
 Amiga MailAmiga Mail

Page II - 108
Am

igaDOS
Even Faster Am

igaDOS I/O

Am
igaDOS

Amiga MailAmiga Mail

Page II - 109
Even Faster Am

igaDOS I/O

asyncio/SeekAsync asyncio/SeekAsync
 NAME
 SeekAsync -- set the current position for reading or writing within
 an async file.
 SYNOPSIS
 oldPosition = SeekAsync(file, position, mode);
 LONG SeekAsync(struct AsyncFile *, LONG, BYTE);
 FUNCTION
 SeekAsync() sets the read/write cursor for the file 'file' to the
 position 'position'. This position is used by the various read/write
 functions as the place to start reading or writing. The result is the
 current absolute position in the file, or -1 if an error occurs, in
 which case dos.library/IoErr() can be used to find more information.
 'mode' can be SEEK_START, SEEK_CURRENT or SEEK_END. It is used to
 specify the relative start position. For example, 20 from current
 is a position 20 bytes forward from current, -20 is 20 bytes back
 from current.
 To find out what the current position within a file is, simply seek
 zero from current.
 INPUTS
 file - an opened async file, as obtained from OpenAsync()
 position - the place where to move the read/write cursor
 mode - the mode for the position, one of SEEK_START, SEEK_CURRENT,
 or SEEK_END.
 RESULT
 oldPosition - the previous position of the read/write cursor, or -1
 if an error occurs. In case of error, dos.library/IoErr()
 can give more information.
 SEE ALSO
 OpenAsync(), CloseAsync(), ReadAsync(), WriteAsync(),
 dos.library/Seek()

ASyncIO.c
;/* ASyncIO.c - Execute me to compile with SAS/C 5.10b
sc data=near nominc strmer streq nostkchk saveds ign=73 AsyncIO.c
;lc -cfist -v -j73 asyncio.c
quit */
#include <exec/types.h>
#include <exec/memory.h>
#include <dos/dos.h>
#include <dos/dosextens.h>
#include <clib/exec_protos.h>
#include <clib/dos_protos.h>
#include <pragmas/exec_pragmas.h>
#include <pragmas/dos_pragmas.h>
#include "asyncio.h"
/***/
extern struct Library *DOSBase;
extern struct Library *SysBase;
/***/
/* this macro lets us long-align structures on the stack */
#define D_S(type,name) char a_##name[sizeof(type)+3]; \
 type *name = (type *)((LONG)(a_##name+3) & ~3);
/***/

/* send out an async packet to the file system. */
static VOID SendPacket(struct AsyncFile *file, APTR arg2)
{
 file->af_Packet.sp_Pkt.dp_Port = &file->af_PacketPort;
 file->af_Packet.sp_Pkt.dp_Arg2 = (LONG)arg2;
 PutMsg(file->af_Handler, &file->af_Packet.sp_Msg);
 file->af_PacketPending = TRUE;
}
/***/
/* this function waits for a packet to come back from the file system. If no
 * packet is pending, state from the previous packet is returned. This ensures
 * that once an error occurs, it state is maintained for the rest of the life
 * of the file handle.
 *
 * This function also deals with IO errors, bringing up the needed DOS
 * requesters to let the user retry an operation or cancel it.
 */
static LONG WaitPacket(struct AsyncFile *file)
{
LONG bytes;
 if (file->af_PacketPending)
 {
 /* mark packet as no longer pending since we are going to get it */
 file->af_PacketPending = FALSE;
 while (TRUE)
 {
 /* This enables signalling when a packet comes back to the port */
 file->af_PacketPort.mp_Flags = PA_SIGNAL;
 /* Wait for the packet to come back, and remove it from the message
 * list. Since we know no other packets can come in to the port, we can
 * safely use Remove() instead of GetMsg(). If other packets could come in,
 * we would have to use GetMsg(), which correctly arbitrates access in such
 * a case
 */
 Remove((struct Node *)WaitPort(&file->af_PacketPort));
 /* set the port type back to PA_IGNORE so we won't be bothered with
 * spurious signals
 */
 file->af_PacketPort.mp_Flags = PA_IGNORE;
 bytes = file->af_Packet.sp_Pkt.dp_Res1;
 if (bytes >= 0)
 {
 /* packet didn't report an error, so bye... */
 return(bytes);
 }
 /* see if the user wants to try again... */
 if (ErrorReport(file->af_Packet.sp_Pkt.dp_Res2,
 REPORT_STREAM,
 file->af_File,NULL))
 return(-1);
 /* user wants to try again, resend the packet */
 SendPacket(file,file->af_Buffers[file->af_CurrentBuf]);
 }
 }
 /* last packet's error code, or 0 if packet was never sent */
 SetIoErr(file->af_Packet.sp_Pkt.dp_Res2);
 return(file->af_Packet.sp_Pkt.dp_Res1);
}
/***/
/* this function puts the packet back on the message list of our
 * message port.
 */
static VOID RequeuePacket(struct AsyncFile *file)
{

 AddHead(&file->af_PacketPort.mp_MsgList,&file->af_Packet.sp_Msg.mn_Node);
 file->af_PacketPending = TRUE;
}
/***/
/* this function records a failure from a synchronous DOS call into the
 * packet so that it gets picked up by the other IO routines in this module
 */
VOID RecordSyncFailure(struct AsyncFile *file)
{
 file->af_Packet.sp_Pkt.dp_Res1 = -1;
 file->af_Packet.sp_Pkt.dp_Res2 = IoErr();
}
/***/

struct AsyncFile *OpenAsync(const STRPTR fileName, UBYTE accessMode, LONG bufferSize)
{
struct AsyncFile *file;
struct FileHandle *fh;
BPTR handle;
BPTR lock;
LONG blockSize;
D_S(struct InfoData,infoData);
 handle = NULL;
 file = NULL;
 lock = NULL;
 if (accessMode == MODE_READ)
 {
 if (handle = Open(fileName,MODE_OLDFILE))
 lock = DupLockFromFH(handle);
 }
 else
 {
 if (accessMode == MODE_WRITE)
 {
 handle = Open(fileName,MODE_NEWFILE);
 }
 else if (accessMode == MODE_APPEND)
 {
 /* in append mode, we open for writing, and then seek to the
 * end of the file. That way, the initial write will happen at
 * the end of the file, thus extending it
 */
 if (handle = Open(fileName,MODE_READWRITE))
 {
 if (Seek(handle,0,OFFSET_END) < 0)
 {
 Close(handle);
 handle = NULL;
 }
 }
 }
 /* we want a lock on the same device as where the file is. We can't
 * use DupLockFromFH() for a write-mode file though. So we get sneaky
 * and get a lock on the parent of the file
 */
 if (handle)
 lock = ParentOfFH(handle);
 }
 if (handle)
 {
 /* if it was possible to obtain a lock on the same device as the
 * file we're working on, get the block size of that device and
 * round up our buffer size to be a multiple of the block size.
 * This maximizes DMA efficiency.
 */
 blockSize = 512;
 if (lock)
 {

 if (Info(lock,infoData))
 {
 blockSize = infoData->id_BytesPerBlock;
 bufferSize =
 (((bufferSize + blockSize - 1) / blockSize) * blockSize) * 2;
 }
 UnLock(lock);
 }
 /* now allocate the ASyncFile structure, as well as the read buffers.
 * Add 15 bytes to the total size in order to allow for later
 * quad-longword alignement of the buffers
 */
 if (file = AllocVec(sizeof(struct AsyncFile) + bufferSize + 15,MEMF_ANY))
 {
 file->af_File = handle;
 file->af_ReadMode = (accessMode == MODE_READ);
 file->af_BlockSize = blockSize;
 /* initialize the ASyncFile structure. We do as much as we can here,
 * in order to avoid doing it in more critical sections
 *
 * Note how the two buffers used are quad-longword aligned. This
 * helps performance on 68040 systems with copyback cache. Aligning
 * the data avoids a nasty side-effect of the 040 caches on DMA.
 * Not aligning the data causes the device driver to have to do
 * some magic to avoid the cache problem. This magic will generally
 * involve flushing the CPU caches. This is very costly on an 040.
 * Aligning things avoids the need for magic, at the cost of at
 * most 15 bytes of ram.
 */
 fh = BADDR(file->af_File);
 file->af_Handler = fh->fh_Type;
 file->af_BufferSize = bufferSize / 2;
 file->af_Buffers[0]
 = (APTR)(((ULONG)file + sizeof(struct AsyncFile) + 15) & 0xfffffff0);
 file->af_Buffers[1]
 = (APTR)((ULONG)file->af_Buffers[0] + file->af_BufferSize);
 file->af_Offset = file->af_Buffers[0];
 file->af_CurrentBuf = 0;
 file->af_SeekOffset = 0;
 file->af_PacketPending = FALSE;
 /* this is the port used to get the packets we send out back.
 * It is initialized to PA_IGNORE, which means that no signal is
 * generated when a message comes in to the port. The signal bit
 * number is initialized to SIGB_SINGLE, which is the special bit
 * that can be used for one-shot signalling. The signal will never
 * be set, since the port is of type PA_IGNORE. We'll change the
 * type of the port later on to PA_SIGNAL whenever we need to wait
 * for a message to come in.
 *
 * The trick used here avoids the need to allocate an extra signal
 * bit for the port. It is quite efficient.
 */
 file->af_PacketPort.mp_MsgList.lh_Head
 = (struct Node *)&file->af_PacketPort.mp_MsgList.lh_Tail;
 file->af_PacketPort.mp_MsgList.lh_Tail = NULL;
 file->af_PacketPort.mp_MsgList.lh_TailPred
 = (struct Node *)&file->af_PacketPort.mp_MsgList.lh_Head;
 file->af_PacketPort.mp_Node.ln_Type = NT_MSGPORT;
 file->af_PacketPort.mp_Flags = PA_IGNORE;
 file->af_PacketPort.mp_SigBit = SIGB_SINGLE;
 file->af_PacketPort.mp_SigTask = FindTask(NULL);
 file->af_Packet.sp_Pkt.dp_Link = &file->af_Packet.sp_Msg;
 file->af_Packet.sp_Pkt.dp_Arg1 = fh->fh_Arg1;
 file->af_Packet.sp_Pkt.dp_Arg3 = file->af_BufferSize;
 file->af_Packet.sp_Pkt.dp_Res1 = 0;
 file->af_Packet.sp_Pkt.dp_Res2 = 0;
 file->af_Packet.sp_Msg.mn_Node.ln_Name = (STRPTR)&file->af_Packet.sp_Pkt;
 file->af_Packet.sp_Msg.mn_Node.ln_Type = NT_MESSAGE;
 file->af_Packet.sp_Msg.mn_Length = sizeof(struct StandardPacket);

 Amiga MailAmiga Mail

Page II - 110
Am

igaDOS
Even Faster Am

igaDOS I/O

Am
igaDOS

Amiga MailAmiga Mail

Page II - 111
Even Faster Am

igaDOS I/O

 if (accessMode == MODE_READ)
 {
 /* if we are in read mode, send out the first read packet to
 * the file system. While the application is getting ready to
 * read data, the file system will happily fill in this buffer
 * with DMA transfers, so that by the time the application
 * needs the data, it will be in the buffer waiting
 */
 file->af_Packet.sp_Pkt.dp_Type = ACTION_READ;
 file->af_BytesLeft = 0;
 if (file->af_Handler)
 SendPacket(file,file->af_Buffers[0]);
 }
 else
 {
 file->af_Packet.sp_Pkt.dp_Type = ACTION_WRITE;
 file->af_BytesLeft = file->af_BufferSize;
 }
 }
 else
 {
 Close(handle);
 }
 }
 return(file);
}
/***/
LONG CloseAsync(struct AsyncFile *file)
{
LONG result;
 if (file)
 {
 result = WaitPacket(file);
 if (result >= 0)
 {
 if (!file->af_ReadMode)
 {
 /* this will flush out any pending data in the write buffer */
 result = Write(file->af_File,
 file->af_Buffers[file->af_CurrentBuf],
 file->af_BufferSize - file->af_BytesLeft);
 }
 }
 Close(file->af_File);
 FreeVec(file);
 }
 else
 {
 SetIoErr(ERROR_INVALID_LOCK);
 result = -1;
 }
 return(result);
}
/***/
LONG ReadAsync(struct AsyncFile *file, APTR buffer, LONG numBytes)
{
LONG totalBytes;
LONG bytesArrived;
 totalBytes = 0;
 /* if we need more bytes than there are in the current buffer, enter the
 * read loop
 */
 while (numBytes > file->af_BytesLeft)
 {
 /* drain buffer */
 CopyMem(file->af_Offset,buffer,file->af_BytesLeft);

 numBytes -= file->af_BytesLeft;
 buffer = (APTR)((ULONG)buffer + file->af_BytesLeft);
 totalBytes += file->af_BytesLeft;
 file->af_BytesLeft = 0;
 bytesArrived = WaitPacket(file);
 if (bytesArrived <= 0)
 {
 if (bytesArrived == 0)
 return(totalBytes);
 return(-1);
 }
 /* ask that the buffer be filled */
 SendPacket(file,file->af_Buffers[1-file->af_CurrentBuf]);
 if (file->af_SeekOffset > bytesArrived)
 file->af_SeekOffset = bytesArrived;
 file->af_Offset = (APTR)((ULONG)file->af_Buffers[file->af_CurrentBuf]
 + file->af_SeekOffset);
 file->af_CurrentBuf = 1 - file->af_CurrentBuf;
 file->af_BytesLeft = bytesArrived - file->af_SeekOffset;
 file->af_SeekOffset = 0;
 }
 CopyMem(file->af_Offset,buffer,numBytes);
 file->af_BytesLeft -= numBytes;
 file->af_Offset = (APTR)((ULONG)file->af_Offset + numBytes);
 return (totalBytes + numBytes);
}
/***/
LONG ReadCharAsync(struct AsyncFile *file)
{
unsigned char ch;
 if (file->af_BytesLeft)
 {
 /* if there is at least a byte left in the current buffer, get it
 * directly. Also update all counters
 */
 ch = *(char *)file->af_Offset;
 file->af_BytesLeft--;
 file->af_Offset = (APTR)((ULONG)file->af_Offset + 1);
 return((LONG)ch);
 }
 /* there were no characters in the current buffer, so call the main read
 * routine. This has the effect of sending a request to the file system to
 * have the current buffer refilled. After that request is done, the
 * character is extracted for the alternate buffer, which at that point
 * becomes the "current" buffer
 */
 if (ReadAsync(file,&ch,1) > 0)
 return((LONG)ch);
 /* We couldn't read above, so fail */
 return(-1);
}
/***/
LONG WriteAsync(struct AsyncFile *file, APTR buffer, LONG numBytes)
{
LONG totalBytes;
 totalBytes = 0;
 while (numBytes > file->af_BytesLeft)
 {

 /* this takes care of NIL: */
 if (!file->af_Handler)
 {
 file->af_Offset = file->af_Buffers[0];
 file->af_BytesLeft = file->af_BufferSize;
 return(numBytes);
 }
 if (file->af_BytesLeft)
 {
 CopyMem(buffer,file->af_Offset,file->af_BytesLeft);
 numBytes -= file->af_BytesLeft;
 buffer = (APTR)((ULONG)buffer + file->af_BytesLeft);
 totalBytes += file->af_BytesLeft;
 }
 if (WaitPacket(file) < 0)
 return(-1);
 /* send the current buffer out to disk */
 SendPacket(file,file->af_Buffers[file->af_CurrentBuf]);
 file->af_CurrentBuf = 1 - file->af_CurrentBuf;
 file->af_Offset = file->af_Buffers[file->af_CurrentBuf];
 file->af_BytesLeft = file->af_BufferSize;
 }
 CopyMem(buffer,file->af_Offset,numBytes);
 file->af_BytesLeft -= numBytes;
 file->af_Offset = (APTR)((ULONG)file->af_Offset + numBytes);
 return (totalBytes + numBytes);
}
/***/
LONG WriteCharAsync(struct AsyncFile *file, UBYTE ch)
{
 if (file->af_BytesLeft)
 {
 /* if there's any room left in the current buffer, directly write
 * the byte into it, updating counters and stuff.
 */
 *(UBYTE *)file->af_Offset = ch;
 file->af_BytesLeft--;
 file->af_Offset = (APTR)((ULONG)file->af_Offset + 1);
 /* one byte written */
 return(1);
 }
 /* there was no room in the current buffer, so call the main write
 * routine. This will effectively send the current buffer out to disk,
 * wait for the other buffer to come back, and then put the byte into
 * it.
 */
 return(WriteAsync(file,&ch,1));
}
/***/
LONG SeekAsync(struct AsyncFile *file, LONG position, BYTE mode)
{
LONG current, target;
LONG minBuf, maxBuf;
LONG bytesArrived;
LONG diff;
LONG filePos;
LONG roundTarget;
D_S(struct FileInfoBlock,fib);
 bytesArrived = WaitPacket(file);
 if (bytesArrived < 0)
 return(-1);

 if (file->af_ReadMode)
 {
 /* figure out what the actual file position is */
 filePos = Seek(file->af_File,OFFSET_CURRENT,0);
 if (filePos < 0)
 {
 RecordSyncFailure(file);
 return(-1);
 }
 /* figure out what the caller's file position is */
 current = filePos - (file->af_BytesLeft+bytesArrived);
 /* figure out the absolute offset within the file where we must seek to */
 if (mode == MODE_CURRENT)
 {
 target = current + position;
 }
 else if (mode == MODE_START)
 {
 target = position;
 }
 else /* if (mode == MODE_END) */
 {
 if (!ExamineFH(file->af_File,fib))
 {
 RecordSyncFailure(file);
 return(-1);
 }
 target = fib->fib_Size + position;
 }
 /* figure out what range of the file is currently in our buffers */
 minBuf = current - (LONG)((ULONG)file->af_Offset -
 (ULONG)file->af_Buffers[1 - file->af_CurrentBuf]);
 maxBuf = current + file->af_BytesLeft
 + bytesArrived; /* WARNING: this is one too big */
 diff = target - current;
 if ((target < minBuf) || (target >= maxBuf))
 {
 /* the target seek location isn't currently in our buffers, so
 * move the actual file pointer to the desired location, and then
 * restart the async read thing...
 */
 /* this is to keep our file reading block-aligned on the device.
 * block-aligned reads are generally quite a bit faster, so it is
 * worth the trouble to keep things aligned
 */
 roundTarget = (target / file->af_BlockSize) * file->af_BlockSize;
 if (Seek(file->af_File,roundTarget-filePos,OFFSET_CURRENT) < 0)
 {
 RecordSyncFailure(file);
 return(-1);
 }
 SendPacket(file,file->af_Buffers[0]);
 file->af_SeekOffset = target-roundTarget;
 file->af_BytesLeft = 0;
 file->af_CurrentBuf = 0;
 }
 else if ((target < current) || (diff <= file->af_BytesLeft))
 {
 /* one of the two following things is true:
 *
 * 1. The target seek location is within the current read buffer,
 * but before the current location within the buffer. Move back
 * within the buffer and pretend we never got the pending packet,
 * just to make life easier, and faster, in the read routine.
 *
 * 2. The target seek location is ahead within the current
 * read buffer. Advance to that location. As above, pretend to

 Amiga MailAmiga Mail

Page II - 112
Am

igaDOS
Even Faster Am

igaDOS I/O

 * have never received the pending packet.
 */
 RequeuePacket(file);
 file->af_BytesLeft -= diff;
 file->af_Offset = (APTR)((ULONG)file->af_Offset + diff);
 }
 else
 {
 /* at this point, we know the target seek location is within
 * the buffer filled in by the packet that we just received
 * at the start of this function. Throw away all the bytes in the
 * current buffer, send a packet out to get the async thing going
 * again, readjust buffer pointers to the seek location, and return
 * with a grin on your face... :-)
 */
 diff -= file->af_BytesLeft;
 SendPacket(file,file->af_Buffers[1-file->af_CurrentBuf]);
 file->af_Offset
 = (APTR)((ULONG)file->af_Buffers[file->af_CurrentBuf] + diff);
 file->af_CurrentBuf = 1 - file->af_CurrentBuf;
 file->af_BytesLeft = bytesArrived - diff;
 }
 }
 else
 {
 if (Write(file->af_File,
 file->af_Buffers[file->af_CurrentBuf],
 file->af_BufferSize - file->af_BytesLeft) < 0)
 {
 RecordSyncFailure(file);
 return(-1);
 }
 /* this will unfortunately generally result in non block-aligned file
 * access. We could be sneaky and try to resync our file pos at a
 * later time, but we won't bother. Seeking in write-only files is
 * relatively rare (except when writing IFF files with unknown chunk
 * sizes, where the chunk size has to be written after the chunk data)
 */
 current = Seek(file->af_File,position,mode);
 if (current < 0)
 {
 RecordSyncFailure(file);
 return(-1);
 }
 file->af_BytesLeft = file->af_BufferSize;
 file->af_CurrentBuf = 0;
 }
 return(current);
}

ASyncIO.h
#ifndef ASYNCIO_H
#define ASYNCIO_H
/***/
#ifndef EXEC_TYPES_H
#include <exec/types.h>
#endif
#ifndef EXEC_PORTS_H
#include <exec/ports.h>
#endif
#ifndef DOS_DOS_H
#include <dos/dos.h>
#endif
/***/
/* This structure is public only by necessity, don't muck with it yourself, or
 * you're looking for trouble
 */
struct AsyncFile
{
 BPTR af_File;
 ULONG af_BlockSize;
 struct MsgPort *af_Handler;
 APTR af_Offset;
 LONG af_BytesLeft;
 ULONG af_BufferSize;
 APTR af_Buffers[2];
 struct StandardPacket af_Packet;
 struct MsgPort af_PacketPort;
 ULONG af_CurrentBuf;
 ULONG af_SeekOffset;
 UBYTE af_PacketPending;
 UBYTE af_ReadMode;
};

/***/

#define MODE_READ 0 /* read an existing file */
#define MODE_WRITE 1 /* create a new file, delete existing file if needed */
#define MODE_APPEND 2 /* append to end of existing file, or create new */
#define MODE_START -1 /* relative to start of file */
#define MODE_CURRENT 0 /* relative to current file position */
#define MODE_END 1 /* relative to end of file */

/***/

struct AsyncFile *OpenAsync(const STRPTR fileName, UBYTE accessMode, LONG bufferSize);
LONG CloseAsync(struct AsyncFile *file);
LONG ReadAsync(struct AsyncFile *file, APTR buffer, LONG numBytes);
LONG ReadCharAsync(struct AsyncFile *file);
LONG WriteAsync(struct AsyncFile *file, APTR buffer, LONG numBytes);
LONG WriteCharAsync(struct AsyncFile *file, UBYTE ch);
LONG SeekAsync(struct AsyncFile *file, LONG position, BYTE mode);
/***/
#endif /* ASYNCIO_H */

	untitled

