—A[ﬁmﬁga uII

March/April 1993

Creating Virtual Voices
with Amiga Audio

by Dan Baker

Every Amiga model comes standard with 4-channel, 8-bit stereo audio hardware. This
hardware provides every application with the capability of producing 4-part, stereo sound.
Some applications however may want to exceed the 4-channel limit. For games and other
applications that use sound effects extensively, it may be desirable to trigger more than 4
sounds simultaneously. This article demonstrates two techniques you can use to implement
virtual voices on the Amiga's audio hardware effectively doubling the number of voices
available to 8.

Audio Hardware Limits

Using DMA, the audio hardware can fetch about 2 bytes per scan line for each channel without
processor intervention. This means that each audio channel can play back sampled data at up
to 28,867 bytes per second. It turns out that this 28,867 byte per second limit far exceeds the
requirements of most audio sample files.

The typical 8SVX file contains data sampled at a rate of about 10,000 bytes per second. In that
case, the audio hardware only uses about 1/3 of the available audio bandwidth. The audio
hardware is capable of fetching much more sound data without affecting system performance.
The question then arises, can this extra horsepower be harnessed in some way? The answer is
yes.

Sound and Music Creating Virtual Voices Page VI -1
with Amiga Audio

_gfé\l M Volumell

Audio Interleaving

An application can use any extra audio bandwidth to interleave the bytes from two separate
sample files. This technique allows an application to play both samples simultaneously on a
single audio channel.

For instance, if you have two files sampled at 10,000 bytes per second, you could set the
playback speed to 20,000 bytes per second and alternate playing bytes from each sample. The

effective speed of each sample is preserved since each sample is output only half the time.
INTERLEAVED OUTPUT DATA

Speed = 20,000 bytes per second

. . Length 30 000 bytes
As shown in the diagram above, an apx ¢rleaves the data bytes from two sound files

into a memory buffer. The app) .u e back the interleaved sample at twice the
rate. Ngfe\pitor this meths <o work, the $08 wo samples should be the same, or at
Sdeast=a16109€ matelperAnothd | restriction is tha " p. 1 must be no more than half the

makfﬁ'ﬁi’fn spel%aRMf" c on the

pr’ .nd since e speed IiIm

layback spv ! has to be doublalfimpPLE 2

SOF

by rne sneed it of each inte 14,433 1_ “es per seeStd: 1° 000 bytes
T o Todio mterle“t exp lmts unus. ' andio ha le
on . are. Als. lnterleavmg

da

. Hual . “ind sam, orlglnal nonir’
The disadvantage is intex aving cert B can combir mto any (4
undesirable wave form. Co. ‘der the follo — s

When the Amiga interleaves these two wave forms, it has to alternate between wave form A and
wave form B. Because the Amiga is constantly oscillating between two wave forms, it produces
a completely different wave form:

Page VI - 2 Creating Virtual Voices Sound and Music
with Amiga Audio

qa's built 1. 2udicchaedw4PLOR02Y/®ePer second

—g a M Volume I

In practice, this usually isn't a problem if you are working with sampled sound. Typically,
sampled sounds are not pure periodic wave forms (like the wave forms above).

Audio Averaging

It is not always possible to interleave two samples. For example, the frequency of a sample may
be more than 14,433 bytes per second, so doubling it would exceed the 28,867 bytes per second
limit. In that case, there is another trick you can do to the audio data to combine two samples
on one channel.

If the values from each sample file are added and the resulting value is divided by two, a new
data stream can be created which contains the audio information from both files.

Note that in the example above, data values are represented as signed bytes in the range -128 to
+127 using twos complement format. The resulting average values are correct as shown. Even
though the ioa_Data field of the IOAudio structure used for all audio.device requests is shown
as (UBYTE *) in the include file <devices/audio.h>, do not be misled. The data values are signed
bytes.

Audio averaging introduces some noise into the resulting combined signal. Dividing the
summed values by two effectively reduces the dynamic range of the component samples by one
bit (from eight to seven bits). Also, when the values are divided by two, any fractional amount
is truncated, hence, some information is lost.

Despite these drawbacks, the results of audio averaging on the Amiga's eight bit audio
hardware are comparable to the interleaving technique described above. In fact, the two
techniques are virtually indistinguishable on the current generation of Amigas (although this
may not always be true--see the *Audio Experiments'' section later in this article).

Sound and Music Creating Virtual Voices Page VI - 3
with Amiga Audio

Limigaail

SAMPLE 1 SAMPLE 2
Speed = 10,000 bytes per secondSpeed = 10,000 bytes per second
Length = 15,000 bytes Length = 15,000 bytes
SFO $08 AVERAGED OUTPUT DATA
SE1 SOF Speed = 10,000 bytes per second
$D2 s11 Length = 15,000 bytes
$C3 $1A
e NN SFC
SF8
SE2
SEF
uod

Virtual Voices

When two samples are combined on a single channel using interleaving or averaging, both
samples are clearly audible but, subjectively, it sounds as if one bit of volume control has been
lost on each sample. Because of this, it is not wise to carry these virtual voice techniques to an
extreme. Combining samples without limit will result in a badly degraded composite in which
the component signals are no longer clearly audible.

It is however quite feasible to double the number of available voices to 8 using interleaving or
averaging techniques. The loss of fidelity with 8 virtual voices is quite tolerable. The code
listed below shows how this can be implemented.

Using the Interplay Program

The program, named interplay.c, allows the playback of standard IFF 8SVX files in three
different ways:

1. Normal playback of a single file on one channel
2. Interleaved playback of two files on one channel
3. Averaged playback of two files on one channel

For normal playback of a single 8SVX file, enter the following command at the Shell prompt:

1>interplay sample.8svx

Page VI - 4 Creating Virtual Voices Sound and Music
with Amiga Audio

—A[ﬁmﬁga uII

This feature allows you to find out how a sample sounds alone as compared with its interleaved
or averaged counterpart.

For playback of two 8SVX files on a single channel using interleaving, enter the following
command at the Shell prompt:

1>interplay voice.8svx music.8svx

The program reads the two files, figures out which has the faster sampling rate, and sets the
audio device to twice that value. If the calculated rate exceeds the maximum of 28,867 bytes per
second, then interplay sets the speed to the maximum. The program then interleaves the data
from the two files so that the bytes played by the audio channel alternate from one file to the
other. If the data from one file runs out before the other, any remaining data bytes are
interleaved with zero.

For playback of two 8SVX files on a single channel using averaging, enter the following
command at the Shell prompt:

1>interplay voice.8svx music.8svx SUM

The "SUM'"' keyword enables averaging instead of interleaving. In this case, the speed is set to
whichever file uses the faster playback rate. One byte is taken from each file, the two bytes are
added and then divided by two. The resulting average value is played back. If the data from
one file runs out before the other, any remaining data bytes are averaged with zero.

Interplay can play samples of any size. If a sample is too long, you can terminate playback by
pressing Ctrl-C.

How Interplay Works

Interplay uses a double-buffered approach for the playback of samples of arbitrary length.
While one data buffer is playing, the other data buffer is being prepared using either the
averaging or interleaving technique descried above.

Most of the code in the main loop within main() is concerned with switching between one of the
two playback buffers and their corresponding I/O request blocks and message ports. The
averaging or interleaving of bytes actually takes place in the FillAudio() subroutine, not in
main().

The reading and parsing of the 8SVX file are handled by the Parse8svx() subroutine which
takes as a parameter an InterPlay structure. The InterPlay struture holds all the state
information that the program needs to manage playback of the sampled data. Thus there will
be one filled-in InterPlay structure for each file to be played back. If the user requests a
combined playback, the two InterPlay structures are linked together via the

Sound and Music Creating Virtual Voices Page VI -5
with Amiga Audio

Limigaail

InterPlay.next_iplay field. Otherwise this field is set to NULL.

Housekeeping for the audio.device channels used is handled by the SiezeChannel() and
ReleaseChannel() subroutines.

Audio Experiments

Using the interplay.c program listed below, we found that there was very little difference in the
audio quality between the two methods of combining samples. We also found that for best
results, the dynamic ranges within the samples themselves had to be closely matched or the
result would be one sample drowning out the other. Of course, it also helps if the speeds are a
close match. If they aren't then one or the other of the samples will be too slow or too fast.

Although both of these methods work comparitively well on the Amiga's eight-bit audio
hardware, doing the same tricks with 16-bit samples on 16-bit hardware would yield a different
result. As mentioned earlier, the drawback of the averaging method is it loses a bit from the
dynamic range of the sound samples. Compared to eight-bit sound, this loss is much less
significant when working with 16-bit sound. As the dynamic range increases, the impact of
losing a single bit from the dynamic range decreases. On the other hand, the drawback to the
interleaving method is that it has to oscillate between two samples, which produces a waveform
equal to the sample playback rate. The waveform is independent of the dynamic range, so it
remains constant as the dynamic range increases. The result is the avaeraging method will
produce superior results on systems with greater dynamic range.

Perhaps the best thing about the audio techniques demonstrated by interplay.c is that they are
not limited to the Amiga architecture. In fact, you can use interleaving and averaging with any
system that supports the variable speed playback of digitally sampled audio. These methods
will work not only in the current generation of Amigas but in any future system that support
digital audio, although as the dynamic range increases, the additive method will provide
superior sound quality.

Page VI - 6 Creating Virtual Voices Sound and Music
with Amiga Audio

	untitled

