Amiga Mail

Volume Il

May/June 1991

Writing a
Boops Image Class

By David N. Junod

Editor’s note: thisarticle and its source code reference several functionsthat, at press time, were only
available from the classface.asm and hookface.asm assembly source files that appear on the Atlanta
and Milan DevCon disks. The functions from these files should eventually appear in amiga.lib.

The most sophisticated level of Intuition programming isto write aboops class. The easiest way to
enter the boopsi classwriter’s arenais to write an image class.

Boopsi’simageclassis one of the standard classes built into Intuition. Asitsnameimplies,itisa
class of Intuition Images. These boopsi images can be used in place of traditional |mage structure (as
they contain an Intuition Image structure), but they are much more powerful. By using boopsi
methods, an application or Intuition can tell an imageclass object to render itself. Becauseit renders
itself (rather than Intuition rendering it), the imageclass abject is free to render whatever it wants
(well, within reason). For example, aboopsi image object can render itself according to the current
display resolution, or to scale itself to any size an application requests.

This articleis designed to provide the novice boopsi programmer with the information needed to write
an image class for their application. This article assumes the reader is aready familar with some
boopsi concepts. For more information on boopsi, see the article ** Introduction to Boops’’ in the
March/April 1991 issue of Amiga Mail or the Atlanta (or Milan) DevCon notes and disks. The
example custom class at the end of this article, mytextlabel class.c, shows how to create a custom
image class that renders atext label with an underline beneath a character. This character can be used
to trigger some event.

When designing a specific class, you must first choose a superclass that is suitable for your needs. If
you are creating a new image class, then its superclass will either be imageclass or some subclass of
imageclass.

Classes may be public or private. Any application can access a public class. Before aclass can be
considered public it must first have a name and must be part of the public class list maintained by

Intuition and Workbench Writing a Boopsi Page IV - 41
Image Class

Amiga Majl

Volume Il

Intuition. It can then be accessed by other applications. A private classisnot in the public class list
and can only be used by applications that have a pointer to the Class structure (usually the application
that implemented the class).

Callback Hooks

When you present a custom image to Intuition, you provide a pointer to a Hook structure that Intuition
uses to find functions needed by various image operations. Without going into great detail, a hook
provides a pointer to a function that the system calls using Amiga register parameter conventions. The
hook supplies enough information to conveniently transfer control to a High-Level Language (HLL)
entry point. Boopsi imageclass objects provide Intuition with a hook to a method dispatcher function.

The Hook structure is defined as follows (from < utility/hooks.h>):

/* new standard hook structure */
struct Hook

{
struct M nNode h_M nNode;
ULONG (*h_Entry)(); /* stub function entry point */
ULONG (*h_SubEntry)();/* the customfunction entry point */
VA D *h_Dat a; /* owner specific */

}

The assembly language stub for C parameter conventions that boopsi classes (and custom gadgets)
requireis.

_hookEntry:
nove.|l al,-(sp) ; push nessage packet pointer
nmove.|l a2,-(sp) ; push object pointer
nove. |l a0, -(sp) ; push hook poi nter
nove.|l h_SubEntry(a0), a0 ; fetch Centry point ...
jsr a0) ; ... and call it
| ea 12(sp), sp ; fix stack

rts

The C language stub, for C compilers that support registerized parametersis:

/* This function converts regi ster-paranmeter hook calling
* convention into standard C conventions. It requires a C
* conpiler that supports registerized paranmeters, such as
* SAS/C 5.xx or greater.
*
/
ULONG __asm hookEnt ry(
regi ster _a0 struct Hook *h,
register _a2 VO D *o,
register __al VO D *nsg)

{
return ((*h->h_SubEntry)(h, o, nsQ));
}
Page IV - 42 Writing a Boopsi Intuition and Workbench

Image Class

Amiga Mail

Volume Il

Initializing a Boopsi Class

Y ou heed some simple code to initialize a class and its hook. When initializing a class, you specify
the size of the class s instance and what the superclassis, and you also have to supply apointer to a
hook entry stub.

The following code fragment illustrates the initialization of a private subclass of imageclass.

ULONG __saveds di spat chnyText Label ();

/* This is the data that each instance of our class will need. */
struct | ocal Obj Dat a

/* Font to use */
struct TextFont *|od_Font;

/* The key that is underlined */
UWORD | od_Key;

/* Drawvbde */
UBYTE | od_Mbde;

}

#def i ne MYCLASSI D NULL

#def i ne SUPERCLASSI D (1 MAGECLASS)

#define LS| ZE (sizeof (struct |ocal ObjData))

Cl ass *initnyTextLabel d ass (VA D)
{
extern ULONG __saveds di spat chnyText Label ();
extern ULONG hookEntry (); /* defined in hookface.asm */
C ass *cl;
if (cl = Maked ass (MYCLASSI D, SUPERCLASSI D, NULL, LSIZE, 0))

/* Fill in the callback hook */
cl->cl _Di spatcher.h_Entry = hookEntry;
cl ->cl _Di spatcher. h_SubEntry = di spat chnyText Label ;

/* Return a pointer to the class */
return (cl);

}
In order to make the class public instead of private, do the following:

#def i ne MYCLASSI D hyt ext | abel cl ass”
ULONG __saveds di spat chnyText Label ();

Cl ass *initnyTextLabel dass (VA D)

{

extern ULONG __saveds di spat chnyText Label ();
extern ULONG hookEntry ();
C ass *cl;

if (cl = Maked ass (MYCLASSI D, SUPERCLASSID, NULL, LSIZE, 0))
{

/* Fill in the callback hook */
cl ->cl _Di spatcher. h_Entry = hookEntry;
cl ->cl _Di spatcher. h_SubEntry = di spat chnyText Label ;

/* Make the class public */
Addd ass (cl);
}

/* Return a pointer to the class */
return (cl);

Intuition and Workbench Writing a Boopsi Page IV - 43
Image Class

Amiga Majl

Volume Il

Boopsi Dispatcher

Now all you need to do isimplement a dispatcher routine. When the dispatcher isin operation,
Intuition passes method IDsto it. The dispatcher will either execute code corresponding to the a
method ID (the code is usually part of the dispatcher) or delegate processing the method to the
superclass (or it can do alittle of both).

The following fragment provides an example of what a dispatcher for aboopsi class looks like (Note
that saveds (Save DS) is used to insure that register A4 is set up properly for indirect addressing
with the SASC compiler):

ULONG __saveds di spatchnyText Label (C ass *cl, Object *o, Msg nsg)

{
struct |ocal ObjData *I od;
bj ect *newobj ;
ULONG retval ;
swi tch (nsg->Met hodl D)
/* Create a new object */
case OMNEW
/* Have our superclass create it. DSM) passes on the nessage
* to the superclass, where nsg is the structure containing the
* message specific paraneters.
*
if (newobj = (Object *) DSM (cl, o, nsgQ))
/* Set the attributes */
set myText Label Attrs(cl, newobj, (struct opSet *) msg);
retval = (ULONG newobj ;
br eak;
/* Cotain information on an attribute */
case OMGET:
retval = getnyTextlLabel Attrs (cl, o, (struct opGet *) nsgQ);
br eak;
/* Set attributes */
case OM UPDATE:
case OM SET:
/* Let the superclass set the attributes that it
* knows about. */
retval = DSM (cl, o, msg);
/* Set the attributes that we care about */
retval |= setnyTextlLabel Attrs (cl, o, (struct opSet *) nsgQ);
br eak;
/* Draw the various states that the i mage supports */
case | M DRAW
case | M DRAWRAME:
retval = drawnyTextLabel (cl, o, (struct inpDraw *) nsgQ);
break;
/* Let the superclass handl e everything el se */
defaul t:
retval = (ULONG DSM (cl, o, nsQ);
break;
}
return (retval);
Page IV - 44 Writing a Boopsi Intuition and Workbench

Image Class

Amiga Mail

Volume Il

Boops Rootclass M ethods

Since al classes should be subclasses of some class, with the exception of rootclass, al classes you
write will be subclasses--perhaps indirectly so--of rootclass. Because of this, your class must either
implement the rootclass methods or defer processing of these methods to the superclass (as
DispatchmyTextLabel() did). Provided below are brief descriptions of the rootclass methods.
Remember that any message unrecognized by a class dispatcher should be passed to the superclass
(using the amiga.lib functions DSM() or DoSuperMethod()).

The rootclass method I Ds that a subclass of imageclass needs to understand are:

OM_NEW Create anew object.

OM DI SPOSE Delete an object.

OM SET Change an object’ s attributes.

OM GET Retrieve the value of one of the object’ s attributes.

The dispatcher should pass other rootclass methods on to the superclass.

Each method requires one or more parameters. The MethodID is the only common parameter for each
method.

OM NEW

The OM NEWmethod receives the following arguments:

struct opSet
ULONG Met hodl D;
struct Tagltem *ops_AttrlList;

struct GadgetlInfo *ops_d nfo;
}

The ops_AttrList field contains a pointer to the Tagltem array of attributes for the new object. The
ops_GlInfo field isaways NULL for the OM NEWmethod.

Unlike other methods, this method is not passed an object pointer (since the whole ideais to create an
object). The pointer normally used to pass a boopsi object isinstead used to pass the address of the
object’s‘‘true class’ (the classthe object is an instance of). That way, all class dispatchers can tell if
they arethe *‘true class’ of the object being created (as opposed to a superclass of the true class).
Also, with this pointer, rootclass can determine what the instance data.is for an object, and can
allocate the right amount of memory for it.

Intuition and Workbench Writing a Boopsi Page IV - 45
Image Class

Amiga Majl

Volume Il

For the OM NEWmethod, the new class's dispatcher should do the following:

1) Pass the message along to the superclass. All classes do this as rootclass takes care of allocating
memory for the new object. Asthe OM NEWmethod works *‘top down’’ (from rootclass down
through its subclasses to the true class), each class will in turn initialize its corresponding instance
data. Thisall happens before the new class' s dispatcher regains control. Eventually, the message
comes back from the superclass with a newly allocated abject (unless of course something failed and
you receive aNULL pointer instead).

2) Obtain a pointer to the object’ sinstance datafor this class. Usethe INST_DATA() macro (defined
in <intuition/classes.h>). INST_DATA() takes two arguments, a pointer to your class and a pointer
to the object.

voi d *I NST_DATA(*d ass, *oject);

3) Initialize your instance data. Y ou may allocate additional memory buffers for your object, or even
create other objects which are components to objects of your class.

4) Process your initial attribute list (from the opSet structure passed in the OM NEWmessage). In
particular, process all the attributes that can be set only at initialization time. After you deal with the
“initialization only’" attributes, apply the same attribute processing on these remaining attributes that
you would apply to an OM SET message.

5) Return the object to the caller.

OM DI SPOSE

The OM DI SPOSE method instructs the class to deallocate an object. This method receives no
parameters.

For the OM DI SPOSE method, the new class's dispatcher should do the following:
1) Free any additional memory you allocated (memory alocated in step 3 from OM NEW.

2) Dispose of any objects that you created as components of your object (component objects created in
step 3 from OM_NEW.

3) Pass the message up to the superclass, which will eventually reach rootclass, which will free the
memory allocated for the object.

Page IV - 46 Writing a Boopsi Intuition and Workbench
Image Class

Amiga Mail

Volume Il

The mytextlabel class example at the end of this article does not alocate any extra resources when it
creates an object. Because it does not have to release any resources, the mytextlabel class dispatcher
letsits superclass handle the OM DI SPOSE method. Eventually, some superclass of mytextlabelclass
will deallocate all of the memory for the OV DI SPOSEd object.

OM SET

This method is used to set an object’ s attributes. The Intuition function SetAttr() callsthis method. It
receives the following arguments:

struct opSet
ULONG Met hodl D;

struct Tagltem *ops_AttrlList;
struct Gadgetlnfo *ops_Qd nfo;

}

For the OM SET method, the new class's dispatcher should process the attributes your class recognizes
and have the superclass process any unrecognized attributes. Note that a subclass dispatcher can
directly process attributes it inherits from a superclass, rather than passing the message on to the
superclass.

Note that mytextlabel class treats the OM UPDATE method exactly like the OM SET method. Thisis OK
because these two methods are functionally equivalent for imageclass classes.

OM GET

Retrieve an object’ s attribute. This method receives the following parameters:

struct opCet
ULONG Met hodl D
ULONG opg_Attrl D;
ULONG *opg_St or age;
}

If the new class recognizes the attribute, the new class should fill in opg_Storage’ s target with the
attribute’ svalue. If the attribute is actually the attribute of some component object, you might want to
pass the message on and et the component object process the OM GET. If completely unrecognized,
you should pass the message to your superclass.

Intuition and Workbench Writing a Boopsi Page IV - 47
Image Class

Amiga Majl

Volume Il

I mageclass M ethods

I mageclass defines several methods of its own which subclasses of imageclass either have to
implement or pass on to their superclass. The method IDs for imageclass are defined in
<intuition/imageclass.h>. Each method requires some parameters. The MethodID isthe only
parameter common to each method.

| M DRAW

The | M DRAWMethod is used to tell theimage to render itself. The Intuition function
DrawlmageState() uses this method. | M DRAWreceives the following parameters:

struct inpDraw
{

ULONG Met hodl D;
struct RastPort *inp_RPort;
struct

WORD X;
WORD Y;
}inp_ O fset;

ULONG i np_St at e;
struct Drawi nfo *inmp_Drlnfo;

}

The imp_State field contains the visual state to render theimage. The visual states (defined in
<intuition/imageclass.h>) are:

| DS_NORMAL idle state

| DS_SELECTED for selected gadgets.

| DS_DI SABLED for disabled gadgets.

| DS_BUSY for future functionality
| DS_| NDETERM NATE for future functionality

| DS_| NACTI VENORNAL normal, in inactive window border.
| DS_| NACTI VESELECTED selected, in inactive border.
| DS_| NACTI VEDI SABLED disabled, in inactive border.

When setting the pens to render an image, use the values from the imp_DrInfo->dri_Pens pen array
(Notethat it is possible that imp_DrInfo will be NULL). The possible pen values are defined in
<intuition/screens.h>.

The following code fragment shows how to use the shadow color for rendering.

UMORD *pens = (inp->imp_Drinfo) ? inp->inp_Drinfo->dri_Pens : NULL;
if (pens)
Set APen (i np->i np_RPort, pens[SHADOAPEN]) ;

Page IV - 48 Writing a Boopsi Intuition and Workbench
Image Class

Amiga Mail

Volume Il

| M ERASE

The | M ERASE method tells an image to erase itself. The Intuition function Eraselmage() usesthis
method. | M ERASE receives the following parameters:

struct inpErase
ULONG Met hodl D;

struct RastPort *inp_RPort;
struct

WORD X;
WORD Y;
}inp_ O fset;
}
The mytextlabel class example doesn’'t know anything about this method, so it blindly passesthis
message on to the superclass. The superclass, imageclass, will call the graphics.library function

EraseRect() using the dimensions found in the imageclass object’ s Image structure.

| MH TTEST

I M HI TTEST returns true if a point iswithin theimage. The Intuition function Pointlnlmage() uses
thismethod. | M HI TTEST requires the following parameters:

struct inpHitTest
{

ULONG Met hodl D
struct

WORD X;
WORD Y;
}i np_Poi nt;
}
The mytextlabel class example blindly passes this method on to its superclass. The superclass,

imageclass, will return TRUE if the point is within the old Image structure box.

| M_DRAWFRAME

The | M_ DRAWFRANME method instructs the image to render itself within the confines of the given
rectangle. It receives the following parameters:

struct inmpDraw

ULONG Met hodl D;
struct RastPort *inp_RPort;
struct

WORD X;
WORD Y;
}inp O fset;

ULONG i np_St at e;
struct Drawi nfo *inp_Drlnfo;

struct
WORD W dt h;

WORD Hei ght ;
}i np_Di nensi ons;

Intuition and Workbench Writing a Boopsi Page IV - 49
Image Class

Amiga Majl

Volume Il

The Width and Height fields provide the object’ s rectangular bounds. How the image object deals
with the frame is implementation specific. Typically, a scaleable image will scaleitself asbest it can
to fit into the rectangle. The mytextlabelclass.c example does not actually implement this method,
instead mytextlabel class treats | M_ DRAWFRAME like the | M_DRAWMethod.

In general, applications that use this method to draw an object should use the | M_ ERASEFRANME
method (see below) to eraseit. Thiswill ensure that the image was erased at the proper scale.

| M_ERASEFRAME

The | M ERASEFRAME method instructs an image confined to a given rectangle to erase itself.
Normally this method is used to erase an image drawn using the | M_DRAWFRAVE method. This
method expects the following parameters:

struct inpErase
ULONG Met hodl D
struct RastPort *inp_RPort;
struct
WORD X;
WORD Y;
}inp_OF fset;

/* these paraneters only valid for | MERASEFRAME */
struct

WORD W dt h;
WORD Hei ght ;
}i mp_Di nensi ons;

}

The mytextlabel class example blindly passes this method on to its superclass. The superclass treats
| M ERASEFRAME just like | M ERASE.

I M H TFRAME

The ! M H TFRAME method is used to determine if a point is within an image that is contained within
(or scaled to) the given rectangle. This method isintended to test images that were rendered using
| M DRAWFRAME. This method receives the following parameters:

struct inpHitTest

ULONG Met hodl D
struct

WORD X;
WORD Y;
}inp_Point;

struct
WORD W dt h;

WORD Hei ght ;
}i mp_Di nensi ons;

Page IV - 50 Writing a Boopsi Intuition and Workbench
Image Class

Amiga Mail

Volume Il

The mytextlabel class example blindly passes this method on to its superclass. The superclass treat this
meothd just likethe | M HI TTEST method.

| M MOVE

The | M_MOVE method erases and redraws an image. It isintended for use in some subclass of
imageclass that performs animation or smooth dragging. Currently, no public boopsi classes
implement this method.

| M_FRAMEBOX

The | M FRAMEBOX method returns size information for an image (usually some sort of frame image).
The following parameters are associated with the | M_FRAMEBOX method.

struct i npFraneBox
ULONG Met hodl D
struct IBox *inp_ContentsBox; /* Application supplied IBox for the result */
struct | Box *inp_FranmeBox; /* Rectangle to frane */
struct Drawi nfo *inmp_Drlnfo;
ULONG i np_Fr aneFl ags;
}

This method is used to ask the image what size it would like to be, if it had to frame the rectangle in
theimp_FrameBox field. This method normally applies only to image classes that put a frame around
some object (like frameiclass). By passing the dimensions and position of arectangle, the framing
image determines the position and size it should be to properly ‘‘frame’’ the object bounded by the
imp_FrameBox rectangle. | M FRAMEBOX stores the result in the IBox structure pointed to by
imp_ContentsBox. This method alows an application to use a framing image without having to
worry about image specific details such as accounting for the thickness of the frame or centering the
frame around the object.

Theimp_FrameFlagsfield isabit field used to specify certain options for the | M_FRAMEBOX method.
Currently, thereis only one defined for it, FRAMEF_SPECI FY. If thishbit isset, | M FRAMEBOX hasto
use the width and height supplied to it in the imp_FrameBox field (even if these are too small!) asthe
frame dimensions. It can only adjust its position, typically to center the object as best as possible.

This method is not supported by the mytextlabelclass example. It passes this message to its superclass
which does not support this method either. When the message returns from the superclass, the return
value will be zero, indicating to the application that this method is not supported.

Intuition and Workbench Writing a Boopsi Page IV - 51
Image Class

Amiga Majl

Volume Il

Image Class Example

The image class example code, mytextlabelclass.c, illustrates a complete custom image class. This
image class provides an application with textual labels that have a particular character underlined.
Thisis useful for indicating which key controls a gadget (although the example provided only utilizes
imageclass objects; there are no gadgets involved).

A custom image can be used in the place of any standard Intuition Image structure. For example, an
application can attach an imageclass object to: the GadgetRender and SelectRender fields of a Gadget
structure (defined in <intuition/intuition.h>), the Regimage field of a Requester structure, or even the
ItemFill field of the Menultem structure.

Under Intuition V36, the Drawlmage() function passed an invalid DrawlInfo structure, therefore it
wasn't possible to use a custom imageclass object and the Drawlmage() together. With V37, aNULL
DrawlInfo is passed when no valid Drawlnfo is available.

The example code (usemyl C.c) initializes and uses a custom imageclass object. Notice that usemylC.c
directly manipulates fields within the Image structure embedded within the boops imageclass object.
Thisislegal for image classes whose immediate superclass isimageclass (for the LeftEdge, TopEdge,
Width, Height, ImageData, PlanePick, and PlaneOnOff Image structure fields only; the other Image
structure fields are off limits). Indirect subclasses of imageclass may not alter the valuesin the
embedded Image structure as future direct subclasses of imageclass may need to know about changes
to valuesin the Image structure.

Page IV - 52 Writing a Boopsi Intuition and Workbench
Image Class

