0/l Sogebiwy jseq sogebiwy

6. - Il obed

Amiga Meall

TABLE OF CONTENTS

asynci o/ O oseAsync
asynci o/ OpenAsync
asynci o/ ReadAsync
asynci o/ ReadAsyncChar
asynci o/ Wi t eAsync
asynci o/ Wit eAsyncChar

asynci o/ O oseAsync asynci o/ O oseAsync

NAVE
Cl oseAsync -- close an async io file.

SYNCPSI S
result = CloseAsync(file);

LONG d oseAsync(struct AsyncFile *);

FUNCTI ON

Closes a file, flushing any pending wites. Once this call has been
made, the file can no I onger be accessed.

I NPUTS
file - the file to close. My be NULL.
RESULT
result - <0 for an error, >= 0 for success. |ndicates whether closing
the file worked or not. If the file was opened in read-node,
then this call will always work. |In case of error,
dos.library/loErr() can give nore informtion.
SEE ALSO

OpenAsync, dos.|ibrary/ d ose()

08 - 1| abed

0/l Sogeblwy jseq

sogebiuy

Amige Mall

asynci o/ OpenAsync

asynci o/ OpenAsync

NAVE
OpenAsync -- open a file for asynchronous |1Q

SYNOPSI S
file = OpenAsync(fileName, accessMde, bufferSize);

struct AsyncFile OpenAsync(STRPTR, UBYTE, LONG);

FUNCTI ON
The naned file is opened and an async file handle returned. |f the
accessMde is MODE_READ, an existing file is opened for reading.
If the value is MDE WRITE, a new file is created for witing. |If
a file of the sane nanme already exists, it is first deleted. |If
accessMbde is MODE_APPEND, an existing file is prepared for witing.
Data witten is added to the end of the file. If the file does not

exists, it is created.

"fileName’ is a filenane and CANNOT be a 5|rrple deV|ce such as N L:, a
wi ndow speci fication such as CON: or RAW, or

"bufferSize' specifies the size of the 1O buffer to use. There are
in fact two buffers allocated, each of roughly (bufferSize/2) bytes
in size. The actual buffer size use can vary slightly as the size
is rounded to speed up DVA

If the file cannot be opened for any reason, the value returned
will be NULL, and a secondary error code w i1 be avail abl e by
calling the routine dos.library/loErr().

I NPUTS
nanme - name of the file to open
accessMbde - one of MODE_READ, MODE_WRI TE, or MODE_APPEND
bufferSize - size of 10 Dbuffer to use. 8192 is recomended as it
provi des very good performance for relatively little
nenory.

RESULTS
file - an async file handle or NULL for failure. You should not access
the fields in the AsyncFile structure, these are private to the
async IO routines. 1In case of failure, dos.library/loErr() can
give nore information.

SEE ALSO
Cl oseAsync(), dos.library/ QOpen()

asynci o/ ReadAsync

asynci o/ ReadAsync

NAMVE
ReadAsync -- read bytes froman async file.

SYNOPSI S
actual Length = ReadAsync(file, buffer, nunBytes);

LONG ReadAsync(struct AsyncFile *file, APTR buffer, LONG nunBytes);

FUNCTI ON
Read() reads bytes of information froman opened async file

into the buffer given. ’'nunBytes’ is the nunber of bytes to read from
the file.

The value returned is the length of the information actually read.

So, when 'actual Length’ is greater than zero, the value of

“actual Length’ is the the number of characters read. Usually
ReadAsync() will try to fill up your buffer before returning. A value
of zero neans that end-of-file has been reached. Errors are indicated
by a value of -1.

I NPUTS
file - opened file to read, as obtained from OpenAsync()
buffer - buffer where to put bytes read
nunBytes - nunber of bytes to read into buffer

RESULT
actual Length - actual nunber of bytes read, or -1 if an error. |In
case of error, dos.library/loErr() can give nore
information.
SEE ALSO

OpenAsync(), O oseAsync(), WiteAsync(), ReadCharAsync(),
dos. library/ Read()

sogebiuy

0/1 Soaebiwy 1se4

18 - |1 3bed

asynci o/ ReadChar Async asynci o/ ReadChar Async

ReadChar Async -- read a single byte froman async file.

SYNOPSI S
byte = ReadChar Async(file);

LONG ReadChar Async(struct AsyncFile *file);

FUNCTI ON

This function reads a single byte froman async file. The byte is

returned, or -1 if there was an error reading, or if the end-of-file
was reached.

I NPUTS
file - opened file to read from as obtained from QpenAsync()
RESULT

byte - the byte read, or -1 if no byte was read. |In case of error,
dos.library/loErr() can give nore information.

SEE ALSO

OpenAsync(), O oseAsync(), WiteCharAsync(), ReadAsync()
dos. |i brary/ Read()

Amige Madl
—_—
asynci o/ WiteAsync asynci o/ Wi teAsync
NAME

WiteAsync -- wite data to an async file.

SYNCPSI S
actual Length = WiteAsync(file, buffer, nunBytes);

LONG WiteAsync(struct AsyncFile *file, APTR buffer, LONG nunBytes);
FUNCTI ON

WiteAsync() wites bytes of data to an opened async file. 'nunBytes’

indi cates the nunber of bytes of data to be transferred. 'buffer’

points to the data to wite. The value returned is the |ength of

information actually witten. So, when 'nunBytes’ is greater than

zero, the value of 'nunBytes’' is the nunber of characters witten.

Errors are indicated by a value of -1.
I NPUTS

file - an opened file, as obtained from OpenAsync()
buffer - address of data to wite

nunBytes - nunber of bytes to wite to the file
RESULT
actual Length - nunber of bytes witten, or -1 if error. |In case
of error, dos.library/loErr() can give nore
i nformation.
SEE ALSO

OpenAsync(), O oseAsync(), ReadAsync(), WiteCharAsync(),
dos.library/Wite

28 - 1| abed

0/l Sogeblwy jseq

sogebiuy

Amige Mall

asynci o/ Wi t eChar Async asynci o/ Wit eChar Async

WiteCharAsync -- wite a single byte to an async file.

SYNOPSI S
result = WiteCharAsync(file,byte);

LONG Wit eChar Async(struct AsyncFile *, UBYTE byte);

FUNCTI ON
This function wite a single byte to an async file.

I NPUTS
file - an opened async file, as obtained from OpenAsync()
byte - byte of data to add to the file

RESULT
result - 1 if the byte was witten, -1 if there was an error. |In
case of error, dos.library/loErr() can give nore information.
SEE ALSO
OpenAsync(C oseAsync(), ReadAsync(), WiteCharAsync(),

), do
dos.library/Wite

/* ASyncl O h - Header File for ASynclOc */
#i fndef ASYNCI O H
#defi ne ASYNCI O H

[k ko ko ok ok ok ok ok Kk ok ok Kk ko Kk ok kR ok Kk ok ok K Kk ok o K Kk K Kk R kR R kR K kR K K kR Kk [

#i ncl ude <exec/types. h>
#i ncl ude <exec/ports. h>
#i ncl ude <dos/dos. h>

[k ko ko ok ok ok ok ok Kk ok ok Kk ko Kk ok kR ok Kk ok ok K Kk ok o K Kk K Kk R kR R kR K kR K K kR Kk [

struct AsyncFile
{

BPTR af _File;
struct MsgPort *af _Handl er;
APTR af _Off set;
LONG af _BytesLeft;
ULONG af _Buf fer Si ze;
APTR af _Buffers[2];

struct StandardPacket af_Packet;
struct MsgPort af _Packet Port;

ULONG af _Current Buf ;
UBYTE af _Packet Pendi ng;
UBYTE af _ReadMode;

[k ko ok ok ok ok ok ok Kk ok ok Kk ok Kk ok kK ok Kk ok Kk ok o K Kk K Kk R kR K kR K kR K K Rk Kk [

#define MODE_ READ 0 /* read an existing file */
#define MODE WRITE 1 /* create a newfile, delete existing file if needed */
#define MODE_APPEND 2 /* append to end of existing file, or create new *

[k ko ko ok Kk ok ok Kk ok ok Kk Kk ok kK Kk ok Kk o K Kk R Kk R Kk R R kR K kR K K kR Kk [

struct AsyncFile *OpenAsync(STRPTR fil eNane, UBYTE node, LONG bufferSize);
LONG O oseAsync(struct AsyncFile *file);

LONG ReadAsync(struct AsyncFile *file, APTR buf, LONG nunBytes);

LONG ReadChar Async(struct AsyncFile *file);

LONG Wi teAsync(struct AsyncFile *file, APTR buf, LONG nunBytes);

LONG Wi teChar Async(struct AsyncFile *file, char ch);

[k ko ko ok ok ok ok ok Kk ok ok Kk ko Kk ok kK o K Kk ok Kk ok o K Kk K Kk R kR R kR K kR K K Kk Kk [

#endi f /* ASYNCIO H */

sogebiuy

0/1 Soaebiwy 1se4

€8 - |1 abed

Amiga Meall

;/* ASyncl O.c - Execute ne to conpile with SAS/C 5.10b
lc -cfist
quit

*/

#i
#i
#i
#i
#i

#i
#i

#i

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

ncl ude
ncl ude

ncl ude

-v -j 73 asyncio.c

<exec/ types. h>
<exec/ exec. h>
<dos/ dos. h>

<dos/ dosext ens. h>
<stdi o. h>

<cl i b/ exec_protos. h>
<cl i b/ dos_prot os. h>

"asynci o. h"

[%k ok ko ok ok ok ok ko Kk ok ok Kk ok ok Kk ok ok Kk Kk ok kR ok ko K K ok K Kk R kR Kk kR k[

static VO D SendAsync(struct AsyncFile *file, APTR arg2)
{

}

/* send out an async packet to the file system */

e-
e-

e-

>af _Packet.sp_Pkt.dp_Port = &file->af_PacketPort;
>af _Packet.sp_Pkt.dp_Arg2 = (LONG arg2;

fil
fil
Put Msg(fil e->af _Handl er, &file->af_Packet.sp_Msg);
fil

>af _Packet Pendi ng = TRUE;

[%k ok ko ok ok kK ko Kk ok ok K Kk ok ok Kk ok ok Kk o Kk ok kR ko kR ok Kk ok K K K R kR Rk kR k[

static VO D Wit Packet (struct AsyncFile *file)
{

}

/* This enabl es signalling when a packet cones back to the port */

file-

>af _Packet Port. np_Fl ags = PA_SI GNAL;

/* Wait for the packet to cone back, and renopve it fromthe nessage

* i

st. Since we know no other packets can cone in to the port, we can

safely use Renpve() instead of GetMsg(). If other packets could cone in,

a

case

*
* we would have to use GetMsg(), which correctly arbitrates access in such
*
*

Rermove((struct Node *)WaitPort (& ile->af_PacketPort));

/* set the port type back to PA | GNORE so we won't be bothered with
* spurious signals

*/
file-

>af _Packet Port. np_Fl ags = PA_| GNORE;

/* packet is no |onger pending, we got it */

file-

>af _Packet Pendi ng = FALSE;

[%k ok ko ok Kk ok ko kK Kok ok Kk ok ok Kk ok ok Kk o Kk ok kR ko ko Kk ok K K K Rk Rk Rk kR k[

struct AsyncFile *QOpenAsync(STRPTR fil eNane, UBYTE node, LONG bufferSize)
{
struct AsyncFile *file;
struct FileHandle *fh;
/* The buffer size is rounded to a multiple of 32 bytes. This will nake
* DMA as fast as can be
*/

bufferSize = (bufferSize + 31) & OxffffffeO;

/* now al |l ocate the ASyncFile structure, as well as the read buffer. Add
* 15 bytes to the total size in order to allow for |ater quad-|ongword

* al
*/
if (f
{
i
{

ignement of the buffers

ile = All ocVec(si zeof (struct AsyncFile) + bufferSize + 15,
MEMF_ANY| MEMF_CLEAR))

if (nmode == MODE_READ)

file->af _File Open(fil eNane, MODE_CLDFI LE) ;
fil e->af _ReadMbde TRUE;

}
else if (node == MODE_WRI TE)
file->af _File = Open(fil eName, MODE_NEWFI LE) ;
}
else if (node == MODE_APPEND)

/* in append node, we open for witing, and then seek to the

* end of the file. That way, the initial wite will happen at
* the end of the file, thus extending it
*/

if (file->af _File = Open(fil eName, MODE_READWRI TE))
if (Seek(file->af_File, 0, OFFSET_END) < 0)
{

Close(file->af _File);
file->af _File = NULL;

i{f ('file->af _File)

/* file didn't open, free stuff and |eave */
FreeVec(file);
return(NULL);

}

/* initialize the ASyncFile structure. W do as nuch as we can here,

* in order to avoid doing it in nore critical sections

* Note how the two buffers used are quad-longword aligned. This hel ps
* performance on 68040 systens with copyback cache. Aligning the data
* avoids a nasty side-effect of the 040 caches on DVA. Not aligning

* the data causes the device driver to have to do some nagic to avoid
* the cache problem This nagic will generally involve flushing the

* CPU caches. This is very costly on an 040. Aligning things avoids

* the need for magic, at the cost of at nobst 15 bytes of ram

*/

fh = file->af _File);

file->af _Handl er = fh->f h_Type;

file->af _BufferSize = bufferSize / 2;

file->af _Buffers[0] =

(APTR) (((ULONQ fil e + sizeof (struct AsyncFile) + 15) & OxfffffffO0);
file->af _Buffers[1] =
(APTR) ((ULONG fil e->af _Buffers[0] + file->af_BufferSize);

file->af _Off set = file->af _Buffers[0];
/* this is the port used to get the packets we send out back.

* It is initialized to PA_IGNORE, which neans that no signal is

* generated when a nessage conmes in to the port. The signal bit nunber
* Is initialized to SIGB_SINGLE, which is the special bit that can

* be used for one-shot signalling. The signal will never be set,

* since the port is of type PAIGNORE. W' || change the type of the
* port later on to PA_SIGNAL whenever we need to wait for a nessage
* to come in.

*

* The trick used here avoids the need to allocate an extra signal bit
* for the port. It is quite efficient.

*

/

file->af _Packet Port.np_MsgLi st. | h_Head =
(struct Node *)&file->af _PacketPort.np_MsgList.|h_Tail;
file->af _PacketPort.np_MsgList.|lh_Tail Pred =
(struct Node *)&file->af _PacketPort.np_MsgLi st.|h_Head;
MSGPORT;

fil e->af _Packet Port. np_Node. | n_Type = NT_| H
file->af _Packet Port. np_Fl ags = PA_| G\NCRE;
file->af _PacketPort.np_SigBit = SI GB_SINGLE;
fil e->af _Packet Port. np_Si gTask = Fi ndTask(NULL);

file->af _Packet.sp_Pkt.dp_Link
file->af _Packet.sp_Pkt.dp_Argl
fil e->af _Packet.sp_Pkt.dp_Arg3
file->af _Packet.sp_Msg. m_Node. | n_Name
file->af _Packet.sp_Msg. m_Node. | n_Type

& il e->af _Packet.sp_Msg;
fh->fh_Argl;

file->af _BufferSize;

(STRPTR) &f i | e- >af _Packet . sp_Pkt ;
NT_MVESSAGE;

18 - 1| abed

0/l Sogeblwy jseq

sogebiuy

Amige Mall

file->af _Packet.sp_Msg. m_Length = sizeof (struct StandardPacket);

if (nmode == MODE_READ)
{

/* if we are in read node, send out the first read packet to the
file system Wiile the application is getting ready to read
data, the file systemwill happily fill in this buffer with

it will be in the buffer waiting
/

EEE I I Y

file->af _Packet.sp_Pkt.dp_Type = ACTI ON_READ;
if (file->af_Handler)
SendAsync(file,file->af _Buffers[0]);

el se
{
file->af _Packet.sp_Pkt.dp_Type = ACTI ON_WRI TE;
file->af BytesLeft = file->af _BufferSize;
}

return(file);

]k ko ok ok kK kK ko ok Kk ok ok Kk ok ok Kk o Kk kR ko ko Kk ok K K Rk kR R Rk kR k[

LONG O oseAsync(struct AsyncFile *file)
{

LONG resul t;

LONG resul t 2;

result = 0;
if (file)

if (file->af_Packet Pendi ng)
Wi t Packet (file);

result = file->af_Packet.sp_Pkt.dp_Resl;
result2 = file->af _Packet.sp_Pkt.dp_Res2;
if (result >= 0)

if (!file->af _ReadMode)

{

/* this will flush out any pending data in the wite buffer */
result = Wite(file->af_File,

i
file- >af_Buffers[f|Ie->af_Current Buf],
file->af _BufferSize - file->af_ByteslLeft);
result2 = loErr();

}

Close(file->af _File);
FreeVec(file);

Set | oErr(result2);
}

return(result);

]k ok ko ok Kk kK ok Kk ok ok Kk ok ok Kk ok ok Kk o Rk kK ko ko Kk ok K K Rk kR Rk kR k[

LONG ReadAsync(struct AsyncFile *file, APTR buf, LONG nunBytes)

{
LONG t ot al Byt es;
LONG byt esArri ved;

total Bytes = 0;

/* if we need nore bytes than there are in the current buffer, enter the

* read | oop
*/

while (nunBytes > file->af_BytesLeft)

/* this takes care of NL: */

DMVA transfer, so that by the tine the application needs the data,

if (!file->af_Handl er)
return(0);

Wi t Packet (file);

bytesArrived = fil e->af _Packet.sp_Pkt.dp_Resl;
if (bytesArrived <= 0)
{

/* error, get out of here */
Set | oErr (file->af _Packet.sp_Pkt.dp_Res2);
return(-1);

/* enable this section of code if you want special processing for
* reads bigger than the buffer size

*/

#i f def OPTI M ZE_BI G_READS

#endi f

}

if (nunBytes > file->af_BytesLeft + bytesArrived + file->af_BufferSize)
t if (file->af _BytesLeft)
{ CopyMen(fil e->af _Offset, buf, file->af _ByteslLeft);
file->af _BytesLeft;
(APTR) ((ULONG) buf + file->af _BytesLeft);

total Bytes += file->af_ByteslLeft;
file->af _BytesLeft =0

nunmByt es -=
buf =
}
if (bytesArrived)
CopyMen(fil e->af _Buffers[file->af_CurrentBuf], buf, bytesArrived);
nunByt es -= bytesArrived;
buf = (APTR) ((ULONG) buf + bytesArrived);
total Bytes += bytesArrived;
bytesArrived = Read(file->af_File, buf, nunBytes);

if (bytesArrived <= 0)
return(-1);
SendAsync(file, file- >af Buffers[O])
file->af _CurrentBuf =
file->af _BytesLeft = 0;

return(total Bytes + bytesArrived);

if (file->af _BytesLeft)
{

CopyMen(fil e->af _Offset, buf,file->af_BytesLeft);
ile->af _BytesLeft;

-=file-
= (APTR) ((ULONG) buf + file->af_ByteslLeft);
= file->af _BytesLeft;

nunByt es
buf

total Bytes +
}

/* ask that the buffer be filled */
SendAsync(file, file->af _Buffers[1-file->af_CurrentBuf]);

file->af _Off set = file->af _Buffers[file->af_CurrentBuf];
file->af _CurrentBuf = 1 - file->af_CurrentBuf;
file->af _BytesLeft = bytesArrived;

if (nunBytes)

}

CopyMen(fil e->af _Of f set, buf, nunBytes);
file->af _BytesLeft -= nurrBy es;
file->af _Offset (APTR)((ULCNQfl | e->af _Off set + nunBytes);

return (total Bytes + nunBytes);

sogebiuy

0/1 Soaebiwy 1se4

G8 - || obed

Amiga Meall

file->af _CurrentBuf
file->af _Off set
file->af _BytesLeft

1 - file->af_CurrentBuf;
file->af _Buffers[file->af_CurrentBuf];
file->af _BufferSize;

[%k ok ok ko ok Kk ko ok kK ok ok K Kk ok ok Kk ok ok Kk o Kk kR ok ko Kk ok K K R kR Kk kR k[

LONG ReadChar Async(struct AsyncFile *file) }
char ch; if (nunBytes)
if (file->af _BytesLeft) CopyMen(buf, fil e->af _Of f set, nunBytes);
file->af _BytesLeft -= nunBytes;
/* if there is at least a byte left in the current buffer, get it file->af _Off set = (APTR) ((ULONQfil e->af _Off set + nunBytes);
* directly. Also update all counters }
*/

return (total Bytes + nunBytes);

ch = *(char *)file->af _Ofset;
file->af _BytesLeft--;
file->af _Oifset = (APTR) ((ULONGfile->af Offset + 1); J Rk Rk kR k kR KRRk kR KRRk kR kR kR kKR kR KKKk kR KRk R kK kR KKKk Kk [
return((LONG ch); LONG Wi teChar Async(struct AsyncFile *file, char ch)
} {
if (file->af _BytesLeft)
/* there were no characters in the current buffer, so call the main read
* routine. This has the effect of sending a request to the file systemto /* if there’s any roomleft in the current buffer, directly wite

* have the current buffer refilled. After that request is done, the
* character is extracted for the alternate buffer, which at that point

* the byte into it, updating counters and stuff.
*/
* becomes the "current" buffer

*/ *(char *)file->af _Offset = ch;
file->af _BytesLeft--;
if (ReadAsync(file, &h,1) > 0) file->af _Offset = (APTR) ((ULONG)file->af _Offset + 1);
return((LONG ch);
/* one byte witten */
/* We couldn't read above, so fail */ return(l);
}
return(-1);
} /* there was no roomin the current buffer, so call the main wite
* routine. This will effectively send the current buffer out to disk,
J ARk R R KRRk kR KKKk kR KRRk kR KRRk kKRR kR kR Rk kR KRk R Rk kR kK kK Kk * wait for the other buffer to come back, and then put the byte into
*it.
LONG Wi teAsync(struct AsyncFile *file, APTR buf, LONG nunBytes) */

LONG t ot al Byt es; return(WiteAsync(file, &h,1));

total Bytes = 0;
while (nunBytes > file->af_BytesLeft)
{

/* this takes care of NIL: */
if (!file->af_Handler)

file->af _Of set
file->af _BytesLeft

= | e->af _Buffers[file->af _CurrentBuf];
return(nunBytes + tot

fi
file->af _BufferSize;
al Bytes);
if (file->af _BytesLeft)
{
CopyMen(buf, fil e->af _Of f set, nunByt es);
nunByt es -= file->af _BytesLeft;
buf = (APTR) ((ULONG) buf + file->af_BytesLeft);
total Bytes += file->af_BytesLeft;
}
if (file->af_Packet Pendi ng)
Wai t Packet (file);
if (file->af_Packet.sp_Pkt.dp_Resl <= 0)
{
/* an error occurred, |eave */
Setl oErr(fil e->af _Packet.sp_Pkt.dp_Res2);
return(-1);
}

/* send the current buffer out to disk */
SendAsync(file,file->af _Buffers[file->af_CurrentBuf]);

98 - || abed

0/1 Sogebiwy 1se4

sogebiuy

Amige Mall

;/* ASyncExanple.c - Execute ne to conpile ne with SAS/C 5. 10b
LC -cfistqg -v -y -j 73 ASyncExanple.c

Bl i nk FROM LI B: c. 0, ASyncExanpl e. o TO ASyncExanpl e LI BRARY

LIB: LC lib,LIB: Amiga.lib,asyncio.o

quit ;*/

#i ncl ude <exec/types. h>

#i ncl ude <exec/ exec. h>

#i ncl ude <dos/dos. h>

#i ncl ude <dos/ dosextens. h>
#i ncl ude <stdio. h>

#i ncl ude <clib/exec_protos. h>
#i ncl ude <clib/dos_protos. h>

#i ncl ude "asyncio. h"

#i f def LATTICE
int CXBRK(void) { return(0); }

int chkabort(void) { return(0);

#endi f
VO D mai n(VO D)
struct AsyncFile *in;

LONG num
struct AsyncFile *out;

/* Disable Lattice CTRL/C handling */
}

if (in = OpenAsync("s: Startup-Sequence", MODE READ, 8192))
{

if (out = OpenAsync("t:test_sync", MODE_WRITE, 8192))

whil e ((num = ReadChar Async(in)) >= 0)

Wi teChar Async(out, nun;

Cl oseAsync(out);
}
Cl oseAsync(in);

