
AmigaDOS Using The AmigaDOS
Pattern Matching Functions

Page II - 37
(Revised 1/92)

Amiga Mail
Volume II

Using the AmigaDOS Pattern
Matching Functions

by Ewout Walraven

One of the additions made to dos.library for release 2.0 is a series of functions to do standard pattern
matching. Using a set of standard string matching tokens, any application can use these functions to
test if a particular string matches a pattern. The Amiga OS uses these functions for processing file
name strings for its new directory scanning functions.

These functions can be used in every circumstance where you would like to enable the user to enter a
pattern to indicate more than one target string. Using these functions not only makes it unnecessary to
implement your own pattern matching routines, but by using the familiar DOS pattern tokens in your
application, it is easier for the user to learn how to use your application.

Patterns

An AmigaDOS pattern matching string is a combination of alphanumeric characters and a series of
special token characters. These token characters are part of the ASCII character set and they denote
such things as string matching wildcards, string repetitions, and string negation. Pattern matching
strings can use parentheses to delimit pattern matching substrings.

? The question mark matches any single character. For example, the pattern matching string
‘‘A?B’’ matches any string that is three letters long, that starts with an ‘‘A’’ and ends
with a ‘‘B’’.

September/October 1991

AmigaDOSUsing The AmigaDOS
Pattern Matching Functions

Page II - 38
(Revised 1/92)

Amiga Mail
Volume II

The number sign matches strings containing zero or more repetitions of the expression that
immediately follows the # in the pattern matching string. For example, the pattern
matching string ‘‘#A’’ matches any string that consists of one or more of the ‘‘A’’
character. The pattern matching string ‘‘#?’’ matches any non-NULL string. The # can
apply to entire substrings delimited by parentheses. For example, the pattern string
‘‘#(AB)’’ matches any string consisting of one or more repetitions of the substring ‘‘AB’’
(AB, ABAB, ABABAB...).

% Matches the NULL string.

| This is the OR symbol. This matches strings that contain the expressions on either side of
the OR sign. The expressions and the OR symbol need to be enclosed in parentheses. For
example, the pattern matching string ‘‘(A| B)’’ matches the string ‘‘A’’ or the string ‘‘B’’.
The pattern matching string A(B| %| C) matches the strings ‘‘AB’’, ‘‘A’’, and ‘‘AC’’.

~ The tilde negates the expression that follows it. All strings that do not match the
expression that follows the tilde will match the expression with the tilde. For example,
the pattern matching string ‘‘~(#?.info)’’ matches any string that does not match the string
‘‘#?.info’’ (does not end with the substring ‘‘.info’’).

* The star is provided as an synonym to "#?". This is an option which can be turned on.
Note that the star can not be used by itself on all non-FileSystem devices, like a logical
device name assigned to a directory on a file system. For example:

Assign A: dh0:tmp
cd a:
list *

will produce an error. The SetStar.c example at the end of this article is a small, stand-
alone utility to turn this option on and off.

[] All characters within brackets indicate a character class. Any character in the character
class qualifies. Within a character class, a character range can be indicated by specifing
the start and stop character, separated with a minus sign. Note that character classes are
case sensitive. If character classes are to be used in a case insensitive form, they should
be translated to uppercase. Here are some example:

[ACF]#?matches strings starting with ‘A’, ‘C’, or ‘F’
[A-D]#?matches strings starting with ‘A’, ‘B’, ‘C’, or ‘D’
[~ACF]#? matches strings not starting with ‘A’, ‘C’, or ‘F’

