnake.library/KsGetClientSig

NAME
KsGetClientSig -- get the signal of a client port

SYNOPSIS
signal = KsGetClientSig(client)
D0 D0

UBYTE KsGetClientSig(APTR);

FUNCTION
This function returns the signal that will be set when a message
arrives at the given client’s message port. Using a Wait() for
this signal is somewhat more useful than using KsWaitForEvent(),
as this will let you listen to other signals as well.

INPUTS
client - a pointer to the client whose signal you wish to obtain.

RESULT
signal - the number of the signal associated with the given

client’s port.

SEE ALSO
KsReadEvent(), KsWaitForEvent()

krsnake 5 / 9

1.5 krsnake.library/KsPlaySoundObject

NAME
KsPlaySoundObject -- trigger a sound object

SYNOPSIS
success = KsPlaySoundObject(object)
D0 D0

ULONG KsPlaySoundObject(APTR);

FUNCTION
Starts playing a sound object created with KsReadSoundObject(),
either by triggering the sound.datatype or by starting the
respective replayer. Note that only datatypes can be played more
than one at a time. Also, beware of the ProTracker replayer, which
is not working at present.

INPUTS
object - pointer to a sound object returned from

KsReadSoundObject()

RESULT
success - TRUE if the object was successfully triggered, FALSE

otherwise

SEE ALSO
KsDeleteSoundObject(), KsReadSoundObject()

1.6 krsnake.library/KsReadEvent

NAME
KsReadEvent -- receive a message from the server

SYNOPSIS
success = KsReadEvent(client,event,data)
D0 A0 D1 D0

ULONG KsReadEvent(APTR,ULONG *,ULONG *);

FUNCTION
This function reads a message from the client’s message port. If a
message exists, it will copy the event and data codes into the
addresses provided by the caller, and dispose of the message.

You should keep calling this function until it returns FALSE, as
several messages might arrive at the port simultaneously.

INPUTS
client - the client whose port to check.
event - pointer to a longword in which to store the event code of

the message, if there is one.
data - ditto for the data code.

krsnake 6 / 9

RESULT
success - TRUE if there was a message, in which case the longwords

pointed to by the event and data fields will contain the
info broadcast by the message, FALSE if there was no
message.

SEE ALSO
KsNotifyClients()

1.7 krsnake.library/KsReadKRSNAkePrefs

NAME
KsReadKRSNAkePrefs -- read the user preferences

SYNOPSIS
prefs = KsReadKRSNAkePrefs()
D0

struct KPrefs * KsReadKRSNAkePrefs(void);

FUNCTION
Reads the file "ENVARC:KRSNAke/KRSNAke.prefs" and creates a
KPrefs structure out of it. This structure is allocated with
AllocVec(), so when you’re done with it, call FreeVec(). If
you’ve changed anything and want to make it permanent, call
KsWriteKRSNAkePrefs() rather than FreeVec().

RESULT
prefs - a pointer to an allocated KPrefs structure. Unless you

are the KRSNAke prefs program, you should consider this
structure read only! If no prefs could be found, or if
there was no memory to read them, the function returns
NULL.

SEE ALSO
KsWriteKRSNAkePrefs()

1.8 krsnake.library/KsReadSoundObject

NAME
KsReadSoundObject -- create a sound object

SYNOPSIS
object = KsReadSoundObject(filename)
D0 D0

APTR KsReadSoundObject(char *);

FUNCTION
This function reads a file from a filesystem, and if the file is
a recognised sound data file, a sound object, which can
subsequently be played, is created.

krsnake 7 / 9

INPUTS
filename - a pointer to the name of the file to attempt to load

RESULT
object - a sound object which can be played with KsPlaySoundObject,

or NULL if something went wrong

SEE ALSO
KsDeleteSoundObject(), KsReadSoundObject()

1.9 krsnake.library/KsRegisterClient

NAME
KsRegisterClient -- create a KRSNAke message client

SYNOPSIS
client = KsRegisterClient()
D0

APTR KsRegisterClient(void);

FUNCTION
This function creates a client of the KRSNAke message server. A
KRSNAke client should call this in order to receive messages from
KRSNAke through the KsReadEvent() call.

The message server must be active before any clients can be
created. If it is not, this function will fail. Normally, clients
will be launched by KRSNAke after the server has been created, so
this should not be a problem.

RESULT
client - a pointer to a KRSNAke message client structure, or FALSE

if the client could not be created.

SEE ALSO
KsRemoveClient(), KsRegisterServer(), KsReadEvent()

1.10 krsnake.library/KsRemoveClient

NAME
KsRemoveClient -- destroy a KRSNAke message client

SYNOPSIS
success = KsRemoveClient(client)
D0 D0

ULONG KsRemoveClient(APTR);

FUNCTION
This function detaches a client from the server and destroys it.

krsnake 8 / 9

All clients created by the KsRegisterClient() function must be
disposed of with this function.

INPUTS
client - a pointer to a client returned from the

KsRegisterClient() function.

RESULT
success - TRUE if the client was removed, FALSE otherwise.

SEE ALSO
KsRegisterClient()

1.11 krsnake.library/KsWaitForEvent

NAME
KsWaitForEvent -- wait for a message to arrive at a client’s port

SYNOPSIS
success = KsWaitForEvent(client)
D0 D0

ULONG KsWaitForEvent(APTR);

FUNCTION
This function calls WaitPort() for the given client’s port, which
causes the calling task to wait until the client receives a
message from the server.

INPUTS
client - the client whose port to wait on.

RESULT
success - TRUE if the wait succeeded, FALSE otherwise. At present,

the FALSE return value only happens if you pass a NULL
client pointer.

SEE ALSO
KsGetClientSig(), KsReadEvent()

1.12 krsnake.library/KsWriteKRSNAkePrefs

NAME
KsWriteKRSNAkePrefs -- write the user preferences

SYNOPSIS
success = KsWriteKRSNAkePrefs(prefs)
D0 D0

ULONG KsWriteKRSNAkePrefs(struct KPrefs *);

FUNCTION

krsnake 9 / 9

Writes the KPrefs structure passed as the file
"ENVARC:KRSNAke/KRSNAke.prefs" and deallocates it.

If you just want to deallocate it, call FreeVec(prefs),
NOT KsWriteKRSNAkePrefs(prefs)! This function is only
meant for changes you want to be permanent - ie. if you’re
the prefs program or something similar.

INPUTS
prefs - pointer to a KPrefs structure.

RESULT
success - TRUE if the operation succeeded, FALSE otherwise.

Note that if this function fails, the structure is
not deallocated. This is generally bad, but there’s
nothing the library will do about it, so you should
FreeVec() it yourself.

SEE ALSO
KsReadKRSNAkePrefs()

	krsnake
	krsnake.doc
	krsnake.library/---overview---
	krsnake.library/KsDeleteSoundObject
	krsnake.library/KsGetClientSig
	krsnake.library/KsPlaySoundObject
	krsnake.library/KsReadEvent
	krsnake.library/KsReadKRSNAkePrefs
	krsnake.library/KsReadSoundObject
	krsnake.library/KsRegisterClient
	krsnake.library/KsRemoveClient
	krsnake.library/KsWaitForEvent
	krsnake.library/KsWriteKRSNAkePrefs

