
Programming Practices
and Standards

2.0 Compatibility Problem Areas Page I - 19

Amiga Mail
Volume II

2.0 Compatibility Problem Areas

by Carolyn Scheppner, Bryce Nesbitt, Peter Cherna,
and Darren Greenwald

Release 2.04 is finished and soon will be available in Enhancer Packs. If your products are not yet
compatible, your time is up. If you are developing new software, you need to avoid the compatibility
traps. This comprehensive list of 2.0 compatibility problem areas can help you avoid compatibility
problems. Note that this document is not identical to the one published in the 1991 DevCon notes.
There are several extra problems covered here that weren’t mentioned in the 1991 DevCon notes.

General Compatibility Problem Areas

One sure fire way to write incompatible software is to fail to follow the Amiga programming
guidelines listed in the beginning of your Amiga ROM Kernel and Amiga Hardware manuals. Please
read the guidelines and follow them!

The following improper Amiga programming practices are likely to fail on new ROMs or hardware:

❏ Calling ROM code directly.

❏ Directly or indirectly reading or writing random memory addresses or low memory (especially
location zero) due to improperly initialized pointers or structures. Use Mungwall and Enforcer
when writing and testing your code!

❏ Assuming addresses/location/amounts of RAM or system structures.

❏ Requiring all free RAM.

❏ Mishandling 32-bit addresses. For example, using signed math or signed comparisons on addresses,
or doing a BOOL or WORD test to determine if a pointer is non-zero.

❏ Overwriting memory allocations. With 32-bit addresses, a 1-byte overwrite of a string array can
wipe out the high byte of a pointer or stack return address. This bug could go unnoticed on a 24-
bit address machine (eg. A500,A2500, etc) but crash the system or cause other problems on an
A3000.

❏ Shaving stack size too close. System function stack usage changes with each OS release.

November/December 1991

Programming Practices
and Standards

2.0 Compatibility Problem AreasPage I - 20

Amiga Mail
Volume II

❏ Improper flags or garbage in system structures. A bit that means nothing under one OS may
drastically change the behavior of a function in a newer version of the OS. Clear structures
before using, and use correct flags.

❏ Passing garbage in previously unused upper bytes of function arguments (for example - the upper
word of the ULONG AvailFonts() Flags parameter).

❏ Improper register or condition code handling. Do not assume registers D0-D1/A0-A1 are preserved
after system calls! Some function calls happen to preserve some registers. This can change in
any revisions of the OS. In some cases we have modifed the values returned in registers to keep
certain applications from failing under 2.0. We do not guarantee those modifications will remain
in place. Condition codes are also in an undefined state on the return from a system call.
Assembler code must test (TST,MOVE,CMP,etc.) D0 results before branching on condition
codes. Use Scratch by Bill Hawes (via the scratchall script) to catch scratch register misuse in
assembler code.

❏ Misuse of function return values. Use function prototypes and read the Autodocs for the functions
you are using. Some system functions return just success or failure, or nothing at all (void). In
such cases, the value which the function happens to return must not be used except as it is
documented.

❏ Calling system library functions from assembler without placing the library base pointer in A6. All
system functions may assume that their library’s base pointer is in A6. A function’s need to
reference its library base can change in different OS revisions.

❏ Depending on unsupported side effects or undocumented behavior. Be sure to read the RKM
chapters, Autodocs, and include file comments.

❏ Poking/peeking system private structures. Do not poke or peek any system structure unless told to
do so in official Commodore documentation.

❏ Assuming current choices, configurations or initial values. If the current possibilities are A, B, or C,
do not assume C if it isn’t A or B. Check specifically for the choices currently implemented, and
provide default behavior for unexpected values.

❏ Failure to properly allocate resources before using them.

❏ Failure to properly close/deallocate resources.

❏ Improper reading/writing of hardware registers. You must mask out bits you are not interested in on
reads, and write undefined bits as zero.

❏ Assuming initial values of hardware registers. If you are going direct to the hardware, do not
depend on the initial values of any hardware registers. The settings may not be the same on
different versions of the OS or from boot to boot. Always set up all of the hardware registers that
affect your code.

Programming Practices
and Standards

2.0 Compatibility Problem Areas Page I - 21

Amiga Mail
Volume II

❏ Processor speed dependencies such as software delay loops.

❏ Processor instruction dependencies. Do not use instructions which are privileged on any Motorola
68xxx family processor. Do not use CLR on a hardware register which is triggered by any
access (use MOVE #0 instead). The 68000 CLR instruction performs two accesses (Read, then
Write). The 68020 and higher CLR instruction performs just one access.

❏ Depending on or failing to account for cache or prefetch effects. Self-modifying or trackdisk-
loaded code requires cache flushes (see the exec.library/CacheClearU() function).

Amiga debugging tools such as Enforcer, Mungwall, and Scratch can find many program bugs that
may affect compatibility. A program that is Enforcer/Mungwall/Scratch clean stands a much better
chance of working well under current and future versions of the OS. These tools are on the
Denver/Milano DevCon disks. Enforcer and Mungwall are also on the kickfile disks.

2.0 Changes That Can Affect Compatibility

There are several 2.0-specific areas where OS changes and enhancements can cause compatibility
problems for some software.

Exec

❏ Do not jump to location $FC0002 as part of performing a system RESET. Many RESET functions
jumped to what was the start of the ROM under 1.3. The 2.0 ROM is twice the size. We’ve
added a temporary compatibility hack called ‘‘Kickety-Split’’ to the 2.04 Kickstart ROM. The
ROM is split into two halves with a redirecting jump at $FC0002. This hack does not appear on
the A3000 and due to space considerations will not appear on future machines.

❏ Everything has moved.

❏ The Supervisor stack is not in the same place as it was under 1.3. This has caused problems for
some games that completely take over the Amiga. If your program goes into Supervisor mode,
you must either respect allocated memory or provide your own Supervisor stack when taking
over the machine.

❏ ExecBase is moved to expansion memory if possible. Previously, ExecBase would only end up in
one of two fixed locations. As a result, ColdCapture may be called after expansion memory has
been configured. Great pains were taken to make this compatible.

❏ Exception/Interrupt vectors may move. This means the 68010 and above Vector Base Register
(VBR) may contain a non-zero value. Poking assumed low memory vector addresses may have
no effect. You must read the VBR on 68010 and above to find the base.

Programming Practices
and Standards

2.0 Compatibility Problem AreasPage I - 22

Amiga Mail
Volume II

❏ No longer tolerant of wild Forbid() counts. Under 1.3, sometimes this bug could go unnoticed.
Make sure that all Forbid’s are matched with one and only one Permit (and vice versa).

❏ When an Exec device gets an IORequest, it must validate io_Command. If the io_Command is 0 or
out of range, the device must return IOERR_NOCMD and take no other action. The filesystem
now sends new commands and expects older devices to properly ignore them.

❏ A 2.0 fix to task-switching allows a busy task to properly regain the processor after an interrupt until
either its quantum (4 vertical blanks) is up or a higher priority task preempts it. This can
dramatically change the behavior of multitask programs where one task busyloops while another
same-priority task Wait()s. See Task Switching in the Additional Information section at the end
of this document.

Expansion

❏ ExpansionBase is private - use FindConfigDev().

❏ Memory from contiguous cards of the same memory type is automatically merged into one memory
pool.

Strap

❏ romboot.library is gone.

❏ audio.device cannot be OpenDevice()ed by a boot block program because it is not yet
InitResident()ed. If OpenDevice() of audio.device fails during strap, you must
FindResident()/InitResident() audio.device, and then try OpenDevice() again.

❏ Boot from other floppies (+5,-10,-20,-30) is possible.

❏ Undocumented system stack and register usage at Diag and Boot time have changed.

DOS

❏ DOS is now written in C and assembler, not BCPL. The BCPL compiler artifact which caused D0
function results to also be in D1 is gone. 2.0 compatibility patches which return some DOS
function results in both D0 and D1 are not guaranteed to remain in the next release. Fix your
programs! Use Scratch to find these problems in your code.

❏ DOS now has a real library base with normal LVO vectors.

❏ Stack usage has all changed (variables, direction).

Programming Practices
and Standards

2.0 Compatibility Problem Areas Page I - 23

Amiga Mail
Volume II

❏ New packet and lock types. Make sure you are not passing stack garbage for the second argument
to Lock().

❏ Process structure is bigger. ‘‘Rolling your own’’ Process structure from a Task fails.

❏ Unless documented otherwise, you must be a process to call DOS functions. DOS function
dependence on special process structures can change with OS revisions.

Audio.device

❏ Now not initialized until used. This means low memory open failure is possible. Check your return
values from OpenDevice(). This also means audio.device cannot be opened during 2.0 Strap
unless InitResident()ed first. If OpenDevice() of audio.device fails during strap, you must
FindResident()/InitResident() audio.device, and then try OpenDevice() again. There will be a
small memory loss (until reboot) generated by the first opener of audio.device or narrator.device
(memory used in building of audio.device’s base).

Gameport.device

❏ Initial state of hardware lines may differ.

Serial.device

❏ Clears io_Device on CloseDevice() (since 1.3.2)

Timer.device

❏ The most common mistake programmers make with timer.device is to send off a particular
timerequest before the previous use of that timerequest has completed. Use IO_Torture to catch
this problem.

❏ IO_QUICK requests may be deferred and be replied as documented.

❏ VBLANK timer requests, as documented, now wait at least as long as the full number of VBlanks
you asked for. Previously, a partial vertical blank could count towards your requested number.
The new behavior is more correct and matches the docs, but it can cause VBlank requests to now
take up to 1 VBlank longer under 2.0 as compared to 1.3. For example, a 1/10 second request,
may take 6-7 Vblanks instead of 5-6 VBlanks, or about 15% longer.

Programming Practices
and Standards

2.0 Compatibility Problem AreasPage I - 24

Amiga Mail
Volume II

Trackdisk

❏ Private trackdisk structures have changed. See trackdisk.doc for a compatible REMCHANGEINT.

❏ Buffer is freeable, so low memory open failure is possible.

❏ Do not disable interrupts (any of them) then expect trackdisk to function while they are disabled.

CIA Timers

❏ System use of CIA timers has changed. Don’t peek timers you think the system is using in a
particular manner.

❏ Don’t depend on initial values of CIA registers.

❏ Don’t mess with CIABase. Use cia.resource.

❏ If your code requires hardware level CIA timers, allocate the timers using cia.resource
AddICRVector()! Very important! Operating system usage of the CIA timers has changed. The
new 2.0 timer.device (‘‘Jumpy the Magic Timer Device’’) will try to jump to different CIA’s so
programs that properly allocate timers will have a better chance of getting what they want. If
possible, be flexible and design your code to work with whatever timer you can successfully
allocate.

❏ OS usage of INT6 is increasing. Do not totally take over INT6, and do not terminate the server chain
if an interrupt is not for you.

Other Hardware Issues

❏ Battery-backed clock is different on A3000. Use battclock.resource to access the real-time clock if
battclock.resource can be opened.

❏ A 68030 hardware characteristic causes longword-aligned longword writes to allocate a valid entry
in the data cache, even if the hardware area shouldn’t be cached. This can cause problems for
IO registers and shared memory devices. To solve this: 1) Don’t do that 2) Flush the cache or 3)
Use Enforcer Quiet. See the Motorola 68030 manual under the description of the Write Allocate
bit (which must be set for the Amiga to run with the Data Cache).

Programming Practices
and Standards

2.0 Compatibility Problem Areas Page I - 25

Amiga Mail
Volume II

Intuition

❏ Private IBase variables have moved/changed. Reading them is illegal. Writing them is both illegal
and dangerous.

❏ Poking IBase MaxMouse variables is now a no-op, but please stop poking when Intuition version is
>35.

❏ If you are opening on the Workbench screen, be prepared to handle larger screens, new modes, new
fonts, and overscan. Also see Font compatibility information.

❏ Screen TopEdge and LeftEdge may be negative.

❏ LeftAmiga-Select is used for dragging large screens. Do not use LeftAmiga-key combinations for
application command keys. The LeftAmiga key is reserved for system use.

❏ For compatibility reasons, GetScreenData() lies if the Workbench screen is a mode only available
after release 1.3. It will try to return the most sensible mode that old OpenScreen() can open.
This was necessary to keep applications that cloned the Workbench screen from having
problems. To properly handle new modes, see LockPubScreen() and GetVPModeID(), and the
SA_DisplayID tag for OpenScreenTags().

❏ Using combined RAWKEY and VANILLAKEY now gives VANILLAKEY messages for regular keys, and
RAWKEY messages for special keys (fkeys, help, etc.)

❏ Moving a SIMPLE_REFRESH window does not necessarily cause a REFRESHWINDOW event because
layers now preserves all the bits it can.

❏ Sizing a SIMPLE_REFRESH window will not clear it.

❏ MENUVERIFY/REQVERIFY/SIZEVERIFY can time out if you take too long to ReplyMsg().

❏ Menu-key equivalents are ignored while string gadgets are active.

❏ You can’t type control characters into string gadgets by default. Use CTRL-Amiga-char to type
them in or use IControl Prefs to change the default behavior.

❏ Width and Height parameters of AutoRequest are ignored.

❏ New default colors, new gadget images.

❏ JAM1 rendering/text in border may be invisible gadgets over default colors.

Programming Practices
and Standards

2.0 Compatibility Problem AreasPage I - 26

Amiga Mail
Volume II

❏ The cursor for string gadgets can no longer reside outside the cleared container area. If your gadget
is (for example) 32 pixels wide, with MaxChars of 4, then all 32 pixels will be cleared, instead of
just 24, as was true in 1.3.

❏ Applications and requesters that fail to specify desired fonts will get user 2.0 Font Pref fonts that
may be much larger or proportional in some cases. Screen and window titlebars (and their
gadgets) will be taller when accomodating a larger font. Applications which open on the
Workbench screen must adapt to variable size titlebars. Any application which accepts system
defaults for its screen, window, menu, Text or IntuiText fonts must adapt to different fonts and
titlebar sizes. String gadgets whose height is too small for a font will revert to a smaller ROM
font. There are now 2 different user-specifiable default system fonts which affect different
Intuition features. This can lead to mismatches in mixed gadgets and text. For more information
on where various system fonts come from and how they can be controlled, see Intuition Fonts in
the Additional Information section at the end of this document.

❏ Don’t modify gadgets directly without first removing them from the gadget list, unless you are using
a system function designed for that purpose, such as NewModifyProp() or SetGadgetAttrs().

❏ Don’t rely on NewModifyProp() to fully refresh your prop gadget after you’ve changed values in
the structure. NewModifyProp() will only correctly refresh changes which were passed to it as
parameters. Use Remove/Add/RefreshGList() for other kinds of changes.

❏ Custom screens must be of type CUSTOMSCREEN or PUBLICSCREEN. Other types are illegal. One
application opens their screen with NewScreen.Type = 0 (instead of CUSTOMSCREEN, 0x0F).
Then, when they open their windows, they specify NewWindow.Type of 0 and
NewWindow.Screen of NULL, instead of Type=CUSTOMSCREEN and Screen=(their screen). That
happened to work before, but they are now broken.

❏ Referencing IntuiMessage->IAddress as a Gadget pointer on non-Gadget IDCMP messages, or as a
Window pointer (rather than looking at the proper field IntuiMessage->IDCMPWindow) may
now cause Enforcer hits or crashes. The IAddress field used to always contain a pointer of some
type even for IDCMP events for which no IAddress value is documented. Now, for some
IDCMP events, IAddress may contain other data (a non-address, possibly an odd value which
would crash a 68000 based system).

❏ Using Intuition flags in the wrong structure fields (for example, using ACTIVEWINDOW instead of
ACTIVATE). To alleviate this problem, 2.0 has introduced modern synonyms that are less
confusing than the old ones. For example, IDCMP_ACTIVEWINDOW and WFLG_ACTIVATE. This
particular example of confusion (there are several) was the nastiest, since IDCMP_ACTIVEWINDOW,
when stuffed into NewWindow.Flags, corresponds numerically to WFLG_NW_EXTENDED, which
informs Intuition that the NewWindow structure is immediately followed by a TagList, which
isn’t there! Intuition does some validation on the tag-list pointer, in order to partially
compensate. To make your compiler use the new synonyms only, add this line to your code
before Intuition include files: #define INTUI_V36_NAMES_ONLY.

Programming Practices
and Standards

2.0 Compatibility Problem Areas Page I - 27

Amiga Mail
Volume II

❏ Do not place spaces into the StringInfo->Buffer of a LONGINT string gadget. Under 1.3, it turned out
that worked, but under 2.0, the validation routine that checks for illegal keystrokes looks at the
contents for illegal (i.e. non-numeric) characters, and if any are found assumes that the user typed
an illegal keystroke. The user’s only options may be shift-delete or Amiga-X. Use the correct
justification instead.

❏ If you specify NULL for a font in an IntuiText, don’t assume you’ll get Topaz 8. Either explicitly
supply the font you you need or be prepared to size accordingly. Otherwise, your rendering will
be wrong, and the user will have to reset his Preferences just to make your software work right.

❏ Window borders are now drawn in the screen’s DetailPen and BlockPen rather than the Window’s
pens. For best appearance, you should pass a SA_Pens array to OpenScreen(). This can be done
in a backwards compatible manner with the ExtNewScreen structure and the NS_EXTENDED flag.

❏ The system now renders into the full width of window borders, although the widths themselves are
unchanged.

❏ Window borders are filled upon activation and inactivation.

❏ Window border rendering has changed significantly for 2.0. Note that the border dimensions are
unchanged from 1.x (Look at window->BorderLeft/Top/Width/Height if you don’t believe us!).
If your gadget intersects the border area, although it may have looked OK under 1.3, a visual
conflict may occur under 2.0. If Intuition notices a gadget which is substantially in the border
but not declared as such, it treats it as though it were (this is called ‘‘bordersniffing’’). Never
rely on Intuition to sniff these out for you; always declare them explicitly (see the Gadget
Activation flags GACT_RIGHTBORDER etc.). See Intuition Gadgets and Window Borders in the
Additional Information section at the end of this article.

Preferences

❏ Some old struct Preferences fields are now ignored by SetPrefs (for example FontHeight). SetPrefs
also stops listening to the pointer fields as soon as a new-style pointer is passed to Intuition (new-
style pointers can be taller or deeper).

❏ Preferences ViewX/YOffset only applies to the default mode. You cannot use these fields to move
the position of all modes.

❏ The Preferences LACEWB bit is not necessarily correct when Workbench is in a new display mode
(akin to GetScreenData()).

Programming Practices
and Standards

2.0 Compatibility Problem AreasPage I - 28

Amiga Mail
Volume II

Workbench

❏ The Workbench GUI now has new screen sizes, screen top/left offsets, depths, modes, and fonts.

❏ Default Tool now searches paths.

❏ New Look (boxed) icons take more space.

❏ Do not use icons which have more 1bits set in PlanePick than planes in the ImageData (one IFF-to-
Icon utility does this). Such icons will appear trashed on deeper Workbenches.

❏ New Look colors have black and white swapped (as compared to 1.3).

❏ The Workbench screen may not be open at startup-sequence time until some output occurs to the
initial Shell window. This can break startup-sequence-started games that think they can steal
WB’s screen bitplanes. Do not steal the WB screen’s planes (For compatibility, booting off pre-
2.0 disks forces the initial screen open. This is not guaranteed to remain in the system). Use
startup code that can detach when RUN (such as cback.o) and use CloseWorkbench() to regain
the screen’s memory.

Under 1.3 the Workbench Screen and initial CLI opened before the first line in s:startup-
sequence. Some naughty programmers, in an attempt to recover memory, would search for the
bitplane pointers and appropriate the memory for their own use. This behavior is highly unsafe.

By default 2.0 opens the initial CLI on the first _output_ from the s:startup-sequence. This
allows screen modes and other parameters to be set before the user sees the screen. However,
this broke so many programs that we put in the ‘‘silent-startup’’ hack. A disk installed with 1.3
install opens the screen as before. A disk installed under 2.0 opens silently.
Never steal the Workbench bitplanes. You don’t know where they are, how big they are, what
format they may be in, or even if they are allocated. Recovering the memory is a bit tricky.
Under 2.0: Simply avoid any output from your s:startup-sequence. If your program opens a
screen it will be the first screen the user ever sees. Note that if ENDCLI is ever hit, the screen
will pop open.

Under 1.3: After ENDCLI, call the CloseWorkbench() function to close the screen. This also
works under 2.0. Loop on CloseWorkbench() with a delay between loops. Continue looping
until CloseWorkbench() succeeds or too much time has passed. Note that a new program called
EndRun is available for starting non-returning programs from the startup-sequence. EndRun will
reduce memory fragmentation and will close Workbench if it is open. EndRun.lzh will be
available in Commodore’s Amiga listings area on BIX.

Programming Practices
and Standards

2.0 Compatibility Problem Areas Page I - 29

Amiga Mail
Volume II

Layers

❏ Use NewLayerInfo() to create, not FattenLayerInfo(), ThinLayerInfo(), InitLayers().

❏ Simple-refresh preserves all of the pixels it can. Sizing a SIMPLE_REFRESH window no longer clears
the whole window.

❏ Speed of layer operations is different. Don’t depend on layer operations to finish before or after
other asynchronous actions.

Graphics

❏ Do not rely on the order of Copper list instructions. For example, 2.0’s MrgCop() builds different
Copper lists to that of 1.3, by including new registers in the list (e.g. MOVE xxxx,DIWHIGH).
This changes the positions of the other instructions. We know of one game that ’assumes’
the BPLxPTRs would be at a certain offset in the Copper list, and that is now broken on
machines running 2.0 with the new Denise chip.

❏ Graphics and layers functions which use the blitter generally return after STARTING the final blit.
If you are mixing graphics rendering calls and processor access of the same memory, you must
WaitBlit() before touching (or deallocating) the source or destination memory with the processor.
For example, the Text() function was sped up for 2.0, causing some programs to trash partial
lines of text.

❏ ColorMap structure is bigger. Programs must use GetColorMap() to create one.

❏ Blitter rtns decide ascend/descend on 1st plane only.

❏ Changing the display mode of an existing screen or viewport while it is open is still not a supported
operation.

❏ GfxBase DisplayFlags and row/cols may not match Workbench screen.

❏ Do not hardcode modulo values - use BitMap->BytesPerRow.

❏ If the graphics Autodocs say that you need a TmpRas of a certain size for some functions, then you
must make that the minimum size. In some cases, before 2.0, you may have gotten away with
using a smaller TmpRas with some functions (for example Flood()). To be more robust,
Graphics now checks the TmpRas size and will fail the function call if the TmpRas is too small.

❏ ECS chips under 2.0 use a different method of generating displays. The display window registers
now control DMA.

Programming Practices
and Standards

2.0 Compatibility Problem AreasPage I - 30

Amiga Mail
Volume II

❏ LoadRGB4() used to poke colors into the active copperlist with no protection against deallocation of
that copperlist while it was being poked. Under 2.0, semaphore protection of the copperlist was
added to LoadRGB4(). This semaphore protection makes it totally incorrect and extremely
dangerous to call LoadRGB4() during an interrupt. The general symptom of this problem is that
a system deadlock can be caused by dragging one screen up and down while another is cycling.
Color cycling should be performed from within a task, not an interrupt. Note that in general, the
only functions which may be safely called from within an interrupt are the small list of Exec
functions documented in the ‘‘Exec: Interrupts’’ chapter of ROM Kernel Manual: Libraries and
Devices.

Fonts

❏ Some font format changes (old format supported).

❏ Private format of .font files has changed (use FixFonts to create).

❏ Default fonts may be larger, proportional.

❏ Topaz is now sans-serif.

❏ Any size font will be created via scaling as long as TextAttr.Flags FPF_DESIGNED bit is not set. If
you were asking for an extreme size, like size 1 to get smallest available, or 999 to get largest
available, you will get a big (or very very small) surprise now.

❏ Do not use -1 for TextAttr.Flags or Styles, nor as the flags for AvailFonts (one high bit now causes
AvailFonts to return different structures). Only set what you know you want. A kludge has been
added to the OS to protect applications which currently pass -1 for AvailFonts flags.

CLI / Shell

❏ Many more commands are now built-in (no longer in C:). This can break installation scripts that
copy C:commandname, and programs that try to Lock() or Open() C:commandname to check for
the command’s existence.

❏ The limit of 20 CLI processes is gone and the DOSBase CLI table has changed to accomodate this.
Under V36 and higher, you should use new 2.0 functions rather than accessing the CLI table
directly.

❏ Shell windows now have Close Gadgets. The EOF character is passed for the Close Gadget of a
Shell. This is -1L with CON: getchar(), and the Close Gadget raw event ESC seq with RAW:.

❏ Shells now use the simple-refresh character-mapped console (see Console notes).

Programming Practices
and Standards

2.0 Compatibility Problem Areas Page I - 31

Amiga Mail
Volume II

Console

❏ By default, CON: now opens SIMPLE_REFRESH windows using the V36/V37 console character
mapped mode. Because of some differences between character mapped consoles, and
SMART_REFRESH non-mapped consoles, this may cause incompatibilities with some applications.
For example, the Amiga private sequences to set left/top offset, and set line/page length behave
differently in character mapped console windows. The only known work-around is to recompile
asking for a CON: (or RAW:) window using the SMART flag.

❏ Simple refresh/character mapped console windows now support the ability to highlight, and copy
text with the mouse. This feature, as well as pasting text should be transparent to programs
which use CON: for console input, and output. Pasted text will appear in your input stream as if
the user had typed it.

❏ While CONCLIP (see s:startup-sequence) is running, programs may receive ‘‘<CSI>0 v’’ in their
input stream indicating the user wants to paste text from the clipboard. This shouldn’t cause any
problems for programs which parse correctly (however we know that it does; the most common
problems are outputting the sequence, or confusing it with another sequence like that for FKEY 1
which is ‘‘<CSI>0~’’).

❏ The console.device now renders a ghosted cursor in inactive console windows (both
SMART_REFRESH, and SIMPLE_REFRESH with character maps). Therefore, rendering over the
console’s cursor with graphics.library calls can trash the cursor; if you must do this, first turn off
the cursor.

❏ Some degree of unofficial support has been put in for programs which use SMART_REFRESH console
windows, and use graphics.library calls mixed with console.device sequences to scroll, draw
text, clear, etc. This is not supported in SIMPLE_REFRESH windows with character maps, and is
strongly discouraged in all cases.

❏ Closing an Intuition window before closing the attached console.device worked in the past; it will
now crash or hang the machine.

❏ Under 1.2-1.3, vacated portions of a console window (e.g., areas vacated because of a clear, or a
scroll) were filled in with the character cell color. As of V36 this is no longer true; vacated areas
are filled in with the global background color which can be set using the SGR sequence
‘‘<ESC>[>##m’’ where ## is a value between 0-7. In order to set the background color under
V36/V37, send the SGR to set background color, and a FormFeed to clear the screen.

❏ Note that SIMPLE_REFRESH character mapped consoles are immediately redrawn with the global
background color when changed--this is not possible with SMART_REFRESH windows.

Programming Practices
and Standards

2.0 Compatibility Problem AreasPage I - 32

Amiga Mail
Volume II

Additional Information

Task Switching

The 1.3 Kickstart contained two task switching bugs. After an interrupt, a task could lose the CPU to
another equal priority task, even if the first task’s time was not up. The second bug allowed a task
who’s time was up to hold on to the CPU either forever, or until a higher priority task was scheduled.
Two busy-waiting tasks at high priority would never share the CPU. Because the input.device runs at
priority 20, usually the effect of these bugs was masked out for low priority tasks. Because of the
bugs, the ExecBase->Quantum field had little effect.

For 2.0, a task runs until either its Quantum is up, or a higher priority task preempts it. When the
Quantum time is up, the task will now lose the CPU. The Quantum was set to 16/60 second for 1.3,
and 4/60 second for 2.0.

In general, the 2.0 change makes the system more efficient by eliminating unnecessary task switches
on interrupt-busy systems (for example, during serial input). However, the change has caused
problems for some programs that use two tasks of equal priority, one busy-waiting and one Wait()ing
on events such as serial input. Previously, each incoming serial character interrupt would cause task
context switch allowing the event-handling task to run immediately. Under 2.0 the two tasks share the
processor fairly.

Intuition Gadgets and Window Borders

If 2.0 Intuition finds a gadget whose hit area (gadget Left/Top/ Width/Height) is substantially inside
the border, it will be treated as though it was declared in the border. This is called ‘‘bordersniffing’’.
Gadgets declared as being in the border or detected by Intuition as being in the border are refreshed
each time after the border is refreshed, and thus aren’t clobbered.

Noteworthy special cases:

1) A gadget that has several pixels not in the border is not bordersniffed. An example would be an 18-
pixel high gadget in the bottom border of a SIZEBBOTTOM window. About half the gadget will be
clobbered by the border rendering.

2) A gadget that is not substantially in the border but has imagery that extends into the border cannot
be sniffed out by Intuition.

Programming Practices
and Standards

2.0 Compatibility Problem Areas Page I - 33

Amiga Mail
Volume II

3) A gadget that is substantially in the border but has imagery that extends into the main part of the
window will be sniffed out as a border gadget, and this could change the refreshing results. A
common trick to put imagery in a window is to put a 1x1 or 0x0 dummy gadget at window
location (0,0) and attach the window imagery to it. To support this, Intuition will never
bordersniff gadgets of size | x| or smaller.

All these cases can be fixed by setting the appropriate GACT_xxxBORDER gadget Activation flag.

4) In rare cases, buttons rendered with Border structures and JAM1 text may appear invisible under 2.0.
We apologize, but there is nothing that can be done on our end, even if the application
technically did nothing wrong.

Intuition Fonts

The following table shows where the Intuition gets its fonts from:

 What you tell OpenScreen Screen’s Font Windows’ RPort’s Font
A. NewScreen.Font = myfont myfont myfont
B. NewScreen.Font = NULL GfxBase->DefaultFont GfxBase->DefaultFont
C. {SA_Font, myfont} myfont myfont
D. {SA_SysFont, 0} GfxBase->DefaultFont GfxBase->DefaultFont
E. {SA_SysFont, 1} Font Prefs Screen text GfxBase->DefaultFont

Notes:

A and B are the options that existed in releases prior to V36.

C and D are new V36 tags that are equivalent to A and B respectively.

E is a NEW option for V36. The Workbench screen uses this option.

GfxBase->DefaultFont will always be monospace. This is the ‘‘System Default Text’’ from Font
Preferences.

The ‘‘Screen Text’’ choice from Font Preferences can be monospace or proportional.

’myfont’ can be any font of the programmer’s choosing, including a proportional one. This is true
under all releases of the OS.

Programming Practices
and Standards

2.0 Compatibility Problem AreasPage I - 34

Amiga Mail
Volume II

The menu bar, window titles, menu-items, and the contents of a string gadget use the screen’s font.
The font used for menu items can be overridden in the item’s IntuiText structure. Under V36 and
higher, the font used in a string gadget can be overridden through the StringExtend structure. The font
of the menu bar and window titles cannot be overridden. Because the 2.0 Workbench screen uses
option E to specify its Screen font from the user’s Screen font Preferences, applications which open
windows on the Workbench screen may get very large or proportional fonts in their menu bars,
window titles, menu-items and string gadgets.

To predict your window’s titlebar height before you call OpenWindow():

 topborder = screen->WBorTop + screen->Font->ta_YSize + 1

The screen’s font may not legally be changed after a screen is opened.

Be sure the screen cannot go away on you. This is true if:

1) You opened the screen yourself.
2) You currently have a window open on the screen.
3) You currently hold a lock on this screen (see LockPubScreen()).

IntuiText rendered into a window (either through PrintIText() or as a gadget’s GadgetText) defaults to
the Window RastPort font, but can be overridden using its ITextFont field. Text rendered with the
Text() graphics.library call appears in the Window RastPort font.

The Window’s RPort’s font shown above is the initial font that Intuition sets for you in your
window’s RastPort. It is legal to change that subsequently with SetFont().

∞∞

