
Exec Quick Interrupts Page III - 25

Amiga MailAmiga Mail
Volume II

Quick Interrupts

by Michael Sinz

[Editor's note: This article was written from the programmer's perspective, and doesn't
discuss any of the hardware issues. See the ``Appendix K: Zorro Expansion Bus'' section
of the third edition of the Amiga Hardware Reference Manual for more information.]

One of the features of the Zorro III bus is the Quick Interrupt, also known as the
vectored interrupt. This feature allows Zorro III hardware to supply a vector number
to the system when an interrupt occurs. The system uses this vector number to go
directly to an interrupt routine.

Conventional Amiga Interrupts

The Amiga handles normal interrupts from Zorro II cards using an interrupt server
chain. There are two interrupts available from the Zorro II bus, the PORTS and
EXTER interrupt server chains. If a driver for a Zorro II card needs to use an
interrupt, it adds an interrupt routine to the appropriate chain. When the interrupt
occurs, Exec calls each routine in the interrupt chain, which are sorted in priority
order. Exec continues until it finds the routine that corresponds to the device that
triggered the interrupt.

The server chain allows several routines to share a single interrupt. This means that
several devices trigger the same interrupt, so each interrupt routine must do some
processing to determine if its card triggered the interrupt or if some other source
caused the interrupt. For example, an interrupt routine might examine a register on its

March/April 1993

ExecQuick InterruptsPage III - 26

Amiga MailAmiga Mail
Volume II

Exec Quick Interrupts Page III - 27

Amiga MailAmiga Mail
Volume II

card to determine that the card triggered the interrupt.

Although this scheme allows unrelated pieces of software to easily share an interrupt, it
can make the interrupt overhead rather high. These two interrupt server chains also
handle interrupts from the CIA chips, which are used to trigger a variety of events. As
a result, these server chains can contain a multitude of interrupt routines.

Consider what happens when a Zorro II card generates a PORTS interrupt. Exec has
to perform some set up and then step through the PORTS server chain. Exec calls each
interrupt routine in priority order looking for the routine that services this interrupt.
If there are 20 interrupt routines of higher priority than the card's interrupt routine in
the server chain, Exec has to call 20 other routines before it gets to the correct routine.

Zorro III Quick Interrupts

Quick interrupts avoid the overhead involved in Exec's interrupt server chains. Exec
only helps set up the quick interrupt, which it does via the exec.library function
ObtainQuickVector() (see the Autodoc at the end of this article). Once Exec has set up
the quick interrupt routine, it does not intervene. Unlike conventional Amiga interrupt
routines, which are called as subroutines from Exec's main interrupt code, the Amiga
jumps directly to the quick interrupt routine using a private vector. This behavior
requires quick interrupt routines to take some special precautions.

There are two important differences between a conventional Amiga interrupt routine
and a quick quick interrupt routine. A quick interrupt routine must save and restore all
of the registers it changes, including D0, D1, A0, and A1. It must do this because, unlike
regular interrupt routines, Exec doesn't do it for you. Also, a quick interrupt routine
ends with a RTE (return from exception) instruction.

If your quick interrupt routine is 100% self-contained and does not access any
operating system structures or routines, then the work is rather simple. Just save the
registers you use, perform your interrupt processing, restore the registers, and end with
an RTE. If, however, the routine needs to call the OS or use an OS structure, it must
check if the interrupt has been delayed. This is necessary in case the interrupt hit the
CPU just after the CPU had told the hardware to hold off interrupts (see the Autodoc
for ObtainQuickVector() to find out how to perform this test).

As the Amiga OS is a dynamic operating system, quick interrupts are allocated by the
OS. If your hardware/software wants to use a quick interrupt, it must allocate a vector

with ObtainQuickVector(). This routine accepts a pointer to the quick interrupt code
(not a pointer
to an Interrupt structure). If Exec installed the vector, ObtainQuickVector() returns
the vector number. When the quick interrupt occurs, the Zorro III card sends this
vector number to the CPU, which tells the CPU where the interrupt code is.

ObtainQuickVector() returns 0 if there are no more vectors. Since the number of
vectors is limited, any Zorro III device that uses quick interrupts must be able to fall
back to the Amiga's conventional interrupt scheme.

The LVO for ObtainQuickVector() was added for V39, but it was not fully
implemented until after the initial release. This means the OS that currently ships with
the Amiga 4000 and Amiga 1200, Release 3.00, will always return 0 (no SetPatch
currently exists to correct this, but a future SetPatch may do so). ObtainQuickVector()
only works in the developer releases of the OS that follwed the initial release. Since a
Zorro III device driver must handle the case where it cannot obtain a vector, this
function should never cause a hardware product to fail. There is no reliable way to
obtain a vector before V39.

exec.library/ObtainQuickVector exec.library/ObtainQuickVector

 NAME
 Function to obtain an install a Quick Interrupt vector (V39)

 SYNOPSIS
 vector=ObtainQuickVector(interruptCode)
 d0 a0

 ULONG ObtainQuickVector(APTR);

 FUNCTION
 This function will install the code pointer into the quick interrupt
 vector it allocates and returns to you the interrupt vector that
 your Quick Interrupt system needs to use.

 This function may also return 0 if no vectors are available. Your
 hardware should be able to then fall back to using the shared
 interrupt server chain should this happen.

 The interrupt code is a direct connect to the physical interrupt.
 This means that it is the responsibility of your code to do all
 of the context saving/restoring required by interrupt code.

 Also, due to the performance of the interrupt controller, you may
 need to also watch for "false" interrupts. These are interrupts
 that come in just after a DISABLE. The reason this happens is
 because the interrupt may have been posted before the DISABLE
 hardware access is completed. For example:

 myInt: move.l d0,-(sp) ; Save d0...
 move.w _intenar,d0 ; Get interrupt enable state
 btst.l #INTB_INTEN,d0 ; Check if pending disable
 bne.s realInt ; If not, do real one...

ExecQuick InterruptsPage III - 28

Amiga MailAmiga Mail
Volume II

 exitInt: move.l (sp)+,d0 ; Restore d0
 rte ; Return from int...
 ;
 realInt: ; Now do your int code... d0 is already saved
 ; ALL other registers need to be saved if needed
 ; This includes a0/a1/d0/d1 as this is an interrupt
 ; and not a function call...
 ;
 bra.s exitInt ; Exit interrupt...

 If your interrupt will not play with system (OS) structures and your
 own structures are safe to play with you do not need to check for
 the disable. It is only needed for when the system is in disable but
 that "one last interrupt" still got through.

 NOTE
 This function was not implemented fully until V39. Due to a miscue
 it is not safe to call in V37 EXEC. (Sorry)

 INPUTS
 A pointer to your interrupt code. This code is not an EXEC interrupt
 but is directly connected to the hardware interrupt. Thus, the
 interrupt code must not modify any registers and must return via
 an RTE.

 RESULTS
 The 8-bit vector number used for Zorro-III Quick Interrupts
 If it returns 0, no quick interrupt was allocatable. The device
 should at this point switch to using the shared interrupt server
 method.

 SEE ALSO

§§

	untitled

