
Unix and Networking Keeping Time--Interval Timers in

Amiga UNIX

Page VIII - 9

Amiga Mail
Volume II

Keeping Time--Interval
Timers in Amiga UNIX

By David Miller

The Sleep() function

When you want your program to pause for a number of seconds then continue, you will typically use
the sleep(3) function (the notation NAME(SECTION#) refers to the manual page NAME in the
SECTION# chapter of the UNIX Reference Manuals; section 1 is commands, section 2 is system calls,
and section 3 is library functions). There is also a sleep(1) program which provides the same function
to shell scripts. For example:

In C:
main()
{

printf("Hello world!\n");
sleep(5);

}

Shell:
#!/usr/bin/sh

echo "Hello world!"
sleep 5

The following example is an implementation of the sleep(3) function.

November/December 1991

Example 1: SLEEP() Using ALARM()

 1 # include <signal.h>
 2 static void trap ()
 3 {
 4 }
 5 unsigned sleep (unsigned duration)
 6 {
 7 void (*oldsig)();
 8 unsigned oldtime;
 9 oldsig = signal(SIGALRM, trap);
 10 oldtime = alarm(0);
 11 if (oldtime && oldtime < duration)
 12 alarm(oldtime);
 13 else
 14 alarm(duration);
 15 pause();
 16 signal(SIGALRM, oldsig);
 17 if (oldtime > duration)
 18 alarm(oldtime - duration);
 19 if (oldtime && oldtime < duration)
 20 return(duration - oldtime);
 21 else
 22 return 0;
 23 }

Line Explanation

 1 The file signal.h defines the parameters for the signal(2) function.

 2-4 trap() is the simple signal handler that just sets a flag that another
piece of code will examine.

 5 Define the sleep() function.

 6-8 oldsig is a variable that will be used to save the previous state of the
signal handler; oldtime will be used to save the state of the alarm
clock.

 9 Establish trap() as the current signal handler for the alarm signal.
The previous handler is saved in oldsig.

 10 Clear the alarm clock, saving the current state.

11-14 If the previous setting of alarm was sooner than duration, use the old
value, otherwise use duration to set the alarm.

 15 Pause the process until the alarm goes off.

 16 Restore the old signal handler.

Unix and NetworkingKeeping Time--Interval Timers in

Amiga UNIX

Page VIII - 10

Amiga Mail
Volume II

Unix and Networking Keeping Time--Interval Timers in

Amiga UNIX

Page VIII - 11

Amiga Mail
Volume II

17-18 If the old alarm setting was later than duration, reset the alarm with
the difference between duration and oldtime (the time remaining
until the previous alarm).

19-22 If an existing alarm is making sleep return early, return the time
remaining on the requested sleep.

To schedule its ‘‘wake up’’ time, sleep(3) uses the alarm(2) system call. The alarm(2) system call
asks the OS to deliver a signal (basically a software interrupt) in some number of seconds according to
the system clock. However, setting an alarm for 2 seconds does not mean that you will receive an
alarm signal in exactly two seconds.

The OS processes alarm requests once every second. Each time an alarm request is processed, the
number of seconds remaining for that alarm is decremented by one. When the number of seconds
remaining reaches zero, the OS delivers a signal to the process. Given this, if a process places a 1
second alarm request 1 microsecond before the OS does its alarm processing, the signal will arrive in
1 microsecond, not in 1 second. An alarm set for N seconds actually means:

deliver a signal after N-1 seconds, but before N seconds.

If you’d like to see for yourself, try running this shell script:

$ for i in 1 2 3 4 5 6 7 8 9 10
> do
> time sleep 2
> done

How many times did the process actually take more than 2 seconds? If you try it with both the Korn
shell, ksh(1), and the System V shell, sh(1), you’ll find that under ksh(1) it takes about 1.2 seconds
and under sh(1) it takes about 1.8 seconds (There is a difference because sh(1) counts the time
required to start the sleep process whereas ksh(1) only counts the actual running time). The sleep(1)
program rarely, if ever, actually sleeps for 2 seconds.

If you are writing a daemon that checks for some event every 5 minutes, or if you want to pause the
output to give the user a chance to read it, alarm’s 1 second granularity is fine. But what about that
daemon that needs to wake up every second? Waking up after 1 microsecond could cause the process
to run almost continuously. For any sort of realtime processing, one second is a very long time. So
how do you sleep for less than one second reliably?

The answer is do not use an alarm, use an interval timer.

Unix and NetworkingKeeping Time--Interval Timers in

Amiga UNIX

Page VIII - 12

Amiga Mail
Volume II

Interval Timers

Each interval timer has a resolution of 1 tick of the system’s clock, or 1 microsecond (whichever is
larger). Additionally, you can configure an interval timer to automatically restart itself. The system
provides each process with three independent interval timers:

ITIMER_REAL This timer will count down in real time. That is, this timer will continue to run when
your process is waiting for the OS to perform a system call, or when the OS preempts your process.
When the timer expires, the OS will deliver a SIGALARM signal.

ITIMER_VIRTUAL This timer counts down only when your process is running. If your process makes a
system call, or is preempted, this timer will stop counting. The timer will resume when your process
resumes execution. When this timer reaches zero, the process will receive a SIGVTALRM signal.

Possible uses for this timer include checkpointing (saving data after some period of execution) and
multithreading. The virtual timer is more desireable for these applications since it counts only when
the process is running; there is no reason to perform a checkpoint or switch threads if the process has
been idle.

ITIMER_PROF This timer will stop counting any time your process is preempted by the OS, but will
not stop when the process is waiting for a system call to return. When it expires the OS generates a
SIGPROF signal.

This timer is designed to be used for execution profiling by interpreters. By having a profiling timer
send a signal every second, or fraction of a second, and examining the current position in the
interpreted code, the process can determine where the most execution time is being spent.

All three timers operate on the following structure:

 struct itimerval
 {
 struct timeval it_interval;
 struct timeval it_value;
 }

The timeval structure looks like this:

 struct timeval
 {
 long tv_sec;
 long tv_usec;
 }

Both of these structures are defined in the <sys/time.h> include file.

Unix and Networking Keeping Time--Interval Timers in

Amiga UNIX

Page VIII - 13

Amiga Mail
Volume II

Note that System V Release 4.0 does not guarantee that these are the only members of these
structures, nor that they will occur in this order. You must initialize the members individually. This
can be annoying and tedious, but it allows the structure to be expanded in future releases.

You set and examine timers using these two functions:

int getitimer(int which, struct itimerval *myvalue)

places the current timer setting into myvalue

int setitimer(int which, struct itimerval *myvalue, struct itimerval *myovalue);

sets the timer. It gets the new time from myvalue and places the previous setting in myovalue.

Now, let us take a look at the sleep function again. The code in example 2 creates a new version of
sleep that will sleep an exact number of seconds.

Example 2: SLEEP() Using an Interval Timer

 1 # include <signal.h>
 2 # include <sys/time.h>
 3 static void trap ()
 4 {
 5 }
 6 unsigned mysleep (unsigned duration)
 7 {
 8 void (*oldsig)();
 9 struct itimerval oldtime;
 10 struct itimerval newtime;
 11 oldsig = signal(SIGALRM, trap);
 12 getitimer(ITIMER_REAL, &oldtime);
 13 if (oldtime.it_value.tv_sec == 0
 && oldtime.it_value.tv_usec == 0
 || oldtime.it_value.tv_sec >= duration)
 14 {
 15 newtime.it_interval.tv_sec = 0;
 16 newtime.it_interval.tv_usec = 0;
 17 newtime.it_value.tv_sec = duration;
 18 newtime.it_value.tv_usec = 0;
 19 setitimer(ITIMER_REAL, &newtime, NULL);
 20 }
 21 pause();
 22 signal(SIGALRM, oldsig);
 23 if (oldtime.it_value.tv_sec > duration)
 24 {
 25 oldtime.it_value.tv_sec -= duration;
 26 setitimer(ITIMER_REAL, &newtime, NULL);
 27 }
 28 if (oldtime && oldtime < n)
 29 return(n - oldtime);
 30 else
 31 return 0;
 32 }

Unix and NetworkingKeeping Time--Interval Timers in

Amiga UNIX

Page VIII - 14

Amiga Mail
Volume II

Line Explanation

 1-2 The file signal.h defines the parameters of the signal(2)
function. The file <sys/time.h> defines ITIMER_REAL and the
structures used by getitimer(3) and setitimer(3).

 3-5 trap() is the simple signal handler that just sets a flag that
another piece of code will examine.

 6-7 Define the mysleep() function.

8-10 oldsig will hold the previous state of the signal handler;
oldtime will hold the state of the timer; and newtime will be
used to set the new timer parameters.

 11 Establish trap() as the current signal handler for the alarm
signal. The previous handler is saved in oldsig.

 12 Fetch the current settings of the timer.

13-20 If the timer was idle (both parts of it_value are zero) or it is set
to go off later than duration (it_value.tv_sec is greater than
duration), set the timer to go off in duration seconds.

 21 pause(2) the process until the timer expires.

 22 Restore the old signal handler.

23-27 If the old timer setting was later than duration, reset the timer
with the difference between duration and
oldtime.it_value.tv_sec (the time remaining until expiration of
the previous setting).

28-32 If an existing timer is making mysleep() return early, return the
time remaining on the requested mysleep().

This example uses what is called a ‘‘one-shot’’ timer. The timer goes off once, and then stops. By
supplying an interval setting, the timer becomes a clock, generating alarm signals on a regular basis.

The code fragment in Example 3 shows how to set the timer to produce a 1.5 second clock that will
start ‘‘ticking’’ in 1 minute.

Unix and Networking Keeping Time--Interval Timers in

Amiga UNIX

Page VIII - 15

Amiga Mail
Volume II

Example 3: Using an Interval Timer as a Clock

 1 # include <sys/time.h>
 2 ...
 3 {
 4 struct itimerval newtime;
 5 newtime.it_value.tv_sec = 60;
 6 newtime.it_value.tv_usec = 0;
 7 newtime.it_interval.tv_sec = 5;
 8 newtime.it_interval.tv_usec = 500000;
 9 setitimer(ITIMER_REAL, &newtime, 0);
 10 }
 11 ...

Line Explanation

 1 The file <sys/time.h> defines ITIMER_REAL and the structures used
by getitimer(3) and setitimer(3).

 2 Other code.

 3 Start of block.

 4 Structure newtime will hold the setting for the timer.

5-6 Set it_value to expire in 1 minute.

7-8 Set it_interval to reload it_value with 5 seconds and 500,000.
microseconds (one half of a second).

 9 Load the new settings into the ITIMER_REAL timer.

10 End of block.

11 Other code.

When the time interval specified by it_value expires, the contents of it_interval is copied into it_value
and the timer is restarted. If the interval specified by it_interval is zero, the timer stops. Timers can
be stopped at anytime by calling setitimer(3) with the members of it_value set to zero.

Unix and NetworkingKeeping Time--Interval Timers in

Amiga UNIX

Page VIII - 16

Amiga Mail
Volume II

So there you have the realtime interval timer. The other timers work exactly the same way, varying
only in when the timer is running. For more information on interval timers see UNIX System V
Release 4 - Programmer’s Reference Manual, published by Prentice Hall. Next time, we’ll explore
context switching, multithreading, and light weight processes.

∞∞

