Amiga Majl

Volume Il

July/August 1992

Using Compugraphic
Typefaces with Bullet

by John Orr

One of the improvements made to the Amiga’ s operating system for Workbench Release 2.1 is
programmatic control of AGFA’s IntelliFontd scaling engine. With this engine, application programs can
fully utilize Compugraphic (CG) typefacesinstalled by Fountain (the CG typeface install that comes with
2.04 and 2.1). Some of the features that the font scaling engine offers include:

[ Rasterization of atypeface to arbitrary vertical and horizontal resolutions.
L] Basdline rotation of glyphsto an arbitrary angle.

[] Glyph shearing (italicizing) to any angle from -45 to 45 degrees (inclusive).
] Accessto kerning tables.

] Algorithmic emboldening.

Starting the Engine
There are several stepsinvolved in using afont outline on the Amiga.

1. Open thefont contentsfile (the**.font™’ file) and verify that it has a corresponding outline tag file
(an‘‘.otag’’ file).

All system supported fonts on the Amiga have afont contentsfile. From thisfile, an application can
determine afont’ s type, so the application knows how to utilize the font. The font contentsfileisa
FontContentsHeader structure (defined in <diskfont/diskfont.n>). The first field of that structure
(fch_FilelD) contains an ID identifying the font’ stype. If that type is OTAG I D (OxOF03), the font isan
outline and it should have a corresponding otag file. The otag file should be in the same directory as the
font contentsfile.

2. Open the otag file, verify that it isvalid, load itstag list into memory, and resolve any memory
indirectionsin thetag list.

The otag file contains atag list that describes the typeface. All of these tags are defined in
<diskfont/diskfonttag.h> as either level 1, level 2, or level 3 outlinetags. Level 1 tags are required to be
present in an otag file. Level 2 and 3 tags are optional. See the include file for more information on the
tag levels.

Graphics Using Compugraphic agey 23
Typefaces with Bullet



Amiga Meaj

Volume Il

Thefirst tag of the otag fileisalways OT_Fi | el dent . Itsvalueisthe size of the otag file. Thistag ishere
to verify the validity of the otag file. If thefirst tagisnot OT_Fi | el dent, or the OT_Fi | el dent tag value
is not the size of the otag file, the otag fileisinvalid, so don't attempt to use it. If thefileisvalid, copy the
entire file into a buffer.

The tags from the otag file have a special OT_I ndi rect bit. If thisbit is set, the tag’svalueis an indirect
reference to data defined elsewherein the otag file. Thetag'svaueisthe offset to the data (in bytes) from
the beginning of the otag file. For example, the otag file fonts: CGTimes.otag that is on the 2.04 Release
disks contains the tag OT_Fami | y (0x80009003), which hasitsOT_I ndi r ect bit set. The value of the
Or_Fami | y tag is 195, meaning that the data for it--the NULL terminated string *‘ CG Times'’--is located
195 bytes into the otag file.

Of coursg, if an application read the file fonts: CGTimes.otag into a memory buffer, the **CG Times’ string
would be 195 bytes from the beginning of the buffer. The OT_Fani | y tag must point to the absolute
address of its data, so when an application loads an otag file into memory, it has to resolve the indirection
of the OT_I ndi rect tagsin memory. The application can do this by adding the buffer address to each
OT_I ndi rect tag value.

3. Find out the name of the typeface's scaling engine and obtain a pointer to theengine's
GlyphEngine structure.

One of thelevel 1 outlinetagsisthe OT_Engi ne tag. Thistag refersto the name of this typeface's scaling
engine. At present thereisonly one scaling engine available on the Amiga. It isnamed Bullet. Thisisthe
IntelliFont scaling engine. The name s left over from the original implementation of the IntelliFont engine
used on the Amiga. The scaling engineitself isin its own Exec library, caled bullet.library. To open the
engine, build a complete library name by adding the string ** library’’ to the OT_Engi ne string, and open it
with OpenLibrary(). Don’t assume that OT_Engi ne will always be the string *‘bullet’’. In the future,
Commodore or some third party developer may create additional scaling engines libraries that will allow
the Amigato use other types of outline typefaces (PostScript, Nimbus-Q, etc.). Using the proper library
name will help ensure compatibility with future possible scaling engines.

All scaling engine libraries contain several functions:

OpenEnging() If successful, returns a pointer to the library’s GlyphEngine
structure.

CloseEngine() Rel eases the GlyphEngine structure obtained in OpenEngine().

SetInfo()/SetInfoA() Sets current parameters of a scaling engine (the current typeface,

the current point size, the current output resolution, etc.)
Obtainlnfo()/ObtainlnfoA() Queries a scaling engine for glyph information (aglyph’s bitmap,

the kerning value between two glyphs, etc.).
Releaselnfo()/ReleaselnfoA()  Releases data obtained with Obtainlnfo()/ObtaininfoA().

To obtain a pointer to a GlyphEngine structure for a particular scaling library, use that library’s
OpenEngine() routine. The function takes no arguments.

PageV'24 Using Compugraphic Graphics
Typefaces with Bullet



Amiga Majl

Volume Il

4. Tell the engine which typeface to use.

Setting a scaling engine's current typeface involves the SetInfoA() (or Setinfo()) function and the Level O
tags from < diskfont/diskfonttag.h>. The SetinfoA() function takes two parameters, a pointer to the
GlyphEngine structure, and atag list of level 0 outlinetags. The Level 0 tags act as commands for a
scaling engine, some of which are for setting scaling engine parameters (with SetInfo() or SetInfoA()), and
some of which are for querying information from a scaling engine (with Obtaininfo() or ObtaininfoA()).

Two tags set a scaling engine's current typeface: OT_OTagPath and OT_TagList. The OT_OTagPath tag
points to the full path name of atypeface's otag file (for example, fonts: CGTimes.otag). The
OT_OTagList tag pointsto the tag list created in step 2 above.

5. Set other scaling engine parameters.

There are three other parameters the scaling engine needs in order answer queries for information:
OT_Devi ceDPI OT_Poi nt Hei ght OT_d yphCode

The OT_Devi ceDPI tag refersto the resolution of the output device. Thetag value' s high word isthe
horizontal resolution and the low word is the vertical resolution. Both are unsigned words measured in
dots per inch.

The OT_Poi nt Hei ght tag refersto the height of atypefacein points. One point is approximately equal to
1/72 of an inch (AGFA/Compugraphic defines the point to be 0.01383 inches). For CG typefaces, this
height is the distance between baselines from one line to the next (without any leading adjustments). The
point height is represented as afixed point, two's complement binary number, with the point situated in the
middle of along word. This means the lower word is the fractional portion and the upper word the whole
number portion (the number covers the powers of two from 2% through 2%).

For those who may not know, atwo’s complement number isaway of representing negative numbers. To
find the two’ s complement of a negative number, find the one's complement of the absolute value of that
number (change all the binary onesto zeros and all the zeros to ones) and then add one to the result. To
change from two’ s complement, subtract one from the two’s complement number and find the one’s
complement of the number. For example,

Before conversion to two’'s complement, the absolute value of the one byte decimal quantity -32 is
represented as:

I'n binary 0010 0000 ($20)
One’'s conpl ement 1101 1111 ($DF)
Add One 0000 0001 ($01)

Two’' s conpl enent 1110 0000 ($EO)

So the number -32 is encoded as 1110 0000 or OXEO in hex. Notice that the high bit (the sign bit) of the
encoded number is set if the number is negative. If the number is zero or greater, the high bit isclear. This
procedure is independent of where the **point’’ isin the negative number (the *‘point’’ in this case isthe
divider between the whole portion of the number and the fractional portion). When the computer adds one
to the one’s complement, it does not consider wherethe *‘point’’ isin the one’s complement, the computer
just treats the one’' s complement value as awhole integer. For example, to encode the decimal quantity -
531/256 as atwo byte, fixed point, two’s complement binary number where the point is situated in the
middle of the two bytes:

Graphics Using Compugraphic age 25
Typefaces with Bullet



Amiga Meaj

Volume Il

531/256 = -(2 + 19/256) = -2.13 in hex

I'n binary 0000 0010. 0001 0011 ($02.13 in hex, with the point)

One’ s conpl enent 1111 1101 1110 1100 ($FDEC in hex ignore the point from now on)
Add One 0000 0000 0000 0001  ($0001)

Two' s conpl enment 1111 1101 1110 1101 ( $FDED)

Notice that the one added to the one’s complement isin the 28 (= 1/256) column.

The OT_d yphCode tag refers to the current glyph. When an application asks the scaling engine to
rasterize a glyph, thisisthe glyph the engine renders. The scaling engine uses Unicode encoding to
represent glyphs. Unicodeis an international character encoding standard that encompasses many of the
world’s national scriptsin a 16-bit code space. Conveniently, the Amiga’s Latin-1, 8-bit character set
corresponds to the same glyphs as the Unicode standard. To set the current glyph to a character from the
Amiga character set, use the same Latin-1 code, but pad it out to a 16-bit value.

Because the Compugraphic typefaces use their own character set, the scaling engine in the bullet.library
has to map the Unicode glyph codes to Compugraphic glyph codes. Note that the Unicode standard
encompasses many more glyphs than just the Latin-1 character set or the Compugraphic character set, so
many of the charactersin the Unicode set do not map to any glyphs in the Compugraphic set. For example,
Unicode includes several Asian ideogram sets, that the Compugraphic set does not. The result isthe vast
majority of the Unicode characters are not available using Compugraphic typefaces. The Compugraphic
character set covers roughly 400 glyphs. For more information on the UniCode standard, see the Unicode
Consortium’ s book The Unicode Standard, Worldwide Character Encoding published by Addison-Wesley
(ISBN 0-201-56788-1).

Rasterizing a Glyph

Once an application has set up the scaling engine, obtaining a glyph is a matter of asking for it. Aswas
mentioned earlier, the ObtainlnfoA()/Obtaininfo() function queries a scaling engine for glyph information.
This function accepts a pointer to a GlyphEngine structure and atag list. To ask for arasterization of a

glyph, pass Obtaininfo() the OT_a yphnap tag. The engine expects the OT_Glyphvap value to be an
address where it can place the address of a GlyphMap structure. The GlyphMap structure (defined in
<diskfont/glyph.h>) isfor reading only and looks like this:

struct 4 yphMap {
UWORD gl m BMvbdul o;
UWORD gl m BMRows;
UWORD gl m Bl ackLeft;
UWORD gl m Bl ackTop;
UAORD gl m Bl ackW dt h;
UWORD gl m Bl ackHei ght ;

5 # of bytes in row always multiple of 4 */
/
/
/
/
FI XED gl m XOri gin; /
/
/
/
/
/
/
/

*

* # of rows in bitmap */

* # of blank pixel colums at left of glyph */

* # of blank rows at top of glyph */

* span of non-blank colums (horizontal span of the glyph) */

* span of non-blank rows (vertical span of the glyph) */

* distance fromupper left corner of bitmap to | ower */

FIXED gl m YOigin; *
WORD gl m XO; *
WORD gl m YO; *
WORD gl m X1; *
WORD gl m Y1; *
FIXED gl m Wdth; *
UBYTE *gl m Bi t Map; *

left of glyph (baseline), in fractional pixels */
approxi mation of XOrigin in whole pixels */
approxi mation of YOigin
approxi mati on of XOrigin
approxi mation of YOrigin
character advance, as fr
actual glyph bitmap */

in whole pixels */
+ Wdth */
+ Wdth */
action of emw dth */

Page V- 26 Using Compugraphic Graphics
Typefaces with Bullet



Amiga Meajl

Volume Il

The gim_BitMap field points to a single bitplane bitmap of the glyph. Thisbitmap is not necessarily in
Chip RAM, so if an application needs to use the blitter to render the glyph, it hasto copy the bitmap to a
Chip RAM buffer. Thefieldsglm BMMoaodulo and gim_BMRows are the dimensions of the whole bitmap.
The glyph itself does not occupy the entire bitmap area. The fields gim_BlackLeft, gim_BlackTop,
glm_BlackWidth, and gilm_BlackHeight describe the position and dimension of the glyph within the
bitmap. Thefieldsglm_XOrigin and gim_Y Origin arethe X and Y offsets from the bitmap’s upper left
corner to the glyph’slower left corner. The lower left corner lies on the glyph’sbaseline. These X and Y
offsetsarein fractional pixels. Thefieldsglm_ X0 and gim_Y 0 are rounded versions of gim_XOrigin and
glm_Y Origin, respectively.

The gim_Width field is ameasure of the width of the glyph in fractions of an em (pronounced like the
letter 'M’). Thisvaueisafixed point binary fraction. The emisarelative measurement. A distance of
one em is equal to the point size of the typeface. For example, in a 36 point typeface, one em equals 36
points which is approximately equal to ahalf inch. For a 72 point typeface, one em equals 72 points which
is approximately equal to one inch.

When an application is finished with the GlyphMap structure, it must use the ReleaselnfoA() or

Releasel nfo() function to relinquish the GlyphMap structure. This function uses the same format as
ObtainlnfoA ()/Obtaininfo(), except the data value of the OT_A yphMap tag is a pointer to the GlyphMap
structure (rather than a pointer to a pointer).

Kerning

The IntelliFont scaling engine also supports two types of kerning. One type of kerning is called text
kerning, which is for regular bodies of text. The other type of kerning is called design kerning, which isfor
more obvious displays, like headlines. The basic differenceisthat design kerning is generally more tightly
spaced than text kerning.

Before asking for akerning pair, an application has to tell the engine which character pair to kern. It does
this using one of the Setlnfo() functions to set the primary glyph, OT_d yphCode, and the secondary glyph
code, OT_d yphCode2.

To ask the scaling engine for a kerning value, use one of the Obtaininfo() functions with the

OT_Text Ker nPai r (for text kerning) or OT_Desi gnKer nPai r (for design kerning) tags. The engine
expects the value of the kerning tag to be an address where it can store afour byte long kerning value. The
kerning valueis afixed point binary fraction of an em sguare (like the glm_Width field from the
GlyphMap structure). This value isthe distance to remove from the primary character advance (the
glm_Width of OT_G yphCode) when rendering the secondary glyph (OT_G yphCode2) immediately
following the primary glyph.

Unlike other Obtainlnfo() tags, the scaling engine does not allocate any resources when answering queries
about kerning values. Applications do not have to use Releasel nfo() functions for kerning queries made
with either OT_Text Ker nPai r or OT_Desi gnKer nPai r .

Graphics Using Compugraphic agey 27
Typefaces with Bullet



Amiga Meai

Volume Il

Width Lists

An application can find the widths of atypeface's glyphs using the OT_W dt hLi st tag with one of the
Obtaininfo() functions. The engine expectsthe OT_W dt hLi st value to be an address where it can place
the address of aMinList structure. ThisMinList pointsto alist of GlyphWidthEntry structures. The
GlyphWidthEntry structure (defined in <diskfont/glyph.h>) isfor reading only and looks like this:
struct G yphWdthEntry {

struct M nNode gwe_Node; /* on list returned by OT_WdthList inquiry */

UWORD gwe_Code; /* entry's character code value */
FI XED gwe_Wdth; /* character advance, as fraction of emwdth */

b

The MinList contains an entry for each valid Unicode glyph ranging from the primary glyph,

OT_d yphCode, through the secondary glyph, OT_G yphCode2. The engine does not create a
GlyphWidthEntry structure for codes without glyphs (for exampl e the codes before the space character in
the Latin-1 character set).

When an application is finished with the width list, it must use one of the Releaselnfo() functions to
relinquish thelist. This function uses the same format as the Obtainlnfo() functions, except the data value
of the OT_W dt hLi st tagisapointer to the MinList (rather than a pointer to apointer). The primary and
secondary code values do not have to remain constant while an application isusing awidth list. The
engine deallocates the width list resources independently of the primary and secondary code values, so
these can change after obtaining awidth list.

The following code fragment asks the scaling engine, ge, for alist of character widths of the Unicode
glyphs ranging from unicode (OT_Q yphCode) to unicode2 (OT_G yphCode2), inclusive. The fragment
steps through the list of widths, printing each one.

struct MnList *w dthlist;
struct G yphWdthEntry *wi dt hentry;

if (Setlnfo(ge,
Or_d yphCode, uni code,
Or_d yphCode2, uni code2,
TAG END) == OTERR_Success)

if (Obtaininfo(ge, OT_WdthList, &widthlist, TAG END) == OTERR Success)

for (wdthentry = (struct G yphWdthEntry *) w dthlist->n h_Head;
wi dt hent ry- >gwe_Node. m n_Succ;
wi dthentry = (struct dyphWdthEntry *)
wi dt hent ry- >gwe_Node. nml n_Succ)

printf("$%x: %d %d\n",
wi dt hent ry- >gwe_Code,
w dt hentry->gwe_W dt h>>16,
((w dt hentry->gwe_W dt h&0xf f f f ) *10000) >>16) ;

}
Rel easel nfo(ge, OT_WdthList, widthlist, TAG END);

Notice that the Obtainlnfo() functions (as well as the Setinfo() functions) return an error code (the error
codes are defined in <diskfont/oterrors.h>). If that error code is equal to OTERR_Success, the operation
was successful.

Page V- 28 Using Compugraphic Graphics
Typefaces with Bullet



Amiga Meajl

Volume Il

Rotating

Taking advantage of other features of the Bullet library is a matter of setting other engine parameters using
one of the SetInfo() functions with some other level 0 tags. Oneinteresting feature of the IntelliFont
engineisits ability to rotate glyphs. By setting the OT_Rot at eSi n and OT_Rot at eCos values, the
IntelliFont engine can rotate a glyph’ s baseline from the glyph origin (the gim_XOrigin and gilm_Y Origin
from the GlyphMap structure).

The OT_Rot at eSi n and OT_Rot at eCos are, respectively, the sine and cosine of the baseline rotation
angle. The engine can rotate to any angle. The sine and cosine must correspond to the same angle and
must be in the sine and cosine value range (0 through 1 inclusive). The engine does not do any error
checking on the sine and cosine values. As aresult, the engine will yield strange resultsif the sine and
cosine are from very different angles or if these values are out of range for sines and cosines (greater than
1). By default, the engine sets these values to 0.0 and 1.0, the sine and cosine of O degrees. These values
are encoded as fixed point binary fractions (the negative values are two’s complement).

When setting the baseline rotation, an application must set both the sine and cosine. It must set
OT_Rot at eSi n first, then OT_Rot at eCos. An application can set both values in the same Setlnfo()
function, but the sine must comefirst. For example, to set the rotation angle to 150 degrees:

The sine of 150 degreesis 0.5 which is 0x00008000 in hex. The cosine of 150 degrees is approximately -
0.866 which is approximately 0xffff224c in hex (two’s complement), so:

if (Setlnfo(ge,
OT_Rot at eSi n, 0x8000,
Ol _Rot at eCos, OxFFFF224C,
TAG END) == OTERR Success) /* |If Setlnfo() returns OTERR Success, */
/* it worked OK. */
{ /* The baseline rotation has been set, now the application can render it. */

Shearing

Like baseline rotation, glyph shearing (also known asitalicizing) is a matter of setting some Level 0 tags.
The shearing tags, OT_Shear Si n and OT_Shear Cos, specify the shearing angle, or the angle at which the
typefaceisitalicized. Thisangle refersto the angle that results from rotating the vertical axis clockwise.
The angle can range from -45 to 45 degrees (inclusive). Like the rotation angle, the shearing angleis
represented as a sine and cosine value that must correspond to the same angle and must fall into normal
bounds for sine and cosine values. Also like the rotation angle sine and cosine tags, an application must set
both the OT_Shear Si n and OT_Shear Cos tags, in that order. By default, the shearing value is zero degrees
meaning there is no shearing (OT_Shear Si n = 0x00000000, OT_Shear Cos = 0x00010000).

Graphics Using Compugraphic agey 29
Typefaces with Bullet



Amiga Meaj

Volume Il

Other Level 0 Tags
There are several other Level 0 tags:

OT_DotSize. Thistag specifiesthe X and Y size of thetarget device'sdots. The X and Y DPI imply a
dot size. For example, at 300 X and 300 Y DPI, the resolution implied dot size is 1/300 inches by 1/300
inches. For some devices (like some dot matrix printers), the size of the output dot does not match its
resolution implied size. To adegree, the IntelliFont engine can account for this. The dot sizeis
represented as a percentage of the dot’s resolution implied size. The X percentageisin thetag value's
upper word, and the Y percentage isin the tag value's lower word.

OT_SetFactor. Thistag distorts the width of atypeface by changing the width of the em square. The
scaling engine changes the em width to thistag'svalue. Thevalueisafixed point binary fraction.

OT_EmboldenX/OT_EmboldenY. These tags specify the algorithmic emboldening factor in the X and Y
direction, respectively. The tag values are fixed point two’s complement binary numbers. The units are
measured in ems. Emboldening values above zero embolden the typeface. Emboldening values below
zero lighten the typeface. By default, both values are zero.

OT_GlyphWidth. Thistag'svalue specifies awidth for the current typeface. It isafraction of an em
represented as a fixed point binary number. |If thisvalueis set to something besides 0.0, al glyphs will
have thiswidth. To turn off the constant width, set OT_@ yphMap back to 0.0 (its default value).

The Otag File Tags

The Outline Tag (otag) file contains a number of tags that describe afont outline to the Diskfont library.
The purpose of most of these tagsisto alow Diskfont to attribute styles to a typeface when loading a font
outline as a standard Amiga system font. Most applications that use the scaling engine will not need to
worry about the meaning of the mgjority of these tags, but they are described below. The following tags
are Level 1 tags and must be present in every otag file:

OT _Fileldent. Every valid otag file starts with thistag. Itsvalueisthe size of thefile. It doesn't redlly
have anything to do with the definition of the typeface, but it does serve as away to check the validity of
the otag file.

OT_Engine. Thistag'svalue points to astring naming the font scaling engine. For example, the
OT_Engine tag in fonts:CGTimes.otag is‘‘bullet’’.

OT_Family. Thistag'svalue pointsto a string naming the typefaces font family. For example, the
OT_Family in fonts: CGTimes.otag is*‘‘bullet’’.

OT_SymbolSet. Thistag'svaueisatwo byte ASCII code for thistypeface’s symbol set. Thistellsthe
system which symbol set to use to map the Amiga character set to the Compugraphic character set. The
symbol set for most CG fonts designed for use with the Amigais‘‘L1"’, which standsfor Latinl. The
exception is the CG fonts from Gold Disk, Inc. They usethe‘*GD’’ (Gold Disk) symbol set.

Page V- 30 Using Compugraphic Graphics
Typefaces with Bullet



Amiga Meajl

Volume Il

OT _YSizeFactor. For traditional Amigafonts, the font size does not include any spacing on top or bottom
of the typeface--the Amiga doesn’t consider it part of the font. CG fontsinclude spacing on the top and
bottom of their typefaces. Thistag'svaueisaratio of the point height of atypefacetoits‘‘black’’ height
(the point height minus the space on the typeface’ stop and bottom). The high word is the point height
factor and the low word is the black height factor. Note that these values form aratio. Individualy, they
do not necessarily reflect any useful value.

OT_SerifFlag. If thistag' svalueis TRUE, this typeface has serifs.

OT_StemWeight. Thistag's value can be anywhere from 0 through 255 and indicates a nominal weight
or ‘*boldness’ to the typeface. The <diskfont/diskfonttag.h> include file defines a set of ratings for this
tag'svalue. Seethat file for more details. When the Diskfont library opens an outline font, it usesthis
value to determineif atypeface is bold.

OT_SlantStyle. The <diskfont/diskfonttag.h> include file defines a set of three possible values for this
tag'svalue. Seethat file for more details. When the Diskfont library opens an outline font, it uses this
value to determine if atypeface isitalicized/obliqued.

OT_HorizStyle. Thistag'svaue can be anywhere from 0 through 255 and indicates a nominal width
rating to the typeface. The <diskfont/diskfonttag.h> include file defines a set of ratings for thistag’s value.
See that file for more details. When the Diskfont library opens an outline font, it uses this value to
determine if atypeface is extended.

OT_AvailSizes. Thistag'svalue pointsto asorted list of UWORDs. The first UWORD is the number of
entriesin the sorted list. The remaining UWORDSs are the font sizes that the Diskfont library lists when
caling AvailFonts().

OT_SpecCount. Thistag' svalueisanumber of spec tagsthat follow it. A spectagis private to the
scaling engine.

Thefollowing are Level 2 tags. They may also bein an otag file but are not required:

OT_BName. Thistag points to a string naming the bold variant of thistypeface. For example, the
fonts: CGTimes.otag filelists** CGTimesBold"’ asits bold variant.

OT_IName. Thistag pointsto astring naming the italic variant of this typeface.
OT_BIName. Thistag pointsto astring naming the bold italic variant of this typeface.
OT_SpaceWidth. Thistag'svalueisthe width of the space character at 250 points (where there are

72.307 pointsin aninch). Thewidth isin Design Window Units (DWUs). One DWU is equal to 1/2540
inches. To convert to X pixels:

Graphics Using Compugraphic agey a1
Typefaces with Bullet



Amiga Meaj

Volume Il

OT_SpaceW dth poi ntsi ze
------------- ¥ --------- * XDPl = spacewidth in pixels (X dots)

OT _IsFixed. If thistag'svalueis TRUE, every glyph in this typeface has the same character advance (a
fixed width).

OT_InhibitAlgoStyle. Thistag'svaueisabitmask that is compatible with theta_Style field of the
TextAttr structure (defined in <graphics/text.h>). Thistag tells which styles cannot be added to atypeface
algorithmically. For example, if the FSF_BOLD bit in OT_InhibitAlgoStyleis set and a user asks for abold
version of the typeface, the diskfont.library (or an application) can add that style algorithmically.

At present there are no Level 3 tags.

About the Examples

This article contains two code examples. The first, Rotate, rotates a user-specified glyph around a central
point. By default, it rotates a 36 point ' A’ using the font fonts: CGTimes.font. If Rotate findsan
AmigaDOS environment variable called ** XYDPI’’, it will usethe X and Y DPI it findsin that variable as
the default target device DPI (see the description of the Level 0 OT_Devi ceDPI tag). If that variableis not
defined, Rotate will use an XDPI of 68 and a Y DPI of 27 which, nominally, isthe X and Y DPI of a
standard Hires display.

The second example, View, displays afile using the same defaults as Rotate. View utilizes kerning pairsto
display its glyphs. Because View only considers‘‘visible’’ characters, it ignores characters that have
widths but no glyph. Theresult is, View doesn't print any space characters. If View were smarter, it would
ask the scaling engine for awidth list so it could properly advance the current pointer when it comes across
a space or some other character without a glyph.

Notice that View uses a dightly modified version of BulletMain.c called BulletMainFile.c. Only
BulletMain.c appears in the example code. The only significant difference between the two is that
BulletMainFile.c obtains afile name for View to display.

Page V- 32 Using Compugraphic Graphics
Typefaces with Bullet



