
AmigaDOS AmigaDOS Packet Interface
Specification

Page II - 7
(Revised 6/92)

Amiga Mail
Volume II

Basic Input/Output

The Basic Input/Output actions are supported by both handlers and file systems. In this way, the
application can get a stream level access to both devices and files. One difference that arises
between the two is that a handler will not necessarily support an ACTION_SEEK while it is generally
expected for a file system to do so.

These actions work based on a FileHandle which is filled in by one of the three forms of opens:

ACTION_FINDINPUT 1005 Open(..., MODE_OLDFILE)
ACTION_FINDOUTPUT 1006 Open(..., MODE_NEWFILE)
ACTION_FINDUPDATE 1004 Open(..., MODE_READWRITE)
ARG1: BPTR FileHandle to fill in
ARG2: LOCK Lock on directory that ARG3 is relative to
ARG3: BSTR Name of file to be opened (relative to ARG1)

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

All three actions use the lock (ARG2) as a base directory location from which to open the file. If
this lock is NULL, then the file name (ARG3) is relative to the root of the current volume. Because
of this, file names are not limited to a single file name but instead can include a volume name
(followed by a colon) and multiple slashes allowing the file system to fully resolve the name. This
eliminates the need for AmigaDOS or the application to parse names before sending them to the file
system. Note that the lock in ARG2 must be associated with the file system in question. It is illegal
to use a lock from another file system.

The calling program owns the file handle (ARG1). The program must initialize the file handle
before trying to open anything (in the case of a call to Open(), AmigaDOS allocates the file handle
automatically and then frees it in Close()). All fields must be zero except the fh_Pos and fh_End
fields which should be set to -1. The Open() function fills in the fh_Type field with a pointer to the
MsgPort of the handler process. Lastly, the handler must initialize fh_Arg1 with something that
allows the handler to uniquely locate the object being opened (normally a file). This value is
implementation specific. This field is passed to the READ/WRITE/SEEK/ END/TRUNCATE operations
and not the file handle itself.

FINDINPUT and FINDUPDATE are similar in that they only succeed if the file already exists.
FINDINPUT will open with a shared lock while FINDUPDATE will open it with a shared lock but if the
file doesn’t exist, FINDUPDATE will create the file. FINDOUTPUT will always open the file (deleting
any existing one) with an exclusive lock.

ACTION_READ ’R’ Read(...)
ARG1: ARG1 fh_Arg1 field of the opened FileHandle
ARG2: APTR Buffer to put data into
ARG3: LONG Number of bytes to read

RES1: LONG Number of bytes read.
 0 indicates EOF.
 -1 indicates ERROR
RES2: CODE Failure code if RES1 is -1

This action extracts data from the file (or input channel) at the current position. If fewer bytes

AmigaDOSAmigaDOS Packet Interface
Specification

Page II - 8
(Revised 6/92)

Amiga Mail
Volume II

remain in the file than requested, only those bytes remaining will be returned with the number of
bytes stored in RES1. The handler indicates an error is indicated by placing a -1 in RES1 and the
error code in RES2. If the read fails, the current file position remains unchanged. Note that a
handler may return a smaller number of bytes than requested, even if not at the end of a file. This
happens with interactive type file handles which may return one line at a time as the user hits return,
for example the console handler, CON:.

ACTION_WRITE ’W’ Write(...)
ARG1: ARG1 fh_Arg1 field of the opened file handle
ARG2: APTR Buffer to write to the file handle
ARG3: LONG Number of bytes to write

RES1: LONG Number of bytes written.
RES2: CODE Failure code if RES1 not the same as ARG3

This action copies data into the file (or output channel) at the current position. The file is
automatically extended if the write passes the end of the file. The handler indicates failure by
returning a byte count in RES1 that differs from the number of bytes requested in ARG3. In the
case of a failure, the handler does not update the current file position (although the file may have
been extended and some data overwritten) so that an application can safely retry the operation.

ACTION_SEEK 1008 Seek(...)
ARG1: ARG1 fh_Arg1 field of the opened FileHandle
ARG2: LONG New Position
ARG3: LONG Mode: OFFSET_BEGINNING,OFFSET_END, or OFFSET_CURRENT

RES1: LONG Old Position. -1 indicates an error
RES2: CODE Failure code if RES1 = -1

This packet sets the current file position. The new position (ARG2) is relative to either the
beginning of the file (OFFSET_BEGINNING), the end of the file (OFFSET_END), or the current file
position (OFFSET_CURRENT), depending on the mode set in ARG3. Note that ARG2 can be negative.
The handler returns the previous file position in RES1. Any attempt to seek past the end of the file
will result in an error and will leave the current file position in an unknown location.

ACTION_END 1007 Close(...)
ARG1: ARG1 fh_Arg1 field of the opened FileHandle

RES1: LONG DOSTRUE

This packet closes an open file handle. This function generally returns a DOSTRUE as there is little
the application can do to recover from a file closing failure. If an error is returned under 2.0, DOS
will not deallocate the file handle. Under 1.3, it does not check the result.

