
AmigaDOS Directory Scanning Page II - 49

Amiga Mail
Volume II

Directory Scanning

by Ewout Walraven

Prior to release 2.0, examining the contents of directories using dos.library required the use of two
functions: Examine() and ExNext(). Although these routines perform the task for which they were
intended, they have limitations. One is that these functions require stepping through a directory one
entry at a time. For most applications that need to do directory scanning, it would more efficient to
scan a directory in one pass rather than many. This would significantly reduce the time spent
scanning. Also, these functions don’t know anything about the AmigaDOS wildcards, so any
wildcard processing must be done by the application, not by the OS.

Atomic Directory Scanning

The dos.library function ExAll() is a powerful, V37 replacement for the Examine() and ExNext()
functions:

BOOL ExAll(BPTR mydirlock, UBYTE *mybuffer, LONG mybuffersize, LONG mydatatype, struct
ExAllControl *myexall);

ExAll() performs a one pass directory scan on a directory lock (mydirlock from the prototype above).
ExAll() fills a buffer (mybuffer from the above prototype) with partial or whole ExAllData structures
(from <dos/exall.h>):

struct ExAllData {
 struct ExAllData *ed_Next; /* Pointer to the next structure */
 UBYTE *ed_Name; /* File name */
 LONG ed_Type; /* File type */
 ULONG ed_Size; /* File size */
 ULONG ed_Prot; /* Protection bits (see FIBF_ definitions in <dos/dos.h> */
 ULONG ed_Days; /* Date in three longwords, forming a DateStamp. */
 ULONG ed_Mins;
 ULONG ed_Ticks;
 UBYTE *ed_Comment; /* File comment. Cannot be used */
};

September/October 1991

AmigaDOSDirectory ScanningPage II - 50

Amiga Mail
Volume II

ExAll() copies an ExAllData structure into mybuffer for each entry in the directory. The size of the
ExAllData structure depends on the value in mydatatype. The mydatatype parameter can have the
following values:

ED_NAME - ed_Name - file name
ED_TYPE - ed_Type - file type (directory, file, soft link, etc.)
ED_SIZE - ed_Size - file size
ED_PROTECTION - ed_Prot - file protection bits
ED_DATE - ed_Days, ed_Mins, ed_Ticks - file date in long words
ED_COMMENT - ed_Comment - file comment (not currently supported).

Each of the possible mydatatype values corresponds to a field (or in the case of ED_DATE, a set of three
fields) in the ExAllData structure. When ExAll() writes an ExAllData structure to mybuffer, it writes
only the field that corresponds to mydatatype plus the fields that precede that datatype in the
ExAllData structure. For example, if mydatatype is ED_SIZE, ExAll() would write ed_Next, ed_Type,
and ed_Size to the buffer, ignoring the fields that follow ed_Size in the the ExAllData structure.

The ExAllData structures in mybuffer are organized into a linked list. The ExAllData structure’s
ed_Next field either points to the next directory entry’s ExAllData structure or is NULL if no
directory entries follow. Applications should only access the ExAllData structures using this link list.

As ExAll() scans a directory, it copies partial or whole ExAllData structure into mybuffer until it
either runs out of directory entries or until it runs out of room in mybuffer. If ExAll() runs out of
room, it will return a non-zero value, indicating that your application needs to perform more passes to
finish scanning the directory.

To keep track of everything, ExAll() uses an application-supplied structure called ExAllControl (from
<dos/exall.h>):

struct ExAllControl {
 ULONG eac_Entries; /* The number of entries returned in the buffer */
 ULONG eac_LastKey; /* Used to keep track of the position in the directory. */

/* Do not change this value! */
 UBYTE *eac_MatchString; /* Optional parsed pattern for pattern match. */
 struct Hook *eac_MatchFunc;
 /* Optional application hook to be called for each entry */

 /* Can be used to individually allow entries in the buffer or not */
};

The ExAllControl structure must be allocated and freed using AllocDosObject() and FreeDosObject():

myexallcontrol = AllocDosObject(DOS_EXALLCONTROL, NULL);
FreeDosObject(DOS_EXALLCONTROL, myexallcontrol);

AmigaDOS Directory Scanning Page II - 51

Amiga Mail
Volume II

The ExAllControl structure’s eac_Entries field contains the number of directory entries that ExAll()
wrote into mybuffer. The eac_LastKey field is used by the file system to keep track of its place in the
directory. An application must set this field to zero before calling ExAll() and must not make any
changes to this field between scans of a directory.

The eac_MatchString field is used to pattern match the names of directory entries using the standard
AmigaDOS pattern matching functions (for more on AmigaDOS pattern matching see the article
‘‘Using the AmigaDOS Pattern Matching Functions’’ in the September/October issue of Amiga Mail.
If eac_MatchString is not NULL, ExAll() will only create ExAllData structures for the directory entries
whose names match the matching string. Note that this matching string must have been parsed by
ParsePatternNoCase(). If eac_MatchString is NULL, ExAll() will not perform any pattern matching.

The eac_MatchFunc field points to an application-supplied hook function. If this hook is not NULL,
ExAll() will call the hook function. If the hook function returns TRUE, ExAll() will copy an ExAllData
structure for this directory entry into mybuffer. The hook is called in the following manner:

BOOL = MatchFunc(hookptr, exalldata, typeptr)
 A0 A1 A2

where:

hookptr is a pointer to the hook being called
exalldata is a pointer to the exalldata structure of the current directory entry
typeptr is a pointer to a longword indicating the type of the ExAllData structure (mydatatype from the

ExAll() prototype above).

By supplying a hook, each entry in the directory can be accepted or rejected according to your
applications needs. An application can use both the matching string and MatchFunc() to perform
AmigaDOS pattern matching and custom matching on directory entries.

The code example ListDir.c at the end of this article is a simple example of how to use ExAll(). The
example ListDir2.c is a more complicated example that uses pattern matching and a hook function.

AmigaDOSDirectory ScanningPage II - 52

Amiga Mail
Volume II

MultiDirectory Assigns

As of V36 it is possible to have a logical device assignment to more than one directory (see the
dos.library Autodocs for AssignLock()/AssignAdd()). Since the user can utilize this with the
C:Assign command, it is good practice to support this feature. The shell itself supports multidirectory
assigns, although not all C: commands do. In general, when your application is presented with only a
device name to scan, you should check if it is an assignment. If it is, use GetDeviceProc() to get the
handler for it, process it, and loop until GetDeviceProc() returns NULL, indicating there are no more
directories for this assign. See the Autodocs for details.

The program Find.c is a more realistic example of the usage of patterns and ExAll() and shows a
method of supporting multidirectory assigns. It scans one or more directories or volumes for the
occurrence of a particular pattern. This example recursively scans subdirectories which means that
Find.c may need more stack space than normal to keep from overflowing the stack. Find.c has two
required arguments, a pattern and one or more directories to examine. It has two keywords, FILES
and DIRS, to tell it to scan only for files or directories, respectively. The ALL keyword instructs
Find.c to recurse into subdirectories when it encounters them.

Filename Matching

The release 2.0 dos.library introduced several other functions for directory scanning:

LONG MatchFirst(UBYTE *mypattern, struct AnchorPath *myanchorpath);
LONG MatchNext(struct AnchorPath *myanchorpath);
VOID MatchEnd(struct AnchorPath *myanchorpath);

When using these functions, an application first calls MatchFirst(), which performs some initialization
(like calling ParsePattern() on the pattern matching string, mypattern) and finds the first directory
entry that matches the directory entry mypattern. This pattern is relative to the current directory. An
application must use the the MatchNext() call to find subsequent matching directory entries. After the
application is done looking for matches or the application encounters an error, it must call MatchEnd()
to release internal buffers.

Before using these functions, you need to set up an AnchorPath structure. This structure must be
initialized by MatchFirst() and passed to MatchNext() and MatchEnd() so they can keep track of the
directory scan. An application must not make any changes to this structure while in the middle of a
directory scan (before calling MatchEnd()). This AnchorPath structure must be longword aligned and
is defined in <dos/dosasl.h> as follows:

AmigaDOS Directory Scanning Page II - 53

Amiga Mail
Volume II

struct AnchorPath {
 struct AChain *ap_Base; /* Pointer to the first anchor */
#define ap_First ap_Base /* Compatibility synonym. Don’t use */
 struct AChain *ap_Last; /* Pointer to the last anchor */
#define ap_Current ap_Last /* Compatiblity synomym. Don’t use */
 LONG ap_BreakBits; /* Bit flags to stop scanning */
 LONG ap_FoundBreak; /* Bits flags which caused the stop */
 BYTE ap_Flags; /* Behaviour flags */
 BYTE ap_Reserved; /* Reserved for now */
 WORD ap_Strlen; /* Buffer size for path name */
 /* This used to be ap_Length */
#define ap_Length ap_Flags /* Compatibility for LONGWORD ap_Length */
 /* Don’t use */
 struct FileInfoBlock ap_Info; /* FileInfoBlock for matched entry */
 UBYTE ap_Buf[1]; /* Application allocated buffer for full */
 /* path name*/
};

If your application does not need a full path name to matching directory entries, it should initialize the
ap_Strlen field to zero. In this case, your application can get what it needs from the AnchorPath’s
ap_Info field. It can also get a lock on the directory from ap_Current->an_Lock field. If your
application needs the full path name of matching directory entries, it must allocate a buffer at the end
of the AnchorPath structure and put the size of the buffer, in bytes, into ap_Strlen.

The ap_BreakBits field allows the user to abort a directory scan in progress. The bits in this field
correspond to the SIGBREAKF_ bits defined in <dos/dos.h>. If the corresponding bit is set in
ap_BreakBits, MatchFirst() or MatchNext() will stop a scan in progress if one of those signals occurs.
If this occurs, the bit of the signal that caused the break will be set in ap_FoundBreak.

With this information alone it is possible to perform simple file pattern matching. As previously
mentioned, the first match must be found with MatchFirst(). If MatchFirst() (or MatchNext()) cannot
find a match or it encounters an error, it returns an error number, otherwise it returns a zero (which is
unusual for a dos.library function). If MatchFirst() does not encounter any problems, the application
should look for subsequent matches by calling MatchNext(). The application should call MatchNext()
until it returns an AmigaDOS error value. MatchNext() accepts a pointer to the AnchorPath structure
initialized by MatchFirst().

Normally, the error that MatchNext() returns is ERROR_NO_MORE_ENTRIES, indicating that there are no
more directory entries that match mypattern. MatchEnd() is used to release any resources that were
allocated in the scanning process. Due to a number of bugs in the V36 implementation, these
functions should only be used as of V37. ListPattern.c is a simple example of using
MatchFirst()/MatchNext().

For more complex matching, the ap_Flags field can be used to define the behavior of MatchFirst() and
MatchNext(). Currently, there are several flags defined:

APF_ITSWILD
APF_DODIR
APF_DIDDIR
APF_NOMEMERR
APF_DirChanged
APF_FollowHLinks

AmigaDOSDirectory ScanningPage II - 54

Amiga Mail
Volume II

The APF_ITSWILD flag will be set if a wildcard was present in the pattern after the call to MatchFirst().
It will be used to instruct MatchNext() but your application can check it too and perform an action
depending on its status.

The APF_DODIR flag instructs MatchFirst/Next() to enter a directory if it encounters one. This flag can
be set and reset on an individual basis. Once MatchNext() is finished processing a directory, it will set
the APF_DIDDIR bit and will change the AnchorPath’s directory back to the parent directory.

APF_NOMEMERR indicates that MatchFirst/Next() encountered a fatal out of memory error. Processing
the directory should be aborted and an error returned to the user.

The APF_DirChanged flag indicates that MatchNext() noticed that directory lock has changed since
the previous MatchNext() call.

The APF_FollowHLinks flag tells MatchFirst/MatchNext() to follow hard link directories if the
APF_DODIR bit is set. This feature is in place to avoid confusing applications that do not know
anything about hard links.

Most existing versions of the 2.0 include file <dos/dosasl.h> mention two other flags, APF_DOWILD
and APF_DODOT. These are not currently in use by the system.

The DirComp.c example is a more complex example of using MatchFirst()/Next(). It takes a path,
which may include wildcards, and compares the directory entries it finds with those in the target
directory. If the user specifies the DATE keyword, DirComp will also compare the datestamps. The
ALL keyword tells DirComp to do a recursive scan. For deeply nested directories the BUFFER
keyword can enlarge the buffer that DirComp uses from its standard 256 bytes up to 4096 bytes
(calling it the ‘‘Joanne’’ keyword might be more appropriate).

