Amnige Mefl

Volume Il

ACTI ON_SET_PROTECT 21 Set Protection(...)
ARGl : Unused

ARG2: LOCK Lock to which ARG3 is relative
ARG3: BSTR Name of object (relative to ARR)
ARGA: LONG Mask of new protection bits

RES1: BOCL Success/fail ure (DOSTRUE/ DOSFALSE)
RES2: CCDE Failure code if RES1 = DOSFALSE

This action allows an application to modify the protection bits of an object. The 4 lowest order bits
(RWED) are abit peculiar. If their respective bit is set, that operation is not allowed (i.e. if afile's
delete bit is set the fileis not deleteable). By default, files are created with the RWED bits set and all
others cleared. Additionally, any action which modifies afileisrequired to clear the A (archive) bit.
See the dog/dos.h include file for the definitions of the bit fields.

ACTI ON_SET_COMVENT 28 Set Comment (.. .)
ARGL: Unused

ARR2: LOCK Lock to which ARG3 is relative
ARG3: BSTR Name of object (relative to AR®R)
ARAA: BSTR New Comment string

RES1: BOCL Success/fail ure (DOSTRUE/ DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

This action allows an application to set the comment string of an object. If the object does not exist
then DOSFALSE will be returned in RESL1 with the failure code in RES2. The comment string is limited
to 79 characters.

ACTI ON_SET_DATE 34 SetFileDate(...) in 2.0
ARGL: Unused

ARR2: LOCK Lock to which ARG3 is relative

ARG3: BSTR Nanme of nject (relative to AR®R)

ARGA: CPTR Dat eSt anp

RES1: BOCL Success/failure (DOSTRUE/ DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

This action allows an application to set an object’ s creation date.

200nly 0 ACTI ON_FH_FROM LOCK 1026 OpenFromiock(| ock)
ARGL: BPTR BPTR to file handle to fill in
ARR2: LOCK Lock of file to open

RES1: BOCL Success/fail ure (DOSTRUE/ DOSFALSE)
RES2: CCDE Failure code if RES1 = NULL

This action open afile from agiven lock. If thisaction is successful, the file system will essentialy
steal the lock so a program should not use it anymore. If ACTI ON_FH _FROM LOCK fails, the lock is still
usable by an application.

20ony 0 ACTI ON_SAME_LOCK 40 SaneLock(| ockl, | ock2)
ARGL: BPTR Lock 1 to conmpare
ARR2: BPTR Lock 2 to compare

RES1: LONG Result of conparison, one of
DOSTRUE if locks are for the same object
DOSFALSE if locks are on different objects
RES2: CODE Failure code if RES1l is LOCK DI FFERENT

AmigaDOS AmigaDOS Packet Interface Page Il - 13
Specification (Revised 6/92)

Ammiga el

Volume Il

This action compares the targets of two locks. If they point to the same object, ACTI ON_SAVE_LOCK
should return LOCK_SAME.

ACTI ON_MAKE_LI NK 1021 MakelLi nk(name, t ar g, node)
ARGL: BPTR Lock on directory AR is relative to
ARR2: BSTR Name of the link to be created (relative to ARGL)
ARG3: BPTR Lock on target object or name (for soft |inks).
ARGA: LONG Mode of |ink, either LINK_SOFT or LINK_HARD

RES1: BOCL Success/ Fai | ure (DOSTRUE/ DOSFALSE)
RES2: CODE Failure code if RESL is DOSFALSE

This packet causes the file system to create alink to an already existing file or directory. There are
two kinds of links, hard links and soft links. The basic difference between them isthat afile system
resolves a hard link itself, while the file system passes a string back to DOS telling it where to find a
soft linked file or directory. To the packet level programmer, there is essentially no difference
between referencing afile by its original name or by its hard link name. In the case of a hard link,
ARG3isalock onthefile or directory that thelink is*‘linked’’ to, whilein a soft link, ARG3isa
pointer (CPTR) to a C-style string.

In an over-simplified model of the ROM file system, when asked to locate afile, the system scans a
disk looking for afile header with a specific (file) name. That file header points to the actual file data
somewhere on the disk. With hard links, more than one file header can point to the same file data, so
data can be referenced by more than one name. When the user triesto delete a hard link to afile, the
system first checksto seeif there are any other hard links to the file. If there are, only the hard link is
deleted, the actual file data the hard link used to reference remains, so the existing hard links can still
useit. Inthe case where the original link (not ahard or soft link) to afile is deleted, the file system
will make one of itshard linksthe new ‘‘real’’ link to thefile. Hard links can exist on directories as
well. Because hard links*‘link’’ directly to the underlying media, hard links in one file system cannot
reference objects in another file system.

Soft links are resolved through DOS calls. When the file system scans a disk for afile or directory
name and finds that the name is a soft link, it returns an error code (ERROR_| S_SOFT_LI NK). If this
happens, the application must ask the file system to tell it what the link the link refersto by calling
ACTI ON_READ_LI NK. Soft Links are stored on the media, but instead of pointing directly to data on the
disk, a soft link contains a path to its object. This path can be relative to the lock in ARGL, relative to
the volume (where the string will be prepended by acolon :"), or an absolute path. An absolute path
contains the name of another volume, so a soft link can reference files and directories on other disks.

ACTI ON_READ LI NK 1024 ReadLi nk(port, | ck, nam buf, I en)
ARGL: BPTR Lock on directory that ARR is relative to
ARG2: CPTR Path and name of link (relative to ARGL). NOTE: This is a C
string not a BSTR
ARG3: APTR Buffer for new path string
ARAA: LONG Size of buffer in bytes

RES1: LONG Actual length of returned string, -2 if there isn’t enough
space in buffer,or -1 for other errors
RES2: CCDE Fai | ure code

This action reads alink and returns a path name to the link’ s object. The link’s name (plus any
necessary path) is passed as a CPTR (ARG2) which points to a C-style string, not a BSTR.

ACTI ON_READ_LI NK returns the path namein ARG3. The length of the target string is returned in
RES1 (or a-1indicating an error).

Page Il - 14 AmigaDOS Packet Interface AmigaDOS
(Revised 6/92) Specification

Amnige Mefl

Volume Il

ACTI ON_CHANGE_MODE 1028 ChangeMbde(t ype, obj , mode)
ARGL: LONG Type of object to change - either CHANGE FH or CHANGE_LOCK
ARR2: BPTR object to be changed
ARG3: LONG New node for object - see ACTI ON_FI NDI NPUT, and
ACTI ON_LCCATE_OBJECT

RES1: BOCL Success/ Fai | ure (DOSTRUE/ DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This action requests that the handler change the mode of the given file handle or lock to the modein
ARG3. Thisrequest should fail if the handler can’t change the mode as requested (for example an
exclusive request for an object that has multiple users).

20only O} ACTI ON_COPY_DI R_FH 1030 DupLockFr onfH(f h)
ARGL: LONG fh_Argl of file handle

RES1: BPTR Lock associated with file handle or NULL
RES2: CODE Failure code if RES1 = NULL

This action requests that the handler return alock associated with the currently opened file handle. The
request may fail for any restriction imposed by the file system (for example when the file handle is not

opened in ashared mode). Thefile handleisstill usable after this call, unlike the lock in
ACTI ON_FH_FROM LOCK.

2001y § ACTI ON_PARENT _FH 1031 Par ent OF FH(f h)
ARGL: LONG fh_Argl of File handle to get parent of

RES1: BPTR Lock on parent of a file handle
RES2: CCDE Failure code if RES1 = NULL

This action obtains alock on the parent directory (or root of the volume if at the top level) for a
currently opened file handle. Thelock is returned as a shared lock and must be freed. Note that unlike
ACTI ON_COPY_DI R_FH, the mode of the file handle is unimportant. For an open file,

ACTI ON_PARENT_FH should return alock under all circumstances.

ACTI ON_EXAM NE_ALL 1033 ExAl | (1 ock, buff, size, type,ctl)
ARGL: BPTR Lock on directory to exan ne
ARR2: APTR Buffer to store results
ARG3: LONG Length (in bytes) of buffer (ARRX)
ARAA: LONG Type of request - one of the follow ng:
ED NAME Return only file names
ED TYPE Return above plus file type
ED Sl ZE Return above plus file size
ED PROTECTI ON Return above plus file protection
ED DATE Return above plus 3 | ongwords of date
ED COMMENT Return above plus comrent or NULL
ARGS: BPTR Control structure to store state information. The control
structure must be allocated with Al ocDosObject()!

RES1: LONG Continuation flag - DOSFALSE indicates termnation
RES2: CCDE Failure code if RES1 is DOSFALSE

This action allows an application to abtain information on multiple directory entries. It is particularly
useful for applications that need to obtain information on alarge number of files and directories.

AmigaDOS AmigaDOS Packet Interface Page ll - 15
Specification (Revised 6/92)

Ammiga el

Volume Il

This action fills the buffer (ARG2) with partial or whole ExAllData structures. The size of the
ExAllData structure depends on the type of request. If the request type field (ARG4) is set to
ED_NAME, only theed Namefieldisfilled in. Instead of copying the unused fields of the ExAllData
structure into the buffer, ACTI ON_EXAM NE_ALL truncates the unused fields. This effect is cumulative,
so requests to fill in other fieldsin the ExAllData structure causes all fields that appear in the structure
before the requested field will befilled in aswell. Like the ED_NAME case mentioned above, any field
that appears after the requested field will be truncated (see the ExAllData structure below). For
example, if the request field is set to ED_COMVENT, ACTI ON_EXAM NE_ALL fillsin all the fields of the
ExAllData structure, because the ed_Comment field islast. Thisisthe only case where the packet
returns entire ExAllData structures.

struct ExAl |l Data {
struct ExAl | Data *ed_Next;
UBYTE *ed_Nane;
LONG ed_Type;
ULONG ed_Si ze;
ULONG ed_Prot;
ULONG ed_Days;
ULONG ed_M ns;
ULONG ed_Ti cks;
UBYTE *ed_Conment; /* strings will be after last used field */

}s

Each ExAllData structure entry has an ead Next field which points to the next ExAllData structure.
Using these links, a program can easily chain through the ExAllData structures without having to
worry about how large the structureis. Do not examine the fields beyond those requested as they
certainly will not be initialized (and will probably overlay the next entry).

The most important part of this action is the ExAllControl structure. 1t must be allocated and freed
through AllocDosObject()/FreeDosObject(). This alows the structure to grow if necessary with future
revisions of the operating and file systems. Currently, ExAllControl contains four fields:

Entries- Thisfield is maintained by the file system and indicates the actual number of
entries present in the buffer after the action is complete. Note that a value of zero is possible
here as no entries may match the match string.

LastKey - Thisfield must be initialized to 0 by the calling application before using this
packet for thefirst time. Thisfield is maintained by the file system as a state indicator of the
current place in the list of entries to be examined. The file system may test thisfield to
determineif thisisthefirst or a subsequent call to this action.

MatchString - Thisfield pointsto a pattern matching string parsed by ParsePattern() or
ParsePatternNoCase(). The string controls which directory entries are returned. If thisfield
iISNULL, then all entries are returned. Otherwise, this string is used to pattern match the
names of al directory entries before putting them into the buffer. The default AmigaDOS
pattern match routine is used unless MatchFunc is not NULL (see below). Note that it is not
acceptable for the application to change this field between subsequent calls to this action for
the same directory.

MatchFunc - Thisfield contains a pointer to an alternate pattern matching routine to
validate entries. If itisNULL then the standard AmigaDOS wild card routines will be used.
Otherwise, MatchFunc points to a hook function that is called in the following manner:

Page Il - 16 AmigaDOS Packet Interface AmigaDOS
(Revised 6/92) Specification

Amnige Mefl

Volume Il

BOCOL = Mat chFunc(hookptr, data,typeptr)

A0 Al A2
hookpt r Poi nter to hook being called
dat a Pointer to (partially) filled in ExAll Data for item bei ng checked.

typeptr Pointer to longword indicating the type of the ExAll request (ARX).

Thisfunction is expected to return DOSTRUE if the entry is accepted and DOSFALSE if itisto

be discarded.
200ny O] ACTI ON_EXAM NE_FH 1034 Exami neFH(f h, fi b)
ARGL: BPTR File handl e on open file
ARR2: BPTR FilelnfoBlock to fill in

RES1: BOCL Success/ Fai | ure (DOSTRUE/ DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This function examines afile handle and fills in the FilelnfoBlock (found in ARG2) with information
about the current state of thefile. This routine is analogous to the ACTI ON_EXAM NE_OBJECT action for
locks. Becauseit is not always possible to provide an accurate file size (for example when buffers
have not been flushed or two processes are writing to afile), the fib_Size field (see dos/dos.h) may be
inaccurate.

200ny O} ACTI ON_ADD_NOTI FY 4097 StartNotify(NotifyRequest)
ARGL: BPTR Not i f yRequest structure

RES1: BOOL Success/ Fai | ure (DOSTRUE/ DOSFALSE)
RES2: CCDE Failure code if RESl is DOSFALSE

This action asks a file system to notify the calling program if aparticular fileis altered. A file system
notifies a program either by sending a message or by signaling a task.

struct NotifyRequest {
UBYTE *nr _Nane;

UBYTE *nr _Ful | Nane; /* set by dos - don’t touch */
ULONG nr _User Dat a; for applications use */
ULONG nr _Fl ags;
uni on {
struct {
struct MsgPort *nr_Port; /* for SEND MESSAGE */
} nr_Msg;
struct {
struct Task *nr_Task; /* for SEND _SI GNAL */
UBYTE nr _Si gnal Num /* for SEND_SI GNAL */
UBYTE nr _pad][3] ;
} nr_Signal;
} nr_stuff;
ULONG nr _Reserved[4] ; /* leave 0 for now */
/* internal use by handlers */
ULONG nr _MsgCount ; /* # of outstanding nsgs */
struct MsgPort *nr_Handl er; /* handl er sent to (for EndNotify) */
s
AmigaDOS AmigaDOS Packet Interface Page Il - 17

Specification (Revised 6/92)

Ammiga el

Volume Il

To use this packet, an application needs to alocate and initialize a NotifyRequest structure (see
above). Asof thiswriting, NotifyRequest structures are not allocated by AllocDosObject(), but this
may change in the future. The handler gets the watched file' s name from the nr_FullName field. The
current file system does not currently support wild cardsin thisfield, although there is nothing to
prevent other handlers from doing so.

The string in nr_FullName must be an absolute path, including the name of the root volume (no
assigns). The absolute path is necessary because the file or its parent directories do not have to exist
when the notification is set up. Thisalows notification on files in directories that do not yet exist.
Notification will not occur until the directories and file are created.

An application that uses the StartNotify() DOS call does not fill in the NotifyRequest’s nr_FullName
field, but instead fillsin the nr_Namefield. StartNotify() takes the name from the nr_Name field and
uses GetDeviceProc() and NameFromLock() to expand any assigns (such as ENV:), storing the result
innr_FullName. Any application utilizing the packet level interface instead of StartNotify() must
expand their own assigns. Handlers must not count on nr_Name being correct.

The notification type depends on which bit is set in the NotifyRequest.nr_Flagsfield. If the
NRF_SEND_MESSAGE hit is set, an application receives notification of changesto the file through a
message (see NotifyMessage from dos/notify.h). Inthis case, the nr_Port field must point to the
message port that will receive the notifying message . If the nr_Flags NRF_SEND_SI GNAL hit is set, the
file system will signal atask instead of sending amessage. Inthiscase, nr_Task points to the task and
nr_SignalNum is the signal number. Only one of these two bits should be set!

When an application wants to limit the number of NotifyMessages an handler can send per
NotifyRequest, the application sets the NRF_WAI T_REPLY bit in the nr_Flagsfield. Thisbit tellsthe
handler not to send new NotifyMessages to a NotifyRequest’ s message port if the application has not
returned a previous NotifyMessage. This pertains only to a specific NotifyRequest--if other
NotifyRequests exist on the same file (or directory) the handler will still send NotifyMessages to the
other NotifyRequest’s message ports. The NRF_WAI T_REPLY bit only applies to message notification.

If an application needs to know if afile or directory exists at the time the application sets up
notification on that file or directory, the application can set the NRF_NOTI FY_I NI TI AL bit in the
nr_Flagsfield. If thefile or directory exists, the handler sends an initial message or gives an initial
signal.

Handlers should only perform a notification when the actual contents of the file have changed. This
includes ACTI ON_WRI TE, ACTI ON_SET_DATE, ACTI ON_DELETE, ACTI ON_RENAVE_OBJECT,

ACTI ON_FI NDUPDATE, ACTI ON_FI NDI NPUT, and ACTI ON_FI NDOUTPUT. It may also include other actions
such as ACTI ON_SET_COMMENT or ACTI ON_SET_PROTECT, but thisis not required (and may not be
expected by the application as there is no need to reread the data).

200ony ACTI ON_REMOVE_NOTI FY 4098 EndNot i f y(Not i f yRequest)
ARGL: BPTR Pointer to previously added notify request

RES1: BOCL Success/ Fai | ure (DOSTRUE/ DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This action cancels a notification (see ACTI ON_ADD_NOTI FY) . ARGL isthe NotifyRequest structure
used to initiate the natification. The handler should abandon any pending notification messages. Note
that it is possible for afile system to receive areply from a previously sent notification message even
after the notification has been terminated. It should accept these messages silently and throw them

away.

Page Il - 18 AmigaDOS Packet Interface AmigaDOS
(Revised 6/92) Specification

