Hod |9||eled Bunioddng

[elleied

pue ‘leuss ‘Jawi|

-Ae|d ued ino-

G - X| abed

ASM = asm
AFLAGS= -iinclude:
cc = lc
CFLAGS = -cfistE

LN = blink

LIBS = LIB:lc.lib LIB:amiga.lib

.c.o:
$(CC) $(CFLAGS) $*.c

.asm.o:
$ (ASM) $(AFLAGS) $*.asm

4play: 4play.o read34.o
$(LN) FROM LIB:c.o,4play.o,read34.o0 TO 4play LIBRARY $(LIBS)

/*

* 4play.c

*/

#include <exec/types.h>
#include <libraries/dos.h>
#include <stdlib.h>

#include <stdio.h>

#include <clib/exec_protos.h>

UBYTE portdata;
UBYTE *portptr = &portdata;

UBYTE firedata;
UBYTE *fireptr = &firedata;

extern int getport (void);
extern void read34 (void);
extern void freeport (void);

/*

* Lattice control-c stop...

*/
int CXBRK (void) { return(0); } /* Disable Lattice CTRL/C handling */
int chkabort (void) { return(0); } /* really */

void Quit (char whytext[], LONG return_code)
{
if (return_code==0) freeport(); /* Assembly routine to
de-allocate parallel port */

printf ("$s\n",whytext) ;
exit (return_code);

/* returning non-zero
terminates the program */

void main (void)

{
BOOL done=FALSE;
UBYTE error;

/* getport() is an assembly routine that allocates the parallel port
* and makes all the lines we're interested in "read" lines.

*/

if (error=getport()) Quit ("Parallel port in use",25);

WARNING:

This example continuously reads the ports and checks for CTRL_C,
thereby eating a lot of CPU time. Actual applications that expect
to be even more system friendly might want to set up some interrupts
on the fire button lines, such that the game can read the ports less
often, but never miss a "fire" press.

/

R

while (!done)

read34 () ; /* read34() is the assembly routine that copies the
* relavent data from the port into our variables.
*/

/* We'll just print the raw bytes from the read, and leave it as an
* exercise for the reader to mask out the relevant bits.
* (Check the pinouts to find which bits the switches appear at.)
*/

printf ("portdata = %u, firedata = %u\n",portdata,firedata);

/* Check CTRL _C */
if (SetSignal (0L, 0L) & SIGBREAKF_CTRL_C) /* Hit since last check? */
{
SetSignal (0L, SIGBREAKF CTRL C); /* Clear old status */
done=TRUE; - N
}
}
Quit ("Ctrl-C was pressed.",0);

read34.asm

interface code for the "2 more players" parallel port hack.

csect text ; this here's the meat
xdef Name ; Name of our application, so that
Name dc.b ‘'4dplay',0 ; other applications will know

; who's tying up the port. ;-)

xdef read34 ; function names for linker
xdef getport

xdef _freeport

xref _portptr ; ¢ pointer for port data

xref _fireptr ; ¢ pointer for fire buttons

xref _SysBase ; exec system base (from c.o)
INCLUDE "resources/misc.i"

xdef MiscName

MiscName MISCNAME ; macro from resources/misc.i
xdef _MiscResource
_MiscResource dc.1 O ; place to store misc.resource base

;parallel port hardware addresses (from amiga.lib)

xref _ciaaprb ; the actual port address
xref _ciaaddrb ; data direction register
xref ciabpra ; control lines are here
xref _ciabddra ; data direction register
;from amiga.lib
xref _LVOOpenResource
xref LVOAllocMiscResource
xref LVOFreeMiscResource

9 - X| ebed

Hod |9|jeted bunuoddng
-Ae|d ue) Jno4

pue ‘leusag ‘Jawi|

[Sleled

Amiga Mail

_getport
;This routine simply allocates the parallel port in a system friendly
;way, and sets up the lines we want to use as input lines.

;

;save registers on the stack

movem. 1 a2-a6/d2-d7,-(sp) ; push regs

;jopen the misc.resource

lea MiscName, al ; put name of misc.resource in al
movea.l _SysBase, a6 ; put SysBase in a6

jsr _LVOOpenResource (a6

move.1ld0, MiscResource ; store address of misc.resource

bne.s grabit

;Oops, couldn't open misc.resource. Sounds like big trouble to me.

moveq #20,d0 ; error code
bra done
;This is where we grab the hardware. If some other task has allocated

;the parallel data port or the parallel control bits, this routine will
;return non-zero.

;This part grabs the port itself

grabitlea Name, al ; The name of our app
moveq #MR_PARALLELPORT,d0; what we want
movea.l _MiscResource, a6 ; MiscResource Base is in A6
jsr LVOAllocMiscResource (a6)

move.1do0,dl
beg.s grab2

;well, somebody else must've got the port first.

moveq #30,d0 ; error code
bra done

;This part grabs the control bits (busy, pout, and sel.)
;We really don't need pout, but it comes free with PARALLELBITS,
;so we'll take it anyway.

grab2 lea Name, al ; The name of our app
moveq #MR_PARALLELBITS,d0; what we want
jsr LVOAllocMiscResource (a6)

move.1ld0,dl
beqg.s setread

;well, somebody else must've got the bits first.
moveq #40,d2
bra freepar
;set up parallel port for reading
setread move.b #0, ciaaddrb ; all lines read
andi.b #$FF, ciabddra ; busy, pout, and sel. to read
;Well, we made it this far, so we've got exclusive access to
;the parallel port, and all the lines we want to use are
;set up. From here we can just put back the regs and return to

;the caller.

bra done

;If something happened AFTER we got exclusive access to the parallel port,
;we'll need to let go of the port before we return the error.

freepar moveq #MR_PARALLELPORT, d0
movea.l _MiscResource, a6
jsr _LVOFreeMiscResource (a6
move.ld2,d0 ; put error code into dO

;Restore registers and return
; (error code is in d0)

done movem.l (sp)+,a2-a6/d2-d7; pop regs
rts

_freeport
;This routine just makes sure that we let go of the parallel port and
;control lines, so somebody else can use 'em, now that we're all done.

7
;PS - Don't call this one if you got an error from _getport, as some
;of the resources might not have been opened, etc.

;save registers on the stack

movem. 1 a2-a6/d2-d7, - (sp) ; push regs

;free control lines

moveq #MR_PARALLELBITS,d0
movea.l _MiscResource, a6
jsr _LVOFreeMiscResource (a6

;free parallel port
moveq #MR_PARALLELPORT, d0
movea.l _MiscResource, a6
jsr _LVOFreeMiscResource (a6
;Clean up, restore registers, and return
movem.l (sp)+,a2-a6/d2-d7; pop regs
rts
_read34
;All this routine does is copy the data from the ports to other addresses.
7
;In this case the destinations happens to be whatever C variables are

;pointed at by _portptr and _fireptr.

movea.l _portptr,al ; al now holds the destination
move.b ciaaprb, (al) ; move byte from port to dest
movea.l _fireptr,al ; al now holds the destination

move.b ciabpra, (al) move byte from port to dest

rts

end

	untitled

