
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Who? What? When?
Where? Why? How? Whazzit? Why? How? Whazzit? Who? What? When? Where? Why?
How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?

Q & AQ & AQ & A

Amiga Mail NewsJanuary/February 1992Page 4

Q: Does GadTools support custom string and
integer gadget editing hooks?

A: Yes, here is the tag, which is new for V37:

#define GTST_EditHook GT_TagBase+55

Which is a custom string gadget edit hook
(StringExtend->EditHook) for this gadget.
GadTools will allocate the StringExtend-
>WorkBuffer for you. Defaults to NULL.

Also, two tags for string and integer gadgets
were implemented in GadTools but weren’t
documented. See < intuition/gadgetclass.h>:

STRINGA_Justification - (new for V37)
Controls the justification of the contents of a
string gadget. Choose one of STRINGLEFT,
STRINGRIGHT, or STRINGCENTER (Defaults to
STRINGLEFT).

STRINGA_ReplaceMode (BOOL) - (new for
V37) If TRUE, this string gadget is in replace-
mode. Defaults to FALSE (insert-mode).

Q: I am using ReadArgs() to scan an argument
list. When ReadArgs() finishes with the RDArgs
structure, it leaves a value in rda_Buffer.
Should it do that?

A: No, this is a bug. If you supply a value for
rda_Buffer, it should NULL rda_Buffer, so you
don’t have to do it manually before passing an
RDArgs struct back into ReadArgs().

Volume II
Amiga Mail

Q: I’d like to be able to take a memory region that
I previously allocated with the system’s
AllocMem() function, and then later, sometime
after it’s been used a bit, FreeMem() part of it
(always the last part of it), to shrink the memory
region. Is this OK?

A: This is not supported. While you might be able
to make it seem to work, the OS does not support
such behavior and our standard testing tools will
not like this behavior. Do not do this. Such things
are not possible if we want to eventually move to a
more complex memory system (including virtual
memory and/or protected memory).

Q: I start a program with SYS_Asynch and I have
opened a file ‘‘CON:0/0...’’ as parameter for
SYS_Output. The program starts and the console
window opens, but if I enter a CTRL-C into the
window, the main program gets the CTRL-C and
not the program started via System(). Is there a
way to make sure the program started via System()
gets the CTRL-C?

A: All you have to do is set both input
and output to the same file by setting SYS_Input
to the CON: handle and setting SYS_Output to
NULL. System() and Execute() only redirect signals
from the input stream to themselves (with a few
other minor conditions). They do this with the new
ACTION_CHANGE_SIGNAL packet. On synchronous
(SYS_Synch) System() calls, after the System() call
returns, it redirects signals back to the parent.

Q: Is there an easy way to find the name of a
volume (like Workbench:) from its device name
(like DF0:)?

A: Yes...

if (fib=AllocMem(sizeof(struct
FileInfoBlock),MEMF_PUBLIC))
{
 if (lock=Lock("DF0:",ACCESS_READ))
 {
 if (Examine(lock,fib))
 {
 printf(
 "DF0: - Volume is %s\n",
 fib->fib_FileName);
 }
 UnLock(lock);
 }
 FreeMem(fib,sizeof(struct
FileInfoBlock));
}

Q: What is the correct way to determine whether a
device node in the DosList is associated with a disk
type device like a floppy or hard disk?

A: Under 1.3, try to lock the root of the device.
Under 2.0, use IsFileSystem().

Q: How do you obtain information about the
object a hard link references?

A: The following code obtains a lock on the object
a hard link references:

BPTR l;
LONG success = FALSE;
char buff[256];

l = Lock(hardlinkname,SHARED_LOCK);
if (l)
 success =
 NameFromLock(l,
 &buff[0],
 sizeof(buff));

Q: I am working on a program that runs CLI
based commands from a separate process that is

launched from the main program. This process is
given a configurable stack size. Execute() (under
1.3) or System() (under 2.0) use a default stack
size of 4K. I can explicitly give System() a stack
size but how do I change the stack size that
Execute() uses?

A:

char cmdbuff[whatever];

sprintf(cmdbuff,
 "stack %ld\n%s",
 stacksize,
 command);
Execute(cmdbuff,...);

Q: SASC puts its own version of Ctrl-C checking
into my code. Can I prevent it from doing that?

A: You can disable the SAS CTRL-C/D checking
with:

#ifdef LATTICE
int CXBRK(void) { return(0); }
int chkabort(void) { return(0); }
#endif

Then, when you are waiting on signals, you OR in
SIGBREAKF_CTRL_C as defined in <dos/dos.h>.

ULONG signals, winsig, timersig;

winsig = 1L << mywin->UserPort->mp_SigBit;
timersig = 1L << mytimerport->mp_SigBit;

signals = Wait(winsig |
 timersig |
 SIGBREAKF_CTRL_C);

if (signals & SIGBREAKF_CTRL_C)
{
 cleanup and exit
}

You can also check the signal at busy times with
SetSignal():

if (SetSignal(0,0) & SIGBREAKF_CTRL_C)
 {
 cleanup and exit
 }

Amiga Mail
Volume II

Amiga Mail News January/February 1992 Page 5

Amiga Mail NewsJanuary/February 1992Page 6

Volume II
Amiga Mail

Q: How do I use the CreateNewProc()
NP_ExitCode and NP_ExitData tags?

A: NP_ExitCode points to a cleanup function for
the new process that will get executed when the
process exits. Before the exit code (Process-
>pr_ExitCode) is called, the OS will put the
program return code in d0, and the value from the
NP_ExitData tag (pr_ExitData) in d1. Note that
the cleanup code stashes pr_Flags before calling
pr_ExitCode, so don’t even think about modifying
them. pr_ExitCode should return the return code
passed to it, or a different return code if you wish.

pr_ExitCode/Data really belong to the creator of
the process. An application can easily use the
equivalent to exit()/_exit()/XCEXIT()/etc. to do
process cleanup; this is to give the parent some
hooks into a child that is going away. This can
include processes created via System(). One
example is to send an ‘‘I’m dead’’ message to the
parent. This is quite useful for things like
CreateNewProc() with NP_Entry, so the parent
knows when it’s safe to exit, or for a System() call
so you know when a copy has finished, etc.

Q: Is it safe to assume that the process that runs its
ExitCode exists until after pr_ExitCode is finished?

A: Yes. The ExitCode runs as part of its
process.

Q: Are there any restrictions on what the ExitCode
can do or access?

A: Anything that is legal in the main body of the
process’s code is legal in pr_ExitCode.

Q: Do I win a prize for asking too many questions
in a row?

A: No.

Q: What do the following fatal errors under 2.04
signify: #80000004, #80000002, and #80000008.

A: These particular fatal errors signify what they
have always signified.

The lefthand ‘‘8’’ means dead-end fatal crash.

The low numbers at the right are standard 68000
exception numbers. Ignoring the lefthand digit
(here an 8), any fatal error which is between
0000000 and 00000FF is a standard processor
exception. Books on the 680x0 CPUs should
document the standard processor exceptions.

Anyway, here are the common ones:

Name Explanation
02 Bus Error - Referencing non-

existent memory: bad pointers.
03 Address Error - Referencing odd

addr. as word/long on 68000.
04 Illegal Instruction - Executing garbage:

bad libbase, trashed stack
05 Divide By Zero - Obvious.
08 Priviledge Violation - Executing

priviledged Instr. or garbage (see 04).
0A Line 1010 emulator - Executing a word

beginning with 1010 (see 04).
0B Line 1111 emulator - Executing a word

beginning with 1111 (see 04).

Note that more complex (higher number) fatal
errors are Amiga-specific and are (for the most
part) defined in <exec/alerts.h>. You may have to
OR a couple of them together to build the full alert
number if you don’t find the complex number as-is
in <exec/alerts.h>.

Q: Are DOS ticks different on PAL and NTSC
systems?

A: No. Ticks are a 50th of a second for either PAL
or NTSC. See the AmigaDOS manual for details.

