Amniga Mel

Volume Il

September/October 1991

Finding the Aspect Ratio

by Carolyn Scheppner

The pixel aspect ratio describes the ratio of the width (x Aspect) to height (y Aspect) of the pixelsin a
Screen or ViewPort. In order to create atruly What-Y ou-See-1s-What-Y ou-Get graphics display on
the Amiga, you need to find the pixel aspect ratio of the display mode you are using. With the proper
aspect ratio, an application can correctly display and store ILBM files, can rotate objects properly, and
can calculate the proper dimensions to draw true circles and squares so they appear the same on the
Amiga display asthey would on some other output device, like alaser printer.

Under 1.3 and the original Amiga chip set, relatively few display modes were available. Under pre-
2.0 versions of the OS, applications can use hard-coded values for the X/Y pixel aspect ratio. The
aspect ratios for the display modes available to the 1.3 system are (xaspect / yaspect):

NTSC Lores 44/52
PAL Lores 44/44

Halve the X aspect for Hires modes.
HalvetheY aspect for interlaced modes.

These aspect values are more accurate than the values in the original |FF document.

On PAL displays, the pixels of Lores screens and Hires Interlace screens are square, as they have an
aspect ratio of 44/44 and 22/22, respectively. To draw a square 100 pixels wide in one of these PAL
modes, you could simply draw a square that is 100 pixels x 100 pixels. On aPAL Lores Interlace
display, the Y resolution is doubled, making each pixel half astal, so you would haveto draw a
rectangle that was 100 pixels x 200 pixels to get the same size square.

Graphics Finding the Aspect Ratio Page V - 11

Armiga el

Volume Il

On an NTSC display, pixels are not square. Pixelson alLores NTSC screen have an aspect ratio of
44/52 (or 11/13). This meansthat each pixel is dightly narrower than it is high.

To draw atrue square that is 100 pixels wide in an arbitrary display mode, it is necessary to calculate
the correct height for the square based on the pixel aspect ratio.

width / yAspect = height / xAspect
(in words, width isto yAspect as height isto xAspect)
If the X/Y aspect is 44/52 (Lores NTSC), the calculation would be:

100 / 52 = height / 44

hei ght = (100 * 44) / 52 = 4400 / 52 /* solve for height */

Because this example uses only integer math, the ratio must be rounded to the nearest integer. A
fraction a/b (where aand b are integers) rounded to the nearest integer approximately equals:

(a+(b/2)) I/ b

apply thisto the ratio above:
hei ght = (4400 + (52>>1)) / 52 /* with rounding */
hei ght = 4426/52 = 85.115384. .. /* Approximate */
hei ght = 85 /* truncated */

Therefore, to be square on a 44/52 aspect screen, a 100 pixel wide square would have to be 85 pixels
tall.

Under 2.0 and the ECS chip set, the Amigadisplay is more dynamic. It has many new display modes,
each of which has its own distinct pixel aspect ratio. For thisreason, it isnot practical nor desirable to
hard code the aspect ratios for the modes that you know about (except when running under 1.3).
When running under 2.0, the pixel aspect should be determined by querying the display database
(seethearticle ** An Introduction to V36 Screens and Windows'’ from the September /October 1990
issue of Amiga Mail for more information on how to query the display database). A valid Displaylnfo
structure contains the X and Y aspect in the Resolution.x and Resolution.y fields. When writing an
ILBM under 2.0, use these pixel aspects from the display database for the BMHD chunk’ s xAspect
and yAspect values.

The following example demonstrates how to determine the X and Y aspects under both release 2.0 and
13

Page V- 12 Finding the Aspect Ratio Graphics

Amniga Mel

Volume Il

;/* getaspect.c - Execute nme to conpile me with SAS C 5. 10

LC -bl -cfistq -v -y -j 73 getaspect.c

Bl ink FROM LI B: c. 0, getaspect.o TO getaspect LIBRARY LIB:LC.lib,LIB:Amiga.lib
qui t

CGets XY pixel aspect of a screen’s ViewPort
*/

#i ncl ude <exec/types. h>

#i ncl ude <exec/ menory. h>

#i nclude <libraries/dos. h>

#i nclude <intuition/intuition.h>

#i nclude <intuition/intuitionbase.h>
#i ncl ude <graphi cs/ di spl ayi nfo. h>

#i ncl ude <graphi cs/ gf xbase. h>

#i ncl ude <cli b/ exec_protos. h>

#i ncl ude <cli b/ dos_protos. h>

#i nclude <clib/intultion_protos.h>
#i ncl ude <cli b/ graphi cs_protos. h>
#include <stdlib.h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i fdef LATTI CE

int CXBRK(void) { return(0); }
int chkabort(void) { return(0);
#endi f

/* Disable Lattice CTRL/C handling */
} /* really */

#defi ne M NARGS 1

UBYTE *vers = "\0$VER getaspect 37.1";
UBYTE *Copyright =

"getaspect v37.1\nCopyright (c) 1990 Commodore-Anmiga, Inc. Al R ghts Reserved";
UBYTE *usage = "Usage: getaspect”;

voi d bye(UBYTE *s, int e);
voi d cl eanup(void);

struct Library *IntuitionBase;
struct Library *G& xBase;

void main(int argc, char **argv)

struct Screen *first;
struct ViewPort *vp;
struct Displaylnfo D ;
ULONG nodei d;

UBYTE xAspect, yAspect;

if(((argc)&&(argc<M NARGS)) || (argv[argc-1][0]=="7?"))

printf("%\n%\n", Copyright, usage);
bye("", RETURN_CX) ;
}

/* We will check later to see if we can call V36 functions */
IntuitionBase = OpenLi brary("intuition.library", 34);

Gf xBase = OpenlLi brary("graphics.library", 34);
if((!'IntuitionBase)||(!d xBase))

bye("Can’t open intuition or graphics library", RETURN_FAIL);

printf("Using front screen's ViewPort (for exanple purposes only):\n");

first = ((struct IntuitionBase *)IntuitionBase)->FirstScreen;
vp = &first->ViewPort;

xAspect = O; /* So we can tell when we’'ve got it */
i f (G xBase->lib_Version >= 36)
{

nodei d = Get VPMbdel D(vp);

i f (Get Di spl ayl nfoData(NULL, (UBYTE *)&DI, sizeof(struct Displaylnfo),
DTAG DI SP, nodei d))

{

printf("Running 2.0, ViewPort nodeid is $%08I x\ n", nodei d) ;
xAspect = DI . Resol ution.x;

yAspect = DI . Resol ution.y;

printf("Pixel xAspect=%d yAspect=%d\n", xAspect, yAspect);
printf("PaletteRange is %d\n", Dl.Pal etteRange);

Graphics Finding the Aspect Ratio Page V- 13

Armiga el

Volume Il

}
if(!xAspect) /* pre-2.0 or CetDisplaylnfoData failed */
{

nodei d = vp->Mbdes;

printf("Not running 2.0, ViewPort node is $%04l x\ n", nodei d) ;
/* default lores pixel ratio */
xAspect = 44;

yAspect = ((struct G xBase *) & xBase)->Di spl ayFl ags & PAL ? 44 :

i f(modei d & H RES) xAspect = xAspect >> 1;

|f(nDde| d & LACE) yAspect = yAspect >> 1;
printf("Pixel xAspect=%d yAspect=% d\ n", xAspect, yAspect);

}

bye("", RETURN_CK) ;
}

voi d bye(UBYTE *s, int e)
cl eanup();

exit(e);

voi d cl eanup()

52;

i{f (G xBase) O oseli brary(G& xBase);
i}f (I'ntuitionBase) Cl oseLi brary(IntuitionBase);
Page V - 14 Finding the Aspect Ratio Graphics

