
Creating Visual Basic VBX's:Creating Visual Basic VBX's:
The Basic ControlThe Basic Control

by Fred C. Hillby Fred C. Hill

The first in a series of articles on the secrets of writing VBX controls in Borland PascalThe first in a series of articles on the secrets of writing VBX controls in Borland Pascal

Everyone from the top down will tell you that to Everyone from the top down will tell you that to reallyreally program in Windows you must use C or C++.    With the release of TPW program in Windows you must use C or C++.    With the release of TPW
1.0 we've all learned different, but in a lot of ways those people are correct.    The tool makers have listened and with few 1.0 we've all learned different, but in a lot of ways those people are correct.    The tool makers have listened and with few
exceptions the tools needed to do a lot of things exceptions the tools needed to do a lot of things easyeasy in Windows are all written for C and C++.    What a lot of developers don't in Windows are all written for C and C++.    What a lot of developers don't
realize is that with a little ingenuity a lot of those C tools can be made to work with Borland Pascal.realize is that with a little ingenuity a lot of those C tools can be made to work with Borland Pascal.
    From the early days of Windows 3.0 (maybe even 2.0), Microsoft has been saying that to write for Windows you need to know    From the early days of Windows 3.0 (maybe even 2.0), Microsoft has been saying that to write for Windows you need to know
the Software Development Kit. (SDK)    A few years ago, along with the release of Visual Basic MS introduced an SDK which the Software Development Kit. (SDK)    A few years ago, along with the release of Visual Basic MS introduced an SDK which
was designed to produce a special type of Dynamic Load Library. (DLL)    They called this SDK, the Control Development Kit or was designed to produce a special type of Dynamic Load Library. (DLL)    They called this SDK, the Control Development Kit or
CDK. With this kit you are able to extend the application development toolkit provided with Visual Basic.    What the kit produced CDK. With this kit you are able to extend the application development toolkit provided with Visual Basic.    What the kit produced
when linked into your C programs was a DLL with a number of special features unique to Visual Basic and a few variations of when linked into your C programs was a DLL with a number of special features unique to Visual Basic and a few variations of
C++.    The developer puts a .VBX file extension on it but for all intents and purposes it was still a DLL.C++.    The developer puts a .VBX file extension on it but for all intents and purposes it was still a DLL.
    Custom controls extend the VB Toolbox. Your custom control can use the standard properties, events, and methods built into     Custom controls extend the VB Toolbox. Your custom control can use the standard properties, events, and methods built into
Visual Basic, or it could introduce some totally new ones.    You decide how your control is displayed and how its method Visual Basic, or it could introduce some totally new ones.    You decide how your control is displayed and how its method
behave. This article isn't going to teach you how to write a Custom Control, but rather how to use VBAPI_, one Pascal interface behave. This article isn't going to teach you how to write a Custom Control, but rather how to use VBAPI_, one Pascal interface
to the CDK. There are many books available describing how to write Custom Controls in C.    This article will enable you produceto the CDK. There are many books available describing how to write Custom Controls in C.    This article will enable you produce
a VB compliant control using the language we all love.a VB compliant control using the language we all love.

The StepsThe Steps
I don't consider myself a Windows expert. I'm in the process of learning about Windows and that in itself is a huge undertaking.I don't consider myself a Windows expert. I'm in the process of learning about Windows and that in itself is a huge undertaking.
What I hope to do is explain what I went through getting my first VBX to work correctly and what files I needed to place in my What I hope to do is explain what I went through getting my first VBX to work correctly and what files I needed to place in my
uses to interface with the VBAPI.OBJ file which I extracted from the VBAPI.LIB which came with Visual Basic Pro 3.0.uses to interface with the VBAPI.OBJ file which I extracted from the VBAPI.LIB which came with Visual Basic Pro 3.0.
    Before I discuss the special properties that turn a DLL into a Custom Control and what must be done to make it a Visual Basic    Before I discuss the special properties that turn a DLL into a Custom Control and what must be done to make it a Visual Basic
VBX, let me explain the project we'll be undertaking here. In the CDK, Microsoft has graciously given blanket permission to use VBX, let me explain the project we'll be undertaking here. In the CDK, Microsoft has graciously given blanket permission to use
their examples in any fashion we may see fit. Microsoft has not, however, turned loose the CDK itself, so... if you don't have the their examples in any fashion we may see fit. Microsoft has not, however, turned loose the CDK itself, so... if you don't have the
CDK or a copy of VB3.0 Professional then the following code will be of little use to you.    If you're interested in turning your latestCDK or a copy of VB3.0 Professional then the following code will be of little use to you.    If you're interested in turning your latest
DLL project into a valuable 3rd party control then I suggest you look into getting Visual Basic.    In this article I will be explaining DLL project into a valuable 3rd party control then I suggest you look into getting Visual Basic.    In this article I will be explaining
how to translate the basic example in the CDK, PUSH.VBX to Pascal.    This example subclasses a Windows push button and how to translate the basic example in the CDK, PUSH.VBX to Pascal.    This example subclasses a Windows push button and
makes it your own.makes it your own.
    The five steps necessary to write a VBX are:    The five steps necessary to write a VBX are:
    1. Create your UP, Down, EGA and MONO tool buttons. These should be 28 X 28 to fit on the VB toolbar. I have included the     1. Create your UP, Down, EGA and MONO tool buttons. These should be 28 X 28 to fit on the VB toolbar. I have included the
bitmaps I used to create my version of PUSH in the files on this issue's disk.bitmaps I used to create my version of PUSH in the files on this issue's disk.
    2. Define your Property list. Of course to do this you have to have a complete design of what information your system needs.    2. Define your Property list. Of course to do this you have to have a complete design of what information your system needs.
    3. Define your Event list.    Same as number 2. In addition you'll have to be sure the properties you pass back and forth are in     3. Define your Event list.    Same as number 2. In addition you'll have to be sure the properties you pass back and forth are in
VB strings and not Pascal or null terminated string.    VBAPI includes routines to convert null strings back and forth to VB strings.VB strings and not Pascal or null terminated string.    VBAPI includes routines to convert null strings back and forth to VB strings.
    4. Code your Control just like you would if it were a DLL. What won't work in a DLL, won't work in a VBX. Other than that, be     4. Code your Control just like you would if it were a DLL. What won't work in a DLL, won't work in a VBX. Other than that, be
flexible, remember that the user is (usually) providing all of your positioning data, the fonts, colors, text, etc. You merely take thatflexible, remember that the user is (usually) providing all of your positioning data, the fonts, colors, text, etc. You merely take that
information and tie it together in the context of the Control.information and tie it together in the context of the Control.
    5. Change the extension to .VBX.    You really don't have to do this step since VB and Windows doesn't care but the customer     5. Change the extension to .VBX.    You really don't have to do this step since VB and Windows doesn't care but the customer
is used to including VBX's in their projects, and besides, DLL isn't in the default selection list when adding to a project.is used to including VBX's in their projects, and besides, DLL isn't in the default selection list when adding to a project.

Pascal Custom Control FilePascal Custom Control File
Thanks go to Microsoft for allowing unlimited use of the examples in the CDK.    Without them I'd have had a much harder time Thanks go to Microsoft for allowing unlimited use of the examples in the CDK.    Without them I'd have had a much harder time
developing my controls and producing this article.developing my controls and producing this article.

The key to writing a control is in the interface between the program and the CDK library. This interface was made available on The key to writing a control is in the interface between the program and the CDK library. This interface was made available on
the BPASCAL forum on COMPUSERVE. Unfortunately I had no name to associate it with and it was released to the public the BPASCAL forum on COMPUSERVE. Unfortunately I had no name to associate it with and it was released to the public
domain. I freely give you that interface to experiment with.    To use it you'll have to extract the VBAPI.OBJ file from the    domain. I freely give you that interface to experiment with.    To use it you'll have to extract the VBAPI.OBJ file from the   
VBAPI.LIB provided in the SDK.    Numerous library management tools exist in the various languages for that purpose.I'm not VBAPI.LIB provided in the SDK.    Numerous library management tools exist in the various languages for that purpose.I'm not
going to go into a long explanation about what is in the interface file.    Most of it is self explanatory after you examine the CDK going to go into a long explanation about what is in the interface file.    Most of it is self explanatory after you examine the CDK
documentation. It merely translates the C data types and VB procedure calls into Borland Pascal. One warning however, if a documentation. It merely translates the C data types and VB procedure calls into Borland Pascal. One warning however, if a
routine is provided in the VBAPI then use that rather than a standard Windows API.    This also allies to the messages passed routine is provided in the VBAPI then use that rather than a standard Windows API.    This also allies to the messages passed
between VB and your control.    Many times they appear to be equal but in fact VB won't respond properly if the wrong one is between VB and your control.    Many times they appear to be equal but in fact VB won't respond properly if the wrong one is
used.used.

The programThe program
So let's go through our sample VBX in Pascal, piece by piece.    The listings show all of the code used, but remember it is also So let's go through our sample VBX in Pascal, piece by piece.    The listings show all of the code used, but remember it is also

on the disk, along with the supporting files too.on the disk, along with the supporting files too.
    The first thing to do in include the VBAPI_ unit in you r uses list:    The first thing to do in include the VBAPI_ unit in you r uses list:

library PasPush;library PasPush;
{$R push.RES}{$R push.RES}
{$D Micro System Solutions {$D Micro System Solutions -- MS VB3.0 Push Demo} MS VB3.0 Push Demo}
usesuses
    wintypes,    wintypes,
    winprocs,    winprocs,
    vbapi_,     vbapi_,
    strings;    strings;

This Unit provides translation from the VBAPI.LIB (OBJ) in the CDK and at the same time it translates from VB paradigm to the This Unit provides translation from the VBAPI.LIB (OBJ) in the CDK and at the same time it translates from VB paradigm to the
Borland T(object) paradigmBorland T(object) paradigm
Next come some ID definitions (see Listing 1). Each of the bitmaps used in the control have to be created by and placed in Next come some ID definitions (see Listing 1). Each of the bitmaps used in the control have to be created by and placed in
the .RES file.    The easiest way is, of course, to use the Resource Workshop.    The IDBMP_Push bmp is the default used for the .RES file.    The easiest way is, of course, to use the Resource Workshop.    The IDBMP_Push bmp is the default used for
the unselected picture of the bitmap and is the one used in the VB toolbar in the unselected mode. The IDBMP_PushDOWN is the unselected picture of the bitmap and is the one used in the VB toolbar in the unselected mode. The IDBMP_PushDOWN is
the selected bitmap and is only used in the toolbar when this tool is selected.    The IDBMP_PushEGA & MONO are used for the selected bitmap and is only used in the toolbar when this tool is selected.    The IDBMP_PushEGA & MONO are used for
EGA and non-color screens and are produced in black and white only.    Note that Autobeep in the TPush record    is the only nonEGA and non-color screens and are produced in black and white only.    Note that Autobeep in the TPush record    is the only non
standard data passed between the control and the VB Form.standard data passed between the control and the VB Form.

{Toolbox bitmap resource IDs. }{Toolbox bitmap resource IDs. }
constconst
IDBMP_PushIDBMP_Push =    8000;=    8000;
IDBMP_PushDOWNIDBMP_PushDOWN = 8001;= 8001;
IDBMP_PushMONOIDBMP_PushMONO = 8003;= 8003;
IDBMP_PushEGAIDBMP_PushEGA = 8006;= 8006;

// Standard Error Values}// Standard Error Values}
ERR_NoneERR_None = 0;= 0;
ERR_InvPropValERR_InvPropVal = 380;= 380;
{ Error$(380) = "Invalid property value"}{ Error$(380) = "Invalid property value"}
{    Procedure Declarations }{    Procedure Declarations }
{    Global Variables and Constants }{    Global Variables and Constants }
{    Push control data and structs }{    Push control data and structs }
typetype
PPush = ^TPush;PPush = ^TPush;
TPush = recordTPush = record

AutoBeep: AutoBeep: Bool;Bool;
endend;;

Listing 1Listing 1

The Properties ListThe Properties List
The Properties list (See listing 2) is the technique used to communicate back and forth between the Visual Basic program and The Properties list (See listing 2) is the technique used to communicate back and forth between the Visual Basic program and
the Custom Control. To support a property, you declare it in the property list.the Custom Control. To support a property, you declare it in the property list.

////--}}
constconst
IPROP_Push_NAME    = $0000;IPROP_Push_NAME    = $0000;
IPROP_Push_INDEX = $0001;IPROP_Push_INDEX = $0001;
IPROP_Push_PARENT = $0002;IPROP_Push_PARENT = $0002;
IPROP_Push_BACKCOLOR = $0003;IPROP_Push_BACKCOLOR = $0003;
IPROP_Push_LEFT = $0004;IPROP_Push_LEFT = $0004;
IPROP_Push_TOP = $0005;IPROP_Push_TOP = $0005;
IPROP_Push_WIDTH = $0006;IPROP_Push_WIDTH = $0006;
IPROP_Push_HEIGHT = $0007;IPROP_Push_HEIGHT = $0007;
IPROP_Push_ENABLED = $0008;IPROP_Push_ENABLED = $0008;
IPROP_Push_VISIBLE = $0009;IPROP_Push_VISIBLE = $0009;
IPROP_Push_MOUSEPOINTER = $000A;IPROP_Push_MOUSEPOINTER = $000A;
IPROP_Push_CAPTION = $000B;IPROP_Push_CAPTION = $000B;
IPROP_Push_FONTNAME = $000C;IPROP_Push_FONTNAME = $000C;
IPROP_Push_FONTSIZE = $000D;IPROP_Push_FONTSIZE = $000D;

IPROP_Push_FONTBOLD = $000E;IPROP_Push_FONTBOLD = $000E;
IPROP_Push_FONTITALIC = $000F;IPROP_Push_FONTITALIC = $000F;
IPROP_Push_FONTSTRIKE = $0010;IPROP_Push_FONTSTRIKE = $0010;
IPROP_Push_FONTUNDER = $0011;IPROP_Push_FONTUNDER = $0011;
IPROP_Push_DRAG = $0012;IPROP_Push_DRAG = $0012;
IPROP_Push_DRAGICON = $0013;IPROP_Push_DRAGICON = $0013;
IPROP_Push_TABINDEX = $0014;IPROP_Push_TABINDEX = $0014;
IPROP_Push_TABSTOP = $0015;IPROP_Push_TABSTOP = $0015;
IPROP_Push_TAG = $0016;IPROP_Push_TAG = $0016;
IPROP_Push_AutoBeep = $0017;IPROP_Push_AutoBeep = $0017;

AutoBeepName : array[0..8] of Char = 'AutoBeep'#0;AutoBeepName : array[0..8] of Char = 'AutoBeep'#0;

Property_AutoBeep: tPROPINFO    = (Property_AutoBeep: tPROPINFO    = (
npszName :    tOffset(@AutoBeepName);npszName :    tOffset(@AutoBeepName);
fl :fl : DT_Bool or PF_fGetData or DT_Bool or PF_fGetData or

PF_fSetData or PF_fSetData or
PF_fSaveData;PF_fSaveData;

offsetDataoffsetData :    0;:    0;
infoDatainfoData :    0;:    0;
dataDefaultdataDefault :    0;:    0;
npszEnumListnpszEnumList :    0;:    0;
enumMaxenumMax :    0   );:    0   );
constconst
PropListPush : array[0..24]of PropListPush : array[0..24]of ofsPPROPINFO = (ofsPPROPINFO = (
pPROPInfo_STD_CTLNAME,pPROPInfo_STD_CTLNAME,
PPROPINFO_STD_INDEX,PPROPINFO_STD_INDEX,
PPROPINFO_STD_PARENT,PPROPINFO_STD_PARENT,
PPROPINFO_STD_BACKCOLOR,PPROPINFO_STD_BACKCOLOR,
PPROPINFO_STD_LEFT,PPROPINFO_STD_LEFT,
PPROPINFO_STD_TOP,PPROPINFO_STD_TOP,
PPROPINFO_STD_WIDTH,PPROPINFO_STD_WIDTH,
PPROPINFO_STD_HEIGHT,PPROPINFO_STD_HEIGHT,
PPROPINFO_STD_ENABLED,PPROPINFO_STD_ENABLED,
PPROPINFO_STD_VISIBLE,PPROPINFO_STD_VISIBLE,
PPROPINFO_STD_MOUSEPOINTER,PPROPINFO_STD_MOUSEPOINTER,
PPROPINFO_STD_CAPTION,PPROPINFO_STD_CAPTION,
PPROPINFO_STD_FONTNAME,PPROPINFO_STD_FONTNAME,
PPROPINFO_STD_FONTSIZE,PPROPINFO_STD_FONTSIZE,
PPROPINFO_STD_FONTBOLD,PPROPINFO_STD_FONTBOLD,
PPROPINFO_STD_FONTITALIC,PPROPINFO_STD_FONTITALIC,
PPROPINFO_STD_FONTSTRIKE,PPROPINFO_STD_FONTSTRIKE,
PPROPINFO_STD_FONTUNDER,PPROPINFO_STD_FONTUNDER,
PPROPINFO_STD_DRAGMODE,PPROPINFO_STD_DRAGMODE,
PPROPINFO_STD_DRAGICON,PPROPINFO_STD_DRAGICON,
PPROPINFO_STD_TABINDEX,PPROPINFO_STD_TABINDEX,
PPROPINFO_STD_TABSTOP,PPROPINFO_STD_TABSTOP,
PPROPINFO_STD_TAG,PPROPINFO_STD_TAG,
ofsPPropInfo(@Property_AutoBeep),ofsPPropInfo(@Property_AutoBeep),
{ point to non-standard property}{ point to non-standard property}
0);0);

Listing 2.Listing 2.

Standard properties are those which are supported by the VB runtime.    Most of the properties in this list are standard Visual Standard properties are those which are supported by the VB runtime.    Most of the properties in this list are standard Visual
Basic properties. Non standard are those you wish to support and for which you have written supporting code.    The one non-Basic properties. Non standard are those you wish to support and for which you have written supporting code.    The one non-
standard property in this list is the beep property which will be used to provide a sound to the button.standard property in this list is the beep property which will be used to provide a sound to the button.
        The tPROPINFO structure defines the data and the processing used for the non-standard property.    In this case the property The tPROPINFO structure defines the data and the processing used for the non-standard property.    In this case the property
name, used in the VB property list is located at tOffset@AutoBeepName (see above).    The field is boolean and the VB runtime name, used in the VB property list is located at tOffset@AutoBeepName (see above).    The field is boolean and the VB runtime
will get the data (PF_fGetData) directly from the record structure pointed to by the model structure. VB will also put the data will get the data (PF_fGetData) directly from the record structure pointed to by the model structure. VB will also put the data
(PF_fSetData) directly into the save structure. PF_fSaveData tells VB to get the value from the record structure and write it disk (PF_fSetData) directly into the save structure. PF_fSaveData tells VB to get the value from the record structure and write it disk
when the Form is saved.    Additional (and different) flag values can make VB act differently to different data.when the Form is saved.    Additional (and different) flag values can make VB act differently to different data.

The Event ListThe Event List
The Event list (See Listing 3) is the method by which the Custom Control interfaces with the VB program.    The Event driven The Event list (See Listing 3) is the method by which the Custom Control interfaces with the VB program.    The Event driven
interface is what makes VB such a powerful development environment. The VB run-time will handle many standard events for interface is what makes VB such a powerful development environment. The VB run-time will handle many standard events for
you, while still giving you the option to override VB. In addition to the standard events you can add and fire your own events you, while still giving you the option to override VB. In addition to the standard events you can add and fire your own events
based on what your control is doing and what it needs from the calling VB program.based on what your control is doing and what it needs from the calling VB program.
    In the following list are three of the most rudimentary events required for a Custom Control. The     In the following list are three of the most rudimentary events required for a Custom Control. The ClickClick event which is required event which is required
for an object to gain the focus, and the for an object to gain the focus, and the DragDrop/DragOverDragDrop/DragOver events which allow the object to be placed and moved about the events which allow the object to be placed and moved about the
form.    We'll see these and others in operation as we well.form.    We'll see these and others in operation as we well.
The event name, The event name, EventClick NameEventClick Name, is made by VB into the subroutine / function name,    for example:, is made by VB into the subroutine / function name,    for example:
Sub PasButton1_Click(ButtonCaption as String)Sub PasButton1_Click(ButtonCaption as String) VB uses the event parameter EventClickParm, include parameters in the VB uses the event parameter EventClickParm, include parameters in the
subroutine call.subroutine call.

typetype
TParams = recordTParams = record
ClickString: ClickString: HLStr;HLStr;
Index : Pointer;Index : Pointer; { Reserve space for index parameter to array ctl}{ Reserve space for index parameter to array ctl}
end;end;

{ Event list    Define the consecutive indicies for the events{ Event list    Define the consecutive indicies for the events
constconst
EVENT_PUSH_CLICKEVENT_PUSH_CLICK = 0;= 0;
EVENT_PUSH_DRAGDROPEVENT_PUSH_DRAGDROP = 1;= 1;
EVENT_PUSH_DRAGOVEREVENT_PUSH_DRAGOVER = 2;= 2;
EVENT_PUSH_GOTFOCUSEVENT_PUSH_GOTFOCUS = 3;= 3;
EVENT_PUSH_KEYDOWNEVENT_PUSH_KEYDOWN = 4;= 4;
EVENT_PUSH_KEYPRESSEVENT_PUSH_KEYPRESS = 5;= 5;
EVENT_PUSH_KEYUPEVENT_PUSH_KEYUP = 6;= 6;
EVENT_PUSH_LOSTFOCUSEVENT_PUSH_LOSTFOCUS = 7;= 7;

Event procedure parameter prototypesEvent procedure parameter prototypes
Parms_SD : array[0..0] of word = (ET_I2);Parms_SD : array[0..0] of word = (ET_I2); {Integer data type }{Integer data type }

EventClickName : array[0..8] of Char = EventClickName : array[0..8] of Char = 'Click'#0;'Click'#0;
EventClickParm: array[0..24] of char = 'ButtonCaption as String'#0;EventClickParm: array[0..24] of char = 'ButtonCaption as String'#0;

Event_Click: tEVENTINFO    = (Event_Click: tEVENTINFO    = (
npszName: npszName: tOffset(@EventClickName);tOffset(@EventClickName);
cParms:cParms: 1;1;
cwParms: cwParms: 2;2;
npParmTypes:npParmTypes: tOffset(@Parms_SD);tOffset(@Parms_SD);
npszParmProf:npszParmProf: tOffSet(@EventClickParm);tOffSet(@EventClickParm);
fl:fl: 00
););

EventListPush: array[0..8]of ofsPEVENTInfo = (EventListPush: array[0..8]of ofsPEVENTInfo = (
ofsPEventInfo(@Event_Click),ofsPEventInfo(@Event_Click),
PEVENTINFO_STD_DRAGDROP,PEVENTINFO_STD_DRAGDROP,
PEVENTINFO_STD_DRAGOVER,PEVENTINFO_STD_DRAGOVER,
PEVENTINFO_STD_GOTFOCUS,PEVENTINFO_STD_GOTFOCUS,
PEVENTINFO_STD_KEYDOWN,PEVENTINFO_STD_KEYDOWN,
PEVENTINFO_STD_KEYPRESS,PEVENTINFO_STD_KEYPRESS,
PEVENTINFO_STD_KEYUP,PEVENTINFO_STD_KEYUP,
PEVENTINFO_STD_LOSTFOCUS,PEVENTINFO_STD_LOSTFOCUS,
0);0);

EventListPush: array[0..8]of ofsPEVENTInfo = (EventListPush: array[0..8]of ofsPEVENTInfo = (
ofsPEventInfo(@Event_Click),ofsPEventInfo(@Event_Click),
PEVENTINFO_STD_DRAGDROP,PEVENTINFO_STD_DRAGDROP,
PEVENTINFO_STD_DRAGOVER,PEVENTINFO_STD_DRAGOVER,
PEVENTINFO_STD_GOTFOCUS,PEVENTINFO_STD_GOTFOCUS,
PEVENTINFO_STD_KEYDOWN,PEVENTINFO_STD_KEYDOWN,
PEVENTINFO_STD_KEYPRESS,PEVENTINFO_STD_KEYPRESS,
PEVENTINFO_STD_KEYUP,PEVENTINFO_STD_KEYUP,
PEVENTINFO_STD_LOSTFOCUS,PEVENTINFO_STD_LOSTFOCUS,
00

Listing 3Listing 3

function PushCtlProc(Control: HCtl;Wnd: HWnd;    Msg,    WParam: Word;LParam: LongInt) : LongInt; export;function PushCtlProc(Control: HCtl;Wnd: HWnd;    Msg,    WParam: Word;LParam: LongInt) : LongInt; export;
varvar
 Params: Params: TParams;TParams;
 StrBuf: StrBuf: array[0..19]of char;array[0..19]of char;
 Caption: Caption: Integer;Integer;
 error: error: Err;Err;
 tmpStr: tmpStr: PChar;PChar;
    Push:    Push: PPush;PPush;
beginbegin
 Push := PPush(VBDerefControl(Control)); Push := PPush(VBDerefControl(Control));
 case Msg of case Msg of
      VBM_MNEMONIC,      VBM_MNEMONIC,
      VBN_COMMAND: begin      VBN_COMMAND: begin
          if Msg = VBM_MNEMONIC then              if Msg = VBM_MNEMONIC then    { Act like a click}{ Act like a click}
LParam := MAKELONG(0, LParam := MAKELONG(0, BN_CLICKED);BN_CLICKED);
case HIWORD(LParam) ofcase HIWORD(LParam) of
    BN_CLICKED: begin    BN_CLICKED: begin

Caption := GetWindowText(Wnd, StrBuf, 20);Caption := GetWindowText(Wnd, StrBuf, 20);
Params.ClickString := VBCreateHlstr(@StrBuf, Caption);Params.ClickString := VBCreateHlstr(@StrBuf, Caption);
if Push^.AutoBeep thenif Push^.AutoBeep then

 Messagebeep(0); Messagebeep(0);
error := VBFireEvent(Control,EVENT_Push_Click,@Params);error := VBFireEvent(Control,EVENT_Push_Click,@Params);

VBDestroyHlstr(Params. ClickString);VBDestroyHlstr(Params. ClickString);
end;end;
end;end;
PushCtlProc := 0;PushCtlProc := 0;
exit;exit;
end;end;

VBM_SETPROPERTY:VBM_SETPROPERTY:
case WParam ofcase WParam of
IPROP_PUSH_CAPTION:IPROP_PUSH_CAPTION:

{ To avoid a Windows problem, make sure text is under 255 bytes:}{ To avoid a Windows problem, make sure text is under 255 bytes:}
if (lstrlen(PChar(LParam)) > 255) thenif (lstrlen(PChar(LParam)) > 255) then

PChar(LParam)[255] := #0;PChar(LParam)[255] := #0;
        end;        end;
    end;    end;
{// Default processing:}{// Default processing:}
PushCtlProc := VBDefControlProc(Control, Wnd, Msg, WParam, LParam);PushCtlProc := VBDefControlProc(Control, Wnd, Msg, WParam, LParam);
end;end;

Listing 4Listing 4

Control ProcedureControl Procedure
This is the main control procedure for the Custom Control (See Listing 4). There can be multiple control procedure if your This is the main control procedure for the Custom Control (See Listing 4). There can be multiple control procedure if your
Custom Control implements multiple control objects. The model structure (described later) will reference this procedure.Custom Control implements multiple control objects. The model structure (described later) will reference this procedure.

The Model StructureThe Model Structure
This defines the control model (using the event and property structures). It is defined after the control proc because it must This defines the control model (using the event and property structures). It is defined after the control proc because it must
reference it in the parameter list. This is probably the most important structure in the program. This is used to tell the Visual reference it in the parameter list. This is probably the most important structure in the program. This is used to tell the Visual
Basic runtime what you are and where your various internal structures are located. See Listing 5Basic runtime what you are and where your various internal structures are located. See Listing 5

Register Custom ControlRegister Custom Control
The control is registered by the function The control is registered by the function VBINITCCVBINITCC (See Listing 6), which is called by VB when the custom control DLL is loaded (See Listing 6), which is called by VB when the custom control DLL is loaded
for use. After this the exports are defined, and that's it!for use. After this the exports are defined, and that's it!

Finishing OffFinishing Off
Listing 7 shows the Visual Basic make file required, and Listing 8 is the VB form.Listing 7 shows the Visual Basic make file required, and Listing 8 is the VB form.
 That's all there is to creating a VBX in Borland Pascal. In the next installment, I'll take the basic code I developed here and turn That's all there is to creating a VBX in Borland Pascal. In the next installment, I'll take the basic code I developed here and turn
it into a really useful control I call DiskTool.    It gets information from the drives on your system, information VB can't directly get,it into a really useful control I call DiskTool.    It gets information from the drives on your system, information VB can't directly get,
and passes that information to your Visual Basic form.    Two interesting    features in the control are the ability to include an and passes that information to your Visual Basic form.    Two interesting    features in the control are the ability to include an
enumerated field in the property list for the drive type, and the ability to produce a development time only tool.enumerated field in the property list for the drive type, and the ability to produce a development time only tool.

Copyright © 1994 Fred C. Hill, all rights reservedCopyright © 1994 Fred C. Hill, all rights reserved

constconst
ModelDefCtlName:    array[0..8] of Char = 'PasPush'#0;ModelDefCtlName:    array[0..8] of Char = 'PasPush'#0; { default control name prefix} { default control name prefix}
    ModelClassName: array[0..14] of Char = 'PasPushButton'#0;     ModelClassName: array[0..14] of Char = 'PasPushButton'#0; { Visual Basic class name}{ Visual Basic class name}
    ModelParentClassName: array[0..8] of    ModelParentClassName: array[0..8] ofChar = 'Button'#0;Char = 'Button'#0; { Parent window class if subclassed}{ Parent window class if subclassed}
    modelPush: TMODEL = (    modelPush: TMODEL = (
usVersion:usVersion: VB_VERSION;VB_VERSION; { VB version used by control}{ VB version used by control}
fl:fl: MODEL_fFocusOk or MODEL_fMnemonic;MODEL_fFocusOk or MODEL_fMnemonic; { Bitfield structure} { Bitfield structure}
ctlproc:ctlproc: TFarProc(@PushCtlProc);TFarProc(@PushCtlProc); { The control proc.}{ The control proc.}
fsClassStyle:fsClassStyle: cs_VRedraw or cs_HRedraw;cs_VRedraw or cs_HRedraw; { window class style}{ window class style}
flWndStyle:flWndStyle: BS_PUSHBUTTON; BS_PUSHBUTTON; { default window style}{ default window style}
cbCtlExtra:cbCtlExtra: sizeof(TPush);sizeof(TPush); { # bytes alloc'd for HCTL structure}{ # bytes alloc'd for HCTL structure}
idBmpPalette:idBmpPalette: IDBMP_Push;IDBMP_Push; { BITMAP id for tool palette}{ BITMAP id for tool palette}
DefCtlName: tOffset(@ModelDefCtlName);DefCtlName: tOffset(@ModelDefCtlName); { default control name prefix} { default control name prefix}
ClassName: tOffset(@ModelClassName);ClassName: tOffset(@ModelClassName); { Visual Basic class name}{ Visual Basic class name}
ParentClassName:ParentClassName: tOffset(@ModelParentClassName);tOffset(@ModelParentClassName); { Parent window class if subclassed}{ Parent window class if subclassed}
proplist:proplist: ofs(PropListPush);ofs(PropListPush); { Property list}{ Property list}
eventlist:eventlist: ofs(EventListPush);ofs(EventListPush); { Event list}{ Event list}
nDefProp: nDefProp: 0;0; { index of default property}{ index of default property}
nDefEvent:nDefEvent: 0);0); { index of default event}{ index of default event}

Listing 5Listing 5

function VBINITCC(usVersion: Word;      fRunTime: Boolean): Boolean; export;function VBINITCC(usVersion: Word;      fRunTime: Boolean): Boolean; export;
beginbegin
    VBINITCC := VBRegisterModel(    VBINITCC := VBRegisterModel(HInstance, modelPush);HInstance, modelPush);
end;end;

exportsexports
    VBINITCC index 2,    VBINITCC index 2,
    PushCtlProc index 3;    PushCtlProc index 3;

beginbegin
end;end;

Listing 6Listing 6

TPWPUSH.FRMTPWPUSH.FRM
TPW_PUSH.VBXTPW_PUSH.VBX
ProjWinSize=152,402,248,215ProjWinSize=152,402,248,215
ProjWinShow=2ProjWinShow=2

Listing 7Listing 7

Listing 8Listing 8

VERSION 2.00VERSION 2.00
Begin Form Form1Begin Form Form1
Caption = "Visual Basic VBX in Borland Pascal"Caption = "Visual Basic VBX in Borland Pascal"
      ClientHeight        =      1605      ClientHeight        =      1605
      ClientLeft            =      1710      ClientLeft            =      1710
      ClientTop              =      3645      ClientTop              =      3645
      ClientWidth          =      6105      ClientWidth          =      6105
      Height                    =      2010      Height                    =      2010
      Left                        =      1650      Left                        =      1650
      LinkTopic              =      "Form1"      LinkTopic              =      "Form1"
      ScaleHeight          =      1605      ScaleHeight          =      1605
      ScaleWidth            =      6105      ScaleWidth            =      6105
      Top                          =      3300      Top                          =      3300
      Width                      =      6225      Width                      =      6225
      Begin PasPushButton PasPush2      Begin PasPushButton PasPush2
            AutoBeep                =      0      'False            AutoBeep                =      0      'False
            Caption                  =      "E&xit"            Caption                  =      "E&xit"
            Height                    =      375            Height                    =      375
            Left                        =      2760            Left                        =      2760

            TabIndex                =      2            TabIndex                =      2
            Top                          =      960            Top                          =      960
            Width                      =      1815            Width                      =      1815
      End      End
      Begin PasPushButton PasPush1      Begin PasPushButton PasPush1
            AutoBeep                =      0      'False            AutoBeep                =      0      'False
            Caption                  =      "&Test me"            Caption                  =      "&Test me"
            Height                    =      375            Height                    =      375
            Left                        =      480            Left                        =      480
            TabIndex                =      1            TabIndex                =      1
            Top                          =      960            Top                          =      960
            Width                      =      2055            Width                      =      2055
      End      End
      Begin TextBox Text1      Begin TextBox Text1
            Height                    =      495            Height                    =      495
            Left                        =      480            Left                        =      480
            TabIndex                =      0            TabIndex                =      0
            Text                        =      "Text1"            Text                        =      "Text1"
            Top                          =      240            Top                          =      240
            Width                      =      2175            Width                      =      2175
      End      End
EndEnd
Option ExplicitOption Explicit
Sub PasPush1_Click (ButtonCaption As String)Sub PasPush1_Click (ButtonCaption As String)
Text1 = PasPush1.CaptionText1 = PasPush1.Caption
End SubEnd Sub

Sub PasPush2_Click (ButtonCaption As String)Sub PasPush2_Click (ButtonCaption As String)
Unload MeUnload Me
EndEnd

Fred Hill is president of Micro System Solutions. His company produces DOS and Windows applications and tools in Borland Fred Hill is president of Micro System Solutions. His company produces DOS and Windows applications and tools in Borland
Pascal 7.0 and Visual Basic 3.0.Pascal 7.0 and Visual Basic 3.0.

