
VBScript 1.1
Introduction
The VBScript Language

Example Scripts

License
Registration

Introduction
VBScript is a scripting language which can be used to modify Visual Basic forms and controls at design
time.

To use VBScript, add VBSCRIPT.VBX to a Visual Basic project and use the VBScript window to load,
save, and edit your scripts.    The VBScript window will remain onscreen until VBSCRIPT.VBX is
removed from the project - Alt+F4 and the Exit command in the File menu will minimize the VBScript
window, but the window cannot be closed while VBSCRIPT.VBX remains in the project.

When your script is completed, issue the Execute Script command (in the File menu).    VBScript will run
the script and make the desired modifications to the forms and controls in the current project.    If an
error in the script is found, script execution will stop after the error is reported, and the cursor in the
editing window will move to the approximate location of the error.    A script can be stopped while it is
running by pressing the Control and Shift keys together.

The Undo Script command (in the File menu) will undo all changes to forms which were made by the
most recently executed script.    To reverse the effect of Undo Script, use the Redo Script command.   
Undo Script can undo virtually all modifications made by scripts (including the creation and deletion of
controls).    Undo Script will undo any changes made by a script which contains an error or is aborted
with Control-Shift.

Note: Undo Script will only undo changes to forms whose windows are open or iconified when the Undo
Script command is issued.
Note: Changes to picture properties can not be undone

Creating a Sample Script
1. Create a new form.
2. Add VBSCRIPT.VBX to the project.
3. In the VBScript window, type:

Create Label "NewLabel"
NewLabel.Caption = "Hello"
NewLabel.FontItalic = True

4. Select "Execute Script" from the File menu.    VBScript will create a label control named NewLabel
and change the label's Caption property to Hello and change its FontItalic property to True.
5. Select "Undo Script" from the File menu.    The label will be deleted from the form.
6. Pull down the File menu.    The Undo Script command will have been replaced by a Redo Script
command.    Select this command, and the label will be recreated and will have the modified Caption and
FontItalic it had immediately after the script was run.

VBScript can be used to create more complex scripts which incorporate loops, if-then logic, and other
standard programming language features.    A complete description of the VBScript language is included
in this Help file.

The VBScript Language
Basic Usage
Variables
Expressions
Braces
Property Assignments
Create
Delete
Move
SetContainer
SetFocus
If...Then...Else
While...Wend
For...Next
Do...Loop
Select Case
MsgBox
InputBox
Beep
Exit
Option

Basic Usage
A VBScript script file is composed of variable declarations followed by a series of commands.

Multiple commands may be placed on the same line if a colon (:) is used as a separator (for example:   
var = "Hello" : MsgBox var : MsgBox "yes")

VBScript commands, variable names, control names, and control properties are case insensitive -
msgbox, Msgbox, and MsgBox are all valid commands.

To place a comment in a script, use an apostrophe (') .    All text between the apostrophe and the end of
the line will be considered part of the comment.

Variables
VBScript supports two variable types: Variant and Control.    Variant variables can hold either floating-
point numbers or strings and can be used in numerical and string expressions.    Control variables can
represent controls on a form and can not be used in expressions.

Variables must be declared at the beginning of the script with the Dim statement.    Variable names can
contain digits, but they must begin with a letter.

Syntax: Dim variablename, [variablename, ...] [As Variant / Control}
Dim x As Variant
Dim ctrl1, ctrl2 As Control

If no variable type is specified in a Dim statement, the variables will be declared as Variants.
Dim variant1, variant2

Variable Usage
Variant variables can be assigned to any valid numerical or string expression.

x = "Foo"
var = 27 / 3 + 2

When a script is executed, Variants are initialized with a value of 0 (for numerical expressions) or "" (for
string expressions)

Control variables can be assigned to control identifiers or other control variables
ctrl1 = Label1
ctrl2 = Form2!Check1
ctrl1 = ctrl2

Controls in VBScript have two special properties, Parent and Container, which can be used in control
identifiers.    A control's Parent is the form on which the control is located.    A control's Container is the
container (frame, picture box, etc.) in which the control has been placed.    If a control is not located
inside a container, its Container property will be equal to its Parent.

ctrl1 = Label1.Parent
ctrl2 = Option2.Container

Expressions
VBScript supports numerical and string expressions.    When appropriate, numerical expressions will
automatically be converted to strings and vice versa.    (for example: the expression 5 + "6" is valid
and is evaluated as 11)

Expressions can contain control property values and variables.    Type conversions will also be
performed automatically on these expression elements.

Numerical Expressions
Numerical expressions can contain floating-point numbers combined with several operators and
functions.

Operators
+ (addition) - (subtraction) * (multiplication)
/ (division) \ (integer division) mod (modulo)
^ (exponentiation)

VBScript follows Visual Basic's operator precedence rules and also supports the use of parentheses in
expressions.

Functions
Int(number) removes the fractional part of number (if number is negative, Int returns the first

integer less than or equal to number)
Fix(number) removes the fractional part of number (if number is negative, Fix returns the first

integer greater than or equal to number)
Round(number)      rounds number to the nearest integer
Abs(number) absolute value of number
Sgn(number) equal to -1 if number is less than 0, 0 if number is equal to 0, and 1 is number is

greater than 0
RGB(red,green,blue)      equal to the constant which represents the color with the specified red,

green, and blue components
QBColor(number)      obtains the constant which represents one of 16 predefined colors

Examples
3 + 5 ^ 2 is equal to 28
(3 + 5) ^ 2 is equal to 64
int(4.6) + abs(-7.3) is equal to 11.3
round(4.6) is equal to 5

String Expressions
String expressions can combine strings (enclosed in quotation marks), the & operator (for string
concatenation), and several string-specific functions..    Strings can span multiple lines of a script and
contain newlines.

Note: The + operator can not be used to concatenate strings

Functions
Len(string) length of string
Mid(string,start,length) extracts a portion of string starting at character number start that is

length characters long

Left(string,length) extracts the leftmost length characters of string
Right(string,length) extracts the rightmost length characters of string
LTrim(string) removes spaces from the left side of string
RTrim(string) removes spaces from the right side of string
Trim(string) removes spaces from the both sides of string
IsNumeric(string) equal to True if the string can be converted to a number, otherwise False
Chr(number) equal to the character whose ANSI code is number

Special Control Properties
A special control property, Type, is available in VBScript.    A control's Type is a string which

represents the control's object type.    (for example, Command1.Type would be equal to
"CommandButton")

Examples
"Line 1 "Line 1<newline>Line 2"
Line 2"
"Yes" & "No" "YesNo"
Trim(" Hello ") & Right("Small World",6) "Hello World"

Comparison Operators
The standard =, <>, >, >=, <, and <= operators can be used to compare numerical and string
expressions.    String comparisons are case-sensitive by default - use the Option Compare statement to
change the case-sensitivity setting.

A special Is operatior is used to test whether two controls identifiers refer to the same object.    For
example: if a label named MyLabel is on a form named Form1, then the expression

MyLabel.Parent Is Form1
is equal to True.

Logical Operators
The And, Or, and Not operators are supported in VBScript.    Two special functions, IsSelected and
HasProperty, may also be used in logical expressions.    IsSelected(control) will be equal to True if
control has been selected in the Visual Basic design environment and False if it has not been.   
HasProperty(control,string) will be equal to True if control has a property with the name string,
otherwise False.

Examples
5 > 3 and "less" < "more" is equal to True
not (10 > -5) is equal to False

Braces
Braces let scripts work easily with collections of similarly named forms, controls, and variables.   
Expressions inside braces will automatically be converted to VBScript identifiers by the interpreter.

The identifier Command{x}, for example, can be used to refer to any control on the form whose name
begins with Command.    If the value of the variable x is set to 2, then Command{x} will mean
Command2.    If x is equal to "Button", then Command{x} will be equivalent to CommandButton.

Examples
Dim i

For i = 1 to 4
Label{i}.Caption = "foo"

Next
will set the Caption property of four labels named Label1, Label2, Label3, and Label4 to "foo".

Braces can also be used to form arrays from VBScript variables.
Dim arr1, arr2, arr3, arr4, arr5, i

For i = 1 to 5
arr{i} = i

Next
will set the values of the variables arr1, arr2, arr3, arr4, and arr5 to 1, 2, 3, 4, and 5, respectively.

Property Assignments
Property changes in VBScript work like their counterparts in Visual Basic.    The following examples will
set some properties of a Label control.

Label1.Caption = "Hello"
Label1.FontSize = 8.25
Label1.FontItalic = True

The properties of control arrays, forms, and control variables can be accessed in the same manner.
LabelArray(3).Caption = "Hello"
Form1.Caption = "Program Name"
ctrlVar.Visible = True

Controls are ordinarily assumed to belong to the active form (the form which was most recently activated
in the Visual Basic design environment).    This form can be referenced with the identifier ActiveForm.   
The active form can be changed with the SetFocus statement.

ActiveForm.Left = 2000
To reference controls on other forms, use the ! operator.

Form2!Label1.FontSize = 8.25

The Forms and Controls collections can be used as they are in Visual Basic.    Both collections have a
Count property which is equal to the number of elements in the collection.
 Forms(2).Caption = "Form Number 2"

var = Controls.Count
Forms(3)!Command1.Left = 200
Forms(0).Controls(6).Enabled = False

The Forms collection and the ! operator will only access forms whose windows are open or minimized
when the script runs.    Any form which has not been opened via the Visual Basic Project window will be
ignored by VBScript.

Picture Properties
Picture properties can only be assigned to other picture properties or to the predefined constant None.   
Picture properties can not be assigned to variables.

Image1.Picture = Picture1.Picture
Form1.Icon = None

Create

Syntax
Create control-type name [, index] [, parent-control]

The Create statement creates a new control of the type control-type and gives it the name name.
If index is specified, the control will become a member of the control array name and will have the index
index.    To create a control which is not part of an array, specify an index of -1.
The control will be created as a child of parent-control.    If no parent-control is specified, the new control
will be placed on the active form.

Examples
Create Label "Label5"
Create PictureBox "pic", 5
Create OptionButton "OptionArray", 2, Frame1
Create SSCommand "cmd", -1, Form2

Delete

Syntax
Delete control

The Delete statement deletes a particular control.

Examples
Delete Command1
Delete Form2!Label1

Move

Syntax
Move control, left [, top] [, width] [, height]

The Move statement moves a control to the specified left, top, width, and height coordinates.    It is not
necessary to include all four coordinates in the statement; any coordinates which are not included will
not be changed.

Examples
Move Command1, 1000, 2000, 1500, 500
Move Label1, 750
Move Form1, 3000, 1000

SetContainer

Syntax
SetContainer control, parent-control

The SetContainer statement places control within the container parent-control.    parent-control must be
a container control (form, frame, picture box, etc.) and can be located on any form.

Examples
SetContainer Option1, Frame1
SetContainer CmdBtn, Form2!Panel3D1
SetContainer Picture1, MDIForm1

SetFocus

Syntax
SetFocus form

The SetFocus statement sets the active form to form.    The active form is the form to which controls are
assumed to belong when the ! operator is not used.

Example
SetFocus Form1

If...Then...Else

Syntax 1
If expression Then <commands> Else <commands>

Syntax 2
If expression Then

<command block>
[ElseIf expression Then

<command block>]
[Else

<command block>]
End If    (or EndIf)

The If...Then...Else statement executes commands conditionally.    The condition expressions can be
logical (True/False) expressions or TypeOf...Is expressions, which are true if a certain control is of a
specified type.

Examples
If x >= y Then Beep Else MsgBox "x is less than y": Beep

If TypeOf Controls(0) Is Label Then
MsgBox "Control #0 is a Label"
Beep

ElseIf TypeOf Controls(1) Is Label Then
MsgBox "Control #1 is a Label" : Beep

Else MsgBox "Neither control is a label"
End If

While...Wend

Syntax
While expression

<command block>
Wend

Executes the command block as long as expression is true.

Example
While x < 5

MsgBox x
x = x+1

Wend
' X will now be equal to 5

For...Next

Syntax
For counter = startExpression To endExpression [Step stepExpression]

<command block>
Next

At the start of the For loop, the Variant variable counter is given the value of startExpression.    Each
time the command block is executed, stepExpression is added to counter (1 is added if no Step
expression is given).    When counter is greater than or equal to endExpression, the loop exits.

You can exit a For loop immediately by using the Exit For command at any point in the command block.

Note: Do not specify a counter variable in the Next statement

Example
For z = 0 To 7

ButtonArray(z).Enabled = False
ButtonArray(z).Caption = z

Next

Do...Loop

Syntax 1
Do {While / Until} expression

<command block>
Loop

Syntax 2
Do

<command block>
Loop {While / Until} expression

Executes the command block while (or until) expression is true.    Syntax 1 checks the expression's
value upon entering the command block, and Syntax 2 checks upon exiting the block.

You can exit a Do loop immediately by using the Exit Do command at any point in the command block.

Examples
Do Until index = 5

Forms(index).Left = index * 200
index = index + 2

Loop

Do
Forms(index).Left = index * 200
index = index - 2

Loop While index > 2

Select Case

Syntax
Select Case caseExpression

Case expression, [expression...]
<command block>

Case expression, [expression...]
<command block>

[Case Else
<command block>]

End Case

If caseExpression is equal to one of the expressions in a expression list, the command block which
corresponds to that expression list will be executed.    If caseExpression is not equal to any of the
expressions, the Case Else command block (if one is present) will be executed.

Case expression lists can contain numerical or string expressions.    The expression list parts can be of
any of these three formats.

expression tests whether caseExpression is equal to expression
expression1 To expression2 tests whether caseExpression is between expression1 and

expression2
Is comparison-operator expression tests whether caseExpression has the relationship

indicated by comparison-operator with expression

Examples
Select Case x

Case 5
MsgBox "x is equal to 5"

Case 6 to 9
MsgBox "x is between 6 and 9"

Case Is > 9
MsgBox "x is greater than 9"

End Select

MsgBox

Syntax
Statement: MsgBox message [, type] [, title]
Function: MsgBox (message [, type] [, title])

Displays a message and one or more buttons in a dialog box.    Message will be displayed in the dialog
box, type specifies the style of the dialog, and title will be displayed as the dialog's caption.

If type is omitted, the dialog will only contain an OK button.    If title is omitted, "VBScript" will be used as
the title.

MsgBox Types
Type Number Buttons in dialog
0 OK button
1 OK, Cancel
2 Abort, Retry, Ignore
3 Yes, No, Cancel
4 Yes, No
5 Retry, Cancel

If MsgBox is used as a function, its return value will indicate the button which was pressed by the user.
MsgBox Return Values
Return Value Button selected
1 OK
2 Cancel
3 Abort
4 Retry
5 Ignore
6 Yes
7 No

Examples
MsgBox "Hello"
x = MsgBox ("Do you want to continue", 5)
MsgBox "An error was found", , "Error"

InputBox

Syntax
InputBox (prompt [, title] [, default])

The InputBox function will display a dialog box that allows the user to enter a string into a text box.   
The function will return the text box's contents when the user clicks OK.    Prompt will be displayed as the
message in the dialog box, title will be the dialog's caption, and default will be the text box's default
contents.

If title is omitted, "VBScript" will be used as the title.    If default is omitted, the text box will be initially
blank.

Examples
var = InputBox ("Enter a string")
num = InputBox("Type in a number", "Number", "5")

Beep

Syntax
Beep

Beeps the computer's speaker.

Exit

Syntax
Exit {Script / Do / For}

Exit Script will immediately stop script execution.    The Exit Do and Exit For commands can be used in
Do and For loops to stop looping and jump to the statement immediately following the loop's end.

Option

Syntax
Option Compare {Binary / Text}
Option MenusInCollection {On / Off}

The Option Compare statement sets the case-sensitivity mode for string comparisons.    Option
Compare Binary will select case-sensitivity, and Option Compare Text will select case-insensitivity.
The default setting is Binary.

The Option MenusInCollection statement determines whether Menu controls will be included in the
Controls collection. Option MenusInCollection On will include Menu controls in the collection, and
Option MenusInCollection Off will exclude them.    The default setting is Off.

Example Scripts
These scripts are intended as examples of VBScript's syntax and illustrate how to perform common
tasks in VBScript.

This script will align all the buttons in the array BtnArray with the top of another button named
Command1.

Dim i As Variant

While i < Controls.Count
If Controls(i).Name = "BtnArray" Then

Controls(i).Top = Command1.Top
End If
i = i + 1

Wend

This script will prompt the user to enter a number.    It will then change the caption of a label named
Label3 to the square root of that number.

Dim num As Variant

num = InputBox("Enter a number")
If Not IsNumeric(num) Then

Beep
MsgBox num & " is not a number"
Exit Script

End If
If num < 0 then

MsgBox "Cannot find square root of a negative number"
Else Label3.Caption = num ^ .5
End If

This script will create a design made up of line controls on the active form.

Dim pos

For pos = 0 To 10
Create Line "LineArray1", pos
LineArray1(pos).x1 = 0
LineArray1(pos).y1 = Form1.ScaleHeight * pos/10
LineArray1(pos).x2 = Form1.ScaleWidth * (10-pos)/10
LineArray1(pos).y2 = 0

Next

This script will create labels which illustrate the colors that can be obtained from the QBColor function.

Dim i

For i = 0 To 15
Create Label "QBDemo", i
QBDemo(i).BackColor = QBColor(i)
QBDemo(i).Caption = i
QBDemo(i).FontSize = 20
QBDemo(i).AutoSize = True
Move QBDemo(i), 500, i*500

Next

This script will delete the controls Check1, Check2, Check3, and Check4.

Dim x

For x = 1 to 4
Delete Check{x}

Next

This script will set the FontBold property to False for all option buttons on the current form which have
been selected in the Visual Basic interface designer.

Dim index As Variant

Do
If IsSelected(Controls(index)) Then

If TypeOf Controls(index) Is OptionButton Then
Controls(index).FontBold = False

EndIf
index = index + 1

Loop Until index = Controls.Count

This script will display a message box indicating the form name, control name, and array index (if
applicable) of every control on the currently active forms.

Dim frm, ctrl As Variant

For frm = 0 to Forms.Count - 1
For ctrl = 0 to Forms(frm).Controls.Count - 1

If Forms(frm).Controls(ctrl).Index = -1 Then
MsgBox Forms(frm).Controls(ctrl).Name , , Forms(frm).Name

Else
' this control is part of a control array
MsgBox Forms(frm).Controls(ctrl).Name & "(" &

Forms(frm).Controls(ctrl).Index & ")" , , Forms(frm).name
End If

Next
Next

License
VBScript is shareware.    You may evaluate this software for 30 days.    If you continue to use the
software after that period, you must register it.

Disclaimer
This software is provided "as-is" and comes with no warranty of any kind. Use this product at your own
risk.    In no event will the author be liable for any damages arising as a consequence of the use of this
software.

Visual Basic is a trademark of Microsoft Corporation

Copyright © 1995 by Jason Simmons

Registration
To register VBScript, print this form and send it along with a check or money order in US funds to:

Jason Simmons
82 Stonehurst Lane
Dix Hills, NY 11746

Registered users will receive a copy of the latest version of VBScript and are entitled to unlimited free
support by mail and e-mail.

If you have any comments, suggestions, questions, or bug reports, please let me know.    I can also be
reached via Internet at jsimmons@cs.sunysb.edu

Price: $20.00 per copy # of copies ____
Add $2 shipping for disk orders outside the United States

Ship to __

__

__

__

Phone # __

E-mail __

Disk size: __ 5¼ __ 3½ __ Send the registered version by e-mail
(check one)

How did you obtain this copy of VBScript?

__

