May/June 1990

ldentifying the Amiga’s CPU

by Dave Haynie

Amiga’s come in a variety of configurations including models that use the Motorola
68000, the 68020 and now the 68030. While it's not that difficult to figure out which
CPU you're using by trying certain instructions and trapping the exception if they
break, this isn’t necessary. In fact, the Amiga OS sets an ExecBase flag on system
startup that can identify which processor (and coprocessor) is installed. The CPU type
flags are stored in ExecBase->AttnFlags.

Under V1.3 and earlier versions of the OS, the system can’t tell the difference between
a 68020 and a 68030, or a 68881 and a 68882. That's no big surprise, since both the
68030 and 68882 were introduced well after the last version of the OS was released.
Under the new V2.0 version of the operating system, support for identifying these
processors has been added. If you are running under V2.0 of the operating system, you
can just look at ExecBase->AttnFlags to find out what processor is installed. The
AttnFlags field will be set as follows:

[k \/2.0 Bit defines for AttnFlags /

/*  Processors and Co-processors: */

#define AFB_68010 /* also set for 68020 */
#define AFB_68020 /* also set for 68030 */
#define AFB_68030 /* New flag under V2.0 */
#define AFB_68040 /* New flag under V2.0 *
#define AFB_68881 /* also set for 68882 */
#define AFB_68882 /* New flag under V2.0 *

abhwNEFRO

#define AFF_68010 (1L<<0)
#define AFF_68020 (1lL<<1)
#define AFF_68030 (1L<<2)/* New flag under V2.0 */
#define AFF_68040 (1L<<3)/* New flag under V2.0 */
#define AFF_68881 (1L<<4)
#define AFF_68882 (1L<<5)/* New flag under V2.0 */

However, if you are running under V1.3 or earlier versions of the operating system, this
method will not work with the 68030 and 68882 processors. To overcome this problem
you can use the code shown below to identify which CPU the system is using under
V1.3. There are three functions to link with your code to identify the processor and
coprocessor: GetCPUType(), GetFPUType(), and GetMMUType().

Identifying the Amiga’s CPU Page Ill - 35 Exec



ULONG GetCPUType(void)

Returns a number, representing the type of CPU in the system: 68000L, 68010L,
68020L, or 68030L.

ULONG GetFPUType(void)
Returns a number, representing the type of FPU in the system: OL (no FPU), 68881L,
or 68882L.

ULONG GetMMUType(void)
Returns a number, representing the type of MMU in the system: OL (no MMU),
68851L, 68030L, or OXFFFFFFFFL (this means an FPU responding to a MMU
address).

In order to find out which processor is present, GetCPUType() first checks
ExecBase->AttnFlags. Under V1.3 if this is set to AFF_68020, then the processor may
be either a 68020 or a 68030. GetCPUType() then checks to see if the processor is really
a 68030 by trying to invert the instruction burst enable bit, which doesn’t exist on the
68020. If that bit can be changed, then it is a 68030 system.

Similar methods are used in GetMMUType() and GetFPUType(). These functions first
look at ExecBase->AttnFlags and then do extra tests based on unique features of a given
coprocessor to find out what is present in the system. The functions are listed below.

From SetCPU V1.5
by Dave Haynie

68030 Assembly Function Module
This module contains functions that access features of the 68020,

68030, and 68851 chips, and ID all of these, plus the 68881/68882
FPU chips, reset stuff, and exception handler.

Macros & constants used herein...

CALLSYS macro  *
jsr LVO\1(A6)
endm

CIB_ENABLEEQU 0
CIB_FREEZEEQU 1
CIB_LENTRY EQU 2
CIB_CLEAR EQU 3
CIB_BURST EQU 4

CDB_ENABLEEQU 8
CDB_FREEZEEQU 9
CDB_ENTRY EQU 10
CDB_CLEAR EQU 11
CDB_BURST EQU 12
CDB_WALLOCEQU 13

AFB_68030 EQU 2
ATNFLGS EQU $129

LVOSupervisor EQU -30
LVOSuperState EQU -150
LVOFindTask EQU -294
LVOAllocTrap EQU -342
LVOFreeTrap EQU -348

Exec Page Il - 36 Identifying the Amiga’s CPU



Need just a little more stuff

NOLIST

include "exec/execbase.i"
include “exec/tasks.i"
LIST

machine mc68020
mc68881

This section contains functions that identify and operate on CPU

; things.
XDEF _GetCPUType ; ID the CPU
XDEF _GetFPUType ; ID the FPU
XDEF _GetMMUType ; ID the MMU

This function returns the type of the CPU in the system as a
longword: 68000, 68010, 68020, or 68030. The testing must be done
in reverse order, in that any higher CPU also has the bits set for

a lower CPU. Also, since 1.3 doesn't recognize the 68030, if |

find the 68020 bit set, | always check for the presence of a

68030.

This routine should be the first test routine called under 1.2

and 1.3.
ULONG GetCPUType(void);

_GetCPUType:
movem.| a4/a5,-(sp)
move.| 4,a6
btst.b #AFB_68030,ATNFLGS(a6)
beq 0%
move.| #68030,d0
movem.|  (sp)+,a4/a5
rts
0%

1$

2%

3%

43

btst.b #AFB_68020,ATNFLGS(a6)
bne 2%
btst.b #AFB_68010,ATNFLGS(a6)
bne 1$

move.| #68000,d0
movem.|  (sp)+,a4/a5
rts

move.| #68010,d0
movem.|  (sp)+,a4/a5
rts

move.| #68020,d0
lea 3%,a5

CALLSYS  Supervisor
movem.| (sp)+,adl/ab

rts

moveccacr,dl

move.| dl,a4
bset.| #CIB_BURST,d1
belr.| #CIB_ENABLE,d1

movecd1,cacr
moveccacr,d1

btst.| #CIB_BURST,d1
beq 4%
move.| #68030,d0

bseth  #AFB_68030,ATNFLGS(a6)

move.| a4,d1
movecd1,cacr
rte

; Save this register

; Get ExecBase
; Does the OS think an '030 is here?

; Sure does...

; Maybe a 680207
; Maybe a 680107

; Just a humble '000

; Yup, we're an '010

; Assume we're an '020
; Get the start of the supervisor code

; Get the cache register
; Save it for a minute
; Set the inst burst bit
; Clear the inst cache bit
; Try to set the CACR

; Do we have a set burst bit?

; It's a 68030

; Restore the original CACR

This function returns OL if the system contains no MMU,
68851L if the system does contain an 68851, or 68030L if the

system contains a 68030 (built-in MMU).

This code runs just fine on boards from Ronin and
Commodore, as well as all 68030 boards it's been tested on.

ULONG GetMMUType(void)

Identifying the Amiga’s CPU

Page Ill - 37

Exec



wg%

_GetMMUType:
move.| 4,a6 ; Get ExecBase
movem.|  a3/a4/a5,-(sp) ; Save this stuff
move.| #0,al
CALLSYS FindTask ; Call FindTask(OL)
move.| do0,a3
move.| TC_TRAPCODE(a3),a4 ; Change the exception vector
move.| #23$,TC_TRAPCODE(a3)
move.| #-1,d0
subq.| #4,sp
dcw $f017
dc.w $4200
cmpi #0,d0
beq 1%
cmpi #-1,d0
beq 1%
btst.b #AFB_68030,ATNFLGS(a6) n '030 is here?
beq 1%
move.| #68030,d0

1%
addq.| #4,sp
move.| a4, TC_TRAPC
movem.| (sp)+,a3/a4l

rts

; This is the exg

n FPU is here?

supervisor code

Identifying the Amiga’s CPU



