
Intuition and WorkbenchBoopsi in Release 3Page IV - 116

Amiga Mail
Volume II

The gadget also has the option of using GMR_HELPCODE instead of GMR_HELPHIT. GMR_HELPCODE is a
little peculiar as a return value. Although GMR_HELPCODE is 32 bits long, Intuition identifies
GMR_HELPCODE using only its upper 16 bits. If the upper 16 bits of GM_HELPTEST’s return value
matches the upper 16 bits of GMR_HELPCODE, Intuition copies the lower word of the return value into
the Code field of the IDCMP_GADGETHELP message. The Boopsi gadget is free to set the return value’s
lower word to any 16-bit value.

If the point is not within the gadget’s ‘‘help spot’’, the gadget returns GMR_NOHELPHIT. Intuition will
then look under that gadget for more gadgets. If a gadget’s dispatcher passes the GM_HELPTEST
method on to the gadgetclass dispatcher, the gadgetclass dispatcher will always return GMR_HELPHIT.

An application can put several windows in the same help group. This feature groups several windows
so that as long as one of those windows is active, the application can receive IDCMP_GADGETHELP
messages about all of those windows. For more information, See the HelpControl() Autodoc and the
WA_HelpGroup section of the OpenWindow() Autodoc (both are in intuition.doc).

Boopsi Gadgets and ScrollRaster()

This section covers some fairly complicated aspects of Intuition Windows and how Intuition interacts
with the Layers system. For a more in depth explanation, see the article, ‘‘Optimized Window
Refreshing’’ from the July/August 1992 issue of Amiga Mail.

Scrolling an Intuition display with ScrollRaster() is unlike many other rendering operations because it
can damage a window layer. ScrollRaster() is both a rendering function and a layering function
(ScrollRaster() is a graphics.library function, but it is aware of the Layers system). If window X
overlaps window Y, scrolling window Y can scroll a portion of window Y out from underneath
window X:

Figure 2 - Damage from a Scrolling Operation

Window Y Window X Layer damage from scrolling

Before Scrolling After Scrolling

For both smart refresh and super bitmap windows, this does not present a problem. Layers remembers
what was underneath window X and restores that portion of the display when a layers operation
reveals it. When a scrolling operation damages a smart refresh or super bitmap window, Layers
repairs the display.

For a simple refresh window, Layers remembers which portion of the window layer is damaged.
Layers does nothing to repair the
damage. Layers leaves repairing the
damage to Intuition. After performing a
layers operation on a window (such as
scrolling a portion of a window),
Intuition must check if that operation
caused layer damage (either to that
window or other windows on the
display).

In Release 2, when Intuition told a
scrolling Boopsi gadget to render itself,
Intuition did not check for layer damage.
If that gadget damaged the display with
the ScrollRaster() function, Intuition did
not repair that damage.

As of Release 3.0, Intuition has a flag set
aside in the MoreFlags field of the
ExtGadget structure called GMORE_SCROLLRASTER (defined in <intuition/intuition.h>). If this flag is
set, when the gadget damages the display with ScrollRaster() (or ScrollRasterBF()), Intuition redraws
all GMORE_SCROLLRASTER gadgets in the damaged window. The class dispatcher should take care of
setting this flag when creating the gadget in the OM_NEW method.

ScrollRaster() is not the only function in Release 3 that can scroll a window’s contents. For Release 3,
the Intuition library gained a function specifically to scroll a window’s raster. That function,
ScrollWindowRaster(), is similar to ScrollRaster(), but ScrollWindowRaster() is Intuition-friendly.
Boopsi gadgets must not use this function, they should use ScrollRaster() or ScrollRasterBF() instead.
Also any applications that use GMORE_SCROLLRASTER gadgets must use ScrollWindowRaster() for
scrolling. Note that gadgets supplied by third parties or Commodore may be GMORE_SCROLLRASTER
gadgets. For more information on ScrollWindowRaster(), see its Autodoc.

What is Layer Damage?

The Layers definition of ‘‘damage’’ is a little confusing.
Looking at the illustration, two areas of window Y need to be
refreshed: the area that used to be underneath window X,
and the area that was scrolled into view at the bottom of
window Y (the partially visible ‘‘RSTUVWXY’’). Layers
considers only one of these areas to be ‘‘damaged’’, the area
the was scrolled out from underneath window X. Layers
considers it damaged because the damage was caused by
the presence of another window layer. The task that called
ScrollRaster() has no idea that there is an overlapping
window layer, so it is up to Layers to account for that
damage. On the other hand, the task that called
ScrollRaster() knows that the area at the bottom of window Y
needs refreshing, so the task knows to fix that area of the
window. To Layers, damage is the area of a layer that needs
refreshing as a result of layers operation.

Intuition and Workbench Boopsi in Release 3 Page IV - 117

Amiga Mail
Volume II

