Amniga Mel

Volume Il

November/December 1991

Notification

by Ewout Walraven

File Notification is aform of interprocess communication available under Release 2.0. An application
can ask afile system (like the RAM disk handler RAM:, df0:, df1.:...) that supports notification to
inform it whenever changes are made to a specific file or directory, making it easy for the application
to react to such changes. The V37 ROM file system and the V37 and V36 RAM disk handler support
file notification.

Under Release 2.0, the preferences control program, I Prefs, sets up notification on most of the
preferencesfilesin ENV:sys. If the user alters any of these files (which he/she normally does with a
preferences editor), the system will notify | Prefs about the change. [Prefswill react to this
notification by attempting to alter the user’s environment to reflect the preference change. For
example, if the user opens the ScreenMode preferences editor and alters the Workbench environment
30 that the Workbench screen should be a Hires NTSC screen, ScreenMode writes afile called
Screenmode.prefs to the ENV: sys directory which happensto bein RAM:. Because | Prefs has set up
notification on thisfile, the RAM disk file system will notify | Prefs of the change, IPrefswill read in
the Screenmode.prefs file and will try to reset the Workbench screen so it isin Hires NTSC mode.

Notification allows very different applications to share common data files without knowing anything
about each other. This has many possible uses in the Amiga' s single user, multitasking environment.
One possible use for notification isin adesktop publishing (DTP) package. The user can open the
DTP package to layout a group of ILBMs, some structured drawings, and word processed text. When
the user loads each of these, the DTP package sets up notification on each of their corresponding files.
If the user loads an appropriate editor and changes any of the files on which the DTP package has set
up notification, the DTP package will receive notification of these changes and can automatically re-
import these filesinto the current DTP document without the user having to intervene. Another
possible use for notification might be in amake utility. A make program for a compiler could set up
notification on a set of source code and object files. If any of those files change, the make program
will recompile and link the program, without the programmer having to intervene.

AmigaDOS Notification Page Il - 31

Armiga el

Volume Il

Setting up file notification on afileis easy. The StartNotify() function from dos.library starts
notification on afile or directory:

BOCOL StartNotify(struct NotifyRequest *notify);

StartNotify() returns oostrue if the call is successful, or it returns ocsrase (for example, when the file's
file system does not support notification). This function takes a pointer to an initialized
NotifyRequest structure asits only argument (as defined in <dos/notify.h>):

struct NotifyRequest {
UBYTE *nr _Nare;

_ /* Fileldirectory name for which you want notification */
UBYTE *nr _Ful | Nanme; /
/
/

Used by DOS. Do not use */
For applications use */
Fl ags I ndicating Signal or Message notification */

ULONG nr _User Dat a;
ULONG nr _Fl ags;

* ok ok ok

uni on {
/* Used for Message notification */
struct {
struct MsgPort *nr_Port; /* Message port to receive nmessages on */
} nr_Msg;
/* Used for Signal notification */
struct {
struct Task *nr_Task; /* The task to signal */
UBYTE nr _Si gnal Num /* The signal nunber to use. */
UBYTE nr _pad[3] ;
} nr_Signal;
} nr_stuff;
ULONG nr_Reserved[4] ; /* leave 0 for now */
/* Used internally by handlers */
ULONG nr _MsgCount ; /* nunber of outstanding nmessages */
struct MsgPort *nr_Handl er; /* handler to send to (for EndNotify) */

This structure must not be altered by the application while notification is in effect!

The nr_Name field contains a pointer to the name of the file on which to set up notification.

Currently, nr_Name has to be afile name and path containing alogical device name (for example dfQ:,
work:, fonts:). Thenr_FullNamefield isfor the private use of the file system. Any other useof it is
strictly prohibited. Thenr_UserDatafield is available for an applications private use.

Thenr_Flagsfield tellsthe file system which type of notification to set up, message or signal. When
the file system uses message notification, it notifies an application by sending an Exec message. An
application asks afile handler to notify it via an Exec message by setting the NRF_SEND_MESSAGE flag
in nr_Flags. When thefile system uses signal notification, it sets an Exec signal to notify an
application. An application receives notification viaasignal by setting the NRF_SEND_SI GNAL flag.

Thenr_Flagsfield has two other flags, NRF_WAI T_REPLY and NRF_NOTI FY_I NI TI AL.

The NRF_WAI T_REPLY tells the file handler not to send notification messages about a specific
file/directory to an application if the application has not replied to a previous notification message
about that specific file. Thisflag only appliesto message notification. The NRF_NOTI FY_I NI TI AL flag
tellsthe file handler to notify the application if the file exists when it sets up notification on the file.
Theflagsfor the nr_Flagsfield are defined in <dos/notify.h>.

Page Il - 32 Notification AmigaDOS

Amniga Mel

Volume Il

The layout of the rest of the NotifyRequest structure depends on the type of notification. If the
application is using message notification, it must supply the handler with a message port to send the
notification messages. The NotifyRequest.nr_stuff.nr_Msg.nr_Port field contain the pointer to the
message port that will receive the message notifications. If the application isusing asignal for
notification, it must supply a pointer to the task to signal and the number (not bit!) of the signal. In
this case, the NotifyRequest.nr_stuff.nr_Signal.nr_Task field should contain the appropriate task
pointer and the NotifyRequest.nr_stuff.nr_Signal.nr_SignalNum field should contain the signal
number.

When afile handler uses message notification, it will send a NotifyMessage:

struct NotifyMessage {
struct Message nm ExecMessage;

ULONG nm d ass; Class, will be NOTIFY_CLASS */

UMORD nm _Code; ;: Code, wi Il be NOTI FY_CODE */

struct NotifyRequest *nm NReq; /* Pointer to the NotifyRequest you supplied */

ULONG nm DoNot Touch; /* private */

v, ULONG nm DoNot Touch2; /* private */

Message notification is especially useful if you are monitoring more than one file. It quickly enables
you to find out which file/directory caused this message by either comparing the NotifyRequest
structure returned in nm_NReq with the one you sent in the StartNotify() function, or by reading the
NotifyRequest’snr_UserDatafield. Because the NotifyMessage’snm_Class and nm_Code fields
contain values that distinguish it from other types of messages, you can use an already allocated

message port (from awindow for example) to receive notification messages.

To end notification on afile, use the dos.library function EndNotify():

voi d EndNotify(struct NotifyRequest *notify);

An application must call this function for each of its successful StartNotify() calls. Thisfunction takes
one parameter, a pointer to the NotifyRequest structure that the application used to initiate the
notification. In the case of message notification, EndNotify() will remove al pending notify messages
from your message port. After calling thisfunction, it is safe for the application to change or free the
NotifyRequest structure. The application may also remove the message port or free the signal bit.

A file handler should send natification when it receives any of the following packets (from
<dos/dosextens.h>) about the notification file or directory:

ACTI ON_RENANE_OBJECT
ACTI ON_RENANE_DI SK
ACTI ON_CREATE DI R
ACTI ON_DELETE_OBJECT

ACTI ON_VRI TE
ACTI ON_FI NDUPDATE
ACTI ON_FI NDOUTPUT
ACTI ON_SET_FI LE_SI ZE

ACTI ON_SET_DATE

AmigaDOS Notification Page Il - 33

Armiga el

Volume Il

Thefirst four packets will cause notification immediately. The second four packets will cause
notification when the notification fileis closed. The last packet, ACTI ON_SET_DATE, should cause
notification immediately, but due to abug in the V37 ROM file system, only the RAM disk’sfile
handler (RAM:) will send notification.

Notice that some of the packets that trigger a notification are sent by a process when it istrying to
create anew file or directory. A file system that supports notification should be able to set up
notification on afile or directory that does not currently exist. A file system should send notification
when it creates that file or directory.

Note however that, although notification on directories is part of the OSin release 2.0, it does not
work correctly. Inthe ROM file system, directory notification only worksif that directory exists when
notification is set up. If your application triesto set up notification on a ROM file system directory
before the directory exists, your application will never receive notification about that directory. If
notification is set up for a directory in RAM:, you will only be informed when that directory is created
or deleted and when files are created in that directory, not when files are changed or deleted.

When implementing notification in your application, there are several thingsto remember. Not every
file system supports notification, in particular, most network file systems will not support notification.
For this reason, no application should require notification to function.

At the end of this article are two examples for file notification. Signal Notification.c implements signal
notification on asingle target. MessageNoatification.c shows how to start message notification on
multiple targets. Note that these examples are not linked with startup code (like c.0). Although these
examples do set up SysBase and DosBase to gain access to exec.library and dos.library, the examples
do not handle the startup message (WBenchMsg) that Workbench sends when it launches an
application, so do not run these exampl es from Workbench.

Page Il - 34 Notification AmigaDOS

