
Quick Start
{ewc HLP95EN.DLL, DYNALINK, "See Also":"QuickStartC"}

The following is an overview of creating a Web page using the Microsoft ActiveX Control Pad.

To create a Web page
1 For each page, create or open an HTML file.

By default, when you start the ActiveX Control Pad, it creates an HTML file for you.

2 Add content to the page by editing HTML, inserting ActiveX controls into HTML, or creating one or
more HTML Layouts that contain controls.

The ActiveX Control Pad saves each HTML Layout in a file with an .alx extension, which you insert
into HTML. The HTML file incorporates the HTML Layout at run time.

3 Use the Script Wizard to assign actions to the controls you’ve added, or to add VBScript or
JavaScript to HTML or HTML Layouts.

4 Preview the page using Internet Explorer, version 3.0.

What the ActiveX Control Pad Does
{ewc HLP95EN.DLL, DYNALINK, "See Also":"WhatInternetStudioDoesC"}

With the ActiveX Control Pad, you can create interactive, multimedia Web sites and applications that
go beyond the capabilities of standard HTML. You can create Web pages that combine HTML code,
ActiveX controls, HTML Layouts, and VBScript or JavaScript.

· The ActiveX Control Pad uses an HTML file as the master container for each Web page you
create. You can write and edit HTML directly using the HTML Source Editor.

· You can add a single ActiveX control, such as a TextBox or a ScrollBar, onto an HTML page
using the ActiveX Control Editor. The ActiveX Control Editor lets you set properties for the control,
then places an <OBJECT> tag into HTML at the insertion point.

· The ActiveX Control Pad introduces the concept of the HTML Layout to Web design. An HTML
Layout is a WYSIWYG drawing board to which you can add multiple controls. You can draw
controls in the precise sizes and locations you want, group and align them, and even put one
control on top of another.

The ActiveX Control Pad saves each HTML Layout in a file format with an .alx extension. You insert
the HTML Layout into HTML, which incorporates the HTML Layout at run time. You can use
multiple HTML Layouts on a single Web page.

· Using the Script Wizard, you can assign events and actions to each of the controls you’ve added.
You can also create custom scripts in VBScript or JavaScript. The Script Wizard then inserts the
appropriate <SCRIPT> tag into HTML.

The result for each Web page is a single HTML file that, at run time, can display all of the elements
described above.

Who Does What: HTML, HTML Layouts, and Scripts
{ewc HLP95EN.DLL, DYNALINK, "See Also":"WhoDoesWhatHTML2DandScriptsC"}

The ActiveX Control Pad goes beyond simple HTML editing to extend the tools you can use to create
Web pages. The following table describes the general uses for each of these tools.

Tool Use to

HTML Source Editor Write or edit HTML directly. The HTML Source
Editor doesn’t check syntax, so use caution
when directly editing HTML.

Each Web page you create using the ActiveX
Control Pad begins with an HTML file. Any
ActiveX controls, HTML Layouts, or scripts
you create using the other ActiveX Control
Pad tools are added as <OBJECT> and
<SCRIPT> tags to the HTML file for that
page.

ActiveX Control Editor Insert a single ActiveX control, such as a
TextBox, onto an HTML page, and edit that
control’s properties. You can insert any
control registered on your computer, including
third-party controls. For each control you
insert, the ActiveX Control Editor adds an
<OBJECT> tag to the HTML file.

HTML Layout Editor Create an HTML Layout with multiple
controls. Use the HTML Layout Editor when
you want to take a WYSIWYG approach to
designing a Web page, and you want to
specify precisely the location, size,
transparency, and layering of controls.

When you save an HTML Layout, the ActiveX
Control Pad creates a file with an .alx
extension that’s separate from the HTML file
for the page. You then insert the HTML Layout
into HTML, which incorporates the layout at
run time. You can add multiple HTML Layouts
to a single Web page.

Tip You can reuse any saved HTML Layout
across multiple HTML files. For example, you
could design a navigation toolbar and save it
as an HTML Layout, then insert that HTML
Layout on all of your Web pages.

Script Wizard Assign actions or “add code” to controls, or
add VBScript or JavaScript to HTML or an
HTML Layout. The Script Wizard lets you
work in two different views: List and Code.

Use List View to assign simple actions to
events — for example, to play a sound effect
when the user clicks a certain image — or to
set property values, using a “point-and-click”
approach.

Use Code View to write scripts directly in
VBScript or JavaScript — when you want to

utilize the power and full support of the
scripting language.

Working with HTML Layouts
{ewc HLP95EN.DLL, DYNALINK, "See Also":"WorkingwithHTMLLayoutsC"}

An HTML Layout is a WYSIWYG design area where you can place multiple controls precisely. The
ActiveX Control Pad saves each HTML Layout in a file with an .alx extension, which you insert into
HTML. The HTML file incorporates the HTML Layout at run time.

How you approach creating an HTML Layout depends on how you want to use it:

Approach Use to

Create an HTML Layout for
the current page.

Quickly create an HTML Layout and insert it
into the current page at the cursor position.

Create an HTML Layout for
future use.

Create and save an HTML Layout, which
you’ll insert into one or more pages at
another time. For example, you might design
a navigation bar and save it as an HTML
Layout, then insert it later into multiple pages.

Insert an existing HTML
Layout into the current page.

Insert an HTML Layout that you’ve created
previously into the current page at the cursor
position.

Create an HTML Layout for the Current Page
{ewc HLP95EN.DLL, DYNALINK, "See Also":"CreateanHTMLLayoutfortheCurrentPageC"}

Use this procedure to create an HTML Layout and insert it into the current page at the cursor position.

To create an HTML Layout for the current page
1 In the HTML Source Editor, click the location on the HTML page where you want to insert the

HTML Layout. You must click a location between the beginning and ending <HTML> tags for the
page.

2 On the Edit menu, click Insert HTML Layout.

3 In the File Name box, type a name for the new HTML Layout, click Open, and then click Yes to
create the file.

The HTML Source Editor inserts an <OBJECT> tag for the new HTML Layout into the HTML page.

The HTML Source Editor also adds an HTML Layout icon in the margin to the left of the
<OBJECT> tag.

4 Click to start the HTML Layout Editor.

5 On the View menu, click Properties, then specify the default properties for the HTML Layout,
such as the height, width, and background color.
6 On the toolbox, click a control and draw it on the HTML Layout.
7 Assign properties to the controls you’ve added to the HTML Layout.
8 Close the HTML Layout Editor and click Yes to save the changes to the HTML Layout.

Create an HTML Layout for Future Use
{ewc HLP95EN.DLL, DYNALINK, "See Also":"CreateanHTMLLayoutforFutureUseC"}

Use this procedure to create and save an HTML Layout, which you’ll insert into one or more pages at
another time.

To create an HTML Layout for future use
1 On the File menu, click New HTML Layout to start the HTML Layout Editor.

2 On the View menu, click Properties, then specify the default properties for the HTML Layout, such
as the height, width, and background color.

3 On the toolbox, click a control and draw it on the HTML Layout.

4 Assign properties to the controls you’ve added to the HTML Layout.

5 On the File menu, click Save to save the HTML Layout.

To use the new HTML Layout, insert it into an HTML file.

Tip You can use any saved HTML Layout across multiple HTML files. For example, you could design
a navigation toolbar and save it as an HTML Layout, then insert that HTML Layout into all of your Web
pages.

Insert an ActiveX Control into HTML
{ewc HLP95EN.DLL, DYNALINK, "See Also":"InsertanActiveXControlintoHTMLC"}

Using the HTML Source Editor and the ActiveX Control Editor, you can add a single ActiveX control,
such as a ScrollBar, at a specific place in HTML.

To insert an ActiveX control into HTML
1 On the File menu, click Open, then choose the HTML file into which you’ll insert the control.

2 Click the location in HTML where you want to insert the control. You must click a location between
the beginning and ending <HTML> tags for the page.

3 On the Edit menu, click Insert ActiveX Control.

4 From the Insert ActiveX Control dialog box, select the control you want to add.

Note    The Insert ActiveX Control dialog box lists all of the controls registered on your system,
including any uncertified custom controls from third-party vendors. Use caution when inserting
uncertified custom controls, as they may cause unpredictable results when your Web page is
viewed.

5 Using the ActiveX Control Editor, draw the control and assign its properties.

When you close the ActiveX Control Editor, the ActiveX Control Pad inserts an <OBJECT> tag for
that control into HTML.

Tip    For each control you insert into HTML, the HTML Source Editor adds a Control icon in
the margin to the left of the <OBJECT> tag. To edit the control later, click

.
6 On the File menu, click Save to save your HTML file and the control you just inserted into it.

Insert an Existing HTML Layout into the Current Page
{ewc HLP95EN.DLL, DYNALINK, "See Also":"InsertanExistingHTMLLayoutintotheCurrentPageC"}

Each HTML Layout is saved as a text file with an .alx extension, independent of HTML, so that you
can use the same layout across multiple Web pages or combine multiple layouts on the same page.
Use this procedure to insert an existing HTML Layout into the current page at the cursor position.

To insert an existing HTML Layout into the current page
1 Create or open the HTML file for the Web page.

2 In the HTML Source Editor, click an insertion point anywhere between the <BODY> tags.

3 On the Edit menu, click Insert HTML Layout, then choose the HTML Layout that you want to
insert.

When you click Open, the HTML Source Editor inserts an <OBJECT> tag referencing the .alx file in
the HTML code. For each HTML Layout you insert into HTML, the HTML Source Editor adds an

HTML Layout icon in the margin to the left of the <OBJECT> tag. To edit the layout later, click

.

Tip    If you’re using multiple HTML Layouts on a single Web page, insert the layouts into the HTML
code in the order that you want them to appear at run time.

Editing Controls, HTML Layouts, and Scripts
{ewc HLP95EN.DLL, DYNALINK, "See Also":"EditingControlsHTMLLayoutsandScriptsC"}

Whenever you insert an ActiveX control, an HTML Layout, or a script into HTML, the HTML Source
Editor adds an icon in the margin to the left of that control, layout, or script. To edit the control, layout,
or script, click the appropriate icon:

Click To edit the corresponding

 Control icon Control on that line of HTML.

 HTML Layout icon HTML Layout on that line of HTML.

 Script icon Script on that line of HTML.

Working with the Toolbar
{ewc HLP95EN.DLL, DYNALINK, "See Also":"WorkingwiththeToolbarC"}

The following table describes the buttons specific to the ActiveX Control Pad:
Click To

Bring the selected control to the top layer of
the HTML Layout.

Move the selected control up one layer on
the HTML Layout.

Move the selected control down one layer on
the HTML Layout.

Send the selected control to the bottom layer
of the HTML Layout.

Start the Script Wizard to script events on an
HTML page or an HTML Layout.

Note    In the HTML Source Editor or the
HTML Layout Editor, select the object you

want to script before clicking .

View or Edit Source Code for an HTML Layout
{ewc HLP95EN.DLL, DYNALINK, "See Also":"VieworEditSourceCodeforanHTMLLayoutC"}

To view or edit source code for an HTML Layout

1 In the HTML Source Editor, click to the left of the HTML Layout you want to view or edit.

2 In the HTML Layout Editor, using the right mouse button, click to display the shortcut menu, then
click View Source Code.

The HTML Layout Editor closes, and the Windows Notepad opens, showing the source code for
the HTML Layout.

3 View or edit the source code, then close Notepad when you’re finished.

Note    Use caution when editing source code for an HTML Layout. Neither Notepad nor the
ActiveX Control Pad performs any syntax checking of source code that you edit. If you make any
mistakes, you could corrupt the HTML Layout and potentially render it unusable.

Choose List View or Code View
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ChooseListVieworCodeViewC"}

The Script Wizard has two views: List view and Code view. You can switch between views by clicking
the appropriate option at the bottom of the Script Wizard window. You can also specify the default
view to use when the Script Wizard starts.

· Use List view to assign simple actions to events, or to set property values, using a “point-and-
click” approach.

· Use Code view to write scripts directly in VBScript or JavaScript — when you want to use the
power and full support of the scripting language.

To specify the default Script Wizard view
1 On the Tools menu, point to Options, and then click Script.

2 In the Script Pane View area, select the default view you want to use.

Start the Script Wizard
{ewc HLP95EN.DLL, DYNALINK, "See Also":"StarttheScriptWizardC"}

1 Click the editor that contains the object you want to script.

For example, to script an ActiveX control that you’ve inserted into HTML, click the HTML Source
Editor.

2 On the ActiveX Control Pad toolbar, click .

Using the Script Wizard in List View
{ewc HLP95EN.DLL, DYNALINK, "See Also":"UsingtheScriptWizardinListViewC"}

The Event Pane

The Event pane provides a hierarchical view of all the objects and events that you can script:

· If you started the Script Wizard from the HTML Source Editor, these include ActiveX controls that
you’ve inserted into HTML and scriptable HTML tags. If you’ve inserted any HTML Layouts into
HTML, they’ll appear as HTML Layout controls.

· If you started the Script Wizard from the HTML Layout Editor, these include all of the controls in
the layout.

In the hierarchy, objects are listed in alphabetical order by ID name. Under each object are the events
that you can script. The icons represent different types of events and objects.

When you click an event, the Script Wizard displays that event handler in the Script pane.

The Action Pane

The Action pane provides a hierarchical view of the actions and properties you can use in the event
handler, as well as the global variables and procedures defined for the page. The icons represent
different types of actions, properties, and objects.

· When you double-click an action, the Script Wizard adds that action to the list in the Script pane.

· When you double-click a property, you’ll see a dialog box prompting you to choose a value for the
property. The type of dialog box you’ll see, and the values you can select, depend on the type of
property you’ve double-clicked.

Once you’ve specified a value for the property, the Script Wizard adds that property to the list in
the Script pane.

Tip    You can quickly script a jump to another page, change a control ’ s front to back layering, or hide
or show a control, by double-clicking the Go To Page…, Bring To Front/Send To Back, or Hide
Control/Show Control actions.

The Script Pane

You can script multiple actions for any given event, and they’ll be executed in the order they appear in
the list in the Script pane. Use the Up and Down Arrow buttons to reorder the actions in the list, and
the Insert Action and Delete Action buttons to add or remove actions from the list. If you specified a
property, you can edit it by selecting that property and clicking the Modify Value button.

In the Event pane, if you click an event handler that’s associated with a custom action — for
example, a script that contains an “if” statement — you’ll see a message in the Script pane advising
you to click Code view to edit the action.

When you click OK or close the Script Wizard, the event handlers you create, and the global variables
and procedures you define, are stored as VBScript or JavaScript in the HTML file for that page, or, for
an HTML Layout, in the .alx file. To discard any changes you don’t want to take effect, click Cancel.

For More Information

HTML Reference

VBScript Reference

Using the Script Wizard in Code View
{ewc HLP95EN.DLL, DYNALINK, "See Also":"UsingtheScriptWizardinCodeViewC"}

The Event Pane

The Event pane provides a hierarchical view of all the objects and events that you can script:

· If you started the Script Wizard from the HTML Source Editor, these include ActiveX controls that
you’ve inserted into HTML and scriptable HTML tags. If you’ve inserted any HTML Layouts into
HTML, they’ll appear as HTML Layout controls.

· If you started the Script Wizard from the HTML Layout Editor, these include all of the controls in
the layout.

In the hierarchy, objects are listed in alphabetical order by ID name; under each object are the events
that you can script. The icons represent different types of objects and events. When you click an
event, the script for that event appears in the Script pane.

The Action Pane

The Action pane provides a hierarchical view of all the actions, properties, variables, and procedures
that can be invoked; each is represented by a different icon. When you double-click an action, the
script for that action appears in the Script pane.

Tip    You can quickly script a jump to another page, change a control ’ s front to back layering, or hide
or show a control, by double-clicking the Go To Page…, Bring To Front/Send To Back, or Hide
Control/Show Control actions.

The Script Pane

The Script pane displays the actual script in the default scripting language you specified for the page,
either VBScript or JavaScript. Click an insertion point to edit the script. The Script Wizard

automatically adds end sub or } end-of-procedure marks to any script you create.

Tip    In the Script pane, you can Cut, Copy, or Paste script, or change the display Font, using the
shortcut menu.

When you click OK or close the Script Wizard, the scripts you create, and the global variables and
procedures you define, are stored as VBScript or JavaScript in either the HTML file for that page, or,
for an HTML Layout, in the .alx file. To discard any script or changes you don’t want to take effect,
click Cancel.

For More Information

HTML Reference

VBScript Reference

Event and Action Pane Icons
{ewc HLP95EN.DLL, DYNALINK, "See Also":"EventandActionPaneIconsC"}

In the Script Wizard, each item in the Event and Action panes is preceded by an icon. The following
table describes each of these icons.

Icon Description

An event that hasn’t been scripted.

An event that has been scripted.

An action.

A property.

An object.

The window object.

Create Event Handlers
{ewc HLP95EN.DLL, DYNALINK, "See Also":"CreateEventHandlersC"}

1 In the Event pane of the Script Wizard, click the Plus sign (+) next to the object you want to script.

The hierarchy expands to display all of the events you can script for that specific object.
indicates scripted events;

 indicates events that haven’t been scripted.
2 Click the event you want to script. For example, click MouseOver to specify what happens when

the user moves the mouse pointer over the object.

3 In the Action pane, double-click the action, property, procedure, or variable you want to add to the
event handler. For example, double-click BackColor to specify a background color that will change
when the user moves the mouse pointer over the object.

· If you’re working in List view and you double-click a property, you’ll see a dialog box asking you
to choose a value for the property. The type of dialog box you’ll see, and the values you can
select, depend on the type of property you’ve double-clicked.

· If you’re working in Code view and you double-click a property or variable, edit the script in the
Script pane and type a value for the property or variable.

Delete Event Handlers
{ewc HLP95EN.DLL, DYNALINK, "See Also":"DeleteEventHandlersC"}

1 In the Event pane of the Script Wizard, click the Plus sign (+) next to the object that contains the
event handler you want to delete.

The hierarchy expands to display all of the events for that specific object. indicates events that
have been scripted.

2 Click the event.

3 Using the right mouse button, click to display the shortcut menu, then click Delete Event Handler.

Define Global Variables
{ewc HLP95EN.DLL, DYNALINK, "See Also":"DefineGlobalVariablesC"}

1 With the pointer in the Action pane of the Script Wizard, using the right mouse button, click to
display the shortcut menu, then click New Global Variable.

2 In the New Global Variable dialog box, type the name of the global variable you want to add to the
page.

You can include subscripts in VBScript or an initial value in JavaScript, in the proper syntax for that
scripting language.

When you click OK, the Script Wizard inserts that variable at the beginning of the HTML file for that
page, or, for an HTML Layout, in the .alx file, in the form dim variable-name for VBScript or var
variable-name for JavaScript.

Edit or Delete Global Variables
{ewc HLP95EN.DLL, DYNALINK, "See Also":"EditorDeleteGlobalVariablesC"}

1 In the Action pane of the Script Wizard, select the global variable you want to edit or delete.

Note    In JavaScript, only variables defined with the var statement are considered global variables.

2 Using the right mouse button, click to display the shortcut menu, then click Edit or Delete.

Note    You can’t delete a global variable if it’s part of a multivariable dim or var statement.

Define Procedures
{ewc HLP95EN.DLL, DYNALINK, "See Also":"DefineProceduresC"}

1 With the pointer in the Action pane of the Script Wizard, using the right mouse button, click to
display the shortcut menu, then click New Procedure.

2 In the Script pane, edit the procedure:

If you’re working in List view, in the Action pane double-click the action or property to add to
the procedure.

If you’re working in Code view, in the Script pane edit the script for the new procedure.

When you click OK, the Script Wizard inserts the procedure at the beginning of the HTML file for that
page, or, for an HTML Layout, in the .alx file.

Specify the Scripting language
{ewc HLP95EN.DLL, DYNALINK, "See Also":"SpecifytheScriptLanguageC"}

The Script Wizard lets you create scripts in either VBScript or JavaScript. However, you can use only
one scripting language per page, and you can’t change the scripting language for a page that already
contains script.

To specify the scripting language
1 On the Tools menu, point to Options, and then click Script.

2 In the Default Script Language area, select the scripting language you want to use.

Specify the Script Pane Font
{ewc HLP95EN.DLL, DYNALINK, "See Also":"SpecifytheScriptPaneFontC"}

1 With the pointer in the Script pane, in Code view, using the right mouse button, click to display the
shortcut menu, then click Font.

2 Select the font you want to use in the Script pane.

Script a Jump to Another Page
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ScriptaJumptoAnotherPageC"}

Use this procedure to script an event that jumps to another page.

To script a jump to another page
1 In the Event pane of the Script Wizard, click the Plus sign (+) next to the object you want to script.

The hierarchy expands to display all of the events for that specific object.

2 Click the event from which you want to create a jump. For example, click Click to jump to another
page when the user clicks the object.

3 In the Action pane, double-click the Go To Page… action.

· If you’re working in List view, in the Go To Page dialog box, type the URL, without beginning or
ending quotation marks, for the jump destination page, then click OK.

· If you’re working in Code view, in the Script pane, type the URL of the jump destination page
for the window.location.href = “” property.

Hide or Show a Control
{ewc HLP95EN.DLL, DYNALINK, "See Also":"HideorShowaControlC"}

Use this procedure to script an event that hides or shows a control.

To hide or show a control
1 In the Event pane of the Script Wizard, click the Plus sign (+) next to the object that contains the

event you want to script. The hierarchy expands to display all of the events for that specific object.

2 Click the event that will initiate the hide or show action. For example, click Click to hide or show a
control when the user clicks the object in the Event pane.

3 In the Action pane, click the Plus sign (+) next to the control that you want to hide or show. The
hierarchy expands to display all of the actions and properties for that specific control.

4 Double-click the Hide Control or Show Control action as appropriate.

Change the Front/Back Order of a Control
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ChangetheFrontBackOrderofaControlC"}

Use this procedure to script an event that moves a control to the front or back layer, or z-order, of an
HTML Layout.

To change the front/back order of a control
1 In the Event pane of the Script Wizard, click the Plus sign (+) next to the object that contains the

event you want to script. The hierarchy expands to display all of the events for that specific object.

2 Click the event you want to initiate the front/back reordering action. For example, click Click to
bring a control to the front of the z-order when the user clicks the object in the Event pane.

3 In the Action pane, click the Plus sign (+) next to the control that you want to reorder front or back.
The hierarchy expands to display all of the actions and properties for that specific control.

4 Double-click the Bring to Front or Send to Back action as appropriate.

Script Wizard Technical Notes
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ScriptWizardTechnicalNotesC"}

Differences between List view and Code view

In List view, you can create event handlers that use these simple actions:

· Any method invocation on any object or procedure that takes no arguments.

· Any method invocation on any object or procedure that takes the same number and names of
arguments as the event handler.

· The Go To Page, Hide or Show Control, or Bring to Front/Send to Back actions.

· Any assignment to an object property or global variable.

In Code view, on the other hand, you have full support for the default scripting language, including
control flow.

Scriptable HTML elements

The ActiveX Control Pad doesn’t support scripting of HTML or <FRAMESET> tags.

Scripting the Window object

In an HTML Layout .alx file, you can script only the window.location.href property for the Window
object. In an HTML Source Editor page, the entire Window object is available.

<INPUT> elements with common NAME=

Option buttons and other <INPUT> elements that share the same NAME= are not differentiated from
one another in the Script Wizard Event pane.

For example, in the case <INPUT TYPE=RADIO>, each item is displayed in the following way:

NAME ‘VALUE’

So if you have three option buttons, all named Color, but each having a distinct value, they might
appear as:

· Color ‘Blue’

· Color ‘Red’

· Color ‘Green’

Reading HTML

When you start the Script Wizard, it reads the HTML file and searches for any occurrences of script.
The first language found is established as the default scripting language for that page.

If the Script Wizard finds more than one variable on a dim or var line, that variable can’t be deleted or
modified.

The ActiveX Control Pad does not support the SRC= attribute of the HTML <SCRIPT> tag. If your
HTML page includes such a tag, you’ll see a warning message when you start the Script Wizard.

Writing HTML

When you close the Script Wizard, existing scripts are saved back into the HTML file in the same
location. The ActiveX Control Pad adds HTML comment tags <!-- … > around any new script, and
maintains them (if they were already there) on any existing script.

All new external event handlers are placed before, and as near as possible to, the object within the

<BODY> tags of the HTML file, or, for an .alx file, before the <DIV> tag.

Any global variables or user-defined procedures will appear in <SCRIPT> tags within the <HEAD>
section of the HTML file, or, for an .alx file, before any event handlers.

If the Script Wizard inserts a new <SCRIPT> tag before any others in the HTML file, the new
<SCRIPT> tag will specify the default scripting language.

Quotation marks in scripts

External List view scripts use double quotes ("), while internal List view scripts use single quotes (‘).

For More Information

HTML Reference

VBScript Reference

HTML Layout Control
{ewc HLP95EN.DLL, DYNALINK, "See Also":"isObjHTMLlayoutControlC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"isObjHTMLlayoutControlX ":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"isObjHTMLlayoutControlP"}
{ewc HLP95EN.DLL, DYNALINK, "Methods":"isObjHTMLlayoutControlM"}                  {ewc HLP95EN.DLL, DYNALINK,
"Events":"isObjHTMLlayoutControlE"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"isObjHTMLlayoutControlS "}

References an HTML Layout and renders it at run time.

Remarks

An HTML Layout is a WYSIWYG drawing board to which you can add multiple controls. You can draw
controls in the precise sizes and locations you want, group and align them, and even put one control
on top of another.

The ActiveX Control Pad saves each HTML Layout in a file format with an .alx extension. When you
insert an HTML Layout into HTML, the ActiveX Control Pad adds an HTML Layout control for each
layout that you insert. The HTML Layout control is what actually renders the HTML Layout at run
time.

HTML Layout
{ewc HLP95EN.DLL, DYNALINK, "See Also":"isObjActiveXLayoutC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"isObjActiveXLayoutX ":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"isObjActiveXLayoutP"}                 
{ewc HLP95EN.DLL, DYNALINK, "Methods":"isObjActiveXLayoutM"}                  {ewc HLP95EN.DLL, DYNALINK,
"Events":"isObjActiveXLayoutE"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"isObjActiveXLayoutS "}

A WYSIWYG design area where you can place multiple controls precisely.

Remarks

An HTML Layout is a WYSIWYG drawing board to which you can add multiple controls. Using the
HTML Layout Editor, you can draw controls in the precise sizes and locations you want, group and
align them, and even put one control on top of another. You can also specify properties for an HTML
Layout, such as the background color, in the HTML Layout Editor’s Properties window.

The ActiveX Control Pad saves each HTML Layout in a file format with an .alx extension. When you
insert an HTML Layout into HTML, the ActiveX Control Pad adds an HTML Layout control for each
layout that you insert. The HTML Layout control is what actually renders the HTML Layout at run
time.

If you insert multiple HTML Layouts into HTML, the layouts will be rendered at run time in the order
they appear in HTML.

HotSpot Control
{ewc HLP95EN.DLL, DYNALINK, "See Also":"isObjHotSpotC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"isObjHotSpotX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"isObjHotSpotP"}                  {ewc
HLP95EN.DLL, DYNALINK, "Methods":"isObjHotSpotM"}                  {ewc HLP95EN.DLL, DYNALINK, "Events":"isObjHotSpotE "}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"isObjHotSpotS "}

Specifies a region for exposing events.

Remarks

Assigning actions to the HotSpot control’s MouseEnter and MouseExit events determines what
happens when a user moves the mouse pointer over the HotSpot.

You can also use HotSpot as an alternative to image maps in HTML. To do this, place multiple
HotSpot controls over an Image control and assign actions to the HotSpot controls’ events. By
default, the HotSpot is invisible at run time because the default value of the BackStyle property is
Transparent and the BorderStyle property is None.

To make your HTML Layout more accessible to keyboard-only users, assign actions to the HotSpot
control’s Enter event and make sure that the Enabled property is set to True. At run time, keyboard-
only users will then be able to tab to the HotSpot and press ENTER to trigger the event.

The default event for a HotSpot is the Click event.

Image Control
{ewc HLP95EN.DLL, DYNALINK, "See Also":"isObjImageC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"isObjImageX ":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"isObjImageP "}                  {ewc
HLP95EN.DLL, DYNALINK, "Methods":"isObjImageM "}                  {ewc HLP95EN.DLL, DYNALINK, "Events":"isObjImageE "}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"isObjImageS "}

Displays a picture.

Remarks

The Image control lets you crop, size, or zoom a picture, but does not allow you to edit the contents
of the picture. For example, you can’t use Image to change the colors in the picture, to make the
picture transparent, or to refine the image of the picture. You must use image editing software for
these purposes.

Image supports the following formats:

· .gif (’87 and ’89)

· .jpg

· .wmf

· .bmp

Note    The picture is not actually embedded into the control. The control references the picture at run
time based on the URL specified by the PicturePath property

The default event for Image is the Click event.

CodeBase Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":" isProCodeBaseC"}                    {ewc HLP95EN.DLL, DYNALINK,
"Example":"isProCodeBaseX":1}                    {ewc HLP95EN.DLL, DYNALINK, "Applies To":"isProCodeBaseA"}                    {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"isProCodeBaseS"}

Specifies the URL of a control’s COM object.

Remarks

The CodeBase property makes it possible to automatically download ActiveX controls from a server
to a user’s machine.

The CodeBase property supports the following file types:

File type Description

PE
(portable executable)

The PE (for example, .ocx, .dll, .exe) is
downloaded, installed, and registered
automatically if the control is not already
registered on the user’s computer. This is the
simplest way to package a single-file ActiveX
control, but it does not use file compression
and isn’t platform independent except with
HTTP.

.cab
(cabinet)

The .cab file contains one or more files, all of
which are downloaded together in a single
compressed cabinet file. One file in the
cabinet is an .inf file providing further
installation information. The .inf file may refer
to files in the .cab as well as to files at other
URLs.

.inf
(installation information)

The stand-alone .inf file specifies various files
that need to be downloaded and set up for
an .ocx to run. The syntax of the .inf file
supports URLs pointing to files to download
as well as platform independence (by
enumerating files for various platforms). This
mechanism provides platform independence
for non-HTTP servers.

For specifics about creating PE, .cab, and .inf files and for the latest information about Internet
Component Download, go to

http://www.microsoft.com/intdev/signcode/codedwld.htm

on the Internet.

Note    The CodeBase property can be set only at design time. It can’t be set at run time.

DrawBuffer Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":" isProDrawBufferC"}                                    {ewc HLP95EN.DLL, DYNALINK,
"Example":"isProDrawBufferX":1}                                    {ewc HLP95EN.DLL, DYNALINK, "Applies To":"isProDrawBufferA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"isProDrawBufferS"}

Specifies the suggested number of pixels set aside for off-screen memory in rendering an HTML
Layout.

Syntax

object.DrawBuffer [= value]

Part Description

object Required. A valid object name.

value An integer between 16,000 to 1,048,576 equal to the maximum
number of pixels the object will render off-screen. The default
value is 32,000, which covers, for example, an area of 80x400
pixels.

Remarks

The DrawBuffer property specifies the maximum number of pixels that can be drawn at one time as
the display repaints. The actual memory used by the HTML Layout depends on the screen resolution
of the display. If you set a large value for DrawBuffer, performance will be slower. A large buffer helps
when several large images overlap.

The DrawBuffer property cannot be set from the Properties window in your .alx file. You can set
DrawBuffer in Script Wizard by selecting the HTML Layout onLoad event.

PicturePath Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":" isProPicturePathC"}                                    {ewc HLP95EN.DLL, DYNALINK,
"Example":"isProPicturePathX":1}                                    {ewc HLP95EN.DLL, DYNALINK, "Applies To":"isProPicturePathA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"isProPicturePathS"}

Specifies the URL of the picture to display on Image control.

Syntax

object.PicturePath = URL

The PicturePath property syntax has these parts:

Part Description

object Required. A valid object.

URL Required. The URL of a picture file.

Remarks

PicturePath requires a complete URL. It does not support a UNC path.

MouseEnter, MouseExit Events
{ewc HLP95EN.DLL, DYNALINK, "See Also":" isEvtMouseEnterMouseExitC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"isEvtMouseEnterMouseExitX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"isEvtMouseEnterMouseExitA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"isEvtMouseEnterMouseExitS"}

MouseEnter occurs when the mouse pointer is moved over the control. MouseExit occurs when the
mouse pointer is moved off of the control.

Syntax

Private Sub object_MousEnter()
Private Sub object_MouseExit(Cancel As Boolean)

The MouseEnter and MouseExit event syntax has these parts:

Part Description

object Required. A valid object name.

Cancel Required. Event status. False indicates that the control should
handle the event (default). True indicates that the application
should handle the event and the focus should remain at the
current control.

Remarks

You can use the MouseEnter and MouseExit events to make something interesting happen, like
playing sound files, when the mouse pointer hovers over an object.

onLoad Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":" isEvtonLoadC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"isEvtonLoadX":1}                    {ewc HLP95EN.DLL, DYNALINK, "Applies To":"isEvtonLoadA"}                    {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"isEvtonLoadS"}

OnLoad occurs when the entire contents of the HTML Layout (.ALX file) are created and before the
Window onLoad event occurs.

Syntax

sub object.onLoad=function-name

Part Description

object Required. The filename of the HTML Layout object (.ALX file).

function-
name

An object expression which evaluates to a scripting function.

Remarks

The order of onLoad events is the HTML Layout, then the Window onLoad event. The Window
onLoad event only fires after the entire contents of the window have been rendered.

You can script the Window onLoad event from HTML but not from within the .ALX. Therefore, when
editing an .ALX file, the Script Wizard does not display the Window Load/Unload events.

There is no HTML Layout onUnLoad event.

Insert ActiveX Control Dialog Box
{ewc HLP95EN.DLL, DYNALINK, "See Also":"InsertActiveXControlDialogBoxC"}

This dialog box appears when you click Insert ActiveX Control on the Edit menu. Use it to select an
ActiveX control, such as a TextBox, to insert into HTML.

In the Object Type list, click the control you want to insert, then click OK.

Note    The Object Type list shows all of the controls registered on your system, including any
uncertified custom controls from third-party vendors. Use caution when inserting uncertified custom
controls, as they may cause unpredictable results when your Web page is viewed.

Script Wizard Options Dialog Box
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ScriptWizardOptionsDialogBoxC"}

This dialog box appears when, in the ActiveX Control Pad, you click the Tools menu, point to
Options, and then click Script. Use this dialog box to set the default view, script language, and font
for the Script Wizard.

To Click

Set the default view for the Script
Wizard

List View or Code View

Set the default script language for the
Script Wizard

Visual Basic Script or JavaScript

Change the font used in the Script
Wizard Script pane when in Code
view

Script Pane Font to display the Font
Selection dialog box

HTML Layout Options Dialog Box
{ewc HLP95EN.DLL, DYNALINK, "See Also":"HTMLLayoutOptionsDialogBoxC"}

This dialog box appears when you click the Tools menu, point to Options, and then click HTML
Layout. Use this dialog box to specify the default grid settings for the HTML Layout Editor.

To Do this

Change the size of the layout grid Under Grid Settings, adjust the
number of points for Vertical
Spacing or Horizontal Spacing.

Hide the grid Clear the Show Grid check box.

Show the grid Select the Show Grid check box.

Disable the grid so you can draw
objects of any size in any location

Clear the Snap To Grid check box.

Enable the grid so you can draw
objects that are automatically aligned
to the nearest grid coordinates

Select the Snap To Grid check box.

New Global Variable Dialog Box
{ewc HLP95EN.DLL, DYNALINK, "See Also":"NewGlobalVariableDialogBoxC"}

This dialog box appears when you’re working in the Action pane of the Script Wizard, and you click
New Global Variable on the shortcut menu. Use this dialog box to add a new global variable to
HTML for the active Web page.

Type the name of the global variable you want to add. You can include subscripts or an initial value in
the proper syntax for the script language you’re using (either VBScript or JavaScript).

When you click OK, the ActiveX Control Pad then inserts that variable at the beginning of HTML, in
the form dim variable-name for VBScript or var variable-name for JavaScript.

New Dialog Box
{ewc HLP95EN.DLL, DYNALINK, "See Also":"NewDialogBoxC"}

This dialog box appears when you click on the ActiveX Control Pad toolbar. Use this dialog box
to create a new Web page or a new HTML Layout.

To Click

Create an HTML file for a
new Web page

Internet Document (HTML)

Create an HTML Layout for
future use.

Note    You must insert the
HTML Layout into one or
more HTML pages at another
time.

HTML Layout

Value Dialog Boxes
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ValueDialogBoxesC"}

In List View, the appropriate properties and global variables for events are displayed in the Action
pane and can be assigned values.

Double-click the name of the action you wish to insert. A type of Value dialog box appears, depending
on the allowable values for that particular action. Values consist of text strings, custom or variable
names, numbers, Boolean values, or enumerations.

Text String Value dialog box

This example of a Text String Value dialog box asks you to insert a text string for the GoTo Page.. action.
You can either type in a known value, such as the URL for the page associated with this particular event,
or click the Custom or Color buttons to assign a value.
When the value is inserted into the script, quotation marks are automatically added to the string. For
example:
What you
enter:

Result: Result for INPUT, SELECT,
TEXTAREA, or FORM event

Sample Text “Sample Text” ‘Sample Text’

You receive an error message if you enter an invalid text string. This can happen because of a single
quotation mark (‘) or a double quotation mark (‘’) in the value you typed. For example:

What you
enter:

Result: Result for INPUT,
SELECT, TEXTAREA, or
FORM event

It’s the Internet “It’s the Internet”

(Valid)

‘It’s the Internet’

(Invalid)

It is the
“Internet”

“It is the
“Internet””

(Invalid)

‘It is the “Internet”’

(Valid)

If you are scripting an INPUT, TEXTAREA, SELECT or FORM element, then the problem is the
presence of a single quotation mark in your value. In all other cases, the problem is the presence of a
double quotation mark in your value. The solution to this problem depends on the scripting language
you are working with.

VBScript Solution

If you are using VBScript, the solution is to double the number of quotation marks. If you are typing a
double quotation mark in your text string which is causing problems, turn it into two (") characters: ("").
If you are typing a single quotation mark which is causing problems, turn it into two (') characters: ('’).

Invalid result: What you should type:

‘It’s the Internet It’’s the Internet

“It is the “Internet”” It is the “”Internet””

JavaScript Solution

If you are using JavaScript, you can place a backslash character in front of the problem character. For
example, if a double quotation mark is causing problems, change it to (\"). Similarly, if a single
quotation mark is causing problems, change it to (\').

Invalid result: What you should type:
‘It’s the Internet’ It\’s the Internet

“It is the “Internet”” It is the \”Internet\”

Custom Value dialog box

This dialog box appears when clicking Custom from the previous Go To Page.. Text String Value dialog
box. If you have a pre-defined variable, property value or value that is not a simple constant, you can
enter it here.
The Custom Value dialog box is the default Value dialog box and appears when the selected property is
not categorized as a text string, number, Boolean value, or enumeration. You can also bring this dialog
box up by clicking the Custom option in one of the Value dialog boxes as previously displayed, or click the
Modify Value option in the Script pane.

Color dialog box

Clicking the Color button displays the standard Windows color picker window. Selecting a color
creates a value in the Script pane depending on which property you are modifying.

If you are modifying a Window object property, the value is displayed according to HTML rules in
RRGGBB format as hex constants with the # symbol as the prefix.

If you are modifying a control property and reaching the Color dialog box directly or by choosing Color
from the Number Value dialog box, the value is interpreted as an OLE color in BBGGRR format as
hex constants, with the &H symbol as the prefix for VBScript, and the 0x prefix for JavaScript.

Note that the Color button is available for many properties and not just for changing the foreground or
background colors of an object. For example, if you change the value of the Caption property from
text such as “Push” to the color red, the actual text “#FF0000” is placed in your control rather than
the color red.

HTML-named colors such as “red” or “white” are not supported values.

Number Value dialog box

This example of a Number Value dialog box asks you to insert a number for the Layout1 DrawBuffer
property. Only valid decimal, hexadecimal, or octal numbers in the syntax of the current scripting

language may be entered in this dialog box. If an invalid number is entered, an error message appears.
The Custom button, from which you can assign a single constant value or a variable assignment, is also
available from this dialog box.

Boolean Value dialog box

This example of a Boolean Value dialog box provides option buttons from which to choose the Boolean
values True or False for the Label1 Enabled property.
The Custom button, from which you can assign a single constant value or a variable assignment, is also
available from this dialog box.

Enumeration Value dialog box

This example of an Enumeration Value dialog box provides a list box of integer values from which to
choose the Label1 PicturePosition property value.
The Custom button, from which you can assign a single constant value or a variable assignment, is also
available from this dialog box.

Glossary

A-C

accelerator key

ActiveX Control Pad

ANSI character set

argument

array

background color

browser

class

class identifier

clear

client region

collection

COM object

container

context ID

control

control group

cycle

D-F

data format

default

design time

dominant control

drop source

event

event handler

focus

foreground color

function

G-M

GIF

global variable

grid block

home page

HTML

HTTP

hyperlink

hypertext

IME

inherited property

Internet

intranet

JPEG

keyboard state

mask

method

modal

module

N-R

named argument

Null

OLE object

OLE status code

placeholder

point

project

property

property page

RGB

run time

S-Z

script

SendKeys statement

shortcut menu

system colors

tab order

tag

target

toolbox

transparent

UNC

URL

WWW

z-order

browser

Software that interprets the markup of HTML files posted on the World Wide Web, formats them into
Web pages, and displays them. Some browsers can also open special programs to play sound or
video files in Web documents if you have the necessary hardware. Internet Explorer is a browser.

tag

Embedded between angle brackets in HTML text to add character or paragraph formatting to the text.
Web browsers display text and graphic elements based on the tags an author uses. The tag itself is
not displayed by the browser.

For example, the text

Make this text look bold

is displayed this way by a browser:

Make this text look bold

mask

Enables you to isolate parts of an image while you apply color changes or other effects to the rest of
the image.

modal

A window or form state. A modal window must be closed before you can work in any other windows.
Dialog boxes and messages are usually modal.

If a window is not modal, it can remain open while you work in other windows.

home page

The main page of a World Wide Web site. A home page is generated by a Web owner and often has
links to other pages, both within and outside the site.

HTTP

Hypertext Transfer Protocol. A World Wide Web standard for transferring data, such as text, graphics,
sound, and other digital information, between Web servers and clients. URLs of files on Web servers
begin with http://

hyperlink

A screen region that is sensitive to mouse clicks and that triggers a jump to related material in the
same or another file. Hyperlinks are typically represented by colored and underlined text, or by a
graphic, and they often change color after they have been used.

hypertext

A collection of documents containing cross-references or links which, with the aid of a browser, allow
the reader to move easily within a document or from one document to another.

Internet

A worldwide network of thousands of smaller computer networks and millions of commercial,
educational, government, and personal computers.

intranet

A network within an organization that uses Internet technologies (such as the HTTP or FTP
protocols). You can use an intranet to navigate between documents, pages, or objects using
hyperlinks.

ActiveX Control Pad

A Microsoft application used to create, open, modify, and save Web pages.

URL

Uniform Resource Locator. Identifies the full path of a document, graphic, or other file on the Internet
or on an intranet.

A URL expresses the protocol (such as FTP or HTTP) to be accessed and the file’s location. A URL
may also specify an Internet e-mail address or a newsgroup. Some examples of URLs are:

http://www.someones.homepage/default.html

ftp://ftp.server.somewhere/ftp.file

gopher://server.name

file://Server/Share/File.doc

WWW

World Wide Web. A system for navigating the Internet by using hyperlinks. When you use a Web
browser, the Web appears as a collection of text, pictures, sounds, and digital movies.

control

A tool you select from the ActiveX Control Pad toolbox to draw an object, such as a CommandButton
or a TextBox, in an HTML Layout.

Controls have their own set of recognized properties and events. You use controls to receive user
input, display output, and trigger event procedures. You can manipulate most controls using methods.

z-order

The visual layering of controls on a form along the form's z-axis (depth). The z-order determines
which controls are in front of other controls.

toolbox

A collection of controls you can select to draw an object, such as a CommandButton or a TextBox,
in an HTML Layout.

method

A statement in VBScript that performs an action for an object. The syntax for a method is:

Object.Method [Value]

For example, the following statement uses the AddItem method to place the word “Delete” in the
List2 list box:

List2.AddItem “Delete”

argument

A constant, variable, or expression that supplies information to an action, procedure, or method.

For example, in the Beforeupdate event syntax,

Private Sub object_BeforeUpdate(Cancel As Boolean)

Cancel is an argument

event

An occurrence, often initiated by the user, to which a program can respond. A key press, button push,
and mouse movement are typical events.

function

A statement that returns a value to a script. The value returned can be assigned to a variable, a
property, or another statement or function.

For example, in the Picture property syntax:

object.Picture = LoadPicture(pathname)

LoadPicture is a function that assigns an image to Picture.

global variable

A variable whose value can be accessed and modified by any event handler on a Web site.

property

An attribute of an object that you set to define one of the object’s characteristics (such as size or
color) or an aspect of its behavior (such as whether it is hidden).

run time

The time during which an application is running and you can interact with it as a user would. For
example, during run time you can view an .alx file in a browser such as Internet Explorer.

In contrast, during design time you can create an application and modify its design.

UNC

Uniform Naming Convention. The UNC specifies a directory on a server on a local area network.

The basic format is:

\\servername\sharename

where "servername" is the host name of a network file server, and "sharename" is the name of a
networked or shared directory.

script

In ActiveX Control Pad terminology, code written in VBScript or JavaScript. Inserted in an HTML page
or HTML Layout, a script consists of a set of instructions that connect events with actions.

GIF

Graphics Interchange Format. A graphics file format that many World Wide Web browsers can display
as inline graphics. GIF was developed specifically for transmitting images. It is best used for graphics
with few colors, such as cartoons or line drawings. GIF files are compressed bitmaps. See JPEG

HTML

Hypertext Markup Language. A system of marking up, or tagging, a document so it can be published
on the World Wide Web. Documents prepared in HTML include reference graphics and formatting
tags. You use a Web browser (such as Microsoft Internet Explorer) to view these documents.

JPEG

Joint Photographic Experts Group. A graphics file format supported by many World Wide Web
browsers. JPEG was developed for compressing and storing photographic images and is best used
for graphics containing many colors, such as scanned photos. JPEG files, which have a .jpg
extension in Windows, are compressed bitmaps. See GIF

design time

The time during which you can build or modify an application in the development environment by
adding controls, setting control properties, and so on. For example, during design time you can edit
an .alx file in HTML Layout.
In contrast, during run time you can interact with an application as a user would.

COM object

An object that conforms to the Component Object Model. COM defines how ActiveX objects and their
clients interact within processes or across process boundaries.

shortcut menu

A list of commands that is displayed when you click the right mouse button. Shortcut menus provide
quick access to frequently used commands that are also available from the main menu bar. The
commands listed depend on the object you click.

event handler

Code that is executed when a particular event occurs. The following example shows the event
handler for the Click event associated with CommandButton1. The event handler sets the Caption
property of BannerLabel.

Sub CommandButton1_Click ()
BannerLabel.Caption = "New Caption"
End Sub

default

A predefined setting or value that is assumed if no other value is specified.    For example, if you do
not assign a value to the Enabled property of a CheckBox, the Enabled property is True by default.

Bring to Front Action
{ewc HLP95EN.DLL, DYNALINK, "See Also":" isActBringtoFrontActionC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":" isActBringtoFrontActionX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":" isActBringtoFrontActionA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":" isActBringtoFrontActionS"}

The Bring to Front action positions a control within an HTML Layout on top of overlapping controls.

List View format

When selecting the Bring to Front action, the name of the control you have selected appears under
the Object category in the Script pane and the Bring to Front action appears under the Action
category.

Code View format

When selecting the Bring to Front action in Code View, an action appears in the Script pane with the
following command:

VBScript: JavaScript

call object.ZOrder(0) object.ZOrder(0)

Go To Page Action
{ewc HLP95EN.DLL, DYNALINK, "See Also":" isActGoToPageActionC"}                  {ewc HLP95EN.DLL, DYNALINK, "Example":"
isActGoToPageActionX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":" isActGoToPageActionA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":" isActGoToPageActionS"}

The Go To Page action causes the browser to navigate to a specified web location. Go To Page
appears as the first action in the Action pane, at the highest level, and is available when editing any
file.

List View format

When selecting the Go To Page action, the Text String Value dialog box appears. You can type in a
URL or customized variable name and select OK. No object is shown under the Object category in
the Script pane, and the Go To Page action appears under the Action category, along with the URL
assignment in quotation marks.

Code View format

When selecting the Go To Page action in Code View, an action appears in the Script pane in the
following format with empty quotation marks:

Window.location.href = “”

You can type in a URL within the quotation marks.

Hide Control Action
{ewc HLP95EN.DLL, DYNALINK, "See Also":" isActHideControlActionC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":" isActHideControlActionX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":" isActHideControlActionA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":" isActHideControlActionS"}

The Hide Control action makes a control invisible.

List View format

When selecting the Hide Control action, the name of the control you have selected appears under
the Object category in the Script pane and the Hide Control action appears under the Action
category.

Code View format

When selecting the Hide Control action in Code View, an action appears in the Script pane with the
following Boolean assignment:

VBScript: JavaScript

object.Visible = False object.Visible = false

Send to Back Action
{ewc HLP95EN.DLL, DYNALINK, "See Also":" isActSendtoBackActionC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":" isActSendtoBackActionX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":" isActSendtoBackActionA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":" isActSendtoBackActionS"}

The Send to Back action positions a control within an HTML Layout behind overlapping controls.

List View format

When selecting the Send to Back action, the name of the control you have selected appears under
the Object category in the Script pane and the Send to Back action appears under the Action
category.

Code View format

When using VBScript and selecting the Send to Back action in Code View, an action appears in the
Script pane with the following command:

VBScript: JavaScript
call object.ZOrder(1) object.ZOrder(1)

Show Control Action
{ewc HLP95EN.DLL, DYNALINK, "See Also":" isActShowControlActionC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":" isActShowControlActionX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":" isActShowControlActionA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":" isActShowControlActionS"}

The Show Control action makes a control visible.

List View format

When selecting the Show Control action, the name of the control you have selected appears under
the Object category in the Script pane and the Show Control action appears under the Action
category.

Code View format

When using VBScript and selecting the Show Control action in Code View, an action appears in the
Script pane with the following Boolean assignment:

VBScript: JavaScript

object.Visible = True object.Visible = true

CheckBox Control
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3objCheckboxC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3objCheckboxX ":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"f3objCheckboxP "}                  {ewc
HLP95EN.DLL, DYNALINK, "Methods":"f3objCheckboxM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Events":"f3objCheckboxE "}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3objCheckboxS "}

Displays the selection state of an item.

Remarks

Use a CheckBox to give the user a choice between two values such as Yes/No, True/False, or
On/Off. When the user selects a CheckBox, it displays a special mark (such as an X) and its current
setting is Yes, True, or On; if the user does not select the CheckBox, it is empty and its setting is No,
False, or Off. Depending on the value of the TripleState property, a CheckBox can also have a null
value.

A disabled CheckBox shows the current value, but is dimmed and does not allow changes to the
value from the user interface.

You can also group check boxes so that a user can select one or more of a group of related items.
For example, you can create an order form that contains a list of available items, with a CheckBox
preceding each item. The user can select a particular item or items by checking the corresponding
CheckBox.

The default property of a CheckBox is the Value property.

The default event of a CheckBox is the Click event.

Note    The ListBox also lets you put a check mark by selected options. Depending on your
application, you can use the ListBox instead of using a group of CheckBox controls.

ComboBox Control
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3objComboBoxC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3objComboBoxX ":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"f3objComboBoxP "}                  {ewc
HLP95EN.DLL, DYNALINK, "Methods":"f3objComboBoxM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Events":"f3objComboBoxE "}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3objComboBoxS "}

Combines the features of a ListBox and a TextBox. The user can enter a new value, as with a
TextBox, or the user can select an existing value as with a ListBox.

Remarks

The list in a ComboBox consists of rows of text. Each row can have one or more columns, which can
appear with or without headings. Some applications do not support column headings, others provide
only limited support.

The default property of a ComboBox is the Value property.

The default event of a ComboBox is the Change event.

Note    If you want more than a single line of the list to appear at all times, you might want to use a
ListBox instead of a ComboBox. If you want to use a ComboBox and limit values to those in the
list, you can set the Style property of the ComboBox so the control looks like a drop-down list box.

CommandButton Control
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3objCommandButtonC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3objCommandButtonX ":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"f3objCommandButtonP "}
{ewc HLP95EN.DLL, DYNALINK, "Methods":"f3objCommandButtonM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Events":"f3objCommandButtonE "}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3objCommandButtonS "}

Starts, ends, or interrupts an action or series of actions.

Remarks

The event procedure assigned to the CommandButton's Click event determines what the
CommandButton does. For example, you can create a CommandButton that jumps to another
HTML page. You can also display text, a picture, or both on a CommandButton.

The default property of a CommandButton is the Value property.

The default event for a CommandButton is the Click event.

ListBox Control
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3objListBoxC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3objListBoxX ":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"f3objListBoxP "}                  {ewc
HLP95EN.DLL, DYNALINK, "Methods":"f3objListBoxM "}                  {ewc HLP95EN.DLL, DYNALINK, "Events":"f3objListBoxE "}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3objListBoxS "}

Displays a list of values and lets you select one or more entries from the list.

Remarks

The ListBox can either appear as a list or as a group of OptionButton controls or CheckBox
controls.

The default property for a ListBox is the Value property.

The default event for a ListBox is the Click event.

You can't drop text into a drop-down ListBox.

Note      ListBox is a windowed control. Therefore you cannot position it behind a windowless control
in the z-order. For example, you cannot position a ListBox behind a CommandButton. However, you
can position the z-order of ListBox relative to other ListBox controls.

OptionButton Control
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3objOptionButtonC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3objOptionButtonX ":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"f3objOptionButtonP "}                 
{ewc HLP95EN.DLL, DYNALINK, "Methods":"f3objOptionButtonM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Events":"f3objOptionButtonE "}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3objOptionButtonS "}

Shows the selection status of one item in a group of choices.

Remarks

Use an OptionButton to show whether a single item in a group is selected.

If the user selects the OptionButton, the current setting is Yes, True, or On; if the user does not
select the OptionButton, the setting is No, False, or Off. For example, an OptionButton in an
inventory-tracking application might show whether an item is discontinued. A disabled OptionButton
is dimmed and does not show a value.

Depending on the value of the TripleState property, an OptionButton can also have a null value.

You can also group OptionButtons so that a user can select one or more of a group of related items.
For example, you can create an order form with a list of available items, with an OptionButton
preceding each item. The user can select a particular item by checking the corresponding
OptionButton.

The default property for an OptionButton is the Value property.

The default event for an OptionButton is the Click event.

ScrollBar Control
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3objScrollBarC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3objScrollBarX ":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"f3objScrollBarP "}                  {ewc
HLP95EN.DLL, DYNALINK, "Methods":"f3objScrollBarM "}                  {ewc HLP95EN.DLL, DYNALINK, "Events":"f3objScrollBarE
"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3objScrollBarS "}

Returns or sets the value of another control based on the position of the scroll box.

Remarks

A ScrollBar is a stand-alone control you can place on an HTML Layout. It is visually like the scroll bar
you see in certain objects such as a ListBox or the drop-down portion of a ComboBox. However,
unlike the scroll bars in these examples, the stand-alone ScrollBar is not an integral part of any other
control.

To use the ScrollBar to set or read the value of another control, you must write code for the
ScrollBar’s events and methods. For example, to use the ScrollBar to update the value of a
TextBox, you can write code that reads the Value property of the ScrollBar and then sets the Value
property of the TextBox.

The default property for a ScrollBar is the Value property.

The default event for a ScrollBar is the Change event.

Note    To create a horizontal or vertical ScrollBar, drag the sizing handles of the ScrollBar
horizontally or vertically on the HTML Layout.

SpinButton Control
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3objSpinButtonC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3objSpinButtonX ":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"f3objSpinButtonP "}                  {ewc
HLP95EN.DLL, DYNALINK, "Methods":"f3objSpinButtonM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Events":"f3objSpinButtonE "}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3objSpinButtonS "}

Increments and decrements numbers.

Remarks

Clicking a SpinButton changes only the value of the SpinButton. You can write code that uses the
SpinButton to update the displayed value of another control. For example, you can use a
SpinButton to change the month, the day, or the year shown on a date. You can also use a
SpinButton to scroll through a range of values or a list of items, or to change the value displayed in a
text box.

To display a value updated by a SpinButton, you must assign the value of the SpinButton to the
displayed portion of a control, such as the Caption property of a Label or the Text property of a
TextBox. To create a horizontal or vertical SpinButton, drag the sizing handles of the SpinButton
horizontally or vertically on the HTML Layout.

The default property for a SpinButton is the Value property.

The default event for a SpinButton is the Change event.

TabStrip Control
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3objTabStripC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3objTabStripX ":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"f3objTabStripP "}                  {ewc
HLP95EN.DLL, DYNALINK, "Methods":"f3objTabStripM "}                  {ewc HLP95EN.DLL, DYNALINK, "Events":"f3objTabStripE
"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3objTabStripS "}

Presents a set of related controls as a visual group.

Remarks

You can use a TabStrip to view different sets of information for related controls.

For example, the controls might represent information about a daily schedule for a group of
individuals, with each set of information corresponding to a different individual in the group. Set the
title of each tab to show one individual's name. Then, you can write code that, when you click a tab,
updates the controls to show information about the person identified on the tab.

Note    The TabStrip is implemented as a container of a Tabs collection, which in turn contains a
group of Tab objects.

The default property for a TabStrip is the SelectedItem property.

The default event for a TabStrip is the Change event.

TextBox Control
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3objTextBoxC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3objTextBoxX ":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"f3objTextBoxP "}                  {ewc
HLP95EN.DLL, DYNALINK, "Methods":"f3objTextBoxM "}                  {ewc HLP95EN.DLL, DYNALINK, "Events":"f3objTextBoxE "}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3objTextBoxS "}

Displays information from a user.

Remarks

A TextBox is the control most commonly used to display information entered by a user.

Formatting applied to any piece of text in a TextBox will affect all text in the control. For example, if
you change the font or point size of any character in the control, the change will affect all characters
in the control.

The default property for a TextBox is the Value property.

The default event for a TextBox is the Change event.

ToggleButton Control
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3objToggleButtonC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3objToggleButtonX ":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"f3objToggleButtonP "}                 
{ewc HLP95EN.DLL, DYNALINK, "Methods":"f3objToggleButtonM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Events":"f3objToggleButtonE "}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3objToggleButtonS "}

Shows the selection state of an item.

Remarks

Use a ToggleButton to show whether an item is selected. If the user selects the ToggleButton, the
current setting is Yes, True, or On; if the user does not select the ToggleButton, the setting is No,
False, or Off. A disabled ToggleButton shows a value, but is dimmed and does not allow changes
from the user interface.

You can also group ToggleButtons so that a user can select one or more of a group of related items.
For example, you can create an order form with a list of available items, with a ToggleButton
preceding each item. The user can select a particular item by selecting the appropriate
ToggleButton.

The default property of a ToggleButton is the Value property.

The default event of a ToggleButton is the Click event.

Font Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3objFontC "}                  {ewc HLP95EN.DLL, DYNALINK, "Example":"f3objFontX
":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3objFontA"}                  {ewc HLP95EN.DLL, DYNALINK,
"Properties":"f3objFontP "}                  {ewc HLP95EN.DLL, DYNALINK, "Methods":"f3objFontM "}                  {ewc HLP95EN.DLL,
DYNALINK, "Events":"f3objFontE "}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3objFontS "}

Defines the characteristics of the text used by a control or HTML Layout.

Remarks

Each control and HTML Layout has its own Font object to let you set its text characteristics
independently of the characteristics defined for other controls and HTML Layouts. Use font properties
to specify the font name, to set bold or underlined text, or to adjust the size of the text.

Note    The font properties of your HTML Layout or container determine the default font attributes of
controls you put on the HTML Layout.

The default property for the Font object is the Name property. If the Name property contains a null
string, the Font object uses the default system font.

Label Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objLabelC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objLabelX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3objLabelA"}
{ewc HLP95EN.DLL,DYNALINK,"Properties":"f3objLabelP"}                  {ewc HLP95EN.DLL,DYNALINK,"Methods":"f3objLabelM"}
{ewc HLP95EN.DLL,DYNALINK,"Events":"f3objLabelE"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3objLabelS"}

Displays descriptive text.

Remarks

A Label control on an HTML Layout displays descriptive text such as titles, captions, pictures, or brief
instructions. For example, labels for an address book might include a Label for a name, street, or city.
A Label doesn't change as you move from record to record.

The default property for a Label is the Caption property.

The default event for a Label is the Click event.

Tab Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3objTabC "}                  {ewc HLP95EN.DLL, DYNALINK, "Example":"f3objTabX
":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"f3objTabP "}                  {ewc HLP95EN.DLL, DYNALINK,
"Methods":"f3objTabM "}                  {ewc HLP95EN.DLL, DYNALINK, "Events":"f3objTabE "}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"f3objTabS "}

A Tab is an individual member of a Tabs collection.

Remarks

Visually, a Tab object appears as a rectangle protruding from a larger rectangular area or as a button
adjacent to a rectangular area.

In contrast to an HTML Layout, a Tab does not contain any controls. Controls that appear within the
region bounded by a TabStrip are contained on the HTML Layout, as is the TabStrip.

Each Tab has its own set of properties, but has no methods or events. You must use events from the
appropriate TabStrip to initiate processing of an individual Tab.

Each Tab has a unique name and index value within the collection. You can reference a Tab by either
its name or its index value. The index of the first Tab is 0; the index of the second Tab is 1; and so on.
When two Tab objects have the same name, you must reference each Tab by its index value.
References to the name in code will access only the first Tab that uses the name.

Tabs Collection
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3objTabCollC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3objTabCollX ":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3objTabCollA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Properties":"f3objTabCollP "}                  {ewc HLP95EN.DLL, DYNALINK, "Methods":"f3objTabCollM
"}                  {ewc HLP95EN.DLL, DYNALINK, "Events":"f3objTabCollE "}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"f3objTabCollS "}

A Tabs collection includes all Tabs of a TabStrip.

Remarks

Each Tabs collection provides the features to manage the number of tabs in the collection and to
identify the tab that is currently in use.

The default value of the Tabs collection identifies the current Tab of a collection.

A Tab object has a unique name and index value within a Tabs collection. You can reference a Tab
either by its name or its index value. The index value reflects the ordinal position of the Tab within the
collection. The index of the first Tab in a collection is 0; the index of the second Tab is 1; and so on.

AfterUpdate Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtAfterUpdateC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtAfterUpdateX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtAfterUpdateA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3evtAfterUpdateS"}

Occurs after data in a control is changed through the user interface.

Syntax

Private Sub object_AfterUpdate()

The AfterUpdate event syntax has these parts:

Part Description

object Required. A valid object.

Remarks

This event cannot be canceled. If you want to cancel the update (to restore the previous value of the
control), use the BeforeUpdate event and set the Cancel argument to True.

The AfterUpdate event occurs after the BeforeUpdate event and before the Exit event for the current
control and before the Enter event for the next control in the tab order.

BeforeDragOver Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtBeforeDragOverC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtBeforeDragOverX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtBeforeDragOverA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3evtBeforeDragOverS"}

Occurs when a drag-and-drop operation is in progress.

Syntax

For TabStrip
Private Sub object_BeforeDragOver(index As Long, ByVal Cancel As
MSForms.ReturnBoolean, ByVal Data As DataObject, ByVal X As Single, ByVal Y As Single,
ByVal DragState As fmDragState, ByVal Effect As MSForms.ReturnEffect, ByVal Shift As
fmShiftState)

For other controls
Private Sub object_BeforeDragOver(ByVal Cancel As MSForms.ReturnBoolean, ByVal Data
As DataObject, ByVal X As Single, ByVal Y As Single, ByVal DragState As fmDragState,
ByVal Effect As MSForms.ReturnEffect, ByVal Shift As fmShiftState)

The BeforeDragOver event syntax has these parts:

Part Description

object Required. A valid object name.

Cancel Required. Event status. False indicates that the control
should handle the event (default). True indicates the
application handles the event.

Ctrl Required. The control being dragged over.

Data Required. Data that is dragged in a drag-and-drop operation.
The data is packaged in a DataObject.

X, Y Required. The horizontal and vertical coordinates of the
control’s position. Both coordinates are measured in points.
X is measured from the left edge of the control; Y is
measured from the top of the control.

DragState Required. Transition state of the data being dragged.

X, Y Required. The horizontal and vertical coordinates of the
control’s position. Both coordinates are measured in points.
X is measured from the left edge of the control; Y is
measured from the top of the control..

Effect Required. Operations supported by the drop source.

 Shift Required. Specifies the state of SHIFT, CTRL, and ALT.

Settings

The settings for DragState are:

Constant Value Description

fmDragStateEnter 0 Mouse pointer is within range of a target.

FmDragStateLeav
e

1 Mouse pointer is outside the range of a
target.

FmDragStateOver 2 Mouse pointer is at a new position, but
remains within range of the same target.

The settings for Effect are:

Constant Value Description

fmDropEffectNone 0 Does not copy or move the drop

source to the drop target.

FmDropEffectCopy 1 Copies the drop source to the
drop target.

FmDropEffectMove 2 Moves the drop source to the drop
target.

FmDropEffectCopyOrMove 3 Copies or moves the drop source
to the drop target.

The settings for Shift are:

Constant Value Description

fmShiftMask 1 SHIFT was pressed.

FmCtrlMask 2 CTRL was pressed.

FmAltMask 4 ALT was pressed.

Remarks

Use this event to monitor the mouse pointer as it enters, leaves, or rests directly over a valid target.
When a drag-and-drop operation is in progress, the system initiates this event when the user moves
the mouse, or presses or releases the mouse buttons. The mouse pointer position determines the
target object that receives this event. You can determine the state of the mouse pointer by examining
the DragState argument.

When a control handles this event, you can use the Effect argument to identify the drag-and-drop
action to perform. When Effect is set to fmDropEffectCopyOrMove, the drop source supports a copy
(fmDropEffectCopy), move (fmDropEffectMove), or a cancel (fmDropEffectNone) operation.

When Effect is set to fmDropEffectCopy, the drop source supports a copy or a cancel
(fmDropEffectNone) operation.

When Effect is set to fmDropEffectMove, the drop source supports a move or a cancel
(fmDropEffectNone) operation.

When Effect is set to fmDropEffectNone. the drop source supports a cancel operation.

Most controls do not support drag-and-drop while Cancel is False, which is the default setting. This
means the control rejects attempts to drag or drop anything on the control, and the control does not
initiate the BeforeDropOrPaste event. The TextBox and ComboBox controls are exceptions to this;
these controls support drag-and-drop operations even when Cancel is False.

BeforeDropOrPaste Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtBeforeDropOrPasteC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtBeforeDropOrPasteX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtBeforeDropOrPasteA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3evtBeforeDropOrPasteS"}

Occurs when the user is about to drop or paste data onto an object.

Syntax

For TabStrip
Private Sub object_BeforeDropOrPaste(index As Long, ByVal Cancel As
MSForms.ReturnBoolean, ByVal Action As fmAction, ByVal Data As DataObject, ByVal X As
Single, ByVal Y As Single, ByVal Effect As MSForms.ReturnEffect, ByVal Shift As
fmShiftState)

For other controls
Private Sub object_BeforeDropOrPaste(ByVal Cancel As MSForms.ReturnBoolean, ByVal
Action As fmAction, ByVal Data As DataObject, ByVal X As Single, ByVal Y As Single, ByVal
Effect As MSForms.ReturnEffect, ByVal Shift As fmShiftState)

The BeforeDropOrPaste event syntax has these parts:

Part Description

object Required. A valid object name.

index Required. The index of the control that the drop or paste
operation will affect.

Cancel Required. Event status. False indicates that the control should
handle the event (default). True indicates the application
handles the event.

ctrl Required. The target control.

Action Required. Indicates the result, based on the current keyboard
settings, of the pending drag-and-drop operation.

Data Required. Data that is dragged in a drag-and-drop operation. The
data is packaged in a DataObject.

X, Y Required. The horizontal and vertical position of the mouse
pointer when the drop occurs. Both coordinates are measured in
points. X is measured from the left edge of the control; Y is
measured from the top of the control..

Effect Required. Effect of the drag-and-drop operation on the target
control.

Shift Required. Specifies the state of SHIFT, CTRL, and ALT.

Settings

The settings for Action are:

Constant Value Description

fmActionPaste 2 Pastes the selected object into the drop
target.

fmActionDragDrop 3 Indicates the user has dragged the object
from its source to the drop target and
dropped it on the drop target.

The settings for Effect are:

Constant Value Description

fmDropEffectNone 0 Does not copy or move the drop

source to the drop target.

fmDropEffectCopy 1 Copies the drop source to the drop
target.

fmDropEffectMove 2 Moves the drop source to the drop
target.

fmDropEffectCopyOrMove 3 Copies or moves the drop source to
the drop target.

The settings for Shift are:

Constant Value Description

fmShiftMask 1 SHIFT was pressed.

fmCtrlMask 2 CTRL was pressed.

fmAltMask 4 ALT was pressed.

Remarks

For a TabStrip, VBScript initiates this event when it transfers a data object to the control.

For other controls, the system initiates this event immediately prior to the drop or paste operation.

When a control handles this event, you can update the Action argument to identify the drag-and-drop
action to perform. When Effect is set to fmDropEffectCopyOrMove, you can assign Action to
fmDropEffectNone, fmDropEffectCopy, or fmDropEffectMove. When Effect is set to
fmDropEffectCopy or fmDropEffectMove, you can reassign Action to fmDropEffectNone. You
cannot reassign Action when Effect is set to fmDropEffectNone.

BeforeUpdate Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtBeforeUpdateC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtBeforeUpdateX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtBeforeUpdateA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3evtBeforeUpdateS"}

Occurs before data in a control is changed.

Syntax

Private Sub object_BeforeUpdate(Cancel As MSForms.ReturnBoolean)

The BeforeUpdate event syntax has these parts:

Part Description

object Required. A valid object.

Cancel Required. Event status. False indicates that the control should
handle the event (default). True cancels the update and
indicates the application should handle the event.

Remarks

This event occurs before the AfterUpdate and Exit events for the control (and before the Enter event
for the next control that receives the focus).

If you set the Cancel argument to True, the focus remains on the control and neither the AfterUpdate
event nor the Exit event occurs.

Change Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtChangeC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtChangeX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtChangeA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3evtChangeS"}

Occurs when the Value property changes.

Syntax

Private Sub object_Change()

The Change event syntax has these parts:

Part Description

object Required. A valid object.

Settings

The Change event occurs when the setting of the Value property changes, regardless of whether the
change results from execution of code or a user action in the interface.

Here are some examples of actions that change the Value property:

· Clicking a CheckBox, OptionButton, or ToggleButton.

· Entering or selecting a new text value for a ComboBox, ListBox, or TextBox.

· Selecting a different tab on a TabStrip.

· Moving the scroll box in a ScrollBar.

· Clicking the Up Arrow or Down Arrow on a SpinButton.

Remarks

The Change event procedure can synchronize or coordinate data displayed among controls. For
example, you can use the Change event procedure of a ScrollBar to update the contents of a
TextBox that displays the value of the ScrollBar. Or you can use a Change event procedure to
display data and formulas in a work area and results in another area.

Note    In some cases, the Click event may also occur when the Value property changes. However,
using the Change event is the preferred technique for detecting a new value for a property.

Click Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtClickC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtClickX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtClickA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"f3evtClickS"}

Occurs in one of two cases:

· The user definitively selects a value for a control with more than one possible value.

· The user clicks a control with the mouse.

Syntax

For all controls
Private Sub object_Click()

The Click event syntax has these parts:

Part Description

object Required. A valid object.

Remarks

Of the two cases where the Click event occurs, the first case applies to the CommandButton,
Image, Label, ScrollBar, and SpinButton. The second case applies to the CheckBox, ComboBox,
ListBox, TabStrip, TextBox, and ToggleButton.

The following are examples of actions that initiate the Click event:

· Clicking a blank area of an HTML Layout or a disabled control (other than a list box) on the HTML
Layout.

· Clicking a CommandButton. If the command button doesn't already have the focus, the Enter
event occurs before the Click event.

· Pressing the SPACEBAR when a CommandButton has the focus.

· Clicking a control with the left mouse button (left-clicking).

· Pressing a control's accelerator key.

When the Click event results from clicking a control, the sequence of events leading to the Click event
is:

1. MouseDown

2. MouseUp

3. Click

For some controls, the Click event occurs when the Value property changes. However, using the
Change event is the preferred technique for detecting a new value for a property. The following are
examples of actions that initiate the Click event due to assigning a new value to a control:

· Clicking a CheckBox or ToggleButton, pressing the SPACEBAR when one of these controls has the
focus, pressing the accelerator key for one of these controls, or changing the value of the control in
code.

· Changing the value of an OptionButton to True. Setting one OptionButton in a group to True
sets all other buttons in the group to False, but the Click event occurs only for the button whose
value changes to True.

· Selecting a value for a ComboBox or ListBox so that it unquestionably matches an item in the
control’s drop-down list. For example, if a list is not sorted, the first match for characters typed in
the edit region may not be the only match in the list, so choosing such a value does not initiate the
Click event. In a sorted list, you can use entry-matching to ensure that a selected value is a unique
match for text the user types.

The Click event is not initiated when Value is set to Null.

Note    Left-clicking changes the value of a control, thus it initiates the Click event. Right-clicking does
not change the value of the control, so it does not initiate the Click event.

DblClick Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtDblClickC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtDblClickX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtDblClickA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3evtDblClickS"}

Occurs when the user points to an object and then clicks a mouse button twice.

Syntax

For TabStrip
Private Sub object_DblClick(index As Long, Cancel As MSForms.ReturnBoolean)

For other controls
Private Sub object_DblClick(Cancel As MSForms.ReturnBoolean)

The DblClick event syntax has these parts:

Part Description

object Required. A valid object.

index Required. The position of a Tab object within a Tabs collection.

Cancel Required. Event status. False indicates that the control should
handle the event (default). True indicates the application
handles the event.

Remarks

For this event to occur, the two clicks must occur within the time span specified by the system's
double-click speed setting.

For controls that support Click, the following sequence of events leads to the DblClick event:

1. MouseDown

2. MouseUp

3. Click

4. DblClick

If a control, such as TextBox, does not support Click, Click is omitted from the order of events leading
to the DblClick event.

If the return value of Cancel is True when the user clicks twice, the control ignores the second click.
This is useful if the second click reverses the effect of the first, such as double-clicking a toggle
button. The Cancel argument allows your HTML Layout to ignore the second click, so that either
clicking or double-clicking the button has the same effect.

DropButtonClick Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtDropButtonClickC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtDropButtonClickX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtDropButtonClickA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3evtDropButtonClickS"}

Occurs whenever the drop-down list appears or disappears.

Syntax

Private Sub object_DropButtonClick()

The DropButtonClick event syntax has these parts:

Part Description

object Required. A valid object.

Remarks

You can initiate the DropButtonClick event through code or by taking certain actions in the user
interface.

In code, calling the DropDown method initiates the DropButtonClick event.

In the user interface, any of the following actions initiates the event:

· Clicking the drop-down button on the control.

· Pressing F4.

Any of the above actions, in code or in the interface, cause the drop-down box to appear on the
control. The system initiates the DropButtonClick event when the drop-down box goes away.

Enter, Exit Events
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtEnterC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtEnterX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtEnterA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"f3evtEnterS"}

Enter occurs before a control actually receives the focus from a control on the same HTML Layout.
Exit occurs immediately before a control loses the focus to another control on the same HTML Layout.

Syntax

Private Sub object_Enter()
Private Sub object_Exit(Cancel As MSForms.ReturnBoolean)

The Enter and Exit event syntaxes have these parts:

Part Description

object Required. A valid object name.

Cancel Required. Event status. False indicates that the control should
handle the event (default). True indicates the application
handles the event and the focus should remain at the current
control.

Remarks

The Enter and Exit events are similar to the GotFocus and LostFocus events in VBScript. Unlike
GotFocus and LostFocus, the Enter and Exit events don't occur when an HTML Layout receives or
loses the focus.

For example, suppose you select the check box that initiates the Enter event. If you then select
another control in the same HTML Layout, the Exit event is initiated for the check box (because the
focus is moving to a different object in the same HTML Layout) and then the Enter event occurs for
the second control on the HTML Layout.

Because the Enter event occurs before the focus moves to a particular control, you can use an Enter
event procedure to display instructions; for example, you could use an event procedure to display a
small HTML Layout or message box identifying the type of data the control typically contains.

Note    To prevent the control from losing focus, assign True to the Cancel argument of the Exit event.

Error Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtErrorC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtErrorX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtErrorA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"f3evtErrorS"}

Occurs when a control detects an error and cannot return the error information to a calling program.

Syntax

Private Sub object_Error(ByVal Number As Integer, Description As MSForms.ReturnString,
ByVal SCode As SCode, ByVal Source As String, ByVal HelpFile As String, ByVal HelpContext
As Long, CancelDisplay As MSForms.ReturnBoolean)

The Error event syntax has these parts:

Part Description

object Required. A valid object name.

Number Required. Specifies a unique value that the control uses
to identify the error.

Description Required. A textual description of the error.

SCode Required. Specifies the OLE status code for the error.
The low-order 16 bits specify a value that is identical to
the Number argument.

Source Required. The string that identifies the control which
initiated the event.

HelpFile Required. Specifies a fully qualified path name for the
Help file that describes the error.

HelpContext Required. Specifies the context ID of the Help file topic
that contains a description of the error.

CancelDisplay Required. Specifies whether to display the error string in
a message box.

Remarks

The code written for the Error event determines how the control responds to the error condition.

The ability to handle error conditions varies from one application to another. The Error event is
initiated when an error occurs that the application is not equipped to handle.

KeyDown, KeyUp Events
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtKeyDownC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtKeyDownX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtKeyDownA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3evtKeyDownS"}

Occur in sequence when a user presses and releases a key. KeyDown occurs when the user presses
a key. KeyUp occurs when the user releases a key.

Syntax

Private Sub object_KeyDown(KeyCode As MSForms.ReturnInteger, ByVal Shift As
fmShiftState)

Private Sub object_KeyUp(KeyCode As Integer, ByVal Shift As fmShiftState)

The KeyDown and KeyUp event syntaxes have these parts:

Part Description

object Required. A valid object name.

KeyCode Required. An integer that represents the key code of the key
that was pressed or released.

Shift Required. The state of SHIFT, CTRL, and ALT.

Settings

The settings for Shift are:

Constant Value Description
fmShiftMask 1 SHIFT was pressed.

fmCtrlMask 2 CTRL was pressed.

fmAltMask 4 ALT was pressed.

Remarks

The KeyDown event occurs when the user presses a key on a running HTML Layout while that HTML
Layout or a control on it has the focus. The KeyDown and KeyPress events alternate repeatedly until
the user releases the key, at which time the KeyUp event occurs. The HTML Layout or control with
the focus receives all keystrokes. An HTML Layout can have the focus only if it has no controls or all
its visible controls are disabled.

These events also occur if you send a keystroke to an HTML Layout or control using the SendKeys
statement in VBScript.

The KeyDown and KeyUp events are typically used to recognize or distinguish between:

· Extended character keys, such as function keys.

· Navigation keys, such as HOME, END, PAGEUP, PAGEDOWN, UP ARROW, DOWN ARROW, RIGHT ARROW,
LEFT ARROW, and TAB.

· Combinations of keys and standard keyboard modifiers (SHIFT, CTRL, or ALT).

· The numeric keypad and keyboard number keys.

The KeyDown and KeyUp events do not occur under the following circumstances:

The KeyDown and KeyPress events occur when you press or send an ANSI key. The KeyUp event
occurs after any event for a control caused by pressing or sending the key. If a keystroke causes the
focus to move from one control to another control, the KeyDown event occurs for the first control,
while the KeyPress and KeyUp events occur for the second control.

The sequence of keyboard-related events is:

1. KeyDown

2. KeyPress

3. KeyUp

Note    The KeyDown and KeyUp events apply only to HTML Layouts and controls on an HTML
Layout. To interpret ANSI characters or to find out the ANSI character corresponding to the key
pressed, use the KeyPress event.

KeyPress Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtKeyPressC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtKeyPressX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtKeyPressA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3evtKeyPressS"}

Occurs when the user presses an ANSI key.

Syntax

Private Sub object_KeyPress(KeyANSI As MSForms.ReturnInteger)

The KeyPress event syntax has these parts:

Part Description

object Required. A valid object.

KeyANSI Required. An integer value that represents a standard
numeric ANSI key code.

Remarks

The KeyPress event occurs when the user presses a key that produces a typeable character (an
ANSI key) on a running HTML Layout while the HTML Layout or a control on it has the focus. The
event can occur either before or after the key is released. This event also occurs if you send an ANSI
keystroke to an HTML Layout or control using the SendKeys statement in VBScript.

A KeyPress event can occur when any of the following keys are pressed:

· Any printable keyboard character.

· CTRL combined with a character from the standard alphabet.

· CTRL combined with any special character.

· BACKSPACE.

· ESC.

A KeyPress event does not occur under the following conditions:

· Pressing TAB.

· Pressing ENTER.

· Pressing an arrow key.

· When a keystroke causes the focus to move from one control to another.

Note      BACKSPACE is part of the ANSI Character Set, but DELETE is not. Deleting a character in a
control using BACKSPACE causes a KeyPress event; deleting a character using DELETE doesn't.

When a user holds down a key that produces an ANSI keycode, the KeyDown and KeyPress events
alternate repeatedly. When the user releases the key, the KeyUp event occurs. The HTML Layout or
control with the focus receives all keystrokes. An HTML Layout can have the focus only if it has no
controls, or if all its visible controls are disabled.

The default action for the KeyPress event is to process the event code that corresponds to the key
that was pressed. KeyANSI indicates the ANSI character that corresponds to the pressed key or key
combination. The KeyPress event interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

To respond to the physical state of the keyboard, or to handle keystrokes not recognized by the
KeyPress event, such as function keys, navigation keys, and any combinations of these with
keyboard modifiers (ALT, SHIFT, or CTRL), use the KeyDown and KeyUp event procedures.

The sequence of keyboard-related events is:

1. KeyDown

2. KeyPress

3. KeyUp

MouseDown, MouseUp Events
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtMouseDownC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtMouseDownX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtMouseDownA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3evtMouseDownS"}

Occur when the user clicks a mouse button. MouseDown occurs when the user presses the mouse
button; MouseUp occurs when the user releases the mouse button.

Syntax

For TabStrip
Private Sub object_MouseDown(index As Long, ByVal Button As fmButton, ByVal Shift As
fmShiftState, ByVal X As Single, ByVal Y As Single)

Private Sub object_MouseUp(index As Long, ByVal Button As fmButton, ByVal Shift As
fmShiftState, ByVal X As Single, ByVal Y As Single)

For other controls
Private Sub object_MouseDown(ByVal Button As fmButton, ByVal Shift As fmShiftState,
ByVal X As Single, ByVal Y As Single)

Private Sub object_MouseUp(ByVal Button As fmButton, ByVal Shift As fmShiftState, ByVal X
As Single, ByVal Y As Single)

The MouseDown and MouseUp event syntaxes have these parts:

Part Description

object Required. A valid object.

index Required. The index of the tab in a TabStrip with the specified
event.

Button Required. An integer value that identifies which mouse button
caused the event.

Shift Required. The state of SHIFT, CTRL, and ALT.

X, Y Required. The horizontal or vertical position, in points, from the
left or top edge of the HTML Layout.

Settings

The settings for Button are:

Constant Value Description

fmButtonLeft 1 The left button was pressed.

fmButtonRight 2 The right button was pressed.

fmButtonMiddle 4 The middle button was pressed.

The settings for Shift are:

Value Description

1 SHIFT was pressed.

2 CTRL was pressed.

3 SHIFT and CTRL were pressed.

4 ALT was pressed.

5 ALT and SHIFT were pressed.

6 ALT and CTRL were pressed.

7 ALT, SHIFT, and CTRL were pressed.

You can identify individual keyboard modifiers by using the following constants:

Constant Value Description

fmShiftMask 1 Mask to detect SHIFT.

fmCtrlMask 2 Mask to detect CTRL.

fmAltMask 4 Mask to detect ALT.

Remarks

For a TabStrip, the index argument identifies the tab where the user clicked. An index of –1 indicates
the user did not click a tab. For example, if there are no tabs in the upper-right corner of the control,
clicking in the upper-right corner sets the index to –1.

For an HTML Layout, the user can generate MouseDown and MouseUp events by pressing and
releasing a mouse button in a blank area, record selector, or scroll bar on the HTML Layout.

The sequence of mouse-related events is:

1. MouseDown

2. MouseUp

3. Click

4. DblClick

5. MouseUp

MouseDown or MouseUp event procedures specify actions that occur when a mouse button is
pressed or released. MouseDown and MouseUp events enable you to distinguish between the left,
right, and middle mouse buttons. You can also write code for mouse-keyboard combinations that use
the SHIFT, CTRL, and ALT keyboard modifiers.

If a mouse button is pressed while the pointer is over an HTML Layout or control, that object
"captures" the mouse and receives all mouse events up to and including the last MouseUp event.
This implies that the X, Y mouse-pointer coordinates returned by a mouse event may not always be
within the boundaries of the object that receives them.

If mouse buttons are pressed in succession, the object that captures the mouse receives all
successive mouse events until all buttons are released.

Use the Shift argument to identify the state of SHIFT, CTRL, and ALT when the MouseDown or
MouseUp event occurred. For example, if both CTRL and ALT are pressed, the value of Shift is 6.

MouseMove Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtMouseMoveC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtMouseMoveX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtMouseMoveA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3evtMouseMoveS"}

Occurs when the user moves the mouse.

Syntax

For TabStrip
Private Sub object_MouseMove(index As Long, ByVal Button As fmButton, ByVal Shift As
fmShiftState, ByVal X As Single, ByVal Y As Single)

For other controls
Private Sub object_MouseMove(ByVal Button As fmButton, ByVal Shift As fmShiftState,
ByVal X As Single, ByVal Y As Single)

The MouseMove event syntax has these parts:

Part Description

object Required. A valid object name.

index Required. The index of the tab in a TabStrip associated with
this event.

Button Required. An integer value that identifies the state of the mouse
buttons.

Shift Required. Specifies the state of SHIFT, CTRL, and ALT.

X, Y Required. The horizontal or vertical position, measured in
points, from the left or top edge of the control.

Settings

The index argument specifies which tab was clicked over. A –1 designates that the user did not click
on any of the tabs.

The settings for Button are:

Value Description

0 No button is pressed.

1 The left button is pressed.

2 The right button is pressed.

3 The right and left buttons are pressed.

4 The middle button is pressed.

5 The middle and left buttons are pressed.

6 The middle and right buttons are pressed.

7 All three buttons are pressed.

The settings for Shift are:

Value Description

1 SHIFT was pressed.

2 CTRL was pressed.

3 SHIFT and CTRL were pressed.

4 ALT was pressed.

5 ALT and SHIFT were pressed.

6 ALT and CTRL were pressed.

7 ALT, SHIFT, and CTRL were pressed.

You can identify individual keyboard modifiers by using the following constants:

Constant Value Description

fmShiftMask 1 Mask to detect SHIFT.

fmCtrlMask 2 Mask to detect CTRL.

fmAltMask 4 Mask to detect ALT.

Remarks

The MouseMove event applies to HTML Layouts, controls on an HTML Layout, and labels.

MouseMove events are generated continually as the mouse pointer moves across objects. Unless
another object has captured the mouse, an object recognizes a MouseMove event whenever the
mouse position is within its borders.

Moving an HTML Layout can also generate a MouseMove event even if the mouse is stationary.
MouseMove events are generated when the HTML Layout moves underneath the pointer. If an event
procedure moves an HTML Layout in response to a MouseMove event, the event can continually
generate (cascade) MouseMove events.

If two controls are very close together, and you move the mouse pointer quickly over the space
between them, the MouseMove event might not occur for that space. In such cases, you might need
to respond to the MouseMove event in both controls.

You can use the value returned in the Button argument to identify the state of the mouse buttons.

Use the Shift argument to identify the state of SHIFT, CTRL, and ALT when the MouseMove event
occurred. For example, if both CTRL and ALT are pressed, the value of Shift is 6.

Note    You can use MouseDown and MouseUp event procedures to respond to events caused by
pressing and releasing mouse buttons.

Scroll Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtScrollC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtScrollX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtScrollA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3evtScrollS"}

Occurs when the scroll box is repositioned.

Syntax

For ScrollBar
Private Sub object_Scroll()

For MultiPage
Private Sub object_Scroll(index As Long, ActionX As fmScrollAction, ActionY As
fmScrollAction, ByVal RequestDx As Single, ByVal RequestDy As Single, ActualDx As
MSForms.ReturnSingle, ActualDy As MSForms.ReturnSingle)

For Frame
Private Sub object_Scroll(ActionX As fmScrollAction, ActionY As fmScrollAction, ByVal
RequestDx As Single, ByVal RequestDy As Single, ActualDx As MSForms.ReturnSingle,
ActualDy As MSForms.ReturnSingle)

The Scroll event syntax has these parts:

Part Description

object Required. A valid object name.

index Required. The index of the page in a MultiPage associated
with this event.

ActionX Required. The action that occurred in the horizontal direction.

ActionY Required. The action that occurred in the vertical direction.

RequestDx Required. The distance, in points, you want the scroll bar to
move in the horizontal direction.

RequestDy Required. The distance, in points, you want the scroll bar to
move in the vertical direction.

ActualDx Required. The distance, in points, the scroll bar travelled in
the horizontal direction.

ActualDy Required. The distance, in points, the scroll bar travelled in
the vertical direction.

Settings

The settings for ActionX and ActionY are:

Constant Value Description

fmScrollActionNoChange 0 No change occurred.

fmScrollActionLineUp 1 A small distance up on a vertical
scroll bar; a small distance to the
left on a horizontal scroll bar.
Movement is equivalent to
pressing the up or left arrow
keys on the keyboard to move
the scroll bar.

fmScrollActionLineDown 2 A small distance down on a
vertical scroll bar; a small
distance to the right on a
horizontal scroll bar. Movement
is equivalent to pressing the

down or right arrow keys on the
keyboard to move the scroll bar.

fmScrollActionPageUp 3 One page up on a vertical scroll
bar; one page to the left on a
horizontal scroll bar. Movement
is equivalent to pressing PAGE UP

on the keyboard to move the
scroll bar.

fmScrollActionPageDown 4 One page down on a vertical
scroll bar; one page to the right
on a horizontal scroll bar.
Movement is equivalent to
pressing PAGE DOWN on the
keyboard to move the scroll bar.

fmScrollActionBegin 5 The top of a vertical scroll bar;
the left end of a horizontal scroll
bar.

fmScrollActionEnd 6 The bottom of a vertical scroll
bar; the right end of a horizontal
scroll bar.

fmScrollActionPropertyChange 8 The value of either the ScrollTop
or the ScrollLeft property
changed. The direction and amount
of movement depend on which
property was changed and on the
new property value.

fmScrollActionControlRequest 9 A control asked its container to
scroll. The amount of movement
depends on the specific control
and container involved.

fmScrollActionFocusRequest 10 The user moved to a different
control. The amount of
movement depends on the
placement of the selected
control, and generally has the
effect of moving the selected
control so it is completely visible
to the user.

Remarks

The Scroll events associated with a form, Frame, or Page return the following arguments: ActionX,
ActionY, ActualX, and ActualY. ActionX and ActionY identify the action that occurred. ActualX and
ActualY identify the distance that the scroll box traveled.

The default action is to calculate the new position of the scroll box and then scroll to that position.

You can initiate a Scroll event by issuing a Scroll method for a form, Frame, or Page. Users can
generate Scroll events by moving the scroll box.

The Scroll event associated with the stand-alone ScrollBar indicates that the user moved the scroll
box in either direction. This event is not initiated when the value of the ScrollBar changes by code or
by the user clicking on parts of the ScrollBar other than the scroll box.

SpinDown, SpinUp Events
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3evtSpinDownC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3evtSpinDownX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3evtSpinDownA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3evtSpinDownS"}

SpinDown occurs when the user clicks the lower or left spin-button arrow. SpinUp occurs when the
user clicks the upper or right spin-button arrow.

Syntax

Private Sub object_SpinDown()
Private Sub object_SpinUp()

The SpinDown and SpinUp event syntaxes have these parts:

Part Description

object Required. A valid object.

Remarks

The SpinDown event decreases the Value property. The SpinUp event increases Value.

Add Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthAddC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthAddX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthAddA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"f3mthAddS"}

Adds or inserts a Tab in a TabStrip, or adds a control by its programmatic identifier (ProgID) to an
HTML Layout.

Syntax

For TabStrip
Set Object = object.Add([Name [,    Caption [,    index]]])

For other controls
Set Control = object.Add(ProgID [,    Name [,    Visible]])

The Add method syntax has these parts:

Part Description

object Required. A valid object name.

Name Optional. Specifies the name of the object being added. If a
name is not specified, the system generates a default name
based on the rules of the application where the HTML Layout
is used.

Caption Optional. Specifies the caption to appear on a tab or a control.
If a caption is not specified, the system generates a default
caption based on the rules of the application where the HTML
Layout is used.

index Optional. Identifies the position of a tab within a Tabs collection.
If an index is not specified, the system appends the tab to the
end of the Tabs collection and assigns the appropriate index
value.

ProgID Required. Programmatic identifier. A text string with no spaces
that identifies an object class. The standard syntax of a
ProgID is <Vendor>.<Component>.<Version>. A ProgID is
mapped to a class identifier (CLSID).

 Visible Optional. True if the object is visible (default). False if the
object is hidden.

Settings

ProgID values for individual controls are:

Control ProgID value
CheckBox Forms.CheckBox.1

ComboBox Forms.ComboBox.1

CommandButton Forms.CommandButton.1

Image Forms.Image.1

Label Forms.Label.1

ListBox Forms.ListBox.1

OptionButton Forms.OptionButton.1

ScrollBar Forms.ScrollBar.1

SpinButton Forms.SpinButton.1

TabStrip Forms.TabStrip.1

TextBox Forms.TextBox.1

ToggleButton Forms.ToggleButton.1

Remarks

For a TabStrip, the Add method returns a Tab object. The index value for the first Tab of a collection
is 0, the value for the second Tab is 1, and so on.

For the Controls collection of an object, the Add method returns a control corresponding to the
specified ProgID.

The following syntax will return the Text property of a control added at design time:

userform1.thebox.text

If you add a control a run time, you must use the exclamation syntax to reference properties of that
control. For example, to return the Text property of a control added at run time, use the following
syntax:

userform1!thebox.text

Note    You can change a control's ID property at run time only if you added that control at run time
with the Add method.

AddItem Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthAddItemC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthAddItemX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthAddItemA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3mthAddItemS"}

For a single-column list box or combo box, adds an item to the list. For a multicolumn list box or
combo box, adds a row to the list.

Syntax

Variant = object.AddItem([item [,    varIndex]])

The AddItem method syntax has these parts:

Part Description

object Required. A valid object.

item Optional. Specifies the item or row to add. The number of the
first item or row is 0; the number of the second item or row is 1,
and so on.

varIndex Optional. Integer specifying the position within the object
where the new item or row is placed.

Remarks

If you supply a valid value for varIndex, the AddItem method places the item or row at that position
within the list. If you omit varIndex, the method adds the item or row at the end of the list.

The value of varIndex must not be greater than the value of the ListCount property.

For a multicolumn ListBox or ComboBox, AddItem inserts an entire row; that is, it inserts an item for
each column of the control. To assign values to an item beyond the first column, use the List or
Column property and specify the row and column of the item.

Note    You can add more than one row at a time to a ComboBox or ListBox by using List.

Clear Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthClearC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthClearX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthClearA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3mthClearS"}

Removes all objects from an object or collection.

Syntax

object.Clear

The Clear method syntax has these parts:

Part Description

object Required. A valid object.

Remarks

For a TabStrip, the Clear method deletes individual tabs.

For a ListBox or ComboBox, Clear removes all entries in the list.

For a Controls collection, Clear deletes controls that were created at run time with the Add method.
Using Clear on controls created at design time causes an error.

Copy Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthCopyC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthCopyX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthCopyA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3mthCopyS"}

Copies the contents of an object to the Clipboard.

Syntax

object.Copy

The Copy method syntax has these parts:

Part Description

object Required. A valid object.

Remarks

The original content remains on the object.

The actual content that is copied depends on the object. For example, On a TextBox or ComboBox,
the Copy method copies the currently selected text.

Using Copy for an HTML Layout copies the currently active control.

Cut Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthCutC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthCutX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthCutA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"f3mthCutS"}

Removes selected information from an object and transfers it to the Clipboard.

Syntax

object.Cut

The Cut method syntax has these parts:

Part Description

object Required. A valid object.

Remarks

For a ComboBox or TextBox, the Cut method removes currently selected text in the control to the
Clipboard. This method does not require that the control have the focus.

On an HTML Layout, Cut removes currently selected controls to the Clipboard. This method only
removes controls created at run time.

DropDown Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthDropDownC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthDropDownX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthDropDownA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3mthDropDownS"}

Displays the list portion of a ComboBox; or, if the list is currently displayed, dismisses it.

Syntax

object.DropDown

The DropDown method syntax has these parts:

Part Description

object Required. A valid object.

Remarks

Use the DropDown method to open the list in a combo box.

GetFormat Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthGetFormatC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthGetFormatX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthGetFormatA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3mthGetFormatS"}

Returns an integer value indicating whether a specific format is on the DataObject.

Syntax

Boolean = object.GetFormat([format])

The GetFormat method syntax has these parts:

Part Description

object Required. A valid object.

format Optional. An integer or string specifying the data format to use
when pasting the Clipboard contents.

Settings

The settings for format are:

Constant Value Description

fmCFText 1 Text format.

Remarks

The GetFormat method searches for a format in the current list of formats on the DataObject. If the
format is on the DataObject, GetFormat returns 1; if not, GetFormat returns 0.

The DataObject currently supports only text formats.

GetFromClipboard, GetText Methods
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthGetFromClipboardC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthGetFromClipboardX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthGetFromClipboardA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3mthGetFromClipboardS"}

GetFromClipboard moves data from the Clipboard to a DataObject. GetText retrieves a text string
from the Clipboard using a specified format.

Syntax

String = object.GetFromClipboard([format])
String = object.GetText([format])

The GetText method syntax has these parts:

Part Description

object Required. A valid object name.

format Optional. An integer specifying the data format to use when
pasting the Clipboard contents.

Settings

The settings for format are:

Constant Value Description

fmCFText 1 Text format.

Remarks

The DataObject and the Clipboard support multiple formats, but only support one data item of a given
format. For example, the DataObject might include one text item, but cannot include two text items of
the type fmCFText.

If the DataObject contains data in the same format as new data, the new data replaces the existing
data in the DataObject. If the new data is in a new format, the new data and the new format are both
added to the DataObject.

If no format is specified, the GetText method returns the string associated with the standard text
format.

Item Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthItemC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthItemX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthItemA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"f3mthItemS"}

Returns a member of a collection, either by position or by name.

Syntax

Set Object = object.Item(collectionindex)

The Item method syntax has these parts:

Part Description

object Required. A valid object.

collectionindex Required. A member's position, or index, within a
collection.

Settings

The collectionindex can be either a string or an integer. If it is a string, it must be a valid member
name. If it is an integer, the minimum value is 0 and the maximum value is one less than the number
of items in the collection.

Remarks

If an invalid index or name is specified, an error occurs.

Move Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthMoveC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthMoveX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthMoveA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3mthMoveS"}

Moves an HTML Layout or control, or moves all the controls in the Controls collection.

Syntax

object.Move([Left [,    Top [,    Width [,    Height]]]])
The Move method syntax has these parts:

Part Description

object Required. A valid object name.

Left Optional. Single-precision value, in points, indicating the
horizontal coordinate for the left edge of the object.

Top Optional. Single-precision value, in points, that specifies the
vertical coordinate for the top edge of the object.

Width Optional. Single-precision value, in points, indicating the width
of the object.

Height Optional. Single-precision value, in points, indicating the height
of the object.

Settings

Remarks

For an HTML Layout or control, you can move a selection to a specific location relative to the edges
of the HTML Layout that contains the selection.

You can use named arguments, or you can enter the arguments by position. If you use named
arguments, you can list the arguments in any order. If not, you must enter the arguments in the order
shown, using commas to indicate the relative position of arguments you do not specify. Any
unspecified arguments remain unchanged.

Paste Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthPasteC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthPasteX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthPasteA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3mthPasteS"}

Transfers the contents of the Clipboard to an object.

Syntax

object.Paste

The Paste method syntax has these parts:

Part Description

object Required. A valid object.

Remarks

Data pasted into a ComboBox or TextBox is treated as text.

When the Paste method is used with an HTML Layout, you can paste any object onto the HTML
Layout.

PutInClipboard Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthPutInClipboardC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthPutInClipboardX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthPutInClipboardA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3mthPutInClipboardS"}

Moves data from a DataObject to the Clipboard.

Syntax

object.PutInClipboard

The PutInClipboard method syntax has these parts:

Part Description

object Required. A valid object.

Remarks

The DataObject and the Clipboard both support multiple formats, but only support one data item of a
given format. For example, the DataObject might include one text item stored using the Clipboard
format.

If the Clipboard contains data in the same format as new data, the new data replaces the existing
data on the Clipboard. If the new data is in a new format, the new data and the new format are both
added to the Clipboard.

Remove Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthRemoveC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthRemoveX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthRemoveA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3mthRemoveS"}

Removes a member from a collection; or, removes a control from an HTML Layout.

Syntax

object.Remove(collectionindex)

The Remove method syntax has these parts:

Part Description

object Required. A valid object.

collectionindex Required. A member's position, or index, within a
collection. Numeric as well as string values are
acceptable. If the value is a number, the minimum value
is zero, and the maximum value is one less than the
number of members in the collection. If the value is a
string, it must correspond to a valid member name.

Remarks

This method deletes any control that was added at run time. However, attempting to delete a control
that was added at design time will result in an error.

RemoveItem Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthRemoveItemC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthRemoveItemX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthRemoveItemA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3mthRemoveItemS"}

Removes a row from the list in a list box or combo box.

Syntax

Boolean = object.RemoveItem(index)

The RemoveItem method syntax has these parts:

Part Description

object Required. A valid object.

index Required. Specifies the row to delete. The number of the first
row is 0; the number of the second row is 1, and so on.

SetFocus Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthSetFocusC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthSetFocusX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthSetFocusA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3mthSetFocusS"}

Moves the focus to this instance of an object.

Syntax

object.SetFocus

The SetFocus method syntax has these parts:

Part Description

object Required. A valid object.

Remarks

If setting the focus fails, the focus reverts to the previous object and an error is generated.

By default, setting the focus to a control does not activate the control's window or place it on top of
other controls.

SetText Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthSetTextC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthSetTextX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthSetTextA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3mthSetTextS"}

Copies a text string to the Clipboard using a specified format.

Syntax

object.SetText(StoreData [,    format])

The SetText method syntax has these parts:

Part Description

object Required. A valid object.

StoreData Required. Defines the data to store on the Clipboard.

format Optional. An integer or string specifying the data format to
use when pasting the Clipboard contents.

Settings

The settings for format are:

Constant Value Description

fmCFText 1 Text format.

Remarks

The Clipboard stores data according to its format. When the user supplies a string, the Clipboard
saves the text under the specified format.

If no format is specified, the SetText method assigns the standard text format to the text string. If a
new format is specified, the Clipboard registers the new format with the system.

StartDrag Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthStartDragC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthStartDragX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthStartDragA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3mthStartDragS"}

Initiates a drag-and-drop operation for a DataObject.

Syntax

fmDropEffect=Object.StartDrag([Effect as fmDropEffect])

The StartDrag method syntax has these parts:

Part Description

Object Required. A valid object.

Effect Optional. Effect of the drop operation on the target control.

Settings

The settings for Effect are:

Constant Value Description

fmDropEffectNone 0 Does not copy or move the drop
source to the drop target.

fmDropEffectCopy 1 Copies the drop source to the
drop target.

fmDropEffectMove 2 Moves the drop source to the
drop target.

fmDropEffectCopyOrMove 3 Copies or moves the drop
source to the drop target.

Remarks

The drag action starts at the current mouse pointer position with the current keyboard state and ends
when the user releases the mouse. The effect of the drag-and-drop operation depends on the effect
chosen for the drop target.

For example, a control’s MouseMove event might include the StartDrag method. When the user
clicks the control and moves the mouse, the mouse pointer changes to indicate whether Effect is valid
for the drop target.

ZOrder Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3mthZOrderC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3mthZOrderX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3mthZOrderA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3mthZOrderS"}

Places the object at the front or back of the z-order.

Syntax

object.ZOrder([zPosition])

The ZOrder method syntax has these parts:

Part Description

object Required. A valid object.

zPosition Optional. A control's position, front or back, in the container's
z-order.

Settings

The settings for zPosition are:

Constant Value Description

fmTop 0 Places the control at the front of the z-order.
The control appears on top of other controls
(default).

               
fmBottom

1 Places the control at the back of the z-order.
The control appears underneath other
controls.

Remarks

The z-order determines how windows and controls are stacked when they are presented to the user.
Items at the back of the z-order are overlaid by closer items; items at the front of the z-order appear to
be on top of items at the back. When the zPosition argument is omitted, the object is brought to the
front.

In design time, the Bring to Front or Send To Back commands set the z-order. Bring to Front is
equivalent to using the ZOrder method and putting the object at the front of the z-order. Send to Back
is equivalent to using ZOrder and putting the object at the back of the z-order.

This method does not affect content or sequence of the controls in the Controls collection.

Note    You can’t Undo or Redo layering commands such as Send to Back or Bring to Front. For
example, if you select an object and click Move Backward on the shortcut menu, you won’t be able
to Undo or redo that action.

Accelerator Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proAcceleratorC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proAcceleratorX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proAcceleratorA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proAcceleratorS"}

Sets or retrieves the accelerator key for a control.

Syntax

object.Accelerator [= String]

The Accelerator property syntax has these parts:

Part Description

object Required. A valid object.

String Optional. The character to use as the accelerator key.

Remarks

To designate an accelerator key, enter a single character for the Accelerator property. You can set
Accelerator in the control's Properties window or in code. If the value of this property contains more
than one character, the first character in the string becomes the value of Accelerator.

When an accelerator key is used, there is no visual feedback (other than focus) to indicate that the
control initiated the Click event. For example, if the accelerator key applies to a CommandButton,
the user will not see the button pressed in the interface. The button receives the focus, however,
when the user presses the accelerator key.

If the accelerator applies to a Label, the control following the Label in the tab order, rather than the
Label itself, receives the focus.

ActiveControl Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proActiveControlC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proActiveControlX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proActiveControlA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proActiveControlS"}

Identifies and allows manipulation of the control that has the focus.

Syntax

object.ActiveControl

The ActiveControl property syntax has these parts:

Part Description

object Required. A valid object.

Remarks

The ActiveControl property is read-only and is set when you select a control in the interface. You can
use ActiveControl as a substitute for the control name when setting properties or calling methods.

Alignment Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proAlignmentC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proAlignmentX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proAlignmentA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proAlignmentS"}

Specifies the position of a control relative to its caption.

Syntax

object.Alignment [= fmAlignment]

The Alignment property syntax has these parts:

Part Description

object Required. A valid object.

fmAlignment Optional. Caption position.

Settings

The settings for fmAlignment are:

Constant Value Description

fmAlignmentLeft 0 Places the caption to the left of the
control.

fmAlignmentRight 1 Places the caption    to the right of the
control (default).

Remarks

The caption text for a control is left-aligned.

Note    Although the Alignment property exists on the ToggleButton, the property is disabled. You
cannot set or return a value for this property on the ToggleButton.

AutoSize Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proAutoSizeC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proAutoSizeX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proAutoSizeA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proAutoSizeS"}

Specifies whether an object automatically resizes to display its entire contents.

Syntax

object.AutoSize [= Boolean]

The AutoSize property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether the control is resized.

Settings

The settings for Boolean are:

Value Description

True Automatically resizes the control to display its entire contents.

    False Keeps the size of the control constant. Contents are cropped
when they exceed the area of the control (default).

Remarks

For controls with captions, the AutoSize property specifies whether the control automatically adjusts
to display the entire caption.

For controls without captions, this property specifies whether the control automatically adjusts to
display the information stored in the control. In a ComboBox, for example, setting AutoSize to True
automatically sets the width of the display area to match the length of the current text.

For a single-line text box, setting AutoSize to True automatically sets the width of the display area to
the length of the text in the text box.

For a multiline text box that contains no text, setting AutoSize to True automatically displays the text
as a column. The width of the text column is set to accommodate the widest letter of that font size.
The height of the text column is set to display the entire text of the TextBox.

For a multiline text box that contains text, setting AutoSize to True automatically enlarges the
TextBox vertically to display the entire text. The width of the TextBox does not change.

Note    If you manually change the size of a control while AutoSize is True, the manual change
overrides the size previously set by AutoSize.

AutoTab Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proAutoTabC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proAutoTabX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proAutoTabA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proAutoTabS"}

Specifies whether an automatic tab occurs when a user enters the maximum allowable number of
characters into a TextBox or the text box portion of a ComboBox.

Syntax

object.AutoTab [= Boolean]

The AutoTab property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether an automatic tab occurs.

Settings

The settings for Boolean are:

Value Description

True Tab occurs.

False Tab does not occur (default).

Remarks

The MaxLength property specifies the maximum number of characters allowed in a TextBox or the
text box portion of a ComboBox.

You can specify the AutoTab property for a TextBox or ComboBox on an HTML Layout for which
you usually enter a set number of characters. Once a user enters the maximum number of
characters, the focus automatically moves to the next control in the tab order. For example, if a
TextBox displays inventory stock numbers that are always five characters long, you can use
MaxLength to specify the maximum number of characters to enter into the TextBox and AutoTab to
automatically tab to the next control after the user enters five characters.

Support for AutoTab varies from one application to another. Not all containers support this property.

AutoWordSelect Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proAutoWordSelectC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proAutoWordSelectX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proAutoWordSelectA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proAutoWordSelectS"}

Specifies whether a word or a character is the basic unit used to extend a selection.

Syntax

object.AutoWordSelect [= Boolean]

The AutoWordSelect property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies the basic unit used to extend a selection.

Settings

The settings for Boolean are:

Value Description

True Uses a word as the basic unit (default).

False Uses a character as the basic unit.

Remarks

The AutoWordSelect property specifies how the selection extends or contracts in the edit region of a
TextBox or ComboBox.

If the user places the insertion point in the middle of a word and then extends the selection while
AutoWordSelect is True, the selection includes the entire word.

BackColor Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proBackColorC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proBackColorX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proBackColorA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proBackColorS"}

Specifies the background color of the object.

Syntax

object.BackColor [= Long]

The BackColor property syntax has these parts:

Part Description

object Required. A valid object.

Long Optional. A value or constant that determines the
background color of an object.

Settings

You can use any integer that represents a valid color. You can also specify a color by using the RGB
function with red, green, and blue color components. The value of each color component is an integer
that ranges from zero to 255. For example, you can specify teal blue as the integer value 4966415 or
as red, green, and blue color components 15, 200, 75.

Remarks

You can see the background color of an object only if the BackStyle property is set to
fmBackStyleOpaque.

BackStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proBackStyleC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proBackStyleX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proBackStyleA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proBackStyleS"}

Returns or sets the background style for an object.

Syntax

object.BackStyle [= fmBackStyle]

The BackStyle property syntax has these parts:

Part Description

object Required. A valid object.

fmBackStyle Optional. Specifies the control background.

Settings

The settings for fmBackStyle are:

Constant Value Description

fmBackStyleTransparent 0 The background is transparent.

fmBackStyleOpaque 1 The background is opaque
(default).

Remarks

The BackStyle property determines whether a control is transparent. If BackStyle is
fmBackStyleOpaque, the control is not transparent and you cannot see anything behind the control
on an HTML Layout. If BackStyle is fmBackStyleTransparent, you can see through the control and
look at anything on the HTML Layout located behind the control.

Note    BackStyle does not affect the transparency of bitmaps. You must use a picture editor to make
a bitmap transparent. Not all controls support transparent bitmaps.

Bold, Italic, Size, StrikeThrough, Underline, Weight Properties
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proBoldC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proBoldX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proBoldA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"f3proBoldS"}

Specifies the visual attributes of text on a displayed or printed HTML Layout.

Syntax

object.Bold [= Boolean]
object.Italic [= Boolean]
object.Size [= Currency]
object.StrikeThrough [= Boolean]
object.Underline [= Boolean]
object.Weight [= Integer]

The Bold, Italic, Size, StrikeThrough, Underline, and Weight property syntaxes have these parts:

Part Description

object Required. A valid object name.

Boolean Optional. Specifies the font style.

Currency Optional. A number indicating the font size.

Integer Optional. Specifies the font style.

The settings for Boolean are:

Value Description

True The text has the specified attribute (that is bold, italic, size,
strikethrough or underline marks, or weight).

False The text does not have the specified attribute (default).

The Weight property accepts values from 0 to 1000. A value of zero allows the system to pick the
most appropriate weight. A value from 1 to 1000 indicates a specific weight, where 1 represents the
lightest type and 1000 represents the darkest type.

Remarks

These properties define the visual characteristics of text. The Bold property determines whether text
is normal or bold. The Italic property determines whether text is normal or italic. The Size property
determines the height, in points, of displayed text. The Underline property determines whether text is
underlined. The StrikeThrough property determines whether the text appears with strikethrough
marks. The Weight property determines the darkness of the type.

The font's appearance on screen and in print may differ, depending on your computer and printer. If
you select a font that your system can't display with the specified attribute or that isn't installed,
Windows substitutes a similar font. The substitute font will be as similar as possible to the font
originally requested.

Changing the value of Bold also changes the value of Weight. Setting Bold to True sets Weight to
700; setting Bold to False sets Weight to 400. Conversely, setting Weight to anything over 550 sets
Bold to True; setting Weight to 550 or less sets Bold to False.

The default point size is determined by the operating system.

BorderColor Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proBorderColorC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proBorderColorX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proBorderColorA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proBorderColorS"}

Specifies the color of a control’s border.

Syntax

object.BorderColor [= Long]

The BorderColor property syntax has these parts:

Part Description

object Required. A valid object.

Long Optional. A value or constant that determines the border
color of a control.

Settings

You can use any integer that represents a valid color. You can also specify a color by using the RGB
function with red, green, and blue color components. The value of each color component is an integer
that ranges from zero to 255. For example, you can specify teal blue as the integer value 4966415 or
as RGB color component values 15, 200, 75.

Remarks

To use the BorderColor property, the BorderStyle property must be set to a value other than
fmBorderStyleNone.

BorderStyle uses BorderColor to define the border colors. The SpecialEffects property uses
system colors exclusively to define its border colors. For Windows operating systems, System Color
settings are stored in the Control Panel, either in the Desktop folder or the Color folder.

BorderStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proBorderStyleC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proBorderStyleX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proBorderStyleA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proBorderStyleS"}

Specifies the type of border used by a control.

Syntax

object.BorderStyle [= fmBorderStyle]

The BorderStyle property syntax has these parts:

Part Description

object Required. A valid object.

fmBorderStyle Optional. Specifies the border style.

Settings

The settings for fmBorderStyle are:

Constant Value Description

fmBorderStyleNone 0 The control has no visible border line.

fmBorderStyleSingle 1 The control has a single-line border
(default).

The default value for a ComboBox, Label, ListBox or TextBox is 0 (None). The default value for an
Image is 1 (Single).

Remarks

You can use either BorderStyle or SpecialEffect to specify the border for a control, but not both. If
you specify a nonzero value for one of these properties, the system sets the value of the other
property to zero. For example, if you set BorderStyle to fmBorderStyleSingle, the system sets
SpecialEffect to zero (Flat). If you specify a nonzero value for SpecialEffect, the system sets
BorderStyle to zero.

BorderStyle uses BorderColor to define the colors of its borders.

BoundColumn Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proBoundColumnC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proBoundColumnX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proBoundColumnA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proBoundColumnS"}

Identifies the source of data in a multicolumn ComboBox or ListBox.

Syntax

object.BoundColumn [= Variant]

The BoundColumn property syntax has these parts:

Part Description

object Required. A valid object.

Variant Optional. Indicates how the BoundColumn value is selected.

Settings

The settings for Variant are:

Value Description

0 Assigns the value of the ListIndex property to the control.

1 or greater Assigns the value from the specified column to the control.
Columns are numbered from 1 when using this property
(default).

Remarks

When the user chooses a row in a multicolumn ListBox or ComboBox, the BoundColumn property
identifies which item from that row to store as the value of the control. For example, if each row
contains 8 items and BoundColumn is 3, the system stores the information in the third column of the
currently-selected row as the value of the object.

You can display one set of data to users but store different, associated values for the object by using
the BoundColumn and the TextColumn properties. TextColumn identifies the column of data
displayed in a ComboBox or ListBox; BoundColumn identifies the column of associated data
values stored for the control. For example, you could set up a multicolumn ListBox that contains the
names of holidays in one column and dates for the holidays in a second column. To present the
holiday names to users, specify the first column as the TextColumn. To store the dates of the
holidays, specify the second column as the BoundColumn.

The ListIndex value retrieves the number of the selected row. For example, if you want to know the
row of the selected item, set BoundColumn to 0 to assign the number of the selected row as the
value of the control. Be sure to retrieve a current value, rather than relying on a previously saved
value, if you are referencing a list whose contents might change.

The Column, List, and ListIndex properties all use zero-based numbering. That is, the value of the
first item (column or row) is zero; the value of the second item is one, and so on. This means that if
BoundColumn is set to 3, you could access the value stored in that column using the expression
Column(2).

CanPaste Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proCanPasteC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proCanPasteX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proCanPasteA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proCanPasteS"}

Specifies whether the Clipboard contains data that the object supports.

Syntax

object.CanPaste [=Boolean]

The CanPaste property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether a paste operation can be
performed.

Return Values

The CanPaste property return values are:

Value Description

True The object underneath the mouse pointer can receive
information pasted from the Clipboard (default).

False The object underneath the mouse pointer cannot receive
information pasted from the Clipboard.

Remarks

If the Clipboard data is in a format that the current target object does not support, the CanPaste
property is False. For example, if you try to paste a bitmap into an object that only supports text,
CanPaste will be False.

Caption Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proCaptionC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proCaptionX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proCaptionA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proCaptionS"}

Descriptive text that appears on an object to identify or describe it.

Syntax

object.Caption [= String]

The Caption property syntax has these parts:

Part Description

object Required. A valid object.

String Optional. A string expression that evaluates to the text
displayed as the caption.

Settings

The default setting for a control is a unique name based on the type of control. For example,
CommandButton1 is the default caption for the first command button in an HTML Layout.

Remarks

The text identifies or describes the object with which it is associated. For buttons and labels, the
Caption property specifies the text that appears in the control. For Tab objects, it specifies the text
that appears on the tab.

If a control's caption is too long, the caption is truncated. If an HTML Layout's caption is too long for
the title bar, the title is displayed with an ellipsis.

The ForeColor property of the control determines the color of the text in the caption.

Tip    If a control has both the Caption and AutoSize properties, setting AutoSize to True
automatically adjusts the size of the control to frame the entire caption.

ClientHeight, ClientLeft, ClientTop, ClientWidth Properties
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proClientHeightC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proClientHeightX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proClientHeightA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proClientHeightS"}

Define the dimensions and location of the display area of a TabStrip.

Syntax

object.ClientHeight [=Single]
object.ClientLeft [=Single]
object.ClientTop [=Single]
object.ClientWidth [=Single]

The ClientHeight, ClientLeft, ClientTop, and ClientWidth property syntaxes have these parts:

Part Description

object Required. A valid object.

Single Optional. For ClientHeight and ClientWidth, specifies the height
or width, in points, of the display area. For ClientLeft and
ClientTop, specifies the distance, in points, from the top or left
edge of the TabStrip’s container.

Remarks

At run time, ClientLeft, ClientTop, ClientHeight, and ClientWidth automatically store the
coordinates and dimensions of the TabStrip's internal area, which is shared by objects in the
TabStrip.

Column Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proColumnC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proColumnX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proColumnA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proColumnS"}

Specifies one or more items in a ListBox or ComboBox.

Syntax

object.Column(column, row) [= Variant]

The Column property syntax has these parts:

Part Description

object Required. A valid object.

column Optional. An integer with a range from 0 to one less than the
total number of columns.

row Optional. An integer with a range from 0 to one less than the
total number of rows.

Variant Optional. Specifies a single value, a column of values, or a two-
dimensional array to load into a ListBox or ComboBox.

Settings

If you specify both the column and row values, Column reads or writes a specific item.

If you specify only the column value, the Column property reads or writes the specified column in the
current row of the object. For example, MyListBox.Column (3) reads or writes the third column in
MyListBox.

Column returns a Variant from the cursor. When a built-in cursor provides the value for Variant (such
as when using the AddItem method), the value is a string. When an external cursor provides the
value for Variant, formatting associated with the data is not included in the Variant.

Remarks

You can use Column to assign the contents of a combo box or list box to another control, such as a
text box.

If the user makes no selection when you refer to a column in a combo box or list box, the Column
setting is Null. You can check for this condition by using the IsNull function.

You can also use Column to copy an entire two-dimensional array of values to a control. This syntax
lets you quickly load a list of choices rather than individually loading each element of the list using
AddItem.

Note    When copying data from a two-dimensional array, Column transposes the contents of the
array in the control so that the contents of ListBox1.Column(X, Y) is the same as MyArray(Y, X). You
can also use List to copy an array without transposing it.

ColumnCount Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proColumnCountC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proColumnCountX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proColumnCountA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proColumnCountS"}

Specifies the number of columns to display in a list box or combo box.

Syntax

object.ColumnCount [= Long]

The ColumnCount property syntax has these parts:

Part Description

object Required. A valid object.

Long Optional. Specifies the number of columns to display.

Remarks

If you set the ColumnCount property for a list box to 3 on an employee form, one column can list last
names, another can list first names, and the third can list employee ID numbers.

Setting ColumnCount to 0 displays zero columns, and setting it to -1 displays all the available
columns. There is a 10-column limit (0 to 9).

You can use the ColumnWidths property to set the width of the columns displayed in the control.

ColumnHeads Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proColumnHeadsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proColumnHeadsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proColumnHeadsA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proColumnHeadsS"}

Displays a single row of column headings for list boxes, combo boxes, and objects that accept
column headings.

Syntax

object.ColumnHeads [= Boolean]

The ColumnHeads property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether the column headings are
displayed.

Settings

The settings for Boolean are:

Value Description

True Display column headings.

False Do not display column headings (default).

Headings in combo boxes appear only when the list drops down.

Remarks

When the system uses the first row of data items as column headings, they can't be selected.

ColumnWidths Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proColumnWidthsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proColumnWidthsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proColumnWidthsA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proColumnWidthsS"}

Specifies the width of each column in a multicolumn combo box or list box.

Syntax

object.ColumnWidths [= String]

The ColumnWidths property syntax has these parts:

Part Description

object Required. A valid object.

String Optional. Sets the column width in points. A setting of –1 or
blank results in a calculated width. A width of 0 hides a
column. To specify a different unit of measurement, include
the unit of measure. A value greater than 0 explicitly specifies
the width of the column.

Settings

To separate column entries, use semicolons (;) as list separators. Or use the list separator specified in
the Regional Settings section of the Windows Control Panel.

Any or all of the ColumnWidths property settings can be blank. You create a blank setting by typing a
list separator without a preceding value.

If you specify a –1 in the property page, the displayed value in the property page is a blank.

To calculate column widths when ColumnWidths is blank or –1, the width of the control is divided
equally among all columns of the list. If the sum of the specified column widths exceeds the width of
the control, the list is left-aligned within the control and one or more of the rightmost columns are not
displayed. Users can scroll the list using the horizontal scroll bar to display the rightmost columns.

The minimum calculated column width is 72 points (1 inch). To produce columns narrower than this,
you must specify the width explicitly.

Unless specified otherwise, column widths are measured in points. To specify another unit of
measure, include the units as part of the values. The following examples specify column widths in
several units of measure and describe how the various settings would fit in a three-column list box
that is 4 inches wide.

Setting Effect

90;72;90 The first column is 90 points (1.25 inch); the second
column is 72 points (1 inch); the third column is 90 points.

6 cm;0;6 cm The first column is 6 centimeters; the second column is
hidden; the third column is 6 centimeters. Because part of
the third column is visible, a horizontal scroll bar appears.

1.5 in;0;2.5 in The first column is 1.5 inches, the second column is
hidden, and the third column is 2.5 inches.

2 in;;2 in The first column is 2 inches, the second column is 1 inch
(default), and the third column is 2 inches. Because only
half of the third column is visible, a horizontal scroll bar
appears.

(Blank) All three columns are the same width (1.33 inches).

Remarks

In a combo box, the system displays the column designated by the TextColumn property in the text
box portion of the control.

Count Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proCountC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proCountX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proCountA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proCountS"}

Returns the number of objects in a collection.

Syntax

object.Count

The Count property syntax has these parts:

Part Description

object Required. A valid object.

Remarks

The Count property is read-only.

Note that the index value for the first page or tab of a collection is zero, the value for the second page
or tab is one, and so on.

CurLine Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proCurLineC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proCurLineX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proCurLineA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proCurLineS"}

Specifies the current line of a control.

Syntax

object.CurLine [= Long]

The CurLine property syntax has these parts:

Part Description

object Required. A valid object.

Long Optional. Specifies the current line of a control.

Remarks

The current line of a control is the line that contains the insertion point. The number of the first line is
zero.

The CurLine property is valid when the control has the focus.

CurTargetX Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proCurTargetXC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proCurTargetXX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proCurTargetXA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proCurTargetXS"}

Retrieves the preferred horizontal position of the insertion point in a multiline TextBox or ComboBox.

Syntax

object.CurTargetX [=Long]

The CurTargetX property syntax has these parts:

Part Description

object Required. A valid object.

Long Optional. Indicates the preferred position, measured in himetric
units. A himetric is 0.0001 meter.

Remarks

The target position is relative to the left edge of the control. If the length of a line is less than the value
of the CurTargetX property, you can place the insertion point at the end of the line. The value of
CurTargetX changes when the user sets the insertion point or when the CurX property is set.
CurTargetX is read-only.

The return value is valid when the object has focus.

You can use CurTargetX and CurX to move the insertion point as the user scrolls through the
contents of a multiline TextBox or ComboBox. When the user moves the insertion point to another
line of text by scrolling the content of the object, CurTargetX specifies the preferred position for the
insertion point. CurX is set to this value if the line of text is longer than the value of CurTargetX.
Otherwise, CurX is set to the end of the line of text.

CurX Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proCurXC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proCurXX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proCurXA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"f3proCurXS"}

Specifies the current horizontal position of the insertion point in a multiline TextBox or ComboBox.

Syntax

object.CurX [= Long]

The CurX property syntax has these parts:

Part Description

object Required. A valid object.

Long Optional. Indicates the current position, measured in himetrics.
A himetric is 0.0001 meter.

Remarks

The CurX property applies to a multiline TextBox or ComboBox. The return value is valid when the
object has the focus.

You can use CurTargetX and CurX to position the insertion point as the user scrolls through the
contents of a multiline TextBox or ComboBox. When the user moves the insertion point to another
line of text by scrolling the content of the object, CurTargetX specifies the preferred position for the
insertion point. CurX is set to this value if the line of text is longer than the value of CurTargetX.
Otherwise, CurX is set to the end of the line of text.

Delay Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proDelayC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proDelayX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proDelayA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proDelayS"}

Specifies the delay for the SpinUp, SpinDown, and Change events on a SpinButton or ScrollBar.

Syntax

object.Delay [= Long]

The Delay property syntax has these parts:

Part Description

object Required. A valid object.

Long Optional. The delay, in milliseconds, between events.

Remarks

The Delay property affects the amount of time between consecutive SpinUp, SpinDown, and Change
events generated when the user clicks and holds down a button on a SpinButton or ScrollBar. The
first event occurs immediately. The delay to the second occurrence of the event is five times the value
of the specified Delay. This initial lag makes it easy to generate a single event rather than a stream of
events.

After the initial lag, the interval between events is the value specified for Delay.

The default value of Delay is 50 milliseconds. This means the object initiates the first event after 250
milliseconds (5 times the specified value) and initiates each subsequent event after 50 milliseconds.

DragBehavior Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proDragBehaviorC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proDragBehaviorX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proDragBehaviorA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proDragBehaviorS"}

Specifies whether the system enables the drag-and-drop feature for a TextBox or ComboBox.

Syntax

object.DragBehavior [= fmDragBehavior]

The DragBehavior property syntax has these parts:

Part Description

object Required. A valid object.

fmDragBehavior Optional. Specifies whether the drag-and-drop feature
is enabled.

Settings

The settings for fmDragBehavior are:

Constant Value Description

fmDragBehaviorDisabled 0 Does not allow a drag-and-drop
action (default).

fmDragBehaviorEnabled 1 Allows a drag-and-drop action.

Remarks

If the DragBehavior property is enabled, dragging in a text box or combo box starts a drag-and-drop
operation on the selected text. If DragBehavior is disabled, dragging in a text box or combo box
selects text.

The drop-down portion of a ComboBox does not support drag-and-drop processes, nor does it
support selection of list items within the text.

DragBehavior has no effect on a ComboBox whose Style property is set to fmStyleDropDownList.

Note    You can combine the effects of the EnterFieldBehavior property and DragBehavior to create
a large number of text box styles.

DropButtonStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proDropButtonStyleC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proDropButtonStyleX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proDropButtonStyleA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proDropButtonStyleS"}

Specifies the symbol displayed on the drop button in a ComboBox.

Syntax

object.DropButtonStyle [= fmDropButtonStyle]

The DropButtonStyle property syntax has these parts:

Part Description

object Required. A valid object.

fmDropButtonStyle Optional. The appearance of the drop button.

Settings

The settings for fmDropButtonStyle are:

Constant Value Description

fmDropButtonStylePlain 0 Displays a plain button, with no
symbol.

fmDropButtonStyleArrow 1 Displays a down arrow (default).

fmDropButtonStyleEllipsis 2 Displays an ellipsis ().

fmDropButtonStyleReduce 3 Displays a horizontal line like an
underscore character.

Remarks

The recommended setting for showing items in a list is fmDropButtonStyleArrow. If you want to use
the drop button in another way, such as to display a dialog box, specify fmDropButtonStyleEllipsis,
fmDropButtonStylePlain, or fmDropButtonStyleReduce and trap the DropButtonClick event.

Enabled Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proEnabledC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proEnabledX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proEnabledA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proEnabledS"}

Specifies whether a control can receive the focus and respond to user-generated events.

Syntax

object.Enabled [= Boolean]

The Enabled property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether the object can respond to user-
generated events.

Settings

The settings for Boolean are:

Value Description

True The control can receive the focus and respond to user-
generated events, and is accessible through code (default).

False The user cannot interact with the control by using the
mouse, keystrokes, accelerators, or hot keys. The control is
generally still accessible through code.

Remarks

Use the Enabled property to enable and disable controls. A disabled control appears dimmed, while
an enabled control does not. Also, if a control displays a bitmap, the bitmap is dimmed whenever the
control is dimmed. If Enabled is False for an Image, the control does not initiate events but does not
appear dimmed.

The Enabled and Locked properties work together to achieve the following effects:

· If Enabled and Locked are both True, the control can receive focus and appears normally (not
dimmed) in the HTML Layout. The user can copy, but not edit, data in the control.

· If Enabled is True and Locked is False, the control can receive focus and appears normally in the
HTML Layout. The user can copy and edit data in the control.

· If Enabled is False and Locked is True, the control cannot receive focus and is dimmed in the
HTML Layout. The user can neither copy nor edit data in the control.

· If Enabled and Locked are both False, the control cannot receive focus and is dimmed in the
HTML Layout. The user can neither copy nor edit data in the control.

You can combine the settings of the Enabled and the TabStop properties to prevent the user from
selecting a command button with TAB, while still allowing the user to click the button. Setting TabStop
to False means that the command button won't appear in the tab order. However, if Enabled is True,
then the user can still click the command button, as long as TakeFocusOnClick is set to True.

When the user tabs into an enabled TabStrip, the first page or tab in the control receives the focus. If
the first page or tab of a TabStrip is disabled, the first enabled page or tab of that control receives the
focus. If all pages or tabs of a or TabStrip are disabled, the control is disabled and cannot receive the
focus.

EnterFieldBehavior Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proEnterFieldBehaviorC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proEnterFieldBehaviorX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proEnterFieldBehaviorA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proEnterFieldBehaviorS"}

Specifies the selection behavior when entering a TextBox or ComboBox.

Syntax

object.EnterFieldBehavior [= fmEnterFieldBehavior]

The EnterFieldBehavior property syntax has these parts:

Part Description

object Required. A valid object.

fmEnterFieldBehavior Optional. The desired selection behavior.

Settings

The settings for fmEnterFieldBehavior are:

Constant Value Description

fmEnterFieldBehaviorSelectAll 0 Selects the entire
contents of the edit region
when entering the control
(default).

fmEnterFieldBehaviorRecallSelection 1 Leaves the selection
unchanged. Visually, this
uses the selection that
was in effect the last time
the control was active.

Remarks

The EnterFieldBehavior property controls the way text is selected when the user tabs to the control,
not when the control receives focus as a result of the SetFocus method. Following SetFocus, the
contents of the control are not selected and the insertion point appears after the last character in the
control’s edit region.

EnterKeyBehavior Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proEnterKeyBehaviorC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proEnterKeyBehaviorX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proEnterKeyBehaviorA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proEnterKeyBehaviorS"}

Defines the effect of pressing ENTER in a TextBox.

Syntax

object.EnterKeyBehavior [= Boolean]

The EnterKeyBehavior property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies the effect of pressing ENTER.

Settings

The settings for Boolean are:

Value Description

True Pressing ENTER creates a new line.

False Pressing ENTER moves the focus to the next object in the tab
order (default).

Remarks

The EnterKeyBehavior and MultiLine properties are closely related. The values described above
only apply if MultiLine is True. If MultiLine is False, pressing ENTER always moves the focus to the
next control in the tab order regardless of the value of EnterKeyBehavior.

The effect of pressing CTRL+ENTER also depends on the value of MultiLine. If MultiLine is True,
pressing CTRL+ENTER creates a new line regardless of the value of EnterKeyBehavior. If MultiLine is
False, pressing CTRL+ENTER has no effect.

ForeColor Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proForeColorC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proForeColorX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proForeColorA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proForeColorS"}

Specifies the foreground color of an object.

Syntax

object.ForeColor [= Long]

The ForeColor property syntax has these parts:

Part Description

object Required. A valid object.

Long Optional. A value or constant that determines the
foreground color of an object.

Settings

You can use any integer that represents a valid color. You can also specify a color by using the RGB
function with red, green, and blue color components. The value of each color component is an integer
that ranges from zero to 255. For example, you can specify teal blue as the integer value 4966415 or
as red, green, and blue color components 15, 200, 75.

Remarks

Use the ForeColor property for controls on HTML Layouts to make them easy to read or to convey a
special meaning. For example, if a text box reports the number of units in stock, you can change the
color of the text when the value falls below the reorder level.

For a ScrollBar or SpinButton, ForeColor sets the color of the arrows. For a Font object,
ForeColor determines the color of the text.

GroupName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proGroupNameC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proGroupNameX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proGroupNameA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proGroupNameS"}

Creates a group of mutually exclusive OptionButton controls.

Syntax

object.GroupName [= String]

The GroupName syntax has these parts:

Part Description

object Required. A valid OptionButton.

String Optional. The name of the group that includes the
OptionButton. Use the same setting for all buttons in the
group. The default setting is an empty string.

Remarks

You can create buttons with transparent backgrounds, which can improve the visual appearance of
your HTML Layout.

Clicking one button in a group sets all other buttons in the same group to False. All option buttons
with the same GroupName within a single container are mutually exclusive. You can use the same
group name in two containers, but doing so creates two groups (one in each container) rather than
one group that includes both containers.

Height, Width Properties
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proHeightC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proHeightX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proHeightA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proHeightS"}

The height or width, in points, of an object.

Syntax

object.Height [= Single]
object.Width [= Single]

The Height and Width property syntaxes have these parts:

Part Description

object Required. A valid object.

Single Optional. A numeric expression specifying the dimensions of
an object.

Remarks

The Height and Width properties are automatically updated when you move or size a control. If you
change the size of a control, the Height or Width property stores the new height or width. If you
specify a setting for the Left or Top property that is less than zero, that value will be used to calculate
the height or width of the control, but a portion of the control will not be visible on the HTML Layout.

If you move a control from one part of an HTML Layout to another, the setting of Height or Width
changes only if you size the control as you move it. The settings of the control’s Left and Top
properties will change to reflect the control’s new position relative to the edges of the HTML Layout
that contains it.

The value assigned to Height or Width must be greater than or equal to zero. For most systems, the
recommended range of values is from 0 to +32,767. Higher values may also work depending on your
system configuration.

HideSelection Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proHideSelectionC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proHideSelectionX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proHideSelectionA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proHideSelectionS"}

Specifies whether selected text remains highlighted when a control does not have the focus.

Syntax

object.HideSelection [= Boolean]

The HideSelection property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether the selected text remains
highlighted even when the control does not have the focus.

Settings

The settings for Boolean are:

Value Description

True Selected text is not highlighted unless the control has the focus
(default).

False Selected text always appears highlighted.

Remarks

You can use the HideSelection property to maintain highlighted text when another HTML Layout or a
dialog box receives the focus, such as in a spell-checking procedure.

IMEMode Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proIMEModeC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proIMEModeX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proIMEModeA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proIMEModeS"}

Specifies the default run time mode of the Input Method Editor (IME) for a control. This property
applies only to applications written for the Far East and is ignored in other applications.

Syntax

object.IMEMode [= fmIMEMode]

The IMEMode property syntax has these parts:

Part Description

object Required. A valid object.

fmIMEMode Optional. The mode of the Input Method Editor (IME).

Settings

The settings for fmIMEMode are:

Constant Value Description

fmIMEModeNoOp 0 Does not control IME (default).

fmIMEModeOn 1 IME on.

fmIMEModeOff 2 IME off. English mode.

fmIMEModeDisable 3 IME off. User can't turn on IME by
keyboard.

fmIMEModeHiragana 4 IME on with Full-width Hiragana
mode.

fmIMEModeKatakanaDbl 5 IME on with Full-width Katakana
mode.

fmIMEModeKatakanaSng 6 IME on with Half-width Katakana
mode.

fmIMEModeAlphaDbl 7 IME on with Full-width Alphanumeric
mode.

fmIMEModeAlphaSng 8 IME on with Half-width
Alphanumeric mode.

The fmIMEModeNoOp setting indicates that the mode of the IME does not change when the control
receives focus at run time. For any other value, the mode of the IME is set to the value specified by
the IMEMode property when the control receives focus at run time.

Remarks

There are two ways to set the mode of the IME. One is through the IME toolbar. The other is with a
control’s IMEMode property, which sets or returns the current mode of the IME. This property allows
dynamic control of the IME through code.

The following example explains how IMEMode interacts with the IME toolbar. Assume that you have
designed an HTML Layout with TextBox1 and CheckBox1. You have set TextBox1.IMEMode to 0, and
you have set CheckBox1.IMEMode to 1. While in design mode you have used the IME toolbar to put
the IME in mode 2.

When you run the HTML Layout, the IME begins in mode 2. If you click TextBox1, the IME mode does
not change because IMEMode for this control is 0. If you click CheckBox1, the IME changes to mode
1, because IMEMode for this control is 1. If you click again on TextBox1, the IME remains in mode 1

(IMEMode is 0, so the IME retains its last setting).

However, you can override IMEMode. For example, assume you click CheckBox1 and the IME enters
mode 1, as defined by IMEMode for the CheckBox. If you then use the IME toolbar to put the IME in
mode 3, then the IME will be set to mode 3 when you click the control. This does not change the
value of the property, it overrides the property until the next time you run the HTML Layout.

Index Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proIndexC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proIndexX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proIndexA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proIndexS"}

The position of a Tab object within a Tabs collection.

Syntax

object.Index [= Integer]

The Index property syntax has these parts:

Part Description

object Required. A valid object.

Integer Optional. The index of the currently selected Tab object.

Remarks

The Index property specifies the order in which tabs appear. Changing the value of Index visually
changes the order of Tabs on a TabStrip. The index value for the first page or tab is zero, the index
value of the second page or tab is one, and so on.

In a TabStrip, Index refers to the tab only.

InsideHeight, InsideWidth Properties
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proInsideHeightC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proInsideHeightX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proInsideHeightA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proInsideHeightS"}

InsideHeight returns the height, in points, of the client region inside an HTML Layout. InsideWidth
returns the width, in points, of the client region inside an HTML Layout.

Syntax

object.InsideHeight [=Single]
object.InsideWidth [=Single]

The InsideHeight and InsideWidth property syntaxes have these parts:

Part Description

object Required. A valid object.

Single Optional. The height or width of the client region.

Remarks

If the region includes a scroll bar, the returned value does not include the height or width of the scroll
bar.

IntegralHeight Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proIntegralHeightC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proIntegralHeightX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proIntegralHeightA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proIntegralHeightS"}

Indicates whether a ListBox or TextBox displays full lines of text in a list or partial lines.

Syntax

object.IntegralHeight [= Boolean]

The IntegralHeight property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether the list displays partial lines of text.

Settings

The settings for Boolean are:

Value Description

True The list resizes itself to display only complete items (default).

False The list does not resize itself even if the item is too tall to
display completely.

Remarks

The IntegralHeight property relates to the height of the list, just as the AutoSize property relates to
the width of the list.

If IntegralHeight is True, the list box automatically resizes when necessary to show full rows. If
False, the list remains a fixed size; if items are taller than the available space in the list, the entire
item is not shown.

LargeChange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proLargeChangeC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proLargeChangeX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proLargeChangeA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proLargeChangeS"}

Specifies the amount of movement that occurs when the user clicks between the scroll box and scroll
arrow.

Syntax

object.LargeChange [= Long]

The LargeChange property syntax has these parts:

Part Description

object Required. A valid object.

Long Optional. An integer that specifies the amount of change to the
Value property.

Remarks

The LargeChange property applies only to the ScrollBar. It does not apply to the scrollbars in other
controls such as a TextBox or a drop-down ComboBox.

The value of LargeChange is the amount by which the ScrollBar’s Value property changes when
the user clicks the area between the scroll box and scroll arrow. The direction of the movement is
always toward the place where the user clicks. For example, in a horizontal ScrollBar, clicking to the
left of the scroll box moves the scroll box to the left. In a vertical ScrollBar, clicking above the scroll
box moves the scroll box up.

LargeChange does not have units. Any integer is a valid setting for LargeChange. The
recommended range of values is from –32,767 to +32,767, and the value must be between the values
of the Max and Min properties of the ScrollBar.

Left, Top Properties
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proLeftC"}                  {ewc HLP95EN.DLL, DYNALINK, "Example":"f3proLeftX":1}
{ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proLeftA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proLeftS"}

The distance between a control and the left or top edge of the HTML Layout that contains it.

Syntax

object.Left [= Single]
object.Top [= Single]

The Left and Top property syntaxes have these parts:

Part Description

object Required. A valid object.

Single Optional. A numeric expression specifying the coordinates of an
object.

Settings

Setting the Left or Top property to 0 places the control's edge at the left or top edge of its container.

Remarks

For most systems, the recommended range of values for Left and Top is from -32,767 to +32,767.
Other values may also work depending on your system configuration. For a ComboBox, values of
Left and Top apply to the text portion of the control, not to the list portion. When you move or size a
control, its new Left setting is automatically entered in the Properties window. When you print an
HTML Layout, the control's horizontal or vertical location is determined by its Left or Top setting.

LineCount Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proLineCountC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proLineCountX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proLineCountA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proLineCountS"}

Returns the number of text lines in a TextBox or ComboBox.

Syntax

object.LineCount [=Long]

The LineCount property syntax has these parts:

Part Description

object Required. A valid object.

Long Return value. Specifies the number of text lines in the control.

Remarks

The LineCount property is read-only. The returned value is from 0 to one less than the value of
LineCount.

Note    A ComboBox will have only one line.

List Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proListC"}                  {ewc HLP95EN.DLL, DYNALINK, "Example":"f3proListX":1}
{ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proListA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proListS"}

Returns or sets the list entries of a ListBox or ComboBox.

Syntax

object.List(row, column) [= Variant]

The List property syntax has these parts:

Part Description

object Required. A valid object.

row Required. An integer with a range from 0 to one less than the
number of entries in the list.

column Required. An integer with a range from 0 to one less than the
number of columns.

Variant Optional. The contents of the specified entry in the ListBox or
ComboBox.

Settings

Row and column numbering begins with zero. That is, the row number of the first row in the list is
zero; the column number of the first column is zero. The number of the second row or column is 1,
and so on.

Remarks

The List property works with the ListCount and ListIndex properties.Use List in code to access list
items. A list is a variant array; each item in the list has a row number and a column number.

Initially, ComboBox and ListBox contain an empty list.

Note    To specify items you want to display in a ComboBox or ListBox, use the AddItem method. To
remove items, use the RemoveItem method.

You can also use List to copy an entire two-dimensional array of values to a control. This lets you
quickly load a list of choices rather than using AddItem to individually load each element of the list.

ListCount Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proListCountC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proListCountX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proListCountA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proListCountS"}

Returns the number of list entries in a control.

Syntax

Long=object.ListCount

The ListCount property syntax has these parts:

Part Description

object Required. A valid object.

Long Return value. Reports the number of entries in a control. The
default value is zero (0).

Remarks

The ListCount property is read-only. ListCount is the number of rows over which you can scroll.
ListRows is the maximum to display at once. ListCount is always one greater than the largest value
for the ListIndex property, because index numbers begin with 0 and the count of items begins with 1.
If no item is selected, ListCount is 0 and ListIndex is –1.

ListIndex Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proListIndexC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proListIndexX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proListIndexA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proListIndexS"}

Identifies the currently selected item in a ListBox or ComboBox.

Syntax

object.ListIndex [= Variant]

The ListIndex property syntax has these parts:

Part Description

object Required. A valid object.

Variant Optional. The currently selected item in the control.

Remarks

The ListIndex property contains an index of the selected row in a list. Values of ListIndex range from
–1 to one less than the total number of rows in a list (that is, ListCount – 1). When no rows are
selected, ListIndex returns –1. When the user selects a row in a ListBox or ComboBox, the system
sets the ListIndex value. The ListIndex value of the first row in a list is 0, the value of the second row
is 1, and so on.

Note    If you use the MultiSelect property to create a ListBox that allows multiple selections, the
Selected property of the ListBox (rather than the ListIndex property) identifies the selected rows.
The Selected property is an array with the same number of values as the number of rows in the
ListBox. For each row in the list box, Selected is True if the row is selected and False if it is not. In a
ListBox that allows multiple selections, ListIndex returns the index of the row that has focus,
regardless of whether that row is currently selected.

ListRows Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proListRowsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proListRowsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proListRowsA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proListRowsS"}

Specifies the maximum number of rows to display in the list before displaying a vertical scroll bar.

Syntax

object.ListRows [= Long]

The ListRows property syntax has these parts:

Part Description

object Required. A valid object.

Long Optional. An integer indicating the maximum number of rows.
The default value is 8.

Remarks

If the number of items in the list exceeds the value of the ListRows property, a scroll bar appears at
the right edge of the list box portion of the combo box.

ListStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proListStyleC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proListStyleX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proListStyleA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proListStyleS"}

Specifies the visual appearance of the list in a ListBox or ComboBox.

Syntax

object.ListStyle [= fmListStyle]

The ListStyle property syntax has these parts:

Part Description

object Required. A valid object.

fmListStyle Optional. The visual style of the list.

Settings

The settings for fmListStyle are:

Constant Value Description

fmListStylePlain 0 Looks like a regular list box, with the
background of items highlighted.

fmListStyleOption 1 Shows option buttons, or check boxes for
a multiselect list (default). When the user
selects an item from the group, the option
button associated with that item is
selected and the option buttons for the
other items in the group are deselected.

Remarks

The ListStyle property lets you change the visual presentation of a ListBox or ComboBox. By
specifying a setting other than fmListStylePlain, you can present the contents of either control as a
group of individual items, with each item including a visual cue to indicate whether it is selected.

If the control supports a single selection (the MultiSelect property is set to fmMultiSelectSingle), the
user can press one button in the group. If the control supports multiselect, the user can press two or
more buttons in the group.

ListWidth Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proListWidthC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proListWidthX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proListWidthA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proListWidthS"}

Specifies the width of the list in a ComboBox.

Syntax

object.ListWidth [= Variant]

The ListWidth property syntax has these parts:

Part Description

object Required. A valid object.

Variant Optional. The width of the list. A value of zero makes the list as
wide as the ComboBox. The default value is to make the list
as wide as the text portion of the control.

Remarks

If you want to display a multicolumn list, enter a value that will make the list box wide enough to fit all
the columns.

Tip    When designing combo boxes, be sure to leave enough space to display your data and for a
vertical scroll bar.

Locked Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proLockedC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proLockedX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proLockedA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proLockedS"}

Specifies whether a control can be edited.

Syntax

object.Locked [= Boolean]

The Locked property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether the control can be edited.

Settings

The settings for Boolean are:

Value Description

True You can't edit the value.

False You can edit the value (default).

Remarks

When a control is locked and enabled, it can still initiate events and can still receive the focus.

MatchEntry Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proMatchEntryC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proMatchEntryX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proMatchEntryA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proMatchEntryS"}

Returns or sets a value indicating how a ListBox or ComboBox searches its list as the user types.

Syntax

object.MatchEntry [= fmMatchEntry]

The MatchEntry property syntax has these parts:

Part Description

object Required. A valid object.

fmMatchEntry Optional. The rule used to match entries in the list.

Settings

The settings for fmMatchEntry are:

Constant Value Description

fmMatchEntryFirstLetter 0 Basic matching. The control searches
for the next entry that starts with the
character entered. Repeatedly typing
the same letter cycles through all
entries beginning with that letter.

FmMatchEntryComplete 1 Extended matching. As each
character is typed, the control
searches for an entry matching all
characters entered (default).

FmMatchEntryNone 2 No matching.

Remarks

The MatchEntry property searches entries from the TextColumn property of a ListBox or
ComboBox.

The control searches the column identified by TextColumn for an entry that matches the user's typed
entry. Upon finding a match, the row containing the match is selected, the contents of the column are
displayed, and the contents of its BoundColumn property become the value of the control. If the
match is unambiguous, finding the match initiates the Click event.

The control initiates the Click event as soon as the user types a sequence of characters that match
exactly one entry in the list. As the user types, the entry is compared with the current row in the list
and with the next row in the list. When the entry matches only the current row, the match is
unambiguous.

In ActiveX Control Pad, this is true regardless of whether the list is sorted. This means the control
finds the first occurrence that matches the entry, based on the order of items in the list. For example,
entering either “abc” or “bc” will initiate the Click event for the following list:

abcde
bcdef
abcxyz
bchij

Note that in either case, the matched entry is not unique; however, it is sufficiently different from the
adjacent entry that the control interprets the match as unambiguous and initiates the Click event.

MatchFound Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proMatchFoundC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proMatchFoundX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proMatchFoundA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proMatchFoundS"}

Indicates whether the text that a user has typed into a combo box matches any of the entries in the
list.

Syntax

object.MatchFound [=Boolean]

The MatchFound property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether a matching record was found.

Return Values

The MatchFound property return values are:

Value Description

True The contents of the Value property matches one of the records
in the list.

False The contents of Value does not match any of the records in the
list (default).

Remarks

The MatchFound property is read-only. It is not applicable when the MatchEntry property is set to
fmMatchEntryNone.

MatchRequired Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proMatchRequiredC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proMatchRequiredX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proMatchRequiredA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proMatchRequiredS"}

Specifies whether a value entered in the text portion of a ComboBox must match an entry in the
existing list portion of the control. The user can enter non-matching values, but may not leave the
control until a matching value is entered.

Syntax

object.MatchRequired [= Boolean]

The MatchRequired property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether the text entered must match an
existing item in the list.

Settings

The settings for Boolean are:

Value Description

True The text entered must match an existing list entry.

False The text entered can be different from all existing list entries
(default).

Remarks

If the MatchRequired property is True, the user cannot exit the ComboBox until the text entered
matches an entry in the existing list. MatchRequired maintains the integrity of the list by requiring the
user to select an existing entry.

Note    Not all containers enforce this property.

Max, Min Properties
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proMaxC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proMaxX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proMaxA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"f3proMaxS"}

Specify the maximum and minimum acceptable values for the Value property of a ScrollBar or
SpinButton.

Syntax

object.Max [= Long]
object.Min [= Long]

The Max and Min property syntaxes have these parts:

Part Description

object Required. A valid object.

Long Optional. A numeric expression specifying the maximum or
minimum Value property setting.

Remarks

Clicking a SpinButton or moving the scroll box in a ScrollBar changes the Value property of the
control.

The value for the Max property corresponds to the lowest position of a vertical ScrollBar or the
rightmost position of a horizontal ScrollBar. The value for the Min property corresponds to the
highest position of a vertical ScrollBar or the leftmost position of a horizontal ScrollBar.

Any integer is an acceptable setting for this property. The recommended range of values is from –
32,767 to +32,767. The default value is 1.

Note    Min and Max refer to locations, not to relative values, on the ScrollBar. That is, the value of
Max could be less than the value of Min. If this is the case, moving toward the Max (bottom) position
means decreasing Value; moving toward the Min (top) position means increasing Value.

MaxLength Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proMaxLengthC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proMaxLengthX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proMaxLengthA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proMaxLengthS"}

Specifies the maximum number of characters a user can enter in a TextBox or ComboBox.

Syntax

object.MaxLength [= Long]

The MaxLength property syntax has these parts:

Part Description

object Required. A valid object.

Long Optional. An integer indicating the allowable number of
characters.

Remarks

Setting the MaxLength property to 0 indicates there is no limit other than that created by memory
constraints.

MouseIcon Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proMouseIconC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proMouseIconX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proMouseIconA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proMouseIconS"}

Assigns a custom icon to an object.

Syntax

object.MouseIcon = LoadPicture(pathname)

The MouseIcon property syntax has these parts:

Part Description

object Required. A valid object.

pathname Required. A string expression specifying the path and
filename of the file containing the custom icon.

Remarks

The MouseIcon property is valid when the MousePointer property is set to 99. The mouse icon of an
object is the image that appears when the user moves the mouse across that object.

To assign an image for the mouse pointer, you can either assign a picture to the MouseIcon property
or load a picture from a file using the LoadPicture method.

MousePointer Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proMousePointerC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proMousePointerX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proMousePointerA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proMousePointerS"}

Specifies the type of pointer displayed when the user positions the mouse over a particular object.

Syntax

object.MousePointer [= fmMousePointer]

The MousePointer property syntax has these parts:

Part Description

object Required. A valid object.

fmMousePointer Optional. The shape you want for the mouse pointer.

Settings

The settings for fmMousePointer are:

Constant Value Description

fmMousePointerDefault 0 Standard pointer. The image is
determined by the object (default).

fmMousePointerArrow 1 Arrow.

fmMousePointerCross 2 Cross-hair pointer.

fmMousePointerIBeam 3 I-beam.

fmMousePointerSizeNESW 6 Double arrow pointing northeast
and southwest.

fmMousePointerSizeNS 7 Double arrow pointing north and
south.

fmMousePointerSizeNWSE 8 Double arrow pointing northwest
and southeast.

fmMousePointerSizeWE 9 Double arrow pointing west and
east.

fmMousePointerUpArrow 10 Up arrow.

fmMousePointerHourglass 11 Hourglass.

fmMousePointerNoDrop 12 "Not" symbol (circle with a diagonal
line) on top of the object being
dragged. Indicates an invalid drop
target.

fmMousePointerAppStarting 13 Arrow with an hourglass.

fmMousePointerHelp 14 Arrow with a question mark.

fmMousePointerSizeAll 15 Size all cursor (arrows pointing
north, south, east, and west).

fmMousePointerCustom 99 Uses the icon specified by the
MouseIcon property.

Remarks

Use the MousePointer property when you want to indicate changes in functionality as the mouse
pointer passes over controls on an HTML Layout. For example, the hourglass setting (11) is useful to
indicate that the user must wait for a process or operation to finish.

Some icons vary depending on system settings, such as the icons associated with desktop themes.

MultiLine Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proMultiLineC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proMultiLineX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proMultiLineA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proMultiLineS"}

Specifies whether a control can accept and display multiple lines of text.

Syntax

object.MultiLine [= Boolean]

The MultiLine property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether the control supports more than
one line of text.

Settings

The settings for Boolean are:

Value Description

True The text is displayed across multiple lines (default).

False The text is not displayed across multiple lines.

Remarks

A multiline TextBox allows absolute line breaks and adjusts its quantity of lines to accommodate the
amount of text it holds. If needed, a multiline control can have vertical scroll bars.

A single-line TextBox doesn’t allow absolute line breaks and doesn’t use vertical scroll bars.

Single-line controls ignore the value of the WordWrap property.

Note      If you change MultiLine to False in a multiline TextBox, all the characters in the TextBox will
be combined into one line. Non-printing characters will be displayed between lines of text.

MultiRow Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proMultiRowC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proMultiRowX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proMultiRowA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proMultiRowS"}

Specifies whether the control has more than one row of tabs.

Syntax

object.MultiRow [= Boolean]

The MultiRow property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether the control has more than one row
of tabs.

Settings

The settings for Boolean are:

Value Description

True Allows more than one row of tabs.

False Restricts tabs to a single row (default).

Remarks

The width and number of tabs determines the number of rows. Changing the control's size also
changes the number of rows. This allows the developer to resize the control and ensure that tabs
wrap to fit the control. If the MultiRow property is False, then truncation occurs if the width of the tabs
exceeds the width of the control.

If MultiRow is False and tabs are truncated, there will be a small scroll bar on the TabStrip to allow
scrolling to the other tabs or pages.

MultiSelect Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proMultiSelectC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proMultiSelectX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proMultiSelectA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proMultiSelectS"}

Indicates whether the object permits multiple selections.

Syntax

object.MultiSelect [= fmMultiSelect]

The MultiSelect property syntax has these parts:

Part Description

object Required. A valid object.

fmMultiSelect Optional. The selection mode that the control uses.

Settings

The settings for fmMultiSelect are:

Constant Value Description

fmMultiSelectSingle 0 Only one item can be selected
(default).

fmMultiSelectSimple 1 Pressing the SPACEBAR or clicking
selects or deselects an item in the list.

fmMultiSelectExtended 2 Pressing SHIFT and clicking the mouse,
or pressing SHIFT and one of the arrow
keys, extends the selection from the
previously selected item to the current
item. Pressing CTRL and clicking the
mouse selects or deselects an item.

Remarks

When the MultiSelect property is set to Extended or Simple, you must use the list box's Selected
property to determine the selected items. Also, the Value property of the control is always Null.

The ListIndex property returns the index of the row with the keyboard focus.

ID Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proNameC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proNameX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proNameA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proNameS"}

Specifies the name of a control or an object, or the name of a font to associate with a Font object.

Syntax

For Font
Font.ID [= String]

For all other controls and objects
object.ID [= String]

The ID property syntax has these parts:

Part Description

object Required. A valid object.

String Optional. The name you want to assign to the font or control.

Settings

Guidelines for assigning a string to ID, such as the maximum length of the name, vary from one
application to another.

Remarks

For objects, the default value of ID consists of the object's class name followed by an integer. For
example, the default name for the first TextBox you place on an HTML Layout is TextBox1. The
default name for the second TextBox is TextBox2.

You can set the ID property for a control from the control's Properties window or, for controls added at
run time, by using program statements. If you add a control at design time, you cannot modify its ID
property at run time.

Each control added to an HTML Layout at design time must have a unique name.

For Font objects, ID identifies a particular typeface to use in the text portion of a control, object, or
HTML Layout. The font's appearance on screen and in print may differ, depending on your computer
and printer. If you select a font that your system can't display or that isn't installed, Windows
substitutes a similar font.

Orientation Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proOrientationC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proOrientationX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proOrientationA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proOrientationS"}

Specifies whether the SpinButton or ScrollBar is oriented vertically or horizontally.

Syntax

object.Orientation [= fmOrientation]

The Orientation property syntax has these parts:

Part Description

object Required. A valid object.

fmOrientation Optional. Orientation of the control.

Settings

The settings for fmOrientation are:

Constant Value Description

fmOrientationAuto –1 Automatically determines the
orientation based upon the
dimensions of the control (default).

fmOrientationVertical     0 Control is rendered vertically.

fmOrientationHorizontal     1 Control is rendered horizontally.

Remarks

If you specify automatic orientation, the height and width of the control determine whether the
SpinButton or ScrollBar appears horizontally or vertically. For example, if the control is wider than it
is tall, the SpinButton or ScrollBar appears horizontally; if the control is taller than it is wide, the
SpinButton or ScrollBar appears vertically.

PasswordChar Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proPasswordCharC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proPasswordCharX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proPasswordCharA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proPasswordCharS"}

Specifies whether placeholder characters are displayed instead of the characters actually entered in a
TextBox.

Syntax

object.PasswordChar [= String]

The PasswordChar property syntax has these parts:

Part Description

object Required. A valid object.

String Optional. A string expression specifying the placeholder
character.

Remarks

You can use the PasswordChar property to protect sensitive information, such as passwords or
security codes. The value of PasswordChar is the character that appears in a control instead of the
actual characters that the user types. If you don't specify a character, the control displays the
characters that the user types.

Picture Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proPictureC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proPictureX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proPictureA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proPictureS"}

Specifies the bitmap to display on an object.

Syntax

object.Picture = LoadPicture(pathname)

The Picture property syntax has these parts:

Remarks

While designing an HTML Layout, you can use the control’s property page to assign a bitmap to the
Picture property. While running an HTML Layout, you must use the LoadPicture function to assign a
bitmap to Picture.

To remove a picture that is assigned to a control, click the value of the Picture property in the
property page and then press DELETE. Pressing BACKSPACE will not remove the picture.

Note    For controls with captions, use the PicturePosition property to specify where to display the
picture on the object. Use the PictureSizeMode property to determine how the picture fills the object

Transparent pictures sometimes have a hazy appearance. If you do not like this appearance, display
the picture on an Image control. Image controls support opaque images.

PictureAlignment Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proPictureAlignmentC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proPictureAlignmentX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proPictureAlignmentA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proPictureAlignmentS"}

Specifies the location of a background picture.

Syntax

object.PictureAlignment [= fmPictureAlignment]

The PictureAlignment property syntax has these parts:

Part Description

object Required. A valid object.

fmPictureAlignment Optional. The position where the picture aligns with
the control.

Settings

The settings for fmPictureAlignment are:

Constant Value Description

fmPictureAlignmentTopLeft 0 The top-left corner.

fmPictureAlignmentTopRight 1 The top-right corner.

fmPictureAlignmentCenter 2 The center.

fmPictureAlignmentBottomLeft 3 The bottom-left corner.

fmPictureAlignmentBottomRight 4 The bottom-right corner.

Remarks

The PictureAlignment property identifies which corner of the picture is the same as the
corresponding corner of the control or container where the picture is used.

For example, setting PictureAlignment to fmPictureAlignmentTopLeft means that the top-left
corner of the picture coincides with the top-left corner of the control or container. Setting
PictureAlignment to fmPictureAlignmentCenter positions the picture in the middle, relative to the
height as well as the width of the control or container.

If you tile an image on a control or container, the setting of PIctureAlignment affects the tiling
pattern. For example, if PictureAlignment is set to fmPictureAlignmentUpperLeft, the first copy of
the image is laid in the upper-left corner of the control or container and additional copies are tiled from
left to right across each row. If PictureAlignment is fmPictureAlignmentCenter, the first copy of the
image is laid at the center of the control or container, additional copies are laid to the left and right to
complete the row, and additional rows are added to fill the control or container.

Note    Setting the PictureSizeMode property to fmSizeModeStretch overrides PictureAlignment.
When PictureSizeMode is set to fmSizeModeStretch, the picture fills the entire control or container.

PicturePosition Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proPicturePositionC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proPicturePositionX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proPicturePositionA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proPicturePositionS"}

Specifies the location of the picture relative to its caption.

Syntax

object.PicturePosition [= fmPicturePosition]

The PicturePosition property syntax has these parts:

Part Description

object Required. A valid object.

fmPicturePosition Optional. How the picture aligns with its container.

Settings

The settings for fmPicturePosition are:

Constant Value Description

fmPicturePositionLeftTop 0 The picture appears to the left
of the caption. The caption is
aligned with the top of the
picture.

fmPicturePositionLeftCenter 1 The picture appears to the left
of the caption. The caption is
centered relative to the picture.

fmPicturePositionLeftBottom 2 The picture appears to the left
of the caption. The caption is
aligned with the bottom of the
picture.

fmPicturePositionRightTop 3 The picture appears to the right
of the caption. The caption is
aligned with the top of the
picture.

fmPicturePositionRightCenter 4 The picture appears to the right
of the caption. The caption is
centered relative to the picture.

fmPicturePositionRightBottom 5 The picture appears to the right
of the caption. The caption is
aligned with the bottom of the
picture.

fmPicturePositionAboveLeft 6 The picture appears above the
caption. The caption is aligned
with the left edge of the picture.

fmPicturePositionAboveCenter 7 The picture appears above the
caption. The caption is
centered below the picture
(default).

fmPicturePositionAboveRight 8 The picture appears above the
caption. The caption is aligned
with the right edge of the
picture.

fmPicturePositionBelowLeft 9 The picture appears below the
caption. The caption is aligned
with the left edge of the picture.

fmPicturePositionBelowCenter 10 The picture appears below the
caption. The caption is
centered above the picture.

fmPicturePositionBelowRight 11 The picture appears below the
caption. The caption is aligned
with the right edge of the
picture.

fmPicturePositionCenter 12 The picture appears in the
center of the control. The
caption is centered horizontally
and vertically on top of the
picture.

Remarks

The picture and the caption, as a unit, are centered on the control. If no caption exists, the picture’s
location is relative to the center of the control.

This property is ignored if the Picture property does not specify a picture.

PictureSizeMode Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proPictureSizeModeC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proPictureSizeModeX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proPictureSizeModeA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proPictureSizeModeS"}

Specifies how to display the background picture on a control, HTML Layout, or HTML page.

Syntax

object.PictureSizeMode [= fmPictureSizeMode]

The PictureSizeMode property syntax has these parts:

Part Description

object Required. A valid object.

fmPictureSizeMode Optional. The action to take if the picture and the
HTML Layout or HTML page that contains it are not
the same size.

Settings

The settings for fmPictureSizeMode are:

Constant Value Description

fmPictureSizeModeClip 0 Crops any part of the picture that is
larger than the HTML Layout or
HTML page (default).

fmPictureSizeModeStretch 1 Stretches the picture to fill the
HTML Layout or HTML page. This
setting distorts the picture in either
the horizontal or vertical direction.

fmPictureSizeModeZoom 3 Enlarges the picture, but does not
distort the picture in either the
horizontal or vertical direction.

Remarks

The fmPictureSizeModeClip setting indicates you want to show the picture in its original size and
scale. If the HTML Layout or HTML page is smaller than the picture, this setting only shows the part of
the picture that fits within the HTML Layout or HTML page.

The fmPictureSizeModeStretch and fmPictureSizeModeZoom settings both enlarge the image, but
fmPictureSizeModeStretch causes distortion. The fmPictureSizeModeStretch setting enlarges the
image horizontally and vertically until the image reaches the corresponding edges of the container or
control. The fmPictureSizeModeZoom setting enlarges the image until it reaches either the
horizontal or vertical edges of the container or control. If the image reaches the horizontal edges first,
any remaining distance to the vertical edges remains blank. If it reaches the vertical edges first, any
remaining distance to the horizontal edges remains blank.

PictureTiling Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proPictureTilingC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proPictureTilingX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proPictureTilingA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proPictureTilingS"}

Lets you tile a picture in an image control.

Syntax

object.PictureTiling [= Boolean]

The PictureTiling property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether a picture is repeated across a
background.

Settings

The settings for Boolean are:

Value Description

True The picture is tiled across the background.

False The picture is not tiled across the background (default).

Remarks

You can tile an image on an HTML Layout by drawing the Image the same size as the HTML Layout.

The tiling pattern depends on the current setting of the PictureAlignment and PictureSizeMode
properties. For example, if PictureAlignment is set to fmPictureAlignmentTopLeft, the tiling pattern
starts at the upper-left and repeats the picture across and down the height of the Image. If
PictureSizeMode is set to fmPictureSizeModeClip, the tiling pattern crops the last tile if it doesn't
completely fit within the Image.

ProportionalThumb Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proProportionalThumbC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proProportionalThumbX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proProportionalThumbA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proProportionalThumbS"}

Specifies whether the size of the scroll box is proportional to the scrolling region or fixed.

Syntax

object.ProportionalThumb [= Boolean]

The ProportionalThumb property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether the scroll box is proportional or
fixed.

Settings

The settings for Boolean are:

Value Description

True The scroll box is proportional in size to the scrolling region
(default).

False The scroll box is a fixed size.

Remarks

The size of a proportional scroll box graphically represents the percentage of the object that is visible
in the window. For example, if 75 percent of an object is visible, the scroll box covers three-fourths of
the scrolling region in the scroll bar.

If the scroll box is a fixed size, the system determines its size based on the height and width of the
scroll bar.

ScrollBars Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proScrollBarsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proScrollBarsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proScrollBarsA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proScrollBarsS"}

Specifies whether a control, form, or page has vertical scroll bars, horizontal scroll bars, or both.

Syntax

object.ScrollBars [= fmScrollBars]

The ScrollBars property syntax has these parts:

Part Description

object Required. A valid object.

fmScrollBars Optional. Where scroll bars should be displayed.

Settings

The settings for fmScrollBars are:

Constant Value Description

fmScrollBarsNone 0 Displays no scroll bars (default).

fmScrollBarsHorizontal 1 Displays a horizontal scroll bar.

fmScrollBarsVertical 2 Displays a vertical scroll bar.

fmScrollBarsBoth 3 Displays both a horizontal and a vertical
scroll bar.

Remarks

If the KeepScrollBarsVisible property is True, any scroll bar on a form or page is always visible,
regardless of whether the object's contents fit within the object's borders.

If visible, a scroll bar constrains its scroll box to the visible region of the scroll bar. It also modifies the
scroll position as needed to keep the entire scroll bar visible. The range of a scroll bar changes when
the value of the ScrollBars property changes, the scroll size changes, or the visible size changes.

If a scroll bar is not visible, then you can set its scroll position to any value. Negative values and
values greater than the scroll size are both valid.

For a single-line control, you can display a horizontal scroll bar by using the ScrollBars and
AutoSize properties. Scroll bars are hidden or displayed according to the following rules:

1. When ScrollBars is set to fmScrollBarsNone, no scroll bar is displayed.

2. When ScrollBars is set to fmScrollBarsHorizontal or fmScrollBarsBoth, the control displays a
horizontal scroll bar if the text is longer than the edit region and if the control has enough room to
include the scroll bar underneath its edit region.

3. When AutoSize is True, the control enlarges itself to accommodate the addition of a scroll bar
unless the control is at or near its maximum size.

For a multiline TextBox, you can display scroll bars by using the ScrollBars, WordWrap, and
AutoSize properties. Scroll bars are hidden or displayed according to the following rules:

1. When ScrollBars is set to fmScrollBarsNone, no scroll bar is displayed.

2. When ScrollBars is set to fmScrollBarsVertical or fmScrollBarsBoth, the control displays a
vertical scroll bar if the text is longer than the edit region and if the control has enough room to
include the scroll bar at the right edge of its edit region.

3. When WordWrap is True, the multiline control will not display a horizontal scroll bar. Most multiline
controls do not use a horizontal scroll bar.

4. A multiline control can display a horizontal scroll bar if the following conditions occur
simultaneously:

· The edit region contains a word that is longer than the edit region’s width.

· The control has enabled horizontal scroll bars.

· The control has enough room to include the scroll bar under the edit region.

· The WordWrap property is set to False.

Selected Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proSelectedC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proSelectedX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proSelectedA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proSelectedS"}

Returns or sets the selection state of items in a ListBox.

Syntax

object.Selected(index) [= Boolean]

The Selected property syntax has these parts:

Part Description

object Required. A valid object.

index Required. An integer with a range from 0 to one less than the
number of items in the list.

Boolean Optional. Specifies whether an item is selected.

Settings

The settings for Boolean are:

Value Description

True The item is selected.

False The item is not selected.

Remarks

The Selected property is useful when users can make multiple selections. You can use this property
to determine the selected rows in a multiselect list box. You can also use this property to select or
deselect rows in a list from code.

The default value of this property is based on the current selection state of the ListBox.

For single-selection list boxes, the Value or ListIndex properties are recommended for getting and
setting the selection. In this case, ListIndex returns the index of the selected item. However, in a
multiple selection, ListIndex returns the index of the row contained within the focus rectangle,
regardless of whether the row is actually selected.

When a list box control's MultiSelect property is set to None, only one row can have its Selected
property set to True.

Entering a value that is out of range for the index does not generate an error message, but does not
set a property for any item in the list.

SelectedItem Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proSelectedItemC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proSelectedItemX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proSelectedItemA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proSelectedItemS"}

Returns or sets the currently selected Tab object.

Syntax

object.SelectedItem [=Object]

The SelectedItem property syntax has these parts:

Part Description

object Required. A valid TabStrip.

Object Optional. The currently selected Tab of the specified TabStrip.

Remarks

Use the SelectedItem property to programmatically control the currently selected Tab object. For
example, you can use SelectedItem to assign values to properties of a Tab object.

SelectionMargin Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proSelectionMarginC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proSelectionMarginX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proSelectionMarginA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proSelectionMarginS"}

Specifies whether the user can select a line of text by clicking in the region to the left of the text.

Syntax

object.SelectionMargin [= Boolean]

The SelectionMargin property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether clicking in the margin selects a line
of text.

Settings

The settings for Boolean are:

Value Description

True Clicking in margin causes selection of text (default).

False Clicking in margin does not cause selection of text.

Remarks

When the SelectionMargin property is True, the selection margin occupies a thin strip along the left
edge of a control’s edit region. When set to False, the entire edit region can store text.

If the SelectionMargin property is set to True when a control is printed, the selection margin is also
printed.

SelLength Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proSelLengthC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proSelLengthX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proSelLengthA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proSelLengthS"}

Specifies the number of characters selected in a text box or the text portion of a combo box.

Syntax

object.SelLength [= Long]

The SelLength property syntax has these parts:

Part Description

object Required. A valid object.

Long Optional. A numeric expression specifying the number of
characters selected. For SelLength and SelStart, the valid
range of settings is 0 to the total number of characters in the
edit area of a ComboBox or TextBox.

Remarks

The SelLength property is always valid, even when the control does not have focus. Setting
SelLength to a value less than zero creates an error. Attempting to set SelLength to a value greater
than the number of characters available in a control results in a value equal to the number of
characters in the control.

Note    Changing the value of the SelStart property cancels any existing selection in the control,
places an insertion point in the text, and sets SelLength to zero.

The default value, zero, means that no text is currently selected.

SelStart Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proSelStartC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proSelStartX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proSelStartA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proSelStartS"}

Indicates the starting point of selected text, or the insertion point if no text is selected.

Syntax

object.SelStart [= Long]

The SelStart property syntax has these parts:

Part Description

object Required. A valid object.

Long Optional. A numeric expression specifying the starting point of
text selected. For SelLength and SelStart, the valid range of
settings is 0 to the total number of characters in the edit area
of a ComboBox or TextBox. The default value is zero.

Remarks

The SelStart property is always valid, even when the control does not have focus. Setting SelStart to
a value less than zero creates an error. Attempting to set SelStart to a value greater than the number
of characters available in a control results in a value equal to the number of characters in the control.

Changing the value of SelStart cancels any existing selection in the control, places an insertion point
in the text, and sets the SelLength property to zero.

SelText Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proSelTextC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proSelTextX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proSelTextA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proSelTextS"}

Returns or sets the selected text of a control.

Syntax

object.SelText [= String]

The SelText property syntax has these parts:

Part Description

object Required. A valid object.

String Optional. A string expression containing the selected text.

Remarks

If no characters are selected in the edit region of the control, the SelText property returns a zero-
length string. This property is valid regardless of whether the control has the focus.

ShowDropButtonWhen Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proShowDropButtonWhenC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proShowDropButtonWhenX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"f3proShowDropButtonWhenA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proShowDropButtonWhenS"}

Specifies when to show the drop-down button for a ComboBox or TextBox.

Syntax

object.ShowDropButtonWhen [= fmShowDropButtonWhen]

The ShowDropButtonWhen property syntax has these parts:

Part Description

object Required. A valid object.

fmShowDropButtonWhe
n

Optional. The circumstances under which the
drop-down button will be visible.

Settings

The settings for fmShowDropButtonWhen are:

Constant Value Description

fmShowDropButtonWhenNever 0 Do not show the drop-down
button under any
circumstances.

fmShowDropButtonWhenFocus 1 Show the drop-down button
when the control has the
focus.

fmShowDropButtonWhenAlway
s

2 Always show the drop-down
button (default).

SmallChange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proSmallChangeC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proSmallChangeX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proSmallChangeA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proSmallChangeS"}

Specifies the amount of movement that occurs when the user clicks either scroll arrow in a ScrollBar
or SpinButton.

Syntax

object.SmallChange [= Long]

The SmallChange property syntax has these parts:

Part Description

object Required. A valid object.

Long Optional. An integer that specifies the amount of change to
the Value property.

Remarks

The SmallChange property does not have units.

Any integer is an acceptable setting for this property. The recommended range of values is from –
32,767 to +32,767. The default value is 1.

SpecialEffect Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proSpecialEffectC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proSpecialEffectX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proSpecialEffectA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proSpecialEffectS"}

Specifies the visual appearance of an object.

Syntax

For CheckBox, OptionButton, ToggleButton
object.SpecialEffect [= fmButtonEffect]

For other controls
object.SpecialEffect [= fmSpecialEffect]

The SpecialEffect property syntax has these parts:

Part Description

object Required. A valid object.

fmButtonEffect Optional. The desired visual appearance for a CheckBox,
OptionButton, or ToggleButton.

fmSpecialEffect Optional. The desired visual appearance of an object
other than a CheckBox, OptionButton, or
ToggleButton.

Settings

The settings for fmSpecialEffect are:

Constant Value Description

fmSpecialEffectFlat 0 Object appears flat, distinguished from
the surrounding form by a border, a
change of color, or both. Default for
Image and Label, valid for all controls.

fmSpecialEffectRaised 1 Object has a highlight on the top and
left and a shadow on the bottom and
right. Not valid for check boxes or
option buttons.

fmSpecialEffectSunken 2 Object has a shadow on the top and left
and a highlight on the bottom and right.
The control and its border appear to be
carved into the form that contains them.
Default for CheckBox and
OptionButton, valid for all controls
(default).

fmSpecialEffectEtched 3 Border appears to be carved around
the edge of the control. Not valid for
check boxes or option buttons.

fmSpecialEffectBump 6 Object has a ridge on the bottom and
right and appears flat on the top and
left. Not valid for check boxes or option
buttons.

For a Frame, the default value is Sunken.

Note that only Flat and Sunken (0 and 2) are acceptable values for CheckBox, OptionButton, and
ToggleButton. All values listed are acceptable for other controls.

Remarks

You can use either the SpecialEffect or the BorderStyle property to specify the edging for a control,
but not both. If you specify a nonzero value for one of these properties, the system sets the value of
the other property to zero. For example, if you set SpecialEffect to fmSpecialEffectRaised, the
system sets BorderStyle to zero (fmBorderStyleNone).

For a Frame, BorderStyle is ignored if SpecialEffect is fmSpecialEffectFlat.

SpecialEffect uses the system colors to define its borders.

Note      Although the SpecialEffect property exists on the ToggleButton, the property is disabled.
You cannot set or return a value for this property on the ToggleButton.

Style Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proStyleC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proStyleX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proStyleA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"f3proStyleS"}

For ComboBox, specifies how the user can choose or set the control’s value. For TabStrip, identifies
the style of the tabs on the control.

Syntax

For ComboBox
object.Style [= fmStyle]

For TabStrip
object.Style [= fmTabStyle]

The Style property syntax has these parts:

Part Description

object Required. A valid object.

fmStyle Optional. Specifies how a user sets the value of a
ComboBox.

fmTabStyle Optional. Specifies the tab style in a TabStrip.

Settings

The settings for fmStyle are:

Constant Value Description

fmStyleDropDownComb
o

0 The ComboBox behaves as a drop-
down combo box. The user can type
a value in the edit region or select a
value from the drop-down list
(default).

FmStyleDropDownList 2 The ComboBox behaves as a list
box. The user must choose a value
from the list.

The settings for fmTabStyle are:

Constant Value Description

fmTabStyleTabs 0 Displays tabs on the tab bar
(default).

FmTabStyleButtons 1 Displays buttons on the tab bar.

FmTabStyleNone 2 Does not display the tab bar.

TabFixedHeight, TabFixedWidth Properties
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proTabFixedHeightC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proTabFixedHeightX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proTabFixedHeightA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proTabFixedHeightS"}

Sets or returns the fixed height or width of the tabs in points.

Syntax

object.TabFixedHeight [= Single]
object.TabFixedWidth [= Single]

The TabFixedHeight and TabFixedWidth property syntaxes have these parts:

Part Description

object Required. A valid object.

Single Optional. The number of points of the height or width of the tabs
on a TabStrip.

Settings

If the value is 0, tab widths are automatically adjusted so that each tab is wide enough to
accommodate its contents and each row of tabs spans the width of the control.

If the value is greater than 0, all tabs have an identical width as specified by this property.

Remarks

The minimum size is 4 points.

TabIndex Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTabIndexC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proTabIndexX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proTabIndexA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTabIndexS"}

Specifies the position of a single object in the HTML Layout's tab order.

Syntax

object.TabIndex [= Integer]

The TabIndex property syntax has these parts:

Part Description

object Required. A valid object.

Integer Optional. An integer from 0 to one less than the number of
controls on the HTML Layout that have a TabIndex property.
Assigning a TabIndex value of less than 0 generates an error. If
you assign a TabIndex value greater than the largest index
value, the system resets the value to the maximum allowable
value.

Remarks

The index value of the first object in the tab order is zero.

TabKeyBehavior Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proTabKeyBehaviorC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proTabKeyBehaviorX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proTabKeyBehaviorA"}
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proTabKeyBehaviorS"}

Determines whether tabs are allowed in the edit region.

Syntax

object.TabKeyBehavior [= Boolean]

The TabKeyBehavior property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. The effect of pressing TAB.

Settings

The settings for Boolean are:

Value Description

True Pressing TAB inserts a tab character in the edit region.

False Pressing TAB moves the focus to the next object in the tab
order (default).

Remarks

The TabKeyBehavior and MultiLine properties are closely related. The values described above only
apply if MultiLine is True. If MultiLine is False, pressing TAB always moves the focus to the next
control in the tab order regardless of the value of TabKeyBehavior.

The effect of pressing CTRL+TAB also depends on the value of MultiLine. If MultiLine is True,
pressing CTRL+TAB creates a new line regardless of the value of TabKeyBehavior. If MultiLine is
False, pressing CTRL+TAB has no effect.

TabOrientation Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proTabOrientationC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proTabOrientationX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proTabOrientationA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"f3proTabOrientationS"}

Specifies the location of the tabs on a TabStrip.

Syntax

object.TabOrientation [= fmTabOrientation]

The TabOrientation property syntax has these parts:

Part Description

object Required. A valid object.

fmTabOrientation Optional. Where the tabs will appear.

Settings

The settings for fmTabOrientation are:

Constant Value Description

fmTabOrientationTop 0 The tabs appear at the top of the
control (default).

fmTabOrientationBottom 1 The tabs appear at the bottom of the
control.

fmTabOrientationLeft 2 The tabs appear at the left side of the
control.

fmTabOrientationRight 3 The tabs appear at the right side of
the control.

Remarks

If you use TrueType fonts, the text rotates when the TabOrientation property is set to
fmTabOrientationLeft or fmTabOrientationRight. If you use bitmapped fonts, the text does not
rotate.

TabStop Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proTabStopC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proTabStopX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proTabStopA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proTabStopS"}

Indicates whether an object can receive focus when the user tabs to it.

Syntax

object.TabStop [= Boolean]

The TabStop property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether the object is a tab stop.

Settings

The settings for Boolean are:

Value Description

True Designates the object as a tab stop (default).

 False Bypasses the object when the user is tabbing, although the
object still holds its place in the actual tab order, as determined
by the TabIndex property.

Remarks

The TabStop property can be set only at design time.

Text Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proTextC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proTextX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proTextA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"f3proTextS"}

Returns or sets the text in a TextBox or the edit area of ComboBox. Changes the selected row of a
ListBox.

Syntax

object.Text [= String]

The Text property syntax has these parts:

Part Description

object Required. A valid object.

String Optional. A string expression specifying text. The default
value is a zero-length string (“”).

Remarks

For a TextBox, any value you assign to the Text property is also assigned to the Value property.

For a ComboBox, you can use Text to update the value of the control. If the value of Text matches
an existing list entry, the value of the ListIndex property (the index of the current row) is set to the
row that matches Text. If the value of Text does not match a row, ListIndex is set to –1.

For a ListBox, the value of Text must match an existing list entry. Specifying a value that does not
match an existing list entry causes an error.

You cannot use Text to change the value of an entry in a ComboBox or ListBox; use the Column or
List property for this purpose.

The ForeColor property determines the color of the text.

TextAlign Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proTextAlignC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proTextAlignX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proTextAlignA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proTextAlignS"}

Specifies how text is aligned in a control.

Syntax

object.TextAlign [= fmTextAlign]

The TextAlign property syntax has these parts:

Part Description

object Required. A valid object.

fmTextAlign Optional. How text is aligned in the control.

Settings

The settings for fmTextAlign are:

Constant Value Description

fmTextAlignLeft 1 Aligns the first character of displayed text
with the left edge of the control's display or
edit area (default).

fmTextAlignCenter 2 Centers the text in the control's display or
edit area.

fmTextAlignRight 3 Aligns the last character of displayed text
with the right edge of the control's display
or edit area.

Remarks

For a ComboBox, the TextAlign property affects only the edit region; this property has no effect on
the alignment of text in the list. For stand-alone labels, TextAlign determines the alignment of the
label's caption.

TextColumn Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proTextColumnC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proTextColumnX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proTextColumnA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proTextColumnS"}

Identifies the column in a ComboBox or ListBox to display to the user.

Syntax

object.TextColumn [= Variant]

The TextColumn property syntax has these parts:

Part Description

object Required. A valid object.

Variant Optional. The column to be displayed.

Settings

Values for the TextColumn property range from –1 to the number of columns in the list. The
TextColumn value for the first column is 1, the value of the second column is 2, and so on. Setting
TextColumn to 0 displays the ListIndex values. Setting TextColumn to –1 displays the first column
that has a ColumnWidths value greater than 0.

Remarks

When the user selects a row from a ComboBox or ListBox, the column referenced by TextColumn
is stored in the Text property. For example, you could set up a multicolumn ListBox that contains the
names of holidays in one column and dates for the holidays in a second column. To present the
holiday names to users, specify the first column as the TextColumn. To store the dates of the
holidays, specify the second column as the BoundColumn.

When the Text property of a ComboBox changes (such as when a user types an entry into the
control), the new text is compared to the column of data specified by TextColumn.

TextLength Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proTextLengthC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proTextLengthX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proTextLengthA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proTextLengthS"}

Returns the length, in characters, of text in the edit region of a TextBox or ComboBox.

Syntax

object.TextLength [=Long]

The TextLength property syntax has these parts:

Part Description

object Required. A valid object.

Long The number of characters in the edit region.

Remarks

The TextLength property is read-only. For a multiline TextBox, TextLength includes LF (line feed)
and CR (carriage return) characters.

TopIndex Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proTopIndexC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proTopIndexX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proTopIndexA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proTopIndexS"}

Sets and returns the item that appears in the topmost position in the list.

Syntax

object.TopIndex [= Variant]

The TopIndex property syntax has these parts:

Part Description

object Required. A valid object.

Variant Optional. The number of the list item that is displayed in the
topmost position. The default is 0, or the first item in the list.

Settings

Returns the value –1 if the list is empty or not displayed.

TripleState Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proTripleStateC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proTripleStateX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proTripleStateA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proTripleStateS"}

Determines whether a user can specify, from the user interface, the Null state for a CheckBox,
OptionButton, or ToggleButton.

Syntax

object.TripleState [= Boolean]

The TripleState property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether the control supports the Null state.

Settings

The settings for Boolean are:

Value Description

True The button clicks through three states.

           
False

The button supports True and False only (default).

Remarks

When the TripleState property is True, a user can choose from the values of Null, True, and False.
The null value is displayed as a shaded button.

When TripleState is False, the user can choose either True or False.

When TripleState is Null, the control does not initiate the Click event.

Regardless of the property setting, the null value can always be assigned programmatically to the
button, causing the button to appear shaded.

Value Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proValueC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proValueX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proValueA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proValueS"}

Specifies the state or content of a given control.

Syntax

object.Value [= Variant]

The Value property syntax has these parts:

Part Description

object Required. A valid object.

Variant Optional. The state or content of the control.

Settings

Control Description

CheckBox An integer value indicating whether the item is
selected:

Null      Indicates the item is in a null state, neither
selected nor cleared.

–1      True. Indicates the item is selected.

    0      False. Indicates the item is cleared.

OptionButton Same as CheckBox.

ToggleButton Same as CheckBox.

ScrollBar An integer between the values specified for the
Max and Min properties.

SpinButton Same as ScrollBar.

ComboBox, ListBox The value in the BoundColumn of the currently
selected rows.

CommandButton Always False.

TextBox The text in the edit region.

Remarks

For a CommandButton, setting the Value property to True in a procedure initiates the button’s Click
event.

For a ComboBox, changing the contents of Value does not change the value of BoundColumn. To
add or delete entries in a ComboBox, you can use the AddItem or RemoveItem method.

Value cannot be used with a multiselect list box.

Visible Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proVisibleC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proVisibleX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proVisibleA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proVisibleS"}

Specifies whether a control is visible or hidden.

Syntax

object.Visible [= Boolean]

The Visible property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Whether the object is visible or hidden.

Settings

The settings for Boolean are:

Value Description

True Object is visible (default).

False Object is hidden.

Remarks

To hide an object at startup, set the Visible property to False at design time. Setting this property in
code enables you to hide and later redisplay a control at run time in response to a particular event.

All controls are visible at design time.

WordWrap Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"f3proWordWrapC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"f3proWordWrapX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"f3proWordWrapA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"f3proWordWrapS"}

Indicates whether the contents of a control automatically wrap at the end of a line.

Syntax

object.WordWrap [= Boolean]

The WordWrap property syntax has these parts:

Part Description

object Required. A valid object.

Boolean Optional. Specifies whether the control expands to fit the text.

Settings

The settings for Boolean are:

Value Description

True The text wraps (default).

False The text does not wrap.

Remarks

For controls that support the MultiLine property as well as the WordWrap property, WordWrap is
ignored when MultiLine is False.

accelerator key

A single character used as a shortcut for selecting an object. Pressing the ALT key followed by the
accelerator key gives focus to the object and initiates one or more events associated with the object.
The specific event or events initiated varies from one object to another. If code is associated with an
event, it is processed when the event is initiated. Also called keyboard accelerator, shortcut key,
keyboard shortcut.

background color

The color of the client region of an empty window or display screen, on which all drawing and color
display takes place.

class identifier (CLSID)

A unique identifier (UUID) that identifies an object. An object registers its CLSID in the system
registration database so the object can be loaded and programmed by other applications.

clear

To change a setting to "off" or remove a value.

client region

The portion of a window where an application displays output such as text or graphics.

collection

An object that contains a set of related objects. An object's position in the collection can change
whenever a change occurs in the collection; therefore, the position of any specific object in the
collection may vary.

context ID

A unique number or string that corresponds to a specific object in an application. Context IDs are
used to create links between the application and corresponding Help topics.

control group

A set of controls that are conceptually or logically related. Controls that are conceptually related are
usually viewed together but do not necessarily affect each other. Controls that are logically related
affect each other. For example, setting one button in a group of option buttons sets the value of all
other buttons in the group to False.

control tip

A brief phrase that describes a control, a Page, or a Tab. The control tip appears when the user
briefly holds the mouse pointer over a control without clicking. A control tip is similar to a ToolTip.
ActiveX Control Pad provides ToolTips to developers at design time, while developers provide control
tips to end-users at run time.

cursor

A piece of software that returns rows of data to the application. A cursor on a result set indicates the
current position in the result set.

cycle

To move through a group of objects in a defined order.

data format

The structure or appearance of a unit of data, such as a file, a database record, a cell in a
spreadsheet, or text in a word-processing document.

dominant control

A reference for the Align command and Make Same Size command on the Format menu. When
aligning controls, the selected controls align to the dominant control. When sizing controls, the
selected controls are assigned the dimensions of the dominant control.

The dominant control is indicated by white sizing handles. The sizing handles of the other selected
controls are black.

drop source

The selected text or object that is dragged in a drag-and-drop operation.

focus

The ability to receive mouse clicks or keyboard input at any one time. In Microsoft Windows, only one
window, HTML Layout, or control can have this ability at a time. The object that "has the focus" is
usually indicated by a highlighted caption or title bar. The focus can be set by the user or by the
application.

foreground color

The color that is currently selected for drawing or displaying text on screen. In monochrome displays,
the foreground color is the color of a bitmap or other graphic.

grid block

The space between two adjacent grid points.

Input Method Editor (IME)

An application that translates what you type into characters of a DBCS language, such as Japanese
or Chinese. As the user types, the IME displays possible equivalents. The user selects the most
appropriate entry.

inherited property

A property that has acquired the characteristics of another class.

keyboard state

A return value that identifies which keys are pressed and whether the keyboard modifiers SHIFT, CTRL,
and ALT are pressed.

OLE container control

A Visual Basic control that is used to link and embed objects from other applications in a Visual Basic
application.

OLE object

An object in an application that can be linked or embedded.

OLE status code

The error number portion of a data structure that returns information for error conditions. The data
structure is defined by Object Linking and Embedding.

placeholder

A character that masks or hides another character for security reasons. For example, when a user
types a password, an asterisk is displayed on the screen to take the place of each character typed.

property page

A grouping of properties presented as a tabbed page of a Properties Window.

RGB

A color value system used to describe colors as a mixture of red (R), green (G), and blue (B). The
color is defined as a set of three integers (R,G,B) where each integer ranges from 0–255. A value of 0
indicates a total absence of a color component. A value of 255 indicates the highest intensity of a
color component.

SendKeys statement

Sends one or more keystrokes to the active window as if typed at the keyboard.

single-precision value

Single (single-precision floating-point) variables are stored as IEEE 32-bit (4-byte) floating-point
numbers, ranging in value from -3.402823E38 to -1.401298E-45 for negative values and from
1.401298E-45 to 3.402823E38 for positive values. The type-declaration character for Single is !.

system colors

Colors defined by the operating system for a specific type of monitor and video adapter. Each color is
associated with a specific part of the user interface, such as a window title or a menu.

target

An object onto which the user drops the object being dragged.

transparent

Describes the background of the object if the background is not visible. Instead of the background,
you see whatever is behind the object; for example, an image or picture used as a backdrop in your
application. Use the BackStyle property to make the background transparent.

z-order

The visual layering of controls on an HTML Layout along the z-axis (depth). The z-order determines
which controls are in front of other controls.

What Is a TabStrip?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWhatIsTabStripC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWhatIsTabStripS"}

A TabStrip is a control that contains a collection of one or more tabs.

Each Tab of a TabStrip is a separate object that users can select. Visually, a TabStrip also includes a
client area that all the tabs in the TabStrip share.

By default, a TabStrip includes two pages, called Tab1 and Tab2. Each of these is a Tab object, and
together they represent the Tabs collection of the TabStrip. If you add more pages, they become part
of the same Tabs collection.

Tips on Using Text Boxes
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conTipsOnUsingTextBoxesC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conTipsOnUsingTextBoxesS"}

The TextBox is a flexible control governed by the following properties: Text, MultiLine, WordWrap,
and AutoSize.

Text contains the text that’s displayed in the text box.

MultiLine controls whether the TextBox can display text as a single line or as multiple lines. Newline
characters identify where one line ends and another begins. If MultiLine is False, then the text is
truncated instead of wrapped.

WordWrap allows the TextBox to wrap lines of text that are longer than the width of the TextBox into
shorter lines that fit.

If you do not use WordWrap, the TextBox starts a new line of text when it encounters a newline
character in the text. If WordWrap is turned off, you can have text lines that do not fit completely in
the TextBox. The TextBox displays the portions of text that fit inside its width and truncates the
portions of text that do not fit. WordWrap is not applicable unless MultiLine is True.

AutoSize controls whether the TextBox adjusts to display all of the text. When using AutoSize with a
TextBox, the width of the TextBox shrinks or expands according to the amount of text in the TextBox
and the font size used to display the text.

AutoSize works well in the following situations:

· Displaying a caption of one or more lines.

· Displaying the contents of a single-line TextBox.

· Displaying the contents of a multiline TextBox that is read-only to the user.

Note      Avoid using AutoSize with an empty TextBox that also uses the MultiLine and WordWrap
properties. When the user enters text into a TextBox with these properties, the TextBox automatically
sizes to a long narrow box one character wide and as long as the line of text.

Create a Standard List Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCreateStandardListBoxC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCreateStandardListBoxS"}

1 Place a ListBox control on an HTML Layout and select it.

2 In the Properties window, select the ListStyle property.

3 Click the drop-down arrow to display a list of available styles.

4 From the list, choose Plain.

Create a List Box with Option Buttons or Check Boxes
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCreateListBoxWithOptionButtonsOrCheckBoxesC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCreateListBoxWithOptionButtonsOrCheckBoxesS"}

1 Place a ListBox control on an HTML Layout and select it.

2 In the Properties window, select the ListStyle property.

3 Click the drop-down arrow to display a list of available styles.

4 From the list, choose Option.

When the ListStyle property is set to Option, the MultiSelect property determines whether check
boxes or option buttons appear in the list. When MultiSelect is Single, option buttons appear in
the list. When MultiSelect is Multi or Extended, check boxes appear in the list

ListBox Styles
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conListBoxStylesC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conListBoxStylesS"}

You can choose between two presentation styles for a ListBox. Each style provides different ways for
users to select items in the list.

If the style is Plain, each item is on a separate row; the user selects an item by highlighting one or
more rows.

If the style is Option, an option button or check box appears at the beginning of each row. With this
style, the user selects an item by clicking the option button or check box. Check boxes appear only
when the MultiSelect property is True.

What Is the Difference Between the DataObject and the Clipboard?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conDifferenceBetweenDataObjectAndClipboardC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conDifferenceBetweenDataObjectAndClipboardS"}

The DataObject and the Clipboard both provide a means to move data from one place to another. As
an application developer, there are several important points to remember when you use either a
DataObject or the Clipboard:

· You can store more than one piece of data at a time on either a DataObject or the Clipboard as
long as each piece of data has a different data format. If you store data with a format that is already
in use, the new data is saved and the old data is discarded.

· The Clipboard supports picture formats and text formats. A DataObject currently supports only text
formats.

· A DataObject exists only while your application is running; the Clipboard exists as long as the
operating system is running. This means you can put data on the Clipboard and close an
application without losing the data. The same is not true with the DataObject. If you close the
application that put data on a DataObject, you lose the data.

· A DataObject is a standard OLE object, while the Clipboard is not. This means the Clipboard can
support standard move operations (copy, cut, and paste) but not drag-and-drop operations. You
must use the DataObject if you want your application to support drag-and-drop operations.

Tip      You can define your own data format names when you use the SetText method to move data
to the Clipboard or a DataObject. This can help distinguish between text that your application moves
and text that the user moves.

Display or Hide the Toolbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howDisplayOrHideToolboxC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howDisplayOrHideToolboxS"}

On the View menu, determine whether a check mark appears in front of Toolbox. If the check mark is
present, the toolbox is displayed. If not, the toolbox is hidden.

Do one of the following:

· To display the toolbox, make sure a check mark appears in front of Toolbox. If not, select Toolbox.

· To hide the toolbox, make sure there is no check mark in front of Toolbox. If there is, select
Toolbox to remove it.

What Is the Toolbox?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWhatIsToolboxC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWhatIsToolboxS"}

The toolbox identifies the different controls that you can add to an HTML Layout.

You can customize the toolbox in many ways including the following:

· Add pages to the toolbox.

· Move controls from one page to another.

· Rename pages.

· Add other controls, including ActiveX controls, to the toolbox.

· Copy customized controls from the HTML Layout into the toolbox.

For example, OK and Cancel buttons are special cases of a CommandButton. If you add OK and
Cancel templates to the toolbox, you can quickly add them to other HTML Layouts.

Create a Customized Control and Add It to the Toolbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":" f3howAddCustomizedControlToToolboxC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":" f3howAddCustomizedControlToToolboxS"}

1 Place a control on your HTML Layout and customize it.

For example, to create an OK button, place a CommandButton on the HTML Layout and set its
Caption property to OK.

2 Select the customized control.

3 Drag the control to the toolbox.

Note      When you drag a control onto the toolbox, you transfer only property values. Any code you
have written for that control is not transferred with the control. You must write new code for the icon or
copy code from the control on the HTML Layout to the control on the toolbox.

Add a Control to the Toolbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAddControlToToolboxC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAddControlToToolboxS"}

1 Right-click any control icon in the toolbox, or an empty area on any page of the toolbox.

2 From the shortcut menu, select Additional Controls.

3 From the Available Controls list, select the new controls.

4 Click OK.

Add a New Item to the Toolbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAddNewItemToToolboxC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAddNewItemToToolboxS"}

1 Place a control on an HTML Layout and customize it.

For example, to create an OK button, place a CommandButton on an HTML Layout, set its
Caption property to OK and set its Default property to True.

2 Select the customized control.

3 Drag the control to the toolbox.

Note      When you drag a control onto the toolbox, you transfer property values only . Any code you
have written for that control is not transferred with the control. You must write new code for the icon or
copy code from the control on the HTML Layout to the control on the toolbox.

Add ActiveX Controls to the Toolbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAddCustomControlsToToolboxC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAddCustomControlsToToolboxS"}

1 Right-click any control icon in the toolbox, or an empty area on any page of the toolbox.

2 From the shortcut menu, select Additional Controls.

3 From the Additional Controls list, select the new controls.

4 Click OK.

Note      ActiveX Control Pad supports certified ActiveX controls (such as those that are certified to
work with Visual Basic). The behavior of uncertified custom controls might produce unreliable results.

Delete an Item from the Toolbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howDeleteItemFromToolboxC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howDeleteItemFromToolboxS"}

1 In the toolbox, right-click the icon of the item you want to remove.

2 From the shortcut menu, select Delete. The command will include the name of the selected
control.

Note      If you are deleting controls, you can use Additional Controls from the shortcut menu, and
clear the check boxes of all controls you want to delete.

Customize a Toolbox Icon
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCustomizeToolboxIconC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCustomizeToolboxIconS"}

1 Right-click the icon in the toolbox.

2 From the shortcut menu, choose Customize.

3 Do one of the following:

· To change the ToolTip, enter the new text for the ToolTip.

· To edit the icon, choose Edit Picture. Then choose the color you want to use and choose the
pixel in the image where you want to apply that color.

· To assign a new image, choose Load Picture. Then identify the file that contains the image you
want to use as the icon. If you attempt to load a picture that is larger than the icon, an error
occurs.

What Is a ToolTip?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWhatIsToolTipC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWhatIsToolTipS"}

A ToolTip is a short description, usually just a few words, that appears when the user holds the mouse
pointer briefly over a control or another part of the user interface without clicking. You can customize
ToolTips for controls and for the toolbox.

The default value for a new control that is copied from an HTML Layout to the toolbox is “New”
followed by the control type. For example, the default ToolTip for a customized CommandButton (such
as OK) is “New CommandButton”. If a control has no associated ToolTip, “Unknown” is the default
value.

Customize a ToolTip in the Toolbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCustomizeToolTipInToolboxC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCustomizeToolTipInToolboxS"}

1 Select the control in the toolbox.

2 Right-click.

3 From the shortcut menu, choose Customize. The Customize command will include the name of
the control, such as “Customize Label.”

4 Enter the new text for the ToolTip.

5 Click OK.

Set the ToolTip for a Toolbox Page
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howSetToolTipForPageOfToolboxC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howSetToolTipForPageOfToolboxS"}

1 Select the page of the toolbox.

2 Right-click.

3 From the shortcut menu, choose Rename.

4 Enter the new text for the ToolTip.

5 Click OK.

Change the Name of a Toolbox Page
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howChangeNameOfToolboxPageC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howChangeNameOfToolboxPageS"}

1 Right-click the tab of the toolbox page whose name you want to change.

2 From the shortcut menu, choose Rename.

3 In the Caption field, enter the name you want to use.

4 Click OK.

Change the Order of Toolbox Pages
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howChangeOrderOfToolboxPagesC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howChangeOrderOfToolboxPagesS"}

1 Right-click the tab of any toolbox page.

2 From the shortcut menu, choose Move.

3 Select the name of a page you want to move.

4 Choose Move Up or Move Down until the page is at the appropriate position in the page list.

5 Click OK.

Create a New Toolbox Page
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCreateNewToolboxPageC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCreateNewToolboxPageS"}

1 Right-click the tab of any toolbox page. The new page will be inserted after this page.

2 Choose New Page.

Delete a Toolbox Page
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howDeleteToolboxPageC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howDeleteToolboxPageS"}

1 Right-click the tab of the toolbox page you want to delete.

2 Choose Delete Page. All controls on the page are deleted at the same time.

Import or Export a Toolbox Page
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howImportOrExportToolboxPageC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howImportOrExportToolboxPageS"}

1 Right-click the tab of any page in the toolbox. If you import a page, it will be inserted after this
page.

2 Do one of the following:

· To import a page, choose Import Page. Then select the name of the page file you want to
import.

· To export a page, choose Export Page. Then enter a name for the file that will store a copy of
the toolbox page. Exporting a page does not remove it from the toolbox.

Move an Item to Another Toolbox Page
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howMoveItemToAnotherToolboxPageC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howMoveItemToAnotherToolboxPageS"}

1 Select a control on any page of the toolbox.

2 Drag the control to the tab of the new page. Hold the mouse pointer over the tab until the page
appears at the front of the toolbox.

3 Drag the control onto the main region of the page.

Note      If the page you want to place the control on is not visible, you can increase the width of the
toolbox to display tabs for all the pages, and then drag the control to the appropriate page.

Change the Size of the Toolbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howChangeSizeOfToolboxC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howChangeSizeOfToolboxS"}

1 Move the mouse pointer over an edge or a corner of the toolbox.

2 When the double-ended arrow appears, drag the toolbox to change its size.

Custom Help Files
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conCustomHelpFilesC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conCustomHelpFilesS"}

As an application developer, you can use a custom Help file to provide information about how to use
your form application.

To create a custom Help file, use a product or tool that creates Windows Help files.

You can associate a specific topic in your custom Help file with each control in your application. When
your application is running, the user can view your Help topic by selecting the control and pressing
F1.

Assign an Accelerator Key
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAssignAcceleratorKeyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAssignAcceleratorKeyS"}

1 In design mode, select the control on the HTML Layout.

2 In the Properties window, select the Accelerator property.

3 Enter a single character as the value for Accelerator.

Tip      Use a character from the caption of the control. Note that the selected character is underlined
in the control’s caption.

Assign an Accelerator Key for a Tab
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAssignAcceleratorKeyForPageOrTabC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAssignAcceleratorKeyForPageOrTabS"}

1 In design mode, select an individual Tab. Be sure to select the Tab, not the associated TabStrip.
When a Tab is selected, a rectangle appears around the caption of the Tab.

2 Right-click the selected Tab.

3 From the shortcut menu, choose Rename.

4 In the Rename dialog box, enter a single character in the Accelerator Key field.

Tip      Use a character from the caption of the control. Note that the selected character is underlined
in the control’s caption.

Assign a Caption
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAssignCaptionC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAssignCaptionS"}

To assign a caption to a CheckBox, CommandButton, Label, OptionButton, or
ToggleButton

1 Display the control’s Properties window.

2 Select the Caption property.

3 Enter the text you want to use as the caption.

To assign a caption to a Tab
1 Select the TabStrip that contains the Tab.

2 Select the individual Tab. When the Tab is selected, a rectangle appears around its caption.

3 Right-click the selected TabStrip.

4 From the shortcut menu, choose Rename.

5 In the Caption field, enter the text you want to use as the caption.

6 Click OK.

What Is a Caption?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWhatIsCaptionC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWhatIsCaptionS"}

A caption is descriptive text that appears directly on or around a control. The following controls can
have captions: CheckBox, CommandButton, Label, OptionButton, and ToggleButton. The Tab
objects that are part of the TabStrip can also have captions.

Set the Tab Order Using the TabIndex Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howSetTabOrderUsingTabIndexPropertyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howSetTabOrderUsingTabIndexPropertyS"}

1 Identify the tab order you want to use for the HTML Layout.

The tab index of the first control in the tab order is 0; the tab index of the second is 1, and so on.

2 Select a control in the tab order.

3 In the Properties window, select the TabIndex property.

4 Enter the appropriate number to identify the control’s position in the tab order.

Change the Order of Pages in a TabStrip
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howChangeOrderOfPagesInMultiPageOrTabStripC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howChangeOrderOfPagesInMultiPageOrTabStripS"}

1 Select any tab in the TabStrip.

2 Right-click the caption of the tab.

3 From the shortcut menu, choose Move.

4 In the Move dialog box, select the tab you want to move.

5 Choose Move Up or Move Down to change the position of the page.

6 When you’ve made all changes you want to, click OK.

Note      You can also use the Index property to change the page order through the Properties
window. The index of the first page is 0; the index of the second page is 1, and so on.

Change the Size of the HTML Layout
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howChangeSizeOfFormC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howChangeSizeOfFormS"}

To change the size of the HTML Layout at design time
· Drag the sizing handle of the HTML Layout until the HTML Layout is the size you want.

To change the size of the HTML layout at run time
· Set the HTML Layout’s Height and Width properties to the appropriate values.

Change the Location of the HTML Layout
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howChangeLocationOfFormC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howChangeLocationOfFormS"}

To change the location of the HTML Layout through the user interface
· Drag the title bar until the HTML Layout is where you want it.

Ways to Protect Sensitive Information
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWaysToProtectSensitiveInformationC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWaysToProtectSensitiveInformationS"}

Many applications use data that should be available only to certain users. Here are some suggestions
you can use to protect sensitive information in ActiveX Control Pad applications:

· Write code that makes a control (and its data) invisible to unauthorized users. The Visible property
makes a control visible or invisible. For more information about Visible, click .

· Write code that sets the control’s foreground and background to the same color when
unauthorized users run the application. This hides the information from unauthorized users. The
ForeColor and BackColor properties determine the foreground color and the background color. For
information about ForeColor, click . For information about BackColor, click

.
· Disable the control when unauthorized users run the application. The Enabled property determines

when a control is disabled. For information about Enabled, click .

· Require a password for access to the application or a specific control. You can use placeholders
as the user types each character. The PasswordChar property defines placeholder characters. For
information about PasswordChar, click .

Note      Using passwords or any other techniques listed can improve the security of your application,
but they do not guarantee the prevention of unauthorized access to your data.

Make a Control That Automatically Adjusts to the Size of Its Data
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howMakeControlThatAutomaticallyAdjustsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howMakeControlThatAutomaticallyAdjustsS"}

· In the Properties window, set the AutoSize property to True.

Ways to Change the Appearance of a Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWaysToChangeAppearanceOfControlC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWaysToChangeAppearanceOfControlS"}

ActiveX Control Pad includes several properties that let you define the appearance of controls in your
application:

· ForeColor

· BackColor, BackStyle

· BorderColor, BorderStyle

· SpecialEffect

ForeColor determines the foreground color. The foreground color applies to any text associated with
the control, such as the caption or the control’s contents.

BackColor and BackStyle apply to the control’s background. The background is the area within the
control’s boundaries, such as the area surrounding the text in a control, but not the control’s border.
BackColor determines the background color. BackStyle determines whether the background is
transparent. A transparent control background is useful if your application design includes a picture as
the main background and you want to see that picture through the control.

BorderColor, BorderStyle, and SpecialEffect apply to the control’s border. You can use
BorderStyle or SpecialEffect to choose a type of border. Only one of these two properties can be
used at a time. When you assign a value to one of these properties, the system sets the other
property to None. SpecialEffect lets you choose one of several border styles, but only lets you use
system colors for the border. BorderStyle supports only one border style, but lets you choose any
color that is a valid setting for BorderColor. BorderColor specifies the color of the control’s border,
and is only valid when you use BorderStyle to create the border.

Things You Can Do with a Picture on an Image Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conThingsPictureOnImageC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conThingsPictureOnImageS"}

An Image control is not a picture itself; rather, it contains a picture that is stored in a separate file. You
cannot edit the picture with the properties of the Image, but you can use them to specify the way the
picture appears on the Image.

An interesting application of Image is that you can use it as a background picture for your application.
To do this, make the Image the same size as the HTML Layout. Then, you can place other controls
on top of the background.

Align Text in a Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAlignTextInControlC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAlignTextInControlS"}

1 In the Properties window, choose the TextAlign property.

2 Click the drop-down arrow next to the property’s value to display a list of available choices.

3 Choose one of the following:

· Left—to align the text with the left edge of the control.

· Right—to align the text with the right edge of the control.

· Center—to center the text relative to the length of the control.

TextAlign is available for a ComboBox, Label, and TextBox.

Show or Hide the Grid
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howShowHideGridC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howShowHideGridS"}

· Do one of the following:

· From the View menu, check the Show Grid box to show the grid.

· From the View menu, clear the Show Grid box to hide the grid.

Note      To show or hide the grid by default, use the 2D Layout Options dialog box.

Size to Grid
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howSizeToGridC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howSizeToGridS"}

1 Select the control.

2 From the Format menu, choose Size to Grid.

The size of the selected control is adjusted so that each corner is aligned with a grid point.

Size to Fit
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howSizeToFitC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howSizeToFitS"}

1 Select the control.

2 From the Format menu, choose Size to Fit.

The size of the control is set so it is just large enough to display its picture and any text assigned to
the Caption or Text property.

Make Controls the Same Size
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howMakeControlsSameSizeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howMakeControlsSameSizeS"}

1 Select all the controls you want to be the same size.

2 Select the dominant control.

3 From the Format menu, point to Make Same Size, and then click one of the following:

· Width—to make all selected controls the same width as the dominant control.

· Height—to make all selected controls the same height as the dominant control.

· Both—to make all selected controls the same height and width as the dominant control.

Align Controls
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAlignControlsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAlignControlsS"}

1 Select the controls to align.

2 Select the dominant control.

3 From the Format menu, point to    Align, and then click one of the following to align the specified
part of each selected control with the same part of the dominant control:

· Lefts—to align the left edge.

· Centers—to align the center of each control. This means a vertical line drawn at the center of
the dominant control would contain the center of every selected control.

· Rights—to align the right edge.

· Tops—to align the top.

· Middles—to align the center of each control. This means a horizontal line drawn at the center of
the dominant control would also contain the center of every selected control.

· Bottoms—to align the bottom.

· To Grid—to align the upper-left corner of each selected control with its nearest grid point. Note
that this option is not based on the position of the dominant control.

Note      Each command on the menu has a small picture that shows how the controls will be aligned.

Adjust Horizontal and Vertical Spacing Between Controls
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAdjustHorizontalSpacingC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAdjustHorizontalSpacingS"}

1 Select the controls where you want to adjust spacing.

2 From the Format menu, point to Horizontal Spacing or Vertical Spacing, and then click one of
the following:

· Make Equal—to make all horizontal and vertical spaces between controls the same size. The
amount of horizontal and vertical space will vary depending on the area available for displaying
controls and the combined width of all controls.

· Increase—to increase the space between controls by one grid block.

· Decrease—to decrease the space between controls by one grid block.

· Remove—to remove the space between controls. The controls do not overlap, but are
immediately adjacent to each other.

Things You Can Do with Control Groups
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conThingsControlGroupsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conThingsControlGroupsS"}

A group is two or more controls on an HTML Layout that you treat as a single unit. You can include
any control on the HTML Layout in a group. Once controls belong to a group, you can work with the
entire group, or you can select a single control.

ActiveX Control Pad provides many ways to work with groups and the controls in a group. After you
select a group, you can do any of the following:

· Size all controls in the group at the same time. For more information, click .

· Select a single control inside a group. For more information, click .
· Break up the group so each control is independent of the others. For more information, click .
· Display the group’s shortcut menu, which provides quick access to commands that affect the
group. For more information, click .
· Select a single control within the group without breaking up the group, which lets you change

property settings of that control without affecting any other control in the group. For more
information, click .

Transparency in ActiveX Control Pad
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conTransparencyInMSFormsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conTransparencyInMSFormsS"}

ActiveX Control Pad supports transparency in two areas: the background of certain controls, and in
images used on certain controls.

The BackStyle property determines whether a control is transparent. A transparent control lets you
see what is behind it on the HTML Layout. This is useful if you have a decorative background on the
HTML Layout and you want to minimize the amount of that background that is hidden behind the
controls. For more information on making a control transparent, click .

You can display an image on many controls in ActiveX Control Pad. Certain controls support
transparent images, that is, images in which one or more background color is transparent. Image
transparency is not controlled by any control property; it is controlled by the color of the lower-left
pixel in the image. ActiveX Control Pad does not provide a way to edit an image and make it
transparent; you must use a picture editor for this purpose.

In ActiveX Control Pad, images are always transparent on the following controls:

· CheckBox

· CommandButton

· Label

· OptionButton

· ToggleButton

Transparent pictures sometimes have a hazy appearance. If you do not like this appearance, display
the picture on an Image control. Image controls support opaque images.

If you use a transparent image on a control that does not support transparent images, the image will
be displayed correctly but you won’t be able to see what’s behind it. In ActiveX Control Pad, the
Image control does not support transparent images.

What is a Shortcut Menu?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWhatIsContextMenuC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWhatIsContextMenuS"}

A shortcut menu is a menu that appears when you right-click an object. In ActiveX Control Pad, the
following objects have shortcut menus:

· The toolbox, each page in the toolbox, and each item on a page of the toolbox.

· Individual controls on an HTML Layout.

· Groups of controls (groups created with the Group command).

· Containers (such as UserForm).

· Individual Tab objects in a TabStrip.

· Multiple controls that aren’t in a group.

The commands on a shortcut menu vary depending on the object you select. For example, if you
select multiple controls that aren’t in a group, the shortcut menu will include the Group command; the
shortcut menu for the toolbox will not.

To display the shortcut menu for a control or container, right-click the object.

For more information on displaying the shortcut menu for a TabStrip or a Tab, click .

Ways to Put Data in a ListBox or ComboBox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWaysToPutDataInListC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWaysToPutDataInListS"}

In a ListBox or ComboBox with a single column, the AddItem method provides an effective
technique for adding an individual entry to the list. In a multicolumn ListBox or ComboBox, however,
the List and Column properties offer another technique; you can load the list from a two-dimensional
array.

Things You Can Do with a Multicolumn ListBox or ComboBox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conThingsYouCanDoWithListC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conThingsYouCanDoWithListS"}

To control the column widths of a multicolumn ListBox or ComboBox, you can specify the width, in
points, for all the columns in the ColumnWidths property. Specifying zero for a specific column hides
that column of information from the display.

If you want to hide all but one column of a ListBox or ComboBox from the user, you can identify the
column of information to display by using the TextColumn property.

Add Items to a List Using the List or Column Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAddItemsToListUsingListOrColumnPropertyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAddItemsToListUsingListOrColumnPropertyS"}

1 Create a multicolumn ListBox or ComboBox.

2 Create a two-dimensional array that contains the items you want to put in the list.

3 Set the ColumnCount property of the ListBox or ComboBox to match the number of entries in
the list.

4 Do one of the following:

· Assign the array as the value of the List property. The contents of the ListBox will match the
contents of the array exactly.

· Assign the array as the value of the Column property. Column transposes rows and columns,
so each row of the ListBox matches the corresponding column of the array.

Object Model for ActiveX Control Pad
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conObjectModelMSFormsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conObjectModelMSFormsS"}

The ActiveX Control Pad object model includes the following types of objects:

· Controls

· Objects (within collections)

Each element of the ActiveX Control Pad object model has some combination of properties, events,
and methods that you can use to make your application work the way you want it to.

ActiveX Control Pad has three collections:

Controls collection—contains all the controls on a form.

Tabs collection—contains all the Tab objects in a TabStrip. Each TabStrip has its own distinct Tabs
collection.

Creating an Option Group
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWaysToCreateOptionGroupC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWaysToCreateOptionGroupS"}

By default, all OptionButton controls on an HTML Layout are part of a single option group. This
means that selecting one of the buttons automatically sets all other option buttons on the HTML
Layout to False.

If you want more than one option group on the HTML Layout, there are two ways to create additional
groups use the GroupName property to identify related buttons.

Note      A TabStrip is not a container. Option buttons in the TabStrip are included in the HTML
Layout’s option group. You can use GroupName to create an option group from buttons in a
TabStrip.

Create an Option Group Using the GroupName property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCreateOptionGroupUsingGroupNameC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCreateOptionGroupUsingGroupNameS"}

1 Place all required OptionButton controls on the HTML Layout.

2 Identify the buttons for each group you want to create.

3 Enter a value for the ID property of each control.

4 For each button in a group, set the GroupName property to the same value.

Ways to Match Entries in a List
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWaysToMatchEntriesInListC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWaysToMatchEntriesInListS"}

There are three ways to match a value entered by the user with an entry that exists in the list of a
ListBox or ComboBox:

· No matching—provides no assistance in matching a user’s typed entry to an entry in the list.

· First letter—compares the most recently-typed letter to the first letter of each entry in the list. The
first match in the list is selected.

· Complete—compares the user’s entry and tries to find an exact match in an entry from the list.

The matching feature resets after two seconds (six seconds in the Far East version). For example, if
you have a list of the 50 states and you type “CO” quickly, you will find “Colorado.” But if you type
“CO” slowly, you will find “Ohio” because the auto-complete search resets between letters.

If you choose Complete matching, it is a good idea to sort the list entries alphabetically (you can use
the TextColumn property to do this). If the list is not sorted alphabetically, matching may not work
correctly. For example, if the list includes Alabama, Louisiana, and Alaska in that order, then
“Alabama” will be considered a complete match if the user types “ala.” In fact, this result is
ambiguous because there are two entries in the list that could match what the user entered. Sorting
alphabetically eliminates this ambiguity.

Use Z-order to Layer Controls
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howLayerControlsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howLayerControlsS"}

To place a control at the front or back of the z-order
1 Select a control whose z-order you want to reposition.

2 From the Format menu, click Bring to Front or Send to Back.

To adjust a control one position in the z-order
1 Select the control you want to reposition.

2 From the Format menu, click Move Forward or Move Backward.

Note      You can't Undo or Redo layering commands, such as Send to Back or Bring to Front. For
example, if you select an object and click Move Backward on the shortcut menu, you won't be able
to Undo or Redo that action.

If the form includes any ListBox controls, those controls automatically move as close as possible to
the top of the stack. The Bring to Front, Move Forward, Send to Back, and Move Backward menu
choices let you change the z-order of a control relative to other similar controls. For example, applying
Move Backward to a ListBox, moves the control below other ListBox controls, but will not move it
below any other type of control in the stack. Similarly, applying Move Forward to a control other than
a ListBox, will move the control closer to top of the stack, but will not move it above any ListBox in
the stack.

Create a Transparent Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCreateTransparentControlC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCreateTransparentControlS"}

1 Put the basic control onto the HTML Layout.

2 View the control’s properties.

3 Set the BackStyle property to Transparent.

4 Set the BorderStyle property to None.

5 Set the BackColor property to None if you want to display only the text associated with the
control, or to a valid color if you want to display a transparent block of color.

Delete an Image from a Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howDeleteBitmapFromControlC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howDeleteBitmapFromControlS"}

To delete an image using the Properties window
1 Highlight the value of the Picture property (the word “Picture”).

2 Press DELETE.

To delete an image using code
· Enter the following statement: Object.Picture = LoadPicture(“”)

Assign an Image to a Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAssignBitmapToControlC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAssignBitmapToControlS"}

In the Properties window:

1 Choose the Picture or PicturePath property.

2 In the Picture dialog box, enter the name of the picture and its location.

If the picture is larger than the control, the picture is scaled to fit the control, regardless of whether
you assign the picture through the Properties window or through code. The PictureAlignment
property determines how it is aligned within the control.

Ways to Align a Picture on a Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWaysToAlignPictureOnControlC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWaysToAlignPictureOnControlS"}

The Picture (or PicturePath) property assigns an image or other picture to a control. After you assign
the picture to the control, you can do any of the following to align the picture on the control:

· Use the PictureAlignment property to center the picture within the Image or align any corner of
the picture with the corresponding corner of the Image.

· Use the PictureSizeMode property to clip, stretch, or zoom the picture within the Image.
Stretching can distort the picture, but zooming will not.

· Use the PictureTiling property to display multiple copies of the picture within the Image.

Select a Grid Size
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howSelectGridSizeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howSelectGridSizeS"}

1 From the Tools menu, choose Options and then click HTML Layout.

2 In the HTML Layout Options dialog box, specify the size you want for each grid block. Specifying
smaller numbers results in smaller grid blocks.

Create a Control Group
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCreateControlGroupC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCreateControlGroupS"}

1 In the HTML Layout, select each control you want to include in the group.

2 From the shortcut menu, choose Group.

Size All the Controls in a Group
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howSizeAllControlsInGroupC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howSizeAllControlsInGroupS"}

1 Select the group.

A rectangle with sizing handles surrounds the group to indicate it is selected.

2 Click one of the sizing handles and drag it to change the size of the rectangle.

3 Release the mouse button.

The size of each control will be changed proportionately to the way you changed the rectangle
around the group.

Break Up a Control Group
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howBreakUpControlGroupC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howBreakUpControlGroupS"}

1 Select the group.

2 From the shortcut menu, choose Ungroup.

Display a Group’s Shortcut Menu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howDisplayGroupsContextMenuC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howDisplayGroupsContextMenuS"}

1 Select the group.

2 Right-click on a control in the group.

Tip      To make the shortcut menu go away without selecting any of its commands, press ESC.

Select a Control Within a Group
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howSelectControlWithinGroupC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howSelectControlWithinGroupS"}

1 Select the group.

2 Select a single control within the group. The sizing handles around the group become lighter, and
dark handles appear on the selected control.

You can change the value of the selected control’s properties. Any changes you make will affect
only the selected control.

3 When you’re finished working with the selected control, click anywhere inside the group, but not on
the selected control. The group is still selected.

You can select another control in the group or go on to any other task you need to perform.

Display the Shortcut Menu for an HTML Layout
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howDisplayContextMenuForMultiPageOrPageC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howDisplayContextMenuForMultiPageOrPageS"}

· Right-click the Layout, not the controls.

Display the Shortcut Menu for a TabStrip or Tab
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howDisplayContextMenuForTabStripOrTabC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howDisplayContextMenuForTabStripOrTabS"}

To display the shortcut menu of an individual Tab
1 In design time, select the appropriate tab.

2 Right-click the selected caption.

To display the shortcut menu of the TabStrip
· In design time, right-click anywhere in the TabStrip control.

If an individual Tab is selected, the Tab’s shortcut menu is displayed instead. To select the
TabStrip, click the HTML Layout anywhere outside of the TabStrip, and then right-click the
TabStrip again.

Rename Dialog Box
Contains the Accelerator, and Caption property settings for the individual tab that has the focus.
Contains the caption and ToolTip text for the current toolbox page. You can update the values for
these properties.

The accelerator key is a keyboard key that the user presses simultaneously with ALT to set the focus
to a Tab. The caption is the text in the tab area of a Tab or the current toolbox page.

To set an accelerator for the Tab:
· Enter a single character for Accelerator.

To rename the Tab:
· Enter a new value for Caption.

Tab Order Dialog Box
To change the position of a page or tab

1 Select the name of the Tab you want to move.

2 Choose Move Up or Move Down until the selected item is in the desired location.

3 When all items are in the order you want, click OK.

Additional Controls Dialog Box
1 In the Available Controls list, select the control or controls you want to add to the toolbox.

2 Click OK.

Tip      You can filter the Available Controls list by selecting options in the Show group.

Customize Control Dialog Box
Contains the ToolTipText property and the icon that represents this control in the toolbox. With this
dialog box, you can define or change the ToolTipText associated with this control, as well as change
the icon that is displayed in the toolbox.

To define or edit ToolTipText
· Enter a new value for ToolTipText.

To edit the icon
1 Choose the Edit Picture CommandButton.

2 Use the Image Editor to alter the icon as needed.

To load another icon
1 Choose the Load Picture CommandButton.

2 From the common dialog box, select a picture file.

3 Click OK to apply the new values.

Compress Audio Files
Before adding audio .wav files to an HTML Layout, you might want to compress them with the MSN
Audio codec to reduce their file size. One way to do this is by choosing this compression type in the
Windows 95 Sound Recorder.

To compress an audio .wav file
1 Open the file in the Windows 95 Sound Recorder.

2 Click the “Change...” button in the “Save As... dialog box.

3 In the Sound selection dialog box, choose MSN Audio.

4 In the Attributes field, select the compression setting. The best setting depends on the modem
speed you are designing for.

Note      If you choose a compression setting that is too high, you may hear breaks in the audio clip
when playing it back.

Here are some suggested settings:

Modem speed, bps Attributes
9600 8kHz, Mono, 8200 Baud, 1KB/s

14,400 8kHz, Mono, 12,400 Baud, 2KB/s

28,800 22kHz, Mono, 22602 Baud, 3KB/s

Active controls and selected controls
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conActiveControlsSelectedControlsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conActiveControlsSelectedControlsS"}

All controls have an active state and a selected state. When a control is active, it means you are
working with the contents of the control; when a control is selected, it means you are working with the
control itself.

Most controls are automatically selected when you put them on the form. In design mode, sizing
handles appear around a control’s border when the control is selected. If you deselect the control, you
can select it again by clicking once on the control.

Clicking a control that is selected puts the control in the active state. In this state, you can directly edit
the control’s caption.

In either the selected state or the active state, you can use DEL, CTRL+X and CTRL+C as shortcut keys
for the Delete, Cut, and Copy commands, respectively. In the selected state, these commands are
available on the shortcut menu and will affect the control itself. In the active state, these commands
will affect whatever text is selected inside the control; if no text is selected, these commands have no
effect. These commands are not available on the shortcut menu for active controls.

Tips on Selecting Multiple Controls
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conTipsOnSelectingMultipleControlsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conTipsOnSelectingMultipleControlsS"}

You can select more than one control in three ways:

· SHIFT+CLICK: ActiveX Control Pad creates an invisible selection rectangle around the selected
controls and puts sizing handles on all controls within that rectangle.

· CTRL+CLICK: sizing handles appear only on the selected controls, not on controls within the
surrounding rectangle. If this method selects additional controls that are near to or adjacent to the
selected controls, use the Select Objects pointer explained below.

· Select Objects pointer on the toolbox: draw a rectangle over the controls you want to select. All
controls that fall within or just touch the rectangle will be selected.

ANSI character set

American National Standards Institute (ANSI) 8-bit character set used by Microsoft Windows to
represent up to 256 characters (0–255) using your keyboard. The first 128 characters (0–127)
correspond to the letters and symbols on a standard U.S. keyboard. The second 128 characters
(128–255) represent special characters, such as letters in international alphabets, accents, currency
symbols, and fractions.

array

A set of sequentially indexed elements having the same intrinsic data type. Each element of an array
has a unique identifying index number. Changes made to one element of an array do not affect the
other elements.

class

The formal definition of an object. The class acts as the template from which an instance of an object
is created at run time. The class defines the properties of the object and the methods used to control
the object's behavior.

container

An object that can contain other objects.

module

A set of declarations followed by procedures.

named arguments

An argument that has a name that is predefined in the object library. Instead of providing a value for
each argument in a specified order expected by the syntax, you can use named arguments to assign
values in any order. For example, suppose a method accepts three arguments:

DoSomeThing namedarg1, namedarg2, namedarg3

By assigning values to named arguments, you can use the following statement:

DoSomeThing namedarg3 := 4, namedarg2 := 5, namedarg1 := 20

Note that the arguments don't need to appear in their normal positional order.

Null

A value indicating that a variable contains no valid data. Null is the result of an explicit assignment of
Null to a variable or any operation between expressions that contain Null.

point

In typography, a point is 1/72 inch. The size of a font is usually expressed in points.

project

A set of modules.

tab order

The order in which the focus moves from one field or object to the next as you press TAB or SHIFT+TAB.

Date and Time Example

This example uses a CommandButton Click event to update the Caption of a Label by choosing the
value of two CheckBoxes.

The following controls and corresponding property values should be set:

· Add CheckBox1

· Set Caption = "Show Date"

· Set Value = 0

· Add CheckBox2

· Set Caption = "Show Time"

· Set Value = 0

· Add Label1

· Set Caption = "Date and time displayed here"

· Set TextAlign = Center

· Set BorderStyle = Single

· Add CommandButton1

· Set Caption = "Display"

For the CommandButton1 Click event, add the following code:

Dim result
If CheckBox1.Value = True Then
 If CheckBox2.Value = True Then
 result = Date() & Chr(32) & Time()
 Else
 result = Date()
 End If
Else
 If CheckBox2.Value = True Then
 result = Time()
 Else
 result = "Date and time displayed here"
 End If
End If

Label1.Caption = result

Form Information Example

This example uses OptionButtons to change the background color. of an HTML Layout and a
CommandButton to display the width and height of the HTML Layout in a dialog box.

The following controls and corresponding property values should be set:

· Add OptionButton1

· Set Caption = "Red"

· Set Value = 0

· Add OptionButton2

· Set Caption = "Green"

· Set Value = 0

· Add OptionButton3

· Set Caption = "Blue"

· Set Value = 0

· Add CommandButton1

· Set Caption = "Size"

For the following events, add the corresponding code:

· For the OptionButton1 Click event:
Form.BackColor = RGB(255,0,0)

· For the OptionButton2 Click event:
Form.BackColor = RGB(0,255,0)

· For the Optionbutton3 Click event:
Form.BackColor = RGB(0,0,255)

· For the CommandButton1 Click event:
MsgBox("HTML Layout width = " & Form.Width & chr(13) & chr(10) & _
"HTML Layoutheight = " & Form.Height)

Adding Links via Colored Labels Example

This example uses Labels to provide links to other sites rather than underlined hypertext links. This
text describes the process for adding one Label. This example could be extended to also use images
and hot spots.

The following control and corresponding property values should be set:

· Add Label1

· Select a background color and foreground color. Set Caption (for example "Microsoft").

For the Label1 MouseDown event, add the following code:

Window.location.href = "http://www.microsoft.com"
Mouse Down Event

Hello World Example

This example uses a CommandButton Click event to display the message "Hello World" in a dialog
box.

The following control and corresponding property value should be set:

· Add CommandButton1

· Set Caption = "Push"

For the CommandButton1 Click event, add the following code:

MsgBox("Hello, World!")

Hide/Show Controls Example

This example demonstrates a method of hiding and showing CommandButtons on an HTML Layout.

The following controls and corresponding property values should be set:

· Add CommandButton1

· Set Caption = "Show the other button"

· Add CommandButton2

· Set Caption = "Bring back the first button"

For the following events, add the corresponding code:

· For the CommandButton1 Click event:
CommandButton2.Visible = True
CommandButton1.Visible = False

· For the CommandButton2 Click event:
CommandButton1.Visible = True
CommandButton2.Visible = False

Add/Remove Items from a ListBox Example

This example demonstrates a method for interactively updating a ListBox.

The following controls and corresponding property values should be set:

· Add CommandButton1

· Set Caption = "Add Item"

· Add CommandButton2

· Set Caption = "Remove Item"

· Add ListBox1

For the following events, add the corresponding code:

· For the CommandButton1 Click event:
Dim NewItem
NewItem = InputBox("Enter new item to add to list box","Add item")
NewItem = Trim(NewItem)
If Len(NewItem) > 0 Then
ListBox1.AddItem(NewItem)

End If
· For the CommandButton2 Click event

If ListBox1.ListIndex >= 0 Then
ListBox1.RemoveItem(ListBox1.ListIndex)
ListBox1.SetFocus

Else
MsgBox("No item selected!")

End If

Mouse Tracking Example

This example uses the MouseOver event for tracking mouse movement and updates a Label based
on the mouse position.

The following controls and corresponding property values should be set:

· Add Label1

· Set Caption = "Number One"

· Set BorderStyle = "Single"

· Add Label2

· Set Caption = "Number Two"

· Set BorderStyle = "Single"

· Add CommandButton1

· Set Caption = "Button 1"

· Add Label3

· Set Caption = ""

· Set ID = "lblDisplay"

· Set BorderStyle = "Single"

· Set TextAlign = "Center"

For the following events, add the corresponding code:

· For Label1 MouseDown event:
lblDisplay.Caption = "Mouse down number one"

· For Label1 MouseMove event:
lblDisplay.Caption = "Mouse moving over number one"

· For Label2 MouseDown event:
lblDisplay.Caption = "Mouse down number two"

· For Label2 MouseMove event:
lblDisplay.Caption = "Mouse moving over number two"

· For lblDisplay_MouseMove event:
lblDisplay.Caption = "Mouse moving over display label"

· For CommandButton1 MouseMove event:
lblDisplay.Caption = "Mouse moving over command button"

Resizing an Image Example

This example demonstrates dynamically resizing an image.

The following controls and corresponding property values should be set:

· Add Image1

· Assign the PicturePath property to some file. For example: "file://c:
\windows\test.bmp".

· Set PictureSizeMode = "Stretch"

· Size the HTML Layout to approximately twice as high and twice as wide as the image.

· Add CommandButton1

· Set Caption = "Small"

· Add CommandButton2

· Set Caption = "Medium"

· Add CommandButton3

· Set Caption = "Large"

For the following events, add the corresponding code:

· For CommandButton1 Click event:
Image1.Width = form.Width / 4
Image1.Height = form.Height / 4
Image1.Left = (form.Width/2) - (Image1.Width/2)
Image1.Top = (form.Height/2) - (Image1.Height/2)

· For CommandButton2 Click event:
Image1.Width = form.Width / 2
Image1.Height = form.Height / 2
Image1.Left = (form.Width/2) - (Image1.Width/2)
Image1.Top = (form.Height/2) - (Image1.Height/2)

· For CommandButton3 Click event:
Image1.Width = form.Width
Image1.Height = form.Height
Image1.Left = 0
Image1.Top = 0

SpinButton Control Updating a Label Example

This example demonstrates dynamically updating the value of a label with a SpinButton.

The following controls and corresponding property values should be set:

· Add SpinButton1

· Add Label1

· Set Caption = ""

· Set BorderStyle = "Single"

· Set TextAlign = "Center"

· For the SpinButton1 event, add the following code:
Label1.Caption = SpinButton1.Value

Web Browser Inside a Web Browser Example

This example uses the Web Browser control to open a Web page within another Web page.

The following controls and corresponding property values should be set:

· Add Label1

· Set ForeColor, BackColor and Caption to your preference.

· Add WebBrowser

· Set ID = “web1”

· Size as desired

· For the Label1 MouseDown event, add the following code:
call web1.Navigate("http://www.microsoft.com")

ActiveMovie Control
Properties Methods Events See Also

The ActiveMovie control is a custom control that you can use with Microsoft Visual Basic and
Microsoft Visual C++ to quickly add support for multimedia streams to your applications.

ActiveMovie™ is an extensible media streaming architecture for Windows that delivers high quality
audio and video playback from the Internet or Intranet. ActiveMovie supports the most popular media
types, including MPEG audio and video, AVI video, WAV audio, and Apple®    QuickTime® video.

The ActiveMovie architecture defines how streams of time-stamped multimedia data can be controlled
and processed by using modular components called filters connected in a configuration called a filter
graph.

Applications assemble the filter graph and control how data moves through the filter graph by
accessing the filter graph manager via programming interfaces, as shown in the following illustration:

For example, the Microsoft MPEG filter graph uses the following filters:

· A source filter to read the data off the disk.

· A splitter transform filter to separate the video and audio.

· A video transform filter to decompress the video data.

· A video rendering filter to display the data on the screen.

· An audio transform filter to decompress the audio data.

· An audio rendering filter to send the audio data to the sound card.

Default filter graphs are configured for you when you install the ActiveMovie software on your
computer. You can also install additional filters and create your own filter graphs. For more
information about configuring filter graphs, see the ActiveMovie Software Developer’s Kit (SDK)
documentation.

The ActiveMovie control represents an easy-to-use programming interface that lets you manage
multimedia streams using the control’s properties, methods, and events. The control handles all video
and audio rendering for you, simplifying your programming tasks and making it easy to add support
for multimedia streams to your application.

In addition to the ActiveMovie control, two other ActiveMovie programming interfaces are available:

· ActiveMovie Component Object Model (COM) interfaces

· The OM-1 MPEG MCI command set

For more information about these programming interfaces, see the ActiveMovie SDK documentation.

See Also
Shortcut Keys

Properties Pages

ActiveMovie Properties
See Also

The ActiveMovie control supports the following properties:

Note      Some ActiveMovie properties are only functional with some types of multimedia streams. For
example, the properties Author, Copyright, Description, ImageSourceHeight,
ImageSourceWidth, and Rating are only available for ActiveMovie streaming format (ASF) files.

Property Description

AllowChangeDisplayMode Indicates whether the end-user can
change the display mode at run
time between time and frames.

AllowHideControls Indicates whether the end-user can
hide the control panel at run time.

AllowHideDisplay Indicates whether the end-user can
hide the display at run time.

Author Contains the author of the
multimedia stream.

AutoRewind Indicates whether to automatically
rewind the multimedia stream
when it stops.

AutoStart Indicates whether to automatically
start playing the multimedia
stream.

Balance Specifies the stereo balance.

Copyright Contains copyright information for
this multimedia stream.

CurrentPosition Specifies the current position within
the multimedia stream, in seconds.

CurrentState Specifies the current state of the
player: stopped, paused, running.

Description Contains a description for this
multimedia stream.

DisplayBackColor Specifies the color used for the
control background.

DisplayForeColor Specifies the color used for the
control foreground.

DisplayMode Indicates whether the control
displays the current position in time
or frames.

Duration Specifies the duration of the
multimedia stream in seconds.

EnableContextMenu Indicates whether to enable the
context menu on right click.

EnablePositionControls Indicates whether to enable the
position buttons in the control
panel.

EnableSelectionControls Indicates whether to enable the
selection buttons in the control
panel.

EnableTracker Indicates whether to enable the

tracker bar in the control panel.

FileName Specifies the name of the file that
contains the multimedia stream to
be played.

FilterGraph Returns an interface pointer
(IUnknown *) to the current filter
graph object.

FilterGraphDispatch Returns an interface pointer
(IDispatch *) to the current filter
graph object.

ImageSourceHeight Specifies the authored height of
the source image.

ImageSourceWidth Specifies the authored width of the
source image.

MovieWindowSetting Selects the image window size and
characteristics.

PlayCount Specifies the number of times to
play this multimedia stream.

Rate Specifies the playback rate for the
stream.

SelectionEnd Specifies the ending position in this
multimedia stream, in seconds,
relative to the beginning of the
stream.

SelectionStart Specifies the starting position in
this multimedia stream, in seconds,
relative to the beginning of the
stream.

ShowControls Indicates whether the control panel
is visible.

ShowDisplay Indicates whether the status
display panel is visible.

ShowPositionControls Indicates whether the position
buttons are visible in the control
panel.

ShowSelectionControls Indicates whether the selection
buttons are visible in the control
panel.

ShowTracker Indicates whether the tracker bar is
visible in the control panel.

Title Specifies the title of the multimedia
stream.

Volume Specifies the audio volume.

The ActiveMovie control also supports properties that are common to other controls: Appearance,
BorderStyle, DragIcon, DragMode, Enabled, Height, HelpContextID, hWnd, Index, Left, Name,
Parent, TabStop, TabIndex, Tag, Top, Visible, WhatsThisHelpID, and Width. For information about
these properties, please see your Visual Basic documentation.

See Also

ActiveMovie Control

ActiveMovie Methods

ActiveMovie Events

ActiveMovie Methods
See Also

The ActiveMovie control supports the following methods:

Method Description

Pause Pause playing and maintain the
current position in the multimedia
stream.

Run Play the multimedia stream.

Stop Stop playback and reset the position
as indicated by the AutoRewind and
SelectionStart properties.

The following methods are planned for future releases, but are not implemented in the current
release:

Method Description

FastForward (Not yet implemented.)

Rewind (Not yet implemented.)

Seek (Not yet implemented.)

The ActiveMovie control also supports several methods that are common to other controls: Drag,
Move, SetFocus, ShowWhatsThis, and ZOrder. For information about these methods, please see
your Visual Basic documentation.

See Also

ActiveMovie Control

ActiveMovie Properties

ActiveMovie Events

ActiveMovie Events
See Also

The ActiveMovie control supports the following events:

Event Description

Error Indicates an error. (Note: Not yet
implemented.)

PositionChange Indicates changes to the position,
such as by the user seeking to the
position using the default user
interface.

StateChange Indicates player state changes, such
as a change from stopped to running,
or from running to paused.

Timer Handles timer events.

The ActiveMovie control also supports several events that are common to other controls: DragDrop,
DragOver, GotFocus, KeyDown, KeyPress, KeyUp, LostFocus, MouseDown, MouseMove, and
MouseUp. For information about these events, please see your Visual Basic documentation.

See Also

ActiveMovie Control

ActiveMovie Properties

ActiveMovie Methods

AllowChangeDisplayMode Property

Applies To

ActiveMovie control

Description

Indicates whether the end-user can change the DisplayMode property at run time.

Syntax (Visual Basic)

[form.] object .AllowChangeDisplayMode [= { True | False }]

The syntax for the AllowChangeDisplayMode property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Settings

The settings for AllowChangeDisplayMode are:

Setting Description

True (Default) Allow the user to change the DisplayMode property
at run time.

False Do not allow the user to change the DisplayMode property at
run time.

Type

Boolean

Remarks

The DisplayMode property selects whether to show the current position of the multimedia stream in
time or frames.

Run-time access: read-only. Design-time access: read/write.

See Also

DisplayMode property

AllowHideControls Property

Applies To

ActiveMovie control

Description

Indicates whether the end-user can hide the control panel at run time.

Syntax (Visual Basic)

[form.] object .AllowHideControls [= { True | False }]

The syntax for the AllowHideControls property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Settings

The settings for AllowHideControls are:

Setting Description

True (Default) Allow the user to change the ShowControls property
to False.

False Do not allow the user to change the ShowControls property to
False.

Type

Boolean

Remarks

This property can be set only at design time. It then determines whether the user or the application
can change the ShowControls property at run time.

Run-time access: read-only. Design-time access: read/write.

See Also

ShowControls Property , AllowHideDisplay Property

AllowHideDisplay Property

Applies To

ActiveMovie control

Description

Indicates whether the end-user can hide the status display panel at run time.

Syntax (Visual Basic)

[form.] object .AllowHideDisplay [= { True | False }]

The syntax for the AllowHideDisplay property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Settings

The settings for AllowHideDisplay are:

Setting Description

True (Default) Allow the user to change the ShowDisplay property
at run time.

False Do not allow the user to change the ShowDisplay property at
run time.

Type

Boolean

Remarks

This property can be set only at design time. It then determines whether the user or an application
can set the ShowDisplay property at run time.

Run-time access: read-only. Design-time access: read/write.

See Also

ShowDisplay Property , AllowHideControls Property

Author Property

Applies To

ActiveMovie control

Description

Contains the author of the multimedia stream.

Syntax (Visual Basic)

[form.] object .Author

The syntax for the Author property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Type

String

Remarks

This value can be set at design time. When this value is present in the multimedia stream, it
overwrites the value set at design time.

Run-time access: read-only. Design-time access: read/write.

See Also

Copyright Property

AutoRewind Property

Applies To

ActiveMovie control

Description

Indicates whether to automatically rewind the multimedia stream and reposition at the beginning after
playing stops.

Syntax (Visual Basic)

[form.] object .AutoRewind [= { True | False }]

The syntax for the AutoRewind property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Settings

The settings for AutoRewind are:

Setting Description

True Reposition the multimedia stream at the beginning after
playing.

False (Default) Do not reposition the multimedia stream at the
beginning after playing.

Type

Boolean

Remarks

The rewind operation occurs after a stop operation and when a play operation reaches the position
specified by the SelectionEnd property. The rewind operation resets the position to the value
specified by the SelectionStart property.

To retain the current position within the multimedia stream, set AutoRewind to False or use the
Pause method.

Run-time access: read/write. Design-time access: read/write.

See Also

AutoStart Property , PlayCount Property

AutoStart Property

Applies To

ActiveMovie control

Description

Indicates whether to automatically start playing the multimedia stream.

Syntax (Visual Basic)

[form.] object .AutoStart [= { True | False }]

The syntax for the AutoStart property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Settings

The settings for AutoStart are:

Setting Description

True Automatically start playing the multimedia stream.

False (Default) Do not automatically start the multimedia stream;
require an explicit Run method.

Type

Boolean

Remarks

Run-time access: read-only. Design-time access: read/write.

See Also

PlayCount Property

Balance Property

Applies To

ActiveMovie control

Description

Specifies the stereo balance.

Syntax (Visual Basic)

[form.] object .Balance [= long]

The syntax for the Balance property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

long        A numeric expression that specifies the balance value. The number ranges from -10000 to
+10000.

Type

Long

Remarks

The value 0 (the default value) indicates a neutral balance (no attenuation).

Run-time access: read/write. Design-time access: read/write.

See Also

Volume Property

Copyright Property

Applies To

ActiveMovie control

Description

Contains copyright information for this multimedia stream.

Syntax (Visual Basic)

[form.] object .Copyright

The syntax for the Copyright property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Type

String

Remarks

This value can be set at design time. When this value is present in the multimedia stream, it
overwrites the value set at design time.

Run-time access: read-only. Design-time access: read/write.

See Also

Author Property , Title Property

CurrentPosition Property

Applies To

ActiveMovie control

Description

Specifies the current position within the multimedia stream, in seconds.

Syntax (Visual Basic)

[form.] object .CurrentPosition [= double]

The syntax for the CurrentPosition property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

double        Contains the new position within the stream, in seconds.

Type

Double

Remarks

The new value must be within the range specified by SelectionStart and SelectionEnd.

The current position value displayed by the control’s user interface can represent either seconds or
frames. The DisplayMode property determines the units shown.

Setting the CurrentPosition property at run time is similar to a seek operation and changes the
position to the specified point in the multimedia stream.

Run-time access: read/write. Design-time access: not applicable.

See Also

DisplayMode Property , SelectionStart Property , SelectionEnd Property

CurrentState Property

Applies To

ActiveMovie control

Description

Contains the active state of the control, such as running, paused, or stopped.

Syntax (Visual Basic)

[form.] object .CurrentState

The syntax for the CurrentState property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Settings

The settings for CurrentState are:

Setting Value Description

amvStopped 0 The player is stopped.

amvPaused 1 The player is paused.

amvRunning 2 The player is running
and actively playing the
multimedia stream.

Type

Long

Remarks

To change the state value, call one of the ActiveMovie control methods, such as Run, Pause, or
Stop.

Run-time access: read-only. Design-time access: not applicable.

See Also

Run method , Pause method , Stop method

Description Property

Applies To

ActiveMovie control

Description

Contains a description for this multimedia stream.

Syntax (Visual Basic)

[form.] object .Description

The syntax for the Description property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Type

String

Remarks

This value can be set at design time. When this value is present in the multimedia stream, it
overwrites the value set at design time.

Run-time access: read-only. Design-time access: read/write.

See Also

Author Property

DisplayBackColor Property

Applies To

ActiveMovie control

Description

Specifies the color used for the display panel background.

Syntax (Visual Basic)

[form.] object .DisplayBackColor [= color]

The syntax for the DisplayBackColor property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

color        A value or constant that determines the background, as described in Settings.

Settings

The settings for color are:

Setting Description

Normal RGB colors Colors specified by using the Color
palette or by using the RGB or
QBColor functions in code.

 System default colors Colors specified by system color
constants listed in the object library in
the Object Browser.    The Windows
operating environment substitutes the
user's choices as specified in the
Control Panel settings.

Remarks

At design time, the default setting is the system default color specified by the constant
vbWindowBackground.

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF).    The high byte of a number
in this range equals 0; the lower 3 bytes, from least to most significant byte, determine the amount of
red, green, and blue, respectively.    The red, green, and blue components are each represented by a
number between 0 and 255 (&HFF).    If the high byte isn't 0, Visual Basic uses the system colors, as
defined in the user's Control Panel settings and by constants listed in the object library in the Object
Browser.

Run-time access: read/write. Design-time access: read/write.

See Also

DisplayForeColor Property

DisplayForeColor Property

Applies To

ActiveMovie control

Description

Specifies the color used for the display panel foreground.

Syntax (Visual Basic)

[form.] object .DisplayForeColor [= color]

The syntax for the DisplayForeColor property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

color        A value or constant that determines the background, as described in Settings.

Settings

The settings for color are:

Setting Description

Normal RGB colors Colors specified by using the Color
palette or by using the RGB or
QBColor functions in code.

 System default colors Colors specified by system color
constants listed in the object library in
the Object Browser.    The Windows
operating environment substitutes the
user's choices as specified in the
Control Panel settings.

Remarks

At design time, the default setting is the system default color specified by the constant
vbWindowText.

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF).    The high byte of a number
in this range equals 0; the lower 3 bytes, from least to most significant byte, determine the amount of
red, green, and blue, respectively.    The red, green, and blue components are each represented by a
number between 0 and 255 (&HFF).    If the high byte isn't 0, Visual Basic uses the system colors, as
defined in the user's Control Panel settings and by constants listed in the object library in the Object
Browser.

Run-time access: read/write. Design-time access: read/write.

See Also

DisplayBackColor Property

DisplayMode Property

Applies To

ActiveMovie control

Description

Indicates the units for the current position value when the position value is displayed.

Syntax (Visual Basic)

[form.] object .DisplayMode [= setting]

The syntax for the DisplayMode property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

setting        Specifies the new value, as described in Settings, below.

Settings

The settings for DisplayMode are:

Setting Value Description

amvTime 0 (Default) Display the
current position in
seconds.

amvFrames 1 Display the current
position in frames.

Type

Integer

Remarks

The properties ShowDisplay and AllowHideDisplay determine whether the display panel appears
on the ActiveMovie control.

Run-time access: read/write. Design-time access: read/write.

See Also

AllowHideDisplay Property , ShowDisplay Property

Duration Property

Applies To

ActiveMovie control

Description

Specifies the duration of the multimedia stream in seconds.

Syntax (Visual Basic)

[form.] object .Duration

The syntax for the Duration property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Type

Double

Remarks

The multimedia stream is contained in the file specified by the FileName property. The Duration
property always represents the length of the entire stream, not just the part of the stream indicated by
the SelectionStart and SelectionEnd properties.

Run-time access: read-only. Design-time access: not applicable.

See Also

FileName Property

EnableContextMenu Property

Applies To

ActiveMovie control

Description

Indicates whether to enable the context menu on right click.

Syntax (Visual Basic)

[form.] object .EnableContextMenu [= { True | False }]

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Settings

The settings for EnableContextMenu are:

Setting Description

True (Default) Enable the context menu on right click.

False Do not enable the context menu on right click.

Type

Boolean

Remarks

Run-time access: read/write. Design-time access: read/write.

See Also

ShowDisplay Property , ShowControls Property

EnablePositionControls Property

Applies To

ActiveMovie control

Description

Indicates whether to enable the position controls.

Syntax (Visual Basic)

[form.] object .EnablePositionControls [= { True | False }]

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Settings

The settings for EnablePositionControls are:

Setting Description

True (Default) Enable the position controls.

False Disable (dim) the position controls.

Type

Boolean

Remarks

Run-time access: read/write. Design-time access: read/write.

See Also

ShowPositionControls Property

EnableSelectionControls Property

Applies To

ActiveMovie control

Description

Indicates whether to enable the position controls.

Syntax (Visual Basic)

[form.] object .EnableSelectionControls [= { True | False }]

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Settings

The settings for EnableSelectionControls are:

Setting Description

True (Default) Enable the selection controls.

False Disable (dim) the selection controls.

Type

Boolean

Remarks

Run-time access: read/write. Design-time access: read/write.

See Also

ShowSelectionControls Property

EnableTracker Property

Applies To

ActiveMovie control

Description

Indicates whether to enable the tracker.

Syntax (Visual Basic)

[form.] object .EnableTracker [= { True | False }]

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Settings

The settings for EnableTracker are:

Setting Description

True (Default) Enable the tracker.

False Disable (dim) the tracker.

Type

Boolean

Remarks

Run-time access: read/write. Design-time access: read/write.

See Also

ShowTracker Property

FileName Property

Applies To

ActiveMovie control

Description

Specifies the name of the file that contains the multimedia stream to be played.

Syntax (Visual Basic)

[form.] object .FileName [= string]

The syntax for the FileName property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

string        Contains the name of the file that contains the multimedia stream.

Type

String

Remarks

Run-time access: read/write. Design-time access: read/write.

See Also

Description Property

FilterGraph Property

Applies To

ActiveMovie control

Description

Contains an IUnknown interface pointer to the current filter graph object.

Syntax (Visual Basic)

[form.] object .FilterGraph [= punk]

The syntax for the FilterGraph property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

punk        Contains the IUnknown pointer for the filter graph object, IFilterGraph.

Type

IUnknown *

Remarks

The filter graph represents a specific configuration of source, transform, and rendering filters. The
filter graph represents the complete set of software components needed to process a given
multimedia stream within the ActiveMovie architecture.

You can set this property to change the current filter graph.

An IDispatch interface pointer for the filter graph object is available through the FilterGraphDispatch
property.

Run-time access: read/write. Design-time access: read/write.

For more information about the IFilterGraph object, see the ActiveMovie SDK documentation.

See Also

FilterGraphDispatch Property , FileName Property

FilterGraphDispatch Property

Applies To

ActiveMovie control

Description

Contains an IDispatch interface pointer to the current filter graph object.

Syntax (Visual Basic)

[form.] object .FilterGraphDispatch [= pdisp]

The syntax for the FilterGraphDispatch property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

pdisp        Contains the IDispatch pointer to the current filter graph object.

Type

IDispatch *

Remarks

The filter graph represents a specific configuration of source, transform, and rendering filters. The
filter graph represents the complete set of software components needed to process a given
multimedia stream within the ActiveMovie architecture.

You can set this property to change the current filter graph.

An IUnknown interface pointer for the filter graph object is available through the FilterGraph
property.

For more information about the IFilterGraph object, see the ActiveMovie SDK documentation.

Run-time access: read-only. Design-time access: read/write.

See Also

FilterGraph Property , FileName Property

ImageSourceHeight Property

Applies To

ActiveMovie control

Description

Specifies the authored height of the source image.

Syntax (Visual Basic)

[form.] object .ImageSourceHeight

The syntax for the ImageSourceHeight property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Type

Long

Remarks

This value is independent of the projected image size, which is determined by the
MovieWindowSetting property.

Run-time access: read-only. Design-time access: read/write.

See Also

MovieWindowSetting property , ImageSourceWidth Property

ImageSourceWidth Property

Applies To

ActiveMovie control

Description

Specifies the authored width of the source image.

Syntax (Visual Basic)

[form.] object .ImageSourceWidth

The syntax for the ImageSourceWidth property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Type

Long

Remarks

This value is independent of the projected image size, which is determined by the
MovieWindowSetting property.

Run-time access: read-only. Design-time access: read/write.

See Also

MovieWindowSetting Property , ImageSourceHeight Property

MovieWindowSetting Property

Applies To

ActiveMovie control

Description

Specifies the settings for the window that displays the images associated with a multimedia stream.

Syntax (Visual Basic)

[form.] object .MovieWindowSetting [= setting]

The syntax for the MovieWindowSetting property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

setting        Specifies the window setting, described in Settings, below.

Settings

The settings for MovieWindowSetting are:

Setting Value Description

amvDefaultSize 0 (default) Uses the authored
size.

amvHalfSize 1 Reduces the image projection
size to exactly half the
authored size.

amvDoubleSize 2 Increases the image
projection size to twice the
authored size.

amvMaximized 3 Maximizes the image size
within its parent form.

amvFullScreen 4 Projects the images onto the
full screen.

amvPermitResizeWithAs
pect

5 Allows users to resize the
form that contains the
ActiveMovie control, while
retaining the authored aspect
ratio.

amvPermitResizeNoRes
trict

6 Allows users to resize the
form that contains the
ActiveMovie control, fitting
the image to the resized form
without restrictions.

Type

Long

Remarks

Run-time access: read/write. Design-time access: read/write.

See Also

ImageSourceHeight Property

PlayCount Property

Applies To

ActiveMovie control

Description

Specifies the number of times to play the multimedia stream.

Syntax (Visual Basic)

[form.] object .PlayCount [= long]

The syntax for the PlayCount property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

long        A numeric expression that specifies the number of times to play the multimedia stream. The
value 0 indicates play repeatedly.

Type

Long

Remarks

The value 0 indicates that the control should play the multimedia stream repeatedly, restarting as
soon as it finishes playing the stream.

Run-time access: read/write. Design-time access: read/write.

See Also

AutoStart Property

Rate Property

Applies To

ActiveMovie control

Description

Specifies the playback rate for the multimedia stream.

Syntax (Visual Basic)

[form.] object .Rate [= double]

The syntax for the Rate property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

double        A numeric expression that represents the playback rate, where 1.0 corresponds to the
authored rate.

Type

Double

Remarks

This acts as a multiplier value that allows the stream to be played in slow motion or in fast motion.
The value 1.0 indicates normal, or authored, speed. Note that the audio track becomes difficult to
understand at rates lower than 0.5 and higher than 1.5.

The default value is 1.0.

Run-time access: read/write. Design-time access: read/write.

See Also

Duration Property

Rating Property

Applies To

ActiveMovie control

Description

Contains rating information relating to the multimedia stream.

Syntax (Visual Basic)

[form.] object .Rating

The syntax for the Rating property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Type

String

Remarks

This value can be set at design time. When this value is present in the multimedia stream, it
overwrites the value set at design time.

Run-time access: read-only. Design-time access: read/write.

See Also

Description Property

SelectionEnd Property

Applies To

ActiveMovie control

Description

Specifies the ending position in this multimedia stream, in seconds, relative to the beginning of the
stream.

Syntax (Visual Basic)

[form.] object .SelectionEnd [= double]

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

double        A numeric expression that specifies the position within the multimedia stream that
represents the end of the playback sequence.

Type

Double

Remarks

The default value for the SelectionEnd is the Duration property.

Run-time access: read/write. Design-time access: read/write.

See Also

Duration Property , SelectionStart Property

SelectionStart Property

Applies To

ActiveMovie control

Description

Specifies the starting position in this multimedia stream, in seconds, relative to the beginning of the
stream.

Syntax (Visual Basic)

[form.] object .SelectionStart [= double]

The syntax for the SelectionStart property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

double        A numeric expression that specifies the position within the multimedia stream that
represents the beginning of the playback sequence.

Type

Double

Remarks

The default value for SelectionStart is 0.

Run-time access: read/write. Design-time access: read/write.

See Also

Duration Property , SelectionEnd Property

ShowControls Property

Applies To

ActiveMovie control

Description

Indicates whether the control panel is visible.

Syntax (Visual Basic)

[form.] object .ShowControls [= { True | False }]

The syntax for the ShowControls property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Settings

The settings for ShowControls are:

Setting Description

True (Default) Show the control panel at run time.

False Do not show the control panel at run time.

Type

Boolean

Remarks

Run-time access: read/write. Design-time access: read/write.

See Also

ShowDisplay Property

ShowDisplay Property

Applies To

ActiveMovie control

Description

Indicates whether the status display panel is visible.

Syntax (Visual Basic)

[form.] object .ShowDisplay [= { True | False }]

The syntax for the ShowDisplay property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Settings

The settings for ShowDisplay are:

Setting Description

True (Default) Show the status display at run time.

False Do not show the status display at run time.

Type

Boolean

Remarks

Run-time access: read/write. Design-time access: read/write.

See Also

ShowControls Property

ShowPositionControls Property

Applies To

ActiveMovie control

Description

Indicates whether the position controls are visible.

Syntax (Visual Basic)

[form.] object .ShowPositionControls [= { True | False }]

The syntax for the ShowPositionControls property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Settings

The settings for ShowPositionControls are:

Setting Description

True Show the position controls at run time.

False (Default) Do not show the position controls at run time.

Type

Boolean

Remarks

Run-time access: read/write. Design-time access: read/write.

See Also

EnablePositionControls Property

ShowSelectionControls Property

Applies To

ActiveMovie control

Description

Indicates whether the selection controls are visible.

Syntax (Visual Basic)

[form.] object .ShowSelectionControls [= { True | False }]

The syntax for the ShowSelectionControls property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Settings

The settings for ShowSelectionControls are:

Setting Description

True Show the selection controls at run time.

False (Default) Do not show the selection controls at run time.

Type

Boolean

Remarks

Run-time access: read/write. Design-time access: read/write.

See Also

EnableSelectionControls Property

ShowTracker Property

Applies To

ActiveMovie control

Description

Indicates whether the tracker is visible.

Syntax (Visual Basic)

[form.] object .ShowTracker [= { True | False }]

The syntax for the ShowTracker property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Settings

The settings for ShowTracker are:

Setting Description

True (Default) Show the tracker at run time.

False Do not show the tracker at run time.

Type

Boolean

Remarks

Run-time access: read/write. Design-time access: read/write.

See Also

EnableTracker Property

Title Property (ActiveMovie Control)

Applies To

ActiveMovie control

Description

Specifies the title of the multimedia stream.

Syntax (Visual Basic)

[form.] object .Title

The syntax for the Title property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

Type

String

Remarks

This value can be set at design time. When this value is present in the multimedia stream, it
overwrites the value set at design time.

Run-time access: read-only. Design-time access: read/write.

See Also

Author Property

Volume Property

Applies To

ActiveMovie control

Description

Specifies the volume, in hundredths of decibels.

Syntax (Visual Basic)

[form.] object .Volume [= long]

The syntax for the Volume property has these parts:

form        An object expression that evaluates to a Visual Basic form.

object        An object expression that evaluates to an ActiveMovie control.

long        A numeric expression that specifies the audio volume, in hundredths of decibels.

Type

Long

Remarks

The value ranges from AX_MIN_VOLUME, -10000, to AX_MAX_VOLUME, 0. The value 0 (the
default value) represents full volume.

Run-time access: read/write. Design-time access: read/write.

See Also

Balance Property

Pause Method

Applies To

ActiveMovie control

Description

Suspends a play operation without changing the current position.

Syntax (Visual Basic)

object .Pause

Parameters

object      An object expression that evaluates to an ActiveMovie control.

Remarks

The Pause method pauses the multimedia stream at the current position. To continue playing the
multimedia stream, use the Run method.

To stop the multimedia stream, use the Stop method.

See Also

Stop Method , Run Method

Run Method

Applies To

ActiveMovie control

Description

Starts a multimedia stream from the specified starting position or continues playing a paused stream.

Syntax (Visual Basic)

object .Run

Parameters

object      An object expression that evaluates to an ActiveMovie control.

Remarks

The Run method starts the multimedia stream at the starting position specified by the SelectionStart
property. In the absence of other user or application input, the Run method continues playing the
stream to the position specified by the SelectionEnd property.

The Run method is also used to resume playing a paused multimedia stream.

To pause playing, call the Pause method. To stop playing, call the Stop method.

See Also

SelectionStart Property , Pause Method , Stop Method

Stop Method (ActiveMovie Control)

Applies To

ActiveMovie control

Description

Stops the playing of a multimedia stream.

Syntax (Visual Basic)

object .Stop

Parameters

object      An object expression that evaluates to an ActiveMovie control.

Remarks

The Stop method changes the CurrentState property.

When the Stop method halts a play operation, the current position can be optionally reset to the
starting point for the multimedia stream, as indicated by the SelectionStart property. The
AutoRewind property determines whether the position is reset to this starting position.

To halt a play operation without changing the current position, use the Pause method.

See Also

AutoRewind Property , Run Method , SelectionStart Property

Error Event (ActiveMovie Control)

Applies To

ActiveMovie control

Description

Raises an event when an error occurs.

Syntax (Visual Basic)

Private Sub object_Error(ByVal SCode As Integer, ByVal Description As String, ByVal Source As
String, CancelDisplay As Boolean)

Parameters

object      An object expression that evaluates to an ActiveMovie control.

SCode      An error code.

Description      A string describing the error which occurred.

Source      A string containing the ActiveMovie Control’s name.

Cancel Display      A value that may be set by the client to cancel the default error messages.

Remarks

The Error event is fired when ActiveMovie reports an error during playback. By default, the
ActiveMovie control displays a message box containing the description string. To avoid displaying
this box, set the CancelDisplay parameter of the Error event to False.

PositionChange Event

Applies To

ActiveMovie control

Description

Indicates changes to the position that are not otherwise accessible to the client.

Syntax (Visual Basic)

Private Sub object_PositionChange(ByVal oldPosition As Double, ByVal newPosition As Double)

Parameters

object      An object expression that evaluates to an ActiveMovie control.

oldPosition      The position before it was changed in seconds.

newPosition      The current position in seconds, after the position change occurred.

Remarks

The PositionChange event is raised to indicate changes to the position that are not otherwise
accessible to the client. For example, the event is raised when the default UI is used to seek to a
position within the multimedia stream.

Changes made directly to the CurrentPosition property do not trigger this event.

StateChange Event

Applies To

ActiveMovie control

Description

Indicates changes to the player state, such as from stopped to running.

Syntax (Visual Basic)

Private Sub object_StateChange(ByVal oldState As Long, ByVal newState As Long)

Parameters

object      An object expression that evaluates to an ActiveMovie control.

oldState      The previous state, before the change occurred.

newState      The current state, after the change occurred.

Remarks

The StateChange event is raised when the player state changes, such as from stopped to running.
The current player state appears in the CurrentState property. State flags are listed under
CurrentState property .

Timer Event

Applies To

ActiveMovie control

Description

Raised by the ActiveMovie control’s internal timer.

Syntax (Visual Basic)

Private Sub object_Timer()

Parameters

object      An object expression that evaluates to an ActiveMovie control.

Remarks

The Timer event is raised at the intervals specified by the control’s timer.

ActiveMovie Control Shortcut Keys
ActiveMovie Control

The following key combinations can be used to activate ActiveMovie commands:

Key(s) Result

CTRL+D Toggle display
CTRL+ENTER Toggle between full screen and

windowed modes
CTRL+LEFT ARROW Rewind
CTRL+P Pause
CTRL+R Run
CTRL+RIGHT ARROW Forward
CTRL+S Stop
CTRL+SHIFT+LEFT ARROW Previous
CTRL+SHIFT+RIGHT ARROW Next
CTRL+T Toggle control panel

ActiveMovie Property Pages
A property page is a tabbed dialog box that you can use to set properties on a control. You can
access the ActiveMovie property page at either design or run-time.

To activate a property page at design time, select the control, and press F4, and then, in the
Properties window, click on the Custom button.

To activate a property page at run-time, click on your right mouse button, and then click Properties on
the popup menu that appears.

Playback

Movie Size

Controls

Advanced

Content

Playback

Movie Size

Controls

Advanced

Content

Volume and Balance

Toggles the volume and balance for the OCX.

For information on how to set this property in code, see Volume and Balance.

Start and Stop Time
Identifies the start and stop time for the current file.

For information on how to set this property in code, see AllowChangeDisplayMode.

Play Count
Specifies the number of times to play the current file consecutively.

For information on how to set this property in code, see PlayCount.

Auto Repeat
Causes the ActiveMovie control to repeatedly play the current file.

For information on how to set this property in code, see AutoStart.

Auto Rewind
Indicates whether to automatically rewind the multimedia stream and reposition at the beginning after
playing stops.

For information on how to set this property in code, see AutoRewind.

Filename
Displays the name of the currently loaded file.

For information on how to set this property in code, see FileName.

Duration
Displays the duration of the currently loaded file.

For information on how to set this property in code, see Duration.

Title
Displays the title of the currently loaded file.

For information on how to set this property in code, see Title.

Rating
Displays the rating of the currently loaded file.

For information on how to set this property in code, see Rating.

Author
Identifies the author of the current file.

For information on how to set this property in code, see Author.

Copyright
Contains copyright information for the current file.

For information on how to set this property in code, see Copyright.

Description
Contains a description of the current file.

For information on how to set this property in code, see Description.

Display Panel
Check this box if you want the display panel to be visible at run-time.

For information on how to set this property in code, see ShowDisplay.

Control Panel
Check this box if you want the control panel to be visible at run-time.

For more information on how to set this property in code, see ShowControls.

Position Control
Check this box if you want the video stream position to be displayed.

For information on how to set this property in code, see DisplayMode.

Selection Controls
Check this box to make the selection controls visible.

For information on how to set this property in code, see SelectionStart and SelectionEnd.

Show Trackbar
Click this box to toggle the visibility of the track bar.

For information on how to set this property in code, see ShowTracker.

Background and Foreground Color
Use these controls to show and set the background and foreground colors of the ActiveMovie control.

For information on how to set this property in code, see DisplayForeColor

 and DisplayBackColor.

Run Full Screen
Choose this option to maximize the ActiveMovie control so that it fills the entire screen.

For information on how to set this property in code, see MovieWindowSetting .

Movie Size
Use this option list to specify the movie’s size.

For information on how to set this property in code, see MovieWindowSetting.

Run Full Screen
Choose this option if you want the ActiveMovie images projected onto the full screen.

For information on how to set this property in code, see MovieWindowSetting.

Filter Properties
Identifies the filters that you can set on the current video stream. For more details, see the
ActiveMovie SDK documentation.

Properties
Applies the filter selected in the Filter Properties list. For more details, see the ActiveMovie SDK
documentation.

Introduction

This document describes WebBrowser, an ActiveX control that developers can use to add Internet
browsing capabilities to their applications, and InternetExplorer, an OLE Automation object that
developers can use to control the Microsoft Internet Explorer (IE) application from within an application.

WebBrowser Object

The WebBrowser object is an ActiveX control that allows you to add browsing capabilities to your
applications. The web browser control can be used to browse sites on the World Wide Web, as well as
directories on the local machine and on network servers.

Properties

Application, Busy, Container, Document, Height, Left, LocationName, LocationURL, Parent, Top,
TopLevelContainer, Type, Width

Methods

GoBack, GoForward, GoHome, GoSearch, Navigate, Refresh, Refresh2, Stop

Events

OnBeginNavigate, OnCommandStateChange, OnDownloadBegin, OnDownloadComplete,
OnNavigate, OnNewWindow, OnProgress, OnStatusTextChange

InternetExplorer Object

The InternetExplorer object allows an application to create and control an instance of the Microsoft
Internet Explorer application.

Properties

Application, Busy, Container, Document, FullName, FullScreen, Height, HWND, Left, LocationName,
LocationURL, MenuBar, Name, Parent, Path, StatusBar, StatusText, ToolBar, Top, TopLevelContainer,
Type, Visible, Width

Methods

ClientToWindow, GetProperty, GoBack, GoForward, GoHome, GoSearch, Navigate, PutProperty, Quit,
Refresh, Refresh2, Stop

Events

OnBeginNavigate, OnCommandStateChange, OnDownloadBegin, OnDownloadComplete,
OnNavigate, OnNewWindow, OnProgress, OnPropertyChange, OnQuit, OnStatusTextChange,
OnWindowActivated, OnWindowMove, OnWindowSized

Application Property (WebBrowser Object)
object.Application

Returns the automation object supported by the application that contains the web browser control, if
the object is accessible; otherwise this property returns the web browser control's automation object.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer, WebBrowser

Busy Property (WebBrowser Object)
object.Busy

Returns a Boolean value specifying whether the web browser control or Internet Explorer is engaged in
a downloading operation or other activity.

· The Busy property returns these values:
Value Description
True A download or other operation is in progress.
False No download or other operation is in progress.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer, WebBrowser

Container Property (WebBrowser Object)
object.Container

Returns an object that evaluates to the container of the web browser control, if any.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer, WebBrowser

Document Property (WebBrowser Object)
object.Document

Returns the automation object of the active document, if any.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer, WebBrowser

FullName Property (InternetExplorer Object)
object.FullName

Returns a string that evaluates to the fully qualified pathname of the executable file that contains the
Internet Explorer application.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer

FullScreen Property (InternetExplorer Object)
object.FullScreen [= value]

Returns or sets a value indicating whether Internet Explorer is in full screen or normal window mode. In
full screen mode, Internet Explorer's main window is maximized and the status bar, tool bar, menu bar,
and title bar are hidden.

object
Required. An object expression that evaluates to an object in the Applies To list.

value
Optional. A Boolean expression that determines whether Internet Explorer is in full screen or normal
window mode. If True, the object is in full screen mode; if False, it is in normal mode.

Applies To

InternetExplorer

Height Property (WebBrowser Object)
object.Height [= height]

Returns or sets the vertical dimension, in pixels, of the frame window that contains the web browser
control.

object
Required. An object expression that evaluates to an object in the Applies To list.

height
Optional. A long integer value specifying the vertical dimension of the frame window, in pixels.

Applies To

InternetExplorer, WebBrowser

HWND Property (InternetExplorer Object)
object.HWND

Returns the handle of Internet Explorer's main window.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer

Left Property (InternetExplorer Object)
object.Left [= distance]

Returns or sets the distance between the internal left edge of the web browser control and the left edge
of its container.

object
Required. An object expression that evaluates to an object in the Applies To list.

distance
Optional. A long integer expression specifying the distance between the internal left edge of the web
browser control and the left edge of its container.

The Left property is measured in units depending on the coordinate system of its container. The values
for this property changes as the object is moved by the user or by code.

Applies To

InternetExplorer, WebBrowser

LocationName Property (WebBrowser Object)
object.LocationName

Returns a string that contains the name of the resource that the web browser is currently displaying. If
the resource is a HTML page on the World Wide Web, the name is the title of that page. If the resource
is a folder of file on the network or local machine, the name is the UNC or full pathname of the folder or
file.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer, WebBrowser

LocationURL Property
object.LocationURL

Returns a string that contains the URL of the resource that the web browser control or Internet Explorer
is currently displaying. If the resource is a folder of file on the network or local machine, the name is the
UNC or full pathname of the folder or file.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer, WebBrowser

MenuBar Property (InternetExplorer Object)
object.MenuBar [= value]

Returns or sets a value that determines whether Internet Explorer's menu bar is visible or hidden.

object
Required. An object expression that evaluates to an object in the Applies To list.

value
Optional. A Boolean expression that determines whether the menu bar is visible. If True, the menu
bar is visible; if False, it is hidden.

Applies To

InternetExplorer

Name Property (InternetExplorer Object)
object.Name

Returns a string that evaluates to the name of the Internet Explorer application; that is, "Microsoft
Internet Explorer."

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer

Parent Property
object.Parent

Returns the form on which the web browser control is located, or the automation object supported by
Internet Explorer.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer, WebBrowser

Path Property (InternetExplorer Object)
object.Path

Returns a string that evaluates to the full pathname of the Internet Explorer application.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer

StatusBar Property (InternetExplorer Object)
object.StatusBar [= value]

Returns or sets a value that determines whether the status bar is visible.

object
Required. An object expression that evaluates to an InternetExplorer object.

value
Optional. A Boolean expression that determines whether the status bar is visible. If True, the status
bar is visible; if False, it is not.

Applies To

InternetExplorer

StatusText Property (InternetExplorer Object)
object.StatusText [= value]

Returns or sets the text for the status bar.

object
Required. An object expression that evaluates to an InternetExplorer object.

value
Optional. A string that evaluates to the text for the status bar.

Applies To

InternetExplorer

ToolBar Property (InternetExplorer Object)
object.ToolBar [= value]

Returns or sets a value that determines whether the toolbar is visible.

object
Required. An object expression that evaluates to an InternetExplorer object.

value
Optional. A Boolean expression the determines whether the toolbar is visible. If True, the toolbar is
visible; if False, it is hidden.

Applies To

InternetExplorer

Top Property (WebBrowser Object)
object.Top [= value]

Returns or sets the distance between the internal top edge of the web browser control and the top
edge of its container.

object
Required. An object expression that evaluates to an object in the Applies To list.

value
Optional. A long integer expression specifying distance.

The Top property is measured in units depending on the coordinate system of its container. The values
for this property changes as the object is moved by the user or by code.

Applies To

InternetExplorer, WebBrowser

TopLevelContainer Property
object.TopLevelContainer

Returns a Boolean value indicating whether the given object is a top-level container.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer, WebBrowser

Type Property (WebBrowser Object)
object.Type

Returns a string expression that specifies the type name of the contained document object.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer, WebBrowser

Visible Property (InternetExplorer Object)
object.Visible [= value]

Returns or sets a value indicating whether Internet Explorer is visible or hidden.

object
Required. An object expression that evaluates to an object in the Applies To list.

value
Optional. A Boolean expression specifying the visible state of Internet Explorer. If True, show the
window; if False, hide it.

Applies To

InternetExplorer

Width Property (WebBrowser Object)
object.Width [= width]

Returns or sets the horizontal dimension, in pixels, of the frame window that contains the web browser
control.

object
Required. An object expression that evaluates to an object in the Applies To list.

width
Optional. A long integer value specifying the horizontal dimension of the frame window, in pixels.

Applies To

InternetExplorer, WebBrowser

ClientToWindow Method (InternetExplorer Object)

object.ClientToWindow pcx pcy

Converts the client coordinates of a point to window coordinates. Client coordinates are relative to the
upper-left corner of the client area; window coordinates are relative to the upper-left corner of a
window.

object
Required. An object expression that evaluates to an object in the Applies To list.

pcx
Required. A long integer value that specifies the x-coordinate of the point in client coordinates. When
ClientToWindow returns, this variable contains the x-coordinate of the point in window coordinates.

pcy
Required. A long integer value that specifies the y-coordinate of the point in client coordinates. When
ClientToWindow returns, this variable contains the y-coordinate of the point in window coordinates.

Applies To

InternetExplorer

GetProperty Method (InternetExplorer Object)
object.GetProperty szProperty, vtValue

Retrieves the current value of a property associated with the given object.

object
Required. An object expression that evaluates to an object in the Applies To list.

szProperty
Required. A string expression that contains the name of the property to retrieve.

vtValue
Required. A variable that receives the current value of the property.

Applies To

InternetExplorer

GoBack Method (WebBrowser Object)
object.GoBack

Navigates to the previous item in the history list.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer, WebBrowser

GoForward Method (WebBrowser Object)
object.GoForward

Navigates to the next item in the history list.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer, WebBrowser

GoHome Method (WebBrowser Object)
object.GoHome

Navigates to the current home or start page.

object
Required. An object expression that evaluates to object in the Applies To list.

Applies To

InternetExplorer, WebBrowser

GoSearch Method (WebBrowser Object)
object.GoSearch

Navigates to the current search page.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer, WebBrowser

Navigate Method (WebBrowser Object)

object.Navigate URL [Flags,] [TargetFrameName,] [PostData,] [Headers,] [Referrer]

Navigates to the resource identified by a Universal Resource Locator (URL), or to the file identified by a
full pathname.

object
Required. An object expression that evaluates to an object in the Applies To list.

URL
Required. A string expression that evaluates to the URL of the resource to display, or the full
pathname of the file to display.

Flags
Optional. A constant or value that specifies whether to add the resource to the history list, whether to
read or write from the cache, and whether to display the resource in a new window. It can be a
combination of these values:
Constant Va

lu
e

Meaning

navOpenInNewWind
ow

1 Open the resource or file
in a new window.

navNoHistory 2 Exclude the resource or
file from the history list.

navNoReadFromCac
he

4 Do not read from the
cache.

navNoWriteToCache 8 Do not write from the
cache.

TargetFrameName
Optional. A string expression that evaluates to the name of the frame in which to display the
resource.

PostData
Optional. Data to send with the HTTP POST transaction.

Headers
Optional. A value that specifies the HTTP headers to send.

Referrer
Optional. A string expression that evaluates to the URL of the referring document. The referring
document is the document that contains the link to the given document.

Applies To

InternetExplorer, WebBrowser

PutProperty Method (InternetExplorer Object)
object.PutProperty szProperty, vtValue

Sets the value of a property associated with the given object.

object
Required. An object expression that evaluates to an object in the Applies To list.

szProperty
Required. A string expression that contains the name of the property to set.

vtValue
Required. A variable that specifies the new value of the property.

Applies To

InternetExplorer

Quit Method (InternetExplorer Object)
object.Quit

Closes the Internet Explorer application.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer

Refresh Method (WebBrowser Object)
object.Refresh

Reloads the file that the web browser control is currently displaying.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

WebBrowser, InternetExplorer

Refresh2 Method (WebBrowser Object)
object.Refresh2 [Level]

Reloads the file that the web browser control is currently displaying.

object
Required. An object expression that evaluates to an object in the Applies To list.

Level
Optional. Can be one of these constants or values:
Constant Va

lu
e

Meaning

refreshAll 0 Refresh entirely.
refreshDontSendNoC
ache

1 Do not send the HTTP
header called
pragma:nocache. This
header tells the server not
to return a cached copy,
but to make sure the
information is as fresh as
possible. Browsers
typically send this header
when the user selects
refresh, but the header
causes problems for some
servers.

Applies To

WebBrowser, InternetExplorer

Stop Method (WebBrowser Object)
object.Stop

Cancels any pending navigation or download operation.

object
Required. An object expression that evaluates to an object in the Applies To list.

Applies To

WebBrowser, InternetExplorer

OnBeginNavigate Event (WebBrowser Object)
Private Sub object_OnBeginNavigate(ByVal URL As String, ByVal Flags As Long,
      ByVal TargetFrameName As String, PostData As Variant, ByVal Headers As String,
      ByVal Referrer As String, Cancel As Boolean)

Occurs when the web browser control is about to navigate to a new hyperlink.

object
An object expression that evaluates to an object in the Applies To list.

URL
A string expression that evaluates to the URL of the hyperlink to which the browser is navigating.

Flags
A constant or value that specifies whether to add the resource to the history list, whether to read or
write from the cache, and whether to display the resource in a new window. It can be a combination
of these values:
Constant Va

lu
e

Meaning

navOpenInNewWind
ow

1 Open the resource or file
in a new window.

navNoHistory 2 Exclude the resource or
file from the history list.

navNoReadFromCac
he

4 Do not read from the
cache.

navNoWriteToCache 8 Do not write from the
cache.

TargetFrameName
Optional. A string expression that evaluates to the name of the frame in which to display the
resource.

PostData
Optional. Data to send with the HTTP POST transaction.

Headers
Optional. A value that specifies the HTTP headers to be sent.

Referrer
A string expression that evaluates to the URL of the referring document. The referring document is
the document that contains the link to the given document.

Cancel
A Boolean value that is True if the navigation operation was canceled, or False if it was not.

Applies To

InternetExplorer, WebBrowser

OnCommandStateChange Event (WebBrowser Object)
Private Sub object_OnCommandStateChange (ByVal Command As Long,
      ByVal Enable As Boolean)

Occurs when the enabled state of a command changes.

Object
An object expression that evaluates to an object in the Applies To list.

Command
A long integer specifying the identifier of the command that changed.

Enable
A Boolean value that is True if the command is enabled, or False if not.

Applies To

InternetExplorer, WebBrowser

OnDownloadBegin Event (WebBrowser Object)
Private Sub object_OnDownloadBegin ()

Occurs when a new page is about to be downloaded.

Object
An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer, WebBrowser

OnDownloadComplete Event (WebBrowser Object)
Private Sub object_OnDownloadComplete ()

Occurs when the current page has finished being downloaded.

Object
An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer, WebBrowser

OnNavigate Event (WebBrowser Object)
Private Sub WebBrowser1_OnNavigate(ByVal URL As String, ByVal Flags As Long,
      ByVal TargetFrameName As String, PostData As Variant, ByVal Headers As String,
      ByVal Referrer As String)

Occurs when the browser navigates to a new hyperlink.

object
An object expression that evaluates to an object in the Applies To list.

URL
A string expression that evaluates to the URL of the hyperlink.

Flags
A constant or value that specifies whether to add the resource to the history list, whether to read or
write from the cache, and whether to display the resource in a new window. It can be a combination
of these values:
Constant Va

lu
e

Meaning

navOpenInNewWind
ow

1 Open the resource or file
in a new window.

navNoHistory 2 Exclude the resource or
file from the history list.

navNoReadFromCac
he

4 Do not read from the
cache.

navNoWriteToCache 8 Do not write from the
cache.

TargetFrameName
Optional. A string expression that evaluates to the name of the frame in which to display the
resource.

PostData
Optional. Data to send with the HTTP POST transaction.

Headers
Optional. A value that specifies the HTTP headers to send.

Referrer
A string expression that evaluates to the URL of the referring document. The referring document is
the document that contains the link to the given document.

Applies To

InternetExplorer, WebBrowser

OnNewWindow Event (WebBrowser Object)
Private object_OnNewWindow (ByVal URL As String, ByVal Flags As Long,
      ByVal TargetFrameName As String, PostData As Variant, ByVal Headers As String,
      ByVal Referrer As String)

Occurs when the web browser control is about to create a new window for displaying information.

object
An object expression that evaluates to an object in the Applies To list.

URL
A string expression that evaluates to the URL of the resource to be displayed in the new window.

Flags
A constant or value that specifies whether to add the resource to the history list, whether to read or
write from the cache, and whether to display the resource in a new window. It can be a combination
of these values:
Constant Va

lu
e

Meaning

navOpenInNewWind
ow

1 Open the resource or file
in a new window.

navNoHistory 2 Exclude the resource or
file from the history list.

navNoReadFromCac
he

4 Do not read from the
cache.

navNoWriteToCache 8 Do not write from the
cache.

TargetFrameName
Optional. A string expression that evaluates to the name of the frame in which to display the
resource.

PostData
Optional. Data to send with the HTTP POST transaction.

Headers
Optional. A value that specifies the HTTP headers to send.

Referrer
Optional. A string expression that evaluates to the URL of the referring document. The referring
document is the document that contains the link to the given document.

Applies To

InternetExplorer, WebBrowser

OnProgress Event (WebBrowser Object)
Private Sub object_OnProgress(ByVal Progress As Long, ByVal ProgressMax As Long)

Occurs when the progress of a download operation is updated.

object
An object expression that evaluates to an object in the Applies To list.

Progress
A long integer that specifies the number of bytes downloaded so far during the download operation.

ProgressMax
A long integer that specifies the total number of bytes that will be downloaded, if known; otherwise,
this is zero.

The container can use the information provided by this event to display the number of bytes
downloaded so far or to update a progress indicator.

Applies To

InternetExplorer, WebBrowser

OnPropertyChange Event (InternetExplorer Object)
Private Sub object_OnPropertyChange(ByVal szProperty As String)

Occurs when the PutProperty method changes the value of a property.

object
An object expression that evaluates to an object in the Applies To list.

szProperty
A string expression that contains the name of the property whose value has changed.

Applies To

InternetExplorer

OnQuit Event (InternetExplorer Object)
Private Sub object_OnQuit(Cancel As Boolean)

Occurs when the Internet Explorer application is ready to quit.

object
An object expression that evaluates to an object in the Applies To list.

Cancel
A Boolean value that is True if the last Quit was canceled, or False if not.

Applies To

InternetExplorer

OnStatusTextChange Event (WebBrowser Object)
Private Sub object_OnStatusTextChange(ByVal bstrText As String)

Occurs when the status bar text has changed.

object
An object expression that evaluates to an object in the Applies To list.

bstrText
A string containing the new status bar text.

The container can use the information provided by this event to update the text of a status bar.

Applies To

InternetExplorer, WebBrowser

OnWindowActivated Event (InternetExplorer Object)
Private Sub object_OnWindowActivated()

Occurs when Internet Explorer's main window has been activated.

object
An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer

OnWindowMove Event (InternetExplorer Object)
Private Sub object_OnWindowMove()

Occurs when Internet Explorer's main window has been moved.

object
An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer

OnWindowSized Event (InternetExplorer Object)
Private Sub object_OnWindowSized()

Occurs when the size of Internet Explorer's main window has changed.

object
An object expression that evaluates to an object in the Applies To list.

Applies To

InternetExplorer

Microsoft Internet Explorer
The Microsoft® Internet Explorer scripting object model is used by scripts that enliven World Wide Web
content. The Internet Explorer object model is compatible with the object model used in the JavaScript
(TM) language. However, this object model is accessible not only from JavaScript but also from any
scripting language that plugs into the ActiveX scripting framework, such as the Microsoft Visual Basic®
Scripting Edition (VBScript) language. This document provides an overview of the object model,
sample code (in both JavaScript and VBScript), and reference information.

This document outlines the methods, properties, and events available to scripting engines in Internet
Explorer. This model has been designed to provide maximum compatibility with Netscape for existing
pages, while easing the transition to Visual Basic Script for Visual Basic developers.

Note    All properties and methods that modify the HTML contents must be called during HTML parse
time. This means that the code must reside in a script block that will run inline during the loading of the
HTML document. This is called immediate execution in the ActiveX Scripting Model.

Attaching and Invoking Scripts
There are three ways to attach and invoke scripts in HTML: contain them in the <SCRIPT> tag, use
attributes of HTML elements, or use a custom URL type.

Using the SCRIPT Element
Use the SCRIPT element to add scripts to HTML. SCRIPT is a character-like element for embedding
script code anywhere in the document HEAD or BODY. The SCRIPT element can be used to reference
external scripts, using the SRC attribute, and to include script statements within the HTML document.

HTML documents can include multiple SCRIPT elements that can be placed in the document HEAD or
BODY. This allows script statements for a form to be placed near the corresponding FORM element.

Here is a simple example of a page that uses the SCRIPT element:

<SCRIPT language="VBScript">
 '... Additional VBScript statements ...
</SCRIPT>

The same example in JavaScript would read:

<SCRIPT language="JavaScript">
 //... Additional JavaScript statements ...
</SCRIPT>

Evaluation of SCRIPT
{ewc HLP95EN.DLL, DYNALINK, "See Also":"scriptom_0000000002010100C"}

The SCRIPT element is evaluated when the document is loaded, and all code is executed at load time.
This has some side effects.

First, for functions like document.write, the order of script elements can affect the output of the
document. For example, the page:

<HTML><BODY>
<SCRIPT LANGUAGE="JavaScript">
document.write ("Hello world.")
</SCRIPT>
This is a document.
</BODY></HTML>

results in:

Hello world. This is a document.

While the page:

<HTML><BODY>
This is a document.
<SCRIPT LANGUAGE="VBScript">
document.write ("Hello world.")
</SCRIPT>
</BODY></HTML>

results in:

This is a document. Hello world.

Second, because script statements are evaluated when the document is loaded, attempts to reference
objects will fail if these objects are defined by HTML elements that occur later in the document.

Note that the document object's write method can insert not just text but also objects such as buttons
(defined using the INPUT tag) and ActiveX controls (defined using the OBJECT tag.) Currently, these
objects can not be referenced only in a script block following the script block that output them. Future
betas of Internet Explorer will provide full Netscape comptability by allowing objects to referenced as
soon as they are output.

Using Scripts as Attributes of HTML Elements
Another way to insert scripts is to add attributes to element tags in HTML. These attributes match with
events on the elements, and the "scriptlet" is executed when the event is fired. This method can be
used for any HTML intrinsic elements, such as forms, buttons, or links; however, this method does not
work for items inserted using the OBJECT tag.

The following example uses this syntax in Button1 to handle the onClick event. To demonstrate the
ability to combine multiple scripting languages on the same page, the scriplet for Button1 is
implemented in VBScript and that for Button2 in JavaScript.

<form name="Form1">
<input type="button" name="Button1" value=" Press me "
onClick="pressed" language="VBScript">
<input type="button" name="Button2" value="Press me too!"
onClick="pressed2()" language="JavaScript">

</form>

<script language="VBSCRIPT">
sub pressed

document.Form1.Button1.value="I'm VBS"
alert "I've been pressed!"

end sub
</script>
<script language="JavaScript">
function pressed2()
{

document.Form1.Button2.value="I'm JavaScript"
alert("Are you impressed?")

}
</script>

Notice the use of the language attribute on the input tag to indicate which language the scriplet is in. If
no language is specified, the scriplet defaults to the language of the most recently encountered script
block, or JavaScript if no script block has been encountered.

The elements FORM, INPUT, BODY, and A support this syntax, but with differing events. For detailed
information, see the individual tags referenced later in this document.

An Alternative Using SCRIPT
The SCRIPT element can also be used with the FOR="object" EVENT="eventname" syntax. This
method can be used for any named elements, and for any elements inserted using the OBJECT tag.
The following example is similar to the previous "scriptlet" example, but it uses a different syntax:

<form name="Form1">
<input type="button" name="Button1" value="Press me">
<script for="Button1" event="onClick" language="VBScript">

alert "I've been pressed"
document.Form1.Button1.value="OUCH"

</script>
</form>

Using Scripts in URLs
Scripts can be invoked using the A element combined with a custom URL type. This allows a script to
be executed when the user clicks on a hyperlink. This URL type is valid in any context, but is most
useful when used with the A element. For example:

Click me to see a message.<A>

displays an alert message box that contains the text 'hi there'.

Syntax

script-engine:script-code

Executes the script code using the script engine when the URL is resolved. For example, to execute a
script when the user clicks on a hyperlink, use:

<title> JavaScript example </title>
Click here to see the title of
the current document..

Notice that the script is executed in the context of the current page, which means that document.title
evaluates to the document containing the script.

Argument Type Description

script-engine String A string that names a
scripting engine (must
be JavaScript for Beta
1).

script-code String A string that evaluates to
a script in the syntax
supported by the
scripting engine. This
script is executed by the
scripting engine when
the URL is evaluated.

Note    This syntax is only supported for JavaScript in the current build of Internet Explorer; in particular,
vbscript: will not work in the current build. All scripting engines will be supported in future builds. Also,
the JavaScript: syntax is currently supported only from scripts, not when typed into the address bar by
users.

Object Hierarchy and Scoping
{ewc HLP95EN.DLL, DYNALINK, "See Also":"scriptom_0000000003000000C"}

There are eleven objects to consider in the HTML object model:

· Window
· Frame
· History
· Navigator
· Location
· Script
· Document
· Link
· Anchor
· Form
· Element

These objects are organized in the following hierarchy (the dotted line following an object indicates that
multiple objects may exist):

Each of these objects has its own rules for scoping and containment.

The Window Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"scriptom_0000000003010000C"}

The top level object is a window. Every window contains:

· Frame - Array of contained frame windows. Each frame is a window that has its own properties,
including a document.

· History - History object for the current window. This object is used to access the history list from the
browser.

· Navigator - Navigator object for the current window. The navigator object contains information about
the browser application.

· Location - Location object for the current window. Provides information about the location of the
window's URL.

· Script - Any scripting function defined using the SCRIPT element in the window scope.
· Document - document in the current window.

The window object properties can be referenced directly by scripts while in the window scope. So, for
example, script authors do not need to type:

window.name

to reference the window name; instead, it is sufficient just to type:

name

Note also that it is possible to call scripts from one window object to another. So, to execute the script
myscript in the topmost window, use:

top.myscript()

The Document Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"scriptom_0000000003020000C"}

The next level down is a document. This object contains:

· Link - an array of hyperlinks found on the given document.
· Anchor - an array of forms found on the given document
· Form - an array of anchors found on the given document

Because scripts live with the window object, not the document object, the script author must type
document.property to access document properties. So, to get the title of the document, the author can
type:

<script language="VBScript">
'...
string1 = document.title -put the document title into string1
'...
</script>

To access the forms in a document, the author can either refer by name or through the form array. So,
for the following form:

<form name="Form1">
 <input type="button" name="Button1" value="Press ME" onClick="pressed">
</form>

The author can access the object named button1 either by name:

<script language="VBScript">
sub pressed
 document.Form1.Button1.value="I've been pressed" ' access the form by
name
end sub
</script>

or by index:

<script language="VBScript">
sub pressed
 document.forms(0).Button1.value="I've been pressed" ' access the
form by index
end sub
</script>

The only unusual part of document naming is contained elements that are not form types. Scripts can
refer to these elements directly, without using document. So, for example, if the authors create an
object called myObject, they can reference it directly in script as follows:

<object name="myObject" ... >
</object>

<script language="VBScript">
sub foo
 myObject.color = "green" - access the form by index
end sub
</script>

The Form Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"scriptom_0000000003030000C"}

The final level of scoping is a form. The form object contains:

· Element - the array of objects and intrinsic controls contained in the form.

Scripts can live either in a form object or in a window object. If a script lives outside the form, it needs
to access the elements in the form, either by name or through the form array (see the example in "The
Document Object"). If, however, the script lives inside the form, it can access the elements in the form
directly.

<form name="Form1">
 <input type="button" name="Button1" value="Press me">
 <script for="Button1" event="onClick" language="VBScript">
 alert "I've been pressed"
 document.Form1.Button1.value="OUCH" - as usual, we can use the
fully qualified name
 Button1.value="OUCH" - because we're in the form Button1 is
scoped as well
 </script>
</form>

<script language="VBScript">
sub foo
 document.Form1.Button1.value="OUCH" - outside the form, we can only
use the fully qualified name
end sub
</script>

window Object
The top level object in the scripting object model is a window. Every window contains:

· Frame - Array of frame windows contained by a parent window. Each frame is a window that has its
own properties, including a document.

· History - the history object for the current window. This object is used to access the history list from
the browser.

· Navigator - the navigator object for the current window. The navigator object contains information
about the browser application.

· location - the location object for the current window. Provides information about the location of the
window's URL.

· Script - any scripting function defined using the SCRIPT element in the window scope.
· Document - the document in the current window.

The window object represents the Internet Explorer window and its methods and properties. Methods and
properties of the window object can be called by scripts directly. This means that if you wanted to get the
name of the current page, you would use the following script (Notice that the property name does not
need a prefix):

<script language="VBScript">
 '...
 string1=name - get the name of the current window
 alert string1 - display that name as an alert
 '...
</script>

However, you can access the properties of other window objects without explicitly mentioning the
window. For example, to get the name of the current window's parent, you would use:

<script language="VBScript">
 '...
 string1=parent.name - get the name of the parent window
 '...
</script>

window events can be hooked to scripts using extensions to the BODY tag. To add scripts to a window
event, in the BODY tag at the top of the page, add a "scriptlet" for either the onLoad or onUnload
events. In the following example, the Foo function is called when the page is loaded:

<HTML>
...
<BODY Language="VBS" onLoad="Foo">
...
<SCRIPT language="VBScript">
...
Sub Foo
MsgBox "This is sub foo"

End Sub
...
</SCRIPT>
....
</BODY></HTML>

To access a window by name, the window must be given a name. This can happen in three ways: by
using the window.open method, by creating the window with a name using the FRAMESET element, or
by creating the window with a URL using the TARGET attribute.

The following examples all create a window named foo with contents a.htm.

<SCRIPT Language="VBScript">
window.open ("a.htm", "foo");
</SCRIPT>

<FRAMESET cols = "200, *" frameborder=0>
 <FRAME name = "foo" src="a.htm">
 <FRAME name = "bar" src="b.htm">
</FRAMESET>

Click here to see a.htm in window foo.

The current implementation of Internet Explorer does not support window.open.

Methods

alert, confirm, prompt, open, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, parent, self, top, location, defaultStatus, status, frames, history, navigator, document

Properties
{ewc HLP95EN.DLL, DYNALINK, "See Also":"scriptom_0000000004010000C"}

window properties can be referenced directly in the scripting language. Consequently, all window
properties are reserved words and cannot be used as variable names in procedures. The following
window properties are used:

name, parent, self, top, location, defaultStatus, status, frames, history, navigator, document

name Property
[window.]name

Returns the name of the current window.

· Returns the string containing the current window name. Note that the current implementation always
returns "Microsoft Internet Explorer."

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

To set the value of String1 to be the name of the current window, use:

String1=name.

This property is read-only.

Applies To

Window

Methods

alert, confirm, prompt, open, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

parent, self, top, location, defaultStatus, status, frames, history, navigator, document

parent Property
[window.]parent

Returns the window object of the window's parent. This property is read-only. The parent of the window
is the containing frame. If the current window has no containing frame windows, then the parent
evaluates to the current window.

· Returns the window object that evaluates to the parent window.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

To set the value of String1 to be the name of the parent of the current window, use:

String1=parent.Name.

Applies To

Window

Methods

alert, confirm, prompt, open, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, self, top, location, defaultStatus, status, frames, history, navigator, document

self Property
[window.]self

Returns the window object of the current window. This property is read-only.

· Returns an object that evaluates to the current window.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

To set the value of String1 to be the name of the current window, use:

String1=self.name

Applies To

Window

Methods

alert, confirm, prompt, open, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, parent, top, location, defaultStatus, status, frames, history, navigator, document

top Property
[window.]top

Returns the window object of the topmost window. This property is read-only. The topmost window is
the containing window of all frames in the current browser instance.

· Returns an object that evaluates to the topmost window.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

To set the value of String1 to be the name of the topmost window, use:

String1=top.name.

Applies To

Window

Methods

alert, confirm, prompt, open, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, parent, self, location, defaultStatus, status, frames, history, navigator, document

location Property
[window.]location

Returns the location object for the current window. This property is read-only. For more details, see
"Ldocation Object."

· Returns an object that evaluates to the location object of window.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

To set the value of String1 to be the name of the URL of the current window, use:

String1=location.HRef.

Applies To

Window

Methods

alert, confirm, prompt, open, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, parent, self, top, defaultStatus, status, frames, history, navigator, document

defaultStatus Property
[window.]defaultStatus[=string]

Gets or sets the default status text in the lower left portion of the status bar.

· Returns the default status text.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

String
Optional. Sets the default status text to the value of String.

To set the default status to "Hello," use:

defaultStatus="Hello"

Note that this property does not currently set the default status message, so it is the same as calling
status.

Applies To

Window

Methods

alert, confirm, prompt, open, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, parent, self, top, location, status, frames, history, navigator, document

status Property
[window.]status[=string]

Gets or sets the status text in the lower left of the status bar.

· Returns the current status text.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

String
Optional. Sets the status text to the value of String.

To set the status to "Hello," use:

status="Hello."

Currently not implemented.

Applies To

Window

Methods

alert, confirm, prompt, open, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, parent, self, top, location, defaultStatus, frames, history, navigator, document

frames Property
[window.]frames[integer]

Returns the array of frames for the current window.

· Returns an object expression that evaluates to the array of frames.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

To set String1 to the URL of frame[0], use:

String1=parent.frames[0].location.href.

Applies To

Window

Methods

alert, confirm, prompt, open, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, parent, self, top, location, defaultStatus, status, history, navigator, document

history Property
[window.]history

Returns the history object of the current window. For more details on methods, properties, and events,
see "history Object."

· Returns an object expression that evaluates to a history object.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

Applies To

Window

Methods

alert, confirm, prompt, open, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, parent, self, top, location, defaultStatus, status, frames, navigator, document

navigator Property
[window.]navigator

Returns the navigator object of the current window. For more details on methods, properties, and
events, see "navigator Object."

· Returns an object expression that evaluates to a navigator object.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

Applies To

Window

Methods

alert, confirm, prompt, open, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, parent, self, top, location, defaultStatus, status, frames, history, document

document Property
[window.]document

Returns the document object of the current window. For more details on methods, properties, and
events, see "document Object."

· Returns an object expression that evaluates to a document object.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

Applies To

Window

Methods

alert, confirm, prompt, open, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, parent, self, top, location, defaultStatus, status, frames, history, navigator

Methods
This section describes the methods for the window object.

alert Method
[window.]alert string

Displays an alert message box.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

String
A string containing the text to display in the message box.

The following example would display an alert that contained the string "Hello World":

Alert "Hello World"

Applies To

Window

Methods

confirm, prompt, open, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, parent, self, top, location, defaultStatus, status, frames, history, navigator, document

confirm Method
[bool =][window.]confirm string

Displays a message box that allows the user to select OK or Cancel and returns either TRUE or
FALSE.

· Returns the user response: TRUE if the user pressed OK; FALSE if not.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

String
A string containing the text to display in the message box.

The following example would display a message box that contained the string "Do you want to
continue?":

x=Confirm "Do you want to continue?"

Applies To

Window

Methods

alert, prompt, open, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, parent, self, top, location, defaultStatus, status, frames, history, navigator, document

prompt Method
[string    =][window.]prompt [prompt] [, default]

Prompts the user for input.

· Returns the user input.
Not implemented in current build.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

String
Optional. A string containing the text to display in the message box.

default
Optional. A string containing the default text to display in the input field.

Applies To

Window

Methods

alert, confirm, open, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, parent, self, top, location, defaultStatus, status, frames, history, navigator, document

open Method
[newwindow =][window.]open url, target, ["[toolbar=bool] [, location=bool][, directories=bool][,
status=bool][, menubar=bool][, scrollbars=bool][, resizeable=bool][, width=pixels][, height=pixels]"]

Creates a new window.

· Returns an object expression that evaluates to the created window object.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

url
A string containing a correctly parsed URL. The URL is parsed identically to a link—both relative and
absolute paths are supported.

target
A string containing the name of the target window. If a window with this name already exists, the
existing window is reused with the new URL. If the window does not exist, a new window is created
with that name. Note that this works identically to the TARGET attribute of an HREF in HTML.

bool
The remaining window properties are passed as a comma-separated list. Most of these can be set
to Boolean values, either yes or no [1 or 0]. These properties are toolbar, location, directories,
status, menubar, scrollbars, and resizeable.

pixels
Two other properties in this list, width and height, have values in pixels.

The following example would create a new window:

 open "http://www.microsoft.com", "myWindow", "toolbar=no, location=no,
directories=no"

Note: This feature is not currently implemented in Internet Explorer.

Applies To

Window

Methods

alert, confirm, prompt, close, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, parent, self, top, location, defaultStatus, status, frames, history, navigator, document

close Method
[window.]close

Closes the window.

· Returns an object expression that evaluates to the indexed frame.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

Note: This feature is not currently implemented in Internet Explorer.

Applies To

Window

Methods

alert, confirm, prompt, open, setTimeout, clearTimeout, navigate

Events

onLoad, onUnload

Properties

name, parent, self, top, location, defaultStatus, status, frames, history, navigator, document

setTimeout Method
ID = [window.]setTimeout expression, msec

Sets a timer to call a function after a specified number of milliseconds.

· Returns the ID of the timer object. This can be used to cancel the timer using the clearTimeout
method.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

Expression
An object expression that evaluates to a function or object property. This function is called when the
Timeout is set.

MSec
The number of milliseconds that passes before the expression is evaluated.

To call Button1.Click after 100 milliseconds, use:

MyID = setTimeout ("Button1.Click", 100).

Applies To

Window

Methods

alert, confirm, prompt, open, close, clearTimeout, navigate

Events

onLoad, onUnload

Properties

parent, self, top, location, defaultStatus, status, frames, name, history, navigator, document

clearTimeout Method
[window.]clearTimout ID

Clears the timer having a particular ID.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

ID
The ID of the timer to be cleared. If there is no timer with this ID, the function does nothing.

To clear the timer with ID=MyID, use.

clearTimeout MyID

Applies To

Window

Methods

alert, confirm, prompt, open, close, setTimeout, navigate

Events

onLoad, onUnload

Properties

parent, self, top, location, defaultStatus, status, frames, name, history, navigator, document

navigate Method
[window.]navigate url

Navigates the window to a new URL.

window
Optional. An object expression that evaluates to a window object. If omitted, the current script
window is used.

url
A string containing a valid URL. This can be either relative or absolute.

Applies To

Window

Methods

alert, confirm, prompt, open, close, setTimeout, clearTimeout

Events

onLoad, onUnload

Properties

name, parent, self, top, location, defaultStatus, status, frames, history, navigator, document

onLoad Event
onLoad=function-name

Fired when the contents of the window are loaded.

function-name
An object expression that evaluates to a scripting function.

To call the VBS function Foo when the page is loaded, use:

<BODY Language="VBS" onLoad="Foo">

Applies To

Window

onUnload Event
onUnload=function-name

Fired when the contents of the window are unloaded.

function-name
An object expression which evaluates to a scripting function.

To call the VBS function Foo when the page is unloaded, use:

<BODY Language="VBS" onUnload="Foo">[<window.>]Navigate url

Applies To

Window

document Object
An object that resides below the window in the scripting object model. A document may contain:

· Link - an array of hyperlinks found on the given document
· Anchor - an array of anchors found on the given document
· Form - an array of forms found on the given document

The document object reflects the HTML document currently in the browser and objects on the page—that
is, links, forms, buttons, and ActiveX Objects. Methods and properties of the document object must be
called in a script by placing document first in the statement. This means that if you wanted to set the
background color on the page, the script would look like:

<script language="VBScript">
 document.bgColor = "Blue"
</script>

The document object currently has no events.

Methods

write, writeLn, open, close, clear

Properties

linkColor, aLinkColor, vLinkColor, bgColor, fgColor, anchors, links, forms, location, lastModified, title,
cookie, referrer

linkColor Property
document.linkColor [=rgb-value|string]

Gets or sets the current color of the links in a document.

· Returns the rgb value of the current link color.

document
An object expression that evaluates to a document object.

rgb-value
Optional. The new color of links in the document.

string
Optional. A string value specifying the color.

Note that this property can only be set at parse time, not after the page is painted. So the code:

<SCRIPT LANGUAGE="JavaScript">
document.vLinkColor = "green";
document.linkColor = "red";
document.alinkColor = "aqua";
</SCRIPT>

sets the link color, while the code:

<FORM>
"document.linkColor='#000000'">
<INPUT TYPE="button" VALUE="Set Visited Link Color to White" onClick =
"document.vLinkColor='#FFFFFF'">
</FORM>

will have no effect when the button is clicked. The performance hit of changing the link color after parse
time is simply too great.

Applies To

Document

Methods

write, writeLn, open, close, clear

Properties

aLinkColor, vLinkColor, bgColor, fgColor, anchors, links, forms, location, lastModified, title, cookie,
referrer

aLinkColor Property
document.aLinkColor [=rgb-value|string]

Gets or sets the current color of the active links in a document. A link is active when the mouse pointer
is held down over the link but not released. Note that Internet Explorer does not have this feature, so
aLinkColor has no effect; however, it is supported in the object model for compatibility reasons. As
with linkColor, this property can only be set at parse time. For details, see the examples in linkColor.

· Returns the rgb value of the current link color.

document
An object expression that evaluates to a document object.

rgb-value
Optional. The new color of links in the document.

string
Optional. A string value specifying the color.

Applies To

Document

Methods

write, writeLn, open, close, clear

Properties

linkColor, vLinkColor, bgColor, fgColor, anchors, links, forms, location, lastModified, title, cookie,
referrer

vLinkColor Property
document.vLinkColor [=rgb-value|string]

Gets or sets the current color of the visited links in a document. As with linkColor, this property can
only be set at parse time. See the examples in linkColor for details.

· Returns the rgb value of the current link color.

document
An object expression that evaluates to a document object.

rgb-value
Optional. The new color of links in the document.

string
Optional. A string value specifying the color.

Applies To

Document

Methods

write, writeLn, open, close, clear

Properties

linkColor, aLinkColor, bgColor, fgColor, anchors, links, forms, location, lastModified, title, cookie,
referrer

bgColor Property
document.bgColor [=rgb-value|string]

Gets or sets the current color of the background in a document.

· Returns the rgb value of the current background color.

document
An object expression that evaluates to a document object.

rgb-value
Optional. The new color of the background in the document.

string
Optional. A string value specifying the color.

To set the background color to white, use:

document.bgColor="000000"

Applies To

Document

Methods

write, writeLn, open, close, clear

Properties

linkColor, aLinkColor, vLinkColor, fgColor, anchors, links, forms, location, lastModified, title, cookie,
referrer

fgColor Property
document.fgColor[=rgb-value]

Gets or sets the foreground color.

document
An object expression that evaluates to a document object.

rgb-value
Optional. The new color of the foreground in the document.

To set the foreground color to white, use:

document.fgColor="000000".

Applies To

Document

Methods

write, writeLn, open, close, clear

Properties

linkColor, aLinkColor, vLinkColor, bgColor, anchors, links, forms, location, lastModified, title, cookie,
referrer

anchors Property
document.anchors[integer]

Returns the array of anchors in a document.

· Returns an object expression that evaluates to the array of anchors.

document
An object expression that evaluates to a document object.

To access the first anchor in the document, use:

document.anchors[0]

To get the length of the anchors array, use:

document.anchors.length

Applies To

Document

Methods

write, writeLn, open, close, clear

Properties

linkColor, aLinkColor, vLinkColor, bgColor, fgColor, links, forms, location, lastModified, title, cookie,
referrer

links Property
document.links [integer]

Returns the array of links for the current document.

· Returns an object expression that evaluates to the array of links.

document
An object expression that evaluates to a document object.

To access the first link in the document, use:

document.Links[0]

To get the length of the links array, use:

document.links.length

Note that the locations in the links collection are read-only in the current build. In future builds you will
be able to reset the targets of links.

Applies To

Document

Methods

write, writeLn, open, close, clear

Properties

linkColor, aLinkColor, vLinkColor, bgColor, fgColor, anchors, forms, location, lastModified, title, cookie,
referrer

forms Property
document.forms [integer]

Returns the array of forms in a document.

· Returns an object expression that evaluates to the array of forms.

document
An object expression that evaluates to a document object.

To access the first form in the document, use:

document.Forms[0]

To get the length of the forms array, use:

document.forms.length

Applies To

Document

Methods

write, writeLn, open, close, clear

Properties

linkColor, aLinkColor, vLinkColor, bgColor, fgColor, anchors, links, location, lastModified, title, cookie,
referrer

location Property
document.location

Returns a read-only representation of the location object.

· Returns an object expression that evaluates to the location object of the document.

document
An object expression that evaluates to a document object.

To set String1 to the document's URL, use:

String1 = document.location.Href

Applies To

Document

Methods

write, writeLn, open, close, clear

Properties

linkColor, aLinkColor, vLinkColor, bgColor, fgColor, anchors, links, forms, lastModified, title, cookie,
referrer

lastModified Property
document.lastModified

Returns the last modified date of the current page.

· Returns a string containing the date.

document
An object expression that evaluates to a document object.

To set Date1 to the document's URL, use:

Date1 = document.lastModified

Applies To

Document

Methods

write, writeLn, open, close, clear

Properties

linkColor, aLinkColor, vLinkColor, bgColor, fgColor, anchors, links, forms, location, title, cookie, referrer

title Property
document.title

Returns a read-only representation of the document's title.

· Returns an object expression that evaluates to the location object of the document.

document
An object expression that evaluates to a document object.

To set String1 to the document's title, use:

String1 = document.title

Applies To

Document

Methods

write, writeLn, open, close, clear

Properties

linkColor, aLinkColor, vLinkColor, bgColor, fgColor, anchors, links, forms, location, lastModified,
cookie, referrer

cookie Property
document.cookie [=newcookie]

Gets or sets the cookie for the current document.

· Returns a string containing the current cookie.

document
An object expression that evaluates to a document object.

newcookie
Optional. The new value for the cookie. Because the cookie file is just a text file, this value is a
string.

The cookie is a string expression stored for the current page. Note that setting the cookie overwrites
any current cookie information. Also note that you can use string expressions to locate particular
information in the cookie string.

Applies To

Document

Methods

write, writeLn, open, close, clear

Properties

linkColor, aLinkColor, vLinkColor, bgColor, fgColor, anchors, links, forms, location, lastModified, title,
referrer

referrer Property
document.referrer

Gets the URL of the referring document.

· Returns a string containing the URL of the referring document.
Currently returns the URL of the referring document when there is a referrer, and NULL when there
is no referrer.

document
An object expression that evaluates to a document object.

The referring document is the document that contained the link the user clicked on to get to the current
document. For example, if the user is on www.microsoft.com and clicks on a link to navigate to
www.msn.com, the referrer property of the document for www.msn.com is www.microsoft.com. Note
that by definition the referrer varies depending on how the user linked to the current document. If the
user navigated to the document without clicking on a link from another page, referrer should return
NULL.

Applies To

Document

Methods

write, writeLn, open, close, clear

Properties

linkColor, aLinkColor, vLinkColor, bgColor, fgColor, anchors, links, forms, location, lastModified, title,
cookie

write Method
document.writestring

Places the given string into the current document. Unless otherwise specified, the string is appended to
the current document at the current position.

document
An object expression that evaluates to a document object.

string
The string to write to the current document. Note that the string is added into the HTML directly, so it
must be formatted as HTML.

The following examples demonstrate the use of the write method:

<HTML><BODY>
<SCRIPT LANGUAGE='VBS'>
document.Write ("Hello world.")
</SCRIPT>
This is a document.
</BODY></HTML>

results in:

Hello world. This is a document.

Whereas:

<HTML><BODY>
This is a document.
<SCRIPT LANGUAGE='VBS'>
document.Write ("Hello world.")
</SCRIPT>
</BODY></HTML>

results in:

This is a document. Hello world.

Applies To

Document

Methods

writeLn, open, close, clear

Properties

linkColor, aLinkColor, vLinkColor, bgColor, fgColor, anchors, links, forms, location, lastModified, title,
cookie, referrer

writeLn Method
document.writeLn string

Places the given string into the current document with a new-line character appended to the end.

document
An object expression that evaluates to a document object.

string
The string to write to the current document. Note that the string is added into the HTML directly, so it
must be formatted as HTML.

This method is the same as the document.write method with the addition of a newline character at the
end. Note that a newline is ignored by HTML unless it is bracketed by <PRE> tags, so in many cases
document.write and document.writeLn behave exactly the same.

The following examples demonstrate the use of the writeLn method:

<SCRIPT LANGUAGE='VBS'>
document.writeLn ("Hello world.")
document.write ("Hello world.")
</SCRIPT>

results in:

Hello world. Hello world.

Whereas:

<PRE>
<SCRIPT LANGUAGE='VBS'>
document.writeLn ("Hello world.")
document.write ("Hello world.")
</SCRIPT>
</PRE>

results in:

Hello world.
Hello world.

Applies To

Document

Methods

write, open, close, clear

Properties

linkColor, aLinkColor, vLinkColor, bgColor, fgColor, anchors, links, forms, location, lastModified, title,
cookie, referrer

open Method
document.open [mimeType]

Opens the document stream for output.

document
An object expression that evaluates to a document object.

mimeType
Optional. A string containing a valid mime type. Note that this can include types supported by
Internet Explorer (text/html, text/plain), but can also include other types (application/x-director for
MacroMedia director). In the case of other types, Internet Explorer creates a file containing the data
between document.open and document.close calls, and hands the created file to the correct
application.

This method is implemented in the current build; however, the mime-type is currently ignored (html is
always assumed).

Generally document.open is followed by a sequence of document.write or document.writeLn
statements, followed by document.close. If the referenced document exists already, any information
contained in the document is cleared. To write "Hello World" to the document, use:

document.open
document.writeLn "Hello World"
document.close

Note that this is identical to:

document.writeLn "Hello World"

with two exceptions.

· In the first example, "Hello World" is written to the screen after document.close; in the second, it is
written immediately.

· In the first example, document.open clears the document if there is data; in the second, "Hello
world" is appended to the end.

Applies To

Document

Methods

write, writeLn, close, clear

Properties

linkColor, aLinkColor, vLinkColor, bgColor, fgColor, anchors, links, forms, location, lastModified, title,
cookie, referrer

close Method
document.close

Updates the screen to display all of the strings written after the last open method call.

document
An object expression that evaluates to a document object.

Applies To

Document

Methods

write, writeLn, open, clear

Properties

linkColor, aLinkColor, vLinkColor, bgColor, fgColor, anchors, links, forms, location, lastModified, title,
cookie, referrer

clear Method
document.clear

Closes the document output stream and writes the data to the screen. See the open method
description for more information and examples.

document
An object expression that evaluates to a document object.

Not implemented in current build.

Applies To

Document

Methods

write, writeLn, open, close

Properties

linkColor, aLinkColor, vLinkColor, bgColor, fgColor, anchors, links, forms, location, lastModified, title,
cookie, referrer

form Object
An object that resides below the document in the scripting object model. A form may contain:

· Element - The array of objects and intrinsic controls contained in the form.

The form object represents a form in the HTML document. Forms are kept in the document object both as
an array and by name. Script forms are accessible either by index (the documents forms array) or by
name (given in the NAME="somename" attribute of the HTML <FORM> tag). Given a document with one
form defined, the script can access the form in one of two ways:

<script language="VBSCRIPT">

' ...first method, by name ...

sub pressedByName
 document.Form1.Button1.value="I've been pressed" ' access the form
by name
end sub

' ... second method, by index...

' Note that indexes start at 0, not 1!

sub pressedByIndex
 document.form1.elements(1).value="I've been pressed" ' access the
form by index
end sub
</script>

<form name="Form1">
 <input type="button" name="Button1" value="Press ME"
onClick="pressedByName" language="VBScript">
 <input type="button" name="Button2" value="Press ME"
onClick="pressedByIndex" language="VBScript">
</form>

Methods

submit

Events

onSubmit

Properties

action, encoding, method, target, elements, hidden

action Property
form.action[=string]

Gets or sets the address to be used to carry out the action of the form.

· Returns a string containing the current form action.

form
An object expression that evaluates to a form object.

string
Optional. A string containing the new action, generally a URL.

If no URL is specified, the base URL of the document is used. Note that this is identical to changing the
ACTION attribute of the FORM tag. So the script:

document.form[0].action = "http:// www.sample.com/bin/search"

is identical to the following:

<FORM ACTION="http:// www.sample.com/bin/search">
</FORM>

Applies To

Form

Methods

submit

Events

onSubmit

Properties

encoding, method, target, elements, hidden

encoding Property
form.encoding[=string]

Gets or sets the encoding for the form.

· Returns a string containing the current form encoding.

form
An object expression that evaluates to a form object.

string
Optional. A string containing the new encoding. This must be a valid mime type, like "text/html".

If no mime type is specified, "text/html" is used. Note that this is identical to changing the ENCTYPE
attribute of the FORM tag. So the script:

document.form[0].action = "http:// www.sample.com/bin/search"
document.form[0].enctype = "text/html"

is identical to the following:

<FORM ACTION="http:// www.sample.com/bin/search" ENCTYPE="text/html">
</FORM>

Note that in the current build, encoding can be set, but has no effect on the operation of the form.

Applies To

Form

Methods

submit

Events

onSubmit

Properties

action, method, target, elements, hidden

method Property
form.method[string]

Indicates how the form data should be sent to the server.

· Returns a string containing the current form method.

form
An object expression that evaluates to a form object.

string
Optional. A string containing the new method, either GET or POST.

GET means append the arguments to the action URL and open it as if it were an anchor; POST means
send the data via an HTTP post transaction. Note that this is identical to the METHOD attribute of the
FORM tag, so the script:

document.form[0].action = "http:// www.sample.com/bin/search"
document.form[0].method = "GET"

is identical to the following:

<FORM ACTION="http:// www.sample.com/bin/search" METHOD=GET>
</FORM>

Applies To

Form

Methods

submit

Events

onSubmit

Properties

action, encoding, target, elements, hidden

target Property
form.target [=string]

Specifies the name of the target window to display the form results in.

· Returns a string containing the current form target.

form
An object expression that evaluates to a form object.

string
Optional. A string containing the new target name.

Note that this is identical to the TARGET attribute of the FORM tag, so the script:

document.form[0].action = "http:// www.sample.com/bin/search"
document.form[0].target = "newWindow"

is identical to the following:

<FORM ACTION="http:// www.sample.com/bin/search" TARGET="newWindow">
</FORM>

Note that in the current build, target can be set; however, it has no effect on the operation of the form.

Applies To

Form

Methods

submit

Events

onSubmit

Properties

action, encoding, method, elements, hidden

elements Property
form.elements[=string]

Returns the array of elements contained in the form.

· Returns an object expression that evaluates to the array of elements in a form.

form
An object expression that evaluates to a form object.

The elements include any intrinsics (specified using the INPUT tag) or any embedded objects
(specified using the OBJECT tag) contained in the form. So, the HTML:

<FORM ACTION="http:// www.sample.com/bin/search" METHOD=GET>
<INPUT NAME="aButton" TYPE ... >
<INPUT NAME="aCheckBox" TYPE ... >
<OBJECT NAME="anObject" DATA=...></OBJECT>
<INPUT NAME="aRadio" TYPE ... >
</FORM>

would generate an elements array where form.elements.length returns 4, and form.elements[2].name
returns "anObject".

Applies To

Form

Methods

submit

Events

onSubmit

Properties

action, encoding, method, target, hidden

hidden Property
Not yet implemented

Applies To

Form

Methods

submit

Events

onSubmit

Properties

action, encoding, method, target, elements

submit Method
form.submit

Submits the form. Note that this is identical to clicking a form input with TYPE=SUBMIT.

form
An object expression that evaluates to a form object.

Applies To

Form

Events

onSubmit

Properties

action, encoding, method, target, elements, hidden

onSubmit Event
form.onSubmit =action

Fired when the form is submitted.

form
An object expression that evaluates to a form object.

action
A string expression that evaluates to a scripting function call.

This event can be used to prevent the form from being submitted, or it can be used simply to run
additional code before the form is submitted. To prevent the form from being submitted, you must use
"return <function>." So, the script:

form.onsubmit = "return IsValid()"

calls IsValid, and submits the form if it returns TRUE, or doesn't submit the form if it returns FALSE,
while:

form.onsubmit = "IsValid()"

calls IsValid, but submits the form regardless of return value.

In the current build, forms fire the onSubmit event when the submit method is called; but not when the
submit button is clicked.

Applies To

Form

Methods

submit

Properties

action, encoding, method, target, elements, hidden

location Object
An object that resides below the document in the scripting object model. The location object represents
the current URL:

Setting any portion of the location object causes the browser to navigate to the newly constructed URL.
The following script navigates to http://www.microsoft.com:

<script language="VBScript">
 [some preceding VBScript code]
 location.href=" http://www.microsoft.com"
</script>

Properties

href, protocol, host, hostname, port, pathname, search, hash

href Property
location.href [=string]

Gets or sets the compete URL for the location.

· Returns a string containing the complete URL for the location.

location
An object expression that evaluates to a location object.

string
Optional. The new string value.

Applies To

Location

Properties

protocol, host, hostname, port, pathname, search, hash

protocol Property
location.protocol [=string]

Gets or sets the protocol portion of the URL.

· Returns a string containing the protocol portion of the URL.

location
An object expression that evaluates to a location object.

string
Optional. The new string value.

For http://www.microsoft.com, this would return http:.

Applies To

Location

Properties

href, host, hostname, port, pathname, search, hash

host Property
location.host [=string]

Gets or sets both the host and port portion of the URL (hostname:port.).

· Returns a string containing the host and port portion of the URL.

location
An object expression that evaluates to a location object.

string
Optional. The new string value.

For http://www.microsoft.com, this would be www.microsoft.com:80. For file: protocols, this always
returns "".

Applies To

Location

Properties

href, protocol, hostname, port, pathname, search, hash

hostname Property
location.hostname [=string]

Gets or sets the host portion of the URL, either a name or an IP address.

· Returns a string containing the hostname portion of the URL.

location
An object expression that evaluates to a location object.

string
Optional. The new string value.

For http://www.microsoft.com, this would return www.microsoft.com. For file: protocols, this always
returns "".

Applies To

Location

Properties

href, protocol, host, port, pathname, search, hash

port Property
location.port [=string]

Gets or sets the port of the URL.

· Returns a string containing the port of the URL.

location
An object expression that evaluates to a location object.

string
Optional. The new string value.

For http://www.microsoft.com, this returns 80. For file: protocols, this always returns "".

Applies To

Location

Properties

href, protocol, host, hostname, pathname, search, hash

pathname Property
location.pathname [=string]

Gets or sets the pathname in the URL.

· Returns a string containing the pathname portion of the URL.
Note that the current implementation returns "intdev", not "/intdev" as expected.

location
An object expression that evaluates to a location object.

string
Optional. The new string value.

For http://www.microsoft.com/intdev, this returns intdev.

Applies To

Location

Properties

href, protocol, host, hostname, port, search, hash

search Property
location.search [=string]

Gets or sets the search portion of the URL, if specified.

· Returns a string containing the search portion of the URL.

location
An object expression that evaluates to a location object.

string
Optional. The new string value.

For http://www.microsoft.com/intdev?user, this returns ?user. For http://www.microsoft.com/intdev, this
returns NULL.

Applies To

Location

Properties

href, protocol, host, hostname, port, pathname, hash

hash
location.hash [=string]

Gets or sets the hash portion of the URL, if specified.

· Returns a string containing the hash portion of the URL.
Note that current implementation returns "#" always.

location
An object expression that evaluates to a location object.

string
Optional. The new string value.

Applies To

Location

Properties

href, protocol, host, hostname, port, pathname, search

link Object
An object that resides below the document in the scripting object model. This object specifies an array
of links for a given document.

The link object is referenced as a read-only property array. A link object is constructed for every link that
appears in the HTML document. A link is defined in scripting as the anchor tag <A> containing the HREF
attribute . All properties of the link object are read-only and are the
same as the location object's properties. It is only accessible through the indexed array. The following
lines of script would set linktext to the third link on the page (if it exists):

<script language="VBScript">
[some preceding VBScript code]
linktext = document.links(2).href
[some following VBScript code]

</script>

Events

mouseMove, onMouseOver, onClick

Properties

href, protocol, host, hostname, port, pathname, search, hash, target

href Property
link.href

Returns the compete URL for the link.

· Returns a string containing the complete URL for the link.

link
An object expression that evaluates to a link object.

Applies To

Link

Events

mouseMove, onMouseOver, onClick

Properties

protocol, host, hostname, port, pathname, search, hash, target

protocol Property
link.protocol

Returns the protocol portion of the URL.

· Returns a string containing the protocol portion of the URL.

link
An object expression that evaluates to a link object.

For http://www.microsoft.com, this would return http:.

Applies To

Link

Events

mouseMove, onMouseOver, onClick

Properties

href, host, hostname, port, pathname, search, hash, target

host Property
link.host

Returns both the host and port portion of the URL (hostname:port).

· Returns a string containing the host and port portion of the URL.

link
An object expression that evaluates to a link object.

For http://www.microsoft.com, this would return www.microsoft.com:80.

Applies To

Link

Events

mouseMove, onMouseOver, onClick

Properties

href, protocol, hostname, port, pathname, search, hash, target

hostname Property
link.hostname

Returns the host portion of the URL, either a name or an IP address.

· Returns a string containing the hostname portion of the URL.

link
An object expression that evaluates to a link object.

For http://www.microsoft.com, this would return www.microsoft.com.

Applies To

Link

Events

mouseMove, onMouseOver, onClick

Properties

href, protocol, host, port, pathname, search, hash, target

port Property
link.port

Returns the port of the URL.

· Returns a string containing the port of the URL.

link
An object expression that evaluates to a link object.

For http://www.microsoft.com, this returns 80 (the default for HTTP).

Applies To

Link

Events

mouseMove, onMouseOver, onClick

Properties

href, protocol, host, hostname, pathname, search, hash, target

pathname Property
link.pathname

Returns the pathname in the URL.

· Returns a string containing the pathname portion of the URL.

link
An object expression that evaluates to a link object.

For http://www.microsoft.com/intdev, this returns /intdev.

Applies To

Link

Events

mouseMove, onMouseOver, onClick

Properties

href, protocol, host, hostname, port, search, hash, target

search Property
link.search

Returns the search portion of the URL, if specified.

· Returns a string containing the search portion of the URL.
This returns "user," not "?user," in the current implementation; the leading '?' is omitted.

link
An object expression that evaluates to a link object.

For http://www.microsoft.com/intdev?user, this returns user.

Applies To

Link

Events

mouseMove, onMouseOver, onClick

Properties

href, protocol, host, hostname, port, pathname, hash, target

hash Property
link.hash

Returns the hash portion of the URL, if specified.

· Returns a string containing the hash portion of the URL.
This returns NULL in the current implementation when no hash is specified..

link
An object expression that evaluates to a link object.

This is the section of the URL after # including the #. For http://www.microsoft.com/intdev#user, this
returns #user. If no hash is specified, this property returns NULL.

Applies To

Link

Events

mouseMove, onMouseOver, onClick

Properties

href, protocol, host, hostname, port, pathname, search, target

target Property
link.target

Returns the target of the link, if specified.

· Returns a string containing the target of the link.

link
An object expression that evaluates to a link object.

This is the same as the value of the TARGET attribute of the LINK tag.

Applies To

Link

Events

mouseMove, onMouseOver, onClick

Properties

href, protocol, host, hostname, port, pathname, search, hash

Events
Link events can be used to set status bar text or other custom actions on mouse movement. The
following example is an excerpt from an HTML document that uses a text control to display rich
information about the links in an image map. The code decides on the link location.

<script language="VBScript" for="Link1" event="mouseMove(shift, button, x,
y)">

if (InRect(x, y, 5, 30, 120, 85)=true) then
DescribeLink "A full description of Microsoft's product line"
[some following VBScript code]

</script>

mouseMove Event
link.mouseMove shift, button, x, y

Fires an event any time the pointer moves over a link.

link
An object expression that evaluates to a link object.

shift
The status of the shift key.

button
Indicates which button is pressed, if any.

x
The horizontal position of the pointer, in pixels.

y
The vertical position of the pointer, in pixels.

Shift and button are currently set to zero. x and y contain the actual positional data. To attach scripts or
behavior to this event, use the SCRIPT tag as follows:

<script language=script-engine for=link-name event="mouseMove(shift, button,
x, y)">

Applies To

Link

Events

onMouseOver, onClick

Properties

href, protocol, host, hostname, port, pathname, search, hash, target

onMouseOver Event
link.onMouseOver

Fires an event any time the pointer moves over a link.

link
An object expression that evaluates to a link object.

Not implemented in current builds.

To attach scripts or behavior to this event, use the SCRIPT tag as follows:

<script language=script-engine for=link-name event="onMouseOver">

or attach a script directly in the HTML:

To
Microsoft

Applies To

Link

Events

mouseMove, onClick

Properties

href, protocol, host, hostname, port, pathname, search, hash, target

onClick Event
link.onClick

Fires an event any time you click on a link.

link
An object expression that evaluates to a link object.

Not implemented in current builds.

To attach scripts or behavior to this event, use the SCRIPT tag as follows:

<script language=script-engine for=link-name event="onClick">

or attach a script directly in the HTML:

To
Microsoft

Applies To

Link

Events

mouseMove, onMouseOver

Properties

href, protocol, host, hostname, port, pathname, search, hash, target

anchor Object
An object that resides below the document in the scripting object model. This object specifies an array
of anchors for a given document. Each entry in this array corresponds to an anchor <A> tag that is
found in the corresponding document.

The anchor object is referenced as a read-only property array. An anchor object is constructed for every
anchor tag <A> found in the HTML document. It is only accessible through the indexed array. The
following lines of script would set anchortext to the name of the third anchor on the page (if it exists).

<script language="VBScript">
 [some preceding VBScript code]
 anchortext = document.anchors(2).name
 [some following VBScript code]
</script>

Properties

name

name Property
anchor.name [=string]

Gets or sets the name of the anchor.

· Returns a string containing the complete name of the anchor.

anchor
An object expression that evaluates to an anchor object.

string
A string containing the new anchor name.

element Object
An object that resides below the document in the scripting object model. Elements are intrinsic HTML
controls or objects. Controls are placed on a document with the <INPUT> tag while objects are placed
on a document with the <OBJECT> tag.

Elements are intrinsic HTML controls (placed on a page through the input tag <INPUT>) or objects that
are insertable in HTML via the object tag <OBJECT>. These include ActiveX Controls. They can be
referenced either by array or name, but this reference must follow the form identifier. Not all properties,
methods, and events apply to all elements. Some properties apply to all elements; some only apply to
specific elements. See the list below for details by element type, then see the specific method, event, or
property documentation for details.
Element Properties Methods Events

button, reset,
submit

form, name,
value, enabled

click, focus onClick, onFocus

check box form, name,
value, checked,
defaultChecked,
enabled

click, focus onClick, onFocus

radio form, name,
value, checked,
enabled

click, focus onClick, onFocus

combo form, name,
value, enabled,
listCount, list,
multiSelect,
listIndex

click, focus,
removeItem,
addItem, clear

onClick, onFocus

password form, name,
value,
defaultValue,
enabled

focus, blur, select onFocus, onBlur

text, text area form, name,
value,

focus, blur, select onFocus, onBlur,
onChange,

defaultValue,
enabled

onSelect

select name, length,
options,
selectedIndex

focus, blur onFocus, onBlur,
onChange

hidden name, value

Methods

click, focus, blur, select, removeItem, addItem, clear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
length, options, selectedIndex

form Property
element.form

Gets the form object containing the element.

· An object expression that evaluates to the form containing the element

element
Returns an object expression that evaluates to an intrinsic control.

Applies To

All elements

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex, length,
options, selectedIndex

name Property
element.name [=string]

Gets or sets the name of the element.

· Returns a string containing the name of the element.

element
An object expression that evaluates to an intrinsic control.

string
Optional. A string containing the new element name.

Applies To

All elements

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex, length,
options, selectedIndex

value Property
element.value [=string]

Gets or sets the value of the element.

· Returns a string containing the value of the element.

element
An object expression that evaluates to an intrinsic control.

string
Optional. A string containing the new element value.

Applies To

All elements

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex, length,
options, selectedIndex

defaultValue Property
element.defaultValue [=string]

Gets or sets the default value of the element.

· Returns a string containing the default value of the element.

element
An object expression that evaluates to an intrinsic control.

string
Optional. A string containing the new default value.

Applies To

password, text, text area

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, checked, defaultChecked, enabled, listCount, multiSelect, listIndex, length, options,
selectedIndex

checked Property
element.checked [=string]

Gets or sets the checked state of the check box or the radio button.

· Returns TRUE if the check box or radio button is checked; FALSE if not.

element
An object expression that evaluates to an intrinsic control.

string
Optional. Sets the checked state of the check box or the radio button.

Applies To

check box, radio button

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, defaultChecked, enabled, listCount, multiSelect, listIndex, length,
options, selectedIndex

defaultChecked Property
element.defaultChecked [=string]

Gets or sets the default checked property of the check box.

· Returns TRUE if the check box is checked by default; FALSE if not.

element
An object expression that evaluates to an intrinsic control.

string
Optional. Sets the default state of the check box.

Applies To

check box

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, enabled, listCount, multiSelect, listIndex, length, options,
selectedIndex

enabled Property
element.enabled [=bool]

Gets or sets whether the control is enabled.

· Returns TRUE if the control is enabled; FALSE if not.

element
An object expression that evaluates to an intrinsic control.

bool
Optional. Enables or disables the control.

Applies To

All elements

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, listCount, multiSelect, listIndex, length,
options, selectedIndex

listCount Property
element.listCount

Gets the count of elements in the list.

· Returns the number of elements in the combo box.

element
An object expression that evaluates to an intrinsic control.

Applies To

combo

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, multiSelect, listIndex, length,
options, selectedIndex

multiSelect Property
element.multiSelect [=bool]

Gets or sets whether the combo is multiselect or not.

· Returns TRUE if the combo is multiselect; FALSE if not.

element
An object expression that evaluates to an intrinsic control.

bool
Optional. Use TRUE to set the combo to multiselect; FALSE to set to single-select.

Applies To

combo

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, listIndex, length,
options, selectedIndex

listIndex Property
element.listIndex [=integer]

Gets or sets the list index.

· Returns the index of the currently selected element. If more than one is selected, it returns the first.

element
An object expression that evaluates to an intrinsic control.

Integer
Optional. The list index to select. Note that this must be between 0 and ListCount - 1.

listIndex is the index of the selected element in the combo. Applies to the combo element.

Applies To

combo

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, length,
options, selectedIndex

length Property
element.length

Gets the number of options in a select element.

· Returns an integer specifying the number of options in a select element.

element
An object expression that evaluates to a select element.

Applies To

select

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
options, selectedIndex

options Property
element.options

Gets the <options> tags for a select element.

· Returns an string specifying the <options> tag for a select element.

element
An object expression that evaluates to a select element.

The options array has the following properties:

· defaultSelected
Identifies the currently selected attribute

· index
Specifies the index of an option

· length
Specifies the number of options in the selected object.

· name
Specifies the name attribute of the selected object.

· selected
Used to programmatically select an option.

· selectedIndex
Specifies the index of the selected option.

· text
Specifies the text to be displayed (this text follows the <option> tag).

· value
Specifies the value attribute.

Applies To

select

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
length, selectedIndex

selectedIndex Property
element.selectedIndex

Gets the index for the selected option (or the first option selected when there are multiple selected
objects).

· Returns an integer specifying the index for the selected option in a select element.

element
An object expression that evaluates to a select element.

Applies To

select

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
length, options

click Method
element.click

Clicks the element.

element
An object expression that evaluates to an intrinsic control.

Applies To

button, reset, submit, check box, radio, combo

Methods

focus, blur, select, removeItem, addItem, clear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
length, options, selectedIndex

focus Method
element.focus

Sets the focus to the element.

element
An object expression that evaluates to an intrinsic control.

Applies To

All elements

Methods

click blur, select, removeItem, addItem, clear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
length, options, selectedIndex

blur Method
element.blur

Clears the focus from the element.

element
An object expression that evaluates to an intrinsic control.

Applies To

password, text, text area

Methods

click, focus, select, removeItem, addItem, clear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
length, options, selectedIndex

select Method
element.select

Selects the contents of the element.

element
An object expression that evaluates to an intrinsic control.

Applies To

password, text, text area

Methods

click, focus, blur, removeItem, addItem, clear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
length, options, selectedIndex

removeItem Method
element.removeItem index

Removes the item at index from the element.

element
An object expression that evaluates to an intrinsic control.

index
The index of the item to remove. Note that this must be between 0 and ListCount - 1.

Applies To

combo

Methods

click, focus, blur, select, addItem, clear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
length, options, selectedIndex

addItem Method
element.addItem index

Adds the item to the element before the item at index.

element
An object expression that evaluates to an intrinsic control.

index
The index of the item to add. Note that this must be between 0 and ListCount.

Applies To

combo

Methods

click, focus, blur, select, removeItem, clear

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
length, options, selectedIndex

clear Method
element.clear index

Clears the contents of the element.

element
An object expression that evaluates to an intrinsic control.

index
The index of the item to clear.

Applies To

combo

Methods

click, focus, blur, select, removeItem, addItem

Events

onClick, onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
length, options, selectedIndex

Events
There are two ways to script events from objects:

1 Using the onEvent="subroutine" syntax. This method can be used for any HTML intrinsic elements,
such as forms, buttons, or links. This method does not work for items inserted using the OBJECT
tag. The following example uses this syntax in Button1 to handle onClick:

<form name="Form1">
 <input type="button" name="Button1" value="Press me" onClick="pressed">
</form>

<script language="VBScript">
 sub pressed
 alert "I've been pressed"
 document.Form1.Button1.value="OUCH"
 end sub
</script>

2 Using the FOR="object" EVENT="eventname" syntax. This method can be used for any named
elements, plus any elements inserted using the OBJECT tag. The following example is the same as
the first but with a different syntax:

<form name="Form1">
 input type="button" name="Button1" value="Press me">
 <script for="Button1" event="onClick" language="VBScript">
 alert "I've been pressed"
 document.Form1.Button1.value="OUCH"
 </script>
</form>

onClick Event
element.onClick

Fired when the element is clicked.

element
An object expression that evaluates to an intrinsic control.

Applies To

button, reset, submit, check box, radio, combo

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onFocus, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
length, options, selectedIndex

onFocus Event
element.onFocus

Fired when the element gets the focus.

element
An object expression that evaluates to an intrinsic control.

Applies To

All elements

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onBlur, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
length, options, selectedIndex

onBlur Event
element.onBlur

Fired when the element loses the focus.

element
An object expression that evaluates to an intrinsic control.

Applies To

password, text, text area

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onChange, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
length, options, selectedIndex

onChange Event
element.onChange

Fired when the element has changed.

element
An object expression that evaluates to an intrinsic control.

Applies To

text, text area

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onBlur, onSelect

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
length, options, selectedIndex

onSelect Event
element.onSelect

Fired when the contents of the element are selected.

element
An object expression that evaluates to an intrinsic control.

Applies To

text, text area

Methods

click, focus, blur, select, removeItem, addItemclear

Events

onClick, onFocus, onBlur, onChange

Properties

form, name, value, defaultValue, checked, defaultChecked, enabled, listCount, multiSelect, listIndex,
length, options, selectedIndex

history Object
An object that resides below the window in the scripting object model. This object accesses the history
list from the browser.

The history object exposes methods for navigating through the current history.
Methods
back, forward, go
Properties
length

length Property
history.length

Returns the length of the history list.

· Returns the number of entries in the history.
Always returns zero in current implementation.

history
An object expression that evaluates to a history object.

Applies To

History

Methods

back, forward, go

back Method
history.back n

Jumps back in the history n steps. This behaves exactly as if the user has clicked on the back button n
times.

history
An object expression that evaluates to a history object.

n
The number of pages to jump back in the history.

Disabled in current implementation.

Applies To

History

Methods

forward, go

Properties

length

forward Method
history.forward n

Jumps forward in the history n steps. This behaves exactly as if the user has clicked on the forward
button n times.

history
An object expression that evaluates to a history object.

n
The number of pages to jump forward in the history.

Disabled in current implementation.

Applies To

History

Methods

back, go

Properties

length

go Method
history.go n

Goes to the n th item in the history, where history.go 1 jumps to the first item and history.go
history.length jumps to the last item.

history
An object expression that evaluates to a history object.

n
The index of the history entry, from 1 to history.length.

Disabled in current implementation.

Applies To

History

Methods

back, forward

Properties

length

navigator Object
An object that resides below the window in the scripting object model. This object specifies an array of
links for a given document.

The navigator object provides information about the browser application to script writers.
Properties
appCodeName, appName, appVersion, userAgent

appCodeName Property
navigator.appCodeName

Returns the code name of the application.

· Returns a string containing the current application code name.

navigator
An object expression that evaluates to a history object.

Applies To

Navigator

Properties

appName, appVersion, userAgent

appName Property
navigator.appName

Returns the name of the application. Internet Explorer 3.0 currently returns "Microsoft".

· Returns a string containing the current application name.

navigator
An object expression that evaluates to a history object.

Applies To

Navigator

Properties

appCodeName, appVersion, userAgent

appVersion Property
navigator.appVersion

Returns the version of the application.

· Returns a string containing the current application version.

navigator
An object expression that evaluates to a history object.

Applies To

Navigator

Properties

appCodeName, appName, userAgent

userAgent Property
navigator.userAgent

Returns the user agent of the application. Internet Explorer 3.0 currently returns "Mozilla/2.0".

· Returns a string containing the current application user agent.

navigator
An object expression that evaluates to a history object.

Applies To

Navigator

Properties

appCodeName, appName, appVersion

