
Creating Visual Basic VBXs:Creating Visual Basic VBXs:
The Property ListThe Property List
    by Fred C. Hill    by Fred C. Hill

TThe second in a series of articles on the secrets of writing VBX controls in Borland he second in a series of articles on the secrets of writing VBX controls in Borland
Pascal.Pascal.

This article will begin the process of creating a control to handle disk operations which are generally This article will begin the process of creating a control to handle disk operations which are generally
unavailable in Visual Basic. To start it is important that you understand the control property and how itunavailable in Visual Basic. To start it is important that you understand the control property and how it
is used. We begin by describing what a property list is and what it does.is used. We begin by describing what a property list is and what it does.
 Visual controls communicate via the property lists. Each of the items in the list is designed to allow Visual controls communicate via the property lists. Each of the items in the list is designed to allow
the Visual Basic developer to change, enhance, hide or in some fashion alter the default behavior or the Visual Basic developer to change, enhance, hide or in some fashion alter the default behavior or
to provide input for the control so it can do its job. This property list isn't provided by the Visual Basic to provide input for the control so it can do its job. This property list isn't provided by the Visual Basic
programmer but by the VBX developer.programmer but by the VBX developer.
 The list can be created just like any other list in any other program. That is it can be used as The list can be created just like any other list in any other program. That is it can be used as
compiled or can be built at run time. Of course, it must be remembered that the first user of the VBX compiled or can be built at run time. Of course, it must be remembered that the first user of the VBX
may not be the only user during its residency in memory so any run time creations must be ones may not be the only user during its residency in memory so any run time creations must be ones
which will effect all users. Considering this it is generally considered good strategy to set up all which will effect all users. Considering this it is generally considered good strategy to set up all
properties during compile time.properties during compile time.
 Developing the properties list is similar to laying out a COBOL programs data section although a lot Developing the properties list is similar to laying out a COBOL programs data section although a lot
more fun. Each of the required elements must be named and fixed in place so the Visual Basic more fun. Each of the required elements must be named and fixed in place so the Visual Basic
runtime (rtl) will know where to find them and what type they are.runtime (rtl) will know where to find them and what type they are.
 Each of the properties in the list is set up by initializing its unique property data structure. (see Each of the properties in the list is set up by initializing its unique property data structure. (see
Listing 1).Listing 1).
constconst
pName: array[0..12] of char = ‘PropName'#0;pName: array[0..12] of char = ‘PropName'#0;
 Prop_Name: tPROPINFO = (Prop_Name: tPROPINFO = (
 npszName: tOffset(@pName); npszName: tOffset(@pName);
 fl: DT_SHORT or PF_fGetData; fl: DT_SHORT or PF_fGetData;
 offsetData: tOffset(@dataVariable); offsetData: tOffset(@dataVariable);
 infoData: 0; infoData: 0;
 dataDefault: 0; dataDefault: 0;
 npszEnumList: 0; npszEnumList: 0;
 enumMax: 0); enumMax: 0);

typetype
 iPropIndex = (iPropIndex = (
 iProp_Name, iProp_Name,
 iProp_Index, iProp_Index,
 iProp_Tag, iProp_Tag,
 iProp_Left, iProp_Left,
 iProp_Top, iProp_Top,
 iProp_MyProp, iProp_MyProp,
 iProp_Last); iProp_Last);

constconst
 PropertyList : array[iPropIndex] of PropertyList : array[iPropIndex] of
 ofsPPropInfo = (ofsPPropInfo = (
 pPropInfo_STD_NAME, pPropInfo_STD_NAME,
 pPropInfo_STD_INDEX, pPropInfo_STD_INDEX,
 pPropInfo_STD_TAG, pPropInfo_STD_TAG,
 pPropInfo_STD_Left, pPropInfo_STD_Left,
 pPropInfo_STD_TOP, pPropInfo_STD_TOP,
 tOffset(@pName), tOffset(@pName),
 0); 0);

Listing 1Listing 1

The pPropInfo_STD_NAME property must be first in the list and must be followed by The pPropInfo_STD_NAME property must be first in the list and must be followed by
pPropInfo_STD_INDEX. After that the convention generally used, places all of the "standard" pPropInfo_STD_INDEX. After that the convention generally used, places all of the "standard"
properties first in the list. After that you can place your properties anywhere you wish. If you find a properties first in the list. After that you can place your properties anywhere you wish. If you find a
VBX using PPROPINFO_STD_CTLNAME it is just a throw back to the VB 1.0 days.VBX using PPROPINFO_STD_CTLNAME it is just a throw back to the VB 1.0 days.
Now that you have your property list defined let's discuss where the data goes and how does it make Now that you have your property list defined let's discuss where the data goes and how does it make
the journey from the Visual Basic program and back. The variables used to hold the controls the journey from the Visual Basic program and back. The variables used to hold the controls
properties can be anywhere in the VBX but is generally grouped into a single record structure. (See properties can be anywhere in the VBX but is generally grouped into a single record structure. (See
Listings 2 and 3)Listings 2 and 3)

typetype
PmyData = ^tMyDataPmyData = ^tMyData
 tMyData = record tMyData = record
 MyProp: integer; MyProp: integer;
end;end;

Listing 2Listing 2

A visual control supports the following data types:A visual control supports the following data types:
DT_Bool BooleanDT_Bool Boolean

a short integer;a short integer;
DT_COLORDT_COLOR

a long integer which holds an RGB value;a long integer which holds an RGB value;
DT_ENUMDT_ENUM

a short integer holding the enumerated value (0-255). Use of this data type activates the a short integer holding the enumerated value (0-255). Use of this data type activates the
npszEnumList and the enumMax fields in the property data structure;npszEnumList and the enumMax fields in the property data structure;

DT_HLSTRDT_HLSTR
String, this data type cannot be used in VB1.0 compatible VBX as support was added in VisualString, this data type cannot be used in VB1.0 compatible VBX as support was added in Visual
Basic 2.0. It is a VB string and can hold NULL values.Basic 2.0. It is a VB string and can hold NULL values.

DT_NSZDT_NSZ
a string, terminated by a NULL character.a string, terminated by a NULL character.

DT_LONGDT_LONG
A 32 bit signed integerA 32 bit signed integer

DT_OBJECTDT_OBJECT
Points to an Idispatch interface. Refer to the CDK distribution files for an explaination.Points to an Idispatch interface. Refer to the CDK distribution files for an explaination.

DT_PICTUREDT_PICTURE

Picture structure stored as an HPIC handle.Picture structure stored as an HPIC handle.
DT_REALDT_REAL

4 byte real.4 byte real.
DT_SHORTDT_SHORT

16 bit signed integer16 bit signed integer
DT_XPOSDT_XPOS

Long integer expressing an X coordinateLong integer expressing an X coordinate
DT_XSIZEDT_XSIZE

Long integer expressing an X size in twipsLong integer expressing an X size in twips
DT_YPosDT_YPos

Long integer expressing a Y coordinate in twips.Long integer expressing a Y coordinate in twips.
DT_YSIZEDT_YSIZE

Long Integer expressing a Y size in twips.Long Integer expressing a Y size in twips.

Visual Basic requires that certain data types be passed between the control and VB in special ways. Visual Basic requires that certain data types be passed between the control and VB in special ways.
Each of the data types are defined in the VBAPI provided by Microsoft on the Custom Control Each of the data types are defined in the VBAPI provided by Microsoft on the Custom Control
Developers Kit (CDK) and have been exported in the VBAPI_.PAS unit provided on the Developers Kit (CDK) and have been exported in the VBAPI_.PAS unit provided on the
accompanying diskette. The data types and the data handling flags are or'ed together to inform accompanying diskette. The data types and the data handling flags are or'ed together to inform
Visual Basic of the characteristics of the variable.Visual Basic of the characteristics of the variable.

typetype
 enum_Values1 = (DiskA, DiskB, DiskC, DiskD); enum_Values1 = (DiskA, DiskB, DiskC, DiskD);
 enum_Values2 = (DiskE, DiskF, DiskG, DiskH); enum_Values2 = (DiskE, DiskF, DiskG, DiskH);
 pDataDefine = ^tDataRecord; pDataDefine = ^tDataRecord;
 tDataRecord = record tDataRecord = record
 bBooleanVal: boolean; bBooleanVal: boolean;
 usIntegerVal: integer; usIntegerVal: integer;
 ulLongVal: longInt; ulLongVal: longInt;
 usEnumVal: eNum; usEnumVal: eNum;
 hszStringVal: Hsz; hszStringVal: Hsz;
 usAction: Integer; usAction: Integer;
end;end;

Listing 3Listing 3

Listing 4 is the structure defining the Boolean value. While the Pascal language defines and Listing 4 is the structure defining the Boolean value. While the Pascal language defines and
manages the boolean internally it is, in fact, a byte value and is considered such by Visual Basic. In manages the boolean internally it is, in fact, a byte value and is considered such by Visual Basic. In
the next issue we will discuss the methods used to handle the differences between Visual Basic and the next issue we will discuss the methods used to handle the differences between Visual Basic and
Pascal when it comes to data handling.Pascal when it comes to data handling.

constconst
BooleanName:BooleanName: array[0..12] of Char = 'Boolean'#0;array[0..12] of Char = 'Boolean'#0;
 Property_Boolean:    tPROPINF Property_Boolean:    tPROPINF
constconst
 BooleanName: BooleanName: array[0..12] of Char = 'Boolean'#0;array[0..12] of Char = 'Boolean'#0;
 Property_Boolean: tPROPINFO = (npszName: tOffset(@BooleanName); Property_Boolean: tPROPINFO = (npszName: tOffset(@BooleanName);

        fl: DT_Bool or PF_fGetData or PF_fSetData or PF_fSaveData;        fl: DT_Bool or PF_fGetData or PF_fSetData or PF_fSaveData;
        offsetData: tOffset(@bBooleanVal);        offsetData: tOffset(@bBooleanVal);
        infoData:    0;        infoData:    0;
        dataDefault:    0;        dataDefault:    0;
        npszEnumList: 0;        npszEnumList: 0;
        enumMax:    0);        enumMax:    0);

Listing 4Listing 4

Listing 5 shows the definition of an Integer value. Since Visual Basic, all VBX's and Borland Pascal Listing 5 shows the definition of an Integer value. Since Visual Basic, all VBX's and Borland Pascal
are still 16 bit systems and have yet to be released in a 32 bit version, an integer is still only 16 bits are still 16 bit systems and have yet to be released in a 32 bit version, an integer is still only 16 bits
long. A longInt is defined in a similar manner and is actually 2 computer words or 32 bits in length.long. A longInt is defined in a similar manner and is actually 2 computer words or 32 bits in length.

IntegerName: array[0..12] of Char = 'Integer'#0;IntegerName: array[0..12] of Char = 'Integer'#0;
Property_Integer: tPROPINFO = (npszName: tOffset(@IntegerName);Property_Integer: tPROPINFO = (npszName: tOffset(@IntegerName);
 fl: DT_Short or PF_fGetData or PF_fSetData or PF_fSaveData; fl: DT_Short or PF_fGetData or PF_fSetData or PF_fSaveData;
 offsetData: tOffset(usIntegerVal); offsetData: tOffset(usIntegerVal);
 infoData: 0; infoData: 0;
 dataDefault: 0; dataDefault: 0;
 npszEnumList: 0; npszEnumList: 0;
 enumMax: 0); enumMax: 0);

Listing 5Listing 5

Listing 6 contains the definition of an enumerated list. When Turbo Pascal 1.0 was first released I Listing 6 contains the definition of an enumerated list. When Turbo Pascal 1.0 was first released I
thought the enumerated list was almost magic. It simplified the language tremendously and made thought the enumerated list was almost magic. It simplified the language tremendously and made
defining non standard sequences extremely easy. When an Enum data variable is defined in a VBX itdefining non standard sequences extremely easy. When an Enum data variable is defined in a VBX it
is translated to a pop down list in the Property Window. The developer can select one of the choices is translated to a pop down list in the Property Window. The developer can select one of the choices
or by double clicking the edit box can cycle through the choices until the correct one is found.or by double clicking the edit box can cycle through the choices until the correct one is found.

ENumName:ENumName: array[0..12] of Char = 'ENum'#0;array[0..12] of Char = 'ENum'#0;
EnumEntries: array[0..60] of Char = EnumEntries: array[0..60] of Char = 'A:'#0'B:'#0'D:'#0'E:'#0'F:'#0'G:'#0'H:'#0'I:'#0#0;'A:'#0'B:'#0'D:'#0'E:'#0'F:'#0'G:'#0'H:'#0'I:'#0#0;
Property_ENum: tPROPINFO = (npszName: tOffset(@ENumName);Property_ENum: tPROPINFO = (npszName: tOffset(@ENumName);
 fl: DT_ENUM or PF_fGetData or PF_fSetData or PF_fSaveData; fl: DT_ENUM or PF_fGetData or PF_fSetData or PF_fSaveData;
offsetData: tOffset(@usEnumVal);offsetData: tOffset(@usEnumVal);
infoData:infoData: 0;0;
dataDefault: dataDefault: 0;0;
npszEnumList: npszEnumList: tOffset(@EnumEntries);tOffset(@EnumEntries);
enumMax:enumMax: 8);8);

Listing 6Listing 6

After the Integer and LongInt, the string will undoubtedly be the most commonly used data type in theAfter the Integer and LongInt, the string will undoubtedly be the most commonly used data type in the
list. (See Listing 7) Except for the picture, which we won't be covering in this article, the string will list. (See Listing 7) Except for the picture, which we won't be covering in this article, the string will
also be the most difficult to use and control. The reason for this is that Visual Basic has provisions to also be the most difficult to use and control. The reason for this is that Visual Basic has provisions to
handle most string types but prefers a Visual Basic string. Procedures are provided in the Control handle most string types but prefers a Visual Basic string. Procedures are provided in the Control

Development Kit (CDK) to convert strings to and from NSZ (null terminated) and HLSTR, the Development Kit (CDK) to convert strings to and from NSZ (null terminated) and HLSTR, the
preferred Visual Basic string which can contain imbedded nulls. Routines are also provided to create preferred Visual Basic string which can contain imbedded nulls. Routines are also provided to create
and destroy memory areas to hold and pass both temporary and permanent strings of both types.and destroy memory areas to hold and pass both temporary and permanent strings of both types.
 In the Windows event paradigm it is important to understand that the address you had for a string In the Windows event paradigm it is important to understand that the address you had for a string
during one pass through the VBX probably won't be the address during a subsequent pass.during one pass through the VBX probably won't be the address during a subsequent pass.

StringName: array[0..12] of Char = 'String'#0;StringName: array[0..12] of Char = 'String'#0;
Property_String:tPROPINFO = (npszName:tOffset(@StringName);Property_String:tPROPINFO = (npszName:tOffset(@StringName);
 fl: fl: DT_HSZ or PF_fGetData or PF_fSetData or PF_fSaveData;DT_HSZ or PF_fGetData or PF_fSetData or PF_fSaveData;
 offsetData: tOffset(@hszStringVal); offsetData: tOffset(@hszStringVal);
 infoData: infoData: 0;0;
 dataDefault: dataDefault: 0;0;
 npszEnumList: 0; npszEnumList: 0;
 enumMax: enumMax: 0);0);

Listing 7Listing 7

As mentioned before, we will not be covering the DT_PICTURE variable in this article. We will As mentioned before, we will not be covering the DT_PICTURE variable in this article. We will
attempt to cover it in a future article and in fact is complex enough to deserve an article of its own. attempt to cover it in a future article and in fact is complex enough to deserve an article of its own.
We will also not be specifically discussing the DT_COLOR, the DT_OBJECT, or the DTXx and We will also not be specifically discussing the DT_COLOR, the DT_OBJECT, or the DTXx and
DT_Yx data types although in future articles I may use these types. When I do use them I'll make a DT_Yx data types although in future articles I may use these types. When I do use them I'll make a
point of descibing their use. I recommend that, if you get into writing controls in a big way that you point of descibing their use. I recommend that, if you get into writing controls in a big way that you
invest in the CDK which will provide detailed documentation about the use of these data types.invest in the CDK which will provide detailed documentation about the use of these data types.
 The following is a list of property flags can be used in the The following is a list of property flags can be used in the flfl variable of the property structure. Each variable of the property structure. Each
of these initiates an automatic default action which is performed on the property at some point in the of these initiates an automatic default action which is performed on the property at some point in the
life of the control.life of the control.

PF_fDefValPF_fDefVal
Causes Visual Basic to avoid saving and loading the property to disk when the value is equal Causes Visual Basic to avoid saving and loading the property to disk when the value is equal
to the default value in the PROPINFO structure.to the default value in the PROPINFO structure.

PF_fEditablePF_fEditable
Enables the appliation developer to edit text in the settings box directly.Enables the appliation developer to edit text in the settings box directly.

PF_fGetDataPF_fGetData
Visual Basic gets data for this property by copying it directly from the programmer defined Visual Basic gets data for this property by copying it directly from the programmer defined
structure.structure.

PF_fGetHszMsgPF_fGetHszMsg
Causes Visual Basic to send a VBM_GETPROPERTYHSZ message to the control whenever Causes Visual Basic to send a VBM_GETPROPERTYHSZ message to the control whenever
the property value is displayed in the Properties window. If this flag is not used Visual Basic the property value is displayed in the Properties window. If this flag is not used Visual Basic
will get the property value and displays it in the settings box.will get the property value and displays it in the settings box.

PF_fGetMsgPF_fGetMsg
Causes Visual Basic to send VBM_GETPROPERTY message when the property value is Causes Visual Basic to send VBM_GETPROPERTY message when the property value is
requested. Either this flag or the PF_FGetData flag should be used.requested. Either this flag or the PF_FGetData flag should be used.

PF_fLoadMsgOnly [2.0]PF_fLoadMsgOnly [2.0]
Causes Visual Basic to send the VBM_LOADPROPERTY message when the form is loaded Causes Visual Basic to send the VBM_LOADPROPERTY message when the form is loaded
from a file. This property is similar to the PF_fSaveMsg, except that a PF_fSAVEPROPERTY from a file. This property is similar to the PF_fSaveMsg, except that a PF_fSAVEPROPERTY

message is not generated, This allows controls to be backward compatible by loading message is not generated, This allows controls to be backward compatible by loading
properties in previous versions that are no longer supported in newer versions.properties in previous versions that are no longer supported in newer versions.

PF_fLoadDataOnly [2.0]PF_fLoadDataOnly [2.0]
Causes Visual Basic to load the property from a form file but prevents the property from being Causes Visual Basic to load the property from a form file but prevents the property from being
written back out. This is similar to the PF_fSAVEDATA except that property controls are not written back out. This is similar to the PF_fSAVEDATA except that property controls are not
rewritten. This allows custom controls to be compatible with Visual Basic 1.0.rewritten. This allows custom controls to be compatible with Visual Basic 1.0.

PF_fNoMultiSelect [2.0]PF_fNoMultiSelect [2.0]
Specifies that this property not be displayed when that control is part of a selected group.Specifies that this property not be displayed when that control is part of a selected group.

PF_fNoInitDefPF_fNoInitDef
Prevents Visual Basic from setting the property to the default during the control load. If Prevents Visual Basic from setting the property to the default during the control load. If
PF_fDefVal is not set, this flag has no effect.PF_fDefVal is not set, this flag has no effect.

PF_fNoRunTimeR [2.0]PF_fNoRunTimeR [2.0]
Indicates that the property is write-only at run-time.Indicates that the property is write-only at run-time.

PF_fNoRunTimeWPF_fNoRunTimeW
Indicates that the property is read-only at run-time.Indicates that the property is read-only at run-time.

PF_fNoShowPF_fNoShow
Prevents the property from appearing in the Properties window. This is also the proper flag to Prevents the property from appearing in the Properties window. This is also the proper flag to
add to the fl variable when retiring a property.add to the fl variable when retiring a property.

PF_fPreHwndPF_fPreHwnd
Causes the property to be loaded before the window is created. These properties generally Causes the property to be loaded before the window is created. These properties generally
affect the windows style and should be made in response to a WM_NCCREATE message.affect the windows style and should be made in response to a WM_NCCREATE message.

PF_fPropArrayPF_fPropArray
Specifies that the property is an array. A data structure is required when getting and setting Specifies that the property is an array. A data structure is required when getting and setting
this property. The PF_fNoShow flag must be set when using this flag.this property. The PF_fNoShow flag must be set when using this flag.

PF_fSaveDataPF_fSaveData
When the form is saved to a file Visual Basic gets its value from the control and reads its valueWhen the form is saved to a file Visual Basic gets its value from the control and reads its value
from disk when loading the form.from disk when loading the form.

PF_fSaveMsgPF_fSaveMsg
Causes Visual Basic to issue a VBM_SAVEPROPERTY message when the form is saved and Causes Visual Basic to issue a VBM_SAVEPROPERTY message when the form is saved and
a VBM_LOADPROPERTY when the form is loaded.a VBM_LOADPROPERTY when the form is loaded.

PF_fSetCheckPF_fSetCheck
Cause Visual Basic to send a VBM_CHECKPROPERTY message before it sets the property Cause Visual Basic to send a VBM_CHECKPROPERTY message before it sets the property
value. This gives the control a chance to check the validity of the value before it is set.value. This gives the control a chance to check the validity of the value before it is set.

PF_fSetDataPF_fSetData
Visual Basic sets the value of the property by placing the data directly in the programmer Visual Basic sets the value of the property by placing the data directly in the programmer
defined structure.defined structure.

PF_fSetMsgPF_fSetMsg
Causes Visual Basic to send a VBM_SETPROPERTY message when the user attempts to setCauses Visual Basic to send a VBM_SETPROPERTY message when the user attempts to set
the prthe property. Either this flag or the PF_fSETData flag must be used. If both are used then the operty. Either this flag or the PF_fSETData flag must be used. If both are used then the
data is transferred before the message is sent.data is transferred before the message is sent.

PF_fUpdateOnEditPF_fUpdateOnEdit
This flag causes the property value to be set each time a character is typed in the settings box This flag causes the property value to be set each time a character is typed in the settings box
of the Properties window. If this flag is not used, the property is not set until the change is of the Properties window. If this flag is not used, the property is not set until the change is
committed.committed.

A product generally goes through many versions from its early beginnings to the day it is retired. A product generally goes through many versions from its early beginnings to the day it is retired.

During that lifetime properties can change. When you have new properties to add, by all means add During that lifetime properties can change. When you have new properties to add, by all means add
them but them but never, never ... never never, never ... never remove the old ones. When a Visual Basic program is saved to disk, remove the old ones. When a Visual Basic program is saved to disk,
property values are saved with an ID equivalent to its index into your property table. If you add or property values are saved with an ID equivalent to its index into your property table. If you add or
delete from the middle of your table all subsequent properties will be thrown out of kilter. What this delete from the middle of your table all subsequent properties will be thrown out of kilter. What this
means to the developer is that upgrading from one version to another will be virtually impossible means to the developer is that upgrading from one version to another will be virtually impossible
without throwing out the older forms and starting over. If you must retire a property you can always without throwing out the older forms and starting over. If you must retire a property you can always
make it invisible to the user, make it invisible to the user, but leave it where it was first defined.but leave it where it was first defined. Visual Basic always sorted the Visual Basic always sorted the
property list into alphabetic order so where you place the property isn't critical.property list into alphabetic order so where you place the property isn't critical.
 In the next article we will cover how to handle each of the various data types. In particular we will In the next article we will cover how to handle each of the various data types. In particular we will
discuss how to handle Visual Basic strings, verses pChar strings, verses Pascal strings, etc. Also the discuss how to handle Visual Basic strings, verses pChar strings, verses Pascal strings, etc. Also the
critical event processing paridgm which can cause a valid data pointer to become invalid from one critical event processing paridgm which can cause a valid data pointer to become invalid from one
use to the next.use to the next.

copyright © 1994 Fred C. Hill, all rights reserved.copyright © 1994 Fred C. Hill, all rights reserved.

Fred Hill is president of Micro System Solutions. His company produces DOS and Windows applications in Borland Pascal 7.0 Fred Hill is president of Micro System Solutions. His company produces DOS and Windows applications in Borland Pascal 7.0
and Visual Basic 3.0. He may be reached on Compuserve 76060,102and Visual Basic 3.0. He may be reached on Compuserve 76060,102

