
AmigaDOS Handling Multiple Assigns with
Conventional Directories

Page II - 113

Amiga MailAmiga Mail
Volume II

Handling Multiple Assigns with
Conventional Directories

One of the features introduced by Release 2 is Multiple Assigning. This feature allows an
AmigaDOS assign to carry over several directories which can be on different volumes. This
makes it possible to split up assigns such as libs: and fonts:.

The article ``Directory Scanning'' on page II-49 contains an example called find.c that
illustrates scanning a path that can contain a multiassign. However, besides being rather
complicated, find.c makes a special case of scanning assigns, which isn't necessary (find.c also
did something evil--find.c uses DOSBase's private pointer to the utility.library, essentially using
the utility.library without opening it). The method needed to scan a multiassign directory also
works on conventional directories.

Scanning a multiassign requires calling the dos.library function GetDeviceProc() in a loop to see
each directory of the multiassign. Using GetDeviceProc(), the application doesn't have to
concern itself with the differences between assigns, multiassigns, and volumes. The application
just keeps calling GetDeviceProc() until it gets back a NULL.

struct DevProc *GetDeviceProc(STRPTR name, struct DevProc *dp);

The name can be any valid dos path. If there is a device name present, GetDeviceProc() will
find the device's entry in the dos list and copy some information into a DevProc structure:

struct DevProc {
 struct MsgPort *dvp_Port; /* Device's Message port, also called a Process identifier */
 BPTR dvp_Lock; /* Lock on root of assign or lock on root of volume */
 ULONG dvp_Flags;
 struct DosList *dvp_DevNode;/* DON'T TOUCH OR USE! */
};

The important fields here are dvp_Lock and dvp_Port. The dvp_Lock field is a lock on the
root of the object named in GetDeviceProc(). It serves as a starting point in locating the named
object. If the object name contains an assign (i.e. ``libs:''), dvp_Lock is the root of the assign.
For example, on a typical Release 2 system, the libs: assign refers to the libs directory on the
System2.0: volume. Calling GetDeviceProc() on ``libs:'' in this case will yield a lock on
System2.0:libs.

If the named object contains a dos volume, dvp_Lock is either a lock on the root of the dos
volume or NULL. If the object named in GetDeviceProc() contains a non-filesystem device (i.e.,

May/June 1993

AmigaDOSHandling Multiple Assigns with
Conventional Directories

Page II - 114

Amiga MailAmiga Mail
Volume II

AmigaDOS Handling Multiple Assigns with
Conventional Directories

Page II - 115

Amiga MailAmiga Mail
Volume II

``ser:'', ``par:'', ``prt:'', etc.) or it does not contain a device name, dvp_Lock is NULL.

The dvp_Port field points to a message port. This message port is connected to the handler
process of a DOS device. The handler process controls a DOS device. DOS functions (like the
Lock() function) use this message port to talk to the handler process of the named object. For
example, from the ``libs:'' example above, the dvp_Port field refers to the message port of the
handler process for the System2.0: volume.

Note that dvp_Lock is only a lock on the root of the named object. If the named object is a path
several directories deep (for example, libs:gadgets/colorwheel.gadget), it's up to the application
to handle the rest of the path. The application also has to handle the case where the named
object is a path without a device name.

Although an application can send DOS packets directly to the message port (dvp_Port) of a
handler process, normally it is easier to use functions from dos.library. The multilist.c example
uses the Lock() function to lock the named object. Multilist has to do something a little
unorthodox to use Lock(). Lock() accepts a path name to the object to lock. Lock()
understands absolute paths (i.e. paths with a logical device name like ``df1:'' or ``libs:'') and
relative paths. If Lock() receives an absolute path name, Lock() can find the device's handler
process using the logical device name in the absolute path. For a relative path, Lock() does not
have enough information to find the named object, so it assumes the path is relative to the
current directory and file system (each process has a current directory and file system).

This makes Lock() a little more difficult to use in multilist.c because, when processing an
absolute path, multilist has to process the logical device name separately from the rest of the
path. It has to use GetDeviceProc() to find the root of a logical device name (which can be an
assign, multiassign, volume name, etc.) then it has to strip the logical device name from the
absolute path. Without a logical device name, the path has become relative rather than
absolute. The path is now relative to dvp_Lock and dvp_Port. In order for Lock() to work
with this relative path, multilist must temporarily set the current directory and file system to the
values in dvp_Lock and dvp_Port, respectively.

Note that the Autodoc for GetDeviceProc() says to check IoErr() for ERROR_NO_MORE_ENTRIES
after receiving a NULL from GetDeviceProc(). Due to a bug, DOS does not set the error value
correctly. Also note that the Autodoc says to check the DevProc structure's dvp_Flags field for
the DVPF_ASSIGN flag. This was necessary in the 2.00 and 2.01 releases of the operating system
due to a bug in DOS, but is no longer necessary.

The following example, multilist.c, accepts an arbitrary path name and lists the contents of it.
The function DoAllAssigns() does all of the multiassign work. DoAllAssigns() accepts a path
and a function pointer. It gets a lock on the object named in the path, and passes the lock to the
function.
This example is based on a Usenet posting by Randell Jesup.

;/* multilist.c -- execute me to compile me
sc data=near nominc strmer streq nostkchk saveds ign=73 multilist
slink FROM LIB:c.o multilist.o TO multilist LIB LIB:sc.lib LIB:amiga.lib
quit
*/

/* This example illustrates how to scan DOS file names without */
/* having to make a special case for assigns and multiassigns. */
/* The DoAllAssigns() routine accepts an arbitrary dos path and */
/* a pointer to a function. DoAllAssigns() will call this function */
/* passing it a lock to the object named in the path. */

#define BUFSIZE 1024

#include <exec/types.h>
#include <exec/memory.h>
#include <dos/dosextens.h>
#include <dos/exall.h>

#include <clib/dos_protos.h>
#include <clib/exec_protos.h>
#include <stdio.h>
#include <strings.h>

BOOL DoAllAssigns(char *, BOOL (*)());
BOOL ListContents(BPTR);

extern struct DosLibrary *DOSBase;

void main(int argc, char **argv)
{
 if (DOSBase->dl_lib.lib_Version >= 37)
 {
 if (argc > 1)
 {
 (void) DoAllAssigns(argv[1], &ListContents);
 }
 }
}

 /* Pass this routine a directory lock and it prints the names of the */
 /* files and directories in that directory. If you pass this routine */
 /* a file lock, it just prints the file's name. */
BOOL ListContents(BPTR lock)
{
 struct ExAllControl *myeac;
 struct ExAllData *myead;
 APTR buffer;
 BOOL done;
 struct FileInfoBlock *myfib;

 if (myfib = AllocDosObject(DOS_FIB, NULL))
 {
 if (Examine(lock, myfib) == DOSTRUE)
 {
 if (myfib->fib_DirEntryType > 0)
 {
 if (buffer = AllocVec(BUFSIZE, MEMF_PUBLIC))
 {
 if (myeac = AllocDosObject(DOS_EXALLCONTROL, NULL))
 {
 myeac->eac_LastKey = 0;

 do
 {
 done = ExAll(lock, buffer, BUFSIZE, ED_NAME, myeac);
 myead = buffer;
 while (myead)
 {
 printf("%s\n", myead->ed_Name);

AmigaDOSHandling Multiple Assigns with
Conventional Directories

Page II - 116

Amiga MailAmiga Mail
Volume II

 myead = myead->ed_Next;
 }
 } while (done != 0);
 FreeDosObject(DOS_EXALLCONTROL, myeac);
 }
 FreeVec(buffer);
 }
 }
 else printf("%s\n", myfib->fib_FileName);
 }
 FreeDosObject(DOS_FIB, myfib);
 }
 return TRUE;
}

/* This routine accepts a path string that may include a device name. From */
/* that string, this routine locks the object named in the path and calls */
/* the function passback_func() on the lock. DoAllAssigns() should work on */
/* paths with assigns and multiassigns, as well as a filesystem-based device */
/* (i.e. df0:, work:, ram:, etc.) */

BOOL DoAllAssigns(char *dos_path, BOOL (*passback_func)(BPTR lock))
{
 struct DevProc *dp=NULL;
 struct MsgPort *old_fsport;
 BPTR lock, old_curdir;
 char *rest_of_path;

 while(dp = GetDeviceProc(dos_path, dp))
 { /* I need to cut the device name from */
 rest_of_path = strchr(dos_path,':'); /* the front of dos_path so I can give */
 /* that substring to Lock(). */
 if (rest_of_path == NULL) /* There was no device name to */
 rest_of_path = dos_path; /* cut off, use the whole string. */
 else
 rest_of_path++; /* Increment string pointer to just past the colon. */

 old_fsport = SetFileSysTask(dp->dvp_Port); /* in case dp->dvp_Lock is NULL. */
 old_curdir = CurrentDir(dp->dvp_Lock); /* Lock() locks relative to the */
 /* current directory and falls back to the root of */
 /* the current file system if dp->dvp_Lock is NULL. */

 lock = Lock(rest_of_path,SHARED_LOCK);

 (void) SetFileSysTask(old_fsport); /* reset the process' default filesystem */
 (void) CurrentDir(old_curdir); /* port and current dir to their initial */
 /* values for clean up later. */

 if (lock)
 {
 if (!(*passback_func)(lock))
 {
 printf("function returned false\n");
 UnLock(lock); /* UnLock() will ignore NULL lock */
 FreeDeviceProc(dp);
 return FALSE;
 }
 UnLock(lock);
 }
 }
 if (IoErr() == ERROR_NO_MORE_ENTRIES)
 return TRUE; /* At present, a bug in DOS prevents this case, */
 else /* so DoAllAssigns() always returns FALSE. */
 return FALSE;
}

	untitled

