
exec

exec ii

COLLABORATORS

TITLE :

exec

ACTION NAME DATE SIGNATURE

WRITTEN BY July 18, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

exec iii

Contents

1 exec 1

1.1 exec.doc . 1

1.2 exec.library/AbortIO . 2

1.3 exec.library/AddDevice . 2

1.4 exec.library/AddHead . 3

1.5 exec.library/AddIntServer . 3

1.6 exec.library/AddLibrary . 4

1.7 exec.library/AddMemList . 5

1.8 exec.library/AddPort . 5

1.9 exec.library/AddResource . 6

1.10 exec.library/AddSemaphore . 7

1.11 exec.library/AddTail . 8

1.12 exec.library/AddTask . 8

1.13 exec.library/Alert . 9

1.14 exec.library/AllocAbs . 10

1.15 exec.library/Allocate . 11

1.16 exec.library/AllocEntry . 13

1.17 exec.library/AllocMem . 14

1.18 exec.library/AllocSignal . 16

1.19 exec.library/AllocTrap . 17

1.20 exec.library/AllocVec . 18

1.21 exec.library/AttemptSemaphore . 18

1.22 exec.library/AvailMem . 19

1.23 exec.library/CacheClearE . 20

1.24 exec.library/CacheClearU . 21

1.25 exec.library/CacheControl . 22

1.26 exec.library/CachePostDMA . 22

1.27 exec.library/CachePreDMA . 23

1.28 exec.library/Cause . 24

1.29 exec.library/CheckIO . 25

exec iv

1.30 exec.library/CloseDevice . 26

1.31 exec.library/CloseLibrary . 26

1.32 exec.library/ColdReboot . 27

1.33 exec.library/CopyMem . 27

1.34 exec.library/CopyMemQuick . 28

1.35 exec.library/CreateIORequest . 29

1.36 exec.library/CreateMsgPort . 29

1.37 exec.library/Deallocate . 30

1.38 exec.library/Debug . 30

1.39 exec.library/DeleteIORequest . 31

1.40 exec.library/DeleteMsgPort . 31

1.41 exec.library/Disable . 32

1.42 exec.library/DoIO . 33

1.43 exec.library/Enable . 34

1.44 exec.library/Enqueue . 34

1.45 exec.library/FindName . 35

1.46 exec.library/FindPort . 35

1.47 exec.library/FindResident . 36

1.48 exec.library/FindSemaphore . 37

1.49 exec.library/FindTask . 37

1.50 exec.library/Forbid . 38

1.51 exec.library/FreeEntry . 38

1.52 exec.library/FreeMem . 39

1.53 exec.library/FreeSignal . 39

1.54 exec.library/FreeTrap . 40

1.55 exec.library/FreeVec . 40

1.56 exec.library/GetCC . 41

1.57 exec.library/GetMsg . 41

1.58 exec.library/InitCode . 42

1.59 exec.library/InitResident . 43

1.60 exec.library/InitSemaphore . 44

1.61 exec.library/InitStruct . 45

1.62 exec.library/Insert . 46

1.63 exec.library/MakeFunctions . 46

1.64 exec.library/MakeLibrary . 47

1.65 exec.library/ObtainSemaphore . 48

1.66 exec.library/ObtainSemaphoreList . 49

1.67 exec.library/ObtainSemaphoreShared . 50

1.68 exec.library/OldOpenLibrary . 51

exec v

1.69 exec.library/OpenDevice . 52

1.70 exec.library/OpenLibrary . 53

1.71 exec.library/OpenResource . 54

1.72 exec.library/Permit . 54

1.73 exec.library/Procure . 55

1.74 exec.library/PutMsg . 56

1.75 exec.library/RawDoFmt . 56

1.76 exec.library/ReleaseSemaphore . 58

1.77 exec.library/ReleaseSemaphoreList . 59

1.78 exec.library/RemDevice . 59

1.79 exec.library/RemHead . 60

1.80 exec.library/RemIntServer . 61

1.81 exec.library/RemLibrary . 61

1.82 exec.library/Remove . 62

1.83 exec.library/RemPort . 63

1.84 exec.library/RemResource . 63

1.85 exec.library/RemSemaphore . 63

1.86 exec.library/RemTail . 64

1.87 exec.library/RemTask . 64

1.88 exec.library/ReplyMsg . 65

1.89 exec.library/SendIO . 66

1.90 exec.library/SetExcept . 66

1.91 exec.library/SetFunction . 67

1.92 exec.library/SetIntVector . 68

1.93 exec.library/SetSignal . 69

1.94 exec.library/SetSR . 70

1.95 exec.library/SetTaskPri . 70

1.96 exec.library/Signal . 71

1.97 exec.library/StackSwap . 71

1.98 exec.library/SumKickData . 72

1.99 exec.library/SumLibrary . 74

1.100exec.library/SuperState . 74

1.101exec.library/Supervisor . 75

1.102exec.library/TypeOfMem . 75

1.103exec.library/UserState . 76

1.104exec.library/Vacate . 76

1.105exec.library/Wait . 77

1.106exec.library/WaitIO . 78

1.107exec.library/WaitPort . 78

exec 1 / 79

Chapter 1

exec

1.1 exec.doc

AbortIO() Debug() PutMsg()
AddDevice() DeleteIORequest() RawDoFmt()
AddHead() DeleteMsgPort() ReleaseSemaphore()
AddIntServer() Disable() ReleaseSemaphoreList()
AddLibrary() DoIO() RemDevice()
AddMemList() Enable() RemHead()
AddPort() Enqueue() RemIntServer()
AddResource() FindName() RemLibrary()
AddSemaphore() FindPort() Remove()
AddTail() FindResident() RemPort()
AddTask() FindSemaphore() RemResource()
Alert() FindTask() RemSemaphore()
AllocAbs() Forbid() RemTail()
Allocate() FreeEntry() RemTask()
AllocEntry() FreeMem() ReplyMsg()
AllocMem() FreeSignal() SendIO()
AllocSignal() FreeTrap() SetExcept()
AllocTrap() FreeVec() SetFunction()
AllocVec() GetCC() SetIntVector()
AttemptSemaphore() GetMsg() SetSignal()
AvailMem() InitCode() SetSR()
CacheClearE() InitResident() SetTaskPri()
CacheClearU() InitSemaphore() Signal()
CacheControl() InitStruct() StackSwap()
CachePostDMA() Insert() SumKickData()
CachePreDMA() MakeFunctions() SumLibrary()
Cause() MakeLibrary() SuperState()
CheckIO() ObtainSemaphore() Supervisor()
CloseDevice() ObtainSemaphoreList() TypeOfMem()
CloseLibrary() ObtainSemaphoreShared() UserState()
ColdReboot() OldOpenLibrary() Vacate()
CopyMem() OpenDevice() Wait()
CopyMemQuick() OpenLibrary() WaitIO()
CreateIORequest() OpenResource() WaitPort()
CreateMsgPort() Permit()
Deallocate() Procure()

exec 2 / 79

1.2 exec.library/AbortIO

NAME
AbortIO - attempt to abort an in-progress I/O request

SYNOPSIS
AbortIO(iORequest)

A1

VOID AbortIO(struct IORequest *);

FUNCTION
Ask a device to abort a previously started IORequest. This is done
by calling the device’s ABORTIO vector, with your given IORequest.

AbortIO is a command the device that may or may not grant. If
successful, the device will stop processing the IORequest, and
reply to it earlier than it would otherwise have done.

NOTE
AbortIO() does NOT Remove() the IORequest from your ReplyPort, OR
wait for it to complete. After an AbortIO() you must wait normally
for the reply message before actually reusing the request.

If a request has already completed when AbortIO() is called, no
action is taken.

EXAMPLE
AbortIO(timer_request);
WaitIO(timer_request);
/* Message is free to be reused */

INPUTS
iORequest - pointer to an I/O request block (must have been used

at least once. May be active or finished).

SEE ALSO
WaitIO, DoIO, SendIO, CheckIO

1.3 exec.library/AddDevice

NAME
AddDevice -- add a device to the system

SYNOPSIS
AddDevice(device)

A1

void AddDevice(struct Device *);

FUNCTION
This function adds a new device to the system device list, making
it available to other programs. The device must be ready to be

exec 3 / 79

opened at this time.

INPUTS
device - pointer to a properly initialized device node

SEE ALSO
RemDevice, OpenDevice, CloseDevice, MakeLibrary

1.4 exec.library/AddHead

NAME
AddHead -- insert node at the head of a list

SYNOPSIS
AddHead(list, node)

A0 A1

void AddHead(struct List *, struct Node *)

FUNCTION
Add a node to the head of a doubly linked list. Assembly
programmers may prefer to use the ADDHEAD macro from
"exec/lists.i".

WARNING
This function does not arbitrate for access to the list. The
calling task must be the owner of the involved list.

INPUTS
list - a pointer to the target list header
node - the node to insert at head

SEE ALSO
AddTail, Enqueue, Insert, Remove, RemHead, RemTail

1.5 exec.library/AddIntServer

NAME
AddIntServer -- add an interrupt server to a system server chain

SYNOPSIS
AddIntServer(intNum, interrupt)

D0-0:4 A1

void AddIntServer(ULONG, struct Interrupt *);

FUNCTION
This function adds a new interrupt server to a given server chain.
The node is located on the chain in a priority dependent position.
If this is the first server on a particular chain, interrupts will
be enabled for that chain.

exec 4 / 79

Each link in the chain will be called in priority order until the
chain ends or one of the servers returns with the 68000’s Z condition
code clear (indicating non-zero). Servers on the chain should return
with the Z flag clear if the interrupt was specifically for that
server, and no one else. VERTB servers should always return Z set.
(Take care with High Level Language servers, the language may not
have a mechanism for reliably setting the Z flag on exit).

Servers are called with the following register conventions:

D0 - scratch
D1 - scratch

A0 - scratch
A1 - server is_Data pointer (scratch)

A5 - jump vector register (scratch)
A6 - scratch

all other registers must be preserved

INPUTS
intNum - the Paula interrupt bit number (0 through 14). Processor

level seven interrupts (NMI) are encoded as intNum 15.
The PORTS, COPER, VERTB, EXTER and NMI interrupts are
set up as server chains.

interrupt - pointer to an Interrupt structure.
By convention, the LN_NAME of the interrupt structure must
point a descriptive string so that other users may
identify who currently has control of the interrupt.

WARNING
Some compilers or assemblers may optimize code in unexpected ways,
affecting the conditions codes returned from the function. Watch
out for a "MOVEM" instruction (which does not affect the condition
codes) turning into "MOVE" (which does).

BUGS
The graphics library’s VBLANK server, and some user code, currently
assume that address register A0 will contain a pointer to the custom
chips. If you add a server at a priority of 10 or greater, you must
compensate for this by providing the expected value ($DFF000).

SEE ALSO
RemIntServer, SetIntVector, hardware/intbits.i,exec/interrupts.i

1.6 exec.library/AddLibrary

NAME
AddLibrary -- add a library to the system

SYNOPSIS
AddLibrary(library)

A1

exec 5 / 79

void AddLibrary(struct Library *);

FUNCTION
This function adds a new library to the system, making it available
to other programs. The library should be ready to be opened at
this time. It will be added to the system library name list, and
the checksum on the library entries will be calculated.

INPUTS
library - pointer to a properly initialized library structure

SEE ALSO
RemLibrary, CloseLibrary, OpenLibrary, MakeLibrary

1.7 exec.library/AddMemList

NAME
AddMemList - add memory to the system free pool

SYNOPSIS
AddMemList(size, attributes, pri, base, name)

D0 D1 D2 A0 A1

void AddMemList(ULONG, ULONG, LONG, APTR, STRPTR);

FUNCTION
Add a new region of memory to the system free pool. The first few
bytes will be used to hold the MemHeader structure. The remainder
will be made available to the rest of the world.

INPUTS
size - the size (in bytes) of the memory area
attributes - the attributes word that the memory pool will have
pri - the priority for this memory. CHIP memory has a pri of -10,

16 bit expansion memory has a priority of 0. The higher the
priority, the closer to the head of the memory list it will
be placed.

base - the base of the new memory area
name - the name that will be used in the memory header, or NULL

if no name is to be provided. This name is not copied, so it
must remain valid for as long as the memory header is in the
system.

SEE ALSO
AllocMem, exec/memory.h

1.8 exec.library/AddPort

NAME
AddPort -- add a public message port to the system

SYNOPSIS

exec 6 / 79

AddPort(port)
A1

void AddPort(struct MsgPort *);

FUNCTION
This function attaches a message port structure to the system’s
public message port list, where it can be found by the FindPort()
function. The name and priority fields of the port structure must
be initialized prior to calling this function. If the user does
not require the priority field, it should be initialized to zero.

Only ports that will be searched for with FindPort() need to
be added to the system list. In addition, adding ports is often
useful during debugging. If the port will be searched for,
the priority field should be at least 1 (to avoid the large number
of inactive ports at priority zero). If the port will be searched
for often, set the proritiry in the 50-100 range (so it will be
before other less used ports).

Once a port has been added to the naming list, you must be careful
to remove the port from the list (via RemPort) before deallocating
its memory.

NOTE
A point of confusion is that clearing a MsgPort structure to all
zeros is not enough to prepare it for use. As mentioned in the
Exec chapter of the ROM Kernel Manual, the List for the MsgPort
must be initialized. This is automatically handled by AddPort(),
and amiga.lib/CreatePort. This initialization can be done manually
with amiga.lib/NewList or the assembly NEWLIST macro.

Do not AddPort an active port.

INPUTS
port - pointer to a message port

SEE ALSO
RemPort, FindPort, amiga.lib/CreatePort, amiga.lib/NewList

1.9 exec.library/AddResource

NAME
AddResource -- add a resource to the system

SYNOPSIS
AddResource(resource)

A1

void AddResource(APTR);

FUNCTION
This function adds a new resource to the system and makes it
available to other users. The resource must be ready to be called
at this time.

exec 7 / 79

Resources currently have no system-imposed structure, however they
must start with a standard named node (LN_SIZE), and should with
a standard Library node (LIB_SIZE).

INPUTS
resource - pointer an initialized resource node

SEE ALSO
RemResource, OpenResource, MakeLibrary

1.10 exec.library/AddSemaphore

NAME
AddSemaphore -- initialize then add a signal semaphore to the system

SYNOPSIS
AddSemaphore(signalSemaphore)

A1

void AddSemaphore(struct SignalSemaphore *);

FUNCTION
This function attaches a signal semaphore structure to the system’s
public signal semaphore list. The name and priority fields of the
semaphore structure must be initialized prior to calling this
function. If you do not want to let others rendezvous with this
semaphore, use InitSemaphore() instead.

If a semaphore has been added to the naming list, you must be
careful to remove the semaphore from the list (via RemSemaphore)
before deallocating its memory.

Semaphores that are linked together in an allocation list (which
ObtainSemaphoreList() would use) may not be added to the system
naming list, because the facilities use the link field of the
signal semaphore in incompatible ways

INPUTS
signalSemaphore -- an signal semaphore structure

BUGS
Does not work in Exec <V36. Instead use this code:

#include <exec/execbase.h>
#include <exec/nodes.h>
extern struct ExecBase *SysBase;

...
void LocalAddSemaphore(s)
struct SignalSemaphore *s;
{

s->ss_Link.ln_Type=NT_SIGNALSEM;
InitSemaphore(s);
Forbid();
Enqueue(&SysBase->SemaphoreList,s);

exec 8 / 79

Permit();
}

SEE ALSO
RemSemaphore, FindSemaphore, InitSemaphore

1.11 exec.library/AddTail

NAME
AddTail -- append node to tail of a list

SYNOPSIS
AddTail(list, node)

A0 A1

void AddTail(struct List *, struct Node *);

FUNCTION
Add a node to the tail of a doubly linked list. Assembly
programmers may prefer to use the ADDTAIL macro from
"exec/lists.i".

WARNING
This function does not arbitrate for access to the list. The
calling task must be the owner of the involved list.

INPUTS
list - a pointer to the target list header
node - a pointer to the node to insert at tail of the list

SEE ALSO
AddHead, Enqueue, Insert, Remove, RemHead, RemTail

1.12 exec.library/AddTask

NAME
AddTask -- add a task to the system

SYNOPSIS
AddTask(task, initialPC, finalPC)

A1 A2 A3

APTR AddTask(struct Task *, APTR, APTR);

FUNCTION
Add a task to the system. A reschedule will be run; the task with
the highest priority in the system will start to execute (this may
or may not be the new task).

Certain fields of the task control block must be initialized and a
stack allocated prior to calling this function. The absolute
smallest stack that is allowable is something in the range of 100

exec 9 / 79

bytes, but in general the stack size is dependent on what
subsystems are called. In general 256 bytes is sufficient if only
Exec is called, and 4K will do if anything in the system is called.
DO NOT UNDERESTIMATE. If you use a stack sniffing utility,
leave a healthy pad above the minimum value. The system guarantees
that its stack operations will leave the stack longword aligned.

This function will temporarily use space from the new task’s stack
for the task’s initial set of registers. This space is allocated
starting at the SPREG location specified in the task control block
(not from SPUPPER). This means that a task’s stack may contain
static data put there prior to its execution. This is useful for
providing initialized global variables or some tasks may want to
use this space for passing the task its initial arguments.

A task’s initial registers are set to zero (except the PC).

The TC_MEMENTRY field of the task structure may be extended by
the user to hold additional MemLists (as returned by AllocEntry()).
These will be automatically be deallocated at RemTask() time.
If the code you have used to start the task has already added
something to the MEMENTRY list, simply use AddHead to add your
new MemLists in. If no initialization has been done, a NewList will
need to be performed.

INPUTS
task - pointer to the task control block (TCB). All unset fields

must be zero.
initialPC - the initial entry point’s address
finalPC - the finalization code entry point’s address. If zero,

the system will use a general finalizer. This pointer is
placed on the stack as if it were the outermost return
address.

RESULTS
For V36, AddTask returns either a NULL or the address of the new
task. Old code need not check this.

WARNING
Tasks are a low-level building block, and are unable to call
dos.library, or any system function that might call dos.library.
See the AmigaDOS CreateProc() for information on Processes.

SEE ALSO
RemTask, FindTask, amiga.lib/CreateTask, dos/CreateProc,
amiga.lib/NewList

1.13 exec.library/Alert

NAME
Alert -- alert the user of an error

SYNOPSIS
Alert(alertNum)

D7

exec 10 / 79

void Alert(ULONG);

FUNCTION
Alerts the user of a serious system problem. This function will
bring the system to a grinding halt, and do whatever is necessary
to present the user with a message stating what happened.
Interrupts are disabled, and an attempt to post the alert is made.
If that fails, the system is reset. When the system comes up
again, Exec notices the cause of the failure and tries again to
post the alert.

If the Alert is a recoverable type, this call MAY return.

This call may be made at any time, including interrupts.

POST-MORTEM DIAGNOSIS
There are several options for determining the cause of a crash.
Descriptions of each alert number can be found in the "alerts.h"
include file. Low numbers not mentioned in the include file
represent 68000 exceptions, see a 68000 manual for details. The
most common numbers are:

$00000003 - Address Error
$00000004 - Illegal Instruction

A remote terminal can be attached to the Amiga’s first built-in
serial port. Set the communication parameters to 9600 baud, 8 bits,
no parity. Before resetting the machine, the Alert function will
blink the power LED 10 times. While the power indicator is flashing,
pressing DELETE on the remote terminal will invoke the ROMWack
debugger.

For Alerts caused by a 68000 exception, all registers are copied
to a magic low memory location (currently 16 longwords at $180).

INPUT
alertNum - a number indicating the particular alert. -1 is

not a valid input.

NOTE
Much more needs to be said about this function and its implications.

SEE ALSO
exec/alerts.h

1.14 exec.library/AllocAbs

NAME
AllocAbs -- allocate at a given location

SYNOPSIS
memoryBlock = AllocAbs(byteSize, location)
D0 D0 A1

void *AllocAbs(ULONG, APTR);

exec 11 / 79

FUNCTION
This function attempts to allocate memory at a given absolute
memory location. Often this is used by boot-surviving entities
such as recoverable ram-disks. If the memory is already being
used, or if there is not enough memory to satisfy the request,
AllocAbs will return NULL.

This block may not be exactly the same as the requested block
because of rounding, but if the return value is non-zero, the block
is guaranteed to contain the requested range.

INPUTS
byteSize - the size of the desired block in bytes

This number is rounded up to the next larger
block size for the actual allocation.

location - the address where the memory MUST be.

RESULT
memoryBlock - a pointer to the newly allocated memory block, or

NULL if failed.

NOTE
If the free list is corrupt, the system will panic with alert
AN_MemCorrupt, $01000005.

The 8 bytes past the end of an AllocAbs will be changed by Exec
relinking the next block of memory. Generally you can’t trust
the first 8 bytes of anything you AllocAbs.

SEE ALSO
AllocMem, FreeMem

1.15 exec.library/Allocate

NAME
Allocate - allocate a block of memory

SYNOPSIS
memoryBlock=Allocate(memHeader, byteSize)
D0 A0 D0

void *Allocate(struct MemHeader *, ULONG);

FUNCTION
This function is used to allocate blocks of memory from a given
private free memory pool (as specified by a MemHeader and its
memory chunk list). Allocate will return the first free block that
is greater than or equal to the requested size.

All blocks, whether free or allocated, will be block aligned;
hence, all allocation sizes are rounded up to the next block even
value (e.g. the minimum allocation resolution is currently 8
bytes. A request for 8 bytes will use up exactly 8 bytes. A

exec 12 / 79

request for 7 bytes will also use up exactly 8 bytes.).

This function can be used to manage an application’s internal data
memory. Note that no arbitration of the MemHeader and associated
free chunk list is done. You must be the owner before calling
Allocate.

INPUTS
memHeader - points to the local memory list header.
byteSize - the size of the desired block in bytes.

RESULT
memoryBlock - a pointer to the just allocated free block.

If there are no free regions large enough to satisfy the
request, return zero.

EXAMPLE
#include <exec/types.h>
#include <exec/memory.h>
void *AllocMem();
#define BLOCKSIZE 4096L /* Or whatever you want */

void main()
{
struct MemHeader *mh;
struct MemChunk *mc;
APTR block1;
APTR block2;

/* Get the MemHeader needed to keep track of our new block */
mh = (struct MemHeader *)

AllocMem((long)sizeof(struct MemHeader), MEMF_CLEAR);
if(!mh)

exit(10);

/* Get the actual block the above MemHeader will manage */
mc = (struct MemChunk *)AllocMem(BLOCKSIZE, 0L);
if(!mc)

{
FreeMem(mh, (long)sizeof(struct MemHeader)); exit(10);
}

mh->mh_Node.ln_Type = NT_MEMORY;
mh->mh_Node.ln_Name = "myname";
mh->mh_First = mc;
mh->mh_Lower = (APTR) mc;
mh->mh_Upper = (APTR) (BLOCKSIZE + (ULONG) mc);
mh->mh_Free = BLOCKSIZE;

/* Set up first chunk in the freelist */
mc->mc_Next = NULL;
mc->mc_Bytes = BLOCKSIZE;

block1 = (APTR) Allocate(mh, 20L);
block2 = (APTR) Allocate(mh, 314L);
printf("mh=$%lx mc=$%lx\n",mh,mc);
printf("Block1=$%lx, Block2=$%lx\n",block1,block2);

exec 13 / 79

FreeMem(mh, (long)sizeof(struct MemHeader));
FreeMem(mc, BLOCKSIZE);

}

NOTE
If the free list is corrupt, the system will panic with alert
AN_MemCorrupt, $01000005.

SEE ALSO
Deallocate, exec/memory.h

1.16 exec.library/AllocEntry

NAME
AllocEntry -- allocate many regions of memory

SYNOPSIS
memList = AllocEntry(memList)
D0 A0

struct MemList *AllocEntry(struct MemList *);

FUNCTION
This function takes a memList structure and allocates enough memory
to hold the required memory as well as a MemList structure to keep
track of it.

These MemList structures may be linked together in a task control
block to keep track of the total memory usage of this task. (See
the description of TC_MEMENTRY under RemTask).

INPUTS
memList -- A MemList structure filled in with MemEntry structures.

RESULTS
memList -- A different MemList filled in with the actual memory

allocated in the me_Addr field, and their sizes in me_Length.
If enough memory cannot be obtained, then the requirements of
the allocation that failed is returned and bit 31 is set.

WARNING: The result is unusual! Bit 31 indicates faulure.

EXAMPLES
The user wants five regions of 2, 4, 8, 16, and 32 bytes in size
with requirements of MEMF_CLEAR, MEMF_PUBLIC, MEMF_CHIP!MEMF_CLEAR,
MEMF_CLEAR, and MEMF_PUBLIC!MEMF_CLEAR respectively. The
following code fragment would do that:

MemListDecl:
DS.B LN_SIZE * reserve space for list node
DC.W 5 * number of entries
DC.L MEMF_CLEAR * entry #0
DC.L 2
DC.L MEMF_PUBLIC * entry #1

exec 14 / 79

DC.L 4
DC.L MEMF_CHIP!MEMF_CLEAR * entry #2
DC.L 8
DC.L MEMF_CLEAR * entry #3
DC.L 16
DC.L MEMF_PUBLIC!MEMF_CLEAR * entry #4
DC.L 32

start:
LEA.L MemListDecl(PC),A0
JSR _LVOAllocEntry(a6)
BCLR.L #31,D0
BEQ.S success

------- Type of memory that we failed on is in D0

BUGS
If any one of the allocations fails, this function fails to back
out fully. This is fixed by the "SetPatch" program on V1.3
Workbench disks.

SEE ALSO
exec/memory.h

1.17 exec.library/AllocMem

NAME
AllocMem -- allocate memory given certain requirements

SYNOPSIS
memoryBlock = AllocMem(byteSize, attributes)
D0 D0 D1

void *AllocMem(ULONG, ULONG);

FUNCTION
This is the memory allocator to be used by system code and
applications. It provides a means of specifying that the allocation
should be made in a memory area accessible to the chips, or
accessible to shared system code.

Memory is allocated based on requirements and options. Any
"requirement" must be met by a memory allocation, any "option" will
be applied to the block regardless. AllocMem will try all memory
spaces until one is found with the proper requirements and room for
the memory request.

INPUTS
byteSize - the size of the desired block in bytes. (The operating

system will automatically round this number to a multiple of
the system memory chunk size)

attributes -
requirements

exec 15 / 79

If no flags are set, the system will return the best
available memory block. For expanded systems, the fast
memory pool is searched first.

MEMF_CHIP: If the requested memory will be used by
the Amiga custom chips, this flag *must*
be set.

Only certain parts of memory are reachable
by the special chip sets’ DMA circuitry.
Chip DMA includes screen memory, images that
are blitted, audio data, copper lists, sprites
and Pre-V36 trackdisk.device buffers.

MEMF_FAST: This is non-chip memory. If no flag is set
MEMF_FAST is taken as the default.

DO NOT SPECIFY MEMF_FAST unless you know
exactly what you are doing! If MEMF_FAST is
set, AllocMem() will fail on machines that
only have chip memory! This flag may not
be set when MEMF_CHIP is set.

MEMF_PUBLIC: Memory that must not be mapped, swapped,
or otherwise made non-addressable. ALL
MEMORY THAT IS REFERENCED VIA INTERRUPTS
AND/OR BY OTHER TASKS MUST BE EITHER PUBLIC
OR LOCKED INTO MEMORY! This includes both
code and data.

MEMF_LOCAL: This is memory that will not go away
after the CPU RESET instruction. Normally,
autoconfig memory boards become unavailable
after RESET while motherboard memory
may still be available. This memory type
is now automatically set in V36. Pre-V36
systems may not have this memory type
and AllocMem() will then fail.

MEMF_24BITDMA: This is memory that is within the address
range of 24-bit DMA devices. (Zorro-II)
This is required if you run a Zorro-II
DMA device on a machine that has memory
beyond the 24-bit addressing limit of
Zorro-II. This memory type
is now automatically set in V36. Pre-V36
systems may not have this memory type
and AllocMem() will then fail.

options

MEMF_CLEAR: The memory will be initialized to all

exec 16 / 79

zeros.

MEMF_REVERSE: This allocates memory from the top of
the memory pool. It searches the pools
in the same order, such that FAST memory
will be found first. However, the
memory will be allocated from the highest
address available in the pool. This
option is new as of V36.

RESULT
memoryBlock - a pointer to the newly allocated memory block.

If there are no free memory regions large enough to satisfy
the request, zero will be returned. The pointer must be
checked for zero before the memory block may be used!

WARNING
The result of any memory allocation MUST be checked, and a viable
error handling path taken. ANY allocation may fail if memory has
been filled.

EXAMPLES
AllocMem(64,0L) - Allocate the best available memory
AllocMem(25,MEMF_CLEAR) - Allocate the best available memory, and

clear it before returning.
AllocMem(128,MEMF_CHIP) - Allocate chip memory
AllocMem(128,MEMF_CHIP|MEMF_CLEAR) - Allocate cleared chip memory
AllocMem(821,MEMF_CHIP|MEMF_PUBLIC|MEMF_CLEAR) - Allocate cleared,

public, chip memory.

NOTE
If the free list is corrupt, the system will panic with alert
AN_MemCorrupt, $01000005.

This function may not be called from interrupts.

A DOS process will have its pr_Result2 field set to
ERROR_NO_FREE_STORE if the memory allocation fails.

SEE ALSO
FreeMem

1.18 exec.library/AllocSignal

NAME
AllocSignal -- allocate a signal bit

SYNOPSIS
signalNum = AllocSignal(signalNum)
D0 D0

BYTE AllocSignal(BYTE);

exec 17 / 79

FUNCTION
Allocate a signal bit from the current tasks’ pool. Either a
particular bit, or the next free bit may be allocated. The signal
associated with the bit will be properly initialized (cleared). At
least 16 user signals are available per task. Signals should be
deallocated before the task exits.

If the signal is already in use (or no free signals are available)
a -1 is returned.

Allocated signals are only valid for use with the task that
allocated them.

WARNING
Signals may not be allocated or freed from exception handling code.

INPUTS
signalNum - the desired signal number {of 0..31} or -1 for no

preference.

RESULTS
signalNum - the signal bit number allocated {0..31}. If no signals

are available, this function returns -1.

SEE ALSO
FreeSignal

1.19 exec.library/AllocTrap

NAME
AllocTrap -- allocate a processor trap vector

SYNOPSIS
trapNum = AllocTrap(trapNum)
D0 D0

LONG AllocTrap(LONG);

FUNCTION
Allocate a trap number from the current task’s pool. These trap
numbers are those associated with the 68000 TRAP type instructions.
Either a particular number, or the next free number may be
allocated.

If the trap is already in use (or no free traps are available) a -1
is returned.

This function only affects the currently running task.

Traps are sent to the trap handler pointed at by tc_TrapCode.
Unless changed by user code, this points to a standard trap
handler. The stack frame of the exception handler will be:

0(SP) = Exception vector number. This will be in the

exec 18 / 79

range of 32 to 47 (corresponding to the
Trap #1...Trap #15 instructions).

4(SP) = 68000/68010/68020/68030, etc. exception frame

tc_TrapData is not used.

WARNING
Traps may not be allocated or freed from exception handling code.
You are not allowed to write to the exception table yourself. In
fact, on some machines you will have trouble finding it - the VBR
register may be used to remap its location.

INPUTS
trapNum - the desired trap number {of 0..15} or -1

for no preference.

RESULTS
trapNum - the trap number allocated {of 0..15}. If no traps are

available, this function returns -1. Instructions of the
form "Trap #trapNum" will be sent to the task’s trap
handler.

SEE ALSO
FreeTrap

1.20 exec.library/AllocVec

NAME
AllocVec -- allocate memory and keep track of the size (V36)

SYNOPSIS
memoryBlock = AllocVec(byteSize, attributes)
D0 D0 D1

void *AllocVec(ULONG, ULONG);

FUNCTION
This function works identically to AllocMem(), but tracks the size
of the allocation.

See the AllocMem() documentation for details.

WARNING
The result of any memory allocation MUST be checked, and a viable
error handling path taken. ANY allocation may fail if memory has
been filled.

SEE ALSO
FreeVec, AllocMem

1.21 exec.library/AttemptSemaphore

exec 19 / 79

NAME
AttemptSemaphore -- try to obtain without blocking

SYNOPSIS
success = AttemptSemaphore(signalSemaphore)
D0 A0

LONG AttemptSemaphore(struct SignalSemaphore *);

FUNCTION
This call is similar to ObtainSemaphore(), except that it will not
block if the semaphore could not be locked.

INPUT
signalSemaphore -- an initialized signal semaphore structure

RESULT
success -- TRUE if the semaphore was locked, false if some

other task already possessed the semaphore.

NOTE
This call does NOT preserve registers.

SEE ALSO
ObtainSemaphore() ObtainSemaphoreShared(), ReleaseSemaphore(),
exec/semaphores.h

1.22 exec.library/AvailMem

NAME
AvailMem -- memory available given certain requirements

SYNOPSIS
size = AvailMem(attributes)
D0 D1

ULONG AvailMem(ULONG);

FUNCTION
This function returns the amount of free memory given certain
attributes.

To find out what the largest block of a particular type is, add
MEMF_LARGEST into the requirements argument. Returning the largest
block is a slow operation.

WARNING
Due to the effect of multitasking, the value returned may not
actually be the amount of free memory available at that instant.

INPUTS
requirements - a requirements mask as specified in AllocMem. Any

of the AllocMem bits are valid, as is MEMF_LARGEST
which returns the size of the largest block matching

exec 20 / 79

the requirements.

RESULT
size - total free space remaining (or the largest free block).

NOTE
For V36 Exec, AvailMem(MEMF_LARGEST) does a consistency check on
the memory list. Alert AN_MemoryInsane will be pulled if any mismatch
is noted.

EXAMPLE
AvailMem(MEMF_CHIP|MEMF_LARGEST);
/* return size of largest available chip memory chunk */

SEE ALSO
exec/memory.h

1.23 exec.library/CacheClearE

NAME
CacheClearE - Cache clearing with extended control (V37)

SYNOPSIS
CacheClearE(address,length,caches)

a0 d0 d1

void CacheClearE(APTR,ULONG,ULONG);

FUNCTION
Flush out the contents of the CPU instruction and/or data caches.
If dirty data cache lines are present, push them to memory first.

Motorola CPUs have separate instruction and data caches. A data
write does not update the instruction cache. If an instruction is
written to memory or modified, the old instruction may still exist
in the cache. Before attempting to execute the code, a flush of
the instruction cache is required.

For most systems, the data cache is not updated by Direct Memory
Access (DMA), or if some external factor changes shared memory.

Caches must be cleared after *any* operation that could cause
invalid or stale data. The most common cases are DMA and modifying
instructions using the processor.

Some examples:
Self modifying code
Building Jump tables
Run-time code patches
Relocating code for use at different addresses.
Loading code from disk

INPUTS
address - Address to start the operation. This may be rounded

due to hardware granularity.

exec 21 / 79

length - Length of area to be cleared, or $FFFFFFFF to indicate all
addresses should be cleared.

caches - Bit flags to indicate what caches to affect. The current
supported flags are:

CACRF_ClearI ;Clear instruction cache
CACRF_ClearD ;Clear data cache

All other bits are reserved for future definition.

NOTES
On systems with a copyback mode cache, any dirty data is pushed
to memory as a part of this operation.

Regardless of the length given, the function will determine the most
efficient way to implement the operation. For some cache systems,
including the 68030, the overhead partially clearing a cache is often
too great. The entire cache may be cleared.

For all current Amiga models, Chip memory is set with Instruction
caching enabled, data caching disabled. This prevents coherency
conflicts with the blitter or other custom chip DMA. Custom chip
registers are marked as non-cacheable by the hardware.

The system takes care of appropriately flushing the caches for normal
operations. The instruction cache is cleared by all calls that
modify instructions, including LoadSeg(), MakeLibrary() and
SetFunction().

SEE ALSO
exec/execbase.i, CacheControl, CacheClearU

1.24 exec.library/CacheClearU

NAME
CacheClearU - User callable simple cache clearing (V37)

SYNOPSIS
CacheClearU()

void CacheClearU(void);

FUNCTION
Flush out the contents of any CPU instruction and data caches.
If dirty data cache lines are present, push them to memory first.

Caches must be cleared after *any* operation that could cause
invalid or stale data. The most common cases are DMA and modifying
instructions using the processor. See the CacheClearE() autodoc
for a more complete description.

Some examples of when the cache needs clearing:
Self modifying code
Building Jump tables
Run-time code patches
Relocating code for use at different addresses.
Loading code from disk

exec 22 / 79

SEE ALSO
exec/execbase.i, CacheControl, CacheClearE

1.25 exec.library/CacheControl

NAME
CacheControl - Instruction & data cache control

SYNOPSIS
oldBits = CacheControl(cacheBits,cacheMask)
D0 D0 D1

ULONG CacheControl(ULONG,ULONG);

FUNCTION
This function provides global control of any instruction or data
caches that may be connected to the system. All settings are
global -- per task control is not provided.

The action taken by this function will depend on the type of
CPU installed. This function may be patched to support external
caches, or different cache architectures. In all cases the function
will attempt to best emulate the provided settings. Use of this
function may save state specific to the caches involved.

The list of supported settings is provided in the exec/execbase.i
include file. The bits currently defined map directly to the Motorola
68030 CPU CACR register. Alternate cache solutions may patch into
the Exec cache functions. Where possible, bits will be interpreted to
have the same meaning on the installed cache.

INPUTS
cacheBits - new values for the bits specified in cacheMask.

cacheMask - a mask with ones for all bits to be changed.

RESULT
oldBits - the complete prior values for all settings.

NOTE
As a side effect, this function clears all caches.

SEE ALSO
exec/execbase.i, CacheClearU, CacheClearE

1.26 exec.library/CachePostDMA

NAME
CachePostDMA - Take actions after to hardware DMA (V37)

SYNOPSIS

exec 23 / 79

CachePostDMA(vaddress,&length,flags)
a0 a1 d0

CachePostDMA(APTR,LONG *,ULONG);

FUNCTION
Take all appropriate steps after Direct Memory Access (DMA). This
function is primarily intended for writers of DMA device drivers. The
action will depend on the CPU type installed, caching modes, and the
state of any Memory Management Unit (MMU) activity.

As implemented
68000 - Do nothing
68010 - Do nothing
68020 - Do nothing
68030 - Flush the data cache
68040 - Flush matching areas of the data cache
????? - External cache boards, Virtual Memory Systems, or

future hardware may patch this vector to best emulate
the intended behavior.
With a Bus-Snooping CPU, this function my end up
doing nothing.

INPUTS
address - Same as initially passed to CachePreDMA
length - Same as initially passed to CachePreDMA
flags - Values:

DMA_NoModify - If the area was not modified (and
thus there is no reason to flush the cache) set
this bit.

SEE ALSO
exec/execbase.i, CachePreDMA, CacheClearU, CacheClearE

1.27 exec.library/CachePreDMA

NAME
CachePreDMA - Take actions prior to hardware DMA (V37)

SYNOPSIS
paddress = CachePreDMA(vaddress,&length,flags)
d0 a0 a1 d0

APTR CachePreDMA(APTR,LONG *,ULONG);

FUNCTION
Take all appropriate steps before Direct Memory Access (DMA). This
function is primarily intended for writers of DMA device drivers. The
action will depend on the CPU type installed, caching modes, and the
state of any Memory Management Unit (MMU) activity.

This function supports advanced cache architectures that have
"copyback" modes. With copyback, write data may be cached, but not
actually flushed out to memory. If the CPU has unflushed data at the
time of DMA, data may be lost.

exec 24 / 79

As implemented
68000 - Do nothing
68010 - Do nothing
68020 - Do nothing
68030 - Do nothing
68040 - Write any matching dirty cache lines back to memory.

As a side effect of the 68040’s design, matching data
cache lines are also invalidated -- future CPUs may
be different.

????? - External cache boards, Virtual Memory Systems, or
future hardware may patch this vector to best emulate
the intended behavior.
With a Bus-Snooping CPU, this function my end up
doing nothing.

INPUTS
address - Base address to start the action.
length - Pointer to a longword with a length.
flags - Values:

DMA_Continue - Indicates this call is to complete
a prior request that was broken up.

RESULTS
paddress- Physical address that coresponds to the input virtual

address.
&length - This length value will be updated to reflect the contiguous

length of physical memory present at paddress. This may
be smaller than the requested length. To get the mapping
for the next chunk of memory, call the function again with
a new address, length, and the DMA_Continue flag.

NOTE
Due to processor granularity, areas outside of the address range
may be affected by the cache flushing actions. Care has been taken
to ensure that no harm is done outside the range, and that activities
on overlapping cache lines won’t harm data.

SEE ALSO
exec/execbase.i, CachePostDMA, CacheClearU, CacheClearE

1.28 exec.library/Cause

NAME
Cause -- cause a software interrupt

SYNOPSIS
Cause(interrupt)

A1

void Cause(struct Interrupt *);

FUNCTION
This function causes a software interrupt to occur. If it is
called from user mode (and processor level 0), the software

exec 25 / 79

interrupt will preempt the current task. This call is often used
by high-level hardware interrupts to defer medium-length processing
down to a lower interrupt level. Note that a software interrupt is
still a real interrupt, and must obey the same restrictions on what
system function it may call.

Currently only 5 software interrupt priorities are implemented:
-32, -16, 0, +16, and +32. Priorities in between are truncated,
values outside the -32/+32 range are not allowed.

NOTE
When setting up the Interrupt structure, set the node type to
NT_INTERRUPT, or NT_UNKOWN.

IMPLEMENTATION
1> Checks if the node type is NT_SOFTINT. If so does nothing since

the softint is already pending. No nest count is maintained.
2> Sets the node type to NT_SOFTINT.
3> Links into one of the 5 priority queues.
4> Pokes the hardware interrupt bit used for softints.

The node type returns to NT_INTERRUPT after removal from the list.

INPUTS
interrupt - pointer to a properly initialized interrupt node

BUGS
Unlike other Interrupts, SoftInts must preserve the value of A6.

1.29 exec.library/CheckIO

NAME
CheckIO -- get the status of an IORequest

SYNOPSIS
result = CheckIO(iORequest)
D0 A1

BOOL CheckIO(struct IORequest *);

FUNCTION
This function determines the current state of an I/O request and
returns FALSE if the I/O has not yet completed. This function
effectively hides the internals of the I/O completion mechanism.

CheckIO() will NOT remove the returned IORequest from the reply port.
This is best performed with WaitIO(). If the request has already
completed, WaitIO() will return quickly. Use of the Remove()
function is dangerous, since other tasks may still be adding things
to your message port; a Disable() would be required.

This function should NOT be used to busy loop (looping until IO is
complete). WaitIO() is provided for that purpose.

INPUTS

exec 26 / 79

iORequest - pointer to an I/O request block

RESULTS
result - NULL if I/O is still in progress. Otherwise

D0 points to the IORequest block.

NOTE
CheckIO can hang if called on an IORequest that has never been used.
This occurs if LN_TYPE of the IORequest is set to "NT_MESSAGE".
Instead simply set LN_TYPE to 0.

SEE ALSO
DoIO, SendIO, WaitIO, AbortIO

1.30 exec.library/CloseDevice

NAME
CloseDevice -- conclude access to a device

SYNOPSIS
CloseDevice(iORequest)

A1

void CloseDevice(struct IORequest *);

FUNCTION
This function informs the device that access to a device/unit
previously opened has been concluded. The device may perform
certain house-cleaning operations.

The user must ensure that all outstanding IORequests have been
returned before closing the device. The AbortIO function can kill
any stragglers.

After a close, the I/O request structure is free to be reused.
Starting with V36 exec it is safe to CloseDevice() with an
IORequest that is either cleared to zeros, or failed to
open.

INPUTS
iORequest - pointer to an I/O request structure

SEE ALSO
OpenDevice

1.31 exec.library/CloseLibrary

NAME
CloseLibrary -- conclude access to a library

SYNOPSIS
CloseLibrary(library)

exec 27 / 79

A1

void CloseLibrary(struct Library *);

FUNCTION
This function informs the system that access to the given library
has been concluded. The user must not reference the library or any
function in the library after this close.

Starting with V36, it is safe to pass a NULL instead of
a library pointer.

INPUTS
library - pointer to a library node

NOTE
Library writers must pass a SegList pointer or NULL back from their
open point. This value is used by the system, and not visible as
a return code from CloseLibrary.

SEE ALSO
OpenLibrary

1.32 exec.library/ColdReboot

NAME
ColdReboot - reboot the Amiga (V36)

SYNOPSIS
ColdReboot()

void ColdReboot(void);

FUNCTION
Reboot the machine. All external memory and periperals will be
RESET, and the machine will start its power up diagnostics.

This function never returns.

INPUT
A chaotic pile of disoriented bits.

RESULTS
An altogether totally integrated living system.

1.33 exec.library/CopyMem

NAME
CopyMem - general purpose memory copy function

SYNOPSIS
CopyMem(source, dest, size)

exec 28 / 79

A0 A1 D0

void CopyMem(APTR,APTR,ULONG);

FUNCTION
CopyMem is a general purpose, fast memory copy function. It can
deal with arbitrary lengths, with its pointers on arbitrary
alignments. It attempts to optimize larger copies with more
efficient copies, it uses byte copies for small moves, parts of
larger copies, or the entire copy if the source and destination are
misaligned with respect to each other.

Arbitrary overlapping copies are not supported.

The internal implementation of this function will change from
system to system, and may be implemented via hardware DMA.

INPUTS
source - a pointer to the source data region
dest - a pointer to the destination data region
size - the size (in bytes) of the memory area. Zero copies

zero bytes

SEE ALSO
CopyMemQuick

1.34 exec.library/CopyMemQuick

NAME
CopyMemQuick - optimized memory copy function

SYNOPSIS
CopyMemQuick(source, dest, size)

A0 A1 D0

void CopyMemQuick(ULONG *,ULONG *,ULONG);

FUNCTION
CopyMemQuick is a highly optimized memory copy function, with
restrictions on the size and alignment of its arguments. Both the
source and destination pointers must be longword aligned. In
addition, the size must be an integral number of longwords (e.g.
the size must be evenly divisible by four).

Arbitrary overlapping copies are not supported.

The internal implementation of this function will change from system
to system, and may be implemented via hardware DMA.

INPUTS
source - a pointer to the source data region, long aligned
dest - a pointer to the destination data region, long aligned
size - the size (in bytes) of the memory area. Zero copies

zero bytes.

exec 29 / 79

SEE ALSO
CopyMem

1.35 exec.library/CreateIORequest

NAME
CreateIORequest() -- create an IORequest structure (V36)

SYNOPSIS
ioReq = CreateIORequest(ioReplyPort, size);

A0 D0

struct IORequest *CreateIORequest(struct MsgPort *, ULONG);

FUNCTION
Allocates memory for and initializes a new IO request block
of a user-specified number of bytes. The number of bytes
must be at least as large as a "struct Message".

INPUTS
ioReplyPort - Pointer to a port for replies (an initialized message

port, as created by CreateMsgPort()). If NULL, this
function fails.

size - the size of the IO request to be created.

RESULT
ioReq - A pointer to the new IORequest block, or NULL.

SEE ALSO
DeleteIORequest, CreateMsgPort(), amiga.lib/CreateExtIO()

1.36 exec.library/CreateMsgPort

NAME
CreateMsgPort - Allocate and initialize a new message port (V36)

SYNOPSIS
CreateMsgPort()

struct MsgPort * CreateMsgPort(void);

FUNCTION
Allocates and initializes a new message port. The message list
of the new port will be prepared for use (via NewList). A signal
bit will be allocated, and the port will be set to signal your
task when a message arrives (PA_SIGNAL).

You *must* use DeleteMsgPort() to delete ports created with
CreateMsgPort()!

RESULT
MsgPort - A new MsgPort structure ready for use, or NULL if out of

exec 30 / 79

memory or signals. If you wish to add this port to the public
port list, fill in the ln_Name and ln_Pri fields, then call
AddPort(). Don’t forget RemPort()!

SEE ALSO
DeleteMsgPort(), exec/AddPort(), exec/ports.h, amiga.lib/CreatePort()

1.37 exec.library/Deallocate

NAME
Deallocate -- deallocate a block of memory

SYNOPSIS
Deallocate(memHeader, memoryBlock, byteSize)

A0 A1 D0

void Deallocate(struct MemHeader *,APTR,ULONG);

FUNCTION
This function deallocates memory by returning it to the appropriate
private free memory pool. This function can be used to free an
entire block allocated with the above function, or it can be used
to free a sub-block of a previously allocated block. Sub-blocks
must be an even multiple of the memory chunk size (currently 8
bytes).

This function can even be used to add a new free region to an
existing MemHeader, however the extent pointers in the MemHeader
will no longer be valid.

If memoryBlock is not on a block boundary (MEM_BLOCKSIZE) then it
will be rounded down in a manner compatible with Allocate(). Note
that this will work correctly with all the memory allocation
functions, but may cause surprises if one is freeing only part of a
region. The size of the block will be rounded up, so the freed
block will fill to an even memory block boundary.

INPUTS
memHeader - points to the memory header this block is part of.
memoryBlock - address of memory block to free.
byteSize - the size of the block in bytes. If NULL, nothing

happens.

SEE ALSO
Allocate, exec/memory.h

1.38 exec.library/Debug

NAME
Debug -- run the system debugger

SYNOPSIS

exec 31 / 79

Debug(flags)
D0

void Debug(ULONG);

FUNCTION
This function calls the system debugger. By default this debugger
is "ROM-WACK". Other debuggers are encouraged to take over this
entry point (via SetFunction()) so that when an application calls
Debug(), the alternative debugger will get control. Currently a
zero is passed to allow future expansion.

NOTE
The Debug() call may be made when the system is in a questionable
state; if you have a SetFunction() patch, make few assumptions, be
prepared for Supervisor mode, and be aware of differences in the
Motorola stack frames on the 68000,’10,’20, and ’30.

SEE ALSO
SetFunction
your favorite debugger’s manual
the ROM-WACK chapter of the ROM Kernel Manual

1.39 exec.library/DeleteIORequest

NAME
DeleteIORequest() - Free a request made by CreateIORequest() (V36)

SYNOPSIS
DeleteIORequest(ioReq);

a0

void DeleteIORequest(struct IORequest *);

FUNCTION
Frees up an IO request as allocated by CreateIORequest().

INPUTS
ioReq - A pointer to the IORequest block to be freed, or NULL.

This function uses the mn_Length field to determine how
much memory to free.

SEE ALSO
CreateIORequest(), amiga.lib/DeleteExtIO()

1.40 exec.library/DeleteMsgPort

NAME
DeleteMsgPort - Free a message port created by CreateMsgPort (V36)

SYNOPSIS
DeleteMsgPort(msgPort)

exec 32 / 79

a0

void DeleteMsgPort(struct MsgPort *);

FUNCTION
Frees a message port created by CreateMsgPort(). All messages that
may have been attached to this port must have already been
replied to.

INPUTS
msgPort - A message port. NULL for no action.

SEE ALSO
CreateMsgPort(), amiga.lib/DeletePort()

1.41 exec.library/Disable

NAME
Disable -- disable interrupt processing.

SYNOPSIS
Disable();

void Disable(void);

FUNCTION
Prevents interrupts from being handled by the system, until a
matching Enable() is executed. Disable() implies Forbid().

DO NOT USE THIS CALL WITHOUT GOOD JUSTIFICATION. THIS CALL IS
VERY DANGEROUS!

RESULTS
All interrupt processing is deferred until the task executing makes
a call to Enable() or is placed in a wait state. Normal task
rescheduling does not occur while interrupts are disabled. In order
to restore normal interrupt processing, the programmer must execute
exactly one call to Enable() for every call to Disable().

IMPORTANT REMINDER:

It is important to remember that there is a danger in using
disabled sections. Disabling interrupts for more than ~250
microseconds will prevent vital system functions (especially serial
I/0) from operating in a normal fashion.

Think twice before using Disable(), then think once more.
After all that, think again. With enough thought, the need
for a Disable() can often be eliminated. For the user of many
device drivers, a write to disable *only* the particular interrupt
of interest can replace a Disable(). For example:

MOVE.W #INTF_PORTS,_intena
Do not use a macro for Disable(), insist on the real thing.

This call may be made from interrupts, it will have the effect

exec 33 / 79

of locking out all higher-level interrupts (lower-level interrupts
are automatically disabled by the CPU).

Note: In the event of a task entering a Wait() after disabling
interrupts, the system "breaks" the disabled state and runs
normally until the task which called Disable() is rescheduled.

NOTE
This call is guaranteed to preserve all registers.

SEE ALSO
Forbid, Permit, Enable

1.42 exec.library/DoIO

NAME
DoIO -- perform an I/O command and wait for completion

SYNOPSIS
error = DoIO(iORequest)
D0 A1

BYTE DoIO(struct IORequest *);

FUNCTION
This function requests a device driver to perform the I/O command
specified in the I/O request. This function will always wait until
the I/O request is fully complete.

DoIO() handles all the details, including Quick I/O, waiting for
the request, and removing the reply message, etc..

IMPLEMENTATION
This function first tries to complete the IO via the "Quick I/O"
mechanism. The io_Flags field is always set to IOF_QUICK (0x01)
before the internal device call.

The LN_TYPE field is used internally to flag completion. Active
requests have type NT_MESSAGE. Requests that have been replied
have type NT_REPLYMSG. It is illegal to start IO using a
still active IORequest, or a request with type NT_REPLYMSG.

INPUTS
iORequest - pointer to an IORequest initialized by OpenDevice()

RESULTS
error - a sign-extended copy of the io_Error field of the

IORequest. Most device commands require that the error
return be checked.

SEE ALSO
SendIO, CheckIO, WaitIO, AbortIO, amiga.lib/BeginIO

exec 34 / 79

1.43 exec.library/Enable

NAME
Enable -- permit system interrupts to resume.

SYNOPSIS
Enable();

void Enable(void);

FUNCTION
Allow system interrupts to again occur normally, after a matching
Disable() has been executed.

RESULTS
Interrupt processing is restored to normal operation. The
programmer must execute exactly one call to Enable() for every call
to Disable().

NOTE
This call is guaranteed to preserve all registers.

SEE ALSO
Forbid, Permit, Disable

1.44 exec.library/Enqueue

NAME
Enqueue -- insert or append node to a system queue

SYNOPSIS
Enqueue(list, node)

A0 A1

void Enqueue(struct List *, struct Node *);

FUNCTION
Insert or append a node into a system queue. The insert is
performed based on the node priority -- it will keep the list
properly sorted. New nodes will be inserted in front of the first
node with a lower priority. Hence a FIFO queue for nodes of equal
priority

WARNING
This function does not arbitrate for access to the list. The
calling task must be the owner of the involved list.

INPUTS
list - a pointer to the system queue header
node - the node to enqueue. This must be a full featured list

with type, priority and name fields.

SEE ALSO

exec 35 / 79

AddHead, AddTail, Insert, Remove, RemHead, RemTail

1.45 exec.library/FindName

NAME
FindName -- find a system list node with a given name

SYNOPSIS
node = FindName(start, name)
D0,Z A0 A1

struct Node *FindName(struct List *, STRPTR);

FUNCTION
Traverse a system list until a node with the given name is found.
To find multiple occurrences of a string, this function may be
called with a node starting point.

No arbitration is done for access to the list! If multiple tasks
access the same list, an arbitration mechanism such as
SignalSemaphores must be used.

INPUTS
start - a list header or a list node to start the search

(if node, this one is skipped)
name - a pointer to a name string terminated with NULL

RESULTS
node - a pointer to the node with the same name else

zero to indicate that the string was not found.

1.46 exec.library/FindPort

NAME
FindPort -- find a given system message port

SYNOPSIS
port = FindPort(name)
D0 A1

struct MsgPort *FindPort(STRPTR);

FUNCTION
This function will search the system message port list for a port
with the given name. The first port matching this name will be
returned. No arbitration of the port list is done. This function
MUST be protected with A Forbid()/Permit() pair!

EXAMPLE
#include <exec/types.h>
struct MsgPort *FindPort();

exec 36 / 79

ULONG SafePutToPort(message, portname)
struct Message *message;
STRPTR portname;
{
struct MsgPort *port;

Forbid();
port = FindPort(portname);
if (port)

PutMsg(port,message);
Permit();
return((ULONG)port); /* If zero, the port has gone away */

}

INPUT
name - name of the port to find

RETURN
port - a pointer to the message port, or zero if

not found.

1.47 exec.library/FindResident

NAME
FindResident - find a resident module by name

SYNOPSIS
resident = FindResident(name)
D0 A1

struct Resident *FindResident(STRPTR);

FUNCTION
Search the system resident tag list for a resident tag ("ROMTag") with
the given name. If found return a pointer to the resident tag
structure, else return zero.

Resident modules are used by the system to pull all its parts
together at startup. Resident tags are also found in disk based
devices and libraries.

INPUTS
name - pointer to name string

RESULT
resident - pointer to the resident tag structure or

zero if none found.

SEE ALSO
exec/resident.h, InitResident

exec 37 / 79

1.48 exec.library/FindSemaphore

NAME
FindSemaphore -- find a given system signal semaphore

SYNOPSIS
signalSemaphore = FindSemaphore(name)
D0 A1

struct SignalSemaphore *FindSemaphore(STRPTR);

FUNCTION
This function will search the system signal semaphore list for a
semaphore with the given name. The first semaphore matching this
name will be returned.

This function does not arbitrate for access to the semaphore list,
surround the call with a Forbid()/Permit() pair.

INPUT
name - name of the semaphore to find

RESULT
semaphore - a pointer to the signal semaphore, or zero if not

found.

1.49 exec.library/FindTask

NAME
FindTask -- find a task with the given name or find oneself

SYNOPSIS
task = FindTask(name)
D0 A1

struct Task *FindTask(STRPTR);

FUNCTION
This function will check all task queues for a task with the given
name, and return a pointer to its task control block. If a NULL
name pointer is given a pointer to the current task will be
returned.

Finding oneself with a NULL for the name is very quick. Finding a
task by name is very system expensive, and will disable interrupts
for a long time. Since a task may remove itself at any time,
a Forbid()/Permit() pair may be needed to ensure the pointer
returned by FindTask() is still valid when used.

INPUT
name - pointer to a name string

RESULT
task - pointer to the task (or Process)

exec 38 / 79

1.50 exec.library/Forbid

NAME
Forbid -- forbid task rescheduling.

SYNOPSIS
Forbid()

void Forbid(void);

FUNCTION
Prevents other tasks from being scheduled to run by the dispatcher,
until a matching Permit() is executed, or this task is scheduled to
Wait(). Interrupts are NOT disabled.

DO NOT USE THIS CALL WITHOUT GOOD JUSTIFICATION. THIS CALL IS
DANGEROUS!

RESULTS
The current task will not be rescheduled as long as it is ready to
run. In the event that the current task enters a wait state, other
tasks may be scheduled. Upon return from the wait state, the original
task will continue to run without disturbing the Forbid().

Calls to Forbid() nest. In order to restore normal task rescheduling,
the programmer must execute exactly one call to Permit() for every
call to Forbid().

WARNING
In the event of a task entering a Wait() after a Forbid(), the system
"breaks" the forbidden state and runs normally until the task which
called Forbid() is rescheduled. If caution is not taken, this can
cause subtle bugs, since any device or DOS call will (in effect)
cause your task to wait.

Forbid() is not useful or safe from within interrupt code
(All interrupts are always higher priority than tasks, and
interrupts are allowed to break a Forbid()).

NOTE
This call is guaranteed to preserve all registers.

SEE ALSO
Permit, Disable, ObtainSemaphore, ObtainSemaphoreShared

1.51 exec.library/FreeEntry

NAME
FreeEntry -- free many regions of memory

SYNOPSIS
FreeEntry(memList)

A0
void FreeEntry(struct MemList *);

exec 39 / 79

FUNCTION
This function takes a memList structure (as returned by AllocEntry)
and frees all the entries.

INPUTS
memList -- pointer to structure filled in with MemEntry

structures

SEE ALSO
AllocEntry

1.52 exec.library/FreeMem

NAME
FreeMem -- deallocate with knowledge

SYNOPSIS
FreeMem(memoryBlock, byteSize)

A1 D0

void FreeMem(void *,ULONG);

FUNCTION
Free a region of memory, returning it to the system pool from which
it came. Freeing partial blocks back into the system pool is
unwise.

NOTE
If a block of memory is freed twice, the system will Guru. The
Alert is AN_FreeTwice ($01000009). If you pass the wrong pointer,
you will probably see AN_MemCorrupt $01000005. Future versions may
add more sanity checks to the memory lists.

INPUTS
memoryBlock - pointer to the memory block to free
byteSize - the size of the desired block in bytes. (The operating

system will automatically round this number to a multiple of
the system memory chunk size)

SEE ALSO
AllocMem

1.53 exec.library/FreeSignal

NAME
FreeSignal -- free a signal bit

SYNOPSIS
FreeSignal(signalNum)

D0

exec 40 / 79

void FreeSignal(BYTE);

FUNCTION
This function frees a previously allocated signal bit for reuse.
This call must be performed while running in the same task in which
the signal was allocated.

WARNING
Signals may not be allocated or freed from exception handling code.

NOTE
Starting with V37, an attempt to free signal -1 is harmless.

INPUTS
signalNum - the signal number to free {0..31}.

1.54 exec.library/FreeTrap

NAME
FreeTrap -- free a processor trap

SYNOPSIS
FreeTrap(trapNum)

D0

void FreeTrap(ULONG);

FUNCTION
This function frees a previously allocated trap number for reuse.
This call must be performed while running in the same task in which
the trap was allocated.

WARNING
Traps may not be allocated or freed from exception handling code.

INPUTS
trapNum - the trap number to free {of 0..15}

1.55 exec.library/FreeVec

NAME
FreeVec -- return AllocVec() memory to the system (V36)

SYNOPSIS
FreeVec(memoryBlock)

A1

void FreeVec(void *);

FUNCTION
Free an allocation made by the AllocVec() call. The memory will
be returned to the system pool from which it came.

exec 41 / 79

NOTE
If a block of memory is freed twice, the system will Guru. The
Alert is AN_FreeTwice ($01000009). If you pass the wrong pointer,
you will probably see AN_MemCorrupt $01000005. Future versions may
add more sanity checks to the memory lists.

INPUTS
memoryBlock - pointer to the memory block to free, or NULL.

SEE ALSO
AllocVec

1.56 exec.library/GetCC

NAME
GetCC -- get condition codes in a 68010 compatible way.

SYNOPSIS
conditions = GetCC()

D0

UWORD GetCC(void);

FUNCTION
The 68000 processor has a "MOVE SR,<ea>" instruction which gets a
copy of the processor condition codes.

On the 68010,20 and 30 CPUs, "MOVE SR,<ea>" is privileged. User
code will trap if it is attempted. These processors need to use
the "MOVE CCR,<ea>" instruction instead.

This function provides a means of obtaining the CPU condition codes
in a manner that will make upgrades transparent. This function is
VERY short and quick.

RESULTS
conditions - the 680XX condition codes

NOTE
This call is guaranteed to preserve all registers. This function
may be implemented as code right in the jump table.

1.57 exec.library/GetMsg

NAME
GetMsg -- get next message from a message port

SYNOPSIS
message = GetMsg(port)
D0 A0

exec 42 / 79

struct Message *GetMsg(struct MsgPort *);

FUNCTION
This function receives a message from a given message port. It
provides a fast, non-copying message receiving mechanism. The
received message is removed from the message port.

This function will not wait. If a message is not present this
function will return zero. If a program must wait for a message,
it can Wait() on the signal specified for the port or use the
WaitPort() function. There can only be one task waiting for any
given port.

Getting a message does not imply to the sender that the message is
free to be reused by the sender. When the receiver is finished
with the message, it may ReplyMsg() it back to the sender.

Getting a signal does NOT always imply a message is ready. More
than one message may arrive per signal, and signals may show up
without messages. Typically you must loop to GetMsg() until it
returns zero, then Wait() or WaitPort().

INPUT
port - a pointer to the receiver message port

RESULT
message - a pointer to the first message available. If

there are no messages, return zero.
Callers must be prepared for zero at any time.

SEE ALSO
PutMsg, ReplyMsg, WaitPort, Wait, exec/ports.h

1.58 exec.library/InitCode

NAME
InitCode - initialize resident code modules (internal function)

SYNOPSIS
InitCode(startClass, version)

D0 D1

void InitCode(ULONG,ULONG);

FUNCTION
(This function may be ignored by application programmers)

Call InitResident() for all resident modules in the ResModules array
with the given startClass and with versions equal or greater than
that specified. The segList parameter is passed as zero.

Resident modules are used by the system to pull all its parts
together at startup. Modules are initialized in a prioritized order.

exec 43 / 79

Modules that do not have a startclass should be of priority -120.
RTF_AFTERDOS modues should start at -100 (working down).

INPUTS
startClass - the class of code to be initialized:

BITDEF RT,COLDSTART,0
BITDEF RT,SINGLETASK,1 ;ExecBase->ThisTask==0 (V36 only)
BITDEF RT,AFTERDOS,2 ;(V36 only)

version - a major version number

SEE ALSO
ResidentTag (RT) structure definition (resident.h)

1.59 exec.library/InitResident

NAME
InitResident - initialize resident module

SYNOPSIS
object = InitResident(resident, segList)
D0 A1 D1

APTR InitResident(struct Resident *,ULONG);

FUNCTION
Initialize a ROMTag. ROMTags are used to link system modules
together. Each disk based device or library must contain a
ROMTag structure in the first code hunk.

Once the validity of the ROMTag is verified, the RT_INIT pointer
is jumped to with the following registers:

D0 = 0
A0 = segList
A6 = ExecBase

INPUTS
resident - Pointer to a ROMTag
segList - SegList of the loaded object, if loaded from disk.

Libraries & Devices will cache this value for later
return at close or expunge time. Pass NULL for ROM
modules.

RESULTS
object - Return value from the init code, usually the library

or device base. NULL for failure.

AUTOINIT FEATURE
An automatic method of library/device base and vector table
initialization is also provided by InitResident(). The initial code
hunk of the library or device should contain "MOVEQ #-1,d0; RTS;".
Following that must be an initialized Resident structure with
RTF_AUTOINIT set in rt_Flags, and an rt_Init pointer which points
to four longwords. These four longwords will be used in a call
to MakeLibrary();

exec 44 / 79

- The size of your library/device base structure including initial
Library or Device structure.

- A pointer to a longword table of standard, then library
specific function offsets, terminated with -1L.
(short format offsets are also acceptable)

- Pointer to data table in exec/InitStruct format for
initialization of Library or Device structure.

- Pointer to library initialization function, or NULL.
Calling sequence:

D0 = library base
A0 = segList
A6 = ExecBase

This function must return in D0 the library/device base to be
linked into the library/device list. If the initialization
function fails, the device memory must be manually deallocated,
then NULL returned in D0.

SEE ALSO
exec/resident.i, FindResident

1.60 exec.library/InitSemaphore

NAME
InitSemaphore -- initialize a signal semaphore

SYNOPSIS
InitSemaphore(signalSemaphore)

A0

void InitSemaphore(struct SignalSemaphore *);

FUNCTION
This function initializes a signal semaphore and prepares it for
use. It does not allocate anything, but does initialize list
pointers and the semaphore counters.

Semaphores are often used to protect critical data structures
or hardware that can only be accessed by one task at a time.
After initialization, the address of the SignalSemaphore may be
made available to any number of tasks. Typically a task will
try to ObtainSemaphore(), passing this address in. If no other
task owns the semaphore, then the call will lock and return
quickly. If more tasks try to ObtainSemaphore(), they will
be put to sleep. When the owner of the semaphore releases
it, the next waiter in turn will be woken up.

Semaphores are often preferable to the old-style Forbid()/Permit()
type arbitration. With Forbid()/Permit() *all* other tasks are
prevented from running. With semaphores, only those tasks that
need access to whatever the semaphore protects are subject
to waiting.

exec 45 / 79

INPUT
signalSemaphore -- a signal semaphore structure (with all fields

set to zero before the call)

SEE ALSO
ObtainSemaphore(), ObtainSemaphoreShared(), AttemptSemaphore(),
ReleaseSemaphore(), exec/semaphores.h

1.61 exec.library/InitStruct

NAME
InitStruct - initialize memory from a table

SYNOPSIS
InitStruct(initTable, memory, size);

A1 A2 D0

void InitStruct(struct InitStruct *, APTR, ULONG);

FUNCTION
Clear a memory area, then set up default values according to
the data and offset values in the initTable. Typically only assembly
programs take advantage of this function, and only with the macros
defined in "exec/initializers.i".

The initialization table has byte commands to

|a ||byte| |given||byte| |once |
load |count||word| into |next ||rptr| offset, |repetitively |

|long|

Not all combinations are supported. The offset, when specified, is
relative to the memory pointer provided (Memory), and is initially
zero. The initialization data (InitTable) contains byte commands
whose 8 bits are interpreted as follows:

ddssnnnn
dd the destination type (and size):

00 no offset, use next destination, nnnn is count
01 no offset, use next destination, nnnn is repeat
10 destination offset is in the next byte, nnnn is count
11 destination offset is in the next 24-bits, nnnn is count

ss the size and location of the source:
00 long, from the next two aligned words
01 word, from the next aligned word
10 byte, from the next byte
11 ERROR - will cause an ALERT (see below)

nnnn the count or repeat:
count the (number+1) of source items to copy

repeat the source is copied (number+1) times.

initTable commands are always read from the next even byte. Given
destination offsets are always relative to the memory pointer (A2).

The command %00000000 ends the InitTable stream: use %00010001 if you

exec 46 / 79

really want to copy one longword without a new offset.

24 bit APTR not supported for 68020 compatibility -- use long.

INPUTS
initTable - the beginning of the commands and data to init

Memory with. Must be on an even boundary unless only
byte initialization is done. End table with "dc.b 0"
or "dc.w 0".

memory - the beginning of the memory to initialize. Must be
on an even boundary if size is specified.

size - the size of memory, which is used to clear it before
initializing it via the initTable. If Size is zero,
memory is not cleared before initializing.

size must be an even number.

SEE ALSO
exec/initializers.i

1.62 exec.library/Insert

NAME
Insert -- insert a node into a list

SYNOPSIS
Insert(list, node, listNode)

A0 A1 A2

void Insert(struct List *, struct Node *, struct Node *);

FUNCTION
Insert a node into a doubly linked list AFTER a given node
position. Insertion at the head of a list is possible by passing a
zero value for listNode, though the AddHead function is slightly
faster for that special case.

WARNING
This function does not arbitrate for access to the list. The
calling task must be the owner of the involved list.

INPUTS
list - a pointer to the target list header
node - the node to insert
listNode - the node after which to insert

SEE ALSO
AddHead, AddTail, Enqueue, RemHead, Remove, RemTail

1.63 exec.library/MakeFunctions

exec 47 / 79

NAME
MakeFunctions -- construct a function jump table

SYNOPSIS
tableSize = MakeFunctions(target, functionArray, funcDispBase)
D0 A0 A1 A2

ULONG MakeFunctions(APTR,APTR,APTR);

FUNCTION
A low level function used by MakeLibrary to build jump tables of
the type used by libraries, devices and resources. It allows the
table to be built anywhere in memory, and can be used both for
initialization and replacement. This function also supports function
pointer compression by expanding relative displacements into absolute
pointers.

The processor instruction cache is cleared after the table building.

INPUT
destination - the target address for the high memory end of the

function jump table. Typically this will be the library
base pointer.

functionArray - pointer to an array of function pointers or
function displacements. If funcDispBase is zero, the array
is assumed to contain absolute pointers to functions. If
funcDispBase is not zero, then the array is assumed to
contain word displacements to functions. In both cases,
the array is terminated by a -1 (of the same size as the
actual entry.

funcDispBase - pointer to the base about which all function
displacements are relative. If zero, then the function
array contains absolute pointers.

RESULT
tableSize - size of the new table in bytes (for LIB_NEGSIZE).

SEE ALSO
exec/MakeLibrary

1.64 exec.library/MakeLibrary

NAME
MakeLibrary -- construct a library

SYNOPSIS
library = MakeLibrary(vectors, structure, init, dSize, segList)
D0 A0 A1 A2 D0 D1

struct Library *MakeLibrary
(APTR,struct InitStruct *,APTR,ULONG,BPTR);

exec 48 / 79

FUNCTION
This function is used for constructing a library vector and data
area. The same call is used to make devices. Space for the library
is allocated from the system’s free memory pool. The data portion of
the library is initialized. init may point to a library specific
entry point.

NOTE
Starting with V36, the library base is longword adjusted. The
lib_PosSize and lib_NegSize fields of the library structure are
adjusted to match.

INPUTS
vectors - pointer to an array of function pointers or function

displacements. If the first word of the array is -1, then
the array contains relative word displacements (based off
of vectors); otherwise, the array contains absolute
function pointers. The vector list is terminated by a -1
(of the same size as the pointers).

structure - points to an "InitStruct" data region. If NULL,
then it will not be used.

init - If non-NULL, an entry point that will be called before adding
the library to the system. Registers are as follows:

d0 = libAddr ;Your Library Address
a0 = segList ;Your AmigaDOS segment list
a6 = ExecBase ;Address of exec.library

The result of the init function must be the library address,
or NULL for failure. If NULL, the init point must manually
deallocate the library base memory (based on the sizes stored
in lib_PosSize and lib_NegSize).

dSize - the size of the library data area, including the
standard library node data. This must be at leas
sizeof(struct Library).

segList - pointer to an AmigaDOS SegList (segment list).
This is passed to a library’s init code, and is used later
for removing the library from memory.

RESULT
library - the reference address of the library. This is the

address used in references to the library, not the
beginning of the memory area allocated. If the library
vector table require more system memory than is
available, this function will return NULL.

SEE ALSO
InitStruct, InitResident, exec/initializers.i

1.65 exec.library/ObtainSemaphore

NAME
ObtainSemaphore -- gain exclusive access to a semaphore

exec 49 / 79

SYNOPSIS
ObtainSemaphore(signalSemaphore)

A0

void ObtainSemaphore(struct SignalSemaphore *);

FUNCTION
Signal semaphores are used to gain exclusive access to an object.
ObtainSemaphore is the call used to gain this access. If another
user currently has the semaphore locked the call will block until
the object is available.

If the current task already has locked the semaphore and attempts to
lock it again the call will still succeed. A "nesting count" is
incremented each time the current owning task of the semaphore calls
ObtainSemaphore(). This counter is decremented each time
ReleaseSemaphore() is called. When the counter returns to zero the
semaphore is actually released, and the next waiting task is called.

A queue of waiting tasks is maintained on the stacks of the waiting
tasks. Each will be called in turn as soon as the current task
releases the semaphore.

Signal Semaphores are different than Procure()/Vacate() semaphores.
The former requires less CPU time, especially if the semaphore is
not currently locked. They require very little set up and user
thought. The latter flavor of semaphore make no assumptions about
how they are used -- they are completely general. Unfortunately
they are not as efficient as signal semaphores, and require the
locker to have done some setup before doing the call.

INPUT
signalSemaphore -- an initialized signal semaphore structure

NOTE
This function preserves all registers (see BUGS).

BUGS
Until V37, this function could destroy A0.

SEE ALSO
ObtainSemaphoreShared(), InitSemaphore(), ReleaseSemaphore(),
AttemptSemaphore(), ObtainSemaphoreList()

1.66 exec.library/ObtainSemaphoreList

NAME
ObtainSemaphoreList -- get a list of semaphores.

SYNOPSIS
ObtainSemaphoreList(list)

A0

void ObtainSemaphoreList(struct List *);

exec 50 / 79

FUNCTION
Signal semaphores may be linked together into a list. This function
takes a list of these semaphores and attempts to lock all of them at
once. This call is preferable to applying ObtainSemaphore() to each
element in the list because it attempts to lock all the elements
simultaneously, and won’t deadlock if someone is attempting to lock
in some other order.

This function assumes that only one task at a time will attempt to
lock the entire list of semaphores. In other words, there needs to
be a higher level lock (perhaps another signal semaphore...) that is
used before someone attempts to lock the semaphore list via
ObtainSemaphoreList().

Note that deadlocks may result if this call is used AND someone
attempts to use ObtainSemaphore() to lock more than one semaphore on
the list. If you wish to lock more than semaphore (but not all of
them) then you should obtain the higher level lock (see above)

INPUT
list -- a list of signal semaphores

SEE ALSO
InitSemaphore(), ReleaseSemaphoreList()

1.67 exec.library/ObtainSemaphoreShared

NAME
ObtainSemaphoreShared -- gain shared access to a semaphore (V36)

SYNOPSIS
ObtainSemaphoreShared(signalSemaphore)

a0

void ObtainSemaphoreShared(struct SignalSemaphore *);

FUNCTION
A lock on a signal semaphore may either be exclusive, or shared.
Exclusive locks are granted by the ObtainSemaphore() and
AttemptSemaphore() functions. Shared locks are granted by
ObtainSemaphoreShared(). Calls may be nested.

Any number of tasks may simultaneously hold a shared lock on a
semaphore. Only one task may hold an exclusive lock. A typical
application is a list that is often read, but only occasionally
written to.

Any exlusive locker will be held off until all shared lockers
release the semaphore. Likewise, if an exlusive lock is held,
all potential shared lockers will block until the exclusive lock
is released. All shared lockers are restarted at the same time.

EXAMPLE
ObtainSemaphoreShared(ss);

exec 51 / 79

/* read data */
ReleaseSemaohore(ss);

ObtainSemaphore(ss);
/* modify data */
ReleaseSemaohore(ss);

NOTES
While this function was added for V36, the feature magically works
with all older semaphore structures.

A task owning a shared lock must not attempt to get an exclusive
lock on the same semaphore.

INPUT
signalSemaphore -- an initialized signal semaphore structure

NOTE
This call is guaranteed to preserve all registers, starting with
V37 exec.

RESULT

SEE ALSO
InitSemaphore(), ReleaseSemaphore()

1.68 exec.library/OldOpenLibrary

NAME
OldOpenLibrary -- obsolete OpenLibrary

SYNOPSIS
library = OldOpenLibrary(libName)
D0 A1

struct Library *OldOpenLibrary(APTR);

FUNCTION
The 1.0 release of the Amiga system had an incorrect version of
OpenLibrary that did not check the version number during the
library open. This obsolete function is provided so that object
code compiled using a 1.0 system will still run.

This exactly the same as "OpenLibrary(libName,0L);"

INPUTS
libName - the name of the library to open

RESULTS
library - a library pointer for a successful open, else zero

SEE ALSO
CloseLibrary

exec 52 / 79

1.69 exec.library/OpenDevice

NAME
OpenDevice -- gain access to a device

SYNOPSIS
error = OpenDevice(devName, unitNumber, iORequest, flags)
D0 A0 D0 A1 D1

BYTE OpenDevice(STRPTR,ULONG,struct IORequest *,ULONG);

FUNCTION
This function opens the named device/unit and initializes the given
I/O request block. Specific documentation on opening procedures
may come with certain devices.

The device may exist in memory, or on disk; this is transparent to
the OpenDevice caller.

A full path name for the device name is legitimate. For example
"test:devs/fred.device". This allows the use of custom devices
without requiring the user to copy the device into the system’s
DEVS: directory.

NOTES
All calls to OpenDevice should have matching calls to CloseDevice!

Devices on disk cannot be opened until after DOS has been
started.

As of V36 tasks can safely call OpenDevice, though DOS may open
system requesters (e.g., asking the user to insert the Workbench
disk if DEVS: is not online). You must call this function from a
DOS Process if you want to turn off DOS requesters.

INPUTS
devName - requested device name

unitNumber - the unit number to open on that device. The format of
the unit number is device specific. If the device does
not have separate units, send a zero.

iORequest - the I/O request block to be returned with
appropriate fields initialized.

flags - additional driver specific information. This is sometimes
used to request opening a device with exclusive access.

RESULTS
error - Returns a sign-extended copy of the io_Error field

of the IORequest. Zero if successful, else an error code
is returned.

BUGS
AmigaDOS file names are not case sensitive, but Exec lists are. If
the library name is specified in a different case than it exists on

exec 53 / 79

disk, unexpected results may occur.

Prior to V36, tasks could not make OpenDevice calls requiring disk
access (since tasks are not allowed to make dos.library calls).
Now OpenDevice is protected from tasks.

SEE ALSO
CloseDevice, DoIO, SendIO, CheckIO, AbortIO, WaitIO

1.70 exec.library/OpenLibrary

NAME
OpenLibrary -- gain access to a library

SYNOPSIS
library = OpenLibrary(libName, version)
D0 A1 D0

struct Library *OpenLibrary(STRPTR, ULONG);

FUNCTION
This function returns a pointer to a library that was previously
installed into the system. If the requested library is exists, and
if the library version is greater than or equal to the requested
version, then the open will succeed.

The device may exist in memory, or on disk; this is transparent to
the OpenDevice caller. Only Processes are allowed to call
OpenLibrary (since OpenLibrary may in turn call dos.library).

A full path name for the library name is legitimate. For example
"wp:libs/wp.library". This allows the use of custom libraries
without requiring the user to copy the library into the system’s
LIBS: directory.

NOTES
All calls to OpenLibrary should have matching calls to CloseLibrary!

Libraries on disk cannot be opened until after DOS has been
started.

As of V36 tasks can safely call OpenLibrary, though DOS may open
system requesters (e.g., asking the user to insert the Workbench
disk if LIBS: is not online). You must call this function from a
DOS Process if you want to turn off DOS requesters.

INPUTS
libName - the name of the library to open

version - the version of the library required.

RESULTS
library - a library pointer for a successful open, else zero

BUGS

exec 54 / 79

AmigaDOS file names are not case sensitive, but Exec lists are. If
the library name is specified in a different case than it exists on
disk, unexpected results may occur.

Prior to V36, tasks could not make OpenLibrary calls requiring disk
access (since tasks are not allowed to make dos.library calls).
Now OpenLibrary is protected from tasks.

The version number of the resident tag in disk based library must
match the version number of the library, or V36 may fail to load it.

SEE ALSO
CloseLibrary

1.71 exec.library/OpenResource

NAME
OpenResource -- gain access to a resource

SYNOPSIS
resource = OpenResource(resName)
D0 A1

APTR OpenResource(STRPTR);

FUNCTION
This function returns a pointer to a resource that was previously
installed into the system.

There is no CloseResource() function.

INPUTS
resName - the name of the resource requested.

RESULTS
resource - if successful, a resource pointer, else NULL

1.72 exec.library/Permit

NAME
Permit -- permit task rescheduling.

SYNOPSIS
Permit()

void Permit(void);

FUNCTION
Allow other tasks to be scheduled to run by the dispatcher, after a
matching Forbid() has been executed.

RESULTS

exec 55 / 79

Other tasks will be rescheduled as they are ready to run. In order
to restore normal task rescheduling, the programmer must execute
exactly one call to Permit() for every call to Forbid().

NOTE
This call is guaranteed to preserve all registers.

SEE ALSO
Forbid, Disable, Enable

1.73 exec.library/Procure

NAME
Procure -- bid for a message lock (semaphore)

SYNOPSIS
result = Procure(semaphore, bidMessage)
D0 A0 A1

BYTE Procure(struct Semaphore *, struct Message *);

FUNCTION
This function is used to obtain a message based semaphore lock. If
the lock is immediate, Procure() returns a true result, and the
bidMessage is not used. If the semaphore is already locked,
Procure() returns false, and the task must wait for the bidMessage
to arrive at its reply port.

Straight "Semaphores" use the message system. They are therefore
queueable, and users may wait on several of them at the same time.
This makes them more powerful than "Signal Semaphores"

INPUT
semaphore - a semaphore message port. This port is used to queue
all pending lockers. This port should be initialized with the
PA_IGNORE option, as the MP_SigTask field is used for a pointer to
the current locker message (not a task). New semaphore ports must
also have the SM_BIDS word initialized to -1. If the semaphore is
public, it should be named, its priority set, and the added with
AddPort. Message port priority is often used for anti-deadlock
locking conventions.

RESULT
result - true when the semaphore is free. In such cases no waiting
needs to be done. If false, then the task should wait at its
bidMessage reply port.

BUGS
Procure() and Vacate() do not have proven reliability.

SEE ALSO
Vacate()

exec 56 / 79

1.74 exec.library/PutMsg

NAME
PutMsg -- put a message to a message port

SYNOPSIS
PutMsg(port, message)

A0 A1

void PutMsg(struct MsgPort *, struct Message *);

FUNCTION
This function attaches a message to the end of a given message port.
It provides a fast, non-copying message sending mechanism.

Messages can be attached to only one port at a time. The message
body can be of any size or form. Because messages are not copied,
cooperating tasks share the same message memory. The sender task
must not recycle the message until it has been replied by the
receiver. Of course this depends on the message handling conventions
setup by the involved tasks. If the ReplyPort field is non-zero,
when the message is replied by the receiver, it will be sent back to
that port.

Any one of the following actions can be set to occur when a message
is put:

1. no special action
2. signal a given task (specified by MP_SIGTASK)
3. cause a software interrupt (specified by MP_SIGTASK)

The action is selected depending on the value found in the MP_FLAGS
of the destination port.

IMPLEMENTATION
1. Sets the LN_TYPE field to "NT_MESSAGE".
2. Attaches the message to the destination port.
3. Performs the specified arrival action at the destination.

INPUT
port - pointer to a message port
message - pointer to a message

SEE ALSO
GetMsg, ReplyMsg, exec/ports.h

1.75 exec.library/RawDoFmt

NAME
RawDoFmt -- format data into a character stream.

SYNOPSIS
NextData = RawDoFmt(FormatString, DataStream, PutChProc, PutChData);

d0 a0 a1 a2 a3

exec 57 / 79

APTR RawDoFmt(STRPTR,APTR,void (*)(),APTR);

FUNCTION
perform "C"-language-like formatting of a data stream, outputting
the result a character at a time. Where % formatting commands are
found in the FormatString, they will be replaced with the
corresponding element in the DataStream. %% must be used in the
string if a % is desired in the output.

Under V36, RawDoFmt() returns a pointer to the end of the DataStream
(The next argument that would have been processed). This allows
multiple formatting passes to be made using the same data.

INPUTS
FormatString - a "C"-language-like NULL terminated format string,
with the following supported % options:

%[flags][width.limit][length]type

flags - only one allowed. ’-’ specifies left justification.
width - field width. If the first character is a ’0’, the

field will be padded with leading 0’s.
. - must follow the field width, if specified

limit - maximum number of characters to output from a string.
(only valid for %s).

length - size of input data defaults to WORD for types d, x,
and c, ’l’ changes this to long (32-bit).

type - supported types are:
b - BSTR, data is 32-bit BPTR to byte count followed

by a byte string, or NULL terminated byte string.
A NULL BPTR is treated as an empty string.
(Added in V36 exec)

d - decimal
u - unsigned decimal (Added in V37 exec)
x - hexadecimal
s - string, a 32-bit pointer to a NULL terminated

byte string. In V36, a NULL pointer is treated
as an empty string

c - character

DataStream - a stream of data that is interpreted according to
the format string. Often this is a pointer into
the task’s stack.

PutChProc - the procedure to call with each character to be
output, called as:

PutChProc(Char, PutChData);
D0-0:8 A3

the procedure is called with a NULL Char at the end of
the format string.

PutChData - a value that is passed through to the PutChProc
procedure. This is untouched by RawDoFmt, and may be
modified by the PutChProc.

exec 58 / 79

EXAMPLE
;
; Simple version of the C "sprintf" function. Assumes C-style
; stack-based function conventions.
;
; long eyecount;
; eyecount=2;
; sprintf(string,"%s have %ld eyes.","Fish",eyecount);
;
; would produce "Fish have 2 eyes." in the string buffer.
;

XDEF _sprintf
XREF _AbsExecBase
XREF _LVORawDoFmt

_sprintf: ; (ostring, format, {values})
movem.l a2/a3/a6,-(sp)

move.l 4*4(sp),a3 ;Get the output string pointer
move.l 5*4(sp),a0 ;Get the FormatString pointer
lea.l 6*4(sp),a1 ;Get the pointer to the DataStream
lea.l stuffChar(pc),a2
move.l _AbsExecBase,a6
jsr _LVORawDoFmt(a6)

movem.l (sp)+,a2/a3/a6
rts

;------ PutChProc function used by RawDoFmt -----------
stuffChar:

move.b d0,(a3)+ ;Put data to output string
rts

WARNING
This Amiga ROM function formats word values in the data stream. If
your compiler defaults to longs, you must add an "l" to your
% specifications. This can get strange for characters, which might
look like "%lc".

The result of RawDoFmt() is *ONLY* valid in V36 and later releases
of EXEC. Pre-V36 versions of EXEC have "random" return values.

SEE ALSO
Documentation on the C language "printf" call in any C language
reference book.

1.76 exec.library/ReleaseSemaphore

NAME
ReleaseSemaphore -- make signal semaphore available to others

SYNOPSIS
ReleaseSemaphore(signalSemaphore)

A0

void ReleaseSemaphore(struct SignalSemaphore *);

exec 59 / 79

FUNCTION
ReleaseSemaphore() is the inverse of ObtainSemaphore(). It makes
the semaphore lockable to other users. If tasks are waiting for
the semaphore and this this task is done with the semaphore then
the next waiting task is signalled.

Each ObtainSemaphore() call must be balanced by exactly one
ReleaseSemaphore() call. This is because there is a nesting count
maintained in the semaphore of the number of times that the current
task has locked the semaphore. The semaphore is not released to
other tasks until the number of releases matches the number of
obtains.

Needless to say, havoc breaks out if the task releases more times
than it has obtained.

INPUT
signalSemaphore -- an initialized signal semaphore structure

NOTE
This call is guaranteed to preserve all registers.

SEE ALSO
InitSemaphore(), ObtainSemaphore(), ObtainSemaphoreShared()

1.77 exec.library/ReleaseSemaphoreList

NAME
ReleaseSemaphoreList -- make a list of semaphores available

SYNOPSIS
ReleaseSemaphoreList(list)

A0

void ReleaseSemaphoreList(struct List *);

FUNCTION
ReleaseSemaphoreList() is the inverse of ObtainSemaphoreList(). It
releases each element in the semaphore list.

Needless to say, havoc breaks out if the task releases more times
than it has obtained.

INPUT
list -- a list of signal semaphores

SEE ALSO
ObtainSemaphoreList()

1.78 exec.library/RemDevice

exec 60 / 79

NAME
RemDevice -- remove a device from the system

SYNOPSIS
RemDevice(device)

A1

void RemDevice(struct Device *);

FUNCTION
This function calls the device’s EXPUNGE vector, which requests
that a device delete itself. The device may refuse to do this if
it is busy or currently open. This is not typically called by user
code.

There are certain, limited circumstances where it may be
appropriate to attempt to specifically flush a certain device.
Example:

/* Attempts to flush the named device out of memory. */
#include <exec/types.h>
#include <exec/execbase.h>

void FlushDevice(name)
STRPTR name;
{
struct Device *result;

Forbid();
if(result=(struct Device *)FindName(&SysBase->DeviceList,name))

RemDevice(result);
Permit();

}

INPUTS
device - pointer to a device node

SEE ALSO
AddLibrary

1.79 exec.library/RemHead

NAME
RemHead -- remove the head node from a list

SYNOPSIS
node = RemHead(list)
D0 A0

struct Node *RemHead(struct List *);

FUNCTION
Get a pointer to the head node and remove it from the list.
Assembly programmers may prefer to use the REMHEAD macro from

exec 61 / 79

"exec/lists.i".

WARNING
This function does not arbitrate for access to the list. The
calling task must be the owner of the involved list.

INPUTS
list - a pointer to the target list header

RESULT
node - the node removed or zero when empty list

SEE ALSO
AddHead, AddTail, Enqueue, Insert, Remove, RemTail

1.80 exec.library/RemIntServer

NAME
RemIntServer -- remove an interrupt server from a server chain

SYNOPSIS
RemIntServer(intNum, interrupt)

D0 A1

void RemIntServer(ULONG,struct Interrupt *);

FUNCTION
This function removes an interrupt server node from the given
server chain.

If this server was the last one on this chain, interrupts for this
chain are disabled.

INPUTS
intNum - the Paula interrupt bit (0..14)
interrupt - pointer to an interrupt server node

BUGS
Before V36 Kickstart, the feature that disables the interrupt
would not function. For most server chains this does not
cause a problem.

SEE ALSO
AddIntServer, hardware/intbits.h

1.81 exec.library/RemLibrary

NAME
RemLibrary -- remove a library from the system

SYNOPSIS
RemLibrary(library)

exec 62 / 79

A1

void RemLibrary(struct Library *);

FUNCTION
This function calls the library’s EXPUNGE vector, which requests
that a library delete itself. The library may refuse to do this if
it is busy or currently open. This is not typically called by user
code.

There are certain, limited circumstances where it may be
appropriate to attempt to specifically flush a certain Library.
Example:

/* Attempts to flush the named library out of memory. */
#include <exec/types.h>
#include <exec/execbase.h>

void FlushLibrary(name)
STRPTR name;
{
struct Library *result;

Forbid();
if(result=(struct Library *)FindName(&SysBase->LibList,name))

RemLibrary(result);
Permit();

}

INPUTS
library - pointer to a library node structure

1.82 exec.library/Remove

NAME
Remove -- remove a node from a list

SYNOPSIS
Remove(node)

A1

void Remove(struct Node *);

FUNCTION
Unlink a node from whatever list it is in. Nodes that are not part
of a list must not be passed to this funcion! Assembly programmers
may prefer to use the REMOVE macro from "exec/lists.i".

WARNING
This function does not arbitrate for access to the list. The
calling task must be the owner of the involved list.

INPUTS
node - the node to remove

exec 63 / 79

SEE ALSO
AddHead, AddTail, Enqueue, Insert, RemHead, RemTail

1.83 exec.library/RemPort

NAME
RemPort -- remove a message port from the system

SYNOPSIS
RemPort(port)

A1

void RemPort(struct MsgPort *);

FUNCTION
This function removes a message port structure from the system’s
message port list. Subsequent attempts to rendezvous by name with
this port will fail.

INPUTS
port - pointer to a message port

SEE ALSO
AddPort, FindPort

1.84 exec.library/RemResource

NAME
RemResource -- remove a resource from the system

SYNOPSIS
RemResource(resource)

A1

void RemResource(APTR);

FUNCTION
This function removes an existing resource from the system resource
list. There must be no outstanding users of the resource.

INPUTS
resource - pointer to a resource node

SEE ALSO
AddResource

1.85 exec.library/RemSemaphore

exec 64 / 79

NAME
RemSemaphore -- remove a signal semaphore from the system

SYNOPSIS
RemSemaphore(signalSemaphore)

A1

void RemSemaphore(struct SignalSemaphore *);

FUNCTION
This function removes a signal semaphore structure from the
system’s signal semaphore list. Subsequent attempts to
rendezvous by name with this semaphore will fail.

INPUTS
signalSemaphore -- an initialized signal semaphore structure

SEE ALSO
AddSemaphore, FindSemaphore

1.86 exec.library/RemTail

NAME
RemTail -- remove the tail node from a list

SYNOPSIS
node = RemTail(list)
D0 A0

struct Node *RemTail(struct List *);

FUNCTION
Remove the last node from a list, and return a pointer to it. If
the list is empty, return zero. Assembly programmers may prefer to
use the REMTAIL macro from "exec/lists.i".

WARNING
This function does not arbitrate for access to the list. The
calling task must be the owner of the involved list.

INPUTS
list - a pointer to the target list header

RESULT
node - the node removed or zero when empty list

SEE ALSO
AddHead, AddTail, Enqueue, Insert, Remove, RemHead, RemTail

1.87 exec.library/RemTask

exec 65 / 79

NAME
RemTask -- remove a task from the system

SYNOPSIS
RemTask(task)

A1

void RemTask(struct Task *);

FUNCTION
This function removes a task from the system. Deallocation of
resources should have been performed prior to calling this
function. Removing some other task is very dangerous. Generally
is is best to arrange for tasks to call RemTask(0L) on themselves.

RemTask will automagically free any memory lists attached to the
task’s TC_MEMENTRY list.

INPUTS
task - pointer to the task node representing the task to be

removed. A zero value indicates self removal, and will
cause the next ready task to begin execution.

BUGS
Before V36 if RemTask() was called on a task other than the current
task, and that task was created with amiga.lib/CreateTask, there was
a slight chance of a crash. The problem can be hidden by bracketing
RemTask() with Forbid()/Permit().

SEE ALSO
AddTask, exec/AllocEntry, amiga.lib/DeleteTask

1.88 exec.library/ReplyMsg

NAME
ReplyMsg -- put a message to its reply port

SYNOPSIS
ReplyMsg(message)

A1

void ReplyMsg(struct Message *);

FUNCTION
This function sends a message to its reply port. This is usually
done when the receiver of a message has finished and wants to
return it to the sender (so that it can be re-used or deallocated,
whatever).

This call may be made from interrupts.

INPUT
message - a pointer to the message

exec 66 / 79

IMPLEMENTATION
1> Places "NT_REPLYMSG" into LN_TYPE.
2> Puts the message to the port specified by MN_REPLYPORT

If there is no replyport, sets LN_TYPE to "NT_FREEMSG" (use this
feature only with extreeme care).

SEE ALSO
GetMsg, PutMsg, exec/ports.h

1.89 exec.library/SendIO

NAME
SendIO -- initiate an I/O command

SYNOPSIS
SendIO(iORequest)

A1

void SendIO(struct IORequest *);

FUNCTION
This function requests the device driver start processing the given
I/O request. The device will return control without waiting for
the I/O to complete.

The io_Flags field of the IORequest will be set to zero before the
request is sent. See BeginIO() for more details.

INPUTS
iORequest - pointer to an I/O request, or a device specific

extended IORequest.

SEE ALSO
DoIO, CheckIO, WaitIO, AbortIO

1.90 exec.library/SetExcept

NAME
SetExcept -- define certain signals to cause exceptions

SYNOPSIS
oldSignals = SetExcept(newSignals, signalMask)
D0 D0 D1

ULONG SetExcept(ULONG,ULONG);

FUNCTION
This function defines which of the task’s signals will cause a
private task exception. When any of the signals occurs the task’s
exception handler will be dispatched. If the signal occurred prior
to calling SetExcept, the exception will happen immediately.

exec 67 / 79

The user function pointed to by the task’s tc_ExceptCode gets
called as:

newExcptSet = <exceptCode>(signals, exceptData),SysBase
D0 D0 A1 A6

signals - The set of signals that caused this exception. These
Signals have been disabled from the current set of signals
that can cause an exception.

exceptData - A copy of the task structure tc_ExceptData field.

newExcptSet - The set of signals in NewExceptSet will be re-
enabled for exception generation. Usually this will be the
same as the Signals that caused the exception.

INPUTS
newSignals - the new values for the signals specified in

signalMask.
signalMask - the set of signals to be effected

RESULTS
oldSignals - the prior exception signals

EXAMPLE
Get the current state of all exception signals:

SetExcept(0,0)
Change a few exception signals:

SetExcept($1374,$1074)

SEE ALSO
Signal, SetSignal

1.91 exec.library/SetFunction

NAME
SetFunction -- change a function vector in a library

SYNOPSIS
oldFunc = SetFunction(library, funcOffset, funcEntry)
D0 A1 A0.W D0

APTR SetFunction(struct Library *,LONG,APTR);

FUNCTION
SetFunction is a functional way of changing where vectors in a
library point. They are changed in such a way that the
checksumming process will never falsely declare a library to be
invalid.

WARNING
If you use SetFunction on a function that can be called from
interrupts, you are obligated to provide your own arbitration.

NOTE

exec 68 / 79

SetFunction cannot be used on non-standard libraries like pre-V36
dos.library. Here you must manually Forbid(), preserve all 6
original bytes, set the new vector, SumLibrary(), then Permit().

INPUTS
library - a pointer to the library to be changed
funcOffset - the offset of the function to be replaced
funcEntry - pointer to new function

RESULTS
oldFunc - pointer to the old function that was just replaced

1.92 exec.library/SetIntVector

NAME
SetIntVector -- set a new handler for a system interrupt vector

SYNOPSIS
oldInterrupt = SetIntVector(intNumber, interrupt)
D0 D0 A1

struct Interrupt *SetIntVector(ULONG, struct Interrupt *);

FUNCTION
This function provides a mechanism for setting the system interrupt
vectors. These are non-sharable; setting a new interrupt handler
disconnects the old one. Installed handlers are responsible for
processing, enabling and clearing the interrupt. Note that interrupts
may have been left in any state by the previous code.

The IS_CODE and IS_DATA pointers of the Interrupt structure will
be copied into a private place by Exec. A pointer to the previously
installed Interrupt structure is returned.

When the system calls the specified interrupt code, the registers are
setup as follows:

D0 - scratch
D1 - scratch (on entry: active

interrupts -> equals INTENA & INTREQ)

A0 - scratch (on entry: pointer to base of custom chips
for fast indexing)

A1 - scratch (on entry: Interrupt’s IS_DATA pointer)

A5 - jump vector register (scratch on call)
A6 - Exec library base pointer (scratch on call)

all other registers must be preserved

INPUTS
intNum - the Paula interrupt bit number (0..14). Only non-chained

interrupts should be set. Use AddIntServer() for server
chains.

interrupt - a pointer to an Interrupt structure containing the

exec 69 / 79

handler’s entry point and data segment pointer. A NULL
interrupt pointer will remove the current interrupt and
set illegal values for IS_CODE and IS_DATA.

By convention, the LN_NAME of the interrupt structure must
point a descriptive string so that other users may
identify who currently has control of the interrupt.

RESULT
A pointer to the prior interrupt structure which had control
of this interrupt.

SEE ALSO
AddIntServer(),exec/interrupts.i,hardware/intbits.i

1.93 exec.library/SetSignal

NAME
SetSignal -- define the state of this task’s signals

SYNOPSIS
oldSignals = SetSignal(newSignals, signalMask)
D0 D0 D1

ULONG SetSignal(ULONG,ULONG);

FUNCTION
This function can query or modify the state of the current task’s
received signal mask. Setting the state of signals is considered
dangerous. Reading the state of signals is safe.

INPUTS
newSignals - the new values for the signals specified in

signalSet.
signalMask - the set of signals to be affected.

RESULTS
oldSignals - the prior values for all signals

EXAMPLES
Get the current state of all signals:

SetSignal(0L,0L);
Clear the CTRL-C signal:

SetSignal(0L,SIGBREAKF_CTRL_C);

Check if the CTRL-C signal was pressed:

#include <libraries/dos.h>

/* Check & clear CTRL_C signal */
if(SetSignal(0L,SIGBREAKF_CTRL_C) & SIGBREAKF_CTRL_C)

{
printf("CTRL-C pressed!\n");
}

exec 70 / 79

SEE ALSO
Signal, Wait

1.94 exec.library/SetSR

NAME
SetSR -- get and/or set processor status register

SYNOPSIS
oldSR = SetSR(newSR, mask)
D0 D0 D1

ULONG SetSR(ULONG, ULONG);

FUNCTION
This function provides a means of modifying the CPU status register
in a "safe" way (well, how safe can a function like this be
anyway?). This function will only affect the status register bits
specified in the mask parameter. The prior content of the entire
status register is returned.

INPUTS
newSR - new values for bits specified in the mask.

All other bits are not effected.
mask - bits to be changed

RESULTS
oldSR - the entire status register before new bits

EXAMPLES
To get the current SR:

currentSR = SetSR(0,0);
To change the processor interrupt level to 3:

oldSR = SetSR($0300,$0700);
Set processor interrupts back to prior level:

SetSR(oldSR,$0700);

1.95 exec.library/SetTaskPri

NAME
SetTaskPri -- get and set the priority of a task

SYNOPSIS
oldPriority = SetTaskPri(task, priority)
D0-0:8 A1 D0-0:8

BYTE SetTaskPri(struct Task *,LONG);

FUNCTION
This function changes the priority of a task regardless of its
state. The old priority of the task is returned. A reschedule is

exec 71 / 79

performed, and a context switch may result.

To change the priority of the currently running task, pass the
result of FindTask(0); as the task pointer.

INPUTS
task - task to be affected
priority - the new priority for the task

RESULT
oldPriority - the tasks previous priority

1.96 exec.library/Signal

NAME
Signal -- signal a task

SYNOPSIS
Signal(task, signals)

A1 D0

void Signal(struct Task *,ULONG);

FUNCTION
This function signals a task with the given signals. If the task
is currently waiting for one or more of these signals, it will be
made ready and a reschedule will occur. If the task is not waiting
for any of these signals, the signals will be posted to the task
for possible later use. A signal may be sent to a task regardless
of whether its running, ready, or waiting.

This function is considered "low level". Its main purpose is to
support multiple higher level functions like PutMsg.

This function is safe to call from interrupts.

INPUT
task - the task to be signalled
signals - the signals to be sent

SEE ALSO
Wait, SetSignal

1.97 exec.library/StackSwap

NAME
StackSwap - EXEC supported method of replacing task’s stack (V37)

SYNOPSIS
StackSwap(newStack)

A0

exec 72 / 79

VOID StackSwap(struct StackSwapStruct *);

FUNCTION
This function will, in an EXEC supported manner, swap the
stack of your task with the given values in StackSwap.
The StackSwapStruct structure will then contain the values
of the old stack such that the old stack can be restored.
This function is new in V37.

NOTE
If you do a stack swap, only the new stack is set up.
This function does not copy the stack or do anything else
other than set up the new stack for the task. It is
generally required that you restore your stack before
exiting.

INPUTS
newStack - A structure that contains the values for the

new upper and lower stack bounds and the new stack
pointer. This structure will have its values
replaced by those in you task such that you can
restore the stack later.

RESULTS
newStack - The structure will now contain the old stack.

This means that StackSwap(foo); StackSwap(foo);
will effectively do nothing.

SEE ALSO
AddTask, RemTask, exec/tasks.h

1.98 exec.library/SumKickData

NAME
SumKickData -- compute the checksum for the Kickstart delta list

SYNOPSIS
checksum = SumKickData()
D0

ULONG SumKickData(void);

FUNCTION
The Amiga system has some ROM (or Kickstart) resident code that
provides the basic functions for the machine. This code is
unchangeable by the system software. This function is part of a
support system to modify parts of the ROM.

The ROM code is linked together at run time via ROMTags (also known
as Resident structures, defined in exec/resident.h). These tags tell
Exec’s low level boot code what subsystems exist in which regions of
memory. The current list of ROMTags is contained in the ResModules
field of ExecBase. By default this list contains any ROMTags found
in the address ranges $F80000-$FFFFFF and $F00000-$F7FFFF.

exec 73 / 79

There is also a facility to selectively add or replace modules to the
ROMTag list. These modules can exist in RAM, and the memory they
occupy will be deleted from the memory free list during the boot
process. SumKickData() plays an important role in this run-time
modification of the ROMTag array.

Three variables in ExecBase are used in changing the ROMTag array:
KickMemPtr, KickTagPtr, and KickCheckSum. KickMemPtr points to a
linked list of MemEntry structures. The memory that these MemEntry
structures reference will be allocated (via AllocAbs) at boot time.
The MemEntry structure itself must also be in the list.

KickTagPtr points to a long-word array of the same format as the
ResModules array. The array has a series of pointers to ROMTag
structures. The array is either NULL terminated, or will have an
entry with the most significant bit (bit 31) set. The most
significant bit being set says that this is a link to another
long-word array of ROMTag entries. This new array’s address can be
found by clearing bit 31.

KickCheckSum has the result of SumKickData(). It is the checksum of
both the KickMemPtr structure and the KickTagPtr arrays. If the
checksum does not compute correctly then both KickMemPtr and
KickTagPtr will be ignored.

If all the memory referenced by KickMemPtr can’t be allocated then
KickTagPtr will be ignored.

There is one more important caveat about adding ROMTags. All this
ROMTag magic is run very early on in the system -- before expansion
memory is added to the system. Therefore any memory in this
additional ROMTag area must be addressable at this time. This means
that your ROMTag code, MemEntry structures, and resident arrays
cannot be in expansion memory. There are two regions of memory that
are acceptable: one is chip memory, and the other is "Ranger" memory
(memory in the range between $C00000-$D80000).

Remember that changing an existing ROMTag entry falls into the
"heavy magic" category -- be very careful when doing it. The odd are
that you will blow yourself out of the water.

NOTE
SumKickData was introduced in the 1.2 release

RESULT
Value to be stuffed into ExecBase->KickCheckSum.

WARNING
After writing to KickCheckSum, you should push the data cache.
This prevents potential problems with large copyback style caches.
A call to CacheClearU will do fine.

SEE ALSO
InitResident, FindResident

exec 74 / 79

1.99 exec.library/SumLibrary

NAME
SumLibrary -- compute and check the checksum on a library

SYNOPSIS
SumLibrary(library)

A1

void SumLibrary(struct Library *);

FUNCTION
SumLibrary computes a new checksum on a library. It can also be
used to check an old checksum. If an old checksum does not match,
and the library has not been marked as changed, then the system
will call Alert().

This call could also be periodically made by some future
system-checking task.

INPUTS
library - a pointer to the library to be changed

NOTE
An alert will occur if the checksum fails.

SEE ALSO
SetFunction

1.100 exec.library/SuperState

NAME
SuperState -- enter supervisor state with user stack

SYNOPSIS
oldSysStack = SuperState()
D0

APTR SuperState(void);

FUNCTION
Enter supervisor mode while running on the user’s stack. The user
still has access to user stack variables. Be careful though, the
user stack must be large enough to accommodate space for all
interrupt data -- this includes all possible nesting of interrupts.
This function does nothing when called from supervisor state.

RESULTS
oldSysStack - system stack pointer; save this. It will come in

handy when you return to user state. If the system
is already in supervisor mode, oldSysStack is zero.

SEE ALSO
UserState/Supervisor

exec 75 / 79

1.101 exec.library/Supervisor

NAME
Supervisor -- trap to a short supervisor mode function

SYNOPSIS
result = Supervisor(userFunc)
Rx A5

ULONG Supervisor(void *);

FUNCTION
Allow a normal user-mode program to execute a short assembly language
function in the supervisor mode of the processor. Supervisor() does
not modify or save registers; the user function has full access to the
register set. All rules that apply to interrupt code must be
followed. In addition, no system calls are permitted. The function
must end with an RTE instruction.

EXAMPLE
;Obtain the Exception Vector base. 68010 or greater only!
MOVECtrap: movec.l VBR,d0 ;$4e7a,$0801

rte

INPUTS
userFunc - A pointer to a short assembly language function ending

in RTE. The function has full access to the register set.

RESULTS
result - Whatever values the userFunc left in the registers.

SEE ALSO
SuperState,UserState

1.102 exec.library/TypeOfMem

NAME
TypeOfMem -- determine attributes of a given memory address

SYNOPSIS
attributes = TypeOfMem(address)
D0 A1

ULONG TypeOfMem(void *);

FUNCTION
Given a RAM memory address, search the system memory lists and
return its memory attributes. The memory attributes are similar to
those specified when the memory was first allocated: (eg. MEMF_CHIP
and MEMF_FAST).

exec 76 / 79

This function is usually used to determine if a particular block of
memory is within CHIP space.

If the address is not in known-space, a zero will be returned.
(Anything that is not RAM, like the ROM or expansion area, will
return zero. Also the first few bytes of a memory area are used up
by the MemHeader.)

INPUT
address - a memory address

RESULT
attributes - a long word of memory attribute flags.
If the address is not in known RAM, zero is returned.

SEE ALSO
AllocMem()

1.103 exec.library/UserState

NAME
UserState -- return to user state with user stack

SYNOPSIS
UserState(sysStack)

D0

void UserState(APTR);

FUNCTION
Return to user state with user stack, from supervisor state with
user stack. This function is normally used in conjunction with the
SuperState function above.

This function must not be called from the user state.

INPUT
sysStack - supervisor stack pointer

BUGS
This function is broken in V33/34 Kickstart. Fixed in V1.31 setpatch.

SEE ALSO
SuperState/Supervisor

1.104 exec.library/Vacate

NAME
Vacate -- release a message lock (semaphore)

SYNOPSIS

exec 77 / 79

Vacate(semaphore)
A0

void Vacate(struct Semaphore *);

FUNCTION
This function releases a previously locked semaphore (see
the Procure() function).
If another task is waiting for the semaphore, its bidMessage
will be sent to its reply port.

INPUT
semaphore - the semaport message port representing the
semaphore to be freed.

BUGS
Procure() and Vacate() do not have proven reliability.

SEE ALSO
Procure

1.105 exec.library/Wait

NAME
Wait -- wait for one or more signals

SYNOPSIS
signals = Wait(signalSet)
D0 D0

ULONG Wait(ULONG);

FUNCTION
This function will cause the current task to suspend waiting for
one or more signals. When one or more of the specified signals
occurs, the task will return to the ready state, and those signals
will be cleared.

If a signal occurred prior to calling Wait(), the wait condition will
be immediately satisfied, and the task will continue to run without
delay.

CAUTION
This function cannot be called while in supervisor mode or
interrupts! This function will break the action of a Forbid() or
Disable() call.

INPUT
signalSet - The set of signals for which to wait.

Each bit represents a particular signal.

RESULTS
signals - the set of signals that were active

exec 78 / 79

1.106 exec.library/WaitIO

NAME
WaitIO -- wait for completion of an I/O request

SYNOPSIS
error = WaitIO(iORequest)
D0 A1

BYTE WaitIO(struct IORequest *);

FUNCTION
This function waits for the specified I/O request to complete, then
removes it from the replyport. If the I/O has already completed,
this function will return immediately.

This function should be used with care, as it does not return until
the I/O request completes; if the I/O never completes, this
function will never return, and your task will hang. If this
situation is a possibility, it is safer to use the Wait() function.
Wait() will return return when any of a specified set of signal is
received. This is how I/O timeouts can be properly handled.

WARNING
If this IORequest was "Quick" or otherwise finished BEFORE this
call, this function drops though immediately, with no call to
Wait(). A side effect is that the signal bit related the port may
remain set. Expect this.

When removing a known complete IORequest from a port, WaitIO() is the
preferred method. A simple Remove() would require a Disable/Enable
pair!

INPUTS
iORequest - pointer to an I/O request block

RESULTS
error - zero if successful, else an error is returned

(a sign extended copy of io_Error).

SEE ALSO
DoIO, SendIO, CheckIO, AbortIO

1.107 exec.library/WaitPort

NAME
WaitPort -- wait for a given port to be non-empty

SYNOPSIS
message = WaitPort(port)
D0 A0

struct Message *WaitPort(struct MsgPort *);

exec 79 / 79

FUNCTION
This function waits for the given port to become non-empty. If
necessary, the Wait() function will be called to wait for the port
signal. If a message is already present at the port, this function
will return immediately. The return value is always a pointer to
the first message queued (but it is not removed from the queue).

CAUTION
More than one message may be at the port when this returns. It is
proper to call the GetMsg() function in a loop until all messages
have been handled, then wait for more to arrive.

To wait for more than one port, combine the signal bits from each
port into one call to the Wait() function, then use a GetMsg() loop
to collect any and all messages. It is possible to get a signal
for a port WITHOUT a message showing up. Plan for this.

INPUT
port - a pointer to the message port

RETURN
message - a pointer to the first available message

SEE ALSO
GetMsg

	exec
	exec.doc
	exec.library/AbortIO
	exec.library/AddDevice
	exec.library/AddHead
	exec.library/AddIntServer
	exec.library/AddLibrary
	exec.library/AddMemList
	exec.library/AddPort
	exec.library/AddResource
	exec.library/AddSemaphore
	exec.library/AddTail
	exec.library/AddTask
	exec.library/Alert
	exec.library/AllocAbs
	exec.library/Allocate
	exec.library/AllocEntry
	exec.library/AllocMem
	exec.library/AllocSignal
	exec.library/AllocTrap
	exec.library/AllocVec
	exec.library/AttemptSemaphore
	exec.library/AvailMem
	exec.library/CacheClearE
	exec.library/CacheClearU
	exec.library/CacheControl
	exec.library/CachePostDMA
	exec.library/CachePreDMA
	exec.library/Cause
	exec.library/CheckIO
	exec.library/CloseDevice
	exec.library/CloseLibrary
	exec.library/ColdReboot
	exec.library/CopyMem
	exec.library/CopyMemQuick
	exec.library/CreateIORequest
	exec.library/CreateMsgPort
	exec.library/Deallocate
	exec.library/Debug
	exec.library/DeleteIORequest
	exec.library/DeleteMsgPort
	exec.library/Disable
	exec.library/DoIO
	exec.library/Enable
	exec.library/Enqueue
	exec.library/FindName
	exec.library/FindPort
	exec.library/FindResident
	exec.library/FindSemaphore
	exec.library/FindTask
	exec.library/Forbid
	exec.library/FreeEntry
	exec.library/FreeMem
	exec.library/FreeSignal
	exec.library/FreeTrap
	exec.library/FreeVec
	exec.library/GetCC
	exec.library/GetMsg
	exec.library/InitCode
	exec.library/InitResident
	exec.library/InitSemaphore
	exec.library/InitStruct
	exec.library/Insert
	exec.library/MakeFunctions
	exec.library/MakeLibrary
	exec.library/ObtainSemaphore
	exec.library/ObtainSemaphoreList
	exec.library/ObtainSemaphoreShared
	exec.library/OldOpenLibrary
	exec.library/OpenDevice
	exec.library/OpenLibrary
	exec.library/OpenResource
	exec.library/Permit
	exec.library/Procure
	exec.library/PutMsg
	exec.library/RawDoFmt
	exec.library/ReleaseSemaphore
	exec.library/ReleaseSemaphoreList
	exec.library/RemDevice
	exec.library/RemHead
	exec.library/RemIntServer
	exec.library/RemLibrary
	exec.library/Remove
	exec.library/RemPort
	exec.library/RemResource
	exec.library/RemSemaphore
	exec.library/RemTail
	exec.library/RemTask
	exec.library/ReplyMsg
	exec.library/SendIO
	exec.library/SetExcept
	exec.library/SetFunction
	exec.library/SetIntVector
	exec.library/SetSignal
	exec.library/SetSR
	exec.library/SetTaskPri
	exec.library/Signal
	exec.library/StackSwap
	exec.library/SumKickData
	exec.library/SumLibrary
	exec.library/SuperState
	exec.library/Supervisor
	exec.library/TypeOfMem
	exec.library/UserState
	exec.library/Vacate
	exec.library/Wait
	exec.library/WaitIO
	exec.library/WaitPort

