Z 9ses|ay
Japun QJ| |areT 18¥oed

soqgebiwy

€0l - 1| ebed

;/* ComparelO.c - Execute me to compile me with Lattice 5.10b
LC -b0 -cfistq -v -y -j73 ComparelIO.c

Blink FROM LIB:c.o,CompareIO.o TO CompareIO LIBRARY
LIB:LC.1lib,LIB:Amiga.lib,lib:debug.lib

quit ;*

/* CompareIO.c uses packet level I/O to copy the standard input channel to the */

/* standard output channel (as set up by the standard startup code, c.o). */
/* CompareIO uses both synchronous and asynchronous I/0 to perform the copy */
/* and reports the time it takes to do each. */

#include <exec/types.h>
#include <dos/dosextens.h>
#include <devices/timer.h>

#include <clib/dos protos.h>
#include <clib/timer protos.h>
#include <clib/exec protos.h>
#include <clib/alib protos.h>
#include <clib/alib_stdio_protos.h>

#ifdef LATTICE

int CXBRK(void) { return(0); }

void chkabort (void) { return; }

#endif

#define BUFSIZE 8192

UBYTE *vers = "\0$VER: ComparelIO 37.14 Nov-12-92";

ULONG AsyncLoop (void) ;
ULONG SyncLoop (void) ;

extern struct Library *DOSBase;
struct Library *TimerBase;

struct MsgPort *myport;

struct FileHandle *in, *out;
BPTR results, inistart, out_start;

struct DosPacket *sp read, *sp write;
UBYTE buffer [BUFSIZE*2];

struct timeval time_start, time_finish;
struct timerequest timer io;

ULONG vfprintfargs([2]; /* An array of pointers */
void main (void)
if (DOSBase->1ib Version >= 37)

{
if (results = Open("*", MODE_NEWFILE)) /* This is for printing the results.
{

/* Since the example is already using the

/* standard I/O channels for its own
/* purposes,
/* channel to output the results.

if (!OpenDevice (TIMERNAME, UNIT MICROHZ, &timer io, OL))

{

TimerBase = (struct Library *)timer_io.tr node.io_Device;
if (myport = CreateMsgPort())
{

in_start = Input();
out_start = Output(); /* change them while this example is using them.
if (in = (struct FileHandle *)BADDR(in_start))
{

if (out =

{

(struct FileHandle *)BADDR (out_start))

if (sp_read = AllocDosObject (DOS_STDPKT, NULL)

{
if (sp_write = AllocDosObject (DOS_STDPKT, NULL)
{

/* When AllocDosObject () allocates a StandardPacket,

there needs to be a separate

/* Need to hold on to input and output so no one can

it takes

/* Disable Lattice CTRL/C handling */

*/
*/

*/

/* care of linking together the Message and DosPacket.

/* AllocDosObject () points the DosPacket's dp Link field at */
/* the StandardPacket's Message structure. It also points */
/* the Message's mn Node.ln Name field at the DosPacket: */
/* sp_read->dp Link = sp Msg; */
/* sp_Msg->mn_Node.ln Name = (STRPTR)sp_read; */

sp_read->dp_Type = ACTION_READ;
sp_read->dp_Argl = in->fh Argl;

/* Fill out ACTION_ READ packet. */

sp_write->dp Type = ACTION WRITE; /* Fill out ACTION _WRITE packet. */

sp_write->dp Argl = out—>fHﬁArgl;

VFPrintf (results, "\n Method Seconds Micros\n", NULL);
VFPrintf (results, L st \n", NULL);
GetSysTime (&time_start);
if (AsyncLoop())
{
GetSysTime (&time finish);
SubTime (&¢time finish, &time_start);
viprintfargs[0] = time_finish.tv_secs;
vfprintfargs[1l] = time finish.tv_micro;
VFPrintf (results,
" Asynchronous: $%31d %71d\n", &vfprintfargs[0]);
GetSysTime (&time_start);
if (SyncLoop())
{
GetSysTime (&time finish);
SubTime (&¢time finish, &time_start);
viprintfargs[0] = time_finish.tv_secs;
vfprintfargs[1l] = time finish.tv_micro;
VEFPrintf (results,
" Synchronous: $%31d %71d\n", &vfprintfargs[0]);
}
else
VEPrintf (results, " Kkkkkkkk Gtop K**k*k*k*\n", NULL) ;
}
else
VEPrintf (results, " Kkkkkkkk Gtop K**k*k*k*\n", NULL) ;

FreeDosObject (DOS_STDPKT, sp_write);
}
FreeDosObject (DOS_STDPKT,

}

sp_read) ;
}
}
DeleteMsgPort (myport) ;
}

CloselLibrary (TimerBase) ;

Close (results);

}
}
ULONG AsyncLoop ()
{

struct StandardPacket *mysp;
UBYTE *buf;

LONG amount_read;

BOOL sp_read busy = TRUE, /* Is the ACTION_READ packet busy? */
sp_write busy = FALSE, /* Is the ACTION WRITE packet busy? */
done FALSE; /* Is the program finished? */

ULONG ok = TRUE;

if (! ((out->fh_Argl) && (in->fh_Argl))) /* Don't bother if in or out uses NIL: */

return (FALSE) ;
sp_read->dp_Arg2 = (LONG)buffer;
sp_read->dp_Arg3 = BUFSIZE;

/* The buffer to fill in. */
/* The size of the Arg2 buffer. */

SendPkt (sp_read, in->fh_Type, myport); /* Send initial read request. */

Z oses|oy
Japun QJ] |oAeT 19x2ed

¥0l - 1| 8bed

soqgebiwuy

Amiga Mail

sp_write->dp Type = ACTION WRITE; /* Fill out the ACTION WRITE packet. */
sp_write->dp_Argl = out->fh Argl;

sp_write->dp Arg2 = (LONG) sbuffer [BUFSIZE]; /* Arg2 points to the buffer to write */
sp _write->dp Arg3 oL; /* out. At first glance, it might */
sp write->dp Resl = OL; /* seem odd to bother setting Arg2 */
N N /* when the program hasn't read anything yet. */
/* This is to set up for the main loop. The */
/* main loop swaps the ACTION READ buffer with */
/* the ACTION WRITE buffer when it receives */
/* a completed read. Likewise, dp Arg3 and */
/* dp Resl are set to make the ACTION READ */
/* look like it has a valid return value so */
/* main loop won't fail the first time through */
/* the loop. */
/* main() has already taken care of sending the initial read to the */
/* handler. Because we need the data from that read before we can */
while (!done) /* do anything, the first thing to do is wait for its return. */
{
do /* Wait for the ACTION READ to return. */
{
WaitPort (myport) ;
while (mysp = (struct StandardPacket *)GetMsg (myport)) /* ...empty the port. */
{
/* If this message is the ACTION READ packet, mark it as */
/* no longer busy so we can use it to start another read. */
if (mysp->sp_Pkt.dp_ Type == ACTION_READ) sp_read_busy = FALSE;
/* If this message is instead the ACTION WRITE packet, */
/* mark it as not busy. We need to check for this because */
/* the WRITE PACKET from the previous interation through */
/* the loop might have come back before the ACTION WRITE */
/* from the previous interation. N */
else
if (mysp->sp_Pkt.dp_ Type == ACTION_WRITE) sp write busy = FALSE;
}
} while (sp_read busy); /* End of "wait for ACTION_READ" loop. */
/* Get ready to send the next ACTION READ. */
buf = (UBYTE *) (sp_read->dp Arg2); /* Hold on to the important stuff from the */
amount read = sp read->dp Resl; /* ACTION READ we just got back so we can */
N N N /* reuse the packet to start a new read */
/* while processing the last read's data. */
while (sp write busy) /* Because this example only uses two buffers and */
{ N N /* the ACTION WRITE might be using one of them, */
/* this example has to wait for an outstanding */
/* ACTION WRITE to return before reusing the */
/* ACTION WRITE packet's buffer. */
WaitPort (myport) ; -
while (mysp = (struct StandardPacket *)GetMsg (myport))
if (mysp->sp_Pkt.dp_ Type == ACTION_WRITE) sp write busy = FALSE;
}
if (SetSignal (0L, SIGBREAKF CTRL C) & SIGBREAKF CTRL C)
{
done = TRUE;
ok = FALSE;
}
else
{
/* This tests the return values from the ACTION READ and ACTION WRITE */
/* packets. The ACTION READ packet returns the number of bytes it */
/* read in dp Resl, which was copied earlier into amount read. If it */
/* is 0, the read packet found the EOF. If it is negative, there was */
/* an error. In the case of ACTION WRITE, an error occurs if the */
/* number of bytes that ACTION WRITE was supposed to write (Arg3) */
/* does not match the actual number it wrote, which ACTION WRITE re- */
/* turns in Resl. This test is the reason dp Resl and dp Arg3 were */
/* set to zero when the ACTION WRITE packet was set up in main(). */
if ((amount_read > 0) && (spfwrite—>dp7§esl == sp_write->dp_ Arg3))
{
sp_read->dp Arg2 = sp write->dp Arg2; /* ACTION WRITE is finished with its */
N N N N /* buffer, use it in the next read. */
SendPkt (sp read, in->fh Type, myport); /* Send the next ACTION READ and mark */
sp_read busy = TRUE; - /* the ACTION READ as busy. */

}

/* Process Buffer. This example doesn't do anything with the data from the */
/* last ACTION_READ, it just passes it on to the STDOUT handler. */

sp_write->dp Arg2 = (LONG)buf; /*
sp_write->dp Arg3 = amount_read;
SendPkt (sp_write, out->fh_Type, myport);
sp_write busy = TRUE;
}
else /* A packet returned with a failure, so quit. */
{
done = TRUE;
if ((amount_read < 0) || (sp_write->dp Resl != sp write->dp Arg3)) ok = FALSE;
}

Set up the ACTION WRITE packet. */

/* Send the next ACTION_WRITE and */
/* mark the ACTION WRITE as busy. */

}

return (ok) ;

ULONG SyncLoop ()
{

BOOL done = FALSE;

ULONG ok = TRUE;
BPTR lock;
if (! ((out->fh Argl) && (in->fh Argl))) /* Don't bother if in or out uses NIL: */
return (FALSE) ;
sp_read->dp_Arg2 = (LONG)buffer;
sp_read->dp_Arg3 = BUFSIZE*2;
sp_write->dp Arg2 = (LONG)buffer;

}

if (lock = DupLockFromFH (in_start))

UnLock (lock) ; /* Make sure this is a filesystem and not */
Seek (in_start, 0, OFFSET_BEGINNING) ; /* a console. If this is a filesystem, */
} /* go to the beginning of the file. */

while (!done)

{
if (SetSignal (0L, SIGBREAKF CTRL C) & SIGBREAKF CTRL C)
{

done = TRUE;
ok = FALSE;
}
else
{
SendPkt (sp_read, in->fh Type, myport);
WaitPort (myport) ; -
while (GetMsg (myport));

if (sp_read->dp Resl > 0)
{

sp_write->dp Arg3 = sp read->dp Resl;
SendPkt (sp_write, out->fh Type, myport);
WaitPort (myport) ; -

while (GetMsg (myport));

if (sp_write->dp Resl != sp write->dp Arg3)

{
done = TRUE;
ok = FALSE;
}
}
else

{
done = TRUE;
if (sp_read->dp_Resl < 0) ok = FALSE;
}
}

return (ok) ;

;/* INOUtCTRL-C.c - Execute me to compile me with Lattice 5.10b
LC -b0 -cfistq -v -y -j73 InOutCTRL-C.c
Blink FROM LIB:c.o, InOutCTRL-C.o TO InOutCTRL-C LIBRARY

Z 9ses|ay
Japun QJ| |areT 189)0ed

soqgebiwy

G0\ - 1| ebed

LIB:LC.1lib,LIB:Amiga.lib,lib:debug.lib

quit ;*

/* InOutCTRL-C.c uses packets to copy the standard input channel to the */

/* standard output channel using asynchronous I/0.

This example does a better */

/* job checking for a user break than the accompanying example, ComparelIO.c. */

#include
#include

#include
#include
#include
#include

<exec/types.h>
<dos/dosextens.h>

<clib/dos_protos.h>
<clib/exec protos.h>
<clib/alib protos.h>
<clib/alib_stdio protos.h>

#ifdef LATTICE

int CXBRK(void) { return(0); }

/* Disable Lattice CTRL/C handling

void chkabort (void) { return; }

#endif

#define BUFSIZE 8192

UBYTE *vers = "\0SVER: InOutCTRL-C 37.9 Nov-12-92";

void MainLoop (void) ;

extern struct Library *DOSBase;

struct MsgPort

*myport;

ULONG portsignal, signals, sigmask;

struct FileHandle *in, *out;
struct DosPacket *sp read, *sp write;

UBYTE bufl[BUFSIZE], buf2[BUFSIZE];

void main (void)

if (DOSBase->1ib Version >= 37)

/* 2.0 only

if (myport = CreateMsgPort())
{

if (in = (struct FileHandle *)BADDR (Input())) /* Need file handle to
{

/* get to Handler process

if (out = (struct FileHandle *)BADDR (Output()))

{

if (sp_read = AllocDosObject (DOS STDPKT, NULL)) /* Allocate two

{ - - /* StandardPackets: one
if (sp write = AllocDosObject (DOS STDPKT, NULL)) /* for reading, and one
{ - - /* for writing. */

sp read->dp Type = ACTION READ;
sp_read->dp Argl = in->fh Argl;
sp_read->dp Arg2 = (LONG)bufl;
sp_read->dp_Arg3 = BUFSIZE;

/* Fill out the ACTION_READ packet.

/* The buffer to fill in.
/* The size of the Arg2 buffer.

/* When AllocDosObject() allocates a StandardPacket, it takes
/* care of linking together the Message and DosPacket.

/* AllocDosObject () points the DosPacket's dp Link field at

/* the StandardPacket's Message structure. It also points

/* the Message's mn Node.ln Name field at the DosPacket:

/* sp_read->dp Link = sp Msg;

/* sp_Msg->mn_Node.ln Name = (STRPTR)sp_read;

if (! ((out->fh_Argl) && (in->fh Argl))) /* Don't bother if in or

return; /* out uses NIL:
SendPkt (sp_read, in->fh_Type, myport); /* Send initial read request.
portsignal = 1L<<myport->mp_SigBit; /* Record the signal bits
sigmask = SIGBREAKF_CTRL_C | portsignal; /* for later use.

sp write->dp Type = ACTION WRITE; /* Fill out the ACTION WRITE packet.
sp write->dp Argl = out->fh Argl; -
sp _write->dp Arg2 = (LONG)buf2;
sp_write->dp Arg3 = OL;

/* Arg2 points to the buffer to write
/* out. At first glance, it might

*/

*/

*/

*/
*/

sp_write->dp_Resl = 0L;

MainLoop () ;

/* seem odd to bother setting Arg2
when the program hasn't read anything yet.
This is to set up for the main loop. The
main loop swaps the ACTION READ buffer with
the ACTION WRITE buffer when it receives
a completed read. Likewise, dp Arg3 and
dp Resl are set to make the ACTION READ
look like it has a valid return value so
main loop won't fail the first time through
the loop.

FreeDosObject (DOS_STDPKT, sp_write);

}

*/
*/

FreeDosObject(DOSisTDPKT, sp_read) ;
}
}
}
DeleteMsgPort (myport) ;
}
}

}

void MainLoop ()

{

struct StandardPacket *mysp;

UBYTE *buf;

LONG amount_read;

BOOL sp_read busy = TRUE, /* Is the ACTION_READ packet busy? */
sp_write busy = FALSE, /* Is the ACTION WRITE packet busy? */
done = FALSE; /* Is the program finished? */

/* main() has already taken care of sending the initial read to the */
/* handler. Because we need the data from that read before we can */
while (!done) /* do anything, the first thing to do is wait for its return. */
{

do /* Wait for the ACTION READ to return. */

{
signals = Wait (sigmask); /* Wait for port signal or CTRL-C. */
if (signals & portsignal) /* If a message arrived at the port, ... */
...empty the port. */

while (mysp = (struct StandardPacket *)GetMsg (myport)) /*
{

/* If this message is the ACTION READ packet, mark it as */
/* no longer busy so we can use it to start another read. */
if (mysp->sp_Pkt.dp Type == ACTION_READ) sp_read _busy = FALSE;

/* If this message is instead the ACTION WRITE packet, */
/* mark it as not busy. We need to check for this because */
/* the WRITE PACKET from the previous interation through */
/* the loop might have come back before the ACTION WRITE */
/* from the previous interation. N */
else
if (mysp->sp_Pkt.dp_Type

ACTION_WRITE) spfwriteibusy = FALSE;
}

if (signals & SIGBREAKF_CTRL_C) /* If someone hit CTRL-C, start to quit. */

done = TRUE; /* If the ACTION READ is still out, try to */
if (sp_read busy) /* abort it. As of V39, AbortPkt () does */
AbortPkt (in->fh Type, sp read); /* not do anything, so this function has */

} - - /* no effect. Maybe a later release of the */
/* 0S will support packet aborting. */

} while (sp_read busy); /* End of "wait for ACTION_READ" loop. */

/* Get ready to send the next ACTION READ. */

buf = (UBYTE *)(spfread—>dp7Arg2); /* Hold on to the important stuff from the */
amount_read = sp_read->dp_Resl; /* ACTION_READ we just got back so we can */
/* reuse the packet to start a new read */
/* while processing the last read's data. */
while (sp_write_busy) /* Because this example only uses two buffers and */

Z oses|oy
Japun QJ] |oAeT 19x2ed

901 - || sbed

soqgebiwuy

Amiga Mail

*/
*/
*/
*/

*/
*/

*/

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/

*/

*/

*/

*/

if

{

/* the ACTION_WRITE might be using one of them,

/* this example has to wait for an outstanding

/* ACTION_WRITE to return before reusing the

/* ACTION_WRITE packet's buffer.

signals = Wait (sigmask);

if (signals & portsignal) /* 1If a message arrived at the port,
{ /* ... empty the port.
while (mysp = (struct StandardPacket *)GetMsg (myport))
if (mysp->sp_Pkt.dp_ Type == ACTION WRITE) sp_write busy = FALSE;
}
if (signals & SIGBREAKF_CTRL_C) /* If someone hit CTRL-C, start to quit.
{
done = TRUE; /* 1f the ACTION_READ is still out, try to
if (sp_write_busy) AbortPkt (out->fh Type, sp_write); /* abort it.

/* Make sure the user didn't hit CTRL-C. If the user hit CTRL-C dur-

(!done) /* ing one of the "wait for packet" loops, done == TRUE. Notice that

/* this example does not actually break for the CTRL-C until after it

/* gets back both packets.

/* This tests the return values from the ACTION_READ and ACTION_WRITE

/* packets. The ACTION_READ packet returns the number of bytes it

/* read in dp_Resl, which was copied earlier into amount_read. If it

/* is 0, the read packet found the EOF. If it is negative, there was

/* an error. 1In the case of ACTION_WRITE, an error occurs if the

/* number of bytes that ACTION _WRITE was supposed to write (Arg3)

/* does not match the actual number it wrote, which ACTION_WRITE re-

/* turns in Resl. This test is the reason dp_Resl and dp_Arg3 were

/* set to zero when the ACTION _WRITE packet was set up in main().

if ((amount_read > 0) && (sp_write->dp Resl == sp_write->dp Arg3))

{
sp_read->dp Arg2 = sp write->dp Arg2;

SendPkt (sp_read, in->fh_Type, myport);

sp_read busy = TRUE;

/* ACTION_WRITE is finished with its */
/* buffer, use it in the next read.

/* Send the next ACTION_READ and mark

/* the ACTION_READ as busy.

/* Process Buffer. This example doesn't do anything with the data from the

/* last ACTION_READ, it just passes it on to the STDOUT handler.

sp_write->dp Arg2 = (LONG)buf; /* Set up the ACTION_WRITE packet.
sp_write->dp Arg3 = amount_read;
SendPkt (sp_write, out->fh Type, myport); /* Send the next ACTION_ WRITE and

	untitled

