utility

utility

COLLABORATORS
TITLE :
utility
ACTION NAME DATE SIGNATURE
WRITTEN BY July 18, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

utility i

Contents

1 utility 1
L1 utility.doc . . . o L e e 1
1.2 utility.library/AllocateTagltems e e 1
1.3 utility.library/Amiga2Date e e e 2
1.4 utilitylibrary/CallHoOKPKt e e e 2
1.5 utility.library/CheckDate L e 3
1.6 utilitylibrary/CloneTagltems L e 4
1.7 utility.library/Date2Amiga e e e e e e e e e e e e e e e e e 4
1.8 utility.library/FilterTagChanges e e e 5
1.9 utilitylibrary/FilterTagltems e 6
1.10 utility.library/FindTagltem e 7
1.11 utility.library/FreeTagltems e e e e e 7
1.12 utility.library/GetTagData 8
1.13 utility.library/MapTags e e 9
1.14 utility.library/NextTagltem L e e 10
1.15 utility.library/PackBoolTags e 11
1.16 utility.library/RefreshTagltemClones e 13
1.17 utility library/SDivMod32 e e e 13
1.18 utility.library/SMult32 14
1.19 utilitylibrary/Stricmp L e e 14
1.20 utility.library/Strnicmp e e e e 15
1.21 utility.library/TaglnArray o o e e e 16
1.22 utility library/TOLOWET o o o e e e e e e e e e e e e 17
1.23 utility.library/ToUpper e 17
1.24 utilitylibrary/UDivMod32 L e e 18
1.25 utility library/UMult32 oL 19

utility

1/19

Chapter 1

utility

1.1 utility.doc

AllocateTagltems () FindTagItem() SMult32 ()
AmigazDate () FreeTaglItems () Stricmp ()
CallHookPKkt () GetTagData () Strnicmp ()
CheckDate () MapTags () TagInArray ()
CloneTagItems () NextTagItem() ToLower ()
Date2Amiga () PackBoolTags () ToUpper ()
FilterTagChanges () RefreshTagItemClones () UDivMod32 ()
FilterTagItems () SDivMod32 () UMult32 ()

1.2 utility.library/AllocateTagltems

NAME

AllocateTagltems —-—- Allocate a Tagltem array (or chain). (V36)
SYNOPSIS

taglList = AllocateTagItems(numItems)

DO DO

struct TagItem xAllocateTagltems(ULONG numItems) ;

FUNCTION

Allocates the specified number of usable Tagltems slots, and does

so in a format that the function FreeTagltems can handle.

Note that to access the Tagltems in ’'taglList’, you should use
the function NextTagItem(). This will insure you respect any
chaining (TAG_MORE) that the list uses, and will skip any
TAG_IGNORE items that AllocateTagltems () might use to stash
size and other information.

INPUTS

numItems — the number of Tagltem slots you want to allocate.

RESULT

tagList - the allocated chain of TagItem structures. Will

utility 2/19
return NULL if unsuccessful.
BUGS
SEE ALSO
FreeTagltems (), CloneTagltems ()

1.3 utility.library/Amiga2Date

NAME

Amiga2Date —-- Calculate the date from a timestamp.
SYNOPSIS

AmigaZ2Date (AmigaTime, Date)

DO A0
void Amiga2Date (ULONG, struct ClockData x);

FUNCTION

Fills in a ClockData structure with the date and time calculated
from a ULONG containing the number of seconds from 01-Jan-1978

to the date.

INPUTS
AmigaTime — the number of seconds from 01-Jan-1978.
RESULTS
Date - filled in with the date/time specified by
AmigaTime.
NOTES
SEE ALSO

CheckDate (), Date2Amiga ()

BUGS

1.4 utility.library/CallHookPkt

NAME

CallHookPkt —-—- Invoke a Hook function callback. (V36)
SYNOPSIS

return = CallHookPkt (hook, object, paramPkt)

DO A0 A2 Al

ULONG CallHookPkt (struct Hook =xhook, VOID xobject,

FUNCTION

Performs the callback standard defined by a Hook structure.
This function is really very simple; it effectively performs

a JMP to Hook->h_Entry.

(V36)

VOID xparamPkt

utility

3/19

It is probably just as well to do this operation in an
assembly language function linked in to your program, possibly
from a compiler supplied library or a builtin function.

It is anticipated that C programs will often call a ’varargs’
variant of this function which will be named CallHook. This
function must be provided in a compiler specific library, but
an example of use would be:

returnval = CallHook (hook, dataobject, COMMAND_ID, paraml, param?2);

This function CallHook can be implemented in many C compilers

like this:

CallHook (hook, object, command, ...)
struct Hook ~*hook;

VOID *object;

ULONG command;

{
return (CallHookPkt (hook, object, (VOID %) &command));

INPUTS

Hook — pointer to Hook structure as defined in
utility/hooks.h

Object - useful data structure in the particular context the
hook is being used for.

ParamPkt — pointer to a parameter packet (often built on the
stack); by convention this packet should start off
with a longword command code, and the remaining
data in the packet depends on that command.

RESULT

return — The meaning of the value returned in DO depends on

the context in which the Hook is being used.
NOTES

The functions called through this function should follow normal
register conventions unless EXPLICITLY documented otherwise (and
they have a good reason too).

BUGS

SEE ALSO
utility/hooks.h

1.5 utility.library/CheckDate

NAME
CheckDate —-- Checks ClockData struct for legal date. (V36)

SYNOPSIS
AmigaTime = CheckDate(Date)
DO AQ

utility 4/19

ULONG CheckDate (struct ClockData x);

FUNCTION
Determines if the Date is a legal date and returns the number
of seconds to Date from 01-Jan-1978 if it is.

INPUTS
Date - pointer to a ClockData structure.
RESULTS
AmigaTime - 0 if Date invalid; otherwise, the number of
seconds to Date from 01-Jan-1978.
NOTES
BUGS

The wday field of the ClockData structure is not checked.

SEE ALSO
Amiga2Date (), Date2Amiga ()

1.6 utility.library/CloneTagltems

NAME

CloneTagltems —-- Copies a TagItem list. (V36)
SYNOPSIS

newTagList = CloneTagltems(tagList)

DO AO

struct TagItem xCloneTagltems(struct Tagltem xtagList);

FUNCTION
Copies the essential contents of a tagItem list. Internally,
it uses AllocateTagltems () so that you can use FreeTagltems().
INPUTS
taglList — TagItem list to clone.
RESULT
newTagList - resultant copy.
BUGS
SEE ALSO

AllocateTagItems (), FreeTagltems (), RefreshTagItemClones ()

1.7 utility.library/Date2Amiga

NAME
Date2Amiga —-- Calculate seconds from 01-Jan-1978. (V36)

utility 5/19

SYNOPSIS
AmigaTime = Date2Amiga(Date)
DO A0

ULONG Date2Amiga (struct ClockData =*);

FUNCTION
Calculates the number of seconds from 01-Jan-1978 to the date
specified in the ClockData structure.

INPUTS
Date - pointer to a ClockData structure containing the
date of interest.
RESULTS
AmigaTime — the number of seconds from 01-Jan-1978 to the
date specified in Date.
NOTES

This function does no sanity checking of the data in Date.

SEE ALSO
Amiga2Date (), CheckDate()

BUGS

1.8 utility.library/FilterTagChanges

NAME

FilterTagChanges —-- Eliminate Tagltems which specify no change. (V36)
SYNOPSIS

FilterTagChanges (changelList, oldValues, apply)

AQ Al DO

void FilterTagChanges (struct TaglItem *changelist,
struct TagItem xoldValues, LONG apply);

FUNCTION
Eliminate items from a "change list" that specify values already
in effect in existing list. Optionally update the existing list
if the Boolean 'Apply’ is true.

The elimination is done by changing the ti_Tag field to TAG_IGNORE.
So, this function may change the input tag list(s).

INPUTS
changelist — specification of new tag-value pairs.
oldValues - a list of existing tag item pairs.
apply — Boolean specification as to whether the values in
oldValues are to be updated to the values in
changelist.
RESULT

None.

utility

6/19

EXAMPLE
Assume you have an attribute list for an object (oldvValues)
which looks like this:

ATTR_Size, "large",
ATTR _Color, "orange",
ATTR_Shape, "square",

If you receive a new TaglList containing some changes (changelist),
which looks like this:

ATTR_Size, "large",
ATTR_Shape, "triangle"

If you call FilterTagChanges (), changelList will be modified to
contain only those attributes which are different from the
oldvValues. All other tagitems will have their tag-values set to
TAG_IGNORE. The resulting changelist will become:

TAG_IGNORE, "large",
ATTR_Shape, "triangle"

If apply was set to TRUE, oldValues would be:
ATTR_Size, "large"
ATTR_Color, "orange"
ATTR_Shape, "triangle"

BUGS

SEE ALSO

1.9 utility.library/FilterTagltems

NAME

FilterTagItems - Remove selected items from a TagItem list. (V36)
SYNOPSIS

nvalid = FilterTagltems (taglist, tagArray, logic)

DO AQ Al DO

ULONG FilterTagItems (struct Tagltem *taglList, Tag xtagArray,
LONG logic);

FUNCTION
Removes TaglItems from a TaglItem list (by changing ti_Tag to
TAG_IGNORE) depending on whether its ti_Tag value is
found in an array of TagValues.

If the "logic’ parameter is TAGFILTER_AND, then all items
not appearing in the list are excluded.

If "logic’ is TAGFILTER_NOT, then items not found in the
array are preserved, and the ones in the array are cast out.

utility 7/19

INPUTS
tagList - input list of tag items which is to be filtered
by having selected items changed to TAG_IGNORE.
tagArray - an array of Tag values, terminated by TAG_END,
as specified in the notes on TagInArray() .
logic - specification whether items in TagArray are to
be included or excluded in the filtered result.
RESULT
nvalid - number of valid items left in resulting filtered
list.
BUGS
SEE ALSO
TagInArray ()

1.10 utility.library/FindTagltem

NAME

FindTagItem -- Scans Tagltem list for a Tag. (V36)
SYNOPSIS

tag = FindTagItem(tagVal, tagList)

DO DO AQ

struct Tagltem xFindTagItem(Tag tagVal, struct Tagltem xtagList);

FUNCTION
Scans a TagItem "List", which is in fact a chain of arrays
of TagItem structures as defined in utility/tagitem.h.
Returns a pointer to the FIRST item with ti_Tag matching the
"TagVal’ parameter.

INPUTS

tagvVal - Tag value to search for.

taglList - beginning of TagItem list to scan.
RESULT

Returns a pointer to the item with ti_Tag matching ’'TagVval’.
Returns NULL if there is no match or if TagList is NULL.

BUGS

SEE ALSO
utility/tagitem.h, GetTagData (), PackBoolTags(), NextTagItem()

1.11 utility.library/FreeTagltems

NAME
FreeTagltems —-—- Frees allocated TaglItem lists. (V36)

utility 8/19

SYNOPSIS
FreeTagltems (tagList)
\0)

void FreeTagltems(struct Tagltem xtagList);
FUNCTION

Frees the memory of a Tagltem list allocated either by
AllocateTagItems () or CloneTagItems() .

INPUTS
TagList — list to free. Must be created by functions
specified. A value of NULL for ’‘taglist’ is safe.
RESULT
None.
BUGS
SEE ALSO
AllocateTagItems (), CloneTagItems ()

1.12 utility.library/GetTagData

NAME

GetTagData —- Obtain data corresponding to Tag. (V36)
SYNOPSIS

value = GetTagData(tagVal, default, taglList)

DO DO D1 A0

ULONG GetTagData (Tag TagVal, ULONG Default, struct Tagltem xTagList)

FUNCTION
Searches a Tagltem list for a matching Tag value, and returns the
corresponding ti_Data value for the TagItem found. If none
found, will return the value passed it as ’'default’.

INPUTS
tagVal - Tag value to search for.
default - value to be returned if tagVal is not found.
taglList — the TagItem list to search.
RESULT
value - The ti_Data value for first matching TaglItem, or
"default’ if a ti_Tag matching ’'Tag’ is not found.
BUGS
SEE ALSO

utility/tagitem.h, FindTagItem(), PackBoolTags(), NextTagItem()

utility 9/19

1.13 utility.library/MapTags

NAME

MapTags ——- Convert ti_Tag values in a list via map pairing. (V36)
SYNOPSIS

MapTags (tagList, mapList, includeMiss)

A0 Al DO

void MapTags (struct Tagltem *taglList, struct Tagltem maplList,
LONG includeMiss);

FUNCTION
Apply a "mapping list" mapList to tagList:

If the ti_Tag field of an item in tagList appears as ti_Tag in some
item in mapList, overwrite ti_Tag with the corresponding ti_Data
from the map list.

If a tag in taglList does not appear in the mapList, you can choose
to have it removed by changing it to TAG_IGNORE. Do this by setting
includeMiss to FALSE.

If you want to have items which do not appear in the mapList
survive the mapping as-is, set includeMiss to 1.

This is central to gadget interconnections where you want
to convert the tag values from one space (the sender) to
another (the receiver).

INPUTS
tagList — Input list of tag items which is to be mapped
to Tag values as specified in mapList.
mapList - a "mapping list" tagItem list which pairs Tag

values expected to appear in taglList with new
values to be substituted in the ti_Tag fields of
tagList. May be NULL, which means that all items
in taglList will be eliminated.

includeMiss - 0 to remove tags from tagList not in mapList,
1 to remove

RESULT
None.

EXAMPLE
/* Consider this source list: */
struct TagItem list[] = {
{ MY_SIZE, 71},
{ MY_WEIGHT, 200 1},
{ TAG_END, b}

/+* And the mapping list: */
struct Tagltem map[] = {

{ MY_SIZE, HIS_TALL },
{ TAG_END, }oys

utility 10/19

/* Then after MapTags(list, map, 0), ’list’ will become: */
{ HIS_TALL, 71 },
{ TAG_IGNORE, },
{ TAG_END, }

/* Then after MapTags(list, map, 1), ’list’ will become: */
{ HIS_TALL, 71 },
{ MY_WEIGHT, 200 },
{ TAG_END, }

NOTES
The procedure will change the wvalues of the input tag list
tagList (but not mapList).

You can "filter" a list by passing includeMiss as 0, and having the
data items in the map list equal the corresponding tags.

You can perform the inverse filter ("everything but") by passing
includeMiss equal to 1, and creating a map item for every tag you
want to filter out, pairing it with a mapped data value of
TAG_IGNORE.
For safety and "order independence" of tag item arrays, if you
attempt to map some tag to the value TAG_END, the value TAG_IGNORE
will be substituted instead.

BUGS

SEE ALSO

1.14 utility.library/NextTagltem

NAME

NextTagItem —- Iterate TagItem lists. (V36)
SYNOPSIS

next_tag = NextTagltem(tagltemPtr)

DO AQ

struct Tagltem xNextTagltem(struct Tagltem *xtagltemPtr);

FUNCTION
Iterates through a (chained) array of Tagltem structures,
skipping and chaining as dictated by system tags. TAG_SKIP
will cause it to skip the entry and the next, TAG_IGNORE ignores
that single entry, and TAG_MORE has a pointer to another array
of tags (and terminates the current array!) TAG_DONE also
terminates the current array. Each call returns either the next
tagitem you should examine, or NULL at the end.

INPUTS
tagltemPtr — doubly-indirect reference to a Tagltem structure.
The pointer will be changed to keep track of the
iteration.

utility

11/19

RESULT
next_tag

EXAMPLE

- Each TagItem in the array or chain of arrays that
should be processed according to system Tag values
(in utility/tagitem.h) is returned in turn with
successive calls.

Iterate(struct Tagltem xtags);

{

struct Tagltem =*tstate;
struct Tagltem *tag;

tstate
while (
{

NOTES

tags;
tag = NextTagltem(&tstate))

switch (tag->ti_Tag)
{
case TAGl:
break;
case TAG2:

break;

Do NOT use the value of xtagItemPtr, but rather use the pointer
returned by NextTagItem() .

BUGS

SEE ALSO

utility/tagitem.h, GetTagData (), PackBoolTags (), FindTagItem()

1.15 utility.library/PackBoolTags

NAME
PackBoolTags —-—

SYNOPSIS

Builds a "Flag" word from a TagList. (V36)

boolflags = PackBoolTags(initialFlags, taglList, boolMap)

DO

DO AQ Al

ULONG PackBoolTags (ULONG initialFlags, struct Tagltem *taglList,

FUNCTION

struct TagItem xboolMap);

Picks out the Boolean TaglItems in a TagItem list and converts
them into bit-flag representations according to a correspondence
defined by the TagItem list ’BoolMap.’

utility 12/19

A Boolean Tagltem is one where only the logical value of
the ti_Data is relevant. If this field is 0, the wvalue is
FALSE, otherwise TRUE.

INPUTS

initialFlags - a starting set of bit-flags which will be changed
by the processing of TRUE and FALSE Boolean tags
in tagList.

taglList - a TagItem list which may contain several TagItems
defined to be "Boolean" by their presence in
boolMap. The logical value of ti_Data determines
whether a TaglItem causes the bit-flag value related
by boolMap to set or cleared in the returned flag
longword.

boolMap - a Tagltem list defining the Boolean Tags to be
recognized, and the bit (or bits) in the returned
longword that are to be set or cleared when a
Boolean Tag is found to be TRUE or FALSE in
tagList.

RESULT
boolflags - the accumulated longword of bit-flags, starting
with InitialFlags and modified by each Boolean
TagItem encountered.

EXAMPLE

/+ define some nice user tag values ... *x/
enum mytags { tagl = TAG_USER+1, tag2, tag3, tag4, tagb };

/* this TagItem list defines the correspondence between Boolean tags

x and bit-flag values.

x/

struct TaglItem boolmap[] = {
{ tagl, 0x0001 },
{ tag2, 0x0002 1},
{ tag3, 0x0004 1},
{ tag4, 0x0008 1},
{ TAG_DONE }

}i

/* You are probably passed these by some client, and you want
* to "collapse" the Boolean content into a single longword.

*/

struct TaglItem boolexample[] = {
{ tagl, TRUE 1},
{ tag2, FALSE },
{ tag5, Irrelevant },
{ tag3, TRUE 1},
{ TAG_DONE }
bi

/+ Perhaps ’'boolflags’ already has a current value of 0x800002. «/
boolflags = PackBoolTags(boolflags, boolexample, boolmap);

utility

13/19

/* The resulting new value of ’"boolflags’ will be 0x80005. /x

BUGS
There are some undefined cases if there is duplication of
a given Tag in either list. It is probably safe to say that
the xlastx of identical Tags in TagList will hold sway.

SEE ALSO
utility/tagitem.h, GetTagData (), FindTagItem(), NextTagItem()

1.16 utility.library/RefreshTagltemClones

NAME

RefreshTagItemClones —- Rejuvenates a clone from the original.
SYNOPSIS

RefreshTagItemClones (cloneTagltems, originalTagItems)

A0 Al

void RefreshTagItemClones(struct Tagltem *cloneTagltems,
struct TagItem xoriginalTaglItems);

FUNCTION
If (and only if) the tag items ’'cloneTagltems’ were created

(V36)

from ’"originalTagIltems’ by CloneTagItems (), and if originalTagltems

has not been changed in any way, you can reset the clone list
to its original state by using this function.

INPUTS

CloneTagltems - return value from CloneTagltems (originalTaglItems) .

OriginalTagItems - a tag list that hasn’t changed.

RESULT
None.

EXAMPLE
BUGS

SEE ALSO
CloneTaglItems (), AllocateTagltems (), FreeTagltems ()

1.17 utility.library/SDivMod32

NAME

SDivMod32 —-- Signed 32 by 32 bit division and modulus. (V36)
SYNOPSIS

Quotient:Remainder = SDivMod32 (Dividend, Divisor)

DO D1 DO D1

LONG SDivMod32 (LONG, LONG);

utility 14/19

FUNCTION
Divides the signed 32 bit dividend by the signed 32 bit divisor
and returns a signed 32 bit quotient and remainder.

INPUTS
Dividend — signed 32 bit dividend.
Divisor - signed 32 bit divisor.
RESULTS
Quotient - signed 32 quotient of the division.
Remainder — signed 32 remainder of the division.
NOTES
SEE ALSO

SMult32 (), UDivMod32 (), UMult32()

BUGS

1.18 utility.library/SMult32

NAME

SMult32 —-- Signed 32 by 32 bit multiply with 32 bit result. (V36)
SYNOPSIS

Result = SMult32(Argl, Arg2)

DO DO D1

LONG SMult32(LONG, LONG);

FUNCTION
Returns the signed 32 bit result of multiplying Argl by Arg2.

INPUTS
Argl, Arg2 - signed multiplicands.
RESULTS
Result — the signed 32 bit result of multiplying
Argl by Arg2.
NOTES
SEE ALSO

SDivMod32 (), UDivMod32 (), UMult32()

BUGS

1.19 utility.library/Stricmp

NAME
Stricmp —-- Case—-insensitive string compare. (V37)

utility 15/19

SYNOPSIS
res = Stricmp(stringl, string2)
DO AQ Al

LONG Stricmp (char x, char x);

FUNCTION
Stricmp compares two strings, ignoring case. It handles all
internationalization issues. If the strings have different lengths,

the shorter is treated as if it were extended with zeros.

INPUTS
stringl, string2 - strings to be compared
RESULT
res — negative if stringl is below string2, 0 if they’re the same, and
positive if stringl is above string2.
NOTES

Commodore is planning a localization library which will take care
of most details pertaining to system integration into different
cultures, locales, and territories.

This function will automatically be replaced by a localized version
whenever the locale.library is loaded in memory. As such, the
collating order may change depending on the locale currently
defined by the user. Take this fact into consideration when using
this function, and do not rely on obtaining specific collating
sequences.

BUGS

SEE ALSO
Strnicmp ()

1.20 utility.library/Strnicmp

NAME

Strnicmp—-—- Case-insensitive string compare, length-limited. (V37)
SYNOPSIS

res = Strnicmp(stringl, string2, length)

DO AQ Al DO

LONG Strnicmp (char *, char =, LONG length);

FUNCTION
Strnicmp compares two strings, ignoring case. It handles all
internationalization issues. If the strings have different lengths,
the shorter is treated as if it were extended with zeros. It never

compares more than <length> characters.

INPUTS

utility 16/19

stringl, string2 - strings to be compared
length - maximum number of characters to examine
RESULT
res — negative if stringl is below string2, 0 if they’re the same, and

positive if stringl is above string2.

NOTES
Commodore is planning a localization library which will take care
of most details pertaining to system integration into different
cultures, locales, and territories.

This function will automatically be replaced by a localized version
whenever the locale.library is loaded in memory. As such, the
collating order may change depending on the locale currently
defined by the user. Take this fact into consideration when using
this function, and do not rely on obtaining specific collating
sequences.

BUGS

SEE ALSO
Stricmp ()

1.21 utility.library/TaginArray

NAME

TagInArray -—- Check if a Tag value appears in a Tag array. (V36)
SYNOPSIS

BOOL TagInArray(tag, tagArray)

DO DO AQ

BOOL TaglInArray(Tag tag, Tag xtagArray);

FUNCTION
Perform a quick scan to see if a tag value appears in
an array terminated with TAG_END. Returns TRUE if
the value is found.

The ’'tagArray’ must be terminated by TAG_END. It should

NOT contain other system tag values, such as TAG_MORE

or TAG_IGNORE. Note that this is an array of Tag values, NOT
an array of Tagltems.

This is sort of a "one shot" version of FilterTagItems{() .

INPUTS
tag - Tag value to search array for.
tagArray - a simple array terminated by TAG_END.
RESULT

Boolean success of search.

BUGS

utility

17 /19

SEE ALSO
FilterTagItems ()

1.22 utility.library/ToLower

NAME

ToLower — Convert a character to lowercase. (V37)
SYNOPSIS

char = ToLower (char)

DO DO

char ToLower (char);

FUNCTION
Converts a character to lowercase, handling international character
sets.

INPUTS
char - character to be converted.

RESULT
char - lowercase version of input character.

NOTES
Commodore is planning a localization library which will take care
of most details pertaining to system integration into different
cultures, locales, and territories.

This function will automatically be replaced by a localized version
whenever the locale.library is loaded in memory. As such, the
resulting converted character may change depending on the locale
currently defined by the user. Take this fact into consideration when
using this function, and do not rely on obtaining specific
conversions.

BUGS

SEE ALSO

1.23 utility.library/ToUpper

NAME
ToUpper - Convert a character to uppercase. (V37)

SYNOPSIS
char = ToUpper (char)
DO DO

char ToUpper (char);

utility 18/19

FUNCTION
Converts a character to uppercase, handling international character
sets.

INPUTS
char - character to be converted.

RESULT
char - uppercase version of input character.

NOTES
Commodore is planning a localization library which will take care
of most details pertaining to system integration into different
cultures, locales, and territories.

This function will automatically be replaced by a localized version
whenever the locale.library is loaded in memory. As such, the
resulting converted character may change depending on the locale
currently defined by the user. Take this fact into consideration when
using this function, and do not rely on obtaining specific
conversions.

BUGS

SEE ALSO

1.24 utility.library/UDivMod32

NAME

UDivMod32 —-- Unsigned 32 by 32 bit division and modulus. (V36)
SYNOPSIS

Quotient :Remainder = UDivMod32 (Dividend, Divisor)

DO D1 DO D1

ULONG UDivMod32 (ULONG, ULONG);

FUNCTION
Divides the unsigned 32 bit dividend by the unsigned 32 bit divisor
and returns a unsigned 32 bit quotient and remainder.

INPUTS
Dividend - unsigned 32 bit dividend.
Divisor - unsigned 32 bit divisor.
RESULTS
Quotient - unsigned 32 quotient of the division.
Remainder - unsigned 32 remainder of the division.
NOTES
SEE ALSO

SDivMod32 (), SMult32(), UMult32()

utility 19/19

BUGS

1.25 utility.library/UMult32

NAME

UMult32 -- Unsigned 32 by 32 bit multiply with 32 bit result. (V36)
SYNOPSIS

Result = UMult32(Argl, Arg2)

DO DO D1

ULONG UMult32(ULONG, ULONG) ;

FUNCTION
Returns the unsigned 32 bit result of multiplying Argl by Arg2.

INPUTS
Argl, Arg2 — unsigned multiplicands.
RESULTS
Result — the unsigned 32 bit result of
multiplying Argl by Arg2.
NOTES
SEE ALSO

SDivMod32 (), SMult32(), UDivMod32 ()

BUGS

	utility
	utility.doc
	utility.library/AllocateTagItems
	utility.library/Amiga2Date
	utility.library/CallHookPkt
	utility.library/CheckDate
	utility.library/CloneTagItems
	utility.library/Date2Amiga
	utility.library/FilterTagChanges
	utility.library/FilterTagItems
	utility.library/FindTagItem
	utility.library/FreeTagItems
	utility.library/GetTagData
	utility.library/MapTags
	utility.library/NextTagItem
	utility.library/PackBoolTags
	utility.library/RefreshTagItemClones
	utility.library/SDivMod32
	utility.library/SMult32
	utility.library/Stricmp
	utility.library/Strnicmp
	utility.library/TagInArray
	utility.library/ToLower
	utility.library/ToUpper
	utility.library/UDivMod32
	utility.library/UMult32

