2. - 11 abed

l13US4asn e Bunum

sSoqebiuy

Amiga Mail

Appendix

dos.library/dilnitNewcli dos.library/dilnitNewcli dos. library/dilnitRun dos.library/dilnitRun
NAVE NAVE
dilnitNewcli -- Set up a process to be a shell frominitial packet dilnitRun -- Set up a process to be a shell frominitial packet
SYNOPSI S SYNOPSI S
flags = dilnitNewcli(packet) flags = AilnitRun(packet)
Do A0 Do A0
LONG diInitNewcli(struct DosPacket *) LONG dilnitRun(struct DosPacket *)
FUNCTI ON FUNCTI ON
This function initializes a process and CLI structure for a new This function initializes a process and CLI structure for a new
shell, fromparaneters in an initial packet passed by the system shell, fromparaneters in an initial packet passed by the system
(Newshel | or NewCLI, etc). The format of the data in the packet (Run, Systen(), Execute()). The format of the data in the packet
is purposely not defined. The setup includes all the nornmal fields is purposely not defined. The setup includes all the normal fields
in the structures that are required for proper operation (current in the structures that are required for proper operation (current
directory, paths, input streans, etc). directory, paths, input streans, etc).
It returns a set of flags containing information about what type It returns a set of flags containing information about what type
of shell invocation this is. of shell invocation this is.
Definitions for the values of fn: Definitions for the values of fn:
Bit 31 Set to indicate flags are valid Bit 31 Set to indicate flags are valid
Bit 3 Set to indicate asynch systemcall Bit 3 Set to indicate asynch system call
Bit 2 Set if this is a Systen() call Bit 2 Set if this is a Systen() call
Bit 1 Set if user provided input stream Bit 1 Set if user provided input stream
Bit 0 Set if RUN provided output stream Bit 0 Set if RUN provided output stream
If Bit 31 is 0, then you nust check IoErr() to deternmine if an error If Bit 31 is 0, then you nust check IoErr() to determine if an error
occurred. If IoErr() returns a pointer to your process, there has occurred. |f IoErr() returns a pointer to your process, there has
been an error, and you should clean up and exit. The packet will been an error, and you should clean up and exit. The packet will
have already been returned by ClilnitNewcli(). If it isn't a pointer have already been returned by CilnitNewcli(). |If it isn't a pointer
to your process and Bit 31 is 0, reply the packet inmmediately. to your process and Bit 31 is 0, you should wait before replying
(Note: this is different fromwhat you do for dilnitRun().) the packet until after you' ve |oaded the first command (or when you
exit). This hel ps avoid disk "gronking" with the Run command.
This function is very simlar to dilnitRun(). (Note: this is different fromwhat you do for CilnitNewcli().)
I NPUTS If Bit 31 is 1, then if Bit 3 is one, ReplyPkt() the packet
packet - the initial packet sent to your process MsgPort imedi ately (Asynch Systen()), otherwise wait until your shell exits
(Sync Systen(), Execute()).
RESULT (Note: this is different fromwhat you do for CilnitNewcli().)

fn - flags or a pointer
This function is very similar to CilnitNewcli().
SEE ALSO
dilnitRun(), ReplyPkt(), VaitPkt(), loErr() I NPUTS
packet - the initial packet sent to your process MsgPort

RESULT
fn - flags or a pointer

SEE ALSO
dilnitNewcli(), ReplyPkt(), WaitPkt(), Systen(), Execute(), IoErr()

so@ebiwy

1BYSI8sN © Bunum

g/ - 11 afed

Amiga Mail

;/* nyshell.c - Execute ne to conpile me with Lattice 5.10b
LC -b0 -cfist -v -dO -j 73 nyshell.c

Bl

i nk FROM nyshel | .o TO nyshel | LIBRARY lib:amga.lib |ib:debug.lib smallcode snalldata

qui t

Wher e:

*/
I+

LC -b0 -c

Bl

-b1 neans
-cfist nmeans

Locate data as a 16 bit offset from A4.
Conpati bility options:
f - Forces conpiler to conplain
if a function has no prototype.
i - Ignores extra #includes of
an al ready #i ncl uded le.
s - Tells LC to generate a ngl e copy
of all identical string constants
into a progranmis code section.
t - Tells LC to warn you if it encounters
a structure or union tag that has
not been defined.
Di sabl e the stack checking LC nornally
puts at the beginning of each function.
Do not put any debugging info into the object f
Load the base address of the data section
into A, This is used in conjunction
wth -bl.
| gnore warni ng #73.
ignore the scri
sem colon) at the front of this file.

-V means

-do nmeans
-y means

-] 73 nmeans

The foll owing command lines will conpile nyshell.c using pragnes
st -v -rl -rr -dO -j 73 -dDOPRAGVAS nyshel | .c

i nk FROM nyshel | .o TO nyshel | smal | code snal | data

Wer e:

The rest

*/

* Ok kK K Kk ok F F b o % o ok

-

#i

#i
#i
#i

-rl nmeans Make all subroutines "near". The conpiler wll
use a 16-bit PC relative address to |ocate
the subroutine.

Use registerized parameters for subroutines (no

amga.lib stubs!).

-rr means

of the paraneters were described above.

This is a basically a skel eton of a UserShell.
shel |l that can replace the default system shell.
systemrequirements to function as a system shell.
of all of those requirements. To make this shell
resi dent command:

A User Shell is a special

It has to neets some
This exanpl e takes care

the systemshell, use the

resident shell M/Shell SYSTEM

Because this shell only serves as an mninmal exanple of a UserShell and does
not do many of the standard functions a shell nornmally perforns. tis
limted to the commands fromthe resident |ist (which would neke it a bad
idea to add this shell to the resident list if you need a useable default
shel I'1)

ncl ude <exec/types. h>

i ncl ude <exec/ nenory. h>

ncl ude <dos/dosextens. h>

ncl ude <dos/ stdio. h>

ncl ude b/ exec_protos. h>

ncl ude b/ dos_pr ot os. h>

ncl ude <clib/alib_stdio_protos. h>

f def DOPRAGVAS
ncl ude <pragmas/ exec_pragmas. h>
ncl ude <pragmas/ dos_pragnas. h>

#endi f

| ong

nai n(voi d) ;

#defi ne COMMANDBUFLENGTH 64
#define COMMANDLI NELENGTH 512
#def i ne PROVPTLENGTH 256

/* True if this is a Systen() Instigated shell */
#define SYSTEM ((ni->fn & 0x80000004) == 0x80000004)

/* true if this shell is executing a script */

#define | SSCRIPT (m ->nycli->cli_Currentlnput != m->nycli->cli_Standardl nput)

/* true if this shell is *not* executing a script */
#define NOTSCRI PT (m ->nycli->cli_Currentlnput == ni->nycli->cli_Standardl nput)

struct nylocals

{
struct Library *sysBase;
struct Library *dosBase;
struct Process *nyprocess;
struct DosPacket *nypacket;
| ong fn; /* notice that fn is signed. Sone conditionals
in this code rely on this val ue being signed.
*
/
struct CommandLi nel nterface *nycli;
H

i b |ooks

*
* define the |library base | abels (SysBase and DOSBase) that amiga
* Can’t have global data in

for so we don't have to declare themas a global.
* resident code.
*/
#define SysBase (n ->sysBase)
#def i ne DOSBase (ni->dosBase)

| ong mai nshel | | oop(struct nylocals *);
| ong strlen(UBYTE *);
| ong
mai n(voi d)
{
struct nylocals globals, *ml = &gl obals;
BPTR *segnent;
| ong shel Il type, error;
/
Poof, this shell has winked into existence. It could have come fromthe

user executing the "newshell" code via the newshell program or it could
have cone from some ot her application using one of the DOS calls that use

*
*
*
*
* a shell,
*
*
*
*

like Systen(). |In any case, whatever caused this shell to wink
into existence will also cause a special startup packet to appear in this
process’ nmessage port. This packet is very personal and private to DOS

and probably will

change with future versions of the OS, so don't worry
about what’s in

That woul d be bad.

*/
error = RETURN_OK;
/* Open libraries */
SysBase = *((struct Library **) 4L);
if (DOSBase = OpenLibrary("dos.library", 37))
{
/* First, get the packet that the newshell
gl obal s. nypacket = WaitPkt();
gl obal s. nyprocess = (struct Process *) FindTask(NULL);

/

segnent sends. */

Some arcane magic here for the UserShell. W have to look at this
process’ array of Segnment pointers. |If entry 4 in the array is NULL, we
have to nove entry 3 to entry 4 and NULL entry 4. This is because entry
3 will be used to store the seglist pointer for each programthis shell
runs.

* Ok K K K K

*
/
segnent = (BPTR *) BADDR(gl obal s. myprocess->pr_SeglLi st);
if (!segment[4])
{

segnent [4] = segnent[3];

segment [3] = NULL;
}

v/ - 1| abed

l13US4asn e Bunum

sSoqebiuy

Amiga Mail

* The packet that newshell sends tells us how the shell was invoked. The
* dp_Resl and dp_Res2 fields of the packet structure represent,

* respectively, the high order bit and |ow order bit of a two-bit

* bitfield. The following line of code will turn these values into a

* value fromO to 3:

h

shel I type = (gl obal s. nypacket->dp_Resl == 0 ? 0 : 2) |
(gl obal s. nypacket->dp_Res2 == 0 ? 0 : 1);

/*

* at the noment, only the values 0 and 2 are defined. Type 0 is for Run,
* Execute(), and Systen(). Type 2 is for NewShell and Newdi.

*/

i{f ((shelltype == 2) || (shelltype == 0))

/%
* These two functions dilnitNewcli() and dilnitRun() take care setting
* up the shell’s CommandLinel nterface structure (current directories,
* paths, input streams...) using the secret startup packet we got
* earlier. They differ slightly in their setup based on the shell type.
* The exact workings of these functions is private and personal to DOCS,
* and is subject to change. If you are wondering what exactly these
* functions do, don’t worry about it. That would al so be bad.
*/
if (shelltype == 0)
globals.fn = dilnitRun(gl obal s. nypacket);
el se
I *
* dilnitNewdi() handl es the shell startup file (default is
* s:Shell-startup) and stuffs a filehandle to it into
* globals.nycli->cli_Currentlnput.
*/
globals.fn = dilnitNewcli(globals.nypacket);
/*
* Definitions for the values of globals.fn:
* Bit 31 Set to indicate flags are valid
* Bit 3 Set to indicate asynch systemcall
* Bit 2 Set if this is a Systen() call
* Bit 1 Set if user provided input stream
* Bit 0 Set if RUN provided output stream
*/
/*
* |f the high bit of globals.fn is clear, check IoErr() to see if it
* points to this process. |If it does, there was an error with the
* dilnitXxx... function. On an error, clean up and exit. You won't
* have to return the packet if there was an error because the
* dilnitXxxx function will take care of that.
*/
if ((globals.fn & 0x80000000) == 0) /* 1s high bit clear? */
if ((struct Process *) |oErr() == globals. nyprocess) /* is there an error? */
rror = RETURN_FAIL;

else if (shelltype == 0)

Repl yPkt (gl obal s. nypacket ,
gl obal s. nypacket - >dp_Res1,
gl obal s. nypacket - >dp_Res2) ;
gl obal s. nypacket = NULL;

if (error !'= RETURN_FAIL)
{

K, no error. If this shell was invoked via NewShell or NewCLI
(shelltype == 2), or if this is an asynchronous System() initiated
shel |, return the startup nessage. Al t hough this exanple doesn't
do it, if shelltype == 0, you can wait to reply the packet until you
try to LoadSeg() your first comand (to avoid disk gronking). Wen
you use ReplyPkt() to reply the packet, use it like it appears bel ow
to avoid losing error codes set up by CilnitXxx.

R I

if (((globals.fn & 0x8000000C) == 0x8000000C) || (shelltype == 2))

Repl yPkt (gl obal s. nypacket,
gl obal s. nypacket - >dp_Res1,
gl obal s. nypacket - >dp_Res2);
gl obal s. nypacket = NULL;

i{f (globals.nycli = di())

/* Set up local shell variables and any custom set up here */
gl obal s. nycli->cli_ReturnCode = O;

gl obal s. nycli->cli_Result2 = 0;

gl obal s. nyprocess->pr_HoneDir = NULL;

/* Ready to start processing commands */
error = mai nshel |l oop(ni);

if (globals.fn < 0) /* if we got valid flags from
* ilnitXxxx (High bit of fnis set).
{
Fl ush(Qut put ());
/* if user DID NOT provide input stream close standardinput */
if ((globals.fn & 2) == 0)
Cl ose(gl obal s. mycli->cli_Standardl nput);
/* if RUN provided output stream close it */
if ((globals.fn & 1) == 1)
Fl ush(gl obal s. mycli->cli _StandardQutput);
Cl ose(gl obal s. nycli->cli_StandardQutput);
/* If we didn't send the packet back yet, send it back */
if (gl obals. nypacket)
Repl yPkt (gl obal s. mypacket, error, globals.nypacket->dp_Res2);
el se
/*
* the flags weren't valid so close the Standard 1/0O handles if
* they still exist.
*/

if (globals.nycli->cli_StandardQutput)

Fl ush(gl obal s. mycli->cli_StandardQutput);
Cl ose(gl obal s. nycli->cli_StandardCQutput);

if (globals.nycli->cli_Standardl nput)

Fl ush(gl obal s. nycli->cli_Standardl nput);
Cl ose(gl obal s. nycli->cli_Standardl nput);

/* release the process’ lock on the current directory */
UnLock(gl obal s. nyprocess->pr_CurrentDir);

el se
error = RETURN_FAIL; /* 1 have a NULL CLI! */
}

}

el se
/* shelltype !'= 0 or 2 */

error = RETURN_FAIL;

Repl yPkt (gl obal s. mypacket,
gl obal s. nypacket - >dp_Res1,
gl obal s. nypacket - >dp_Res2) ;

}
Cl oseli brary(DOSBase) ;

el se

error = RETURN_FAIL;

return error;

*/

Amiga Mail

{

so@ebiwy

1BYSI8sN © Bunum

G/ - || afed

BOOL

I ong mai nshel | | oop(struct nylocals * nm)

done = FALSE;

unsi gned char ch, *pronpt, *conmand, *comnmandnane, *cnd, *cndnane;
struct Segnent *cnudseg;

| ong

result;

WORD X3

m ->nycli->cli_Fail Level = RETURN_FAIL;

if (command

{

(char *) AllocVec(COVMANDLI NELENGTH + COMVANDBUFLENGTH +
PROVPTLENGTH, NEMF_CLEAR))

comandnanme = & conmand[COMVANDLI NELENGTH]) ;
pronpt = & conmand[COMWWANDLI NELENGTH + COMVANDBUFLENGTH]) ;
do

{

/* Make sure the shel

| ooks to cl nes */

_Currentlnput for its command

Sel ect | nput (m ->nycli->cli_Currentlnput);

/* is this an interactive shell? */

n ->nycli->cli_lnteractive =

/* if this is not a backround CLI, and */
(('(m->nycli->cli_Background)) &&

/* input has not been redirected to an script file, and */
NOTSCRI PT &&

/* this shell was not started from Systen()
(! SYSTEM) ? DOSTRUE : DOSFALSE;

/* if this is a script and the user hit CTRL-D, break out of the script */
if (!((SetSignal (0L, SIGBREAKF_CTRL_C |
S| GBREAKF_CTRL_D |
S| GBREAKF_CTRL_E |
S| GBREAKF_CTRL_ _F) & SI GBREAKF_CTRL_D) &&
(! SYSTEM && (1 SSCRIPT)))
{
/* if this shell is interactive and there is a pronpt, print it */
/* (unless, of course, this was created by Run, etc) */
if (m->nmycli->cli_Interactive == DOSTRUE && ! (m ->nycli->cli_Background))
{
/%
* |f this wasn’t an exanple, | woul d probably change the pronpt
* here, probably to reflect the name of the current directory.
*/
/* print the pronpt */
if (GetPronpt(pronpt, 256))
{
FPuts(Qutput (), pronpt);
/* Make sure the pronpt gets printed */
Flush(Qutput());
}
}
/* Get Command */
if (FGets(m->nycli->cli_Currentlnput, comrand, COMVANDLI NELENGTH))
{

cmd = command;
/* skip _mma_:m spaces in conmand |ine */

while (*cnd ==)
cd++;
*
* 1f | was bothering to deal with aliases, | would probably resolve
* them here.
*/
c al = conmandnane;
x = 0;
/* copy the actual command fromthe cnd buffer */

N\S e ((*cnd >='0") & (*cmd <= '7') && (x < (COMVANDBUFLENGTH - 1)))

*cndnane++ = *cnd++;
X++;

*cmdnane = '\ 0’ ;

I+
* OK, now we have the actual command in conmandnane. Using it we can
* find the actual executeable code. The conmand coul d cone from
* several sources:
*
* The resident |ist
* The shell (an internal command)
* disk (fromeither an absolute or relative path)
*
* This mxm:u_m only | ooks through the resident list for conmands. A
* real she woul d also try to load a command fromdisk if the
* comand _m not present in the resident st (or the command is not
* internal to the shell.
*
/

/* Search resident list for the command */
Forbi d();
if (!(cndseg = Fi ndSegnent (commandnanme, NULL, FALSE)))
cmdseg = Fi ndSegnent (commandnane, NULL, TRUE);
if (cndseg)
{
if ((crdseg->seg_UC < CMD_DI SABLED) ||
(cndseg- >seg_ == CMD_SYSTEM))
cndseg = NULL;
else if (cnmdseg->seg_UC >= 0)
cndseg- >seg_UCH+;

}

Permt();

I+
* if lcndseg, the command was not in the resident list. If | were
* bothering to | ook for commands on disk, | would try to |oad the
* command here. If | has successfully |oaded a command and was
* going to execute it, | would have to set m ->nyprocess->pr_HonmeDir
* to be a DupLock() of the directory | |oaded the command from |
* don't do this for conmands fromthe resident |ist because they
* have no hone directory.
*

/

/* 1f we did find a command, run it */

if (cndseg)

{

/* Cear the error field before executing the command */
Set | oErr(0);

Set Pr ogr anNanme(conmandnane) ;
nm ->nycli->cli_Mdul e = cndseg->seg_Seg;

/
Set the |/O streams to their defaults. NOTE: Standardl nput, NOT
Currentlnput! The Execute command wi cause nasty things to
happen if you use Currentlnput, since it nust close that in
order to change the input streamto the next file. Qbviously,
this only applies if you' re using the normal Am gaDOS Execute

* command for scripts.
*

/
Sel ect | nput (m ->nycli->c
Sel ect Qut put (n - >nycli->c

* ok ok ok ok k

St andar dl nput) ;
_Standar dQut put) ;

I*
* If | were doing redirection, the I/O handl es above woul d be the
* redirection handles.

*/

/* Run the command */

result = RunCommand(ni - >nycli->cli_Modul e,
(m ->nycli->cli_DefaultStack * 4),
cmd,
strlen(cnd));

*
* OK, we returned fromthe command.
* the appropriate CLI fields.
*/
m - >mycl
nl - >nycl

in any error codes in

->cli
->cl

_ReturnCode = result;
_Result2 = I oErr();

9/ - || abed

l13US4asn e Bunum

sSoqebiuy

Amiga Mail

/* 1f | had bothered to | oad code froman executable file on disk,
* | would have to unload it now. Since | didn't, all | have to do
* is NULL cli_Module.

*

m ->nmycli->cli_Mdul e = NULL;

Set ProgranmNanme("");

For bi d();

if (cndseg->seg_UC > 0)
cndseg- >seg_UC--;

Permt();

cmdseg = NULL;

el se
/* we couldn’t find the conmand. Print an error nessage unless the

* command starts with a non-al phanuneric character (like a
* carriage return) or the first character is a cooment character.
*

if ((commandnanme[0] >= '0') &&
(commandnane[0] <= 'z') &&
(commandnane[0] !=";"))

Put St r (commandnane) ;
Put Str(": Conmmand not found\n");
Flush(Qut put ());

}
}
/* if you set up redirection I/O handles for the command don’t forget

* to flush and close them
*/

/* Make sure the proper |1/0 handles are in place. */
Sel ect I nput (nl ->nycli->cli_Currentlnput);
Sel ect Qut put (m ->nycli->cli_StandardQutput);

/* Get rid of any unused data left in the buffer */
ch = UnGetC(Input(), -1) ? '\0" : "\n";
while ((ch !'="\n") && (ch !'= ENDSTREAMCH))
ch = FGetC(Input());
if (ch == ENDSTREAMCH)

done = TRUE;
}
el se
done = TRUE; /* W got an ECF when reading in a
* conmmand */
if (done)
if (1SSCRPT)
done = FALSE; /* this is a script (which could be
* s:shell-startup), so don't quit, just
* exit the script and set up 10
* handl es. */
/* Close the script file */
Cl ose(m ->nycli->cli_Currentlnput);
/* Reset the input to what we started with */
Sel ect I nput (ni - >nycli->cli_Standardl nput);
m ->nmycli->cli_Currentlnput = ni->nycli->cli_Standardl nput;
/* Restore Fail Level after executing a script */
m ->nycli->cli_FailLevel = RETURN_ERROR
/* if the script created a file, delete it */
if (((char *) BADDR(M ->nycli->cli_CommandFile))[0])
{
cmd = (char *) BADDR(m ->nycli->cli_ConmandFile);
CopyMem(&(cnd[1]), command, (LONG cnd[0]);
command[cnd[0]] = "\0";
Del et eFi | e(command) ;
cmd[0] = '\0";
}
}

}
el se
/* Somebody hit CTRL_D in a script */
{
/* print the string associated with error #304 */
Print Faul t (304, "MyShell");
/* Close the script file */
Close(nl->nycli->cli_Currentlnput);
/* Reset the input to what we started with */
Sel ect | nput (m ->nycli->cli_Standardl nput);
m ->nycli->cli_Currentlinput = ni->nycli->cli_Standardl nput;

cnd = (char *) BADDR(n ->nycli->cli_ComuandFile);

cnd[0] ="'\0";
/* this takes care of some problens certain prograns caused */
if (SYSTEM && NOTSCRI PT)

done = TRUE;

} while (!done);
FreeVec((void *) command);

return result;

long strlen(UBYTE * string)
{
l ong x = OL;

while (string[x]) x++;
return x;

;/* RestoreShell.c - Execute ne to conpile ne with Lattice 5. 10b
LC -bl -cfist -v -dO0 -j 73 RestoreShell.c

Blink FROM lib:c.o RestoreShell.o TO RestoreShell LIBRARY lib:lc.lib lib:amga.lib

smal | code snal | data

qui t

*/

/* restore the Boot Shell as the UserShell. Note that this
only swtches back the BootShell, it does not unload the
current user shell ("shell" on the resident list) as it
is possible that some instance of it can still be running.

*

/

#i ncl ude <exec/types. h>

#i ncl ude <dos/ dosext ens. h>

#i ncl ude <clib/exec_protos. h>

#i ncl ude <clib/dos_protos. h>

#i fdef LATTICE

int CXBRK(void) { return(0); } /* Disable Lattice CTRL/C handling */
int chkabort(void) { return(0); }

#endi f

UBYTE *vers = "\0$VER RestoreShell 1.0";

voi d mai n(voi d)

struct Segment
*boot shel | _seg,

*shel | _seg;
For bi d();
shel | _seg = FindSegrent ("shell", NULL, CVD_SYSTEM;
boot shel | _seg = Fi ndSegnent ("boot shel |, NULL, CVD_SYSTEM ;

if (bootshell_seg)
shel | _seg->seg_Seg = boot shel | _seg- >seg_Seg;
Permt();

