
AmigaDOS AmigaDOS Packet Interface
Specification

Page II - 13
(Revised 6/92)

Amiga Mail
Volume II

ACTION_SET_PROTECT 21 SetProtection(...)
ARG1: Unused
ARG2: LOCK Lock to which ARG3 is relative
ARG3: BSTR Name of object (relative to ARG2)
ARG4: LONG Mask of new protection bits

RES1: BOOL Success/failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

This action allows an application to modify the protection bits of an object. The 4 lowest order bits
(RWED) are a bit peculiar. If their respective bit is set, that operation is not allowed (i.e. if a file’s
delete bit is set the file is not deleteable). By default, files are created with the RWED bits set and all
others cleared. Additionally, any action which modifies a file is required to clear the A (archive) bit.
See the dos/dos.h include file for the definitions of the bit fields.

ACTION_SET_COMMENT 28 SetComment(...)
ARG1: Unused
ARG2: LOCK Lock to which ARG3 is relative
ARG3: BSTR Name of object (relative to ARG2)
ARG4: BSTR New Comment string

RES1: BOOL Success/failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

This action allows an application to set the comment string of an object. If the object does not exist
then DOSFALSE will be returned in RES1 with the failure code in RES2. The comment string is limited
to 79 characters.

ACTION_SET_DATE 34 SetFileDate(...) in 2.0
ARG1: Unused
ARG2: LOCK Lock to which ARG3 is relative
ARG3: BSTR Name of Object (relative to ARG2)
ARG4: CPTR DateStamp

RES1: BOOL Success/failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

This action allows an application to set an object’s creation date.

ACTION_FH_FROM_LOCK 1026 OpenFromLock(lock)
ARG1: BPTR BPTR to file handle to fill in
ARG2: LOCK Lock of file to open

RES1: BOOL Success/failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 = NULL

This action open a file from a given lock. If this action is successful, the file system will essentially
steal the lock so a program should not use it anymore. If ACTION_FH_FROM_LOCK fails, the lock is still
usable by an application.

ACTION_SAME_LOCK 40 SameLock(lock1,lock2)
ARG1: BPTR Lock 1 to compare
ARG2: BPTR Lock 2 to compare

RES1: LONG Result of comparison, one of
DOSTRUE if locks are for the same object
DOSFALSE if locks are on different objects

RES2: CODE Failure code if RES1 is LOCK_DIFFERENT

 2.0 only ➧

 2.0 only ➧

AmigaDOSAmigaDOS Packet Interface
Specification

Page II - 14
(Revised 6/92)

Amiga Mail
Volume II

This action compares the targets of two locks. If they point to the same object, ACTION_SAME_LOCK
should return LOCK_SAME.

ACTION_MAKE_LINK 1021 MakeLink(name,targ,mode)
ARG1: BPTR Lock on directory ARG2 is relative to
ARG2: BSTR Name of the link to be created (relative to ARG1)
ARG3: BPTR Lock on target object or name (for soft links).
ARG4: LONG Mode of link, either LINK_SOFT or LINK_HARD

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This packet causes the file system to create a link to an already existing file or directory. There are
two kinds of links, hard links and soft links. The basic difference between them is that a file system
resolves a hard link itself, while the file system passes a string back to DOS telling it where to find a
soft linked file or directory. To the packet level programmer, there is essentially no difference
between referencing a file by its original name or by its hard link name. In the case of a hard link,
ARG3 is a lock on the file or directory that the link is ‘‘linked’’ to, while in a soft link, ARG3 is a
pointer (CPTR) to a C-style string.

In an over-simplified model of the ROM file system, when asked to locate a file, the system scans a
disk looking for a file header with a specific (file) name. That file header points to the actual file data
somewhere on the disk. With hard links, more than one file header can point to the same file data, so
data can be referenced by more than one name. When the user tries to delete a hard link to a file, the
system first checks to see if there are any other hard links to the file. If there are, only the hard link is
deleted, the actual file data the hard link used to reference remains, so the existing hard links can still
use it. In the case where the original link (not a hard or soft link) to a file is deleted, the file system
will make one of its hard links the new ‘‘real’’ link to the file. Hard links can exist on directories as
well. Because hard links ‘‘link’’ directly to the underlying media, hard links in one file system cannot
reference objects in another file system.

Soft links are resolved through DOS calls. When the file system scans a disk for a file or directory
name and finds that the name is a soft link, it returns an error code (ERROR_IS_SOFT_LINK). If this
happens, the application must ask the file system to tell it what the link the link refers to by calling
ACTION_READ_LINK. Soft Links are stored on the media, but instead of pointing directly to data on the
disk, a soft link contains a path to its object. This path can be relative to the lock in ARG1, relative to
the volume (where the string will be prepended by a colon ’:’), or an absolute path. An absolute path
contains the name of another volume, so a soft link can reference files and directories on other disks.

ACTION_READ_LINK 1024 ReadLink(port,lck,nam,buf,len)
ARG1: BPTR Lock on directory that ARG2 is relative to
ARG2: CPTR Path and name of link (relative to ARG1). NOTE: This is a C
string not a BSTR
ARG3: APTR Buffer for new path string
ARG4: LONG Size of buffer in bytes

RES1: LONG Actual length of returned string, -2 if there isn’t enough
space in buffer,or -1 for other errors
RES2: CODE Failure code

This action reads a link and returns a path name to the link’s object. The link’s name (plus any
necessary path) is passed as a CPTR (ARG2) which points to a C-style string, not a BSTR.
ACTION_READ_LINK returns the path name in ARG3. The length of the target string is returned in
RES1 (or a -1 indicating an error).

 2.0 only ➧

 2.0 only ➧

AmigaDOS AmigaDOS Packet Interface
Specification

Page II - 15
(Revised 6/92)

Amiga Mail
Volume II

ACTION_CHANGE_MODE 1028 ChangeMode(type,obj,mode)
ARG1: LONG Type of object to change - either CHANGE_FH or CHANGE_LOCK
ARG2: BPTR object to be changed
ARG3: LONG New mode for object - see ACTION_FINDINPUT, and
ACTION_LOCATE_OBJECT

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This action requests that the handler change the mode of the given file handle or lock to the mode in
ARG3. This request should fail if the handler can’t change the mode as requested (for example an
exclusive request for an object that has multiple users).

ACTION_COPY_DIR_FH 1030 DupLockFromFH(fh)
ARG1: LONG fh_Arg1 of file handle

RES1: BPTR Lock associated with file handle or NULL
RES2: CODE Failure code if RES1 = NULL

This action requests that the handler return a lock associated with the currently opened file handle. The
request may fail for any restriction imposed by the file system (for example when the file handle is not
opened in a shared mode). The file handle is still usable after this call, unlike the lock in
ACTION_FH_FROM_LOCK.

ACTION_PARENT_FH 1031 ParentOfFH(fh)
ARG1: LONG fh_Arg1 of File handle to get parent of

RES1: BPTR Lock on parent of a file handle
RES2: CODE Failure code if RES1 = NULL

This action obtains a lock on the parent directory (or root of the volume if at the top level) for a
currently opened file handle. The lock is returned as a shared lock and must be freed. Note that unlike
ACTION_COPY_DIR_FH, the mode of the file handle is unimportant. For an open file,
ACTION_PARENT_FH should return a lock under all circumstances.

ACTION_EXAMINE_ALL 1033 ExAll(lock,buff,size,type,ctl)
ARG1: BPTR Lock on directory to examine
ARG2: APTR Buffer to store results
ARG3: LONG Length (in bytes) of buffer (ARG2)
ARG4: LONG Type of request - one of the following:
 ED_NAME Return only file names
 ED_TYPE Return above plus file type
 ED_SIZE Return above plus file size
 ED_PROTECTION Return above plus file protection
 ED_DATE Return above plus 3 longwords of date
 ED_COMMENT Return above plus comment or NULL
ARG5: BPTR Control structure to store state information. The control
structure must be allocated with AllocDosObject()!

RES1: LONG Continuation flag - DOSFALSE indicates termination
RES2: CODE Failure code if RES1 is DOSFALSE

This action allows an application to obtain information on multiple directory entries. It is particularly
useful for applications that need to obtain information on a large number of files and directories.

 2.0 only ➧

 2.0 only ➧

 2.0 only ➧

 2.0 only ➧

AmigaDOSAmigaDOS Packet Interface
Specification

Page II - 16
(Revised 6/92)

Amiga Mail
Volume II

This action fills the buffer (ARG2) with partial or whole ExAllData structures. The size of the
ExAllData structure depends on the type of request. If the request type field (ARG4) is set to
ED_NAME, only the ed_Name field is filled in. Instead of copying the unused fields of the ExAllData
structure into the buffer, ACTION_EXAMINE_ALL truncates the unused fields. This effect is cumulative,
so requests to fill in other fields in the ExAllData structure causes all fields that appear in the structure
before the requested field will be filled in as well. Like the ED_NAME case mentioned above, any field
that appears after the requested field will be truncated (see the ExAllData structure below). For
example, if the request field is set to ED_COMMENT, ACTION_EXAMINE_ALL fills in all the fields of the
ExAllData structure, because the ed_Comment field is last. This is the only case where the packet
returns entire ExAllData structures.

struct ExAllData {
 struct ExAllData *ed_Next;
 UBYTE *ed_Name;
 LONG ed_Type;
 ULONG ed_Size;
 ULONG ed_Prot;
 ULONG ed_Days;
 ULONG ed_Mins;
 ULONG ed_Ticks;
 UBYTE *ed_Comment; /* strings will be after last used field */
};

Each ExAllData structure entry has an ead_Next field which points to the next ExAllData structure.
Using these links, a program can easily chain through the ExAllData structures without having to
worry about how large the structure is. Do not examine the fields beyond those requested as they
certainly will not be initialized (and will probably overlay the next entry).

The most important part of this action is the ExAllControl structure. It must be allocated and freed
through AllocDosObject()/FreeDosObject(). This allows the structure to grow if necessary with future
revisions of the operating and file systems. Currently, ExAllControl contains four fields:

Entries - This field is maintained by the file system and indicates the actual number of
entries present in the buffer after the action is complete. Note that a value of zero is possible
here as no entries may match the match string.

LastKey - This field must be initialized to 0 by the calling application before using this
packet for the first time. This field is maintained by the file system as a state indicator of the
current place in the list of entries to be examined. The file system may test this field to
determine if this is the first or a subsequent call to this action.

MatchString - This field points to a pattern matching string parsed by ParsePattern() or
ParsePatternNoCase(). The string controls which directory entries are returned. If this field
is NULL, then all entries are returned. Otherwise, this string is used to pattern match the
names of all directory entries before putting them into the buffer. The default AmigaDOS
pattern match routine is used unless MatchFunc is not NULL (see below). Note that it is not
acceptable for the application to change this field between subsequent calls to this action for
the same directory.

MatchFunc - This field contains a pointer to an alternate pattern matching routine to
validate entries. If it is NULL then the standard AmigaDOS wild card routines will be used.
Otherwise, MatchFunc points to a hook function that is called in the following manner:

AmigaDOS AmigaDOS Packet Interface
Specification

Page II - 17
(Revised 6/92)

Amiga Mail
Volume II

BOOL = MatchFunc(hookptr, data,typeptr)
 A0 A1 A2
hookptr Pointer to hook being called
data Pointer to (partially) filled in ExAllData for item being checked.
typeptr Pointer to longword indicating the type of the ExAll request (ARG4).

This function is expected to return DOSTRUE if the entry is accepted and DOSFALSE if it is to
be discarded.

ACTION_EXAMINE_FH 1034 ExamineFH(fh,fib)
ARG1: BPTR File handle on open file
ARG2: BPTR FileInfoBlock to fill in

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

 This function examines a file handle and fills in the FileInfoBlock (found in ARG2) with information
about the current state of the file. This routine is analogous to the ACTION_EXAMINE_OBJECT action for
locks. Because it is not always possible to provide an accurate file size (for example when buffers
have not been flushed or two processes are writing to a file), the fib_Size field (see dos/dos.h) may be
inaccurate.

ACTION_ADD_NOTIFY 4097 StartNotify(NotifyRequest)
ARG1: BPTR NotifyRequest structure

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This action asks a file system to notify the calling program if a particular file is altered. A file system
notifies a program either by sending a message or by signaling a task.

struct NotifyRequest {
 UBYTE *nr_Name;
 UBYTE *nr_FullName; /* set by dos - don’t touch */
 ULONG nr_UserData; /* for applications use */
 ULONG nr_Flags;

 union {

 struct {
 struct MsgPort *nr_Port; /* for SEND_MESSAGE */
 } nr_Msg;

 struct {
 struct Task *nr_Task; /* for SEND_SIGNAL */
 UBYTE nr_SignalNum; /* for SEND_SIGNAL */
 UBYTE nr_pad[3];
 } nr_Signal;
 } nr_stuff;

 ULONG nr_Reserved[4]; /* leave 0 for now */

 /* internal use by handlers */
 ULONG nr_MsgCount; /* # of outstanding msgs */
 struct MsgPort *nr_Handler; /* handler sent to (for EndNotify) */
};

 2.0 only ➧

 2.0 only ➧

AmigaDOSAmigaDOS Packet Interface
Specification

Page II - 18
(Revised 6/92)

Amiga Mail
Volume II

To use this packet, an application needs to allocate and initialize a NotifyRequest structure (see
above). As of this writing, NotifyRequest structures are not allocated by AllocDosObject(), but this
may change in the future. The handler gets the watched file’s name from the nr_FullName field. The
current file system does not currently support wild cards in this field, although there is nothing to
prevent other handlers from doing so.

The string in nr_FullName must be an absolute path, including the name of the root volume (no
assigns). The absolute path is necessary because the file or its parent directories do not have to exist
when the notification is set up. This allows notification on files in directories that do not yet exist.
Notification will not occur until the directories and file are created.

An application that uses the StartNotify() DOS call does not fill in the NotifyRequest’s nr_FullName
field, but instead fills in the nr_Name field. StartNotify() takes the name from the nr_Name field and
uses GetDeviceProc() and NameFromLock() to expand any assigns (such as ENV:), storing the result
in nr_FullName. Any application utilizing the packet level interface instead of StartNotify() must
expand their own assigns. Handlers must not count on nr_Name being correct.

The notification type depends on which bit is set in the NotifyRequest.nr_Flags field. If the
NRF_SEND_MESSAGE bit is set, an application receives notification of changes to the file through a
message (see NotifyMessage from dos/notify.h). In this case, the nr_Port field must point to the
message port that will receive the notifying message . If the nr_Flags NRF_SEND_SIGNAL bit is set, the
file system will signal a task instead of sending a message. In this case, nr_Task points to the task and
nr_SignalNum is the signal number. Only one of these two bits should be set!

When an application wants to limit the number of NotifyMessages an handler can send per
NotifyRequest, the application sets the NRF_WAIT_REPLY bit in the nr_Flags field. This bit tells the
handler not to send new NotifyMessages to a NotifyRequest’s message port if the application has not
returned a previous NotifyMessage. This pertains only to a specific NotifyRequest--if other
NotifyRequests exist on the same file (or directory) the handler will still send NotifyMessages to the
other NotifyRequest’s message ports. The NRF_WAIT_REPLY bit only applies to message notification.

If an application needs to know if a file or directory exists at the time the application sets up
notification on that file or directory, the application can set the NRF_NOTIFY_INITIAL bit in the
nr_Flags field. If the file or directory exists, the handler sends an initial message or gives an initial
signal.

Handlers should only perform a notification when the actual contents of the file have changed. This
includes ACTION_WRITE, ACTION_SET_DATE, ACTION_DELETE, ACTION_RENAME_OBJECT,
ACTION_FINDUPDATE, ACTION_FINDINPUT, and ACTION_FINDOUTPUT. It may also include other actions
such as ACTION_SET_COMMENT or ACTION_SET_PROTECT, but this is not required (and may not be
expected by the application as there is no need to reread the data).

ACTION_REMOVE_NOTIFY 4098 EndNotify(NotifyRequest)
ARG1: BPTR Pointer to previously added notify request

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This action cancels a notification (see ACTION_ADD_NOTIFY) . ARG1 is the NotifyRequest structure
used to initiate the notification. The handler should abandon any pending notification messages. Note
that it is possible for a file system to receive a reply from a previously sent notification message even
after the notification has been terminated. It should accept these messages silently and throw them
away.

 2.0 only ➧

