iffparse

iffparse

COLLABORATORS
TITLE :
iffparse
ACTION NAME DATE SIGNATURE
WRITTEN BY July 18, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

iffparse iii

Contents

1 iffparse 1
1.1 iffparse.doc L 1
1.2 HookEntry e e e |
1.3 iffparse.library/AllocIFF o L e 2
1.4 iffparse.library/AllocLocalltem 2
1.5 iffparse.library/CloseClipboard e 3
1.6 iffparse.library/CloselFF e e 4
1.7 iffparse.library/CollectionChunk e 4
1.8 iffparse.library/CollectionChunks e e 5
1.9 iffparselibrary/CurrentChunk e 6
1.10 iffparse.library/EntryHandler oL 7
1.11 iffparse.library/ExitHandler e e 8
1.12 iffparselibrary/FindCollection e 9
1.13 iffparse.library/FindLocalltem e 10
1.14 iffparse.library/FindProp e e 11
1.15 iffparse.library/FindPropContext e 11
1.16 iffparse.dibrary/FreelFF o e 12
1.17 iffparse.library/FreeLocalltem e 13
1.18 iffparse.dlibrary/GoodID e 13
1.19 iffparse.library/GoodType o L e 14
1.20 iffparse.library/IDtoStr L e e e e e 15
1.21 iffparsedibrary/InitIFF e 15
1.22 iffparsedibrary/InitIFFasClip e e 17
1.23 iffparse.library/InitIFFasDOS 0 oL e 17
1.24 iffparse.library/LocalltemData e e 18
1.25 iffparse.library/OpenClipboard e e e 19
1.26 iffparselibrary/OpenlFF 0 o e 19
1.27 iffparse.library/ParentChunk o L 20
1.28 iffparse.library/ParselFF L e 21
1.29 iffparselibrary/PopChunk 22

iffparse iv
1.30 iffparse.library/PropChunk L L 23
1.31 iffparse.dibrary/PropChunks L e 23
1.32 iffparse.library/PushChunk e e 24
1.33 iffparse.library/ReadChunkBytes e 25
1.34 iffparse.library/ReadChunkRecords e 26
1.35 iffparse.library/SetLocalltemPurge e 26
1.36 iffparse.library/StopChunk L 27
1.37 iffparse.dlibrary/StopChunks 28
1.38 iffparse.library/StopOnExXit L e 29
1.39 iffparse.library/StoreltemInContext L e e e e e e e 29
1.40 iffparse.library/StoreLocalltem e 30
1.41 iffparse.library/WriteChunkBytes e 31
1.42 iffparse.library/WriteChunkRecords L 32

iffparse

1/32

Chapter 1

iffparse

1.1 iffparse.doc

HookEntry () FreelIFF ()
AllocIFF () FreeLocallItem()
AllocLocallItem() GoodID ()
CloseClipboard() GoodType ()
CloselFF () IDtoStr ()
CollectionChunk () InitIFF ()
CollectionChunks () InitIFFasClip ()
CurrentChunk () InitIFFasDOS ()
EntryHandler () LocalItemData ()
ExitHandler () OpenClipboard/()
FindCollection () OpenIFF ()
FindLocalItem() ParentChunk ()
FindProp () ParselIFF ()
FindPropContext () PopChunk ()

1.2 HookEntry

NAME

HookEntry —-- call-back stub vector

SYNOPSIS

PropChunk ()
PropChunks ()
PushChunk ()
ReadChunkBytes ()
ReadChunkRecords ()
SetLocalItemPurge ()
StopChunk ()
StopChunks ()
StopOnExit ()
StoreItemInContext ()
StorelLocallItem()
WriteChunkBytes ()
WriteChunkRecords ()

(LANGUAGE SPECIFIC LINK ROUTINE)

This function is never called directly by the client.

FUNCTION

HookEntry’s purpose is to do language-specific setup and conversion
of parameters passed from a library to a client call-back routine.

Under Kickstart 2.0,

a standard for call-backs has been established.

The registers will contain the following items:

AQ: pointer to hook that enabled us to get here.
A2: pointer to "object."
Al: pointer to "message packet."
In iffparse, the "object" will vary from routine to routine. The

"message packet"

is also specific to the operation involved

(RTEM!) .

iffparse

2/32

SEE

THIS ROUTINE IS NOT PART OF IFFPARSE. It, or something similar,
part of the compiler vendor’s link library. (If it’s not there,
cobbling up your own isn’t too hard.)

ALSO
EntryHandler (), ExitHandler (), InitIFF(), SetLocalltemPurge(),
utility/hooks.h (A must-read; LOTS of details in there)

1.3 iffparse.library/AllocIFF
NAME

AllocIFF —-- Create a new IFFHandle structure.
SYNOPSIS

iff = AllocIFF ()
do

struct IFFHandle *iff;

FUNCTION

Allocates a new IFFHandle structure and initializes the basic values.

This function is the only supported way to create an IFFHandle

structure since there are private fields that need to be initialized.

INPUTS

RESULT
iff — pointer to IFFHandle structure or NULL if the allocation

failed.

EXAMPLE

NOTES

BUGS

SEE

1.4

NAME

ALSO
FreelIFF ()

iffparse.library/AllocLocalltem

AllocLocalltem —-- Create a local context item structure.

SYNOPSIS

item = AllocLocalltem (type, id, ident, usize)
do do dil d2 d3

struct LocalContextItem *item;
LONG type, id, ident, usize;

is

iffparse 3/32

FUNCTION

Allocates and initializes a LocalContextItem structure with "usize"
bytes of associated user data. This is the only supported way to
create such an item. The user data can be accessed with the
LocalItemData function. An item created with this function
automatically has its purge vectors set up correctly to dispose of
itself and its associated user data area. Any additional cleanup
should be done with a user-supplied purge vector.

INPUTS

type,id - additional longword identification values.

ident - longword identifier for class of context item.

usize - number of bytes of user data to allocate for this item.
RESULT

item — pointer to initialized LocalContextItem or NULL if the

allocation failed.

EXAMPLE
NOTES
BUGS
SEE ALSO
FreeLocalltem(), LocalltemData (), StoreLocalltem(),
StoreItemInContext (), SetLocalltemPurge ()
1.5 iffparse.library/CloseClipboard
NAME
CloseClipboard —-- Close and free an open ClipboardHandle.
SYNOPSIS
CloseClipboard (clip)

FUNC

INPU

RESU

EXAM

NOTE

BUGS

ao
struct ClipboardHandle =xclip;

TION
Closes the clipboard.device and frees the ClipboardHandle structure.

TS

clip — pointer to ClipboardHandle struct created with
OpenClipboard.

LT

PLE

S

SEE ALSO

iffparse

4/32

OpenClipboard(), InitIFFasClip()

iffparse.library/CloselFF

CloselIFF —- Close an IFF context.

SYNOPSIS

CloselIFF (iff)
a0

struct IFFHandle *iff;

FUNCTION
Completes an IFF read or write operation by closing the IFF context
established for this IFFHandle struct. The IFFHandle struct itself

is left ready for re-use and a new context can be opened with

OpenIFF (). This function can be used for cleanup if a read or write

fails partway through.

As part of its cleanup operation, CloselIFF () calls the client-
supplied stream hook vector. The IFFStreamCmd packet will be set
as follows:

INPUTS

RESULT

EXAMPLE

NOTES

SEE ALSO

sc_Command: IFFCMD_CLEANUP

sc_Buf: (Not applicable)

sc_NBytes: (Not applicable)
This operation is NOT permitted to fail; any error code returned
will be ignored (best to return 0, though). DO NOT write to this
structure.
iff - pointer to IFFHandle struct previously opened with

OpenlIFF () .

OpenIFF (), InitIFF ()

iffparse.library/CollectionChunk

CollectionChunk —-- declare a chunk type for collection.

iffparse 5/32

SYNOPSIS
error = CollectionChunk (iff, type, id)
do a0 do dl
LONG error;
struct IFFHandle *iff;
LONG type;
LONG id;

FUNCTION

Installs an entry handler for chunks with the given type and id so
that the contents of those chunks will be stored as they are
encountered. This is like PropChunk () except that more than one
chunk of this type can be stored in lists which can be returned by
FindCollection (). The storage of these chunks still follows the
property chunk scoping rules for IFF files so that at any given
point, stored collection chunks will be valid in the current context.

INPUTS
iff — pointer to IFFHandle struct (does not need to be open).
type - type code for the chunk to declare (ex. "ILBM").
id — identifier for the chunk to declare (ex. "CRNG").

RESULT
error - 0 if successful or an IFFERR_#? error code if not

successful.

EXAMPLE

NOTES

BUGS

SEE ALSO

CollectionChunks (), FindCollection(), PropChunk ()

1.8 iffparse.library/CollectionChunks

NAME
CollectionChunks —-—- Declare many collection chunks at once.
SYNOPSIS
error = CollectionChunks (iff, list, n)
do ao al do
LONG error;
struct IFFHandle *iff;
LONG *1list;
LONG n;
FUNCTION
Declares multiple collection chunks from a list. The list argument
is a pointer to an array of long words arranged in pairs. The format

for the list is as follows:

iffparse

6/32

TYPEl, ID1, TYPE2, ID2, ..., TYPEn, IDn

The argument n is the number of pairs. CollectionChunks () just calls
CollectionChunk () n times.

INPUTS
iff - pointer to IFFHandle struct.
list - pointer to array of longword chunk types and identifiers.
n — number of chunks to declare.
RESULT
error - 0 if successful or an IFFERR_#? error code if not
successful.
EXAMPLE
NOTES
BUGS
SEE ALSO
CollectionChunk ()

1.9 iffparse.library/CurrentChunk

NAME

CurrentChunk —-- Get context node for current chunk.
SYNOPSIS

top = CurrentChunk (iff)

do ao

struct ContextNode ~*top;

struct IFFHandle *iff;

FUNCTION
Returns top context node for the given IFFHandle struct. The top
context node corresponds to the chunk most recently pushed on the
stack, which is the chunk where the stream is currently positioned.
The ContextNode structure contains information on the type of chunk
currently being parsed (or written), its size and the current
position within the chunk.

INPUTS
iff — pointer to IFFHandle struct.

RESULT
top — pointer to top context node or NULL if none.

EXAMPLE
NOTES

BUGS

iffparse

7/32

SEE ALSO
PushChunk (), PopChunk (), ParseIFF (), ParentChunk ()

1.10 iffparse.library/EntryHandler

NAME
EntryHandler —-- Add an entry handler to the IFFHandle context.
SYNOPSIS
error = EntryHandler (iff, type, id, position, hook, object)
do a0 do dl d2 al a2
LONG error;
struct IFFHandle *iff;
LONG type, id, position;
struct Hook +hook;
APTR object;
FUNCTION

Installs an entry handler vector for a specific type of chunk into
the context for the given IFFHandle struct. Type and id are the
longword identifiers for the chunk to handle. The hook is a client-—
supplied standard 2.0 Hook structure, properly initialized. Position
tells where to put the handler in the context. The handler will be
called whenever the parser enters a chunk of the given type, so the
IFF stream will be positioned to read the first data byte in the
chunk. The handler will execute in the same context as whoever
called ParselIFF (). The handler will be called (through the hook)
with the following arguments:

AQ: the Hook pointer you passed.
A2: the ’'object’ pointer you passed.
Al: pointer to a LONG containing the value

IFFCMD_ENTRY.

The error code your call-back routine returns will affect the parser
in three different ways:

Return value Result

0: Normal success; ParselIFF () will continue
through the file.

IFF_RETURN2CLIENT: ParseIFF () will stop and return the value 0.
(StopChunk () is internally implemented using
this return value.)

Any other value: ParselIFF () will stop and return the value
you supplied. This is how errors should be
returned.

INPUTS

iff - pointer to IFFHandle struct.

type - type code for chunk to handle (ex. "ILBM").

id — ID code for chunk to handle (ex. "CMAP").

position— Local context item position. One of the IFFSLI_#? codes.
hook — pointer to Hook structure.

iffparse 8/32
object - a client-defined pointer which is passed in A2 during call-
back.
RESULT
error - 0 if successful or an IFFERR_#? error code if not
successful.
EXAMPLE
NOTES
BUGS

Returning the values IFFERR_EOF or IFFERR_EOC from the call-back
routine xmayx confuse the parser.

There is no way to explicitly remove a handler once installed.
However, by installing a do-nothing handler using IFFSLI_TOP,
previous handlers will be overridden until the context expires.

SEE ALSO

ExitHandler (), Storelocalltem(), StorelItemInContext (),
utility/hooks.h

1.11 iffparse.library/ExitHandler

NAME
ExitHandler -- Add an exit handler to the IFFHandle context.
SYNOPSIS
error = ExitHandler (iff, type, id, position, hook, object)
do a0 do dl d2 al a2
LONG error;
struct IFFHandle *iff;
LONG type, id, position;
struct Hook +hook;
APTR object;
FUNCTION

Installs an exit handler vector for a specific type of chunk into the
context for the given IFFHandle struct. Type and id are the longword
identifiers for the chunk to handle. The hook is a client-supplied
standard 2.0 Hook structure, properly initialized. Position tells
where to put the handler in the context. The handler will be called
just before the parser exits the given chunk in the "pause" parse
state. The IFF stream may not be positioned predictably within the
chunk. The handler will execute in the same context as whoever
called ParseIFF (). The handler will be called (through the hook)
with the following arguments:

AQ: the Hook pointer you passed.
A2: the ’"object’ pointer you passed.
Al: pointer to a LONG containing the value

IFFCMD_EXIT.

iffparse

9/32

The error code your call-back routine returns will affect the parser
in three different ways:

Return value Result

0: Normal success; ParselIFF () will continue
through the file.

IFF_RETURN2CLIENT: ParseIFF () will stop and return the value 0.
(StopChunk () is internally implemented using
this return value.)

Any other value: ParseIFF () will stop and return the value
you supplied. This is how errors should be
returned.

INPUTS

iff — pointer to IFFHandle struct.

type - type code for chunk to handle (ex. "ILBM").

id — identifier code for chunk to handle (ex. "CMAP").

position- local context item position. One of the IFFSLI_#? codes.

hook — pointer to Hook structure.

object - a client-defined pointer which is passed in A2 during call-

back.
RESULT
error - 0 if successful or an IFFERR_#? error code if not
successful.
EXAMPLE
NOTES

BUGS

SEE

Returning the values IFFERR_EOF or IFFERR_EOC from the call-back
routine xmayx confuse the parser.

There is no way to explicitly remove a handler once installed.
However, by installing a do-nothing handler using IFFSLI_TOP,
previous handlers will be overridden until the context expires.

ALSO
EntryHandler (), Storelocalltem(), StoreItemInContext (),
utility/hooks.h

1.12 iffparse.library/FindCollection

NAME

FindCollection —-- Get a pointer to the current list of collection
items.

SYNOPSIS

ci = FindCollection (iff, type, id)
do ao do dl

struct CollectionItem *Cci;
struct IFFHandle *iff;

iffparse 10/32

LONG type, 1id;

FUNCTION
Returns a pointer to a list of CollectionItem structures for each of
the collection chunks of the given type encountered so far in the
course of parsing this IFF file. The items appearing first in the
list will be the ones encountered most recently.

INPUTS
iff — pointer to IFFHandle struct.
type - type code to search for.
id — identifier code to search for.
RESULT
ci — pointer to last collection chunk encountered with
links to previous ones.
EXAMPLE
NOTES
BUGS
SEE ALSO

CollectionChunk (), CollectionChunks ()

1.13 iffparse.library/FindLocalltem

NAME

FindLocalltem —-—- Return a local context item from the context stack.
SYNOPSIS

lci = FindLocalltem (iff, type, id, ident)

do a0 do dl d2

struct LocalContextItem *1lci;

struct IFFHandle *iff;

LONG type, id, ident;
FUNCTION

Searches the context stack of the given IFFHandle struct for a local
context item which matches the given ident, type and id. This
function searches the context stack from the most current context
backwards, so that the item found (if any) will be the one with
greatest precedence in the context stack.

INPUTS
iff - pointer to IFFHandle struct.
type - type code to search for.
id — ID code to search for.
ident - ident code for the class of context item to search for
(ex. "exhd" -- exit handler).
RESULT

lci — pointer local context item if found, or NULL if nothing

iffparse 11/32

matched.
EXAMPLE
NOTES

BUGS
It really should have some sort of wildcarding capability.

SEE ALSO
StoreLocallItem()

1.14 iffparse.library/FindProp

NAME

FindProp —-- Search for a stored property chunk.
SYNOPSIS

sp = FindProp (iff, type, id)

do ao do dl

struct StoredProperty *SpP;

struct IFFHandle *iff;

LONG type, id;
FUNCTION

Searches for the stored property which is valid in the given context.
Property chunks are automatically stored by ParseIFF () when
pre—declared by PropChunk () or PropChunks (). The StoredProperty
struct, if found, contains a pointer to a data buffer containing the
contents of the stored property.

INPUTS
iff — pointer to IFFHandle struct.
type - type code for chunk to search for (ex. "ILBM").
id — identifier code for chunk to search for (ex. "CMAP").
RESULT
sp - pointer to stored property, if found, or NULL if none
found.
EXAMPLE
NOTES
BUGS
SEE ALSO

PropChunk (), PropChunks ()

1.15 iffparse.library/FindPropContext

iffparse

12/32

NAME

FindPropContext —-—- Get the property context for the current state.
SYNOPSIS

cn = FindPropContext (iff)

do a0

struct ContextNode *Cn;

struct IFFHandle *iff;

FUNCTION
Locates the context node which would be

properties in the current parsing state.

locating the proper scoping context for

scope from which a property would apply.

the scoping chunk for
(Huh?) This is used for

property chunks i.e. the
This is usually the FORM

or LIST with the highest precedence in the context stack.

If you don’t understand this, read the IFF spec a couple more times.

INPUTS
iff — pointer to IFFHandle struct.

RESULT

cn — ContextNode of property scoping chunk.

EXAMPLE

NOTES

BUGS

SEE ALSO

CurrentChunk (), ParentChunk (), StoreltemInContext ()

1.16 iffparse.library/FreelFF

NAME

FreelIFF —-—- Deallocate an IFFHandle struct.
SYNOPSIS

FreelIFF (iff)

ao

struct IFFHandle *iff;

FUNCTION

Deallocates all resources associated with this IFFHandle struct. The
struct MUST have already been closed with CloseIFF ().

INPUTS

iff - pointer to IFFHandle struct to free.

RESULT

iffparse 13/32

EXAMPLE
NOTES
BUGS

SEE ALSO
AllocIFF (), CloselIFF ()

1.17 iffparse.library/FreeLocalltem

NAME

FreelLocalltem —-- Deallocate a local context item structure.
SYNOPSIS

FreeLocallItem (lci)

a0
struct LocalContextItem xlci;

FUNCTION
Frees the memory for the local context item and any associated user
memory as allocated with AllocLocalltem. User purge vectors should
call this function after they have freed any other resources
associated with this item.

Note that FreelocalItem() does NOT call the custom purge vector set
up through SetLocalltemPurge(); all it does is free the local context
item. (This implies that your custom purge vector would want to call
this to ultimately free the LocalContextItem.) (This description

still seems muddy; how to clear it up?)

INPUTS
lci — pointer to LocalContextItem created with AllocLocalltem.

RESULT
EXAMPLE
NOTES
BUGS

SEE ALSO
AllocLocallItem()

1.18 iffparse.library/GoodID

NAME
GoodID —-- Test if an identifier follows the IFF 85 specification.

SYNOPSIS

iffparse

14 /32

isok = GoodID (id)
do do

LONG isok, id;

FUNCTION

Tests the given longword identifier to see if it meets all the EA IFF

85 specifications for a chunk ID. If so, it returns non-zero,
otherwise 0.

INPUTS
id - potential 32 bit identifier.

RESULT
isok — non-zero if this is a wvalid ID, 0 otherwise.

EXAMPLE
NOTES
BUGS

SEE ALSO
GoodType ()

1.19 iffparse.library/GoodType

NAME

GoodType —-- Test if a type follows the IFF 85 specification.
SYNOPSIS

isok = GoodType (type)

do do

LONG isok, type;

FUNCTION
Tests the given longword type identifier to see if it meets all the
EA IFF 85 specifications for a FORM type (requirements for a FORM

type are more stringent than those for a simple chunk ID). If it
complies, GoodType () returns non-zero, otherwise 0.
INPUTS
type - potential 32 bit format type identifier.
RESULT
isok - non-zero if this is a valid type id, 0 otherwise.
EXAMPLE
NOTES
BUGS

SEE ALSO

iffparse 15/32

GoodID ()

1.20 iffparse.library/IDtoStr

NAME

IDtoStr —-- Convert a longword identifier to a null-terminated string.
SYNOPSIS

str = IDtoStr (id, buf)

do do a0

STRPTR str;
LONG id;
STRPTR buf;
FUNCTION
Writes the ASCII equivalent of the given longword ID into buf as a
null-terminated string.
INPUTS
id - longword ID.

buf — character buffer to accept string (at least 5 chars).

RESULT
str - the value of "buf’.

EXAMPLE
NOTES
BUGS

SEE ALSO

1.21 iffparse.library/InitIFF

NAME

InitIFF —- Initialize an IFFHandle struct as a user stream.
SYNOPSIS

InitIFF (iff, flags, streamhook)

a0 do al

struct IFFHandle =*iff;

LONG flags;
struct Hook *streamhook;
FUNCTION

Initializes an IFFHandle as a general user-defined stream by
allowing the user to declare a hook that the library will call to
accomplish the low-level reading, writing, and seeking of the stream.
Flags are the stream I/0 flags for the specified stream; typically a

iffparse 16 /32

combination of the IFFF_?SEEK flags.

The stream vector is called with the following arguments:

AQ: pointer to streamhook.
A2: pointer to IFFHandle struct.
Al: pointer to IFFStreamCmd struct.

The IFFStreamCmd packet appears as follows:

sc_Command: Contains an IFFCMD_#? value
sc_Buf: Pointer to memory buffer
sc_NBytes: Number of bytes involved in operation

The values taken on by sc_Command, and their meaning, are as follows:

IFFCMD_INIT:
Prepare your stream for reading. This is used for certain
streams that can’t be read immediately upon opening, and need
further preparation. (The clipboard.device is an example of
such a stream.) This operation is allowed to fail; any
error code will be returned directly to the client. sc_Buf
and sc_NBytes have no meaning here.

IFFCMD_CLEANUP:
Terminate the transaction with the associated stream. This
is used with streams that can’t simply be closed. (Again,
the clipboard is an example of such a stream.) This
operation is not permitted to fail; any error returned will
be ignored (best to return 0, though). sc_Buf and sc_NBytes
have no meaning here.

IFFCMD_READ:
Read from the stream. You are to read sc_NBytes from the
stream and place them in the buffer pointed to by sc_Buf.
Any (non-zero) error returned will be remapped by the parser
into IFFERR_READ.

IFFCMD_WRITE:
Write to the stream. You are to write sc_NBytes to the
stream from the buffer pointed to by sc_Buf. Any (non-zero)
error returned will be remapped by the parser into
IFFERR_WRITE.

IFFCMD_SEEK:
Seek on the stream. You are to perform a seek on the stream
relative to the current position. sc_NBytes is signed;
negative values mean seek backward, positive values mean seek
forward. sc_Buf has no meaning here. Any (non-zero) error
returned will be remapped by the parser into IFFERR_SEEK.

All errors are returned in DO. A return of 0 indicates success.
UNDER NO CIRCUMSTANCES are you permitted to write to the IFFStreamCmd

structure.
INPUTS
iff — pointer to IFFHandle structure to initialize.
flags - stream I/0 flags for the IFFHandle.
hook - pointer to Hook structure.

RESULT

iffparse 17 /32

EXAMPLE
NOTES
BUGS

SEE ALSO
utility/hooks.h

1.22 iffparse.library/InitIFFasClip

NAME

InitIFFasClip —-- Initialize an IFFHandle as a clipboard stream.
SYNOPSIS

InitIFFasClip (iff)

a0
struct IFFHandle xiff;
FUNCTION
Initializes the given IFFHandle to be a clipboard stream. The
function initializes the stream processing vectors to operate on
streams of the ClipboardHandle type. The iff_ Stream field will still
need to be initialized to point to a ClipboardHandle as returned from

OpenClipboard() .

INPUTS
iff - pointer to IFFHandle struct.

RESULT
EXAMPLE
NOTES
BUGS

SEE ALSO
OpenClipboard()

1.23 iffparse.library/InitIFFasDOS

NAME

InitIFFasDOS —- Initialize an IFFHandle as a DOS stream.
SYNOPSIS

InitIFFasDOS (iff)

a0

struct IFFHandle *iff;

iffparse 18/32

FUNCTION
The function initializes the given IFFHandle to operate on DOS
streams. The i1iff_Stream field will need to be initialized as a BPTR

returned from the DOS function Open() .

INPUTS
iff - pointer to IFFHandle struct.

RESULT
EXAMPLE
NOTES
BUGS

SEE ALSO

1.24 iffparse.library/LocalltemData

NAME

LocalIltemData —-- Get pointer to user data for local context item.
SYNOPSIS

data = LocalltemData (lci)

do a0

UBYTE *data;

struct LocalContextItem *1lci;
FUNCTION

Returns pointer to the user data associated with the given local
context item. The size of the data area depends on the "usize"
argument used when allocating this item. If the pointer to the item
given (lci) is NULL, the function also returns NULL.

INPUTS
lci — pointer to local context item or NULL.

RESULT
data - pointer to user data area or NULL if lci is NULL.

EXAMPLE
NOTES
BUGS
Currently, there is no way to determine the size of the user data

area; you have to "know’.

SEE ALSO
AllocLocalltem (), FreeLocalltem()

iffparse 19/32

1.25 iffparse.library/OpenClipboard

NAME

OpenClipboard —-- Create a handle on a clipboard unit.
SYNOPSIS

ch = OpenClipboard (unit)

do do

struct ClipboardHandle *ch;

LONG unit;

FUNCTION
Opens the clipboard.device and opens a stream for the specified unit
(usually PRIMARY_CLIP). This handle structure will be used as the
clipboard stream for IFFHandles initialized as clipboard streams by
InitIFFasClip ().

INPUTS
unit — clipboard unit number (usually PRIMARY CLIP).

RESULT
ch - pointer to ClipboardHandle structure or NULL if

unsuccessful.

EXAMPLE

NOTES

BUGS

SEE ALSO
InitIFFasClip(), CloseClipboard()

1.26 iffparse.library/OpenlFF

NAME

OpenlIFF -- Prepare an IFFHandle to read or write a new IFF stream.
SYNOPSIS

error = OpenlIFF (iff, rwmode)

do a0 do

LONG error;

struct IFFHandle *iff;

LONG rwmode;
FUNCTION

Initializes an IFFHandle struct for a new read or write. The

direction of the I/0O is given by the value of rwmode, which can be
either IFFF_READ or IFFF_WRITE.

As part of its initialization procedure, OpenIFF () calls the client-
supplied stream hook vector. The IFFStreamCmd packet will contain

iffparse

20/32

the following:

sc_Command: IFFCMD_INIT
sc_Buf: (Not applicable)
sc_NBytes: (Not applicable)
This operation is permitted to fail. DO NOT write to this structure.
INPUTS
iff — pointer to IFFHandle struct.
rwmode - IFFF_READ or IFFF_WRITE
RESULT
error — contains an error code or 0 if successful.
EXAMPLE
NOTES
BUGS
SEE ALSO

CloselIFF (), InitIFF ()

1.27 iffparse.library/ParentChunk

NAME

ParentChunk —-- Get the nesting context node for the given chunk.
SYNOPSIS

parent = ParentChunk (cn)

do a0
struct ContextNode =xparent, =*cn;

FUNCTION
Returns a context node for the chunk containing the chunk for the
given context node. This function effectively moves down the context
stack into previously pushed contexts. For example, to get a
ContextNode pointer for the enclosing FORM chunk while reading a data
chunk, use: ParentChunk (CurrentChunk (iff)) to find this pointer.
The ContextNode structure contains information on the type of chunk
and its size.

INPUTS
cn - pointer to a context node.

RESULT
parent - pointer to the enclosing context node or NULL if none.

EXAMPLE
NOTES

BUGS

iffparse

21/32

SEE ALSO
CurrentChunk ()

1.28 iffparse.library/ParselFF

NAME

ParselIFF —-- Parse an IFF file from an IFFHandle struct stream.
SYNOPSIS

error = ParselIFF (iff, control)

do a0 do

LONG error;

struct IFFHandle *iff;

LONG control;
FUNCTION

This is the biggie.

Traverses a file opened for read by pushing chunks onto the context
stack and popping them off directed by the generic syntax of IFF
files. As it pushes each new chunk, it searches the context stack
for handlers to apply to chunks of that type. If it finds an entry
handler it will invoke it just after entering the chunk. If it finds
an exit handler it will invoke it Jjust before leaving the chunk.
Standard handlers include entry handlers for pre-declared

property chunks and collection chunks and entry and exit handlers for
for stop chunks - that is, chunks which will cause the ParseIFF ()
function to return control to the client. Client programs can also
provide their own custom handlers.

The control flag can have three values:

IFFPARSE_SCAN:
In this normal mode, ParselIFF () will only return control to
the caller when either:
1) an error 1is encountered,
2) a stop chunk is encountered, or a user handler
returns the special IFF_RETURN2CLIENT code, or
3) the end of the logical file is reached, in which
case IFFERR_EOF is returned.

ParseIFF () will continue pushing and popping chunks until one

of these conditions occurs. If ParseIFF() is called again
after returning, it will continue to parse the file where it
left off.

IFFPARSE_STEP and _RAWSTEP:
In these two modes, ParselIFF () will return control to the
caller after every step in the parse, specifically, after
each push of a context node and just before each pop. If
returning just before a pop, ParselIFF() will return
IFFERR_EOC, which is not an error, per se, but is Jjust an
indication that the most recent context is ending. In STEP

iffparse 22/32

mode, ParselIFF () will invoke the handlers for chunks, if
any, before returning. In RAWSTEP mode, ParselIFF () will not
invoke any handlers and will return right away. In both
cases the function can be called multiple times to step
through the parsing of the IFF file.

INPUTS
iff - pointer to IFFHandle struct.
control - control code (IFFPARSE_SCAN, _STEP or _RAWSTEP).

RESULT
error - 0 or IFFERR_#? value or return value from user handler.

EXAMPLE
NOTES
BUGS
SEE ALSO

PushChunk (), PopChunk (), EntryHandler (), ExitHandler(),
PropChunk[s] (), CollectionChunk([s] (), StopChunk (), StopOnExit ()

1.29 iffparse.library/PopChunk

NAME

PopChunk -- Pop top context node off context stack.
SYNOPSIS

error = PopChunk (iff)

do a0

LONG error;

struct IFFHandle *iff;

FUNCTION
Pops top context chunk and frees all associated local context items.
The function is normally called only for writing files and signals
the end of a chunk.

INPUTS
iff - pointer to IFFHandle struct.
RESULT
error - 0 if successful or an IFFERR_#? error code if not
successful.
EXAMPLE
NOTES
BUGS

SEE ALSO

iffparse

23/32

PushChunk ()

1.30 iffparse.library/PropChunk

NAME

PropChunk —-- Specify a property chunk to store.
SYNOPSIS

error PropChunk (iff, type, id)

do a0 do dl

LONG error;

struct IFFHandle *iff;

LONG type;

LONG id;
FUNCTION

Installs an entry handler for chunks with the given type and ID so
that the contents of those chunks will be stored as they are
encountered. The storage of these chunks follows the property chunk
scoping rules for IFF files so that at any given point, a stored
property chunk returned by FindProp() will be the valid property for
the current context.

INPUTS
iff pointer to IFFHandle struct (does not need to be open).
type type code for the chunk to declare (ex. "ILBM").
id identifier for the chunk to declare (ex. "CMAP").
RESULT
error 0 if successful or an IFFERR_#? error code if not
successful.
EXAMPLE
NOTES
BUGS
SEE ALSO
PropChunks (), FindProp (), CollectionChunk ()

1.31 iffparse.library/PropChunks

NAME

PropChunks —- Declare many property chunks at once.
SYNOPSIS

error PropChunks (iff, list, n)

do a0 al do

LONG error;

iffparse 24 /32

struct IFFHandle *iff;

LONG *1list;
LONG nj;
FUNCTION
Declares multiple property chunks from a list. The list argument is

a pointer to an array of long words arranged in pairs, and has the
following format:

TYPE1l, ID1, TYPE2, ID2, ..., TYPEn, IDn
The argument n is the number of pairs. PropChunks() Jjust calls
PropChunk () n times.
INPUTS
iff — pointer to IFFHandle struct.
list — pointer to array of longword chunk types and identifiers.
n - number of chunks to declare.
RESULT
error - 0 i1if successful or an IFFERR_#? error code if not
successful.
EXAMPLE
NOTES
BUGS
SEE ALSO
PropChunk ()

1.32 iffparse.library/PushChunk

NAME

PushChunk —-- Push a new context node on the context stack.
SYNOPSIS

error = PushChunk (iff, type, id, size)

do ao do dl d2

LONG error;

struct IFFHandle *iff;

LONG type, 1id, size;
FUNCTION

Pushes a new context node on the context stack by reading it from the
stream if this is a read file, or by creating it from the passed
parameters if this is a write file. Normally this function is only
called in write mode, where the type and id codes specify the new
chunk to create. If this is a leaf chunk, i.e. a local chunk inside
a FORM or PROP chunk, then the type argument is ignored. If the size
is specified then the chunk writing functions will enforce this size.
If the size is given as IFFSIZE_UNKNOWN, the chunk will expand to
accommodate whatever is written into it.

iffparse

25/32

INPUTS
iff - pointer to IFFHandle struct.
type — chunk type specifier (ex. ILBM) (ignored for read mode or
leaf chunks).
id — chunk id specifier (ex. CMAP) (ignored for read mode) .
size - size of the chunk to create or IFFSIZE_UNKNOWN (ignored for
read mode) .
RESULT
error - 0 if successful or an IFFERR_#? error code if not
successful.
EXAMPLE
NOTES
BUGS
SEE ALSO
PopChunk (), WriteChunkRecords (), WriteChunkBytes ()

1.33 iffparse.library/ReadChunkBytes

NAME
ReadChunkBytes —-—- Read bytes from the current chunk into a buffer.
SYNOPSIS
actual = ReadChunkBytes (iff, buf, size)
do al al do
LONG actual;
struct IFFHandle *iff;
UBYTE *buf;
LONG size;
FUNCTION
Reads the IFFHandle stream into the buffer for the specified number
of bytes. Reads are limited to the size of the current chunk and
attempts to read past the end of the chunk will truncate. Function

returns positive number of bytes read or a negative error code.

INPUTS

iff — pointer to IFFHandle struct.

buf — pointer to buffer area to receive data.

size - number of bytes to read.
RESULT

actual - (positive) number of bytes read if successful or a

(negative) IFFERR_#? error code if not successful.

EXAMPLE

NOTES

iffparse 26/32

BUGS

SEE ALSO
ReadChunkRecords (), ParselIFF (), WriteChunkBytes ()

1.34 iffparse.library/ReadChunkRecords

NAME
ReadChunkRecords —-- Read record elements from the current chunk into
a buffer.
SYNOPSIS
actual = ReadChunkRecords (iff, buf, recsize, numrec)
do a0 al do dl
LONG actual;
struct IFFHandle *iff;
UBYTE *buf;
LONG recsize, numrec;
FUNCTION

Reads records from the current chunk into buffer. Truncates attempts
to read past end of chunk (only whole records are read; remaining
bytes that are not of a whole record size are left unread and
available for ReadChunkBytes()) .

INPUTS
iff — pointer to IFFHandle struct.
buf — pointer to buffer area to receive data.
recsize - size of data records to read.
numrec - number of data records to read.
RESULT
actual - (positive) number of whole records read if successful or a
(negative) IFFERR_#? error code if not successful.
EXAMPLE
NOTES
BUGS
SEE ALSO
ReadChunkBytes (), ParseIFF (), WriteChunkRecords ()

1.35 iffparse.library/SetLocalltemPurge

NAME
SetLocalltemPurge —-- Set purge vector for a local context item.

SYNOPSIS
SetLocalltemPurge (item, purgehook)

iffparse

27132

a0 al

struct LocalContextItem *item;
struct Hook *purgehook;

FUNCTION
Sets a local context item to use a client-supplied cleanup (purge)
vector for disposal when its context is popped. The purge vector
will be called when the ContextNode containing this local item is
popped off the context stack and is about to be deleted itself. If
the purge vector has not been set, the parser will use Freelocalltem
to delete the item, but if this function is used to set the purge
vector, the supplied vector will be called with the following

arguments:
AQ: pointer to purgehook.
A2: pointer to LocalContextItem to be freed.
Al: pointer to a LONG containing the value

IFFCMD_PURGELCI.

The user purge vector is then responsible for calling FreeLocallItem()
as part of its own cleanup. Although the purge vector can return a
value, it will be ignored —-- purge vectors must always work (best to
return 0, though).

INPUTS
item — pointer to local context item.
purgehook - pointer to a Hook structure.

RESULT

EXAMPLE

NOTES

BUGS

SEE ALSO
AllocLocalItem(), FreeLocalltem(), utility/hooks.h

1.36 iffparse.library/StopChunk

NAME

StopChunk —-- Declare a chunk which should cause ParseIFF to return.
SYNOPSIS

error = StopChunk (iff, type, id)

do al do dl

LONG error;

struct IFFHandle *iff;

LONG type;

LONG id;

FUNCTION

iffparse

28/32

Installs an entry handler for the specified chunk which will cause

the ParselIFF () function to return control to the caller when this
chunk is encountered. This is only of value when ParselIFF () is
called with the IFFPARSE_SCAN control code.

INPUTS
iff
type
id

RESULT
error

EXAMPLE

NOTES

BUGS

SEE ALSO

pointer to IFFHandle struct (need not be open).
type code for chunk to declare (ex. "ILBM").
identifier for chunk to declare (ex. "BODY").

0 if successful or an IFFERR_#7? error code if not
successful.

StopChunks (), ParselIFF ()

1.37 iffparse.library/StopChunks

NAME

StopChunks —-- Declare many stop chunks at once.
SYNOPSIS

error StopChunks (iff, list, n)

do ao al do

LONG error;

struct IFFHandle *iff;

LONG xlist;

LONG n;
FUNCTION

(is to StopChunk() as PropChunks() is to PropChunk().)

INPUTS
iff
list
n

RESULT
error

EXAMPLE

NOTES

BUGS

pointer to IFFHandle struct.

pointer to array of longword chunk types and identifiers.

number of chunks to declare.

0 if successful or an IFFERR_#7? error code if not
successful.

iffparse 29/32

SEE ALSO
StopChunk ()

1.38 iffparse.library/StopOnExit

NAME

StopOnExit —-- Declare a stop condition for exiting a chunk.
SYNOPSIS

error = StopOnExit (iff, type, id)

do a0 do dl

LONG error;

struct IFFHandle *iff;

LONG type;

LONG id;
FUNCTION

Installs an exit handler for the specified chunk which will cause the

ParselIFF () function to return control to the caller when this chunk

is exhausted. ParselIFF () will return IFFERR_EOC when the declared
chunk is about to be popped. This is only of value when ParselIFF ()
is called with the IFFPARSE_SCAN control code.

INPUTS
iff - pointer to IFFHandle struct (need not be open).
type - type code for chunk to declare (ex. "ILBM").
id - identifier for chunk to declare (ex. "BODY").
RESULT
error — 0 if successful or an IFFERR_#? error code if not
successful.
EXAMPLE
NOTES
BUGS
SEE ALSO
ParselIFF ()

1.39 iffparse.library/StorelteminContext

NAME

StorelItemInContext —-—- Store local context item in given context node.
SYNOPSIS

StoreItemInContext (iff, item, cn)

a0 al a2

struct IFFHandle +iff;

iffparse 30/32

struct LocalContextItem *item;
struct ContextNode *Cn;

FUNCTION
Adds the LocalContextItem to the list of items for the given context
node. If an LCI with the same Type, ID, and Ident is already
present in the ContextNode, it will be purged and replaced with the

new one. This is a raw form of StorelocallItem.
INPUTS
iff — pointer to IFFHandle struct for this context.
item - pointer to a LocalContextItem to be stored.
cn - pointer to context node in which to store item.
RESULT
EXAMPLE
NOTES
BUGS
SEE ALSO
StorelLocalltem()

1.40 iffparse.library/StoreLocalltem

NAME

StorelLocalltem —-- Insert a local context item into the context stack.
SYNOPSIS

error StoreLocalltem (iff, item, position)

do a0 al do

LONG error;

struct IFFHandle «*iff;
struct LocalContextItem *item;
LONG position;

FUNCTION
Adds the local context item to the list of items for one of the
context nodes on the context stack and purges any other item in the
same context with the same ident, type and id. The position argument
determines where in the stack to add the item:

IFFSLI_ROOT:
Add item to list at root (default) stack position.
IFFSLI_TOP:
Add item to the top (current) context node.
IFFSLI_PROP:
Add element in top property context. Top property context is
either the top FORM chunk, or the top LIST chunk, whichever
is closer to the top of the stack.

Items added to the root context, or added to the top context before

iffparse

31/32

the IFFHandle has been opened or after it has been closed, are put in
the default context. That is, they will be the local items found
only after all other context nodes have been searched. Items in the
default context are also immune to being purged until the IFFHandle

struct itself is deleted with FreeIFF (). This means that handlers
installed in the root context will still be there after an IFFHandle
struct has been opened and closed. (Note that this implies that
items stored in a higher context will be deleted when that context
ends.)

INPUTS
iff - pointer to IFFHandle struct.
item - pointer to LocalContextItem struct to insert.

position- where to store the item (IFFSLI_ROOT, _TOP or _PROP).

RESULT
error - 0 if successful or an IFFERR_#? error code if not
successful.
EXAMPLE
NOTES
BUGS
SEE ALSO
FindLocalItem(), StorelItemInContext (), EntryHandler (), ExitHandler ()

1.41 iffparse.library/WriteChunkBytes

NAME

WriteChunkBytes —-- Write data from a buffer into the current chunk.
SYNOPSIS

error = WriteChunkBytes (iff, buf, size)

do a0 al do

LONG error;

struct IFFHandle *iff;

UBYTE *xbuf;

LONG size;
FUNCTION

Writes "size" bytes from the specified buffer into the current chunk.
If the current chunk was pushed with IFFSIZE_UNKNOWN, the size of the
chunk gets increased by the size of the buffer written. If the size
was specified for this chunk, attempts to write past the end of the
chunk will be truncated.

INPUTS
iff - pointer to IFFHandle struct.
buf - pointer to buffer area with bytes to be written.
size - number of bytes to write.

RESULT

iffparse

32/32

error — (positive) number of bytes written if successful or a
(negative) IFFERR_#? error code if not successful.

EXAMPLE
NOTES
BUGS

SEE ALSO
PushChunk (), PopChunk (), WriteChunkRecords ()

1.42 iffparse.library/WriteChunkRecords

NAME
WriteChunkRecords —-- Write records from a buffer to the current
chunk.
SYNOPSIS
error = WriteChunkRecords (iff, buf, recsize, numrec)
do a0 al do dl
LONG error;
struct IFFHandle *iff;
UBYTE *buf;
LONG recsize, numrec;
FUNCTION

Writes record elements from the buffer into the top chunk. This
function operates much like ReadChunkBytes() .

INPUTS
iff - pointer to IFFHandle struct.
buf — pointer to buffer area containing data.
recsize - size of data records to write.
numrec - number of data records to write.
RESULT
error — (positive) number of whole records written if successful
or a (negative) IFFERR_#? error code if not successful.
EXAMPLE
NOTES
BUGS
SEE ALSO

WriteChunkBytes ()

	iffparse
	iffparse.doc
	HookEntry
	iffparse.library/AllocIFF
	iffparse.library/AllocLocalItem
	iffparse.library/CloseClipboard
	iffparse.library/CloseIFF
	iffparse.library/CollectionChunk
	iffparse.library/CollectionChunks
	iffparse.library/CurrentChunk
	iffparse.library/EntryHandler
	iffparse.library/ExitHandler
	iffparse.library/FindCollection
	iffparse.library/FindLocalItem
	iffparse.library/FindProp
	iffparse.library/FindPropContext
	iffparse.library/FreeIFF
	iffparse.library/FreeLocalItem
	iffparse.library/GoodID
	iffparse.library/GoodType
	iffparse.library/IDtoStr
	iffparse.library/InitIFF
	iffparse.library/InitIFFasClip
	iffparse.library/InitIFFasDOS
	iffparse.library/LocalItemData
	iffparse.library/OpenClipboard
	iffparse.library/OpenIFF
	iffparse.library/ParentChunk
	iffparse.library/ParseIFF
	iffparse.library/PopChunk
	iffparse.library/PropChunk
	iffparse.library/PropChunks
	iffparse.library/PushChunk
	iffparse.library/ReadChunkBytes
	iffparse.library/ReadChunkRecords
	iffparse.library/SetLocalItemPurge
	iffparse.library/StopChunk
	iffparse.library/StopChunks
	iffparse.library/StopOnExit
	iffparse.library/StoreItemInContext
	iffparse.library/StoreLocalItem
	iffparse.library/WriteChunkBytes
	iffparse.library/WriteChunkRecords

