
Creating Visual Basic VBXs:Creating Visual Basic VBXs:
The Event ListThe Event List
    by Fred C. Hill    by Fred C. Hill

TThe third in a series of articles on the secrets of writing VBX controls in he third in a series of articles on the secrets of writing VBX controls in
Borland Pascal.Borland Pascal.

In this installment we'll explore then process by which the Visual Basic custom control allows In this installment we'll explore then process by which the Visual Basic custom control allows
the user to become an integral part of the operation of the control.    The property list (See The the user to become an integral part of the operation of the control.    The property list (See The
Pascal Magazine, issue 2) provides a communication path but would be very unwieldy if it Pascal Magazine, issue 2) provides a communication path but would be very unwieldy if it
were the only way to manipulate a control.    Imagine what your program would look like if you were the only way to manipulate a control.    Imagine what your program would look like if you
had to constantly monitor changes in the properties in order to know what your control was had to constantly monitor changes in the properties in order to know what your control was
doing.doing.
Declaring the EventDeclaring the Event
      The Visual Basic Event List provides the additional level to allow the developer to interact       The Visual Basic Event List provides the additional level to allow the developer to interact
on a real time basis.    In addition to the Windows GUI, Windows 3.1 provides a true event on a real time basis.    In addition to the Windows GUI, Windows 3.1 provides a true event
processor.    The current version of Windows still only provides cooperative multi-tasking and processor.    The current version of Windows still only provides cooperative multi-tasking and
this is accomplished through the event processor.this is accomplished through the event processor.
      When declaring an Event in the event list you're really only providing Visual Basic with the       When declaring an Event in the event list you're really only providing Visual Basic with the
event name and its arguments. The actual processing behind the Event takes place in the event name and its arguments. The actual processing behind the Event takes place in the
control procedure.control procedure.
      In our project for this issue we will be converting the CIRC2 code provided in the Custom       In our project for this issue we will be converting the CIRC2 code provided in the Custom
Control Development Kit (CDK) from Microsoft.    This project is used to define how to add a Control Development Kit (CDK) from Microsoft.    This project is used to define how to add a
custom event however we will be using it to explain both the standard and the custom events.custom event however we will be using it to explain both the standard and the custom events.
        Event lists are declared in the same way as the Property lists. In our example we will be         Event lists are declared in the same way as the Property lists. In our example we will be
using an enumerated list and let the compiler determine the value assigned to the particular using an enumerated list and let the compiler determine the value assigned to the particular
entry.entry.
The Event UnitThe Event Unit
unit event;unit event;
interfaceinterface
usesuses
WinTypes,WinTypes,
vbapi_;vbapi_;

{ Event list{ Event list
 Define the consecutive indices for the events Define the consecutive indices for the events
}}
typetype
EVENT_Index = (EVENT_Index = (

EVENT_Circle_ClickIn,EVENT_Circle_ClickIn,
EVENT_Circle_ClickOut,EVENT_Circle_ClickOut,
EVENT_Circle_DRAGDROP,EVENT_Circle_DRAGDROP,
EVENT_Circle_DRAGOVER,EVENT_Circle_DRAGOVER,
EVENT_Circle_Last);EVENT_Circle_Last);

{Event procedure parameter prototypes}{Event procedure parameter prototypes}
constconst
ParamTypes_ClickIn:ParamTypes_ClickIn: array[0..1]of word = (ET_R4, ET_R4);array[0..1]of word = (ET_R4, ET_R4);

EventClickInName:EventClickInName: array[0..8] of Char = 'ClickIn'#0;array[0..8] of Char = 'ClickIn'#0;
EventClickInParm:EventClickInParm:

array[0..24] of char = 'X As Single, Y As Single'#0;array[0..24] of char = 'X As Single, Y As Single'#0;

Event_ClickIn:Event_ClickIn:
tEVENTINFO    = (tEVENTINFO    = (

{----Name}{----Name}
npszName:npszName: tOffset(@EventClickInName);tOffset(@EventClickInName);
{----Number of parameters}{----Number of parameters}

cParms:cParms: 2;2;
{----Number of words}{----Number of words}
cwParms: cwParms: 4;4;
{----Pointer to parm types}{----Pointer to parm types}
npParmTypes:npParmTypes: tOffset(@ParmamTypes_ClickIn);tOffset(@ParmamTypes_ClickIn);
{Pointer to Argument string}{Pointer to Argument string}
npszParmProf:npszParmProf: tOffSet(@EventClickInParm);tOffSet(@EventClickInParm);
fl:fl: 00

););

EventClickOutName:EventClickOutName: array[0..9] of Char = 'ClickOut'#0;array[0..9] of Char = 'ClickOut'#0;

Event_ClickOut: tEVENTINFO    = (Event_ClickOut: tEVENTINFO    = (
npszName: npszName: tOffset(@EventClickOutName);tOffset(@EventClickOutName);
cParms:cParms: 0;0;
cwParms: cwParms: 0;0;
npParmTypes:npParmTypes: 0;0;
npszParmProf:npszParmProf: 0;0;
fl:fl: 00

););

Circle_Events: array[EVENT_Index] of ofsPEVENTInfo = (Circle_Events: array[EVENT_Index] of ofsPEVENTInfo = (
ofsPEventInfo(@Event_ClickIn),ofsPEventInfo(@Event_ClickIn),
ofsPEventInfo(@Event_ClickOut),ofsPEventInfo(@Event_ClickOut),
PEVENTINFO_STD_DRAGDROP,PEVENTINFO_STD_DRAGDROP,
PEVENTINFO_STD_DRAGOVER,PEVENTINFO_STD_DRAGOVER,
0);0);

implementationimplementation

end.end.

Listing 1Listing 1

In Listing 1 we first code the Event index.    This index will be used later when defining the In Listing 1 we first code the Event index.    This index will be used later when defining the
actual Event List (Circle_Events). Next we assign the types of parameters we will be passing actual Event List (Circle_Events). Next we assign the types of parameters we will be passing
between the VBX and Visual Basic.    The Argument Type Flags are defined in the VB_API_ filebetween the VBX and Visual Basic.    The Argument Type Flags are defined in the VB_API_ file
provided on the disk that comes with this magazine as well as in list 2.provided on the disk that comes with this magazine as well as in list 2.

Argument Type FlagsArgument Type Flags

ValueValue DescriptionDescription
ET_I2ET_I2 16-bit signed integer16-bit signed integer
ET_I4ET_I4 32-bit signed integer32-bit signed integer
ET_R4ET_R4 4-byte real4-byte real
ET_R8ET_R8 8-byte real8-byte real
ET_CYET_CY 8-byte currency8-byte currency
ET_HLSTRET_HLSTR StringString Strings are represented in the argument structure as a handle Strings are represented in the argument structure as a handle
(HLSTR) rather than a pointer.(HLSTR) rather than a pointer.

Listing 2Listing 2

Next we assign the EVENTInfo structure.    The first element in the structure is the Event NameNext we assign the EVENTInfo structure.    The first element in the structure is the Event Name
(ClickIn) as it will appear in the Code window in Visual Basic.    This is followed by the number (ClickIn) as it will appear in the Code window in Visual Basic.    This is followed by the number
of arguments being being passed and the number of computer words in the argument list.    In of arguments being being passed and the number of computer words in the argument list.    In
the ClickIn event we will be passing 2 parameters consisting of 4 words. (Two ET_R4's or 2 4-the ClickIn event we will be passing 2 parameters consisting of 4 words. (Two ET_R4's or 2 4-
byte reals.)    Next come the pointer to the Argument Type array followed by the pointer to the byte reals.)    Next come the pointer to the Argument Type array followed by the pointer to the
Argument string.    In C (or C++) this could be the actual string since C passed the address Argument string.    In C (or C++) this could be the actual string since C passed the address
rather than the string. Finally    we have the fl flag that can contain either a 0 or the rather than the string. Finally    we have the fl flag that can contain either a 0 or the
EF_fNoUnload flag.    When this flag is set Visual Basic will not allow unloading of the current EF_fNoUnload flag.    When this flag is set Visual Basic will not allow unloading of the current
form or any control on the form when the corresponding event procedure is being fired. This form or any control on the form when the corresponding event procedure is being fired. This
flag is primarily used for events that must assume that nothing is unloaded such as the flag is primarily used for events that must assume that nothing is unloaded such as the
Standard Paint event.Standard Paint event.
    After defining the remainder of the Events we define the Event List itself.    This list will be     After defining the remainder of the Events we define the Event List itself.    This list will be
used in the model table to point Visual Basic to the array structures we just described.used in the model table to point Visual Basic to the array structures we just described.
Firing an EventFiring an Event
        Firing the ClickIn Event causes the mouse current coordinates to be passed to the Visual         Firing the ClickIn Event causes the mouse current coordinates to be passed to the Visual
Basic program.Basic program.

Fire the ClickIn EventFire the ClickIn Event

{ TYPEDEF for parameters to the ClickIn event.{ TYPEDEF for parameters to the ClickIn event.
}}
TypeType
tagCLICKINPARMS = recordtagCLICKINPARMS = record

Y:      pointer;Y:      pointer;
X:X: pointer;pointer;

Index:Index: LPVoid;LPVoid;
end;end;

{ Fire the ClickIn event, passing the x,y coords of the click.}{ Fire the ClickIn event, passing the x,y coords of the click.}
procedure FireClickIn(Control: hctl; x, y: integer);procedure FireClickIn(Control: hctl; x, y: integer);
varvar
params:params: tagClickInParms;tagClickInParms;
xTwips,xTwips,
yTwips:yTwips: LongInt;LongInt;
beginbegin
{{ floatfloat xTwips, yTwips;} xTwips, yTwips;}

xTwips := VBXPixelsToTwips(x);xTwips := VBXPixelsToTwips(x);
yTwips := VBYPixelsToTwips(y);yTwips := VBYPixelsToTwips(y);
params.X := @xTwips;params.X := @xTwips;
params.Y := @yTwips;params.Y := @yTwips;
VBFireEvent(Control, VBFireEvent(Control, ord(EVENT_CIRCLE_CLICKIN), ord(EVENT_CIRCLE_CLICKIN),
@params);@params);
end;end;
Listing 3Listing 3

The FireClickIn function converts the Windows X and Y coordinates from pixels to twips. (thatThe FireClickIn function converts the Windows X and Y coordinates from pixels to twips. (that
the developer uses in the Visual Basic environment) To perform the pixel conversion the the developer uses in the Visual Basic environment) To perform the pixel conversion the
VBAPI_ routines VBAPI_ routines VBXPixelsToTwipsVBXPixelsToTwips and and VBYPixelsToTwipsVBYPixelsToTwips are called to ensure the are called to ensure the
coordinates are converted to logical twips that relate to the particular display device. Pointers coordinates are converted to logical twips that relate to the particular display device. Pointers
to the converted variables are then passed to the argument structure and to the converted variables are then passed to the argument structure and VBFireEventVBFireEvent is is
called.called.
      The call to       The call to VBFireEventVBFireEvent does not return until the Visual Basic event procedure (assuming does not return until the Visual Basic event procedure (assuming
the developer coded one) returns.    This ensures that all of the local variables in the control the developer coded one) returns.    This ensures that all of the local variables in the control
code are valid locations. If the event procedure changes any of the arguments then upon code are valid locations. If the event procedure changes any of the arguments then upon
return the local variable will been replaced by Visual Basic.return the local variable will been replaced by Visual Basic.

function CircleCtlProc(Control: HCtl;function CircleCtlProc(Control: HCtl;
Wnd: Hwnd; Msg, wp: Word;Wnd: Hwnd; Msg, wp: Word;
lp: LongInt):LongInt;lp: LongInt):LongInt;
varvar
ps:ps: tPaintStruct;tPaintStruct;
LpCirc:LpCirc: pCirc2;pCirc2;
hDcHold:hDcHold: hDc;hDc;
beginbegin
case Msg ofcase Msg of

WM_NCCREATE:WM_NCCREATE: beginbegin
LpCirc := VBDerefControl(Control);LpCirc := VBDerefControl(Control);
LpCirc^.CircleShape := 0;LpCirc^.CircleShape := 0;
lpCirc^.FlashColor := 128;lpCirc^.FlashColor := 128;

VBSetControlProperty(Control, VBSetControlProperty(Control, ord(IPROP_Circle_BACKCOLOR),255);ord(IPROP_Circle_BACKCOLOR),255);
end;end;
WM_LBUTTONDOWN,WM_LBUTTONDOWN,
WM_LBUTTONDBLCLK:WM_LBUTTONDBLCLK:
if (InCircle(Control, lp, HiWord(lp)))    then if (InCircle(Control, lp, HiWord(lp)))    then beginbegin

hDcHold := GetDC(Wnd);hDcHold := GetDC(Wnd);
FlashCircle(Control, hDcHold);FlashCircle(Control, hDcHold);
ReleaseDC(Wnd, hDcHold);ReleaseDC(Wnd, hDcHold);

{---pass the mouse coord from the high and low words of lp){---pass the mouse coord from the high and low words of lp)
FireClickIn(Control,lp,HiWord(lp));FireClickIn(Control,lp,HiWord(lp));

end else FireClickOut(Control);end else FireClickOut(Control);
WM_LBUTTONUP:WM_LBUTTONUP:

if (InCircle(Control, lp, HIWORD(lp))) if (InCircle(Control, lp, HIWORD(lp))) then beginthen begin
hDcHold := GetDC(Wnd);hDcHold := GetDC(Wnd);
PaintCircle(Control, Wnd, PaintCircle(Control, Wnd, hDcHold);hDcHold);
ReleaseDC(Wnd, hDcHold);ReleaseDC(Wnd, hDcHold);

end;end;
WM_PAINT:WM_PAINT:

if (wP <> 0) thenif (wP <> 0) then
PaintCircle(Control, Wnd, wP)PaintCircle(Control, Wnd, wP)

else beginelse begin
BeginPaint(Wnd, ps);BeginPaint(Wnd, ps);
paintCircle(Control, Wnd, paintCircle(Control, Wnd, ps.hdc);ps.hdc);
EndPaint(Wnd, ps);EndPaint(Wnd, ps);

end;end;
WM_SIZE:    RecalcArea(Control, Wnd);WM_SIZE:    RecalcArea(Control, Wnd);
VBM_SETPROPERTY:VBM_SETPROPERTY:

case wP ofcase wP of
ord(IPROP_Circle_Shape): beginord(IPROP_Circle_Shape): begin

lpCirc := lpCirc := VBDerefControl(Control);VBDerefControl(Control);
lpCirc^.CircleShape := lp;lpCirc^.CircleShape := lp;
RecalcArea(Control, Wnd);RecalcArea(Control, Wnd);
InvalidateRect(Wnd, nil, InvalidateRect(Wnd, nil, true);true);
CircleCtlProc := 0;CircleCtlProc := 0;
exit;exit;

end;    end;    end;    end;end;    end;
CircleCtlProc := VBDefControlProc(Control, CircleCtlProc := VBDefControlProc(Control, Wnd, Msg, wP, lP);Wnd, Msg, wP, lP);
end;end;
end.end.

Listing 4Listing 4

The Circle control procedure fires the ClickIn event whenever the user clicks the mouse button The Circle control procedure fires the ClickIn event whenever the user clicks the mouse button
while in the circle. The InCircle routine (see the code included on the disk) determines if the while in the circle. The InCircle routine (see the code included on the disk) determines if the
current mouse coordinates are within the circle and then the circle color is flashed and the current mouse coordinates are within the circle and then the circle color is flashed and the
FireClickIn procedure calls the VBFireEvent function.FireClickIn procedure calls the VBFireEvent function.

      I have just described how a custom event gets processed by the Visual Basic environment.      I have just described how a custom event gets processed by the Visual Basic environment.
A standard event is handled in much the same way except that the VB environment handles A standard event is handled in much the same way except that the VB environment handles
them automatically for you. In our event list we included the DRAGDROP and the    them automatically for you. In our event list we included the DRAGDROP and the   
DRAGOVER events that are two of the standard events provided for in Visual Basic. (See list DRAGOVER events that are two of the standard events provided for in Visual Basic. (See list
6)6)

Standard EventsStandard Events
Visual Basic provides 18 standard events. These events only have to be declared in the Visual Basic provides 18 standard events. These events only have to be declared in the
EVENTINFO table. The default control procedure EVENTINFO table. The default control procedure VBDefControlProcVBDefControlProc will normally fire the will normally fire the
standard events in response to the various Windows messages however if you wish you may standard events in response to the various Windows messages however if you wish you may
fire a standard event in the same way you fire your own custom events.fire a standard event in the same way you fire your own custom events.

EventEvent DescriptionDescription
ClickClick PEVENTINFO_STD_CLICKPEVENTINFO_STD_CLICK

WM_LBUTTONUP message. Fired when the control has captured the mouse. The WM_LBUTTONUP message. Fired when the control has captured the mouse. The
standard MouseDown and MouseUp events occur before this event.standard MouseDown and MouseUp events occur before this event.

DblClickDblClick PEVENTINFO_STD_DBLCLICKPEVENTINFO_STD_DBLCLICK
WM_LBUTTONDBLCLK message. Similar to Click.WM_LBUTTONDBLCLK message. Similar to Click.

DragDropDragDrop PEVENTINFO_STD_DRAGDROPPEVENTINFO_STD_DRAGDROP
Fired after a VBM_DRAGDROP message is received.Fired after a VBM_DRAGDROP message is received.

DragOverDragOver PEVENTINFO_STD_DRAGOVERPEVENTINFO_STD_DRAGOVER
Fired after a VBM_DRAGOVER message is received.Fired after a VBM_DRAGOVER message is received.

GotFocusGotFocus PEVENTINFO_STD_GOTFOCUSPEVENTINFO_STD_GOTFOCUS
After receiving a WM_GOTFOCUS message a VBM_FIREEVENT message is posted. After receiving a WM_GOTFOCUS message a VBM_FIREEVENT message is posted.
This, in effect, places the event in the normal queue and allows pending messages to This, in effect, places the event in the normal queue and allows pending messages to
be processed.be processed.

KeyDownKeyDown PEVENTINFO_STD_KEYDOWNPEVENTINFO_STD_KEYDOWN
Fired when a WM_KEYDOWN or a WM_SYSKEYDOWN message is received.Fired when a WM_KEYDOWN or a WM_SYSKEYDOWN message is received.

KeyPressKeyPress PEVENTINFO_STD_KEYPRESSPEVENTINFO_STD_KEYPRESS
Fired when a WM_CHAR message is received.Fired when a WM_CHAR message is received.

KeyUpKeyUp PEVENTINFO_STD_KEYUPPEVENTINFO_STD_KEYUP
Fired when a WM_KEYUP or a WM_SYSKEYUP message is received.Fired when a WM_KEYUP or a WM_SYSKEYUP message is received.

LostFocusLostFocus PEVENTINFO_STD_LOSTFOCUSPEVENTINFO_STD_LOSTFOCUS
Fired when a WM_LOSTFOCUS message is received. The same delay process as Fired when a WM_LOSTFOCUS message is received. The same delay process as
GotFocus is used here to ensure messages get processed in sequence.GotFocus is used here to ensure messages get processed in sequence.

MouseDownMouseDown PEVENTINFO_STD_MOUSEDOWNPEVENTINFO_STD_MOUSEDOWN
Fired if any BUTTONDOWN (left, right or middle) message is received. When this eventFired if any BUTTONDOWN (left, right or middle) message is received. When this event
is fired the mouse is captured by the control.is fired the mouse is captured by the control.

MouseMoveMouseMove PEVENTINFO_STD_MOUSEMOVEPEVENTINFO_STD_MOUSEMOVE
Fired when a WM_MOUSEMOVE message is received.Fired when a WM_MOUSEMOVE message is received.

MouseUpMouseUp PEVENTINFO_STD_MOUSEUPPEVENTINFO_STD_MOUSEUP
Fired if and BUTTONDOWN (left, right or middle) message is received. The mouse Fired if and BUTTONDOWN (left, right or middle) message is received. The mouse
capture is released by this event.capture is released by this event.

Listing 5Listing 5

Events unique to VB 2.0Events unique to VB 2.0
    These standard events are included for information only.    See the CDK documentation for     These standard events are included for information only.    See the CDK documentation for
more information about them.more information about them.

LastLast PEVENTINFO_STD_LASTPEVENTINFO_STD_LAST
LinkCloseLinkClose PEVENTINFO_STD_LINKCLOSEPEVENTINFO_STD_LINKCLOSE
LinkErrorLinkError PEVENTINFO_STD_LINKERRORPEVENTINFO_STD_LINKERROR
LinkNotifyLinkNotify PEVENTINFO_STD_LINKNOTIFYPEVENTINFO_STD_LINKNOTIFY
LinkOpenLinkOpen PEVENTINFO_STD_LINKOPENPEVENTINFO_STD_LINKOPEN
NoneNone PEVENTINFO_STD_NONEPEVENTINFO_STD_NONE

None is used as a placeholder for events you wish to remove. Using this placeholder allowsNone is used as a placeholder for events you wish to remove. Using this placeholder allows
applications to use different versions of a control with less likelyhood of a Visual Basic abort applications to use different versions of a control with less likelyhood of a Visual Basic abort
during load.during load.
Listing 6Listing 6

Reference: Professional Features Book 1, Microsoft Visual Basic 3.0 Custom Control GuideReference: Professional Features Book 1, Microsoft Visual Basic 3.0 Custom Control Guide

copyright © 1994 Fred C. Hill, all rights reserved.copyright © 1994 Fred C. Hill, all rights reserved.

Fred Hill is president of Micro System Solutions. His company produces DOS and Windows applications in Borland Fred Hill is president of Micro System Solutions. His company produces DOS and Windows applications in Borland
Pascal 7.0 and Visual Basic 3.0. He may be Pascal 7.0 and Visual Basic 3.0. He may be reached on Compuserve 76060,102reached on Compuserve 76060,102

