
Creating Visual Basic VBXs:Creating Visual Basic VBXs:
The Visual Basic StringThe Visual Basic String
    by Fred C. Hill    by Fred C. Hill

The fourth in a series of articles on the secrets of writingThe fourth in a series of articles on the secrets of writing
VBX controls in Borland Pascal.VBX controls in Borland Pascal.
Up to this point I've given you everything you need to write your own VBX control using Borland Pascal.    In this issueUp to this point I've given you everything you need to write your own VBX control using Borland Pascal.    In this issue
we'll clean up a few loose ends and prepare to write an actual VBX which its foundations in the real world.    Thewe'll clean up a few loose ends and prepare to write an actual VBX which its foundations in the real world.    The
examples I reference here will be the same as those in the Control Development Guide for the CDK provided byexamples I reference here will be the same as those in the Control Development Guide for the CDK provided by
Microsoft.Microsoft.

Most of the problems with writing a custom control is overcoming the differences between the language of the VBXMost of the problems with writing a custom control is overcoming the differences between the language of the VBX
developer and the language of the VBX user.    Of course, for our purposes here the user will be programming in Visualdeveloper and the language of the VBX user.    Of course, for our purposes here the user will be programming in Visual
Basic and you will be using Borland Pascal.    It is entirely possible however that if you adhere to the VB 1.0 VBXBasic and you will be using Borland Pascal.    It is entirely possible however that if you adhere to the VB 1.0 VBX
standard that the VBX can be used in Visual C++ or Borland C++.    I've even heard that version 1.0 VBX's will bestandard that the VBX can be used in Visual C++ or Borland C++.    I've even heard that version 1.0 VBX's will be
supported in the Delphi 95 environment.supported in the Delphi 95 environment.

The majority of this installment will focus on the various methods of string handling between Visual Basic and Pascal.The majority of this installment will focus on the various methods of string handling between Visual Basic and Pascal.
String handling requires special attention because, not only are they dynamically allocated variable length buffers, theyString handling requires special attention because, not only are they dynamically allocated variable length buffers, they
are also handled differently in the Basic, the C, and the Pascal languages.    are also handled differently in the Basic, the C, and the Pascal languages.   

You will have to deal with null-terminated strings to deal will parameters passed to API's and other routines written in C,You will have to deal with null-terminated strings to deal will parameters passed to API's and other routines written in C,
as well as Basic language strings which use a string descriptor, maintained internally by Visual Basic.    Each of theseas well as Basic language strings which use a string descriptor, maintained internally by Visual Basic.    Each of these
will require conversion to and from the Pascal string formats.will require conversion to and from the Pascal string formats.

Visual Basic is an event driven environment and as such makes no claim on a specific area of memory.    Each of theVisual Basic is an event driven environment and as such makes no claim on a specific area of memory.    Each of the
string buffers is allocated dynamically and can be moved around in memory at any time.    Because of this the VB stringstring buffers is allocated dynamically and can be moved around in memory at any time.    Because of this the VB string
is referenced by a handle rather than a pointer.    Unlike a pointer, a handle remains valid even as the data's addressis referenced by a handle rather than a pointer.    Unlike a pointer, a handle remains valid even as the data's address
changes.changes.

Visual Basic allocates the following two kinds of strings:Visual Basic allocates the following two kinds of strings:

HandleHandle DescriptionDescription

HSZHSZ Handle to a null-terminated string.Handle to a null-terminated string.

HLSTRHLSTR Handle to a Basic Language string.Handle to a Basic Language string.

Table 1Table 1

The HSZ type string is a standard null terminated string normally found in C.    We won't be specifically addressing thisThe HSZ type string is a standard null terminated string normally found in C.    We won't be specifically addressing this
string type in this article but will use and explain it in future projects.    Of course to use this data type you must de-string type in this article but will use and explain it in future projects.    Of course to use this data type you must de-
reference the handle to get the address of the string data.reference the handle to get the address of the string data.

The HLSTR type string is exactly like the strings declared and used in Visual Basic.    The    routines provided in theThe HLSTR type string is exactly like the strings declared and used in Visual Basic.    The    routines provided in the
Control Development Kit (CDK) and detailed in table 2 and 3 are used to create, use, and destroy the strings.    TheControl Development Kit (CDK) and detailed in table 2 and 3 are used to create, use, and destroy the strings.    The
routines are used to copy, increase, and decrease the length.    In the process of working with the strings they may beroutines are used to copy, increase, and decrease the length.    In the process of working with the strings they may be
moved in memory to accommodate these changes or other events.    They are not terminated with nulls and nulls aremoved in memory to accommodate these changes or other events.    They are not terminated with nulls and nulls are
allowed in the body of the string.    The length is maintained in the string descriptor which is managed by the Visualallowed in the body of the string.    The length is maintained in the string descriptor which is managed by the Visual
Basic string space.Basic string space.

Any string type can be used within the VBX but when passing string parameters to a Visual Basic Event procedure youAny string type can be used within the VBX but when passing string parameters to a Visual Basic Event procedure you

must use the HLSTR type.must use the HLSTR type.

The following tables detail the routines exposed by the VBAPI_.TPW unit provided on the enclosed diskette.The following tables detail the routines exposed by the VBAPI_.TPW unit provided on the enclosed diskette.

FunctionFunction DescriptionDescription

VBCreateHszVBCreateHsz Allocates a null-terminated string and returns Allocates a null-terminated string and returns
the strings handlethe strings handle

VBDerefHszVBDerefHsz Returns a pointer to the address of the string.Returns a pointer to the address of the string.

VBDestroyHszVBDestroyHsz De-allocates the string space and invalidates De-allocates the string space and invalidates
the handle.the handle.

Table 2Table 2

FunctionFunction DescriptionDescription

VBCreateHlstrVBCreateHlstr Allocates a Basic language string and Allocates a Basic language string and
returns the strings handle.returns the strings handle.

VBDerefHlstrVBDerefHlstr Returns a pointer to the address of the Returns a pointer to the address of the
string.string.

VBDestroyHlstrVBDestroyHlstr Deallocates the string space and Deallocates the string space and
invalidates the handle.invalidates the handle.

VBGetHlstrLenVBGetHlstrLen Returns the length of the string.Returns the length of the string.

Table 3Table 3

In addition to the functions defined in Tables 2 & 3 there are also functions for declaring a temporary Basic LanguageIn addition to the functions defined in Tables 2 & 3 there are also functions for declaring a temporary Basic Language
string. A temporary string is automatically deleted the first time they are used by Visual Basic.    Visual Basic allocatesstring. A temporary string is automatically deleted the first time they are used by Visual Basic.    Visual Basic allocates
space for up to 20 temporary strings.    (See the discussion on temporary strings later in this articale).space for up to 20 temporary strings.    (See the discussion on temporary strings later in this articale).

Creating and using a stringCreating and using a string
lpStr := VBCreateHlStr(pb, cbLen);lpStr := VBCreateHlStr(pb, cbLen);

Creates a Basic language string from the data pointed to by Creates a Basic language string from the data pointed to by pbpb. Once created the string is managed as part of the. Once created the string is managed as part of the
Visual Basic string space.Visual Basic string space.

pbpb    is a par pointer to the buffer containing the string.    is a par pointer to the buffer containing the string.

cbLencbLen is the number of bytes in the string. This could be zero, in which case the string returned is zero length. pb will is the number of bytes in the string. This could be zero, in which case the string returned is zero length. pb will
not be used if cbLen is zero.not be used if cbLen is zero.

lpStrlpStr is defined in the VBAPI_ and is the handle for the Basic-language string. is defined in the VBAPI_ and is the handle for the Basic-language string.

This string can be placed in a parameter string for an Event or passed as a string property. When you are finished withThis string can be placed in a parameter string for an Event or passed as a string property. When you are finished with
the string you must eventually free it using the string you must eventually free it using VBDestroyHlstrVBDestroyHlstr..

Temporary StringsTemporary Strings
Creates a temporary Basic language string from the data pointed to by pb. Once created the string is managed as partCreates a temporary Basic language string from the data pointed to by pb. Once created the string is managed as part
of the Visual Basic string space.    Visual Basic allows up to 20 temporary strings at one time and are automaticallyof the Visual Basic string space.    Visual Basic allows up to 20 temporary strings at one time and are automatically
deleted when they are used by Visual Basic.    These temporary strings are generally used when returning a string todeleted when they are used by Visual Basic.    These temporary strings are generally used when returning a string to
Visual Basic as a function return value. Do not attempt to delete a temporary string by calling Visual Basic as a function return value. Do not attempt to delete a temporary string by calling VBDestroyHlstrVBDestroyHlstr, instead, instead
use a VBAPI_ function that deletes temporary strings such as use a VBAPI_ function that deletes temporary strings such as VBGetHlstrVBGetHlstr..

lpStr := VBCreateTempHlStr(pb, cbLen);lpStr := VBCreateTempHlStr(pb, cbLen);

pbpb is a par pointer to the buffer containing the string. is a par pointer to the buffer containing the string.

cbLencbLen is the number of bytes in the string. This could be zero, in which case the string returned is zero length. pb will is the number of bytes in the string. This could be zero, in which case the string returned is zero length. pb will
not be used if cbLen is zero.not be used if cbLen is zero.

lpStrlpStr is defined in the VBAPI_ and is the handle for the Basic-language string. is defined in the VBAPI_ and is the handle for the Basic-language string.

This string can be placed in a parameter string for an Event or passed as a string property.This string can be placed in a parameter string for an Event or passed as a string property.

Strings that moveStrings that move
    What! Why would the strings I allocate and deallocate move? Even seasoned developers (myself included) have had    What! Why would the strings I allocate and deallocate move? Even seasoned developers (myself included) have had
trouble with the concept and problems with Windows in general and event programming specifically. It takes a long timetrouble with the concept and problems with Windows in general and event programming specifically. It takes a long time
to lose the "DOS" mentality and finally feel secure in an environment where Events are taking place which are no into lose the "DOS" mentality and finally feel secure in an environment where Events are taking place which are no in
your control. your control.

Anytime you reference a Windows API function there is a better than average chance that the string you were pointingAnytime you reference a Windows API function there is a better than average chance that the string you were pointing
to a mere micro-second ago is now somewhere else in memory. The address you so laboriously dereferenced must beto a mere micro-second ago is now somewhere else in memory. The address you so laboriously dereferenced must be
dereferenced again.    This is particularly true    with the Basic language strings as you'll see in the following sections.dereferenced again.    This is particularly true    with the Basic language strings as you'll see in the following sections.

lpStr := VBDerefHlstr(params.ClickString);lpStr := VBDerefHlstr(params.ClickString);

This routine returns a far pointer to the string data This pointer becomes invalid as soon as the string is moved inThis routine returns a far pointer to the string data This pointer becomes invalid as soon as the string is moved in
memory, and remember, any call to a Windows API can have that effect. Even though you can dereference the handlememory, and remember, any call to a Windows API can have that effect. Even though you can dereference the handle
you cannot directly change the data length.    This is done through the you cannot directly change the data length.    This is done through the VBSetHlstrVBSetHlstr function. The deref function is function. The deref function is
primarily useful in examining the contents of the buffer.primarily useful in examining the contents of the buffer.

Getting String DataGetting String Data

uShort := VBGetHlstr(hlstr, pb, cbLen);uShort := VBGetHlstr(hlstr, pb, cbLen);

Copies the data from the Visual Basic string, pointed at by the handle (Copies the data from the Visual Basic string, pointed at by the handle (hlstrhlstr) and places it in the buffer pointed to by) and places it in the buffer pointed to by pbpb..

hlstrhlstr Handle to the Basic Language stringHandle to the Basic Language string
pbpb Far pointer to the desination buffer. It must be large enough to hold the cbLen number of bytes.Far pointer to the desination buffer. It must be large enough to hold the cbLen number of bytes.
cbLencbLen Maximum number of bytes to copy.Maximum number of bytes to copy.

uShort will contain the actual number of characters copied into uShort will contain the actual number of characters copied into pbpb

example:example:
cBuffer := ^Buffer;cBuffer := ^Buffer;
cbCount :=cbCount :=

VBGetHlstr(hlstr,cBuffer,sizeOf(Buffer) -1)VBGetHlstr(hlstr,cBuffer,sizeOf(Buffer) -1)

Setting String DataSetting String Data

err := VBSetHlstr(phlstr, pb, cbLen);err := VBSetHlstr(phlstr, pb, cbLen);

This function assigns a new string value (This function assigns a new string value (pbpb) to an existing Basic language string () to an existing Basic language string (hlstrhlstr).    The string can be smaller,).    The string can be smaller,
larger or equal in size to the existing string and will be managed by the Visual Basic string space. The string will almostlarger or equal in size to the existing string and will be managed by the Visual Basic string space. The string will almost
always be moved in memory to accomodate the changes in length. always be moved in memory to accomodate the changes in length.

phlstrphlstr A far pointer to the string handle. A far pointer to the string handle.
pbpb Far pointer to the string data which will replace the existing Basic language string.Far pointer to the string data which will replace the existing Basic language string.
cbLencbLen Length of the new string.Length of the new string.

example:example:
VBSetHlstr(phlstr, NULL, 0); VBSetHlstr(phlstr, NULL, 0); will set the string to an empty stringwill set the string to an empty string
VBSetHlstr(phlstr, 'New String', 10)VBSetHlstr(phlstr, 'New String', 10)

Replace an existing stringReplace an existing string
VBSetHlstr(phlstr, hlstr2, -1)VBSetHlstr(phlstr, hlstr2, -1)
Copies the existing string into a second existing string. (Copies the existing string into a second existing string. (hlstr2hlstr2))

Cleaning up your environmentCleaning up your environment
    When you are done with the strings your VBX allocated, you should always clean up after yourself.    Visual Basic    When you are done with the strings your VBX allocated, you should always clean up after yourself.    Visual Basic
doesn't do the clean up so anything you allocate will be left behind. Visual Basic developers have become very adept atdoesn't do the clean up so anything you allocate will be left behind. Visual Basic developers have become very adept at
tracking down those VBX's which are grabbibg and holding memory and they arn't quiet about denouncing them to thetracking down those VBX's which are grabbibg and holding memory and they arn't quiet about denouncing them to the
world at large.world at large.

VBDestroyHlstr(hlstr);VBDestroyHlstr(hlstr);

Just pass the handle and the memory used by the Basic language string is freed. The handle is now invalid and cannotJust pass the handle and the memory used by the Basic language string is freed. The handle is now invalid and cannot
be used to reference anything.    Whatever you do, don't use this routine to destroy temporary strings.    VBGetHlStr willbe used to reference anything.    Whatever you do, don't use this routine to destroy temporary strings.    VBGetHlStr will
free temporary strings.free temporary strings.

Null terminated stringsNull terminated strings

As I'm sure you'll notice, I didn't cover the Null terminated strings (HSZ) at all. Actually the calls are very much like theAs I'm sure you'll notice, I didn't cover the Null terminated strings (HSZ) at all. Actually the calls are very much like the
HLStr calls and can be used interchangeably with the exception of the Event calls. Only an HlStr string can be passedHLStr calls and can be used interchangeably with the exception of the Event calls. Only an HlStr string can be passed
as a parameter.    Examine the VBAPI_.PAS file and compare it to the CDK reference manual and you'll begin to seeas a parameter.    Examine the VBAPI_.PAS file and compare it to the CDK reference manual and you'll begin to see
how easy it is to use Visual Basic strings in your VBX.    If you look at the example in the last issue (The Pascalhow easy it is to use Visual Basic strings in your VBX.    If you look at the example in the last issue (The Pascal
Magazine, Issue 3) you'll see numerous places where the null terminated strings were created referenced andMagazine, Issue 3) you'll see numerous places where the null terminated strings were created referenced and
destroyed.destroyed.

This is the final installment in the initial VBX training series.    In the next issue we will begin creating a VBX for our ownThis is the final installment in the initial VBX training series.    In the next issue we will begin creating a VBX for our own
use.    This VBX will continually monitor the Windows resources, the available memory and the available disk space.use.    This VBX will continually monitor the Windows resources, the available memory and the available disk space.
Each of these items will be optional. If a resource is selected and a change is detected the VBX will fire a custom eventEach of these items will be optional. If a resource is selected and a change is detected the VBX will fire a custom event
to alert the Visual Basic program when these resources change. to alert the Visual Basic program when these resources change.

If there are additional tasks you'd like to see done in Borland Pascal, please drop a note to the editor of this magazineIf there are additional tasks you'd like to see done in Borland Pascal, please drop a note to the editor of this magazine
or to me on Compuserve and I'll try and include it in this or future VBX's.or to me on Compuserve and I'll try and include it in this or future VBX's.

Reference: Professional Features Book 1, Microsoft Visual Basic 3.0 Custom Control GuideReference: Professional Features Book 1, Microsoft Visual Basic 3.0 Custom Control Guide

copyright © 1994 Fred C. Hill, all rights reserved.copyright © 1994 Fred C. Hill, all rights reserved.

Fred Hill is president of Micro System Solutions. His company produces DOS and Windows applications in BorlandFred Hill is president of Micro System Solutions. His company produces DOS and Windows applications in Borland
Pascal 7.0 and Visual Basic 3.0. He may be reached on Compuserve 76060,102Pascal 7.0 and Visual Basic 3.0. He may be reached on Compuserve 76060,102

