
Smart Layout Gadgets

Prior to Release 3, Intuition took care of laying out GREL gadgets whenever the dimensions of the
window change. This was a limitation for a GREL Boopsi gadget that wants to perform its own
layout. Because Intuition didn’t tell the Boopsi gadget that the window’s dimensions changed, the
gadget cannot react to the change.

As of Release 3, Intuition uses a new gadget method called GM_LAYOUT to tell a GREL Boopsi gadget
that its window’s dimensions have changed. The GM_LAYOUT method uses the gpLayout structure
(defined in <intuition/gadgetclass.h>) as its message:

struct gpLayout
{
 ULONG MethodID;
 struct GadgetInfo *gpl_GInfo;
 ULONG gpl_Initial; /* This field is non-zero if this method was invoked
 * during AddGList() or OpenWindow(). zero if this
 * method was invoked during window resizing.
 */
};

For GREL gadgets, Intuition sends a GM_LAYOUT message just after erasing the gadget’s bounding box.
Intuition does not touch the values of the gadget’s bounding box or hit box, it lets the gadget handle
recalculating these values. Thee gadget can lay itself out based on the new window (or requester)
dimensions found in the GadgetInfo structure passed in the GM_LAYOUT message (gpl_GInfo from the
gpLayout structure). Intuition also adds the old and new bounding box of the gadget to the window’s
damaged regions so that the gadget will appear is its new position. The gadget must not perform any
rendering inside the GM_LAYOUT method. Intuition will send a GM_RENDER message to the gadget when
its time to redraw the gadget in its new position.

There are two cases where Intuition sends a GM_LAYOUT message:

When the gadget’s window is resized
When Intuition adds the gadget to a window

There are two ways for a window to gain gadgets. An application can explicitly add gadgets using the
AddGList() function. The window can also gain gadgets during it initialization in the OpenWindow()
call.

For most GREL Boopsi gadgets, Intuition expects the values in the LeftEdge, TopEdge, Width, and
Height fields to follow the existing convention for regular GREL gadgets. Each of these fields has a
flag in the Gadget.Flags field (GFLG_RELRIGHT, GFLG_RELBOTTOM, GFLG_RELWIDTH, and
GFLG_RELHEIGHT, respectively). If that field’s flag is set, Intuition expects the value in that field to be
relative to either the window border or the window dimensions. For example, if GFLG_RELRIGHT is
set, Intuition expects the value in the gadget’s LeftEdge field to be relative to the right window border.

Intuition and WorkbenchBoopsi in Release 3Page IV - 118

Amiga Mail
Volume II

Intuition and Workbench Boopsi in Release 3 Page IV - 119

Amiga Mail
Volume II

There is a special kind of GREL Boopsi gadget called a custom relativity gadget. For this type of
gadget, Intuition expects the values in the LeftEdge, TopEdge, Width, and Height fields to be absolute
measurements, just like the values Intuition expects in these fields for non-GREL gadgets.

Setting the GFLG_RELSPECIAL bit in the Gadget.Flags field marks the gadget as a custom relativity
gadget. The best way to set this bit is by setting the GA_RelSpecial attribute to TRUE when creating
the gadget.

Disabled Imagery

Certain gadget types support using a Boopsi Image as its imagery. These gadget types include the
non-Boopsi boolean gadget, the frbuttonclass gadget, and the buttongclass gadget (This can also
include private gadget classes that support the GA_Image attribute). The Gadget structure contains a
field called GadgetRender which can point to a Boopsi Image object (the GFLG_GADGIMAGE bit in the
Gadget.Flags field should also be set, see the‘‘Intuition Gadgets’’ chapter of the RKRM:Libraries for
more information). Intuition uses this image as the gadget’s imagery.

When a gadget uses this scheme for its imagery, Intuition sends IM_DRAW (and IM_DRAWFRAME)
messages to the image object. These imageclass methods not only tell a Boopsi image to render itself,
they also tell the image which state to draw itself. Some examples of image states include normal,
selected, and disabled.

Prior to Release 3, when Intuition sent a draw message to one of these images, it only used the normal
and selected states. If the image was disabled, Intuition told the image to draw itself as normal or
selected and would render the standard ‘‘ghosted’’ imagery over the gadget.

Under Release 3, Intuition will use the disabled state as well, but only if the gadget’s image object
supports it. When Intuition adds the gadget to a window, Intuition tests the IA_SupportsDisabled
attribute of the gadget’s image object. This imageclass attribute was introduced in Release 3. If this
attribute is TRUE, the image supports disabled imagery (both the IDS_DISABLED and
IDS_SELECTEDDISABLED states), so Intuition sets the GFLG_IMAGEDISABLE flag in the Gadget
structure’s Flags field. Intuition uses this flag to tell if it should use the image’s disabled state in the
IM_DRAW/IM_DRAWFRAME message.

As the IA_SupportsDisabled attribute is a fixed property of an image object, it is only accessible
using the OM_GET method. An application cannot set it or clear it.

Intuition and WorkbenchBoopsi in Release 3Page IV - 120

Amiga Mail
Volume II

Frameiclass Frame Types

For Release 3, the Boopsi image class frameiclass acquired a new attribute, IA_FrameType. This
attribute allows applications to choose a frame style for a frame image. Currently there are four styles
available:

FRAME_DEFAULT - This is
the default frame which
was the only available
frame in V37. It has thin
edges.

FRAME_BUTTON - This is
the imagery for the
standard button gadget.
It has thicker sides and
nicely edged corners.

FRAME_RIDGE - This is a
ridge commonly used by
standard string gadgets.
When recessed (using
the frameiclass attribute
IA_Recessed), this
image appears as a groove. Applications and utilities commonly use the recessed image to visually
group objects on the display.

FRAME_ICONDROPBOX - This broad ridge is the system standard imagery for icon ‘‘drop boxes’’ inside
of an AppWindow (see the ‘‘Workbench and Icon Library’’ chapter of the RKRM:Libraries for more
information on AppWindows). The recessed version has no standard purpose.

Additions to Sysiclass

The class of system images, sysiclass, gained two new images for Release 3, a menu check mark
image and an Amiga key image (respectively, MENUCHECK and AMIGAKEY from
<intuition/imageclass.h>):

Figure 3 - frameiclass frame styles

FRAME_DEFAULT

FRAME_BUTTON

FRAME_RIDGE

FRAME_ICONDROPBOX

Intuition and Workbench Boopsi in Release 3 Page IV - 121

Amiga Mail
Volume II

This class also gained a new attribute called SYSIA_ReferenceFont. This attribute, which is only
accessible with the OM_NEW method, points to a TextFont structure. The MENUCHECK and AMIGAKEY
images will use this font to figure out how large to make the image. This attribute overrides the
SYSIA_DrawInfo font and SYSIA_Size attributes when calculating the dimensions of the image.

About the Example

The example at the end of this article, relative.c, uses three features mentioned in this article. The
example implements a private subclass of gadgetclass. The new class utilizes the frameiclass
IA_FrameType attribute to create a button gadget. The class also takes advantage of the custom
relativity feature. The example opens a window placing one of these gadgets in the middle of the
window, sizing the gadget relative to the window’s dimensions.

The example also illustrates the gadget help feature of Intuition. When the private class dispatcher
receives a GM_HELPTEST message, it returns the bitwise AND of GMR_HELPCODE and the value
0xC0DE. When the example receives an IDCMP_GADGETHELP message at the window’s message port,
the example examines the message to find out what object triggered the help message and printf()s the
results.

Menu Check Mark

Amiga Key Image

Figure 4 - Menu Check Mark and Amiga Key Images

