
Amiga MailAmiga Mail
Volume II

Amiga Mail News May/June 1992 Page 3

Q: The Autodoc for the Intuition function
ActivateWindow() says:

* RESULT
* V35 and before: None.
* V36 and later: returns zero if
* no problem queuing up
* the request for deferred action

Is this true?

A: No, it's actually none, even under V36,
V37, etc.

Q: If I use the trackdisk.device to write on a
section of a write-protected floppy, when I read
that section of the floppy, the data I wrote
appears to be there. What is going on?

A: When writing to a write-protected floppy
using the trackdisk.device, the trackdisk.device
does not write on the disk, but it does write to
the disk buffer in memory, which is what you
are reading. This is a bug.

In order to make sure that the state of the
disk is as you expect after a failed write, you
should do a CMD_CLEAR to make it flush the
buffer.

This is not normally a problem with the file
system, since it checks write-protect on every
insertion, and doesn't attempt writes to
write- protected disks.

Q: What's wrong with calling the Exec function
AllocMem() using the MEMF_REVERSE flag?

A: Under normal conditions, the
MEMF_REVERSE flag makes AllocMem() search
Exec's free memory list in reverse order. If the
MEMF_REVERSE allocation fails due to low
memory, the OS will either clear low memory
or get stuck in an infinite loop (or, when
Enforcer is running, it will cause a number of
Enforcer hits!)

Workaround:

If you really want to do this and don't want to
have to do the MEMF_REVERSE yourself, you
can do the following workaround. It is not very
fast but if your allocations are rare, it will not
be too bad.

 Forbid();
 if (mem=AllocMem(size,
 <normal flags, no MEMF_REVERSE>))
 {
 flags=TypeOfMem(mem);
 FreeMem(mem,size);
 mem=AllocMem(size,
 MEMF_REVERSE|flags);
 }
 Permit();

 if (mem)
 {
 /* Got the memory... */
 }
 else /* Failed! */

Warning: This will only work if there is only

Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Who? What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why?
How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What?
When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Who? What? When? Where? Why?
How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What?
When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Who? What? When? Where? Why? How? Whazzit? Why? How? Whazzit?
Who? What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why?
How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What?

Q & AQ & AQ Q && A A

Amiga Mail NewsMay/June 1992Page 4

Volume II
Amiga MailAmiga Mail

one memory list with the attributes given
(which is usually the case with MEMF_CHIP). If
there are more than one memory lists,
AllocMem() may work in the second list while the
reverse will fail in the first (and crash).

Warning: Tools such as Memoration can cause
errors in the second AllocMem() from the
workaround above.

This bug exists in all versions of Exec to date.

Q: The Autodoc for the DOS function
InternalLoadSeg() states that ReadFunc() takes it
arguments in registers d1/a0/d0. Is that true?

A: No, it actually takes them in registers
d1/d2/d3.

Q: Does the input.device ever try to lock the
blitter?

A: Sure, all the time. All input handlers run on
the input.device task, and the grandest input
handler of all is called ``Intuition''. When an
application calls Intuition, part or most of the
function executes on the application's task, but
part may execute on the input.device task. All
user-initiated actions (e.g., dragging a window)
always happen on the input.device task. This
means the input.device does rendering, layer
operation, copper-list and ViewPort operations,
etc.

Q: I program in assembler. I hear that many
software compatibility problems are traced to
assembler application code containing a hidden
misuse of a register. How can I check for this?

A: While programming in assembler, it is not
uncommon for programmers to forget to
refresh a scratch register (d1/a0/a1) after a
system call, or even look at the wrong register

for the result of the system call. These registers
contain leftover values from the internal code
of the system function, which may happen to be
the original value which was in the register
before the call, or may happen to be a copy of
the result (d0). If this is the case, the assembler
application's register misuse bug may have no
symptoms or only sporadic symptoms under
one version of the OS. However, the slightest
change to the system function's internal code
can drastically change the leftover values in the
scratch registers. In some cases, one instance
of register misuse can render a major
application unusable under a new version of the
OS.

Here is a simple example of such a hidden
coding error:

* GfxBase already in A6. Both SetDrMd and
* SetAPen expect a rastport pointer in A1
 MOVEA.L rastport, a1 * Put rport in A1
 MOVE.L #JAM1, d0 * JAM1
 JSR _LVOSetDrMd(a6) * set draw mode
 MOVE.L #3, d0 * pen 3
* Here's the problem: the programmer assumes
* A1 still contains the rastport pointer.
* Since A1 is a scratch register, SetDrMd
* may have overwritten A1 with garbage, so
* SetAPen will get a bogus RastPort pointer.
 JSR _LVOSetAPen(a6) * set pen

If the rastport pointer passed in A1 happens to
be left over in A1 after the call to SetDrMd(), the
call to SetAPen() will succeed. If not, the call to
SetAPen() will trash memory, and possibly
crash the system.

If you program is assembler, you must test your
code with Scratch (by Bill Hawes) to test for
misuse of registers after system calls. Scratch
and the script that installs it (scratchall.script)
are on the Software Toolkit II disk of the 2.0
Native Developer Update. It may also be found
with the debugging tools on the Denver/Milan
Devcon disks. Scratch will invalidate the
scratch registers upon the exit from each
system library call. If a program is failing to
refresh a scratch register or looking at a
scratch register improperly, you may get
Enforcer hits (if you are running Enforcer and
Scratch), and/or Mungwall hits, and/or obvious
misbehavior or crashing of your code.

Use the scratchall.script to install Scratch before

	untitled

