
pareIO.c - Execute me to compile me with Lattice 5.10b
- cfistq -v -y -j73 CompareIO.c
ROM LIB:c.o,CompareIO.o TO CompareIO LIBRARY
l ib,LIB:Amiga.lib,lib:debug.lib
/

areIO.c uses packet level I/O to copy the standard input channel to the */
dard output channel (as set up by the standard startup code, c.o). */
areIO uses both synchronous and asynchronous I/O to perform the copy */
r eports the time it takes to do each. */

e <exec/types.h>
e <dos/dosextens.h>
e <devices/timer.h>

e <clib/dos_protos.h>
e <clib/timer_protos.h>
e <clib/exec_protos.h>
e <clib/alib_protos.h>
e <clib/alib_stdio_protos.h>

LATTICE
RK(void) { return(0); } /* Disable Lattice CTRL/C handling */
kabort(void) { return; }

BUFSIZE 8192

vers = "\0$VER: CompareIO 37.14 Nov-12-92";

syncLoop(void);
yncLoop(void);

struct Library *DOSBase;
Library *TimerBase;

MsgPort *myport;

FileHandle *in, *out;
sults, in_start, out_start;

DosPacket *sp_read, *sp_write;

uffer[BUFSIZE*2];

t imeval time_start, time_finish;
t imerequest timer_io;

f printfargs[2]; /* An array of pointers */

i n(void)

OSBase->lib_Version >= 37)

(results = Open("*", MODE_NEWFILE)) /* This is for printing the results. */
 /* Since the example is already using the */
 /* standard I/O channels for its own */
 /* purposes, there needs to be a separate */
 /* channel to output the results. */

f (!OpenDevice(TIMERNAME, UNIT_MICROHZ, &timer_io, 0L))

TimerBase = (struct Library *)timer_io.tr_node.io_Device;

if (myport = CreateMsgPort())
{
 in_start = Input(); /* Need to hold on to input and output so no one can */
 out_start = Output(); /* change them while this example is using them. */
 if (in = (struct FileHandle *)BADDR(in_start))
 {
 if (out = (struct FileHandle *)BADDR(out_start))
 {
 if (sp_read = AllocDosObject(DOS_STDPKT, NULL))
 {
 if (sp_write = AllocDosObject(DOS_STDPKT, NULL))
 {
 /* When AllocDosObject() allocates a StandardPacket, it takes */

 /* care of linking together the Message and DosPacket.
 /* AllocDosObject() points the DosPacket's dp_Link field a
 /* the StandardPacket's Message structure. It also point
 /* the Message's mn_Node.ln_Name field at the DosPacket:
 /* sp_read->dp_Link = sp_Msg;
 /* sp_Msg->mn_Node.ln_Name = (STRPTR)sp_r

 sp_read->dp_Type = ACTION_READ; /* Fill out ACTION_READ pack
 sp_read->dp_Arg1 = in->fh_Arg1;

 sp_write->dp_Type = ACTION_WRITE; /* Fill out ACTION_WRITE pac
 sp_write->dp_Arg1 = out->fh_Arg1;

 VFPrintf(results, "\n Method Seconds Micros\n", NUL
 VFPrintf(results, " ------------ ------- ------\n", NUL

 GetSysTime(&time_start);
 if (AsyncLoop())
 {
 GetSysTime(&time_finish);
 SubTime(&time_finish, &time_start);
 vfprintfargs[0] = time_finish.tv_secs;
 vfprintfargs[1] = time_finish.tv_micro;
 VFPrintf(results,
 " Asynchronous: %3ld %7ld\n", &vfprintfargs[

 GetSysTime(&time_start);
 if (SyncLoop())
 {
 GetSysTime(&time_finish);
 SubTime(&time_finish, &time_start);
 vfprintfargs[0] = time_finish.tv_secs;
 vfprintfargs[1] = time_finish.tv_micro;
 VFPrintf(results,
 " Synchronous: %3ld %7ld\n", &vfprintfarg
 }
 else
 VFPrintf(results, " ******* Stop ******\n", NULL
 }
 else
 VFPrintf(results, " ******* Stop ******\n", NULL);

 FreeDosObject(DOS_STDPKT, sp_write);
 }
 FreeDosObject(DOS_STDPKT, sp_read);
 }
 }
 }
 DeleteMsgPort(myport);
 }
 CloseLibrary(TimerBase);
 }
 Close(results);
 }
 }
}

ULONG AsyncLoop()
{
struct StandardPacket *mysp;
UBYTE *buf;

LONG amount_read;

BOOL sp_read_busy = TRUE, /* Is the ACTION_READ packet bu
 sp_write_busy = FALSE, /* Is the ACTION_WRITE packet b u
 done = FALSE; /* Is the program finished?
ULONG ok = TRUE;

 if (!((out->fh_Arg1) && (in->fh_Arg1))) /* Don't bother if in or out uses N
 return(FALSE);
 sp_read->dp_Arg2 = (LONG)buffer; /* The buffer to fill in. */
 sp_read->dp_Arg3 = BUFSIZE; /* The size of the Arg2 buffer. */

 SendPkt(sp_read, in->fh_Type, myport); /* Send initial read request. */

Page II - 104
Am

igaD
O

S
Packet Level I/O

 under R
elease 2

 sp_write->dp_Type = ACTION_WRITE; /* Fill out the ACTION_WRITE packet. */
 sp_write->dp_Arg1 = out->fh_Arg1;
 sp_write->dp_Arg2 = (LONG)&buffer[BUFSIZE]; /* Arg2 points to the buffer to write */
 sp_write->dp_Arg3 = 0L; /* out. At first glance, it might */
 sp_write->dp_Res1 = 0L; /* seem odd to bother setting Arg2 */
 /* when the program hasn't read anything yet. */
 /* This is to set up for the main loop. The */
 /* main loop swaps the ACTION_READ buffer with */
 /* the ACTION_WRITE buffer when it receives */
 /* a completed read. Likewise, dp_Arg3 and */
 /* dp_Res1 are set to make the ACTION_READ */
 /* look like it has a valid return value so */
 /* main loop won't fail the first time through */
 /* the loop. */

 /* main() has already taken care of sending the initial read to the */
 /* handler. Because we need the data from that read before we can */
 while (!done) /* do anything, the first thing to do is wait for its return. */
 {
 do /* Wait for the ACTION_READ to return. */
 {
 WaitPort(myport);
 while (mysp = (struct StandardPacket *)GetMsg(myport)) /* ...empty the port. */
 {
 /* If this message is the ACTION_READ packet, mark it as */
 /* no longer busy so we can use it to start another read. */
 if (mysp->sp_Pkt.dp_Type == ACTION_READ) sp_read_busy = FALSE;

 /* If this message is instead the ACTION_WRITE packet, */
 /* mark it as not busy. We need to check for this because */
 /* the WRITE_PACKET from the previous interation through */
 /* the loop might have come back before the ACTION_WRITE */
 /* from the previous interation. */
 else
 if (mysp->sp_Pkt.dp_Type == ACTION_WRITE) sp_write_busy = FALSE;
 }
 } while (sp_read_busy); /* End of "wait for ACTION_READ" loop. */

 /* Get ready to send the next ACTION_READ. */
 buf = (UBYTE *)(sp_read->dp_Arg2); /* Hold on to the important stuff from the */
 amount_read = sp_read->dp_Res1; /* ACTION_READ we just got back so we can */
 /* reuse the packet to start a new read */
 /* while processing the last read's data. */

 while (sp_write_busy) /* Because this example only uses two buffers and */
 { /* the ACTION_WRITE might be using one of them, */
 /* this example has to wait for an outstanding */
 /* ACTION_WRITE to return before reusing the */
 /* ACTION_WRITE packet's buffer. */
 WaitPort(myport);
 while (mysp = (struct StandardPacket *)GetMsg(myport))
 if (mysp->sp_Pkt.dp_Type == ACTION_WRITE) sp_write_busy = FALSE;
 }

 if (SetSignal(0L, SIGBREAKF_CTRL_C) & SIGBREAKF_CTRL_C)
 {
 done = TRUE;
 ok = FALSE;
 }
 else
 {
 /* This tests the return values from the ACTION_READ and ACTION_WRITE */
 /* packets. The ACTION_READ packet returns the number of bytes it */
 /* read in dp_Res1, which was copied earlier into amount_read. If it */
 /* is 0, the read packet found the EOF. If it is negative, there was */
 /* an error. In the case of ACTION_WRITE, an error occurs if the */
 /* number of bytes that ACTION_WRITE was supposed to write (Arg3) */
 /* does not match the actual number it wrote, which ACTION_WRITE re- */
 /* turns in Res1. This test is the reason dp_Res1 and dp_Arg3 were */
 /* set to zero when the ACTION_WRITE packet was set up in main(). */
 if ((amount_read > 0) && (sp_write->dp_Res1 == sp_write->dp_Arg3))
 {
 sp_read->dp_Arg2 = sp_write->dp_Arg2; /* ACTION_WRITE is finished with its */
 /* buffer, use it in the next read. */

 SendPkt(sp_read, in->fh_Type, myport); /* Send the next ACTION_READ and mark */
 sp_read_busy = TRUE; /* the ACTION_READ as busy. */

 /* Process Buffer. This example doe s
 /* last ACTION_READ, it just passes i

 sp_write->dp_Arg2 = (LONG)buf;
 sp_write->dp_Arg3 = amount_read;
 SendPkt(sp_write, out->fh_Type, mypo r
 sp_write_busy = TRUE;
 }
 else /* A p
 {
 done = TRUE;
 if ((amount_read < 0) || (sp_write-> d
 }
 }
 }
 return(ok);
}

ULONG SyncLoop()
{
BOOL done = FALSE;
ULONG ok = TRUE;
BPTR lock;

 if (!((out->fh_Arg1) && (in->fh_Arg1)))
 return(FALSE);

 sp_read->dp_Arg2 = (LONG)buffer;
 sp_read->dp_Arg3 = BUFSIZE*2;
 sp_write->dp_Arg2 = (LONG)buffer;

 if (lock = DupLockFromFH(in_start))
 {
 UnLock(lock); / *
 Seek(in_start, 0, OFFSET_BEGINNING); / *
 } / *

 while (!done)
 {
 if (SetSignal(0L, SIGBREAKF_CTRL_C) & SI G
 {
 done = TRUE;
 ok = FALSE;
 }
 else
 {
 SendPkt(sp_read, in->fh_Type, myport);
 WaitPort(myport);
 while (GetMsg(myport));

 if (sp_read->dp_Res1 > 0)
 {
 sp_write->dp_Arg3 = sp_read->dp_Res1
 SendPkt(sp_write, out->fh_Type, mypo r
 WaitPort(myport);
 while (GetMsg(myport));
 if (sp_write->dp_Res1 != sp_write->d p
 {
 done = TRUE;
 ok = FALSE;
 }
 }
 else
 {
 done = TRUE;
 if (sp_read->dp_Res1 < 0) ok = FALSE
 }
 }
 }
 return(ok);
}

;/* InOutCTRL-C.c - Execute me to compile me
LC -b0 -cfistq -v -y -j73 InOutCTRL-C.c
Blink FROM LIB:c.o,InOutCTRL-C.o TO InOutCTR L
LIB:LC.lib,LIB:Amiga.lib,lib:debug.lib

 Amiga Mail

Am
igaD

O
S

Page II - 105
Packet Level I/O

 under R
elease 2

. This example doesn't do anything with the data from the */
AD, it just passes it on to the STDOUT handler. */

= (LONG)buf; /* Set up the ACTION_WRITE packet. */
= amount_read;
out->fh_Type, myport); /* Send the next ACTION_WRITE and */

RUE; /* mark the ACTION_WRITE as busy. */

 /* A packet returned with a failure, so quit. */

< 0) || (sp_write->dp_Res1 != sp_write->dp_Arg3)) ok = FALSE;

(in->fh_Arg1))) /* Don't bother if in or out uses NIL: */

NG)buffer;

H(in_start))

 /* Make sure this is a filesystem and not */
SET_BEGINNING); /* a console. If this is a filesystem, */

 /* go to the beginning of the file. */

BREAKF_CTRL_C) & SIGBREAKF_CTRL_C)

- >fh_Type, myport);

= sp_read->dp_Res1;
out->fh_Type, myport);

Res1 != sp_write->dp_Arg3)

es1 < 0) ok = FALSE;

t e me to compile me with Lattice 5.10b
I nOutCTRL-C.c
TRL-C.o TO InOutCTRL-C LIBRARY
l ib:debug.lib

quit ;*/

/* InOutCTRL-C.c uses packets to copy the standard input chann e
/* standard output channel using asynchronous I/O. This examp l
/* job checking for a user break than the accompanying example ,

#include <exec/types.h>
#include <dos/dosextens.h>

#include <clib/dos_protos.h>
#include <clib/exec_protos.h>
#include <clib/alib_protos.h>
#include <clib/alib_stdio_protos.h>

#ifdef LATTICE
int CXBRK(void) { return(0); } /* Disable L a
void chkabort(void) { return; }
#endif

#define BUFSIZE 8192

UBYTE *vers = "\0$VER: InOutCTRL-C 37.9 Nov-12-92";

void MainLoop(void);

extern struct Library *DOSBase;

struct MsgPort *myport;
ULONG portsignal, signals, sigmask;

struct FileHandle *in, *out;
struct DosPacket *sp_read, *sp_write;

UBYTE buf1[BUFSIZE], buf2[BUFSIZE];

void main(void)
{
 if (DOSBase->lib_Version >= 37)
 {
 if (myport = CreateMsgPort())
 {
 if (in = (struct FileHandle *)BADDR(Input())) /* N
 { /* g
 if (out = (struct FileHandle *)BADDR(Output()))
 {
 if (sp_read = AllocDosObject(DOS_STDPKT, NULL)) / *
 { / *
 if (sp_write = AllocDosObject(DOS_STDPKT, NULL)) / *
 { / *

 sp_read->dp_Type = ACTION_READ; /* Fill out t h
 sp_read->dp_Arg1 = in->fh_Arg1;
 sp_read->dp_Arg2 = (LONG)buf1; /* The buffer
 sp_read->dp_Arg3 = BUFSIZE; /* The size o f

 /* When AllocDosObject() allocates a St a
 /* care of linking together the Message
 /* AllocDosObject() points the DosPacke t
 /* the StandardPacket's Message structu r
 /* the Message's mn_Node.ln_Name field a t
 /* sp_read->dp_Link = s p
 /* sp_Msg->mn_Node.ln_N a

 if (!((out->fh_Arg1) && (in->fh_Arg1))) /* D o
 return; /*

 SendPkt(sp_read, in->fh_Type, myport); /* Send

 portsignal = 1L<<myport->mp_SigBit; /* R
 sigmask = SIGBREAKF_CTRL_C | portsignal; /*

 sp_write->dp_Type = ACTION_WRITE; /* Fill out th e
 sp_write->dp_Arg1 = out->fh_Arg1;
 sp_write->dp_Arg2 = (LONG)buf2; /* Arg2 points t
 sp_write->dp_Arg3 = 0L; /* out. At firs t
 sp_write->dp_Res1 = 0L; /* seem odd to b

Amiga Mail

andard input channel to the */
us I/O. This example does a better */

companying example, CompareIO.c. */

 /* Disable Lattice CTRL/C handling */

 /* 2.0 only */

nput())) /* Need file handle to */
 /* get to Handler process */

R(Output()))

TDPKT, NULL)) /* Allocate two */
 /* StandardPackets: one */

OS_STDPKT, NULL)) /* for reading, and one */
 /* for writing. */

D; /* Fill out the ACTION_READ packet. */

 /* The buffer to fill in. */
 /* The size of the Arg2 buffer. */

t() allocates a StandardPacket, it takes */
gether the Message and DosPacket. */

points the DosPacket's dp_Link field at */
's Message structure. It also points */

Node.ln_Name field at the DosPacket: */
p_read->dp_Link = sp_Msg; */
p_Msg->mn_Node.ln_Name = (STRPTR)sp_read; */

h_Arg1))) /* Don't bother if in or */
 /* out uses NIL: */

myport); /* Send initial read request. */

gBit; /* Record the signal bits */
| portsignal; /* for later use. */

TE; /* Fill out the ACTION_WRITE packet. */

; /* Arg2 points to the buffer to write */
 /* out. At first glance, it might */
 /* seem odd to bother setting Arg2 */

 /* when the program hasn't read anything yet. */
 /* This is to set up for the main loop. The */
 /* main loop swaps the ACTION_READ buffer with */
 /* the ACTION_WRITE buffer when it receives */
 /* a completed read. Likewise, dp_Arg3 and */
 /* dp_Res1 are set to make the ACTION_READ */
 /* look like it has a valid return value so */
 /* main loop won't fail the first time through */
 /* the loop. */
 MainLoop();
 FreeDosObject(DOS_STDPKT, sp_write);
 }
 FreeDosObject(DOS_STDPKT, sp_read);
 }
 }
 }
 DeleteMsgPort(myport);
 }
 }
}

void MainLoop()
{
struct StandardPacket *mysp;
UBYTE *buf;

LONG amount_read;

BOOL sp_read_busy = TRUE, /* Is the ACTION_READ packet busy? */
 sp_write_busy = FALSE, /* Is the ACTION_WRITE packet busy? */
 done = FALSE; /* Is the program finished? */

 /* main() has already taken care of sending the initial read to the */
 /* handler. Because we need the data from that read before we can */
 while (!done) /* do anything, the first thing to do is wait for its return. */
 {
 do /* Wait for the ACTION_READ to return. */
 {
 signals = Wait(sigmask); /* Wait for port signal or CTRL-C. */

 if (signals & portsignal) /* If a message arrived at the port, ... */
 {
 while (mysp = (struct StandardPacket *)GetMsg(myport)) /* ...empty the port. */
 {
 /* If this message is the ACTION_READ packet, mark it as */
 /* no longer busy so we can use it to start another read. */
 if (mysp->sp_Pkt.dp_Type == ACTION_READ) sp_read_busy = FALSE;

 /* If this message is instead the ACTION_WRITE packet, */
 /* mark it as not busy. We need to check for this because */
 /* the WRITE_PACKET from the previous interation through */
 /* the loop might have come back before the ACTION_WRITE */
 /* from the previous interation. */
 else
 if (mysp->sp_Pkt.dp_Type == ACTION_WRITE) sp_write_busy = FALSE;
 }
 }

 if (signals & SIGBREAKF_CTRL_C) /* If someone hit CTRL-C, start to quit. */
 {
 done = TRUE; /* If the ACTION_READ is still out, try to */
 if (sp_read_busy) /* abort it. As of V39, AbortPkt() does */
 AbortPkt(in->fh_Type, sp_read); /* not do anything, so this function has */
 } /* no effect. Maybe a later release of the */
 /* OS will support packet aborting. */

 } while (sp_read_busy); /* End of "wait for ACTION_READ" loop. */

 /* Get ready to send the next ACTION_READ. */
 buf = (UBYTE *)(sp_read->dp_Arg2); /* Hold on to the important stuff from the */
 amount_read = sp_read->dp_Res1; /* ACTION_READ we just got back so we can */
 /* reuse the packet to start a new read */
 /* while processing the last read's data. */

 while (sp_write_busy) /* Because this example only uses two buffers and */
 { /* the ACTION_WRITE might be using one of them, */

Page II - 106
Am

igaD
O

S
Packet Level I/O

 under R
elease 2

 /* this example has to wait for an outstanding
*/
 /* ACTION_WRITE to return before reusing the
*/
 /* ACTION_WRITE packet's buffer.
*/
 signals = Wait(sigmask);

 if (signals & portsignal) /* If a message arrived at the port, ...
*/
 { /* ... empty the port.
*/
 while (mysp = (struct StandardPacket *)GetMsg(myport))
 if (mysp->sp_Pkt.dp_Type == ACTION_WRITE) sp_write_busy = FALSE;
 }

 if (signals & SIGBREAKF_CTRL_C) /* If someone hit CTRL-C, start to quit.
*/
 {
 done = TRUE; /* If the ACTION_READ is still out, try to
*/
 if (sp_write_busy) AbortPkt(out->fh_Type, sp_write); /* abort it.
*/
 }
 }

 /* Make sure the user didn't hit CTRL-C. If the user hit CTRL-C dur-
*/
 if (!done) /* ing one of the "wait for packet" loops, done == TRUE. Notice that
*/
 { /* this example does not actually break for the CTRL-C until after it
*/
 /* gets back both packets.
*/

 /* This tests the return values from the ACTION_READ and ACTION_WRITE
*/
 /* packets. The ACTION_READ packet returns the number of bytes it
*/
 /* read in dp_Res1, which was copied earlier into amount_read. If it
*/
 /* is 0, the read packet found the EOF. If it is negative, there was
*/
 /* an error. In the case of ACTION_WRITE, an error occurs if the
*/
 /* number of bytes that ACTION_WRITE was supposed to write (Arg3)
*/
 /* does not match the actual number it wrote, which ACTION_WRITE re-
*/
 /* turns in Res1. This test is the reason dp_Res1 and dp_Arg3 were
*/
 /* set to zero when the ACTION_WRITE packet was set up in main().
*/
 if ((amount_read > 0) && (sp_write->dp_Res1 == sp_write->dp_Arg3))
 {
 sp_read->dp_Arg2 = sp_write->dp_Arg2; /* ACTION_WRITE is finished with its */
 /* buffer, use it in the next read.
*/

 SendPkt(sp_read, in->fh_Type, myport); /* Send the next ACTION_READ and mark
*/
 sp_read_busy = TRUE; /* the ACTION_READ as busy.
*/

 /* Process Buffer. This example doesn't do anything with the data from the
*/
 /* last ACTION_READ, it just passes it on to the STDOUT handler.
*/

 sp_write->dp_Arg2 = (LONG)buf; /* Set up the ACTION_WRITE packet.
*/
 sp_write->dp_Arg3 = amount_read;
 SendPkt(sp_write, out->fh_Type, myport); /* Send the next ACTION_WRITE and
*/
 sp_write_busy = TRUE; /* mark the ACTION_WRITE as busy.
*/

 }
 else /* A
 done = TRUE;
 }
 }
}

♣♣

 Amiga Mail

Am
igaD

O
S

Page II - 107
Packet Level I/O

 under R
elease 2

 /* A packet returned with a failure, so quit. */

Amiga Mail

