Amniga el

Volume Il

May/June 1993

Writing Runtime Libraries
with SAS/C 6.x

by John Wieder hirn

The benefits of the Amiga’ s runtime libraries go beyond their ability to share code and save memory.
For asingle application, runtime libraries offer application developers a great deal of flexibility.
Some potential benefitsinclude:

1. Patching applications by releasing new libraries.

If an application’ s runtime libraries house most of the its functionality, a devel oper can easily release
bug fixes or patches by sending registered users the new versions of runtime libraries. SAS/Cisa
good example of this, as most of the compiler’s functionality isin the runtime libraries. Sincethe
libraries aren’t particularly useful without the executeable ‘‘front end’’ of the program (the program
that opens and uses the libraries), devel opers can readily distribute patches el ectronically without
supplying the entire program.

2. Makes program ‘‘leveling’’ easier.

A developer can make an application upgradable from a‘‘ consumer’’ to a‘‘professional’’ edition
using aruntime library. The user can upgrade by adding alibrary. When the software starts up, it
tries to open the enhanced library with the additional functions. If the software can’t open the library,
it configuresitself asthe ** consumer’’ version.

3. Allows greater extensibility.

With careful design, you can expose an interface to your program which allows *‘ scripts'’ to be
written in C or other compiled languages. This can greatly enhance your program’s extensibility
beyond simple ARexx scripting. Done correctly, others can even use such an Application
Programmer Interface (API) to create large scale turnkey applications by tying together smaller
applications using C bindings.

Exec Writing Runtime Libraries Page IIl - 29
with SAS/C 6.x

Armige el

Volume Il

4. Provides simple overlaying.

If an application opens and closes libraries only asit needs them, Exec’s library handling system can
act asasimple overlay manager. For example, consider a desktop publishing application that keeps
all its printing routines in one library and all its screen rendering routines in another library. If the
application closesits rendering library when it needs to print, the OS can expunge the rendering
library if the system islow on memory while loading and using the printing library. When the
application finishes printing, it can close the printing library and reopen the rendering library, so the
OS can expunge the printing library while the application isn’t using it.

The benefits sound useful but, unfortunately, designing and implementing runtime libraries on the
Amiga has always been rather arcane. Developing aruntime library typically requires assembly
programming and an intimate knowledge of obscure system structures with nameslike **‘ROMTag’’
and ‘‘MatchWords'’. Asaresult, only asmall number of programmers are willing to tackle writing a
runtime library.

To help make the task of developing Amigaruntime libraries easy, SAS added library building
featuresto their compiler which eliminates alot of the confusion surrounding runtime library
development.

This article assumes that the reader has a basic knowledge of the structure of an Exec runtime library
(also called ashared library) and the terminology surrounding them. For more information on the
basics of runtime libraries, see the *‘ Introduction to Exec’’ chapter of the Amiga ROM Kernel
Reference Manual: Libraries (3rd edition).

Creating aruntime library using the SAS toolsin Amiga C 6.x breaks down into afew distinct steps:

1. Writing the Functions

When designing the functions, you need to explicitly declare the register usage to the compiler. SAS
doesthiswiththe*'__asm’’ directive and the *‘register’” keyword:

ULONG _ saveds __asmnylibfunc(register __dO ULONG sonevar,
regi ster __a0 APTR soneptr);

The‘*__asm’’ portion of this prototype tells the compiler that mylibfunc uses a specific CPU register
for each function parameter. The*‘register’’ keyword tells the compiler which CPU register to use for
a specific parameter. I1n the sample above, the *‘mylibfunc’’ function requires two parameters. When
the compiler compiles a program that uses ‘‘ mylibfunc’’, it will place the first parameter, somevar, in
CPU register DO and the other parameter, someptr, in CPU register AOQ.

Page Il - 30 Writing Runtime Libraries Exec
with SAS/C 6.x

Amniga el

Volume Il

The SAS/C 6.x tools do impose some rules on the functions that will go into an Exec runtime library.
The most important of these isthat each and every routinein the library callable from outside the
library must be declared using the SAS/IC ‘' saveds'’ directive. For example:

struct Arnadillo * __saveds __asm CreateArnadillo(register __a0 struct NewArmadillo *);

A programmer might not want all of alibrary’ s functions accesible from outside the library. Several
functions may use an internal subroutine that has no legitimate purpose outside of the library. These
internal functions should be declared as*‘static’’ routines. A sample prototype might look like this:

static BOOL ValidateArnadillo(struct Armadillo *);

Don't get internal functions confused with functions with private entry points. Aninternal functionis
only accessible from other functions within the same library as it does not have aentry in the Library
Vector Offset (LVO) table. The static functions are not accessible outside of the library, and do not
needthe'' saveds’ and‘‘ asm’’ directives.

Some of the Amigal s ROM libraries have private entry point functions. These functions havean LVO
and parameters like public functions. The only differenceis that the public functions are documented
(via prototypes and pragmafiles, which are discussed later) so all programmers can use them. For
private entry point functions, only the library designer knows about the functions, so only the library
designer can use them.

2. Selecting Data for the Library Base

Many libraries need some amount of global data (datathat is external to any library function). For
example, if the functions in mylib.library use functions from the graphics.library and intuition.library,
mylib.library would probably keep the library bases of graphics.library and intuition.library inits
globa dataarea.

When an application opens alibrary, the OpenLibrary() function returns a pointer to a Library
structure (defined <exec/libraries.h>). This structure contains information that Exec uses to manage
thelibrary system. Typically, runtime libraries keep their global data directly after their Library
structure. An example of an Amiga ROM library followed by its global datais GfxBase. Thereisa
GfxBase structure defined in <graphics/gfxbase.h> which starts off with an Exec Library structure
and isfollowed by global datafor the graphics.library.

The SAS/C library tools also use this scheme for global data. When building alibrary, the SAS/C
linker, Sink, gathers data declared as global (data outside of any function) and appends that data after
the Library structure. The linker handles this automatically, so the programmer doesn’t have to do
anything special to make this happen.

Exec Writing Runtime Libraries Page IIl - 31
with SAS/C 6.x

Armige el

Volume Il

Because the linker creates the library base automatically, there is no library base structure like the
GfxBase structure. When an application opens this library with OpenLibrary(), OpenLibrary() returns
apointer to aLibrary structure which isfollowed by the library’s global data. Unfortunately, the
application (which we'll call the library’s client) does not know how the linker arranged this global
data. Asaresult, itisimpossible for alibrary client to access any part of the library’s global data
using only the pointer returned by OpenLibrary(). This does not include the Library structure, only
the global datathat followsit.

At first, this*‘feature’’ may seem quite annoying, but it actually serves apurpose. The global datais
global to the library, not the whole world. If the information were made directly accessibleviaaC
structure, the format of the library’s global data would have to remain fixed if the library were to
maintain backwards compatibility. If alibrary needsto make a globa dataitem accessible outside the
library, the library can supply afunction that returns a pointer to that global data.

Asan example, if your library has avariable in its base declared as:

ULONG ActiveArmadillos; /* Nunmber of arnedillos the client’s using */

and you decide that library clients need to access this data, then you can provide a function such as:

ULONG __saveds CountArmadillos(VOD);

which would simply return the value of ActiveArmadillosto the caller. This also meansthat if the
format of *‘ ActiveArmadillos’ should change (say from a simple counter to alinked list of names),
then the function can transparently adapt to the new design.

The 32K Barrier

A potentially important limitation of the SAS/C library generation isthat Slink restrictsthe size of a
library base. They way in which Slink buildsthe library causes the OSto create a*‘near data’’ section
and ‘‘far data’’ section when loading the library into memory. Slink places the library base into the
near section. Because of the way programs access datain the near section, the near section islimited
to 32K.

If 32K istoo limiting, there are alternatives. Oneisto force read-only datainto the far section. To
force avariableinto the far section, usethe‘*_ far’’ keyword when declaring the variable. For
example, when SAS/C encounters the following line in library source code:

APTR __far nylibtable;

it knows to place mylibtable in the far data section. Thiswill generate awarning at link-time, but in
this case the warning isignorable. These items get placed in the far data section, which is shared
among all clients of the library. Since all clients have to share the far data, the data has to either be
read-only or the clients must use a semaphore to gain access to the data.

Page Il - 32 Writing Runtime Libraries Exec
with SAS/C 6.x

Amniga el

Volume Il

If alibrary islow on near data space and strings occupy a significant amount of that space, try the
STRMERGE compile option. Thistellsthe compiler to put the strings in with the library code instead
of in the near data section.

3. Choosing the Typeof Library Base

The SAS runtime library tools offer two waysto handle library bases. Thereisthe conventional
method where thereis only one copy of alibrary’s LV O tables, Library structure, and global data. In
this case, OpenLibrary() returns the same library base pointer for every program that opens the same
library. Thereisalso a second method where each library client receivesits own copy of thelibrary’s
LVO tables, Library structure, and global data. In this case, OpenLibrary() returns a different library
base pointer for every program that opens the same library. The socket.library from Commodore’ s
AS225 TCP/IP networking software is an example of alibrary that returns a unique library base for
each client.

If alibrary returns a different library base to each client, each instance of the library hasits own near
data space. Thiscan be useful if the library needs to allocate non-sharable resources (for example, file
handles) for each client. It can also be used to store parsing state information, callback hooks, or
anything else you need to design as a part of the library base. Note that, although such alibrary can
have many near data spaces, thereis still only one far data space area.

A library that uses separate bases has drawbacks. Since each client receivesits own copy of the
library base, this scheme uses more memory. This scheme also complicates the open and close
routines for the library, although the SAS/C runtime library generation tools hide the complications
from the programmer. Also, the Exec routine SetFunction() will only work on one instance of a
library base. If aclient calls SetFunction() on itsinstance of the library base, it will not effect the
existing library bases of other clients.

The difference between generating a single base library versus generating a multiple base library is
almost too simple. When linking the library, the programmer only needs to use the libinitr.o object
fileinstead of libinit.o. SAS/C takes care of the extrawork involved in creating multiple base library,
so the programmer doesn’t have to worry about it.

Note that if alibrary opens amultiple base library, that library also has to be a multiple base library.

Exec Writing Runtime Libraries Page Il - 33
with SAS/C 6.x

Armige el

Volume Il

4. Handling I nitialization and Shutdown

For every runtime library, the OS reserves several LVOsfor system use. According to the
“‘Introduction to Exec’’ chapter of the Amiga ROM Kernel Reference Manual: Libraries, the system
currently uses three vectors for an open function, a close function, and an expunge function. The OS
callsalibrary’s open function whenever a program opens the library with OpenLibrary(). The
library’ s open routine takes care of the initialization alibrary needsto do for every library client. The
OScdlsalibrary’s close function when a program closes a library with CloseLibrary(). The close
routine relinquishes any resources allocated by the library’s open routine. When the systemislow on
memory, the OS calls alibrary’ s expunge vector to ask the library to relinquish its resources so the
system can unload the library.

The ‘' Introduction to Exec’’ chapter neglects to mention the existence of afourth function known as
thelibrary init function. This function does not have atrue LVO like the other system reserved LV Os,
which is one of the reasons its not well documented. The OS callsalibrary’sinit function when
opening the library for thefirst time. This routine handlesinitialization that is global to the entire
library. It differsfrom thelibrary’s open routine in that the system calls the init routine only once
whereas the system calls the open routine for every OpenLibrary() call. The expunge routine cleans
up after the init routine.

SAS/C automatically takes care of most of the work involved in creating these functions, but it can’t
do everything. For example, if alibrary needsto open other libraries, the compiler can’t take of that
automatically, so the library programmer hasto take care of it.

When SAS/C builds alibrary, it looks for two functionsin the library code, __ UserLiblnit() and
__UserLibCleanup(). If SAS/C findsafunction called __ UserLiblnit(), it includes that functionin
either the library’ sinit function or the library’ s open function, depending on the library’ s base type. If
the compiler findsthe __ UserLibCleanup() function, it includes that function in either the library’s
close function or the library’ s expunge function.

In amultiple base library (alibrary base for each client), SAS/C makesthe __ UserLiblnit() function
part of the library’s open function and the __ UserLibCleanup() function part of the library’s close
function. Inthiscase, the OSends up callingthe UserLiblnit() and __ UserLibCleanup() functions
every time alibrary client calls OpenLibrary() and CloseLibrary().

Because there are some significant restrictions on what OS functions alibrary can call from its
expunge function, the __ UserLibCleanup() function of asingle baselibrary is severely limited.
Specifically, the expunge vector cannot break a Forbid() state! Since there are only a handful of OS
functions that are guaranteed not to break the forbid state, very few OS functions are usable in the
expunge function. Any function that uses the Wait() function breaks aforbid, so functionslike

Page Il - 34 Writing Runtime Libraries Exec
with SAS/C 6.x

Amniga el

Volume Il

WaitPort() areillegal. DOS /O isillegd. Infact, the only functionsthat are legal in expunge are
those which specifically mention in their autodoc that they do not break aforbid. These include (but
are not limited to):

At t enpt Semaphor e() Di sabl e() Fi ndPort ()
Rel easeSemaphor e() Enabl e() Fi ndTask()
Al | ocMem() Si gnal () AddHead()
FreeMen() Cause() AddTai |l ()
Al | ocVec() Get Msg() RenmtHead()
FreeVec() Put Msg() Renirai | ()
Fi ndSemaphor e() Repl yMsg() Fi ndNane()

In asingle base library (one library base for all clients), SAS/C makesthe __UserLiblnit() function
part of the library’sinit function and the __UserLibCleanup() function part of the library’ s expunge
function. When the system encountersthis type of library, it callsthe UserLiblnit() and
___UserLibCleanup() functions only as the system loads and unloads the library.

The prototypes for these routines are:

int __saveds __UserLiblnit(void);
void __saveds __UserLi bd eanup(void);

The following code sample uses these function to open and close some libraries. Notice that the
__UserLiblnit() call returns O if it is successful otherwiseit returns 1.

#i ncl ude <exec/types. h>

#i ncl ude <graphi cs/ gf xbase. h>

#i ncl ude <clib/exec_protos. h>

#i ncl ude <pragmas/ exec_pragnas. h>

struct Library *G xBase
struct Library *SysBase

NULL;
NULL;

int __saveds __UserlLiblnit(void)
int retval = 1;
SysBase = (*((void **)4));

if (& xBase
retval

QpenlLi brary("graphics.library", 39L))
0;

return(retval);

}
void __saveds __UserLi bd eanup(void)

Cl oselLi brary(& xBase) ;

Note that SAS/C does not require the library programmer to supply these functions.

Exec Writing Runtime Libraries Page Il - 35
with SAS/C 6.x

Armige el

Volume Il

5. Constructing the Function Description File

The function descriptor or *‘.fd"’ file defines all the function entry pointsin aruntime library. SAS/C
usesthisfile to help compile the library. The following is an excerpt from the fd file
“‘armadillo_lib.fd"’, which is part of the example source at the end of this article:

##base _Dill oBase
##bi as 30
##public

Cr eat eAr nad
Del et eAr mad
NameAr madi
##private

o——
—~——

en) (A0/ A1, DO)

##end

The ##base command names the global variable that pointsto thislibrary’s base. The ##bias
command is always going to be 30 for SAS/C generated libraries (the reasons are not relevant and are
beyond the scope of thisarticle). The #public command tells SAS/C that the function descriptions
that follow should be callable by al programs. Thisisthe opposite of the ##private command, which
tells SAS/C that the function descriptions that follow all have private entry points. The ##public and
#private commands don’t affect the library itself. These become important later when creating
pragmafiles.

Each function description consists of the name of alibrary function, the name of each of the function’s
parameters, and the corresponding CPU registers the function uses to pass its parameters. For
example, from the NameArmadillo() function description, the *‘dillo’” parameter is passed in register
AQ, the‘*name’’ parameter is passesin register Al, and the ‘*len’” parameter is passed in register DO.
The dash tells the compiler it can use the assembler instruction MOV EM when handling these
registers (although it does not indicate arange of registers). For more information on writing .fd files,
please consult page 29 of the SAS/C 6.0 Library Reference Manual.

6. Compiling and Linking

When compiling library code modules, make sure that stack checking is turned off (with the
NOSTKCHK option), and that all the modules are compiled with the LIBCODE parameter.

Once al the modules compile, the next step isto link them all together into the runtime library. The
Sink syntax for doing thisis:

SLINK TO <l i bname>.library \

FROM LIB:libent.o <lib init nbdul e> <lib code nodul es> \
LI BFD <fdfil e> \

[LIB <link libraries>] \

[LI BPREFI X <prefi x>] \

[LIBID <id_string>] \

[LI BVERSI ON <versi on>] \

[LI BREVI SI ON <revi si on>]

Page Il - 36 Writing Runtime Libraries Exec
with SAS/C 6.x

Amniga el

Volume Il

<l'i bnane> = Library name, for example ‘‘exec’’ or ‘‘dos’’.

<lib init nodul e> = LIB:libinit.o for asingle base library or LIB:libinitr.o for a
multiple base library.

<lib code nodul es> =Your code modules for the library

<fdfile> = The .fd filefor your library

<link libraries> = [Optional] Any link libraries used by your code.

<prefix> = [Optional] Anin-library prefix on your function names.

<id_string> = [Optional] Used to set the __ LibID value.

<ver si on> = [Optional] Version vaue to be embedded in the library.

<r evi si on> = [Optional] Revision value to be embedded in the library.

If you were designing *‘armadillo.library’’ which was comprised of code modules called dillo_open.c,
dillo_close.c and dillo_read.c, an .fd file called armadillo_lib.fd, the SLINK command line might look
likethis:

SLINK TO arnadillo.library \

FROM LIB:libent.o LIB:libinitr.o dillo_open. dillo_close.o dillo_read.o \

LIBFD armadillo_lib.fd \

LI BPREFI X "LI B" \ <-- See '‘Using LIBPREFI X to Distinguish Library Functions’’
fromthe ‘*Additional H nts and Tips'' section bel ow

LIBID "Arnmadill o Library" \

LI BVERSION 1 \

LI BREVI SION 0

The’\' character isused to indicate aline wrapping onto the next line. Inreality, you' d enter the
entire command above as a single typed command. More likely, though, all of thiswould be
combined into a makefile.

If all goeswell, Slink will create the runtime library. The next step isto create prototypes and
pragmas so applications can call the new library.

7. Protos and Pragmas

To make it possible for applications to use the new library, it needs prototypes and pragmas for its
functions. The functions should already have protoypes from the library’ s source code, but you'll
haveto collect them into a single file and remove private functions.

The SAS/C tool fd2pragma generates a pragma file from the function description (‘‘fd’’) file. It
should not generate pragmas for any functions that the fd file has marked as *‘ ##private’’ .

When making <libname>_protos.h and <libname>_pragmas.h files (and matching .i filesif you intend
them to be accessible from assembly language), if your library has externally-accessible private
routines, remove these from the pragmafiles you plan to distribute.

Exec Writing Runtime Libraries Page Il - 37
with SAS/C 6.x

Armige el

Volume Il

Additional Hintsand Tips
(provided by the nice folks at SAS)

C Standard Library and Runtime Libraries

Many standard library functions rely upon some initialization and clean up code that is part of the
standard startup code. Since alibrary does not use such start up code, alibrary can’t call many of
these functions. The stdio functions are an example.

In some cases with multibase libraries only (not single base libraries!), there are ways around this
limitation. Y ou can use malloc() if you make an explicit cal to _MemCleanup() in a
_UserLibCleanup() function. Y ou can uselevel 2 file 1/0O functions (fopen(), fclose(), fread(),
fwrite(), fprintf(), etc.) if you explicitly close al files that you open (of course Amiga programmers
should be used to reliquishing any resourcesthey allocate). Note that for level 2 file 1/0 to work, you
must have been called by a process, not atask, and if you are a general-purpose library, thereisno
good way to guarantee this. Remember that for a single base library, the expunge routine cannot
break a forbid, so a single baselibrary is very limited asto what it can call inits
__UserLibCleanup()!

Don’t Use Stack Extension or Checking

Don't use stack extension or stack checking in aruntime library. Also, the __stack variable will have
no effect.

Using __aligned on Library Functionsand Variables

If youwant the __aligned keyword to work correctly on automatic variables in your library, you must
put the _ aligned keyword on each function listed in your .fd file (dlong with __savedsand __asm.)
Thisis because your library might get called from some other task or process whose stack is not
aligned. Thisuseof __aligned will cost you a pointer register variable for the duration of the function
so declared, however.

Page Il - 38 Writing Runtime Libraries Exec
with SAS/C 6.x

Amniga el

Volume Il

Function Pointers, Callback Hooks, and You

Y ou can't pass function pointers to CreateProc() or callback hooks, even if you correctly use
__saveds. Thisisduetothefact that savedsin aruntime library depends on register A6 being set
up to contain the library base, and this probably won't be the case when your callback is called or
when CreateProc() branchesto your entry point. A good workaround isto pass getreg(REG_A4) as
the userdata item for your callback, then do putreg(REG_A4, userdata) in your callback routine.

Using LIBPREFI X to Distinguish Library Functions

A keen trick isto declare your library routine with an "Extra" parameter in register A6 that isthe
library base, and to use a LIBPREFIX value to differentiate between the outside-the-library version of
the function and the inside-the-library version.

Example:

int myfunc(int x, int vy); /] User’s version of the prototype
#pragma |ibcall MyLibBase nyfunc <magic> // Pragma for nyfunc

/* Now, in the source code for the library: */
int __asm __saveds

LI Bnyfunc(register __dO int x,

register __dl int vy,

register __a6 struct Library *M/Li bBase)

Totell Slink that LIBmyfunc isreally the’myfunc’ referred to in the .fd file, use the
LIBPREFIX=_LIB option. If you do this, you may refer to simply "myfunc’ in your code, both inside
and outside the library, and all such references will go through the library base, giving the user a
chance to SetFunction() your function correctly if desired. The fact that the library base is present as
an explicit variable is a nice bonus.

No Auto-Open Library Code

Y ou can't rely on the auto-open library routines to work correctly in aruntime library. Y ou must
explicitly open each library base, and close it when you are done. Thisincludes SysBase, DOSBase,
etc. Be particularly careful when using UTILLIB or MATH=IEEE, since these routines silently try to
open various library bases for you. Y ou have to remember to open these bases yourself.

Exec Writing Runtime Libraries Page IIl - 39
with SAS/C 6.x

Armige el

Volume Il

About the Example

The exampl e code implements a do-nothing library, called armadillo.library. Thislibrary has five
entry points, and they serve only to demonstrate some of the different library base access features.
Pay particular attention to the prototypes and mapping of the function code to the prototypes and .fd
filefor the library. There are two library routines which are not externally-accessible and one private
externally-accessible entry point which is not reflected in the prototypes or pragmas (but is noted in
the .fd file).

The makefileisa‘*generic’’ framework for aruntime library’s makefile. With only slight
modifications, this same file could be used for most runtime libraries you might want to create (and
you are free to use it as desired).

Page Il - 40 Writing Runtime Libraries Exec
with SAS/C 6.x

