May/June 1990

Using C to Get a Pointer
to the CLI Window

by Rob Wyesham

Programs sometime need to get a pointer to their CLI window. A method for obtaining
this pointer was illustrated in thremiga Mailarticle entitled "CLIColors.asm - Using
ConsolePackets in 68000 Assembler" (page 11-65, July/August A8d§a Mail).

However, many C programmers would rather avoid using assembly language. This
article shows how to use C to get a pointer the CLI window.

The basic method is the same whether you use C or Assembler. You send an
ACTION_DISK_INFO packet to the console handler process which includes a pointer to an
InfoData struture. When the packet is returned by AmigaDOS, the id_VolumeNode
field of the InfoData structure will be filled in with a pointer to the CLI window that the
console handler is using.

The program below, WindowPtt.tollows the code of CLIColors.asm closely. Like the
latter program, the strategy behind WindowPtr.c is to:

[0 Make sure the program was launched from a CLI.
[0 Send amCTION_DISK_INFO packet.

0 Extract the window pointer from the information
returned in the packet.

The program starts by examining certain structures to determine if it was launched from
a CLI. Ifit passes that test, the program checks its Process structure to make sure that it
has a valid pointer to a console task. Next, the program allocates memory for
FindWindow, a custom structure composed of a struct StandardPacket and a struct
InfoData.

Using C to Get a Pointer to Page Il - 93 Amiga DOS
the CLI Window

The program then initializes the StandardPacket fields and sendSTapN_DISK_INFO
packet to the DOS. When the packet returns, the program checks for an error. An error

could possibly be caused by the CLI not having an associated window. A CLI that uses
the AUX: handler rather than the CON: handler could cause such an error.

If the packet returns without an error, the id_VolumeNode field of the InfoData structure
points to the CLI window. This is an ordinary C pointer, not a BPTR. The program
shows that the pointer obtained does indeed point to the current CLI window by printing
out a few of the window’s parameters.

WindowPtr.c is listed below. It was compiled under Lattice 5.05 using the command:
LC -bl -cfist -L -v -w WindowPtr.c. Link with Ic.lib and amiga.lib.

/*

* File name: windowptr.c

* Purpose: To illustrate how to get the pointer
* to the current CLI window.

* Requires: Must be started from a CLI

*/

#include <libraries/dosextens.h> /* Defines the StandardPacket
* structure, the packet types,
* and the Process structure
*/

#include <libraries/dos.h> /* Defines the InfoData structure */
/* and RETURN_XXX */
#include <exec/types.h>
#include <exec/memory.h> [* Defines MEMF_XXX */
#include <stdio.h> /* Defines NULL and stdout */
#include <stdlib.h> [* Declares exit() */

#include <proto/exec.h>
#include <proto/intuition.h>

/* Set up the FindWindow structure. */
struct FindWindow

{
struct StandardPacket FW_Pack; /* A StandardPacket is all long-words */
struct InfoData FW_lInfo; /* so InfoData is long-word-aligned */

I /* if the FindWindow struct is. */

#define THISTASK NULL

extern VOID cleanExit(struct FindWindow *, int);

AmigaDOS Page Il - 94 Using C to Get a Pointer to
the CLI Window

VOID main(int argc, char *argv[])

{
struct Process *myProcess = NULL;
struct FindWindow *thisWindow = NULL;
struct Window *addrThisWindow = NULL;
SHORT minW, minH;

USHORT maxW, maxH;
SHORT xPos, yPos, W, H;

[* Get address of the current task */
myProcess = (struct Process *)FindTask(THISTASK);

/* Make sure this program wasn’t started from Workbench */
if (argc = = 0) cleanExit(thiswindow, RETURN_WARN);

/* Make sure that there is a pr_ConsoleTask */
if (myProcess->pr_ConsoleTask == NULL)
cleanExit(thiswindow, RETURN_WARN);

/* Allocate memory for the FindWindow structure */
thiswindow = (struct FindWindow *)

AllocMem(sizeof(struct FindWindow), MEMF_PUBLICIMEMF_CLEAR);
if (thiswindow == NULL) cleanExit(thisWindow, RETURN_WARN);

/* Initialize the packet */
thisWindow->FW_Pack.sp_Msg.mn_Node.In_Name =

(char *)&thisWindow->FW_Pack.sp_Pkt;
thiswindow->FW_Pack.sp_Pkt.dp_Link = (struct Message *)thiswWindow;
thisWindow->FW_Pack.sp_Pkt.dp_Port = &myProcess->pr_MsgPort;
thisWindow->FW_Pack.sp_Pkt.dp_Type = ((LONG)&thisWindow->FW_Info) >> 2;

/* Now send the packet, and wait for it to return */
PutMsg((struct MsgPort *)myProcess->pr_ConsoleTask,
(struct Message *)thisWindow);

(void)WaitPort((struct MsgPort *) &myProcess->pr_MsgPort);

/* Our program has been replied to, so get the reply message */
(void)GetMsg(&myProcess->pr_MsgPort);

/* Save the address of the CLI window */
addrThisWindow = (struct Window *) (&(thiswindow->FW_Info))->id_VolumeNode;

/* If there was an error, terminate execution */
if (thiswindow->FW_Pack.sp_Pkt.dp_Resl == DOSFALSE)
cleanExit(thiswindow, RETURN_WARN);

if (addrThisWindow == NULL) cleanExit(thiswindow, RETURN_WARN);

Using C to Get a Pointer to Page Il - 95 AmigaDOS
the CLI Window

and maximum
window */

/* Get the positio
* dimensio

mum and maximum
window */

f(struct FindwWindow));

AmigaDOS Page Il - 96 Using C to Get a Pointer to
the CLI Window

