
      EASYNET 1.81
Copyright © 1994-1995 by Patrick Lassalle.      ALL RIGHTS RESERVED

IDDN.FR.001.110020.01.R.P.1994.000.10600

EasyNet is a Custom Control for Microsoft Visual Basic for Windows (*). It lets you
quickly build flowchart-enabled applications (network, workflow, database, etc...).

Why EasyNet?

Quick Start

Overview

Properties

Events

Installation

Registration

Order Form

License Agreement

Support

Acknowledgments

 (*) Microsoft is a registered trademark. Windows and Visual Basic are trademarks of Microsoft Corporation.

Quick Start

- Add the EasyNet VBX to your project by selecting "Add File..." from Visual Basic's
"File" menu. If you have not a license file, an "About" dialog box appears and you have
to click Ok.

- Drag an EasyNet control from the toolbox to your form.

- Launch the program by selecting "Start" from the "Run" menu (or do F5).

- Draw a node: bring the mouse cursor into the EasyNet control, press the left button,
move the mouse and release the left button. You have created an elliptic node. This
node is selected: that's why 9 handles (little squares) are displayed.

The handle at the center of the node is used to draw a link. The 8 others allow to resize the node. If you
want to move the node you bring the mouse cursor into the node, press the left button, move the mouse
and release the left button.

- Draw a second node...(same method)

- Draw a link: bring the mouse cursor into the handle at the center of the selected node, press the left
button, move the mouse towards the other node. When the mouse cursor is into the other node, release
the left button. The link has been created. And it is selected since a handle is displayed at the center of
this link.

- You may stretch this link: bring the mouse cursor into the link handle, press the left button, move the
mouse and release the left button. You have created a new link segment. It has 3 handles allowing you to
add or remove segments. (The handle at the intersection of two segments allows you to remove a
segment :    you move it with the mouse so that the two segments are aligned and when these two
segments are approximately aligned, release the left button).

- Now, you may return to the Visual Basic design-time mode in order to change EasyNet control

properties. For instance you may change the node filling color with FillColor property, the node shape
(Shape property), the drawing color (DrawColor property). You may allow multiselection (MultiSel and
SelectMode properties), add scrollbars (ScrollBars property), etc...

You may also create items programmaticaly with EditAction property. Or copy the
diagram to clipboard as a metafile, save its image to a file as a metafile, zoom the
diagram, etc....

...Well, it is very easy, isnt'it?

Why EasyNet?

If you need flowcharting features
If you want to implement a workflow applications
If you wish to draw organizational charts
If you have to draw communication networks
If you plan to draw state transitions diagrams
If you need to display relationships between entities (database diagrams)

then EasyNet is indispensable.    GET IT!!

It allows you to draw diagrams interactively or programmaticaly in minutes.

EasyNet is powerful, opened and customizable:
· allows to associate your own data to each item (node or link).
· allows navigation.
· offers many properties allowing you to "customize" your diagramming

application.
· is a VBX 1.0 level control. Therefore, it can be used in other host

environments.
· includes Royalty free runtime distribution
· only $119 !!

Overview

This Custom Control allows to draw network diagrams. A network diagram is a set of
nodes that can be linked. So an EasyNet control contains items that can be nodes or
links. You can associate data to each item and you can navigate in the network diagram.

 Drawings can be made interactively with the mouse or programmaticaly. See Quick
Start to see how to interactively draw nodes, resize nodes, move nodes, stretch links,
select one item or multiselect items.

By exploring following topics, you'll discover all features of the EasyNet control.

Items

Drawing

Metafile support

User Data Association

Navigation

Capabilities

Saving/Loading

Performance tuning

Limits

Items

Items are nodes or links. Two nodes can be linked with a link. A link cannot exist
without its origin and destination nodes. If one of these two nodes is deleted, the link is
also deleted.

You can make an item be the current one either with the mouse or with Item property,
allowing you to work with it, get or set its properties. You can also select several items
with the mouse if multiselection is allowed (in such a case MultiSel and SelectMode
properties are true).

IsLink property allows to know if current item is a link or not.

Sleeping property allows to specify if an item is active or not. If it sleeps, the user
cannot interactively make it current or selected.

Owner property allows to define an owner node for a node. When a node is created, it
is free and its Owner property is 0. But if you set its Owner property, then the node will
have to follow its owner node when it will be interactively moved with the mouse by the
user. A node may have several owned nodes that follow it. And if those owned nodes
are sleeping, they may be used to implement stubs or pins inside the owner node. Their
role is just to receive links.

A link may have several segments but the first segment is always directed towards the
center of the origin node and the last segment is always directed towards the center of
the destination node. However, this behaviour may be changed with Owner property.

You can create items, delete items and do other edit actions (like copying the network
diagram onto the clipboard in a metafile format) with EditAction property.

ItemZOrder places current item at the front or back of the z-order.

Example:If current item is a link, make its origin node be red.

Dim curLink&

If Net1.IsLink = True Then
 ' Save current item
 curLink = Net1.Item

 ' Make origin node be the current item
 ' in order to work with it
 Net1.Item = Net1.Org

 ' Change node filling color
 Net1.FillColor = RGB(255, 0, 0)

 ' Restore current item
 Net1.Item = curLink
End If

Drawing

You can change colors, styles and shapes of each item:
· X1, X2, Y1, Y2 properties allows to set or get position

and size of each item.

· Picture property allows to associate a picture to each node.
· AutoSize property allows to adjust node size to picture size or adjust picture size to

node size.
· Shape property allows to specify a shape for a node.
· DrawColor, DrawStyle and DrawWidth

properties    allow to specify the color and width of the pen used
to draw nodes or links.

· FillColor property allows to specify the color used inside a node.
· ForeColor property allows to specify the item text color.
· Text property associates a string that is displayed inside the node at a position

depending on Alignment property (if item is a node) or near the link
(if item is a link).
The EasyNet control maintains the memory for the strings associated to items.

· Alignment sets or returns the alignment of text in a node.
· PointCount, PointX, PointY    properties allow

to have a link composed of several segments.
· Oriented property specifies if a link is oriented or not.

If the link is oriented, it has an arrowhead.

· LinkHead property the arrowhead shape for a link.

· Transparent property specifies if a node is transparent or not.

· Hiding property specifies if an item (node or link) is visible or not.

· You can create items, delete items and do other edit actions (like copying

the network diagram onto the clipboard in a metafile format) with

EditAction property.

Example:

Creates 3 nodes and 2 links. Each node has a text. Two are rectangles and the other is
an ellipse. The links are oriented.

Sub Exercice ()
 Dim n1&, n2&, n3&

 ' Cause current item to be null
 ' Therefore, following property settings apply
 ' to next created items.
 Net1.Item = 0
 Net1.Shape = 1 'Default shape = Rectangle.
 Net1.FillColor = RGB(255, 255, 192) 'Default Fill color
 Net1.DrawColor = RGB(0, 0, 128) 'Default Draw color
 Net1.Oriented = True 'Oriented links

 ' Create first node. It has a rectangular shape.
 Net1.EditAction = 0
 Net1.X1 = 100
 Net1.Y1 = 100
 Net1.X2 = 2000

 Net1.Y2 = 500
 Net1.Text = "A network to implement ?"
 n1 = Net1.Item

 ' Create second node. It has a rectangular shape.
 Net1.EditAction = 0
 Net1.X1 = 2200
 Net1.Y1 = 300
 Net1.X2 = 3600
 Net1.Y2 = 700
 Net1.Text = "FlowChart needs ?"
 n2 = Net1.Item

 ' Create a third node. No shape is indicated.
 ' Therefore its shape is the default one: ellipse.
 Net1.EditAction = 0
 Net1.Shape = 0 ' Ellipse
 Net1.X1 = 1100
 Net1.Y1 = 1500
 Net1.X2 = 3000
 Net1.Y2 = 2000
 Net1.Text = "Use EasyNet.vbx !!"
 n3 = Net1.Item

 ' Create first link
 Net1.Org = n1
 Net1.Dst = n3
 Net1.EditAction = 1

 ' Create second link with an extra point (2 segments)
 Net1.Org = n2
 Net1.Dst = n3
 Net1.EditAction = 1
 Net1.PointCount = 1
 Net1.PointX(0) = 3200
 Net1.PointY(0) = 1000

 ' Unselect last created link
 Net1.Item = 0
End Sub

Metafile support

EasyNet offers a perfect metafile support:

· Metafile copy: you may copy an EasyNet diagram onto the clipboard and paste
it in Window Write, in PaintBrush, Excel, Winword, WordPerfect, in a VB picture,
etc... And the result can be resized. For instance, you may paste the metafile in
a Winword document, double-click on the picture, adjust the margins so that
there's room for other drawing objects, use the drawing tools to draw some
lines, circles, etc, close the picture, select it, copy it to the clipboard, etc...

· Metafile save: you may save an image of your EasyNet diagram on disk as a
metafile.

User Data Association

You can associate data to each item (node or link) with following properties:
· ItemTag property associates a string that is NOT displayed.

The EasyNet control maintains the memory for the tags associated to items.
This tag can be used to store user data.

· Data property associates a long integer that can be used to store a
reference to a user data.

· Type property associates an integer that can be used to store an identifier or a
type.

Navigation

You can navigate in the network diagram with the three following properties:
· LoopAction property has to be called first in order to

indicate the type of navigation to perform.
· Then, a call to    LoopCount gives the count of items involved

in this navigation.

· Then, you get each item with LoopItem property.

LoopScope property allows to apply item property settings to all items involved
in the loop.

You can retrieve origin and destination node of a link with Org and Dst properties.

Oriented property specifies if a link is oriented or not.

Example:
Makes color of all "out" links of all selected nodes be red.
Two calls to LoopAction property cannnot be cascaded so you have first to memorize

the selected nodes in an array in order to work with them.

Sub Exercice ()
 Dim nbnode%, nblink%, i%, j%
 Dim Node() As Long

 ' Do a loop with selected nodes
 Net1.LoopAction = 2

 ' Get count of selected nodes
 nbnode = Net1.LoopCount

 ' If no selected nodes, nothing to do
 If nbnode = 0 Then Exit Sub

 ' Memorize selected nodes in a dynamic array.
 ReDim Node(1 To nbnode)
 For i = 1 To nbnode
 Node(i) = Net1.LoopItem(i - 1)
 Next i

 ' For each node of our array...
 For i = 1 To nbnode
 ' ... makes it be the current item
 Net1.Item = Node(i)

 ' Do a loop with all leaving (out) links of the current node
 Net1.LoopAction = 4

 ' Get count of selected nodes
 nblink = Net1.LoopCount

 ' For each link leaving the current node...
 For j = 1 To nblink
 Net1.Item = Net1.LoopItem(j - 1)
 Net1.DrawColor = RGB(255, 0, 0)
 Next j
 Next i

 ' Don't forget to delete the array
 Erase Node
End Sub

Capabilities

Following properties allow to set capabilities for an EasyNet control:

AutoScroll

CanDrawNode

CanDrawLink

CanMoveNode

CanSizeNode

CanStretchLink

CanMultiLink

DisplayHandles

DoAddLink

DoAddNode

DoChange

DoSelChange

MultiSel

ReadOnly

ScrollBars

ShowGrid

xGrid

yGrid

Zoom

Saving/Loading

Saving an EasyNet diagram is under the responsability of the VB application that uses an
EasyNet control. The ImageFile property used in conjunction with EditAction property only allows
to save an image of the EasyNet diagram. This image file can be used by other drawing
applications but it cannot be loaded up again by EasyNet.

You may see demonet1 sample that is supplied with the package in order to see a way to save
an EasyNet diagram. It is just an example. You may use another method or/and save more or
less properties for each item. You may use a sequential, a binary or a random file format. Let us
give another example using a sequential file. You may copy this code into clipboard and paste it
in one of your application modules.

Example:
' ---
' This procedure saves an EasyNet diagram in a sequential file.
' It saves:
' - the version number
' - the nodes count
' - the links count
' - every properties of each node (except Picture property)
' - every properties of each link.
'
' Picture property is not saved but you may instead manage
' a correspondance between node types and pictures. For
' instance when you load your file, your VB application knows
' that node of type 1 have one icon, nodes of type 2 have another
' icon, etc...
'
' This program is just an example to show how an EasyNet file
' may be saved to disk.
' Properties that applied to the whole diagram like FontSize or
' FontName are not saved here.
' You may proceed differently: for instance, use a binary or
' a random file and save only the properties you need for your
' application.
' You may consider this program as a starting point to write
' your EasyNet saving/loading procedures adapted to your needs.
'
' THE CODE PROVIDED HEREUNDER IS PROVIDED AS IS WITHOUT WARRANTY
' OF ANY KIND.
' ---
'
' Following type is used for loading only.
Type ItemRec
 Type As Integer
 Data As Long
 FillColor As Long
 ForeColor As Long
 DrawColor As Long
 DrawWidth As Integer
 DrawStyle As Integer
 Sleeping As Integer
 Hiding As Integer
 ItemTag As String
 Text As String

 Shape As Integer
 Transparent As Integer
 Alignment As Integer
 AutoSize As Integer
 X1 As Long
 Y1 As Long
 X2 As Long
 Y2 As Long
 Oriented As Integer
 LinkHead As Integer
 OwnerNode As Long
 SrcNode As Long
 DstNode As Long
 Points As Integer
End Type

Sub SaveEasyNetFile (Net1 As Control, Filename$)
 Dim i%, j%, length%, NodeCount%, LinkCount%, PointCount%
 Dim TextLength%, TagLength%
 Dim Text$, ItemTag$, s$, CR$
 Dim node() As Long
 Dim nodeId As Long
 Dim Owner As Long
 Dim Org As Long
 Dim Dst As Long
 Dim l As Long
 Dim ptx() As Long
 Dim pty() As Long
 Dim Item As Long

 CR = Chr$(13)

 Open Filename For Output As 1
 Print #1, "EASYNET VERSION = " + Format$(Net1.Version)

 ' Node count
 Net1.LoopAction = 0
 NodeCount = Net1.LoopCount
 Print #1, "Nodes = " + Format$(NodeCount)

 ' Link count
 Net1.LoopAction = 1
 LinkCount = Net1.LoopCount

 Print #1, "Links = " + Format$(LinkCount)

 If NodeCount = 0 Then
 Close
 Exit Sub
 End If

 ' Allocate array to store nodes identifier. This array will be used
 ' when saving links or owner nodes.
 ReDim node(1 To NodeCount)

 ' For each node, save its identifier in an array
 Net1.LoopAction = 0 ' Do a nodes loop
 For i = 1 To NodeCount
 node(i) = Net1.LoopItem(i - 1)
 Next

 '-----------
 ' Save nodes
 '-----------

 ' For each node:
 ' - make it the current one
 ' - save its properties in the file

 For i = 1 To NodeCount

 ' Make node the current item
 Net1.Item = node(i)

 ' Get text and its length
 Text = Net1.Text
 TextLength = Len(Text)

 ' Get tag and its length
 ItemTag = Net1.ItemTag
 TagLength = Len(ItemTag)

 ' Find owner
 Owner = 0
 nodeId = Net1.Owner
 For j = 1 To NodeCount
 If node(j) = nodeId Then
 Owner = j
 Exit For
 End If
 Next

 ' Save current node properties
 Print #1, "Begin Node " + Format$(i)
 Print #1, " Owner = " + Format$(Owner)
 Print #1, " Type = " + Net1.Type
 Print #1, " Data = " + Net1.Data
 Print #1, " ForeColor = " + Net1.ForeColor
 Print #1, " FillColor = " + Net1.FillColor
 Print #1, " DrawColor = " + Net1.DrawColor
 Print #1, " DrawWidth = " + Net1.DrawWidth
 Print #1, " DrawStyle = " + Net1.DrawStyle
 Print #1, " Transparent = " + Net1.Transparent
 Print #1, " Alignment = " + Net1.Alignment
 Print #1, " AutoSize = " + Net1.AutoSize
 Print #1, " Shape = " + Net1.Shape
 Print #1, " X1 = " + Net1.X1
 Print #1, " Y1 = " + Net1.Y1
 Print #1, " X2 = " + Net1.X2
 Print #1, " Y2 = " + Net1.Y2

 Print #1, " Sleeping = " + Net1.Sleeping
 Print #1, " Hiding = " + Net1.Hiding
 If TextLength > 0 Then
 s = Text
 length = InStr(s, CR)
 While length > 0
 Print #1, " Text = " + Left$(s, length - 1)
 s = Mid$(s, length + 2)
 length = InStr(s, CR)
 Wend
 Print #1, " Text = " + s
 End If
 If TagLength > 0 Then
 s = ItemTag
 length = InStr(s, CR)
 While length > 0
 Print #1, " ItemTag = " + Left$(s, length - 1)
 s = Mid$(s, length + 2)
 length = InStr(s, CR)
 Wend
 Print #1, " ItemTag = " + s
 End If
 Print #1, "End"
 Next i

 '-----------
 ' Save links
 '-----------

 Net1.LoopAction = 1 ' Do a links loop

 ' For each link:
 ' - make it the current one
 ' - find its origin and destination nodes
 ' - save its properties in the file

 For i = 1 To LinkCount
 ' Make link the current item
 Net1.Item = Net1.LoopItem(i - 1)

 ' Find origin
 Org = 0
 nodeId = Net1.Org
 For j = 1 To NodeCount
 If node(j) = nodeId Then
 Org = j
 Exit For
 End If
 Next

 ' Find destination
 Dst = 0
 nodeId = Net1.Dst
 For j = 1 To NodeCount
 If node(j) = nodeId Then

 Dst = j
 Exit For
 End If
 Next

 ' Get text and its length
 Text = Net1.Text
 TextLength = Len(Text)

 ' Get tag and its length
 ItemTag = Net1.ItemTag
 TagLength = Len(ItemTag)

 ' Get Number of points
 PointCount = Net1.PointCount

 ' Get points
 If PointCount > 0 Then
 ReDim ptx(0 To PointCount - 1)
 ReDim pty(0 To PointCount - 1)
 For l = 0 To PointCount - 1
 ptx(l) = Net1.PointX(l)
 pty(l) = Net1.PointY(l)
 Next
 End If

 ' Save current link properties
 Print #1, "Begin Link " + Format$(i)
 Print #1, " Type = " + Net1.Type
 Print #1, " Data = " + Net1.Data
 Print #1, " ForeColor = " + Net1.ForeColor
 Print #1, " DrawColor = " + Net1.DrawColor
 Print #1, " DrawWidth = " + Net1.DrawWidth
 Print #1, " DrawStyle = " + Net1.DrawStyle
 Print #1, " Oriented = " + Net1.Oriented
 Print #1, " LinkHead = " + Net1.LinkHead
 Print #1, " Src = " + Format$(Org)
 Print #1, " Dst = " + Format$(Dst)
 Print #1, " Sleeping = " + Net1.Sleeping
 Print #1, " Hiding = " + Net1.Hiding
 Print #1, " Points = " + Format$(PointCount)
 If PointCount > 0 Then
 For l = 0 To PointCount - 1
 Print #1, " " + Format$(ptx(l)) + "," + Format$(pty(l))
 Next
 End If
 If TextLength > 0 Then
 s = Text
 length = InStr(s, CR)
 While length > 0
 Print #1, " Text = " + Left$(s, length - 1)
 s = Mid$(s, length + 2)
 length = InStr(s, CR)
 Wend
 Print #1, " Text = " + s

 End If
 If TagLength > 0 Then
 s = ItemTag
 length = InStr(s, CR)
 While length > 0
 Print #1, " ItemTag = " + Left$(s, length - 1)
 s = Mid$(s, length + 2)
 length = InStr(s, CR)
 Wend
 Print #1, " ItemTag = " + s
 End If
 Print #1, "End"
 Next i

 Erase node
 Erase ptx
 Erase pty

 ' Close file
 Close
End Sub

'--
' (See comment of SaveEasyNetFile subroutine.)
'--
'
Sub OpenEasyNetFile (Net1 As Control, Filename$)
 Dim s$, value$, keyword$, CRLF$
 Dim length%, i%, NodeCount%, LinkCount%
 Dim Version As Variant
 Dim ir As ItemRec
 Dim l As Long
 Dim ptx() As Long
 Dim pty() As Long
 Dim node() As Long
 Dim Owner() As Integer

 CRLF = Chr$(13) + Chr$(10)

 Open Filename For Input As #1

 Line Input #1, s ' Version
 Version = Val(Mid$(s, InStr(s, "=") + 1))
 If Version <> Net1.Version Then
 MsgBox "File created by another EasyNet version!"
 Beep
 Exit Sub
 End If

 ' Node count
 Line Input #1, s
 NodeCount = Val(Mid$(s, InStr(s, "=") + 1))

 ' Link count
 Line Input #1, s

 LinkCount = Val(Mid$(s, InStr(s, "=") + 1))

 If NodeCount = 0 Then
 Close
 Exit Sub
 End If

 ReDim node(1 To NodeCount)
 ReDim Owner(1 To NodeCount)

 ' Load all nodes
 For i = 1 To NodeCount
 Line Input #1, s ' Skip Begin keyword
 length = InStr(s, " ")
 keyword = Left$(s, length - 1)

 If keyword = "Begin" Then
 Net1.Item = 0

 ' Default values
 ir.Type = 0
 ir.Data = 0
 ir.ItemTag = ""
 ir.Text = ""
 ir.ForeColor = Net1.ForeColor
 ir.FillColor = Net1.FillColor
 ir.DrawColor = Net1.DrawColor
 ir.DrawWidth = Net1.DrawWidth
 ir.DrawStyle = Net1.DrawStyle
 ir.Sleeping = Net1.Sleeping
 ir.Hiding = Net1.Hiding
 ir.Shape = Net1.Shape
 ir.Alignment = Net1.Alignment
 ir.AutoSize = Net1.AutoSize
 ir.Transparent = Net1.Transparent
 ir.X1 = 0
 ir.Y1 = 0
 ir.X2 = 0
 ir.Y2 = 0
 ir.OwnerNode = 0

 Do
 Line Input #1, s ' Skip Begin keyword
 s = LTrim$(s)
 length = InStr(s, " ")
 If length > 0 Then
 keyword = Left$(s, length - 1)
 Else
 keyword = s
 End If
 If keyword = "End" Then
 Exit Do
 End If
 value = Mid$(s, length + 2)

 ' Load each node property
 Select Case keyword
 Case "Type"
 ir.Type = Val(value)
 Case "Data"
 ir.Data = Val(value)
 Case "FillColor"
 ir.FillColor = Val(value)
 Case "ForeColor"
 ir.ForeColor = Val(value)
 Case "DrawColor"
 ir.DrawColor = Val(value)
 Case "DrawWidth"
 ir.DrawWidth = Val(value)
 Case "DrawStyle"
 ir.DrawStyle = Val(value)
 Case "Sleeping"
 ir.Sleeping = Val(value)
 Case "Hiding"
 ir.Hiding = Val(value)
 Case "Transparent"
 ir.Transparent = Val(value)
 Case "Alignment"
 ir.Alignment = Val(value)
 Case "AutoSize"
 ir.AutoSize = Val(value)
 Case "Shape"
 ir.Shape = Val(value)
 Case "X1"
 ir.X1 = Val(value)
 Case "X2"
 ir.X2 = Val(value)
 Case "Y1"
 ir.Y1 = Val(value)
 Case "Y2"
 ir.Y2 = Val(value)
 Case "Owner"
 ir.OwnerNode = Val(value)
 Case "ItemTag"
 If ir.ItemTag = "" Then
 ir.ItemTag = value
 Else
 ir.ItemTag = ir.ItemTag + CRLF + value
 End If
 Case "Text"
 If ir.Text = "" Then
 ir.Text = value
 Else
 ir.Text = ir.Text + CRLF + value
 End If
 End Select
 Loop

 ' Create Node
 Net1.EditAction = 0

 ' For each node, store its identifier
 ' (will be used for links loading and for owner nodes)
 node(i) = Net1.Item

 Owner(i) = ir.OwnerNode

 Net1.Type = ir.Type
 Net1.Data = ir.Data
 Net1.FillColor = ir.FillColor
 Net1.ForeColor = ir.ForeColor
 Net1.DrawColor = ir.DrawColor
 Net1.DrawWidth = ir.DrawWidth
 Net1.DrawStyle = ir.DrawStyle
 Net1.Hiding = ir.Hiding
 Net1.Alignment = ir.Alignment
 Net1.AutoSize = ir.AutoSize
 Net1.Shape = ir.Shape
 Net1.Transparent = ir.Transparent
 Net1.X1 = ir.X1
 Net1.Y1 = ir.Y1
 Net1.X2 = ir.X2
 Net1.Y2 = ir.Y2
 Net1.ItemTag = ir.ItemTag
 Net1.Text = ir.Text
 Net1.Sleeping = ir.Sleeping ' Must be last setting
 End If
 Next i

 ' Manage owner nodes
 For i = 1 To NodeCount
 Net1.Item = node(i)
 If Owner(i) <> 0 Then
 Net1.Owner = node(Owner(i))
 End If
 Next i

 ' List of link
 For i = 1 To LinkCount
 Line Input #1, s ' Skip Begin keyword
 length = InStr(s, " ")
 keyword = Left$(s, length - 1)

 If keyword = "Begin" Then
 Net1.Item = 0

 ' Default values
 ir.Type = 0
 ir.Data = 0
 ir.ItemTag = ""
 ir.Text = ""
 ir.ForeColor = Net1.ForeColor
 ir.DrawColor = Net1.DrawColor
 ir.DrawWidth = Net1.DrawWidth
 ir.DrawStyle = Net1.DrawStyle

 ir.Sleeping = Net1.Sleeping
 ir.Hiding = Net1.Hiding
 ir.Oriented = Net1.Oriented
 ir.LinkHead = Net1.LinkHead
 ir.SrcNode = 0
 ir.DstNode = 0
 ir.Points = 0

 Do
 Line Input #1, s ' Skip Begin keyword

 s = LTrim$(s)
 length = InStr(s, " ")
 If length > 0 Then
 keyword = Left$(s, length - 1)
 Else
 keyword = s
 End If
 If keyword = "End" Then
 Exit Do
 End If
 value = Mid$(s, length + 2)

 ' Load each link property
 Select Case keyword
 Case "Type"
 ir.Type = Val(value)
 Case "Data"
 ir.Data = Val(value)
 Case "ForeColor"
 ir.ForeColor = Val(value)
 Case "DrawColor"
 ir.DrawColor = Val(value)
 Case "DrawWidth"
 ir.DrawWidth = Val(value)
 Case "DrawStyle"
 ir.DrawStyle = Val(value)
 Case "Sleeping"
 ir.Sleeping = Val(value)
 Case "Hiding"
 ir.Hiding = Val(value)
 Case "Oriented"
 ir.Oriented = Val(value)
 Case "LinkHead"
 ir.LinkHead = Val(value)
 Case "ItemTag"
 If ir.ItemTag = "" Then
 ir.ItemTag = value
 Else
 ir.ItemTag = ir.ItemTag + CRLF + value
 End If
 Case "Text"
 If ir.Text = "" Then
 ir.Text = value
 Else

 ir.Text = ir.Text + CRLF + value
 End If
 Case "Src"
 ir.SrcNode = node(Val(value))
 Case "Dst"
 ir.DstNode = node(Val(value))
 Case "Points"
 ir.Points = Val(value)

 ' Get points
 If ir.Points > 0 Then
 ReDim ptx(0 To ir.Points - 1)
 ReDim pty(0 To ir.Points - 1)
 For l = 0 To ir.Points - 1
 Line Input #1, s ' Read point
 s = LTrim$(s)
 length = InStr(s, ",")
 ptx(l) = Val(Left$(s, length - 1))
 pty(l) = Val(Mid$(s, length + 1))
 Next l
 End If
 End Select
 Loop

 ' Set origin and destination nodes for next created link
 Net1.Org = ir.SrcNode
 Net1.Dst = ir.DstNode

 ' Create Link
 Net1.EditAction = 1

 Net1.Type = ir.Type
 Net1.Data = ir.Data
 Net1.ForeColor = ir.ForeColor
 Net1.DrawColor = ir.DrawColor
 Net1.DrawWidth = ir.DrawWidth
 Net1.DrawStyle = ir.DrawStyle
 Net1.Hiding = ir.Hiding
 Net1.Oriented = ir.Oriented
 Net1.LinkHead = ir.LinkHead
 Net1.ItemTag = ir.ItemTag
 Net1.Text = ir.Text
 Net1.PointCount = ir.Points
 For l = 0 To ir.Points - 1
 Net1.PointX(l) = ptx(l)
 Net1.PointY(l) = pty(l)
 Next l
 Net1.Sleeping = ir.Sleeping ' Must be last setting
 End If
 Next i

 ' Erase dynamic arrays
 Erase ptx
 Erase pty
 Erase node

 Erase Owner

 ' Close file
 Close
End Sub

Performance tuning

Setting following properties to False allows to increase speed dramatically:

DoAddLink

DoAddNode

DoChange

DoSelChange

Repaint

CheckItem

Example:

You may insert this portion of code each time you need to do a time consuming task like saving
an EasyNet diagram or navigating in the diagram.

' Setting those properties to False improve speed
 Net1.Repaint = False
 Net1.DoChange = False
 Net1.DoSelChange = False
 Net1.DoAddNode = False
 Net1.DoAddLink = False
 Net1.CheckItem = False

When you have terminated your task, you may reset those properties to True.

 Net1.Repaint = True
 Net1.DoChange = True
 Net1.DoSelChange = True
 Net1.DoAddNode = True
 Net1.DoAddLink = True
 Net1.CheckItem = True

Limits

For one EasyNet control:

· the maximum number of items (nodes + links) is 16376.
· the maximum number of link points is 254.

(therefore, the maximum number of link segments is 255).

For each item, the Text setting is approximately 65,500 characters. (same setting for
ItemTag property).

Remark: If your application using EasyNet has been generated without license file,
then the control will be limited to 20 items instead of 16376.

Properties
All the properties are listed below. Properties that apply only to the EasyNet Custom Control, or require

special consideration when used with it, are underlined. They are documented in this help file. See the
Visual Basic Language Reference or online Help for documentation of the remaining properties.

(About) Alignment BackColor AutoScroll
AutoSize BackPicture BorderStyle Caption
CanDrawNode CanDrawLink CanMoveNode CanSizeNode
CanStretchLink CanMultiLink CheckItem CtlName
DisplayHandles DoAddLink DoAddNode DoChange
DoSelChange Data Dst DragIcon
DragMode DrawColor DrawStyle DrawWidth
EditAction Enabled FillColor FontBold
FontItalic FontName FontSize FontStrike
FontUnder ForeColor Height HelpContextId
Hiding Hwnd ImageFile Index
IsLink Item ItemTag ItemZOrder
Left LinkHead LoopAction LoopCount
LoopItem LoopScope MousePointer MultiSel
Oriented Org Owner Parent
Picture PointCount PointedArea PointedItem
PointX PointY ReadOnly Repaint
ShowGrid ScrollBars SelectMode Shape
Sleeping TabIndex TabStop Tag
Text Top Transparent Type
Version Visible Width X1
X2 xGrid xScroll Y1
Y2 yGrid yScroll Zoom

Events

All the events are listed below. Events that apply only to the EasyNet Custom Control, or require special
consideration when used with it, are underlined. They are documented in this help file.    See the Visual
Basic Language Reference or online Help for documentation of the remaining events.

AddLink AddNode Change Click
DblClick DragDrop DragOver ErrSpace
GotFocus KeyDown KeyPress KeyUp
LostFocus MouseDown MouseMove MouseUp
SelChange

EditAction Property

Description

Specifies an action that applies to selected items or that allows to select or unselect
items.
Not available at design time; write only at run time.

Usage

[form.]NET.EditAction[= setting]

Settings

The EditAction property settings are:

Setting Description

0 create a node

1 create a link

2 delete selected nodes (and their links)

3 select all nodes.

4 unselect.

5 copy selected nodes onto the clipboard in a metafile format.

6 clear network diagram (all items are deleted)

7 copy all the diagram onto the clipboard in a metafile format.

8 the image of the diagram is written to disk as a metafile (.WMF).
For this option to work, the ImageFile property must be
set to provide a name for the file.

Data Type

Integer (enumerated)

Remarks

Link creation: The link that is created when setting EditAction to 1 is a link that links the
nodes specified by Org and Dst properties. If one of this node is not valid, the link is not
created.

Selection: Only nodes can be selected.by the user.

Delete: When a node is deleted, all its links are also deleted. A link cannot exist without
its origin and destination nodes. If one of these two nodes is deleted, the link is also
deleted.

See Also

Drawing

FillColor Property

Description

If current item is 0, sets or returns the "current" filling node color (the filling color used
for next created nodes).
If current item is a node, sets or returns its color (the color with which the node is filled).
If current item is a link, writing has no effect and reading returns 0.
If LoopScope property is True, writing applies to every nodes involved in a call to

LoopAction property.
This property has no effect if Transparent property is set.

Usage

[form.]NET.FillColor[= color &]

Settings

The FillColor property settings are:

Setting Description

Normal RGB Colors Color set with RGB or QBColor function in code

System Default Colors Colors specified with the system color constants from
CONSTANT.TXT, a Visual Basic file that you can load into a
project's global module.    Window's substitutes the user's
choices, as specified through the user's Control Panel
Settings.

By default, FillColor is set to 0 (black)

Data Type

Long

See Also

Drawing

ForeColor Property

Description

If current item is 0, sets or returns the "current" item text color (the text color used for
next created items).
If current item is not 0, sets or returns its text color.
If LoopScope property is True, writing applies to every items involved in a call to

LoopAction property.

Usage

[form.]NET.ForeColor[= color &]

Settings

The ForeColor property settings are:

Setting Description

Normal RGB Colors Color set with RGB or QBColor function in code

System Default Colors Colors specified with the system color constants from
CONSTANT.TXT, a Visual Basic file that you can load into a
project's global module.    Window's substitutes the user's
choices, as specified through the user's Control Panel
Settings.

By default, ForeColor is set to 0 (black)

Data Type

Long

See Also

Drawing

DrawColor Property

Description

If current item is 0, sets or returns the "current" drawing color    (the drawing color used
for next created items).
If current item is not 0, sets or returns its drawing color.
If LoopScope property is True, writing applies to every items involved in a call to

LoopAction property.

Usage

[form.]NET.DrawColor[= color &]

Settings

The DrawColor property settings are:

Setting Description

Normal RGB Colors Color set with RGB or QBColor function in code

System Default Colors Colors specified with the system color constants from
CONSTANT.TXT, a Visual Basic file that you can load into a
project's global module.    Window's substitutes the user's
choices, as specified through the user's Control Panel
Settings.

By default, DrawColor is set to 0 (black)

Data Type

Long

See Also

Drawing

DrawStyle Property

Description

If current item is 0, sets or returns the "current" drawing style    (the drawing style used
for next created items).
If current item is not 0, sets or returns the item drawing style.
If LoopScope property is True, writing applies to every items involved in a call to

LoopAction property.

Usage

[form.]NET.DrawStyle[= size]

Setting

The DrawStyle property settings are:

Setting Description

0 (Default) Solid
1 Dash
2 Dot
3 Dash-Dot
4 Dash-Dot-Dot
5 Transparent
6 Inside Solid

Data Type

Integer (enumerated)

Remarks

If DrawWidth is set to a value greater than 1, then DrawStyles 1 through 4 produce a
solid line (the DrawStyle property value is not changed).    If DrawWidth is set to 1,
DrawStyle produces the effect described above for each setting.

See Also

Drawing

DrawWidth Property

Description

If current item is 0, sets or returns the "current" drawing pen width (the drawing pen
width used for next created items).
If current item is not 0, sets or returns the item drawing pen width.
If LoopScope property is True, writing applies to every items involved in a call to

LoopAction property.

Usage

[form.]NET.DrawWidth[= size]

Setting

You can set DrawWidth to a value of 1 to 8 (pixels).

Data Type

Integer

See Also

Drawing

Shape Property

Description

If current item is 0, sets or returns the "current" node shape    (the shape used for next
created nodes).
If current item is a node, sets or returns its shape (ellipse, rectangle, round rectangle,

diamond).
If current item is a link, writing has no effect and reading returns 0.
If LoopScope property is True, writing applies to every nodes involved in a call to

LoopAction property.

Usage

[form.]NET.Shape[= shape]

Settings

The Shape property settings are:

Setting Description

0 Ellipse
1 Rectangle
2 Round rectangle
3 Diamond

By default, Shape is set to 0 (ellipse)

Data Type

Integer (enumerated)

See Also

Drawing

LinkHead Property
If current item is 0, sets or returns the "current" link arrowhead shape
(the arrowhead used for next created links).
If current item is a node, writing has no effect and reading returns 0.
If current item is a link, sets or returns its arrowhead
If LoopScope property is True, writing applies to every links involved in a call to

LoopAction property.

Usage

[form.]NET.LinkHead[= shape]

Settings

The LinkHead property settings are:

Setting Description

0 Filled arrow 15°
1 Filled circle
2 Empty arrow 15°
3 Empty circle
4 Filled arrow 30°
5 Empty arrow 30°
6 Filled arrow 45°
7 Empty arrow 45°

By default, LinkHead is set to 0

Data Type

Integer (enumerated)

See Also

Drawing

Alignment Property

Description

If current item is 0, sets or returns the "current" text alignment style
(the text alignment style used for next created nodes).
If current item is a node, sets or returns its text alignment style.
If current item is a link, writing has no effect and reading returns 0.
If LoopScope property is True, writing applies to every nodes involved in a call to

LoopAction property.

Usage

[form.]NET.Alignment[= alignment &]

Settings

The Alignment property settings are:

Setting Description

0 Left - TOP

1 Left - MIDDLE

2 Left - BOTTOM

3 Right - TOP

4 Right - MIDDLE

5 Right - BOTTOM

6 Center - TOP

7 Center - MIDDLE

8 Center - BOTTOM

Data Type

Integer (enumerated)

See Also

Drawing

AutoSize Property

Description

Allows to adjust node size to picture size or adjust picture size to node size.
If current item is 0, sets or returns the "current" node autosize style
(the autosize style used for next created nodes).
If current item is a node, sets or returns its autosize style.
If current item is a link, writing has no effect and reading returns 0.
If LoopScope property is True, writing applies to every nodes involved in a call to

LoopAction property.

Usage

[form.]NET.Autosize[= autosize &]

Settings

The AutoSize property settings are:

Setting Description

0 None

1 Adjust picture size to node size

2 Adjust node size to picture size

Data Type

Integer (enumerated)

See Also

Drawing

AutoScroll Property

Description

Specify if Automatic scrolling is allowed. For instance, if an item is dragged to the edge of the
currently visible drawing area, the area automatically scrolls.

Usage

[form.]NET.AutoScroll[= {True | False}]

Settings

The AutoScroll Property settings are:

Setting Description

False Automatic scrolling is not allowed.

True (Default) Automatic scrolling is allowed.

Data Type

Integer (Boolean)

See Also

Capabilities

Transparent Property

Description

If current item is 0, specify if next created nodes will be transparent or not.
If current item is a node, specify if it is transparent or not.
If current item is a link, writing has no effect and reading returns 0.
If LoopScope property is True, writing applies to every nodes involved in a call to

LoopAction property.

Usage

[form.]NET.Transparent[=    {True | False}]

Settings

The Transparent property settings are:

Setting Description

False (default) Opaque

True Transparent

Data Type

Integer (Boolean)

See also

Drawing

X1, Y1, X2, Y2 Property

Description

If current item is 0, sets or returns the coordinates of upper left point (X1, Y1) or lower
right point (X2, Y2) of the bounding rectangle of next created node.
If current item is a node, sets or returns the coordinates of upper left point (X1, Y1) or

lower right point (X2, Y2) of its bounding rectangle.
If current item is a link, writing those properties has no effect and reading returns the

coordinates of upper left point (X1, Y1) or lower right point (X2, Y2) of its bounding
rectangle.
If LoopScope property is True, writing applies to every items involved in a call to

LoopAction property.
Not available at design time.

Usage

[form.]NET.X1[= numeric expression]

[form.]NET.Y1[= numeric expression]

[form.]NET.X2[= numeric expression]

[form.]NET.Y2[= numeric expression]

Data Type

Long

See Also

Drawing

PointCount Property

Description

If current item is 0 or is a node, writing this property has no effect
and reading it returns 0.
If current item is a link, sets or returns the number of its points.
Not available at design time.

Usage

[form.]NET.PointCount[= numeric expression]

Data Type

Integer

Remarks

A link point is a point that joins two segments of a link. If a link has n points,
it is composed of n+1 segments.
The maximum value for the number of link points is 254.

See Also

Drawing

PointX Property

Description

If current item is 0 or is a node, writing this property has no effect and reading it returns
0.
If current item is a link, sets or returns a long integer value that identifies an x position

of a specified link point.
Not available at design time.

Usage

[form.]NET.PointX(index)[= numeric expression]

Data Type

Long

Remarks

If current item is a link reading this property has special meanings if index has a
negative value between -1 and -4:

· -1: returns x position of intersection point between origin node border and link.
· -2: returns x position of intersection point between destination node border and link
· -3: if link is oriented, returns x position of one arrowhead point.

If link is not oriented, it has the same effect as the case -2.

· -4: if link is oriented, returns x position of the other arrowhead point.

If link is not oriented, it has the same effect as the case -2.

See Also

Drawing

Example Print an arrow

Dim i, nbpoint As Integer
Dim l, ptx1, pty1, ptx2, pty2, ptx3, pty3 As Long
Dim ptx(), pty() As Long

'Number of extra points
nbpoint = Net1.PointCount

'Allocate an array of nbpoint + 2
ReDim ptx(0 To nbpoint + 1)
ReDim pty(0 To nbpoint + 1)

'First point (intersection between origin node border and link)
ptx(0) = Net1.PointX(-1)
pty(0) = Net1.PointY(-1)

' Normal extra points
For l = 1 To nbpoint
 ptx(l) = Net1.PointX(l - 1)
 pty(l) = Net1.PointY(l - 1)
Next l

'Last point (intersection between destination node border and link)
ptx(nbpoint + 1) = Net1.PointX(-2)

pty(nbpoint + 1) = Net1.PointY(-2)

' Draw all link segments
For l = 0 To nbpoint
 printer.Line (ptx(l), pty(l))-(ptx(l+1), pty(l+1)), Net1.DrawColor
Next l

'Get point arrow head
ptx1 = Net1.PointX(-3)
pty1 = Net1.PointY(-3)
ptx2 = Net1.PointX(-4)
pty2 = Net1.PointY(-4)
ptx3 = ptx(nbpoint + 1)
pty3 = pty(nbpoint + 1)

'Draw arrow head
printer.Line (ptx1, pty1)-(ptx2, pty2), Net1.DrawColor
printer.Line (ptx1, pty1)-(ptx3, pty3), Net1.DrawColor
printer.Line (ptx3, pty3)-(ptx2, pty2), Net1.DrawColor

PointY Property

Description

If current item is 0 or is a node, writing this property has no effect and reading it returns
0.
If current item is a link, sets or returns a long integer value that identifies an y position

of a specified link point.
Not available at design time.

Usage

[form.]NET.PointY(index)[= numeric expression]

Data Type

Long

Remarks

If current item is a link, reading this property has special meanings if index has a
negative value between -1 and -4:

· -1: returns y position of intersection point between origin node border and link.
· -2: returns y position of intersection point between destination node border and link
· -3: if link is oriented, returns y position of one arrowhead point.

If link is not oriented, it has the same effect as the case -2.

· -4: if link is oriented, returns y position of the other arrowhead point.

If link is not oriented, it has the same effect as the case -2.

See Also

Drawing

Example Print an arrow

Dim i, nbpoint As Integer
Dim l, ptx1, pty1, ptx2, pty2, ptx3, pty3 As Long
Dim ptx(), pty() As Long

'Number of extra points
nbpoint = Net1.PointCount

'Allocate an array of nbpoint + 2
ReDim ptx(0 To nbpoint + 1)
ReDim pty(0 To nbpoint + 1)

'First point (intersection between origin node border and link)
ptx(0) = Net1.PointX(-1)
pty(0) = Net1.PointY(-1)

' Normal extra points
For l = 1 To nbpoint
 ptx(l) = Net1.PointX(l - 1)
 pty(l) = Net1.PointY(l - 1)
Next l

'Last point (intersection between destination node border and link)
ptx(nbpoint + 1) = Net1.PointX(-2)

pty(nbpoint + 1) = Net1.PointY(-2)

' Draw all link segments
For l = 0 To nbpoint
 printer.Line (ptx(l), pty(l))-(ptx(l+1), pty(l+1)), Net1.DrawColor
Next l

'Get point arrow head
ptx1 = Net1.PointX(-3)
pty1 = Net1.PointY(-3)
ptx2 = Net1.PointX(-4)
pty2 = Net1.PointY(-4)
ptx3 = ptx(nbpoint + 1)
pty3 = pty(nbpoint + 1)

'Draw arrow head
printer.Line (ptx1, pty1)-(ptx2, pty2), Net1.DrawColor
printer.Line (ptx1, pty1)-(ptx3, pty3), Net1.DrawColor
printer.Line (ptx3, pty3)-(ptx2, pty2), Net1.DrawColor

Oriented Property

Description

If current item is 0, specify if next created links will be oriented or not.
If current item is a link, specify if it is oriented or not.
If current item is a node, writing has no effect and reading returns 0.
When a link is oriented, it is displayed with an arrowhead at its destination node.
If LoopScope property is True, writing applies to every links involved in a call to

LoopAction property.

Usage

[form.]NET.Oriented[=    {True | False}]

Settings

The Oriented property settings are:

Setting Description

False no arrowhead

True (default) one arrowhead

Data Type

Integer (Boolean)

See also

Navigation

Org Property

Description

Sets the origin node of next created links (The value of the current item has no effect
when writing this property).
If current item is 0, or if it is not a link, returns the origin node of next created links.
If current item is a link, returns its origin node.
Not available at design time.

Usage

[form.]NET.Org[= idNode]

Data Type

Long

Remarks

It is not possible to change directly the origin node of a link. If you want to do that, you
have to memorize the link properties, destroy it, create a new one with the new origin
node and sets previous saved properties.

See Also

Navigation

Dst Property

Description

Sets the destination node of next created links (The value of the current item has no
effect when writing this property).
If current item is 0, or if it is not a link, returns the destination node of next created links.
If current item is a link, returns its destination node.
Not available at design time.

Usage

[form.]NET.Dst[= idNode]

Data Type

Long

Remarks

It is not possible to change directly the destination node of a link. If you want to do that,
you have to memorize the link properties, destroy it, create a new one with the new
destination node and sets previous saved properties.

See Also

Navigation

Item Property

Description

Sets or returns the current item (node or link). The current item is the selected one.
Making an item be the current one allows to work with it (setting or getting its properties:
position ,size, text, colors, etc).
Setting this property causes previous selection to disappear.
Not available at design time.

Usage

[form.]NET.Item[= item]

Data Type

Long

See Also

Items

IsLink Property

Description

Indicates if the current item is a link.
Not available at design time; read only at run time.

Usage

[form.]NET.IsLink

Settings

The IsLink property settings are:

Setting Description

False current item is 0 or it is a node

True current item is not 0 and it is a link

Data Type

Integer (Boolean)

See Also

Items

Sleeping Property

Description

If current item is 0, it has no effect.
If current item is not 0, specify if it is in "sleeping mode" or not.
Not available at design time
When an item is in "sleeping mode", it is inactive and the user cannot interactively

make it current or selected. He can do this only programmaticaly by saving its identifier
in a global variable. Such an item can be used to display a bitmap or a text but the user
cannot move, stretch or resize it with the mouse.
If LoopScope property is True, writing applies to every items involved in a call to

LoopAction property.

Usage

[form.]NET.Sleeping [=    {True | False}]

Settings

The Sleeping property settings are:

Setting Description

False (default) The item is active.

True The item is sleeping.

Data Type

Integer (Boolean)

See also

Items

LoopAction Property

Description

Specifies the type of item navigation to perform.
Not available at design time; write only at run time.

Usage

[form.]NET.LoopAction = setting

Settings

The LoopAction property settings are:

Setting Description

0 all nodes

1 all links

2 all selected nodes

3 all links of a node

4 all links leaving current node (out links)

5 all links coming to current node (in links)

6 all nodes connected to a node (in and out nodes)

7 all destination nodes of current node

8 all origin nodes of current node

9 all owned nodes of current node

10 all items (nodes and links).

Data Type

Integer (enumerated)

Remarks

1. This property is to be used in conjonction with LoopCount and LoopItem properties:
· LoopAction specifies the type of loop to do: for instance a loop among

all current node links (LoopAction = 3).
· After a call to LoopAction, LoopCount indicates the number of items

involved in this loop.

· Finally, LoopItem allows to read each item and to perform any work with it.

2. Two calls to LoopAction property cannnot be cascaded.

See Also

Navigation

LoopCount Property

Description

Specifies the count of items involved in a navigation action performed by a call to
LoopAction property.
Not available at design time; read only at run time.

Usage

[form.]NET.LoopCount

Data Type

Integer

Remarks

This property has to be called just after a call to LoopAction    property.

See Also

Navigation

LoopItem Property

Description

Returns an item selected in a navigation action performed by a call to LoopAction
property.
Not available at design time; read only at run time.

Usage

[form.]NET.LoopItem(index)

Data Type

Long

See Also

Navigation

LoopScope Property

Description

When set to True, this property indicates that next item property settings will
apply to all items involved in a call to LoopAction property.

Not available at design time

Usage

[form.]NET.LoopScope[= {True | False}]

Settings

The LoopScope Property settings are:

Setting Description

False (Default) No loop scope .

True Loop scope is performed.

Data Type

Integer (Boolean)

Remark

Properties that may have a loop scope are the following:

Alignment Data DrawColor DrawStyle

DrawWidth FillColor ForeColor Hiding

LinkHead Oriented Owner Picture

Shape Sleeping Transparent Type

X1 Y1 X2 Y2

See Also

Navigation

Example:
Makes all selected nodes transparent.

' Do a loop with selected nodes
Net1.LoopAction = 2
' Indicates that next item property settings apply
' to all items in the loop.
Net1.LoopScope = True
' Cause all selected nodes to be transparent.
Net1.Transparent = True
' Reset loop scope to false
Net1.LoopScope = False

Type Property

Description

If current item is 0, writing this property has no effect and reading it returns 0.
If current item is not 0, sets or returns its associated integer data.
If LoopScope property is True, writing applies to every items involved in a call to

LoopAction property.
Not available at design time.

Usage

[form.]NET.Type[= setting]

Data Type

Integer

Remarks

Typically, this property allows the user to define node or link types. Like Data property,
the value of Type property is not used by the EasyNet control but only stored. The
meaning of this property depends on the application that uses it.

See Also

Data Association

Data Property

Description

If current item is 0, writing this property has no effect and reading it returns 0.
If current item is not 0, sets or returns its associated long data.
If LoopScope property is True, writing applies to every items involved in a call to

LoopAction property.
Not available at design time.

Usage

[form.]NET.Data[= setting]

Data Type

Long

Remarks

Like Type property, the value of Data property is not used by the EasyNet control but
only stored. The meaning of this property depends on the application that uses it.

See Also

Data Association

Text Property

Description

If current item is 0, writing this property has no effect and reading it returns an empty
string.
If current item is not 0 (node or link), sets or returns the text associated with this item.

The EasyNet control maintains the memory for the strings associated to items.
Not available at design time.
The text associated to a node is displayed inside the node. It is a multiline display. The

text is wrapped automatically inside the node. Linefeed and carriage return characters
are supported.
The text associated to a link is displayed at the middle of    its segment number n/2 + 1

(n is the number of segments). This text is displayed in a single line.

Usage

[form.]NET.Text[= string expression]

Data Type

String

Remarks

The Text setting is approximately 65,500 characters.

See Also

Drawing

ItemTag Property

Description

If current item is 0, writing this property has no effect and reading it returns an empty
string.
If current item is not 0 (node or link), sets or returns a tag associated with this item. The

EasyNet control maintains the memory for the tags associated to items.
Not available at design time.

Usage

[form.]NET.ItemTag[= string expression]

Data Type

String

Remarks

The Itemtag setting is approximately 65,500 characters.

See Also

Data Association

Picture Property

Description

If current item is 0, sets or returns the picture to be displayed in next created nodes.
If current item is a node, sets or returns the picture to be displayed in this node. This

picture can be a bitmap or an icon.
If current item is a link, writing this property has no effect and reading it returns 0.
If LoopScope property is True, writing applies to every nodes involved in a call to

LoopAction property.
Not available at design time.

Usage

[form.]NET.Picture[= picture]

Settings

The Picture Property settings are:

Setting Description

(none) (Default)

(bitmap, icon) Specifies a picture. You can also set this property using the
LoadPicture function on a bitmap or an icon.

Data Type

Integer

See Also

Drawing

SelectMode Property

Description

Allow to enter in selection mode instead of drawing mode. This property has no effect if
MultiSel property is not set.
Not available at design time.
 The selection mode allows to select several items. You bring the mouse cursor into

the EasyNet control, press the left button, move the mouse and release the left button.
All nodes inside the selection rectangle are selected. Then you can unselect some items
by clicking them with the mouse and simultaneously pressing the shift or control key.
You can select them again by using the same method.

Usage

[form.]NET.SelectMode[= {True | False}]

Settings

The SelectMode Property settings are:

Setting Description

False (Default) Drawing mode.

True Select mode is set.

Data Type

Integer (Boolean)

CanDrawNode Property

Description

Specify if you can create nodes interactively.

Usage

[form.]NET.CanDrawNode[= {True | False}]

Settings

The CanDrawNode Property settings are:

Setting Description

False Drawing nodes is not allowed.

True (Default) Drawing nodes is allowed.

Data Type

Integer (Boolean)

See Also

Capabilities

CanDrawLink Property

Description

Specify if you can create links interactively.

Usage

[form.]NET.CanDrawLink[=    {True | False}]

Settings

The CanDrawLink Property settings are:

Setting Description

False Drawing links is not allowed.

True (Default) Drawing links is allowed.

Data Type

Integer (Boolean)

See Also

Capabilities

CanMoveNode Property

Description

Specify if you can move (drag) nodes interactively.

Usage

[form.]NET.CanMoveNode[=    {True | False}]

Settings

The CanMoveNode Property settings are:

Setting Description

False Moving nodes is not allowed.

True (Default) Moving nodes is allowed.

Data Type

Integer (Boolean)

See Also

Capabilities

CanSizeNode Property

Description

Specify if you can resize nodes interactively.

Usage

[form.]NET.CanSizeNode[=    {True | False}]

Settings

The CanSizeNode Property settings are:

Setting Description

False Sizing nodes is not allowed.

True (Default) Sizing nodes is allowed.

Data Type

Integer (Boolean)

See Also

Capabilities

CanStretchLink Property

Description

Specify if you can "stretch" links (i.e add or remove segments)interactively

Usage

[form.]NET.CanStretchLink[=    {True | False}]

Settings

The CanStretchLink Property settings are:

Setting Description

False Stretching links is not allowed.

True (Default) Stretching links is allowed.

Data Type

Integer (Boolean)

See Also

Capabilities

CanMultiLink Property

Description

Specify if you can have several links between two nodes.

Usage

[form.]NET.CanMultiLink[= {True | False}]

Settings

The CanMultiLink Property settings are:

Setting Description

False (Default)    Multi links is not allowed.

True Multi links is allowed.

Data Type

Integer (Boolean)

See Also

Capabilities

MultiSel Property

Description

Specify if multiselection mode is possible or not.

Usage

[form.]NET.MultiSel[=    {True | False}]

Settings

The MultiSel Property settings are:

Setting Description

False Multi selection is not allowed.

True (Default) Multi selection is allowed.

Data Type

Integer (Boolean)

See Also

Capabilities

ReadOnly Property

Description

Set "read only" mode. In such a mode user interaction is not allowed.

Usage

[form.]NET.ReadOnly[=    {True | False}]

Settings

The ReadOnly Property settings are:

Setting Description

False (Default) "Read only" mode is set.

True "Read only" mode is not set.

Data Type

Integer (Boolean)

See Also

Capabilities

ScrollBars Property

Description

Allows to add scrollbars for the EasyNet control. Read-only at run time.

Usage

[form.]NET.ScrollBars[= setting]

Settings

The ScrollBars Property settings are:

Setting Description

0 (Default) No scrollbar.

1 Horizontal scrollbar.

2 Vertical scrollbar.

3 Both Horizontal and Vertical scrollbars.

Data Type

Integer (Enumerated)

See Also

Capabilities

xGrid, yGrid Property

Description

Sets or returns the grid values in twips.

Usage

[form.]NET.xGrid[= numeric expression]

[form.]NET.yGrid[= numeric expression]

Data Type

Long

See Also

Capabilities

ShowGrid Property

Description

Specify if the grid is displayed or not.

Usage

[form.]NET.ShowGrid[=    {True | False}]

Settings

The ShowGrid Property settings are:

Setting Description

False (Default) The grid is not displayed.

True The grid is displayed.

Data Type

Integer (Boolean)

See Also

Capabilities

xScroll, yScroll Property

Description

Sets or returns the scroll values in twips.

Not available at design time.

Usage

[form.]NET.xScroll[= numeric expression]

[form.]NET.yScroll[= numeric expression]

Data Type

Long

PointedArea Property

Description

Returns the type of the area pointed by the mouse (sizing square, stretching
square, linking square, node, over no special area).

Not available at design time;    read only at run time

Usage

[form.]NET.PointedArea

Settings

The PointedArea property settings are:

Setting Description

0 Size NW-SE square area

1 Size N-S square area

2 Size NE-SW square area

3 Size W-E square area

4 Stretching square area

5 Linking square area

6 Node area

7 No special area.

8 Link area

Data Type

Integer

Remarks

This property allows to change dynamically the mouse pointer BEFORE the
user clicks anywhere, to indicate what actions are possible.

 For example, when the pointer is over one of the corner points of a node, it
should change to the standard NE/SW or NW/SE diagonal arrow. When it is over
a side node, it would be the N/S or E/W arrow.

PointedItem Property

Description

Returns the item identifier pointed by the mouse.

Not available at design time;    read only at run time

Usage

[form.]NET.PointedItem

Data Type

Long

BackPicture Property

Description

This property is the same as the standard Visual Basic Picture property except
that it only supports    bitmap (.BMP) files.

DoAddLink Property

Description

Specify if AddLink event can be fired. Setting this property to False increases
speed performance.

Usage

[form.]NET.DoAddLink[= {True | False}]

Settings

The DoAddLink Property settings are:

Setting Description

False AddLink event cannot be fired

True (Default) AddLink event can be fired

Data Type

Integer (Boolean)

See Also

Capabilities
Performance tuning

DoAddNode Property

Description

Specify if AddNode event can be fired. Setting this property to False increases
speed performance.

Usage

[form.]NET.DoAddNode[= {True | False}]

Settings

The DoAddNode Property settings are:

Setting Description

False AddNode event cannot be fired

True (Default) AddNode event can be fired

Data Type

Integer (Boolean)

See Also

Capabilities
Performance tuning

DoChange Property

Description

Specify if Change event can be fired. Setting this property to False increases
speed performance.

Usage

[form.]NET.DoChange[= {True | False}]

Settings

The DoChange Property settings are:

Setting Description

False Change event cannot be fired

True (Default) Change event can be fired

Data Type

Integer (Boolean)

See Also

Capabilities
Performance tuning

DoSelChange Property

Description

Specify if SelChange event can be fired. Setting this property to False
increases speed performance.

Usage

[form.]NET.DoSelChange[= {True | False}]

Settings

The DoSelChange Property settings are:

Setting Description

False SelChange event cannot be fired

True (Default) SelChange event can be fired

Data Type

Integer (Boolean)

See Also

Capabilities
Performance tuning

Repaint Property

Description

Specify if repainting the EasyNet control is allowed or not.Setting this property
to False increases speed performance. Setting this property to True causes a
refresh.

Not available at design time

Usage

[form.]NET.Repaint[= {True | False}]

Settings

The Repaint Property settings are:

Setting Description

False Repainting not allowed.

True (Default) Repainting allowed

Data Type

Integer (Boolean)

See Also

Performance tuning

CheckItem Property

Description

Specify if item checking is performed or not. Setting this property to False
increases
speed performance.

Important: Setting this property to False requires to be very cautious when
using Item, Org and Dst properties. Setting wrong values to those properties
when CheckItem is False may result in a General Protection Fault .

Not available at design time

Usage

[form.]NET.CheckItem[= {True | False}]

Settings

The CheckItem Property settings are:

Setting Description

False Item checking is not performed.

True (Default) Item checking is performed

Data Type

Integer (Boolean)

See Also

Performance tuning

Version Property

Description

Returns the version of the EasyNet control currently loaded in memory.

Read only.

Usage

[form.]NET.Version

Data Type

Integer

Remarks

The version number is a three digit integer where the first digit is the major
version number and the last two represent the minor version number. For
example, if current version is 1.60, then this property returns 160.

Hiding Property

Description

If current item is 0, specify if next created items will be visible or not
If current item is not 0, specify if it is visible or not.
If LoopScope property is True, writing applies to every items involved in a call to

LoopAction property.
Not available at design time

Usage

[form.]NET.Hiding [=    {True | False}]

Settings

The Hiding property settings are:

Setting Description

False (default) The item is visible.

True The item is not visible.

Data Type

Integer (Boolean)

See also

Drawing

ImageFile Property

Description

Sets a file name to which the metafile is written when EditAction is set to 8.
If a path is not specified, the current directory is used.

Usage

[form.]NET.ImageFile [= filename$]

Data Type

String

Remarks

The appropriate extension (.WMF) is appended automatically.

See also

EditAction

DisplayHandles Property

Description

Specify if handles are displayed. The handles are the little black squares on the
selected item.

Usage

[form.]NET.DisplayHandles[= {True | False}]

Settings

The DisplayHandles Property settings are:

Setting Description

False Handles are not displayed.

True (Default) Handles are displayed.

Data Type

Integer (Boolean)

Zoom Property

Description

Specify a zoom factor which can be a value between 0 and 1000.
Setting it to 0 display the diagram so that it fits in the control area.
Setting it to 100% display the diagram at its normal size.
Setting it to a value higher than 100% expands the diagram
Setting it to a value less than 100% shrinks the diagram.

Usage

[form.]NET.Zoom[= setting]

Data Type

Integer

ItemZOrder Property

Description

Places current item at the front or back of the z-order.
Not available at design time; write only at run time.

Usage

[form.]NET.ItemZOrder    =    setting

Settings

The ItemZOrder property settings are:

Setting Description

0 Send item Front

1 Send item Back

Data Type

Integer

Remarks

If you perform a loop among all items (Net1.LoopAction = 10), items sent back will be
at the beginning of the list whereas items sent front will be at the end of the list.

See also

Items

Owner Property

Description

If current item is a node, sets or returns its owner node.
If current item is 0 or is a link, writing has no effect and reading returns 0.
If LoopScope property is True, writing applies to every nodes involved in a call to

LoopAction property.
Not available at design time.

Usage

[form.]NET.Owner[= idNode]

Data Type

Long

Remarks

· A node follows its owner. When an owner node is moved, all its owned
nodes are also moved. This happens only when the user moves the
node interactively with the mouse (dragging). If the node is moved
programmaticaly (i.e changing its X1 or Y1 properties), owned nodes
do not move.

· A node cannot be an owner node if it is owned by another node.
· You can get each owned node of current node with LoopAction

property.

· A node cannot owns itself.
· This property may be used to implement stubs or pins, allowing a node

to have several owned nodes inside itself and those owned nodes can
be used as stubs receiving links. For instance, in the following diagram,
the flat rectangular node is the owner of 4 little nodes used as stubs.
You may make those little nodes sleeping (see Sleeping
property) so that the user cannot select it, size it or move it.

Change Event

Description

Occurs when a change is made. (For instance, an item is added, moved, deleted or
one of its properties is changed).

Syntax

Sub NET_Change ()

Remarks

· This event is not fired if DoChange property is False.
· Important: Actions that change something in the diagram (i.e. creating,

deleting or altering one item) should not be used within this event as
you will encounter unexpected results.

SelChange Event

Description

Occurs when selection is changed.

Syntax

Sub NET_SelChange ()

Remarks

· This event is not fired if DoSelChange property is False.
· Important: Actions that change selection (i.e. using Item Property)

should not be used within this event as you will encounter unexpected
results

AddNode Event

Description

Occurs when a node is added.

Syntax

Sub NET_AddNode ()

Remarks

· This event is not fired if DoAddNode property is False.
· Important: Actions that create nodes (i.e. using EditAction

Property) should not be used within this event as you will encounter
unexpected results.

· Typically, this event allows the user to change a property of the node
just after its creation and just before it is displayed. For instance, if you
need fixed size nodes, you have just to give values to X1, X2, Y1, Y2
properties:

Sub Net1_AddNode ()
      Net1.X2 = Net1.X1 + 500
      Net1.Y2 = Net1.Y1 + 500
End Sub

· In fact when a node is created, three events are generated in the following order:

SelChange

AddNode

Change

AddLink Event

Description

Occurs when a link is added.

Syntax

Sub NET_AddLink ()

Remarks

· This event is not fired if DoAddLink property is False.
· Important: Actions that create links (i.e. using EditAction Property)

should not be used within this event as you will encounter unexpected results.
· Typically, this event allows the user to change a property of the link just after its

 creation and just before it is displayed.

· In fact when a link is created, three events are generated in the following order:

SelChange

AddLink

Change

ErrSpace Event

Description

Occurs when no more memory is available.

Syntax

Sub NET_ErrSpace ()

Registration
The demonstration version of the EasyNet control is FULLY FUNCTIONAL but may

only be used in the development environment. If you generate an EXE file with this
version of the EasyNet control but without an EasyNet license file, then any attempt to
use this EXE file will display a dialog box explaining that it has been generated without
license file and the control will be limited to 20 items.

If you like EasyNet control then you can receive EasyNet license file by registering as
follows:

1) EITHER in the SWREG forum on Compuserve:

License type | SWREG id | Price |
Single User | 2547 | $ 119 |
3-5 Users | 5487 | $ 350 |
Unlimited User License | 5488 | $ 650 |

Then you will receive the EasyNet license file by Compuserve E-Mail and the
registration fee will be billed to your Compuserve Account. This is a quick and easy way
to register EasyNet.

2) EITHER by ordering with MC, Visa, Amex, or Discover from Public (software)
Library by calling 800-2424-PsL or 713-524-6394 or by FAX to 713-524-6398 or by CIS
Email to 71355,470. You can also mail credit card orders to PsL at P.O.Box 35705,
Houston, TX 77235-5705. Ask for product # 11517. The cost is $ 122 (includes $3 s&h
charge). Then, you will receive the EasyNet license file on diskette.

Note: THE ABOVE NUMBERS ARE FOR ORDERS ONLY. Please address any
questions to Patrick Lassalle through CIS e-mail.

3) EITHER by completing and sending the Order Form, along with a check for the
amount listed above (plus $3 s&h if a diskette is used instead of E-Mail)

to:
Patrick Lassalle
247, Avenue du Marechal Juin
92100, Boulogne
FRANCE

          Then, you will receive the EasyNet license file either on diskette or via E-Mail if
possible.

Note: If you want to pay with french currency, prices are the following (plus FF 15 s&h
if a diskette is used instead of E-Mail)

License type | French Price |
Single User | FF 595 |
3-5 Users | FF 1750 |
Unlimited User License | FF 3250 |

Registration benefits.

In return for your registration you receive these benefits:
- a license file giving a royalty-free right to reproduce and distribute the control file
EasyNet.vbx with any application that you develop and distribute.This license file is
not for distribution.

- full product support (via Compuserve) for a period of 12 months.
- the right to use EasyNet in your design environment.

License Agreement

The EasyNet custom control is not public domain or free software.

The EasyNet custom control is copyrighted, and all rights are reserved by its author:
Patrick Lassalle.

Licensing:

1. shareware version

You may use the shareware version of the EasyNet custom control for up to 30 days in
your design environment for evaluation purposes only. You may copy and distribute it
freely as long as all the files in the package, including the demo programs are
distributed with it and no changes or additions of any kind are made to the original
package.

2. registered version

As a registered user, you can use the EasyNet custom control in your design
environment and you have a royalty-free right to distribute executables that use
EasyNet as a runtime component. Only registered users can distribute executables
using the EasyNet custom control.

You may copy the software to facilitate your use of it on as many computers as there
are licensed users specified in the EasyNet.lic file. Making copies for any other purpose
violates international copyright laws. In particular, you are prohibited from distributing a
registered version of the EasyNet custom control, except as a runtime component of
one of your applications.

The EasyNet.lic file allows you to compile your applications with the EasyNet custom
control. YOU ARE NOT ALLOWED TO DISTRIBUTE EASYNET.LIC FILE.

Disclaimer of Warranty:

THIS SOFTWARE AND THE ACCOMPANYING FILES ARE SOLD "AS IS"   
WITHOUT WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Good data processing procedure dictates that any program be thoroughly tested with
non-critical data before relying on it.

The user must assume the entire risk of using the program.

Your use of this product indicates that you have read and agreed to these terms.

EasyNet Order Form    (Select "Print Topic" from the File menu to print this order).

Date of order:                  ______________

SHIPPING ADDRESS

Name __

Company __

Address __

__

__

__

Phone __________________________

FAX __________________________

E_Mail __________________________

PAYMENT ADRESS: Patrick Lassalle
247 , Avenue du Marechal Juin
92100, Boulogne
FRANCE

Please send me the last version of EasyNet Custom Control:

Single User License US $ 119 (or FF 595) x ______

3-5 Users License US $ 350 (or FF 1750) x ______

Unlimited User License US $ 650 (or FF 3250) x ______

s & h. (if diskette required) US $ 3 (or FF 15) ______

TOTAL ______

The diskette contains the EasyNet license file and the EasyNet package in a zip file.
Those files may be sent via e-mail. In such a case, s & h is not to be included.
All payment must be by check in U.S. funds or French funds.
Please make the check payable to Patrick Lassalle.
Prices and terms subject to change without notice.

Installation

Demonstration version:The files easynet.vbx and easynet.hlp should be copied in
your    WINDOWS\SYSTEM directory.

Registered version:The files easynet.vbx, easynet.hlp and easynet.lic should be
copied in your    WINDOWS\SYSTEM directory.

Distribution note:    When you create and distribute applications that use the EasyNet
control you should install the file easynet.vbx in the customer's Microsoft Windows
\SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB
product provides tools to help you write setup programs that install you applications
correctly.

You are not allowed to distribute easynet.lic file with any application that you distribute.

Support

EasyNet support can be obtained

· via Compuserve: 100325,725
· via Internet.: 100325.725@compuserve.com
· at the address indicated in Registration

Thanks in advance for your feedbacks or questions!

Acknowledgments

Many people have helped make EasyNet what it is, but in particular I'd like to thank the
following individuals:

-    Gils Gayraud for making good suggestions and his amazing ability to find bugs.

-    Michel Lassalle for extensive help testing EasyNet.

-    Jeff Simms (author of VBCTL3D.VBX) for its help about license file management.

