
Page II - 108
Am

igaDO
S

Even Faster Am
igaDO

S I/O

asyncio/SeekAsync asyncio/SeekAsync

 NAME
 SeekAsync -- set the current position for reading or writing within
 an async file.

 SYNOPSIS
 oldPosition = SeekAsync(file, position, mode);

 LONG SeekAsync(struct AsyncFile *, LONG, BYTE);

 FUNCTION
 SeekAsync() sets the read/write cursor for the file 'file' to the
 position 'position'. This position is used by the various read/write
 functions as the place to start reading or writing. The result is the
 current absolute position in the file, or -1 if an error occurs, in
 which case dos.library/IoErr() can be used to find more information.
 'mode' can be SEEK_START, SEEK_CURRENT or SEEK_END. It is used to
 specify the relative start position. For example, 20 from current
 is a position 20 bytes forward from current, -20 is 20 bytes back
 from current.

 To find out what the current position within a file is, simply seek
 zero from current.

 INPUTS
 file - an opened async file, as obtained from OpenAsync()
 position - the place where to move the read/write cursor
 mode - the mode for the position, one of SEEK_START, SEEK_CURRENT,
 or SEEK_END.

 RESULT
 oldPosition - the previous position of the read/write cursor, or -1
 if an error occurs. In case of error, dos.library/IoErr()
 can give more information.

 SEE ALSO
 OpenAsync(), CloseAsync(), ReadAsync(), WriteAsync(),
 dos.library/Seek()

ASyncIO.c

;/* ASyncIO.c - Execute me to compile with SAS/C 5.10b
sc data=near nominc strmer streq nostkchk saveds ign=73 AsyncIO.c
;lc -cfist -v -j73 asyncio.c
quit */

#include <exec/types.h>
#include <exec/memory.h>
#include <dos/dos.h>
#include <dos/dosextens.h>
#include <clib/exec_protos.h>
#include <clib/dos_protos.h>

#include <pragmas/exec_pragmas.h>
#include <pragmas/dos_pragmas.h>

#include "asyncio.h"

/***/

extern struct Library *DOSBase;
extern struct Library *SysBase;

/***/

/* this macro lets us long-align structures on the stack */
#define D_S(type,name) char a_##name[sizeof(type)+3]; \
 type *name = (type *)((LONG)(a_##name+3) & ~3);

/***/

/* send out an async packet to the file syst e
static VOID SendPacket(struct AsyncFile *fil e
{
 file->af_Packet.sp_Pkt.dp_Port = &file->a f
 file->af_Packet.sp_Pkt.dp_Arg2 = (LONG)a r
 PutMsg(file->af_Handler, &file->af_Packet
 file->af_PacketPending = TRUE;
}

/** *

/* this function waits for a packet to come
 * packet is pending, state from the previo u
 * that once an error occurs, it state is m a
 * of the file handle.
 *
 * This function also deals with IO errors,
 * requesters to let the user retry an oper a
 */
static LONG WaitPacket(struct AsyncFile *fil e
{
LONG bytes;

 if (file->af_PacketPending)
 {
 /* mark packet as no longer pending
 file->af_PacketPending = FALSE;

 while (TRUE)
 {
 /* This enables signalling when
 file->af_PacketPort.mp_Flags = P A

 /* Wait for the packet to come b
 * list. Since we know no other
 * safely use Remove() instead o
 * we would have to use GetMsg()
 * a case
 */
 Remove((struct Node *)WaitPort(&

 /* set the port type back to PA _
 * spurious signals
 */
 file->af_PacketPort.mp_Flags = P A

 bytes = file->af_Packet.sp_Pkt.d p
 if (bytes >= 0)
 {
 /* packet didn't report an e
 return(bytes);
 }

 /* see if the user wants to try
 if (ErrorReport(file->af_Packet. s
 REPORT_STREAM,
 file->af_File,NU L
 return(-1);

 /* user wants to try again, res e
 SendPacket(file,file->af_Buffers[fi
 }
 }

 /* last packet's error code, or 0 if pa c
 SetIoErr(file->af_Packet.sp_Pkt.dp_Res2) ;

 return(file->af_Packet.sp_Pkt.dp_Res1);
}

/** *

/* this function puts the packet back on th e
 * message port.
 */
static VOID RequeuePacket(struct AsyncFile *
{

 Amiga Mail

Am
igaDO

S
Page II - 109

Even Faster Am
igaDO

S I/O

ket to the file system. */
t ruct AsyncFile *file, APTR arg2)

t .dp_Port = &file->af_PacketPort;
t .dp_Arg2 = (LONG)arg2;
er, &file->af_Packet.sp_Msg);

* ***/

or a packet to come back from the file system. If no
ate from the previous packet is returned. This ensures
curs, it state is maintained for the rest of the life

als with IO errors, bringing up the needed DOS
user retry an operation or cancel it.

t ruct AsyncFile *file)

s no longer pending since we are going to get it */
nding = FALSE;

l es signalling when a packet comes back to the port */
etPort.mp_Flags = PA_SIGNAL;

t he packet to come back, and remove it from the message
ce we know no other packets can come in to the port, we can
e Remove() instead of GetMsg(). If other packets could come in,
have to use GetMsg(), which correctly arbitrates access in such

ct Node *)WaitPort(&file->af_PacketPort));

ort type back to PA_IGNORE so we won't be bothered with

etPort.mp_Flags = PA_IGNORE;

>af_Packet.sp_Pkt.dp_Res1;

t didn't report an error, so bye... */

e user wants to try again... */
ort(file->af_Packet.sp_Pkt.dp_Res2,

 REPORT_STREAM,
 file->af_File,NULL))

s to try again, resend the packet */
l e,file->af_Buffers[file->af_CurrentBuf]);

or code, or 0 if packet was never sent */
ket.sp_Pkt.dp_Res2);

t .sp_Pkt.dp_Res1);

* ***/

e packet back on the message list of our

t (struct AsyncFile *file)

 AddHead(&file->af_PacketPort.mp_MsgList,&file->af_Packet.sp_ M
 file->af_PacketPending = TRUE;
}

/*** *

/* this function records a failure from a synchronous DOS call
 * packet so that it gets picked up by the other IO routines i n
 */
VOID RecordSyncFailure(struct AsyncFile *file)
{
 file->af_Packet.sp_Pkt.dp_Res1 = -1;
 file->af_Packet.sp_Pkt.dp_Res2 = IoErr();
}

/*** *

struct AsyncFile *OpenAsync(const STRPTR fileName, UBYTE access M
{
struct AsyncFile *file;
struct FileHandle *fh;
BPTR handle;
BPTR lock;
LONG blockSize;
D_S(struct InfoData,infoData);

 handle = NULL;
 file = NULL;
 lock = NULL;

 if (accessMode == MODE_READ)
 {
 if (handle = Open(fileName,MODE_OLDFILE))
 lock = DupLockFromFH(handle);
 }
 else
 {
 if (accessMode == MODE_WRITE)
 {
 handle = Open(fileName,MODE_NEWFILE);
 }
 else if (accessMode == MODE_APPEND)
 {
 /* in append mode, we open for writing, and then s e
 * end of the file. That way, the initial write wil l
 * the end of the file, thus extending it
 */

 if (handle = Open(fileName,MODE_READWRITE))
 {
 if (Seek(handle,0,OFFSET_END) < 0)
 {
 Close(handle);
 handle = NULL;
 }
 }
 }

 /* we want a lock on the same device as where the file i
 * use DupLockFromFH() for a write-mode file though. So
 * and get a lock on the parent of the file
 */
 if (handle)
 lock = ParentOfFH(handle);
 }

 if (handle)
 {
 /* if it was possible to obtain a lock on the same dev i
 * file we're working on, get the block size of that de v
 * round up our buffer size to be a multiple of the bl o
 * This maximizes DMA efficiency.
 */

 blockSize = 512;
 if (lock)
 {

Amiga Mail
file->af_Packet.sp_Msg.mn_Node);

**********************************/

ynchronous DOS call into the
ther IO routines in this module

**********************************/

eName, UBYTE accessMode, LONG bufferSize)

writing, and then seek to the
e initial write will happen at

READWRITE))

e as where the file is. We can't
mode file though. So we get sneaky

ck on the same device as the
ck size of that device and
multiple of the block size.

 if (Info(lock,infoData))
 {
 blockSize = infoData->id_BytesPerBlock;
 bufferSize =
 (((bufferSize + blockSize - 1) / blockSize) * blockSize) * 2;
 }
 UnLock(lock);
 }

 /* now allocate the ASyncFile structure, as well as the read buffers.
 * Add 15 bytes to the total size in order to allow for later
 * quad-longword alignement of the buffers
 */

 if (file = AllocVec(sizeof(struct AsyncFile) + bufferSize + 15,MEMF_ANY))
 {
 file->af_File = handle;
 file->af_ReadMode = (accessMode == MODE_READ);
 file->af_BlockSize = blockSize;

 /* initialize the ASyncFile structure. We do as much as we can here,
 * in order to avoid doing it in more critical sections
 *
 * Note how the two buffers used are quad-longword aligned. This
 * helps performance on 68040 systems with copyback cache. Aligning
 * the data avoids a nasty side-effect of the 040 caches on DMA.
 * Not aligning the data causes the device driver to have to do
 * some magic to avoid the cache problem. This magic will generally
 * involve flushing the CPU caches. This is very costly on an 040.
 * Aligning things avoids the need for magic, at the cost of at
 * most 15 bytes of ram.
 */

 fh = BADDR(file->af_File);
 file->af_Handler = fh->fh_Type;
 file->af_BufferSize = bufferSize / 2;
 file->af_Buffers[0]
 = (APTR)(((ULONG)file + sizeof(struct AsyncFile) + 15) & 0xfffffff0);
 file->af_Buffers[1]
 = (APTR)((ULONG)file->af_Buffers[0] + file->af_BufferSize);
 file->af_Offset = file->af_Buffers[0];
 file->af_CurrentBuf = 0;
 file->af_SeekOffset = 0;
 file->af_PacketPending = FALSE;

 /* this is the port used to get the packets we send out back.
 * It is initialized to PA_IGNORE, which means that no signal is
 * generated when a message comes in to the port. The signal bit
 * number is initialized to SIGB_SINGLE, which is the special bit
 * that can be used for one-shot signalling. The signal will never
 * be set, since the port is of type PA_IGNORE. We'll change the
 * type of the port later on to PA_SIGNAL whenever we need to wait
 * for a message to come in.
 *
 * The trick used here avoids the need to allocate an extra signal
 * bit for the port. It is quite efficient.
 */

 file->af_PacketPort.mp_MsgList.lh_Head
 = (struct Node *)&file->af_PacketPort.mp_MsgList.lh_Tail;
 file->af_PacketPort.mp_MsgList.lh_Tail = NULL;
 file->af_PacketPort.mp_MsgList.lh_TailPred
 = (struct Node *)&file->af_PacketPort.mp_MsgList.lh_Head;
 file->af_PacketPort.mp_Node.ln_Type = NT_MSGPORT;
 file->af_PacketPort.mp_Flags = PA_IGNORE;
 file->af_PacketPort.mp_SigBit = SIGB_SINGLE;
 file->af_PacketPort.mp_SigTask = FindTask(NULL);

 file->af_Packet.sp_Pkt.dp_Link = &file->af_Packet.sp_Msg;
 file->af_Packet.sp_Pkt.dp_Arg1 = fh->fh_Arg1;
 file->af_Packet.sp_Pkt.dp_Arg3 = file->af_BufferSize;
 file->af_Packet.sp_Pkt.dp_Res1 = 0;
 file->af_Packet.sp_Pkt.dp_Res2 = 0;
 file->af_Packet.sp_Msg.mn_Node.ln_Name = (STRPTR)&file->af_Packet.sp_Pkt;
 file->af_Packet.sp_Msg.mn_Node.ln_Type = NT_MESSAGE;
 file->af_Packet.sp_Msg.mn_Length = sizeof(struct StandardPacket);

 if (accessMode == MODE_READ)

Page II - 110
Am

igaDO
S

Even Faster Am
igaDO

S I/O

 {
 /* if we are in read mode, send out the first read packet to
 * the file system. While the application is getting ready to
 * read data, the file system will happily fill in this buffer
 * with DMA transfers, so that by the time the application
 * needs the data, it will be in the buffer waiting
 */

 file->af_Packet.sp_Pkt.dp_Type = ACTION_READ;
 file->af_BytesLeft = 0;
 if (file->af_Handler)
 SendPacket(file,file->af_Buffers[0]);
 }
 else
 {
 file->af_Packet.sp_Pkt.dp_Type = ACTION_WRITE;
 file->af_BytesLeft = file->af_BufferSize;
 }
 }
 else
 {
 Close(handle);
 }
 }

 return(file);
}

/***/

LONG CloseAsync(struct AsyncFile *file)
{
LONG result;

 if (file)
 {
 result = WaitPacket(file);
 if (result >= 0)
 {
 if (!file->af_ReadMode)
 {
 /* this will flush out any pending data in the write buffer */
 result = Write(file->af_File,
 file->af_Buffers[file->af_CurrentBuf],
 file->af_BufferSize - file->af_BytesLeft);
 }
 }

 Close(file->af_File);
 FreeVec(file);
 }
 else
 {
 SetIoErr(ERROR_INVALID_LOCK);
 result = -1;
 }

 return(result);
}

/***/

LONG ReadAsync(struct AsyncFile *file, APTR buffer, LONG numBytes)
{
LONG totalBytes;
LONG bytesArrived;

 totalBytes = 0;

 /* if we need more bytes than there are in the current buffer, enter the
 * read loop
 */

 while (numBytes > file->af_BytesLeft)
 {
 /* drain buffer */
 CopyMem(file->af_Offset,buffer,file->af_BytesLeft);

 numBytes -= file->af_Bytes L
 buffer = (APTR)((ULONG)
 totalBytes += file->af_Bytes L
 file->af_BytesLeft = 0;

 bytesArrived = WaitPacket(file);
 if (bytesArrived <= 0)
 {
 if (bytesArrived == 0)
 return(totalBytes);

 return(-1);
 }

 /* ask that the buffer be filled */
 SendPacket(file,file->af_Buffers[1-fil e

 if (file->af_SeekOffset > bytesArriv e
 file->af_SeekOffset = bytesArriv e

 file->af_Offset = (APTR)((ULONG)
 + file->a f
 file->af_CurrentBuf = 1 - file->af_C u
 file->af_BytesLeft = bytesArrived -
 file->af_SeekOffset = 0;
 }

 CopyMem(file->af_Offset,buffer,numBytes) ;
 file->af_BytesLeft -= numBytes;
 file->af_Offset = (APTR)((ULONG)file- >

 return (totalBytes + numBytes);
}
/** *

LONG ReadCharAsync(struct AsyncFile *file)
{
unsigned char ch;

 if (file->af_BytesLeft)
 {
 /* if there is at least a byte left
 * directly. Also update all counte r
 */

 ch = *(char *)file->af_Offset;
 file->af_BytesLeft--;
 file->af_Offset = (APTR)((ULONG)file- >

 return((LONG)ch);
 }

 /* there were no characters in the curr e
 * routine. This has the effect of send i
 * have the current buffer refilled. Aft e
 * character is extracted for the alter n
 * becomes the "current" buffer
 */

 if (ReadAsync(file,&ch,1) > 0)
 return((LONG)ch);

 /* We couldn't read above, so fail */

 return(-1);
}

/** *

LONG WriteAsync(struct AsyncFile *file, APTR
{
LONG totalBytes;

 totalBytes = 0;

 while (numBytes > file->af_BytesLeft)
 {
 /* this takes care of NIL: */

 Amiga Mail

Am
igaDO

S
Page II - 111

Even Faster Am
igaDO

S I/O

 -= file->af_BytesLeft;
 = (APTR)((ULONG)buffer + file->af_BytesLeft);
 += file->af_BytesLeft;

aitPacket(file);

otalBytes);

buffer be filled */
l e->af_Buffers[1-file->af_CurrentBuf]);

Offset > bytesArrived)
Offset = bytesArrived;

 = (APTR)((ULONG)file->af_Buffers[file->af_CurrentBuf]
 + file->af_SeekOffset);

uf = 1 - file->af_CurrentBuf;
t = bytesArrived - file->af_SeekOffset;

et,buffer,numBytes);

(APTR)((ULONG)file->af_Offset + numBytes);

numBytes);

* ***/

t AsyncFile *file)

t least a byte left in the current buffer, get it
o update all counters

e->af_Offset;

(APTR)((ULONG)file->af_Offset + 1);

r acters in the current buffer, so call the main read
the effect of sending a request to the file system to

buffer refilled. After that request is done, the
acted for the alternate buffer, which at that point
ent" buffer

above, so fail */

* ***/

syncFile *file, APTR buffer, LONG numBytes)

e->af_BytesLeft)

r e of NIL: */

 if (!file->af_Handler)
 {
 file->af_Offset = file->af_Buffers[0];
 file->af_BytesLeft = file->af_BufferSize;
 return(numBytes);
 }

 if (file->af_BytesLeft)
 {
 CopyMem(buffer,file->af_Offset,file->af_BytesLeft);

 numBytes -= file->af_BytesLeft;
 buffer = (APTR)((ULONG)buffer + file->af_Bytes L
 totalBytes += file->af_BytesLeft;
 }

 if (WaitPacket(file) < 0)
 return(-1);

 /* send the current buffer out to disk */
 SendPacket(file,file->af_Buffers[file->af_CurrentBuf]);

 file->af_CurrentBuf = 1 - file->af_CurrentBuf;
 file->af_Offset = file->af_Buffers[file->af_CurrentBu f
 file->af_BytesLeft = file->af_BufferSize;
 }

 CopyMem(buffer,file->af_Offset,numBytes);
 file->af_BytesLeft -= numBytes;
 file->af_Offset = (APTR)((ULONG)file->af_Offset + numByt e

 return (totalBytes + numBytes);
}

/*** *

LONG WriteCharAsync(struct AsyncFile *file, UBYTE ch)
{
 if (file->af_BytesLeft)
 {
 /* if there's any room left in the current buffer, dir e
 * the byte into it, updating counters and stuff.
 */

 *(UBYTE *)file->af_Offset = ch;
 file->af_BytesLeft--;
 file->af_Offset = (APTR)((ULONG)file->af_Offset + 1);

 /* one byte written */
 return(1);
 }

 /* there was no room in the current buffer, so call the ma i
 * routine. This will effectively send the current buffer o
 * wait for the other buffer to come back, and then put th e
 * it.
 */

 return(WriteAsync(file,&ch,1));
}

/*** *

LONG SeekAsync(struct AsyncFile *file, LONG position, BYTE mode)
{
LONG current, target;
LONG minBuf, maxBuf;
LONG bytesArrived;
LONG diff;
LONG filePos;
LONG roundTarget;
D_S(struct FileInfoBlock,fib);

 bytesArrived = WaitPacket(file);

 if (bytesArrived < 0)
 return(-1);

Amiga Mail

e->af_BytesLeft);

er + file->af_BytesLeft);

af_CurrentBuf]);

[file->af_CurrentBuf];

af_Offset + numBytes);

**********************************/

urrent buffer, directly write
ers and stuff.

af_Offset + 1);

er, so call the main write
he current buffer out to disk,
k, and then put the byte into

**********************************/

position, BYTE mode)

 if (file->af_ReadMode)
 {
 /* figure out what the actual file position is */
 filePos = Seek(file->af_File,OFFSET_CURRENT,0);
 if (filePos < 0)
 {
 RecordSyncFailure(file);
 return(-1);
 }

 /* figure out what the caller's file position is */
 current = filePos - (file->af_BytesLeft+bytesArrived);

 /* figure out the absolute offset within the file where we must seek to */
 if (mode == MODE_CURRENT)
 {
 target = current + position;
 }
 else if (mode == MODE_START)
 {
 target = position;
 }
 else /* if (mode == MODE_END) */
 {
 if (!ExamineFH(file->af_File,fib))
 {
 RecordSyncFailure(file);
 return(-1);
 }

 target = fib->fib_Size + position;
 }

 /* figure out what range of the file is currently in our buffers */
 minBuf = current - (LONG)((ULONG)file->af_Offset -
 (ULONG)file->af_Buffers[1 - file->af_CurrentBuf]);
 maxBuf = current + file->af_BytesLeft
 + bytesArrived; /* WARNING: this is one too big */

 diff = target - current;

 if ((target < minBuf) || (target >= maxBuf))
 {
 /* the target seek location isn't currently in our buffers, so
 * move the actual file pointer to the desired location, and then
 * restart the async read thing...
 */

 /* this is to keep our file reading block-aligned on the device.
 * block-aligned reads are generally quite a bit faster, so it is
 * worth the trouble to keep things aligned
 */
 roundTarget = (target / file->af_BlockSize) * file->af_BlockSize;

 if (Seek(file->af_File,roundTarget-filePos,OFFSET_CURRENT) < 0)
 {
 RecordSyncFailure(file);
 return(-1);
 }

 SendPacket(file,file->af_Buffers[0]);

 file->af_SeekOffset = target-roundTarget;
 file->af_BytesLeft = 0;
 file->af_CurrentBuf = 0;
 }
 else if ((target < current) || (diff <= file->af_BytesLeft))
 {
 /* one of the two following things is true:
 *
 * 1. The target seek location is within the current read buffer,
 * but before the current location within the buffer. Move back
 * within the buffer and pretend we never got the pending packet,
 * just to make life easier, and faster, in the read routine.
 *
 * 2. The target seek location is ahead within the current
 * read buffer. Advance to that location. As above, pretend to
 * have never received the pending packet.

Page II - 112
Am

igaDO
S

Even Faster Am
igaDO

S I/O

 */

 RequeuePacket(file);

 file->af_BytesLeft -= diff;
 file->af_Offset = (APTR)((ULONG)file->af_Offset + diff);
 }
 else
 {
 /* at this point, we know the target seek location is within
 * the buffer filled in by the packet that we just received
 * at the start of this function. Throw away all the bytes in the
 * current buffer, send a packet out to get the async thing going
 * again, readjust buffer pointers to the seek location, and return
 * with a grin on your face... :-)
 */

 diff -= file->af_BytesLeft;

 SendPacket(file,file->af_Buffers[1-file->af_CurrentBuf]);

 file->af_Offset
 = (APTR)((ULONG)file->af_Buffers[file->af_CurrentBuf] + diff);
 file->af_CurrentBuf = 1 - file->af_CurrentBuf;
 file->af_BytesLeft = bytesArrived - diff;
 }
 }
 else
 {
 if (Write(file->af_File,
 file->af_Buffers[file->af_CurrentBuf],
 file->af_BufferSize - file->af_BytesLeft) < 0)
 {
 RecordSyncFailure(file);
 return(-1);
 }

 /* this will unfortunately generally result in non block-aligned file
 * access. We could be sneaky and try to resync our file pos at a
 * later time, but we won't bother. Seeking in write-only files is
 * relatively rare (except when writing IFF files with unknown chunk
 * sizes, where the chunk size has to be written after the chunk data)
 */

 current = Seek(file->af_File,position,mode);

 if (current < 0)
 {
 RecordSyncFailure(file);
 return(-1);
 }

 file->af_BytesLeft = file->af_BufferSize;
 file->af_CurrentBuf = 0;
 }

 return(current);
}

ASyncIO.h

#ifndef ASYNCIO_H
#define ASYNCIO_H

/** *

#ifndef EXEC_TYPES_H
#include <exec/types.h>
#endif

#ifndef EXEC_PORTS_H
#include <exec/ports.h>
#endif

#ifndef DOS_DOS_H
#include <dos/dos.h>
#endif

/** *

/* This structure is public only by necessi t
 * you're looking for trouble
 */
struct AsyncFile
{
 BPTR af_File;
 ULONG af_BlockSize;
 struct MsgPort *af_Handler;
 APTR af_Offset;
 LONG af_BytesLeft;
 ULONG af_BufferSize;
 APTR af_Buffers[2];
 struct StandardPacket af_Packet;
 struct MsgPort af_PacketPort;
 ULONG af_CurrentBuf;
 ULONG af_SeekOffset;
 UBYTE af_PacketPending;
 UBYTE af_ReadMode;
};

/** *

#define MODE_READ 0 /* read an existing fi l
#define MODE_WRITE 1 /* create a new file, d
#define MODE_APPEND 2 /* append to end of e x

#define MODE_START -1 /* relative to sta r
#define MODE_CURRENT 0 /* relative to cur r
#define MODE_END 1 /* relative to end

/** *

struct AsyncFile *OpenAsync(const STRPTR fil e
LONG CloseAsync(struct AsyncFile *file);
LONG ReadAsync(struct AsyncFile *file, APTR b
LONG ReadCharAsync(struct AsyncFile *file);
LONG WriteAsync(struct AsyncFile *file, APTR
LONG WriteCharAsync(struct AsyncFile *file, U
LONG SeekAsync(struct AsyncFile *file, LONG p

/** *

#endif /* ASYNCIO_H */

♣♣

 Amiga Mail

Am
igaDO

S
Page II - 113

Even Faster Am
igaDO

S I/O
* ***/

* ***/

l ic only by necessity, don't muck with it yourself, or

 af_BlockSize;
*af_Handler;
 af_Offset;
 af_BytesLeft;
 af_BufferSize;
 af_Buffers[2];

t af_Packet;
 af_PacketPort;
 af_CurrentBuf;
 af_SeekOffset;
 af_PacketPending;
 af_ReadMode;

* ***/

read an existing file */
create a new file, delete existing file if needed */
append to end of existing file, or create new */

/* relative to start of file */
/* relative to current file position */
/* relative to end of file */

* ***/

ync(const STRPTR fileName, UBYTE accessMode, LONG bufferSize);
syncFile *file);
yncFile *file, APTR buffer, LONG numBytes);
t AsyncFile *file);
syncFile *file, APTR buffer, LONG numBytes);
ct AsyncFile *file, UBYTE ch);
yncFile *file, LONG position, BYTE mode);

* ***/

Amiga Mail

