Amniga Mel

Volume Il

November/December 1991

Keeping Time--Interval
Timersin Amiga UNI X

By David Miller

The Sleep() function

When you want your program to pause for anumber of seconds then continue, you will typically use
the dleep(3) function (the notation NAME(SECTION#) refers to the manual page NAME in the
SECTION# chapter of the UNIX Reference Manuals; section 1 is commands, section 2 is system calls,
and section 3islibrary functions). Thereisaso aseep(1l) program which provides the same function
to shell scripts. For example:

InC:
mai n()
printf("Hello world!'\n");
sl eep(5);
Shell:

#! [/ usr/ bi n/sh

echo "Hello world!"
sleep 5

The following example is an implementation of the slegp(3) function.

Unix and Networking Keeping Time--Interval Timers in Page VIl - 9
Amiga UNIX

Armiga el

Volume Il

Example 1: SLEEP() Using ALARMY()

1 # include <si gnal . h>

2 static void trap ()

3 {

4}

5 ?nsi gned sl eep (unsigned duration)

6

7 voi d (*oldsig)();

8 unsi gned ol dti ne;

9 ol dsig = signal (SIGALRM trap);

10 oldtinme = alarn{0);

11 if (oldtime && ol dtime < duration)
12 al arn(ol dtine);

13 el se

14 al arm(duration);

15 pause();

16 si gnal (S| GALRM ol dsi g);

17 if (oldtime > duration)

18 alarm(ol dtime - duration);
19 if (oldtime &% ol dtinme < duration)
20 return(duration - oldtine);
21 el se

22 return O;

23 }

ine Explanation

[EEN

Thefile signal.h defines the parameters for the signal(2) function.

2-4 trap() isthe ssimple signal handler that just sets aflag that another
piece of code will examine.

5 Define the slegp() function.
6-8 oldsigisavariable that will be used to save the previous state of the
signal handler; oldtime will be used to save the state of the alarm

clock.

9 Establish trap() as the current signal handler for the alarm signal.
The previous handler is saved in oldsig.

10 Clear the darm clock, saving the current state.

11-14 If the previous setting of alarm was sooner than duration, use the old
value, otherwise use duration to set the alarm.

15 Pausethe process until the alarm goes off.

16 Restoretheold signal handler.

Page VIl - 10 Keeping Time--Interval Timers in Unix and Networking
Amiga UNIX

Amniga Mel

Volume Il

17-18 If the old alarm setting was later than duration, reset the alarm with
the difference between duration and ol dtime (the time remaining
until the previous alarm).

19-22 If an existing alarm is making sleep return early, return the time
remaining on the requested sleep.

To scheduleits‘*wake up’’ time, sleep(3) usesthe alarm(2) system call. The alarm(2) system call
asks the OS to deliver asignal (basically a software interrupt) in some number of seconds according to
the system clock. However, setting an alarm for 2 seconds does not mean that you will receive an
alarm signal in exactly two seconds.

The OS processes alarm requests once every second. Each time an alarm request is processed, the
number of seconds remaining for that alarm is decremented by one. When the number of seconds
remaining reaches zero, the OS delivers asignal to the process. Given this, if aprocessplacesal
second alarm reguest 1 microsecond before the OS does its alarm processing, the signal will arrivein
1 microsecond, not in 1 second. An alarm set for N seconds actually means:

deliver asignal after N-1 seconds, but before N seconds.

If you'd like to see for yourself, try running this shell script:

$fori in12345678910
> do

> time sleep 2

> done

How many times did the process actually take more than 2 seconds? If you try it with both the Korn
shell, ksh(1), and the System V shell, sh(1), you'll find that under ksh(1) it takes about 1.2 seconds
and under sh(1) it takes about 1.8 seconds (There is a difference because sh(1) counts the time
required to start the sleep process whereas ksh(1) only counts the actual running time). The sleep(1)
program rarely, if ever, actually sleeps for 2 seconds.

If you are writing a daemon that checks for some event every 5 minutes, or if you want to pause the
output to give the user achanceto read it, alarm’s 1 second granularity isfine. But what about that
daemon that needs to wake up every second? Waking up after 1 microsecond could cause the process
to run amost continuously. For any sort of realtime processing, one second isavery long time. So
how do you sleep for less than one second reliably?

The answer isdo not use an alarm, use an interval timer.

Unix and Networking Keeping Time--Interval Timers in Page VIl - 11
Amiga UNIX

Armiga el

Volume Il

Interval Timers

Each interval timer has aresolution of 1 tick of the system’s clock, or 1 microsecond (whichever is
larger). Additionally, you can configure an interval timer to automatically restart itself. The system
provides each process with three independent interval timers:

| TI MER_REAL Thistimer will count down inrea time. That is, thistimer will continue to run when
your process is waiting for the OS to perform a system call, or when the OS preempts your process.
When the timer expires, the OSwill deliver a sl GALARMSsignal.

I TI MER_VI RTUAL Thistimer counts down only when your processis running. If your process makes a
system call, or is preempted, thistimer will stop counting. The timer will resume when your process
resumes execution. When this timer reaches zero, the process will receive a sl GVTALRMSIgnal.

Possible uses for this timer include checkpointing (saving data after some period of execution) and
multithreading. The virtual timer is more desireable for these applications since it counts only when
the processis running; there is no reason to perform a checkpoint or switch threads if the process has
beenidle.

I TI MER_PROF Thistimer will stop counting any time your process is preempted by the OS, but will
not stop when the processis waiting for a system call to return. When it expires the OS generates a
S| GPROF signal.

Thistimer is designed to be used for execution profiling by interpreters. By having a profiling timer
send asignal every second, or fraction of a second, and examining the current position in the
interpreted code, the process can determine where the most execution time is being spent.

All three timers operate on the following structure:

struct itinerval

struct tineval it_interval;
struct tineval it_val ue;

}

The timeval structure looks like this:

struct tineval
| ong tv_sec;
I ong tv_usec;

}

Both of these structures are defined in the <syg/time.h> includefile.

Page VIl - 12 Keeping Time--Interval Timers in Unix and Networking
Amiga UNIX

Amniga Mel

Volume Il

Note that System V Release 4.0 does not guarantee that these are the only members of these
structures, nor that they will occur inthisorder. You must initialize the membersindividually. This
can be annoying and tedious, but it allows the structure to be expanded in future rel eases.

Y ou set and examine timers using these two functions:

int getitimer(int which, struct itimerval *myval ue)

places the current timer setting into myvalue

int setitiner(int which, struct itimerval *nyvalue, struct itinerval *nyoval ue);
setsthetimer. It getsthe new time from myvalue and places the previous setting in myovalue.

Now, let ustake alook at the sleep function again. The code in example 2 creates a new version of
sleep that will sleep an exact number of seconds.

Example 2: SLEEP() Using an Interval Timer

1 # include <signal . h>

2 # include <sys/tine. h>

3 static void trap ()

4 |

5 1}

6 unsigned nysleep (unsigned duration)

7 A{

8 voi d (*oldsig)();

9 struct itimerval ol dti ne;

10 struct itinerval newt i ne;

11 ol dsig = signal (SIGALRM trap);

12 getitimer(lTI MER_REAL, &ol dtine);

13 if (oldtinme.it_value.tv_sec == 0

&% ol dtine.it_value.tv_usec ==
|| oldtine.it_value.tv_sec >= duration)

14 {

15 newtine.it_interval.tv_sec = 0;

16 newtinme.it_interval.tv_usec = 0;

17 newtine.it_value.tv_sec = duration;

18 newtinme.it_value.tv_usec = 0;

19 setitinmer(lTIMER_REAL, &newtinme, NULL);
20
21 pause();
22 signal (SI GALRM ol dsi g);
23 if (oldtine.it_value.tv_sec > duration)
24 {
25 oldtine.it_value.tv_sec -= duration;
26 setitimer(lTI MVER_REAL, &newtinme, NULL);
27 }
28 if (oldtime && oldtinme < n)
29 return(n - oldtine);
30 el se
31 return O;
32 }

Unix and Networking Keeping Time-Interval Timers in Page VIl - 13

Amiga UNIX

Armiga el

Volume Il

Line Explanation

1-2 Thefile signal.h defines the parameters of the signal(2)
function. Thefile <sys/time.h> defines| TI MER_REAL and the
structures used by getitimer(3) and setitimer(3).

35 trap() isthe simple signal handler that just sets a flag that
another piece of code will examine.

6-7 Define the mysleep() function.
8-10 oldsigwill hold the previous state of the signal handler;

oldtime will hold the state of the timer; and newtime will be
used to set the new timer parameters.

11 Establishtrap() asthe current signal handler for the alarm
signal. The previous handler issaved in oldsig.

12 Fetch the current settings of the timer.

13-20 If thetimer wasidle (both parts of it_value are zero) or it is set
to go off later than duration (it_valuetv_secis greater than
duration), set the timer to go off in duration seconds.

21 pause(2) the process until the timer expires.

22 Redstoretheold signal handler.

23-27 If the old timer setting was later than duration, reset the timer
with the difference between duration and
oldtime.it_value.tv_sec (the time remaining until expiration of
the previous setting).

28-32 If an exigting timer is making mysleep() return early, return the
time remaining on the requested mysleep().

This example useswhat is called a*‘ one-shot’’ timer. The timer goes off once, and then stops. By
supplying an interval setting, the timer becomes a clock, generating alarm signals on aregular basis.

The code fragment in Example 3 shows how to set the timer to produce a 1.5 second clock that will
start ‘‘ticking’’ in 1 minute.

Page VIl - 14 Keeping Time--Interval Timers in Unix and Networking
Amiga UNIX

Amniga Mel

Volume Il

Example 3: Using an Interval Timer asa Clock

1 # include <sys/tine. h>

2 ...

3 {

4 struct itinerval newt i ne;

5 newtine.it_value.tv_sec = 60;

6 newtinme.it_value.tv_usec = 0;

7 newine.it_interval.tv_sec = 5;

8 newinme.it_interval.tv_usec = 500000;

9 setitimer(lTI MER_REAL, &newtine, 0);
10 }
11

Line Explanation

1 Thefile <sydtime.h> defines| TI MER_REAL and the structures used
by getitimer(3) and setitimer(3).

2 Other code.

3 Start of block.

4 Structure newtime will hold the setting for the timer.
5-6 Setit_valueto expirein 1 minute.

7-8 Setit_interval to reload it_value with 5 seconds and 500,000.
microseconds (one half of a second).

9 Load the new settingsinto the | TI MER_REAL timer.
10 End of block.

11 Other code.

When the time interval specified by it_value expires, the contents of it_interval is copied into it_value
and the timer isrestarted. |If the interval specified by it_interval is zero, the timer stops. Timers can
be stopped at anytime by calling setitimer(3) with the members of it_value set to zero.

Unix and Networking Keeping Time--Interval Timers in Page VIl - 15
Amiga UNIX

Armiga el

Volume Il

So there you have the realtime interval timer. The other timers work exactly the same way, varying
only in when the timer isrunning. For more information on interval timers see UNIX SystemV
Release 4 - Programmer’ s Reference Manual, published by Prentice Hall. Next time, we'll explore
context switching, multithreading, and light weight processes.

Page VIl - 16 Keeping Time--Interval Timers in Unix and Networking
Amiga UNIX

