
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Who? What? When?
Where? Why? How? Whazzit? Why? How? Whazzit? Who? What? When? Where? Why?
How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?

Q & AQ & AQ & A
Amiga Mail

Volume II

Amiga Mail News November/December 1991 Page 3

Q: Is it possible to have one IDCMP port for two
windows on two screens?

A: Yes. The standard technique for sharing one
IDCMP port is:

sharedport = CreatePort(...);
...

newwin.IDCMPFlags = 0;
...

win = OpenWindow(&newwin);
win->UserPort = sharedport;
ModifyIDCMP(win, DESIRED_IDCMPFLAGS);

...
/* Open other windows the same way */

...
/* You must use CloseWindowSafely() to close
windows with shared IDCMP ports -- CloseWindow()
alone is unsafe... */
CloseWindowSafely(win);

Notice that this code uses the function
CloseWindowSafely() (see the CloseWindow()
Autodoc for the code). This function is specially
designed to clean up after a window that shares
an IDCMP port either with a window or some
other inter-process communications customer.
Don’t modify the loop in the CloseWindow()
Autodoc! It is correct. Some people think they
see a bug there (one iteration too many), but
they’re wrong.

Q: How do I provide a Zorro II 24-bit DMA
device with a few bytes of memory on any
machine?

A: Call the AllocMem() function using the new
(for 2.0) MEMF_24BITDMA flag defined in
<exec/memory.h>. (It is much like MEMF_CHIP
and MEMF_FAST only for 24BITDMA...)

Q: but what if I’m using a 1.3 system?

A: If you call AllocMem() with the
MEMF_24BITDMA flag, the pre-2.0 AllocMem() will
still check for that flag. You could write a utility
that, under pre-2.0 systems, adds the
MEMF_24BITDMA flag to a memory header’s
MH_ATTRIBUTES field of the 24-bit memory areas.

Q: With some programs I get a lot of enforcer hits
(write-long) at addresses $180, $184, $188, etc.
with PC in ROM at location $F830C. Why?

A: See the Autodoc for exec.library/Alert. This is
where exec stores the processor registers when
there is an alert caused by a processor trap. You
should be able to make some guesses about what’s
wrong with your program by looking at the register
values being written. The Guru Number is in D7.

Q: Commodore has publicly stated that
applications should not make specific use of the
PMMU. Is this correct?

A: Yes. While tools/hacks sometimes use the
PMMU (such as Enforcer) they can not be
expected to work when the system itself starts to
use the PMMU. The PMMU is a supervisor-space
feature of the CPU and, for it to do what it does, it
must remain a system controlled resource. If you
wish to do MMU-related things in an OS and
processor compatible manner, use the function calls
available in 2.04 (such as CachePreDMA(),
CacheControlU(), etc). These will do their best to
‘‘do the right thing’’ on all OS/CPU combinations.

More complex usages (private MMU tables, etc)
are the domain of the OS and of various hacks (but
often highly useful hacks) that may not work with
future OS/CPU combinations.

Q: When opening a BORDERLESS window under
2.0, do you have to also make it BACKDROP to stop
it from having Borders?

A: A window has borders unless all of the
following are true:

1. It is declared BORDERLESS.
2. It has no title (NewWindow.Title = NULL,
 not "").
3. It has no user gadgets in the border (i.e. gadgets
with xxxBORDER set).
4. It has no system gadgets in the border (i.e. no
close gadget, no size gadget, no depth gadgets,
etc.).

Now the difference with 2.0 is that the NewLook
borders are rendered when a window goes active
or inactive. Under 1.3, the borders are not re-
rendered when the window becomes inactivate.

Some programs have a close gadget, and when
they open their window, they write over their
border. They may also have to overwrite it when
they get an ACTIVEWINDOW IDCMP message. Under
2.0, this trick/kludge isn’t enough.

BACKDROP does not enter into the picture.

The real trouble is that Intuition does not directly
support putting gadgets like the close gadget into
borderless windows. It never did, and the kludge
that makes it basically work under 1.3 is not
sufficient under 2.0.

In general, It’s not a good idea, stylistically, to
have borderless windows that are not backdrop
windows, since that may make it difficult for the

user to see the window bounds against other
windows behind it.

Q: Some of the format specifiers for the dos.library
function VFWriteF() contain a numerical value for
field lengths. The documentation states that the
numerical value is in base 36! Why is base 36
used?

A: It is a remnant from BCPL. It is the base you
get when using all of the alphanumeric characters.

Q: I am trying to get the number of display rows
from the Workbench screen. What is the proper
procedure for obtaining the number of Rows?

A: Under 2.0, you should use the Graphics Display
Database to get this information.

struct DimensionInfo MyDimInfo;
struct Screen *WBenchScreen;
WBenchScreen = LockPubScreen("Workbench");
id=GetVPModeID(&(WBenchScreen->ViewPort));
GetDisplayInfoData(NULL,&MyDimInfo,
 sizeof(MyDimInfo), TAG_DIMS, id);

MyDimInfo will now contain the sizes and
positions for Nominal, Video Overscan, Text
Overscan, and Standard overscan. Text and
Standard are from the user’s preferences settings.

Q:How do I rename a disk?

A: Under 1.3, you have to send the
Action_Rename_Disk packet to the disk’s
filesystem. See the AmigaDOS Manual for more
details on this packet. To find out where to send
the packet, use DeviceProc()on the old name (plus
the ‘‘:’’) or the device name (i.e.: ‘‘df0:’’).

Under 2.0, you can use the new Relabel() function
of dos.library. That function basically sends an
Action_Rename_Disk packet.

Amiga Mail NewsNovember/December 1991Page 4

Volume II
Amiga Mail

