
Table of Contents

Introduction
Directories And Files
General Overview
C API Overview
C++ Overview
Visual Basic Overview
PowerBuilder Overview
Delphi Overview
SQLWindows Overview
Properties
Events
APIs
Troubleshooting

Introduction

Welcome to the online help for WebLib, Potomac Software's toolkit for creating World Wide Web
applications using desktop development tools. WebLib consists of three components:

      The browser API controls either the    Netscape (TM) or Enhanced Mosaic (TM) Web
browsers.

      The toolbar API creates and attachs an application-controlled toolbar to the Web browser.

      The HTML parsing API extracts information from Web documents.

Support for calling each of these APIs from C, C++ (MSVC, Borland and others), Visual Basic,
PowerBuilder, Delphi and SQLWindows is included. Any other language that can call a DLL can also use
the APIs.

Prerequisites

Besides having a not-too-archaic PC (386 processor or better with at least 4 megabytes of RAM), WebLib
requires Microsoft Windows 3.1, a development environment of some sort (e.g., Visual Basic or C++) and
most importantly, a Netscape or Enhanced Mosaic Web browser. Because WebLib acts as a wrapper
around the DDE API provided by these two browsers, the version of the browser is important. WebLib
works with Netscape versions 1.1 and later (it will not work with Netscape 1.0). While one can use
version 2.0 of the Enhanced Mosaic browser from Spyglass, Inc., the DDE API in this version is limited
and not particularly robust. A much better version for use with WebLib is Enhanced Mosaic version 2.1.

Licensing and Distribution

As one might expect, any use of WebLib is subject to and must conform with the terms of the software
license agreement that comes with this package. To review the software license agreement (and we urge
you to), click here.

Distribution of WebLib files is also subject to the terms of the software license agreement. Under the
license agreement for the evaluation copy of WebLib, no files may be distributed whatsoever. If you buy a
license for WebLib, you generally may only distribute those files needed at run-time by your applications,
but you do not have to pay royalties for each copy you distribute.

Technical Support

Because the evaluation copy of WebLib is a free, beta-test version, only e-mail support is provided. Send
a complete description of your question or problem to weblib@potsoft.com. In your message, include the
Microsoft Windows version, Web browser type and version, development environment and version and
any log output (see the section on Error Handling). We will try to provide as much feedback as possible
but cannot guarantee a response to every message we receive.

Before you contact us with a problem or question, please check out the trouble shooting section of this
document. We may already have an answer to your question!

Other Contacts

To purchase a copy of WebLib, call (301) 216-0604. For other information or queries not related to
support, send e-mail to info@potsoft.com or call this same number. Our fax number is (301) 216-0605.
You may also want to check Potomac Software's Web site from time to time to find out what's new. The
URL is http://potsoft.inter.net/potsoft/.

Directories and Files

The directory structure used to store the WebLib files appears as follows (this diagram assumes the
software was installed in the WEBLIB directory):

The BIN directory contains executable files (dynamic link libraries and programs) and help files. The MS-
DOS PATH environment variable should include the BIN directory so the executable files can be found
when an application that uses WebLib is run (note that during installation, all VBXs are also copied to the
Windows system directory).

HTMLPARS.DLL Dynamic link library containing HTML parsing API
HTMLPASW.APL SQLWindows library containing declarations for HTML parsing API
HTMLPAVB.VBX Dynamic link library containing Visual Basic HTML parsing control

WEBLIB.DLL Dynamic link library containing browser and toolbar APIs
WEBLIB.HLP Online help file for browser, toolbar and HTML parsing APIs
WEBLIBEX.DLL Dynamic link library containing WebLib API extensions
WEBLIBSW.APL SQLWindows library containing declarations for browser and toolbar APIs
WEBLIBVB.VBX Dynamic link library containing Visual Basic browser and toolbar controls
WLSERVER.EXE Helper application (used internally)

The LIB directory contains import and code libraries that allow C and C++ applications to link with the
WebLib DLLs.

HTMLBCDD.LIB Borland C++ HTML parsing class library for dynamically linked DLLs
HTMLBCDE.LIB Borland C++ HTML parsing class library for dynamically linked EXEs
HTMLBCSD.LIB Borland C++ HTML parsing class library for statically linked DLLs
HTMLBCSE.LIB Borland C++ HTML parsing class library for statically linked EXEs
HTMLPARS.LIB Import library for HTML parsing API (useful with C or C++)
HTMLPVCD.LIB MSVC++ HTML parsing class library for AFX DLL version of MFC
HTMLPVCS.LIB MSVC++ HTML parsing class library for static version of MFC
WEBLBCDD.LIB Borland C++ browser/toolbar class library for dynamically linked DLLs
WEBLBCDE.LIB Borland C++ browser/toolbar class library for dynamically linked EXEs
WEBLBCSD.LIB Borland C++ browser/toolbar class library for statically linked DLLs
WEBLBCSE.LIB Borland C++ browser/toolbar class library for statically linked EXEs
WEBLIB.LIB Import library for browser and toolbar APIs (useful with C or C++)
WEBLIBEX.LIB Import library for WebLib extension APIs (useful with C or C++)
WEBLIVCD.LIB MSVC++ browser/toolbar class library for AFX DLL version of MFC
WEBLIVCS.LIB MSVC++ browser/toolbar class library for static version of MFC

The INCLUDE directory contains text files needed by the various development environments supported
by WebLib. Usually, one or more of these files must be included in your application programs.

HTMLPABC.H Borland C++ include file for HTML parsing classes
HTMLPABC.INL Borland C++ inline methods for HTML parsing classes
HTMLPAPB.CON PowerBuilder constant declarations for HTML parsing API
HTMLPAPB.FUN PowerBuilder function declarations for HTML parsing API
HTMLPARS.H C constants and function prototypes for HTML parsing API
HTMLPASW.APT SQLWindows text version of declarations for HTML parsing API
HTMLPAVB.H C prototypes for action functions used with HTML parsing VBX
HTMLPAVB.TXT Visual Basic action function declarations for HTML parsing VBX
HTMLPAVC.H MSVC++ include file for HTML parsing classes
HTMLPAVC.INL MSVC++ inline methods for HTML parsing classes

WEBLIB.H C constants and function prototypes for browser and toolbar APIs
WEBLIBBC.H Borland C++ include file for browser and toolbar classes
WEBLIBBC.INL Borland C++ inline methods for browser and toolbar classes
WEBLIBEX.H C function prototypes for WebLib extension functions
WEBLIBPB.FUN PowerBuilder function declarations for browser and toolbar APIs
WEBLIBPB.CON PowerBuilder constant declarations for browser and toolbar APIs
WEBLIBSW.APT SQLWindows text version of declarations for browser and toolbar APIs
WEBLIBVB.H C prototypes for action functions used with browser and toolbar VBXs
WEBLIBVB.TXT Visual Basic action function declarations for browser and toolbar VBXs
WEBLIBVC.H MSVC++ include file for browser and toolbar classes
WEBLIBVC.INL MSVC++ inline methods for browser and toolbar classes

The DOC directory contains any documents included with WebLib.

README.TXT Last minute release notes
LIC.TXT License agreement

The SAMPLES directory contains sample code.

C MSVC application that illustrates the use of every API via the C interface
to the DLLs. This program runs stand-alone and may be used to test the
WebLib APIs.

VB Visual Basic sample app that employs the WebLib VBX controls.
Requires Visual Basic 3.0.

DELPHI Borland Delphi example program. Requires Delphi programming
environment.

Troubleshooting

Here is a list of frequently asked questions (and frequently correct responses):

 
Q1. Why does my application fail or crash as soon as it makes a call to WebLib?

A1. Most likely, you have forgotten to call the Startup() API. When your application initializes, it must call
WLStartup (for non-VBX applications) or weblibStartup (for VBX-based applications) before calling any
other WebLib function. Upon termination, the application should call WLCleanup() or weblibCleanup().

Actually, Startup() is only required for the browser and toolbar APIs; you may call any of the HTML
parsing APIs without calling Startup() first.

Q2. ConnectBrowser() does not start my Web browser when I pass it the WL_STARTBROWSER flag, nor
does it seem to detect that the browser is running if I start the browser manually. What is going on here?

A2. One possibility might be that the WEBLIB.INI is not configured correctly. If you are using one of the
many flavors of the Enhanced Mosaic browsers, this is more likely than with the Netscape browser.

In the [WEBLIB] section of the WEBLIB.INI file, the Browser entry should name another section in the .INI
file that contains the entries Type, Module, Program and DdeName. Type must be 'NETSCAPE' or
'EMOSAIC' (without the quotes). The Module entry could be the problem. While this is typically
'NETSCAPE' for Netscape and 'EMOSAIC' for Enhanced Mosaic, the module name of your browser may
be different. Under Windows 3.1, the best way to determine the correct module name is with HeapWalker:
run your Web browser and then check the module names displayed by HeapWalker for a likely candidate
(unfortunately, you cannot use the 16-bit version of EXEHDR against a Win32s executable such as the
Netscape and Enhanced Mosaic browser). The Program entry should be the full path of your Web
browser executable and DdeName should be either 'NETSCAPE' or 'MOSAIC'.

Q3. I set the AutoCreate property in the WLToolbar control to True and created some buttons at design
time, but when the Visual Basic form containing the control is loaded, the toolbar is not created. What's
up?

A3. If you have called weblibStartup() from the Load event of the form that contains the WLToolbar VBX
control (or have forgotten to call weblibStartup() altogether), then setting the AutoCreate property to True
will not work. This is because the toolbar is created when all controls on the form have finished loading,
which happens before the Load event is sent to the form. You must either call weblibStartup() from Sub
Main or set AutoCreate to False and create the toolbar yourself at run-time.

General Overview

This section presents an overview of the WebLib browser, toolbar and HTML parsing APIs and uses a
pseudocode API as common ground for explaining how WebLib works. The actual APIs for C, C++ and
the VBX controls are listed in the reference section.

Files

Each programming language and environment supported by WebLib requires that certain WebLib files be
included in the application under development. Which files are needed and how this is done varies
depending on the language and on the WebLib functionality required by the application. Generally, there
are two files (or two sets of files) for each programming environment: one for the browser and toolbar
APIs and one for the HTML parsing APIs.    The actual file names and instructions on how to include these
files into a particular programming environment are included in the overviews on C , C++ , Visual Basic ,
PowerBuilder , Delphi    and SQLWindows .

Objects and Handles

Almost all of WebLib's functionality is supplied by three objects: the browser object, the toolbar object and
the HTML parser object. Not suprisingly, there is a direct correlation between each of the three objects
and each of the three APIs. Each object provides a context for the API to work in; as such, each API
usually requires a handle to a valid object. For each type of object, there is an API call to create an object,
returning its handle for future reference and an API to delete an object, invalidating the handle. Thus, a
typical chronological sequence of API calls is:

// create object so we'll have it when we need it

HANDLE handle = ApiCreateObject();

// do something else... now use WebLib object and API

ApiDoThis(handle,...);
ApiDoThat(handle,...);

// do other stuff... now it's time to quit

ApiDeleteObject(handle);

Please note that the calls here are for illustration only.

Events

Event notification occurs in WebLib via Windows messages: when an application calls an API that
generates an event, it passes the handle of a window and a message identifier to the API. To notify the
application of the event when it occurs, WebLib sends the message to the window, where the application
can trap it. The wParam and lParam message parameters typically contain information associated with
the event. This information can be accessed by calling additional WebLib APIs.

Error Handling

Each of the WebLib APIs returns a value that may be checked to determine if the call was successful or
not. In many cases, this is boolean value, where (as you would expect) TRUE indicates success. In other
cases, a discrete value that indicates failure is returned if the API call is not successful (e.g., a NULL
pointer is returned).

In addition, WebLib logs any internal or otherwise unexpected errors it encounters in a log file. The
location and name of this log file is determined by the File entry in the [LOG] section of WEBLIB.INI.

WebLib Initialization

Before making any other calls to the browser or toolbar APIs, Startup() must be called. This function
should be invoked once and only once from an application, typically when the application starts. No
browser or toolbar API calls can be made unless Startup() is successfully executed first (note that the
HTML parsing API is independent of Startup() and may be called at any time). Forgetting to call Startup()
is a common WebLib programming mistake, so beware.

When an application terminates, it should call Cleanup() to shutdown the WebLib DLL.    Like Startup(),
Cleanup() should be invoked once and only once from an application. No other browser or toolbar API
calls can be made once Cleanup() has been successfully executed. If an application forgets to call
Cleanup() upon termination, WebLib attempts to detect that the application has died; if successful, it
automatically cleans up after the expired task.

While most event notifications are particular to a specific object and API (e.g., browser), the
SetDefaultNotify() API lets you establish a notification window and message that spans APIs. In
subsequent calls that require a notification window and message, you can use the constant
WL_DEFAULTNOTIFY to specify the window and message set in SetDefaultNotify(). More importantly,
calling SetDefaultNotify() lets you trap the BrowserStart and BrowserExit events. This lets you know if the
Web browser is started or terminated while your application is running.

Browser API

The browser API provided by WebLib is a wrapper around the DDE APIs provided by the Netscape and
Enhanced Mosaic Web browsers. WebLib's browser API has the advantage of being much easier to use
than the DDE APIs, while still being based on a standard, vendor-supported and documented browser
interface. In addition, even though the DDE APIs in the Netscape and Enhanced Mosaic browsers are
similar, there are several significant differences. The WebLib browser API hides these differences so that
is possible to write a single set of source code that will work with both browsers.

The first browser API call an application should make is ConnectBrowser(). This creates a browser object
and returns its handle for use in subsequent calls. This API also lets you start the Web browser if it is not
already running. The complementary API to ConnectBrowser() is DisconnectBrowser(). This terminates
the logical connection between the application and the Web browser and frees the browser object.    If
specified, DisconnectBrowser() will also attempt to terminate the Web browser program.

Notification Methods

The ConnectBrowser() API also lets you set the notification method used by WebLib to send events to an
application window. This is either WL_POSTMESSAGE (notify via the PostMessage SDK call) or
WL_SENDMESSAGE (notify via the SendMessage SDK call). There are advantages and disadvantages
to both methods, but we strongly recommend that WL_POSTMESSAGE (the default) be used whenever
possible.

The biggest drawback of WL_SENDMESSAGE is that it is dispatched from the DDE callback that makes
up one end of the DDE conversation between WebLib and the Web browser. As such, the application
must return control to SendMessage quickly to avoid a timeout in the DDE conversation. In addition,
using WL_SENDMESSAGE may require the app to use the ReplyMessage SDK call to avoid deadlock,
such as before displaying a message box or dialog. Note that popping up a message box or dialog box
upon receipt of a browser event sent via SendMessage has its own problems, namely the response time
problem mentioned before: you never know how long it will take the end-user to dismiss the message box
or dialog.

The primary disadvantage of WL_POSTMESSAGE is the possibility of filling up the application's message
queue. During testing we have not seen this happen; also, one may set the size of the queue with the
SetMessageQueue SDK call (or in SYSTEM.INI).

The browser notification method can be changed using SetNotifyMethod().

Window Manipulation

The browser API includes a set of calls to manipulate the Web browser's windows. The ListWindows() API
can be called successively to enumerate all of the open browser windows. GetWindowInfo() returns the
URL and title of a specific browser window. A browser window may be activated (brought to the top) with
ActivateWindow() and may be closed with CloseWindow(). To change the size and position of a window,
call SetWindowPos(). The ShowWindow() API lets you mimimize, maximize or restore a browser window.

An application can receive notification when a browser window is sized, moved, minimized, maximized or
closed by calling the RegisterWindowChange() API.

Loading URLs

The OpenURL() API loads the document specified by a URL and displays it. The SaveURL() API is
similar, expect that it saves the document in a local file after loading it. Both of these functions return a
transaction ID that may be used to monitor and control the loading of a particular URL. A transaction that
is in progress may be canceled by passing the transaction ID to Cancel(). The transaction ID    can also
be used to determine which browser window the URL was displayed in by calling
GetTransactionWindow().

OpenURL() and SaveURL() can both generate several events (event notification is optional; if you don't
want notification, pass the constant WL_NONOTIFY instead of the handle of the window to notify). The
events that may be generated by these two browser APIs are listed below in the sequence they are
generated:

BeginProgress
SetProgressRange
MakingProgress (one or more)
EndProgress
Finished (or Canceled)

Of these events, only the Finished or Canceled event is guaranteed to be generated. While the progress
events are usually generated, certain cases exist when they are not (e.g., loading a URL that is already
displayed under Enhanced Mosaic). To be safe, use only the Finished or Canceled event to determine
the state of a transaction; the progress events should only be used to report feedback to the user (which
is the intent of these events, anyhow).

Posting Form Data

Two browser APIs let you send data to a URL using HTTP's POST method: PostFormData() and
SaveFormData(). Once the data is posted to the URL, the result sent back from the server is displayed in
the specified browser window or saved to a file.

These APIs require you to specify the MIME type of the data being posted to the URLs. Typically, the data
is url-encoded (i.e., ASCII text with spaces and unprintable characters replaced with a plus sign or other
printable character) and consists of one or more 'field=value' tokens so as to mimick the data format used
by HTML forms. To assist in creation of this type of form data, WebLib provides the AppendFormData(),
GetFormDataLength() and AccessFormData() APIs. These functions make it easy to build a variable-
length buffer of url-encoded, 'field=value' strings.

PostFormData() and SaveFormData() generate the same events as OpenURL() and SaveURL(), i.e., the
progress events followed by Finished or Canceled. The same caveats about counting on particular events
always being generated also apply.

Monitoring, Overriding and Extending the Web browser

Three sets of browser APIs let you monitor and takeover certain functions of the Web browser software.

The RegisterProtocol() API directs the Web browser to let the application handle certain protocols. This
can be a standard, built-in protocol like 'http' or 'ftp' or it may be a user-defined protocol that only you
know to handle. When the end-user tries to load a URL that employs a protocol that has been overridden
via RegisterProtocol(), the Web browser (via WebLib) sends the OpenURL event. The
UnregisterProtocol() API informs the Web browser that the application no longer wants to handle a given
protocol.

An application can handle the viewing of documents of a particular MIME type by calling the
RegisterViewer() API. The flags passed to this function determine how the Web browser interacts with the
application to view the document and must be well understood if this feature is to work properly.
Meaningful flag values include:

WL_SHELLEXECUTE The Web browser calls the ShellExecute() SDK function to
invoke an program to view the document. Because the filename
extension must exist in the registration database to launch a
viewer, this often fails. For further information, see the SDK
documentation about the Shell library.

WL_VIEWDOCFILE Via WebLib, the Web browser sends a ViewDocFile event to the
application. The application is responsible for displaying the
document, which is stored in a file whose name is included with
the event.

WL_QUERYVIEWER This flag should be combined with either of the above flags. It
causes the Web browser (via WebLib) to send a QueryViewer
event to the application first. This gives the application a chance
to specify the name of the file that the document will be saved in.
The application does this with the SetFileName() API. The
filename is then passed along to ShellExecute() or included with
the ViewDocFile event.

To inform the Web browser that an application no longer wishes to handle the viewing of documents of a
certain MIME type, call the UnregisterViewer() API.

Passive monitoring of the Web browser is possible via the RegisterURLEcho() API. This function causes
the browser software to report the loading of URLs to the application. Thus, as the end-user 'surfs the
Net', an application can track where the user has been. The application receives a URLEcho event for
each URL that is loaded (actually, this behavior varies slightly between Netscape and Enhanced Mosaic;
Enhanced Mosaic only reports new URLs). The UnregisterURLEcho() API turns off the echoing of URLs.

As mentioned above, RegisterWindowChange() allows an application to monitor changes in a browser
window's geometry and state.

Miscellaneous Browser APIs

The ShowFile() API displays a local file in a browser window. It generates the same events as
OpenURL(). To get the version of the DDE interface offered by the Web browser, call GetVersion(). To

combine a relative URL with an absolute URL, use the ParseAnchor() API.

An API that is only available with the Netscape browser is QueryURLFile(). Given the name of a local file
that was loaded by the Web browser, QueryURLFile() returns the URL the file was loaded from or is
associated with. For Enhanced Mosaic, this API is a no-op.

Toolbar API

The WebLib toolbar API allows an application to create a customized toolbar and attach it to the Web
browser. When the end-user clicks one of the toolbar buttons, the application receives an event.

How the Toolbar Works

Here is an example toolbar:

When the end-user clicks the right mouse button in the text area of the toolbar, a popup menu appears.
This menu lets the user do several things:

·        Attach the toolbar to any side of the Web browser (but only to the outside of the main
browser window).

·        Minimize the toolbar.

·        Select another toolbar and make it active. WebLib allows multiple toolbars to be created
and overlaid in a single toolbar frame.

· Toggle the Open On Browser Maximize feature. When checked, this option causes the toolbar
to be restored from a minimized state when the browser is maximized. This allows WebLib to
reserve enough space on the display for the toolbar (after the Web browser is maximized, the
toolbar may not be attached to a different side). If this option is not checked, the toolbar will
overlay part of the browser window if it is restored from a minimized state and the Web
browser window is maximized at that point.

The Web browser and toolbar act in concert whenever possible. When the browser is activated, the
toolbar comes to the foreground with it; when the size or position of the browser window changes, the
toolbar stretches or shrinks to fit the new size or moves to the new position. If the Web browser is
minimized, the toolbar hides itself; when the browser window is restored, so is the toolbar. The toolbar
also hides itself if the browser is closed; when the Web browser is started again, the toolbar re-appears.

Three types of text strings may be displayed on the toolbar:

· Each button may have a description associated with it that appears when the user places the
mouse cursor over the button.

· The toolbar itself may have a description that appears in the text area of the toolbar

· Each toolbar has a title that appears in the popup menu.

WebLib allows you to get and set these text strings, and to change the color and font used to display the
strings.

From the programmer's perspective, adding a button to the toolbar should be viewed as placing it into an
imaginary array of buttons that starts at the left side of the toolbar (position zero) and stretches to the
right. The rightmost position in the array that contains a button marks the beginning of text area of the

toolbar. The array positions between position zero and the rightmost occupied position may or may not
contain buttons. Adding a button to a position that already contains a button destroys the existing button.
Buttons may be hidden or disabled.

Programming the Toolbar

CreateToolbar() is used to create a toolbar. This API returns a handle for use in subsequent toolbar API
calls. It also specifies which window WebLib should send the ButtonClick event to. The DeleteToolbar()
destroys a toolbar and invalidates the handle associated with the toolbar.

When a toolbar is created, it becomes the active toolbar. The active toolbar may be changed via the
SetActiveToolbar() API. An application can determine if a particular toolbar is active by calling
IsToolbarActive().

Buttons are placed on the toolbar with the AddToolbarButton() API. This function requires a unique button
ID that acts as an identifier, a button position (zero is the leftmost button), a string that describes the
function of the button and up to four bitmaps. Each bitmap must be 24 x 24 pixels in size. A bitmap may
be specified for each of the following button states: normal (up), selected (down), input focus (usually a
dashed line is drawn around the edge of the button) and disabled. Only a bitmap for the normal state is
required. AddToolbarButton() requires that the bitmaps be specified as resources in a program or DLL.
The WebLib extension APIs AddToolbarButtonByHandle() and AddToolbarButtonByFile() provide
additional flexibility: the former adds a toolbar button using bitmap handles while the latter loads the
bitmaps for the button from files.

To delete a toolbar button, call RemoveToolbarButton().

A button can be hidden or shown using the ShowToolbarButton() API and it's visibility can be checked
with IsToolbarButtonVisible(). Similarly, a button can be disabled or enabled using the
EnableToolbarButton() API; whether or not the button is enabled can be checked with
IsToolbarButtonEnabled().

To get and set the descriptive text associated with the toolbar or a particular button, call GetToolbarText()
and SetToolbarText(), respectively. The font used to display such text may also be obtained and set via
GetToolbarFont() and SetToolbarFont(). When setting a font, the application must create a font and pass
its handle to SetToolbarFont(); be careful not to delete this font until the toolbar has been destroyed.

Toolbar colors may be changed by calling SetToolbarBkgnd() to set the background color and
SetToolbarTextColor() to set the colors for displaying button and toolbar text (each of these may be set to
a different color).

HTML Parsing API

The HTML parsing APIs fall into three catgeroies: functions that break down an HTML document into
individual elements, functions that access the individual elements and functions that find particular
elements.

Parsing the HTML Document

The first category of APIs includes HtmlParseFile(), HtmlParseBuf() and HtmlEndParse(). HtmlParseFile()
parse an HTML document stored in a file, while HtmlParseBuf() parses an HTML document stored in a
memory buffer. Both of these functions return a parse handle that must be passed to subsequent API
calls.The HtmlEndParse() API frees the memory associated with the parse handle, invalidating it.

HtmlParseFile() and HtmlParseBuf() are the real workhorses of the HTML parsing API. These functions
use a recursive algorithm to create a tree of basic HTML elements like tags and text strings. This work is
CPU and memory intensive and requires a reasonably large stack. HTML documents containing many

thousands of elements can take several seconds to parse.

The parse tree created by HtmlParseFile() and HtmlParseBuf() has a root element that serves as a
starting point for the rest of the tree. Each level of the tree corresponds to an HTML container tag (e.g.,
<BODY> and </BODY>). Thus, the only elements in the tree with children are container tag elements and
the root element. Other elements like empty tags and text are strung along at the same level as siblings in
a linked list. Each of these other elements has a parent, either a container tag or the root element.

Tags that simply change the appearance of text (e.g., and) are treated differently from other
tags. When a tag of this type is recognized by the parser, a bit in the text attribute bitmask is set or
cleared depending upon whether that tag is an opening or closing tag. This text attribute bitmask is then
associated with the text that occurs between the opening and closing tag. Thus, a new text element is
created each time a text attribute tag is encountered (i.e., when the appearance of the text changes).
Every text element has a text attribute bitmask associated with it; if no text attribute tags enclose the text,
the bitmask is zero.

Every element in a parse tree is one of five types: WL_TAG (includes container tags, empty tags and text
attribute tags),    WL_TEXT (text string with a text attribute bitmask), WL_SPECIALCHAR (things like <
and >), WL_COMMENT and WL_ROOT (root element).

Tag elements contain tag attributes (not to be confused with text attributes). These are tokens embedded
in the tag that usually look like variable assignments (e.g., ALIGN=TOP). The HTML parser stores the left
side of such assignments as the tag attribute name and the right side as the tag attribute value.
Standalone tags are also supported; these are single tokens that are not part of an assignment. In fact,
every tag element contains at least one standalone tag attribute: the tag name itself (e.g., BODY).

Because the HTML elements between opening and closing container tags are stored as children of the
opening container tag, the default for HtmlParseFile() and HtmlParseBuf() is not to store the closing tag.
Likewise, the default for HtmlParseFile() and HtmlParseBuf() is not to store text attribute tags such as
 and since the text attribute bitmask makes these tags superfluous. Pass the constants
WL_KEEPCLOSINGTAG and WL_KEEPATTRIBUTETAG to HtmlParseFile() and HtmlParseBuf() to
retain closing container tags and text attribute tags.

The parse tree described above is best explained using an example HTML document and a diagram of
the tree produced by parsing the example document.

Accessing Elements in the Parse Tree

Functions that access the individual elements in the parse tree are the second category of HTML parsing
APIs. Elements in the tree are referenced by an element handle; most APIs accept an element handle
that specifies where in the parse tree processing should begin. The constant WL_ROOTELEMENT may
be used to access the root of the parse tree.

Every element in the parse tree may be enumerated by calling the EnumerateParseTree() API. This
function sends a message to a window for each element in the tree (the message identifier and the
window are specified to the API). The wParam message parameter contains the element type and the
lParam message parameter contains the element handle. The application must return TRUE in response
to the message to continue the enumeration.

HtmlGetChild() get the first element in the next level of the tree, while HtmlGetParent() returns the
element at the previous level. The HtmlGetSibling() API returns the next, previous, first or last element at
the same level (and under the same parent).

Given an element handle, you can determine the element' s type via HtmlGetElementType(). The text
associated with the element is returned by HtmlGetElementText().

For text elements, the text attribute bitmask may be obtained by calling HtmlGetTextAttr(). The handle of a
tag element may be passed to HtmlGetTagName() and HtmlGetTagType() to determine -- yes, you
guessed it -- the tag name (e.g., "BODY") and type (e.g., HTML_BODY).

The attributes in a tag may be enumerated by making successive calls to HtmlGetTagAttr(). To get the
value of a particular attribute in a tag, use the HtmlExtractTagAttr() API.

Finding HTML Elements

The third and last category of HTML parsing API searches the parse tree (or part of it) for elements that
are of a particular type or contain a particular value.

HtmlFindText() locates the next text element in the tree that matches a specified value. Similarly, the
HtmlFindSpecial() and HtmlFindComment() APIs find the next special character or comment element that
matches a given value.

The HtmlFindTagType() and HtmlFindTagName() APIs search for the next element in the tree that
matches the specified tag type or name, respectively.    The next tag element containing an attribute with a
certain value can be found using the HtmlFindTagAttr() API.

For each of the 'find' APIs described above, a corresponding 'find and enumerate' API exists. Instead of
finding just the next occurrence of an element, the enumeration APIs send a message to a window for
each occurrence of the element that is found. This is similar to HtmlEnumParseTree(), except that only a
subset of the elements in the tree are enumerated to the application. The 'find and enumerate' APIs are   
HtmlEnumFindText(), HtmlEnumFindSpecial(), HtmlEnumFindComment() HtmlEnumFindTagType(),
HtmlEnumFindTagName() and HtmlEnumFindTagAttr().

Visual Basic Overview

WebLib supports Visual Basic with three VBX controls: WLBrowser, WLToolbar and WLParser. Although
we recommend using Visual Basic 3.0,    the controls have been written to support Visual Basic 1.0.

To include WebLib into your VB project, do the following:

· Pick Add File from the File menu and select the file WEBLIBVB.VBX from the Windows
system directory to include the browser and toolbar VBXs. Add the file HTMLPAVB.VBX in
similar fashion to include the HTML parsing VBX.

· Choose the Load Text option from the File menu and select the file WEBLIBVB.TXT if you
plan to use the browser or toolbar VBX and HTMLPAVB.TXT if you plan to use the HTML
parsing VBX. These files include the external declarations of the action functions that are used
to call an API from a VBX.

Properties

Most of the properties in the WebLib VBXs provide only run-time support. The exception is the WLToolbar
VBX, which includes a large number of properties that can be set at design-time. Two very important run-
time propeties are included in each control: Action and Result. These properties are used to invoke an
API and are explained below.

Events

Each VBX generates events to notify the application of some phenomenon. One or more parameters are
included with each type of event.

Under Visual Basic, care must be taken to avoid 'eating' events that have been queued via the
PostMessage SDK call, awaiting dispatch after the current event handler returns. VB functions like
MsgBox() do just this, causing a loss of some events. One way to get around this is to use
WL_SENDMESSAGE as the notification method instead of WL_POSTMESSAGE, but this has it owns
problems, as explained in the General Overview. Our advice is to avoid calling MsgBox() and its ilk from
an event handler.

If an API generates events, event generation may be disabled for the API by setting the GenerateEvents
property to False. This property is automatically reset to True after each API call, so GenerateEvents must
be set to False just before calling the API to disable event generation.

Initialization

Applications must call weblibStartup() and weblibCleanup() before calling any other VBX-based APIs. The
best place to do this is Sub Main; however, weblibStartup() and weblibCleanup() cannot both be called
from Sub Main unless the forms created by the application are modal. For apps that use MDI windows or
other non-modal features, only weblibStartup() can be called from Sub Main. Invoking weblibStartup()
from the Load form event and weblibCleanup() from the Unload form event is another possibility, but
only if one form needs to use the WebLib VBXs.

If multiple, non-modal forms need to use the WebLib VBXs, we recommend a couple of approaches.   
The first involves calling weblibStartup() from Sub Main and then keeping a reference count of loaded
forms (i.e., add one to a global counter when a form is loaded and subtract one from the counter when a
form is unloaded). When the reference count reaches zero (the last form has been closed), call
weblibCleanup(). Another approach is to create an invisible form whose sole purpose is to call
weblibStartup() on form load and weblibCleanup() on form unload. The application creates this form first
and unloads it last.

As explained below, the AutoCreate property of the WLToolbar VBX can cause problems when
weblibStartup() is called from the Load form event.

Note that if weblibStartup() is called from Sub Main and the VB app terminates without calling
weblibCleanup(), WebLib usually cleans up after itself anyway (this behavior occurs only when the VB
app is run stand-alone).

Calling an API

To call a browser, toolbar or HTML parsing API using a VBX, simply set the Action property to the return
vaue of the appropriate action function. Then check the Result property to determine of the API call was
successful or not. If the call was successful (the Result property is True), additional properties that may
have been set by the API can be accessed. If the Result property is False, meaning that the API call
failed, do not access any other properties; doing so causes VB error 390, "No defined value".

Here is an example that grabs the URL and title of window using the browser VBX:

WLBrowser.Action = actionGetWindowInfo(WL_ACTIVEWINDOW)
If (WLBrowser.Result) Then

MsgBox "URL = " & WLBrowser.URL & " Title = " & WLBrowser.Title
Else

MsgBox "actionGetWindowInfo failed"
End If

Toolbar Design-time Properties

The following WLToolbar properties may be set at design-time:

AutoCreate Button ButtonID ButtonPic
ButtonPicDisabled ButtonPicFocus ButtonPicSel ButtonText
ColorBkgnd ColorButtonText ColorToolbarText FontButton
FontToolbar TextMenu TextToolbar

While there is nothing special about most of these properties, the Button, ButtonID, ButtonPic,
ButtonPicDisabled, ButtonPicFocus, ButtonPicSel and ButtonText properties are different. To add a button
to the toolbar at design-time, first select one of the twelve button positions specified by the Button
property. Then provide values for the ButtonID, ButtonPic, ButtonPicDisabled, ButtonPicFocus,
ButtonPicSel and ButtonText properties (these last four properties are optional; setting them creates a
nicer-looking toolbar).

The ButtonID property is key when adding toolbar buttons at design-time. This should be a unique, non-
zero ID for the button. If ButtonID is zero, then no toolbar button will be added at the position specified by
the Button property. This is how you clear a button at a given position.

The other design-time properties may be reset so that they will be ignored when the toolbar is created by
providing a NULL value. Generally, this is accomplished by selecting the property in the Visual Basic
Properties window and press F2 followed by the Delete key. For text and font properties, this results in an
empty string; for bitmaps, the value (None) appears to indicate the property has been reset. Color
properties are different; because Visual Basic does not allow the hig-order byte of the color to be set, a
special NULL color value for the other three bytes must be used. By default, this is &H00AAAAAA&. If
you need to use the color represented by &H00AAAAAA&, you can change the NULL color by editing the
NullColor entry in the [VBX] section of WEBLIB.INI (if this entry is changed, any color properties in
existing WLToolbar VBX controls that use &H00AAAAAA& as the default color also have to be changed).

When set to True, the AutoCreate property causes the toolbar to be created at the same time as the VBX,
i.e., when a form containing the WLToolbar VBX control is loaded. The toolbar is deleted when the form is
unloaded. This avoids having to call the functions actionCreateToolbar() and actionDeleteToolbar() at run-
time. However, the toolbar will not be created even when AutoCreate is True if weblibStartup() is called
from the Load event of the form that contains the WLToolbar VBX control. This is because the Load
event is sent after the VBX is created and thus after the VBX tries to create the toolbar. For this and other
reasons, it is best to place weblibStartup() in Sub Main whenever possible.

When a toolbar is created using the run-time function actionCreateToolbar(), it is initialized with any
design-time properties that have been set to a valid (i.e., non-NULL) value.

Adding Toolbar Buttons at Run-time

Three functions exists for adding toolbar buttons at run-time: actionAddToolbarButtonByHandle(),
actionAddToolbarButtonByID() and actionAddToolbarButtonByName(). The latter two functions load the
bitmap as a resource from an executable or DLL and require an instance handle, which typically involves
making a call to the Windows SDK.

The actionAddToolbarButtonByHandle() function is easier to use from Visual Basic. It adds a toolbar
button based on a bitmap handle, which can be obtained using the Image property of a VB picture box
control. Thus, one might create a series of invisible picture box controls, associate them with various
bitmaps and create toolbar buttons by passing the Image properties of these controls to
actionAddToolbarButtonByHandle(). If you use this approach, you must have
actionAddToolbarButtonByHandle() make a copy of the bitmap or things will go very badly.

Limited Stack under Visual Basic

Given the recursive nature of the HTML parsing APIs and the fact that Visual Basic has a fixed stack of
about 20K, it is possible that certain deeply nested HTML constructs could cause a stack fault. We
haven't seen this happen, but watch out anyway!

PowerBuilder Overview

WebLib supports PowerBuilder via a set of wrappers around the C API.    Due to the limited nature of the
VBX support provided by PowerBuilder, the WebLib VBXs cannot be used.

The constants and external function declarations needed by PowerBuilder are contained in plain text files
and must be copied and pasted into the PowerBuilder environment. To do this, run a application such as
NOTEPAD, load the WebLib file and copy the contents of the entire file to the clipboard. The bring up the
proper PowerBuilder window and paste the contents of the clipboard to the end of any declarations that
may already be present.

To include WebLib constants into your PowerBuilder project, paste the constants you need into the dialog
that is invoked by the Global Variables option under the Declare menu. For the browser and toolbar APIs,
copy and paste the contents the file WEBLIBPB.CON. For the HTML parsing API, copy and paste the
contents of the HTMLPAPB.CON file.

To include WebLib external function declarations into your PowerBuilder project, paste the declarations
you need into the dialog that is invoked by the Global External Functions option under the Declare menu.
Copy and paste the contents the file WEBLIBPB.FUN for the browser and toolbar APIs. For the HTML
parsing API, copy and paste the contents of the HTMLPAPB.FUN file.

Initialization

WebLib must be initialized before using any of the browser or toolbar APIs. To do this, call WLStartup()
from the application open event. To terminate WebLib, call WLCleanup() from the application close event.

Handling Events

Events are handled as they are in the C API, by sending Windows message to a particular window. In
PowerBuilder, this involves using the Handle() function and the system-defined Message object. To
obtain the handle of the window that is to receive the message, use Handle(). To reference message
parameters and to return a value from a message handler, use the Message object.

The pre-defined message identifier WM_WEBLIB_NOTIFY is included for use with the browser and
toolbar APIs. In addition, the message identifiers WM_WEBLIB_ENUMPARSETREE,
WM_WEBLIB_ENUMFINDTEXT,    WM_WEBLIB_ENUMFINDSPECIAL
WM_WEBLIB_ENUMFINDCOMMENT, WM_WEBLIB_ENUMFINDTAGTYPE,
WM_WEBLIB_ENUMFINDTAGNAME, WM_WEBLIB_ENUMFINDTAGATTR have been pre-defined for
use with the HTML parsing API. These message identifiers have been assigned in such a way that there
should not be any conflict with any standard controls or windows.

Handling of the pre-defined messages should occur through PowerBuilder's Other window event. Another
approach is to create your own user-defined events in PowerBuilder and use these for notification
messages instead of the pre-defined identifiers.

Here is an example of how to setup and receive URLEcho events:

// Register app to receive URLEcho notifications in script for a menu
item

IF NOT
WLRegisterURLEcho(h_browser,Handle(ParentWindow),WM_WEBLIB_NOTIFY)) THEN

MessageBox("Error","WLRegisterURLEcho failed");

// Script for Other event in ParentWindow of menu item

ulong l_window
string s_url
string s_mime
string s_ref
string s_msg

IF Message.Number = WM_WEBLIB_NOTIFY THEN
CHOOSE CASE Message.WordParm

CASE WLN_URLECHO
l_window = WLNGetWindow(Message.LongParm)
s_url = WLNGetURL(Message.LongParm)
s_mime = WLNGetMIMEType(Message.LongParm)
s_ref = WLNGetReferrer(Message.LongParm)
s_msg = String(l_window,"[General]") + s_url + s_mime

+ s_ref
MessageBox("Received URLECHO event!",s_msg)

CASE WLN_XXX
// more event handling here...

CASE WLN_YYY
// ...and here

END CHOOSE
END IF

The enumeration functions in the HTML parsing API require that TRUE be returned from the message
handler to continue the enumeration. To do this, set    Message.ReturnValue to the value you want to
return (1 for TRUE, 0 for FALSE) and set Message.Processed to TRUE. Both assignments must be
performed and they must be done in this order or no value will be returned:

Message.ReturnValue = 1 // or 0 for FALSE
Message.Processed = TRUE

Returning Strings from a API

Certain APIs such as WLGetWindowInfo() pass one or more strings back as parameters. Before calling
the API, any strings that are to receive values must be filled out to their maximum expected length with
the PowerBuilder String() function (256 is a good maximum length to use). For example:

string s_url = Space(256)
string s_title = Space(256)

IF NOT WLGetWindowInfo(h_browser,WL_ACTIVEWINDOW,s_url,256,s_title,256)
THEN

MessageBox("Error","WLGetWindowInfo failed");
END IF

Failing to allocate enough space in a string that can be modified by an API can cause truncated values or
worse.

Adding Toolbar Buttons

The WebLib extension APIs include several functions for adding a button to a toolbar that are easier to
use with PowerBuilder than WLAddToobarButton(). In particular, the extension function

WLAddToobarButtonByFile() works well with PowerBuilder since it loads bitmaps from files. The
bitmaps stored in the files must be DIB-compatible but not compressed (this is usually the case with files
having the .BMP extension).

SQLWindows Overview

SQLWindows is supported by Welib via a set of wrappers around the C API.    The VBX support provided
by SQLWindows is not robust enough to allow the use of the WebLib VBXs.

Two SQLWindows 5.0 libraries are included with WebLib: WEBLIBSW.APL contains the contants and
declarations for the browser and toolbar APIs, while HTMLPASW.APL contains the constants and
declarations for the HTML parsing API. These should be added to the outline of your SQLWindows
application under Libraries as File Include: WEBLIBSW.APL and File Include: HTMLPASW.APL.

You may need to change the File Path in the SQLWindows Preferences dialog to include the
WEBLIB\BIN directory.

Two alternative files, WEBLIBSW.APT and HTMLPASW.APT, are included in case you cannot use the
compiled libraries WEBLIBSW.APL and HTMLPASW.APL. Thes files can be found in the
WEBLIB\INCLUDE directory. WEBLIBSW.APT and HTMLPASW.APT are skeleton SQLWindows 5.0
apps that have been saved as text files. The idea is to load these projects into SQLWindows and then
copy and paste the WebLib global constants and external function declarations from these skeleton apps
into your SQLWindows applications.

Initialization

Before using any of the browser or toolbar APIs, WebLib must be initialized. To do this, call WLStartup()
from the On SAM_AppStartup message handler. To terminate WebLib, call WLCleanup() from the On
SAM_AppExit message handler. Both of these things are done under Global Application Actions in the
SQLWindows outline.

Handling Events

Events are handled as they are in the C API, by sending Windows message to a particular window. In
SQLWindows, use the system-defined global variables hWndForm,wParam and lParam.

Pre-defined message identifiers are included as global constants in the SQLWindows libraries that come
with WebLib. Use the message identifier WM_WEBLIB_NOTIFY with the browser and toolbar APIs. The
message identifiers WM_WEBLIB_ENUMPARSETREE, WM_WEBLIB_ENUMFINDTEXT,   
WM_WEBLIB_ENUMFINDSPECIAL WM_WEBLIB_ENUMFINDCOMMENT,
WM_WEBLIB_ENUMFINDTAGTYPE, WM_WEBLIB_ENUMFINDTAGNAME,
WM_WEBLIB_ENUMFINDTAGATTR should be used with the HTML parsing API. These message
identifiers have been assigned in such a way that there should not be any conflict with any standard
controls or windows.

In the outline, message handing usually occurs in the Message Actions section for a form or window. The
following is an example of how to setup and receive URLEcho events:

! ===== Register app to receive URLEcho notifications in actions for
menu item

If NOT WLRegisterURLEcho(hBrowser,hWndForm,WM_WEBLIB_NOTIFY))
Call SalMessageBox('WLRegisterURLEcho failed','Error',MB_Ok)

! ===== form variables needed by message actions

Number: nWindow
String: sURL
String: sMIME

String: sRef
String: sMsg

! ===== actions for On WM_WEBLIB_NOTIFY in message action section of
outline

Select Case wParam
Case WLN_BEGINPROGRESS

Set nWindow = WLNGetWindow(lParam)
Set sURL = WLNGetURL(lParam)
Set sMIME = WLNGetMIMEType(lParam)
Set sRef = WLNGetReferrer(lParam)
Set sMsg = SalNumberToStrX(nWindow,0) || sURL || sMIME ||

sRef
Call SalMessageBox(smsg,'BEG',MB_Ok)

Case WLN_XXX
! ===== more event handling here...

Case WLN_YYY
! ===== ...and here

The enumeration functions in the HTML parsing API require that TRUE be returned from the message
handler to continue the enumeration. In SQLWindows, this is simple: just use the Return statement to
return TRUE or FALSE. For example:

On WM_WEBLIB_ENUMPARSETREE
! ===== do something useful here...
Return TRUE

Returning Strings from a API

Certain APIs such as WLGetWindowInfo() pass one or more strings back as parameters. Before calling
the API, any strings that are to receive values must be filled out to their maximum expected length with
the SalStrSetBufferLength() function (256 is a good maximum length to use). For example:

! ==== variables

String: sURL
String: sTitle

! ===== actions

Call SalStrSetBufferLength(sURL,256)
Call SalStrSetBufferLength(sTitle,256)

If NOT WLGetWindowInfo(hBrowser,WL_ACTIVEWINDOW,sURL,256,sTitle,256)
Call SalMessageBox('WLGetWindowInfo failed','Error',MB_Ok);

END IF

Failing to allocate enough space in a string that can be modified by an API can cause truncated values or
worse.

Adding Toolbar Buttons

The WebLib extension APIs include several functions for adding a button to a toolbar that are easier to

use with SQLWindows than WLAddToobarButton(). In particular, the extension function
WLAddToobarButtonByFile() works well with SQLWindows since it loads bitmaps from files. The
bitmaps stored in the files must be DIB-compatible but not compressed (this is usually the case with files
having the .BMP extension).

C API Overview

The C API lets C and C++ applications call the WebLib browser, toolbar and HTML parsing APIs.

To use the browser and toolbar APIs in a Windows-based C program, include the file WEBLIB.H in your
source code. To use the HTML parsing API, include the file HTMLPARS.H.

C applications that use WebLib make direct calls to WEBLIB.DLL and HTMLPARS.DLL. As such, the
import libraries WEBLIB.LIB and HTMLPARS.LIB must be linked into an application that makes WebLib
API calls. Link with WEBLIB.LIB if the app uses the browser or toolbar APIs and HTMLPARS.LIB if the
app calls any of the HTML parsing APIs.

Initialization

To use any of the browser or toolbar APIs, C language applications must call WLStartup() upon startup
and should call WLCleanup() upon application termination.

Events

Event notification is performed by sending a Windows message to a window whose handle was specified
in an API call. Note that you can use a single message identifier for all of the browser and toolbar APIs
that generate events, since the window that receives the message can check wParam to determine the
type of event. This is in contrast to the HTML parsing APIs, which require a distinct message for each
enumeration function. Of course, you may also pass a distinct message identifier to each event-
generating browser API. Which method you use is a matter of style.

Upon receiving an event, the values bundled into the lParam message parameter can be extracted with
the WLNGetXXX functions. The values bundled with an event vary based on the event type. Here is an
example that handles browser and toolbar events by switching on the notification code (i.e., wParam):

switch (Message)
{

case WM_WEBLIB_NOTIFY:
switch (wParam)
{

case WLN_BEGINPROGRESS:
{

DWORD dwTrx = WLNGetTransaction(lParam);
const char *pszProgress =

WLNGetProgressString(lParam);
// do something with dwTrx and pszProgress...
break;

}

case WLN_SETPROGRESSRANGE:
{

DWORD dwTrx = WLNGetTransaction(lParam);
DWORD dwMax = WLNGetProgressMaximum(lParam);
// do something with dwTrx and dwMax...
break;

}
...

}
break;

case WM_XXX:
 ...

}

The WebLib extension library WEBLIBEX.DLL contains some useful functions for adding toolbar buttons.
Included in this library are WLAddToolbarButtonByHandle(), WLAddToolbarButtonByID(),
WLAddToolbarButtonByName() and WLAddToolbarButtonByFile(). These functions are generally
easier to use than WLAddToolbarButton(), which must accomodate the passing of bitmaps by handle,
resource ID and resource name in one API.

Compiling and Linking

It is recommended that C apps using the WebLib APIs be developed using the large memory model and
have a stack of at least 24K.

C++ Overview

WebLib's C++ support includes classes for MSVC++/MFC, Borland C 4.5/OWL and other C++ compilers.
Although different classes are provided for each compiler and class library, these classes are very similar.

Class Overview

The WebLib APIs are supported via two types of classes: a simple API wrapper class and a slightly more
complex event-handling class which is derived from the API wrapper class. In the following discussion,
the MSVC++/MFC classes are used as examples; the same principles apply to the Borland C++/OWL
classes.

The API wrapper classes include a method for each WebLib API they encapsulate. Their primary
advantages over the C API are that the object handle (e.g., HBROWSER) is stored in the class instance
and that the constructor and destructor can allocate and free objects automatically. Event notification
takes place as it does in the C API, via a window handle that is passed to a method.

The event-handling classes take things one step further than the API wrapper classes. These classes
handle events via virtual methods. Instead of passing the handle of an unrelated window that is to be
notified when an event occurs, instances of the event-handling classes notify themselves of events. Given
this, the event-handling classes are designed for derivation: to be notified of events, one should derive a
new class from one of the event handling classes and override the appropriate virtual methods.

Another difference between the API wrapper classes and the event handling classes is that the API
wrapper classes may be used without MFC or OWL, but the event handling classes may not.

It is important to note while most of the WebLib APIs have been encapulated into C++ classes, some
housekeeping and utility functions have not been, among them WLStartup() and WLCleanup(), which
must be called on app startup and termination. The C API works fine for these functions.

MSVC++/MFC

Classes

The Microsoft Visual C++ API wrapper classes are CWeblibBrowserAPI, CWeblibToolbarAPI and
CWeblibHtmlAPI. The event handling classes are CWeblibBrowser, CWeblibToolbar and CWeblibHtml.

The CWeblibBrowserAPI class parallels the C API in terms of functionality. One difference is
CWeblibBrowserAPI    provides an overloaded constructor that automatically connects to the Web
browser when an instance of the class is created. After the object has been constructed, it is important to
call the IsGood() method to determine if everything went OK. Upon destruction, the CWeblibBrowserAPI 
class will disconnect from the Web browser if needed.

The CWeblibBrowser class provides a virtual method for each event notification code that can be
generated from any browser API. To handle an event, override the appropriate virtual method in your
derived class.

The CWeblibToolbarAPI class provides a wrapper around the toolbar API and an overloaded constructor
that will automatically create a toolbar. Call IsGood() to make sure a class instance was constructed
correctly. The destructor deletes the toolbar if needed. The CWeblibToolbar class has a single virtual
notification method that derived classes should override to handle button clicks.

The CWeblibHtmlAPI and CWeblibHtml classes are similar in design to the browser and toolbar classes.
The CWeblibHtmlAPI has two overloaded constructors, one for parsing an HTML file and one for parsing
an HTML buffer. The IsGood() method indicates whether the constructor successfully parsed the HTML or

not. If needed, WLEndParse() is called automatically when the class instance is destroyed. CWeblibHtml
contains a virtual notification method for each enumeration API which derived classes should override to
perform enumerations. Each enumeration method in CWeblibHtml takes an enumeration ID, which is
passed to the virtual notification method. Since nested enumeration calls of the same type invoke the
same virtual method, the enumeration ID provides a way to distinguish which enumeration is currently
being handled.

Files

To use the CWeblibBrowserAPI,    CWeblibBrowser, CWeblibToolbarAPI or CWeblibToolbar classes in an
MSVC++ application, include the file WEBLIBVC.H in the source code and link the app with either
WEBLIVCS.LIB or WEBLIVCD.LIB. The app must also be linked with WEBLIB.LIB.

To use the CWeblibHtmlAPI or CWeblibHtml classes, include the file HTMLPAVC.H in the source and link
the app with either HTMLPVCS.LIB or HTMLPVCD.LIB. In addition, the app must be linked with
HTMLPARS.LIB.

What's the difference between WEBLIVCS.LIB vs. WEBLIVCD.LIB and HTMLPVCS.LIB vs.
HTMLPVCD.LIB? Which library you use depends upon whether your MSVC++ application statically links
with MFC or uses the AFXDLL version of MFC. For statically linked apps, use WEBLIVCS.LIB and
HTMLPVCS.LIB. Applications employing the AFXDLL version of MFC should link with WEBLIVCD.LIB
and HTMLPVCD.LIB.

Compiling and Linking

Compile MSVC++ applications that use the WebLib class libraries with the large memory model and with
a stack of at least 24K.

Borland C++/OWL

Classes

The Borland C++ API classes are TWeblibBrowserAPI, TWeblibToolbarAPI and TWeblibHtmlAPI and the
event handling classes are TWeblibBrowser, TWeblibToolbar and TWeblibHtml. These classes are
identical in functionality to the MSVC++/MFC classes.

Files

To use the TWeblibBrowserAPI,    TWeblibBrowser, TWeblibToolbarAPI or TWeblibToolbar classes in a
Borland C++ app, include the file WEBLIBBC.H in the source code and link the app with one of the
WEBLXXXX libraries listed below. The app must also be linked with WEBLIB.LIB.

To use the TWeblibHtmlAPI or TWeblibHtml classes, include the file HTMLPABC.H in the source and link
the app with one of the following HTMLXXXX libraries. In addition, the app must be linked with
HTMLPARS.LIB.

Which library you link with depends on the type of module you are writing and which version of OWL you
want to use:

WEBLBCDD.LIB For writing DLLs that link with the DLL-based version of OWL
WEBLBCDE.LIB For writing EXEs that link with the DLL-based version of OWL
WEBLBCSD.LIB For writing DLLs that link with the static version of OWL
WEBLBCSE.LIB For writing EXEs that link with the static version of OWL
HTMLBCDD.LIB For writing DLLs that link with the DLL-based version of OWL
HTMLBCDE.LIB For writing EXEs that link with the DLL-based version of OWL
HTMLBCSD.LIB For writing DLLs that link with the static version of OWL

HTMLBCSE.LIB For writing EXEs that link with the static version of OWL

Compiling and Linking

As with MSVC++ apps, compile Borland C++ apps that use the WebLib class libraries with the large
memory model and with a stack of 24K or more.

Delphi Overview

WebLib supports Delphi via a set of wrappers around the C API.    While Delphi's VBX support is robust,
conversion between Delphi's VBX data types and Object Pascal data types is a problem, especially when
dealing with strings. This being the case, the WebLib VBXs are currently not supported under Delphi.

WebLib's C API is supported in Delphi by two program units: Weblib and Htmlpars. The source code for
these units is stored in the files WEBLIBDP.PAS and HTMLPADP.PAS. Include these files in your project
and reference the units as needed with the Object Pacal uses clause. For example:

program Project1;

uses
Forms, WinTypes, WinProcs,

    Weblib in 'WEBLIBDP.PAS',
    Htmlpars in 'HTMLPADP.PAS',

Unit1 in 'UNIT1.PAS' {Form1};

You may either copy WEBLIBDP.PAS and HTMLPADP.PAS into your Delphi project's directory or
compile these files in the WEBLIB\INCLUDE directory and then add WEBLIB\INCLUDE to the Search
Path in the Project Options dialog.

Initialization

WebLib must be initialized before using any of the browser or    toolbar APIs. To do this, call WLStartup()
from the application's entry point. To terminate WebLib, call WLCleanup(). For example:

program Project1;

uses
... ;

{$R *.RES}

begin
if not WLStartup then

Application.MessageBox('WLStartup','Error',MB_OK);

    Application.CreateForm(TForm1, Form1);
Application.Run;

if not WLCleanup then
Application.MessageBox('WLCleanup','Error',MB_OK);

end.
   

Handling Events

Events are handled as they are in the C API, by sending a Windows message to a particular window. In
Delphi, this involves using the Handle form attribute to obtain a window handle and creating a message-
handling procedure with the message directive.

The pre-defined message identifier WM_WEBLIB_NOTIFY is included for use with the browser and
toolbar APIs. In addition, the message identifiers WM_WEBLIB_ENUMPARSETREE,
WM_WEBLIB_ENUMFINDTEXT,    WM_WEBLIB_ENUMFINDSPECIAL,
WM_WEBLIB_ENUMFINDCOMMENT, WM_WEBLIB_ENUMFINDTAGTYPE,

WM_WEBLIB_ENUMFINDTAGNAME, WM_WEBLIB_ENUMFINDTAGATTR have been pre-defined for
use with the HTML parsing API. These message identifiers have been assigned in such a way that there
should not be any conflict with any standard controls or windows.

Here is an example of how to setup and receive URLEcho events:

{ ===== do registration for event ===== }

if WLRegisterURLEcho(hBrowser,Handle,WM_WEBLIB_NOTIFY) = 0 then
        Application.MessageBox('RegisterEchoURL failed','Error',MB_OK);

{ ===== declaration of message handling prodecure ===== }

type
TForm1 = class(TForm)

{ declaration of controls, etc. }
private

        { Private declarations }
    public
    procedure HandleEvent(var msg: TMessage); message
WM_WEBLIB_NOTIFY;
    end;

{ ===== implementation variables ===== }

var
hBrowser: Weblib.HBROWSER;
szURL: array[0..255] of Char;
szMIME: array[0..255] of Char;
szRef: array[0..255] of Char;
dwWindow: LongInt;

{ ===== implementation of message handing procedure ===== }

procedure TForm1.HandleEvent (var msg: TMessage);
begin

if msg.wParam = WLN_URLECHO then
begin

dwWindow := WLNGetWindow(msg.LParam);
                szURL := WLNGetURL(msg.LParam);

szMIME := WLNGetMIMEType(msg.LParam);
szRef := WLNGetReferrer(msg.LParam);

{ ...do something useful here... }
                end;

end;

The enumeration functions in the HTML parsing API require that TRUE be returned from the message
handler to continue the enumeration. To do this, set the Result member of TMessage.

Strings

Zero-terminated strings must always be used with the WebLib APIs. In Object Pascal, such strings are
declared using the following syntax:

var

szURL: array[0..255] of Char;

The PChar data type and various Str... functions (e.g., StrCopy) are also useful when working with zero-
terminated strings.

Adding Toolbar Buttons

The WebLib extension APIs include several functions for adding a button to a toolbar that are easier to
use with Delphi than WLAddToobarButton(). In particular, the extension function
WLAddToobarButtonByFile() works well with Delphi since it loads bitmaps from files. The bitmaps
stored in the files must be DIB-compatible but not compressed (this is usually the case with files having
the .BMP extension).

Startup API

Boolean Startup()

Initializes the WebLib DLL and must be called before any WebLib browser or toolbar API.

Return Value
TRUE if successful, FALSE if an error occurred.

See Also
Cleanup

C/C++
BOOL    WLStartup();

Visual Basic
Function weblibStartup() As Integer

Cleanup API

Boolean Cleanup()

Shuts down the WebLib DLL. Do not call WebLib browser or toolbar APIs after Cleanup() has
been called.

Return Value
TRUE if successful, FALSE if an error occurred.

See Also
Startup

C/C++
BOOL    WLCleanup();

Visual Basic
Function weblibCleanup() As Integer

SetDefaultNotify API

Boolean SetDefaultNotify(NotifyWindow,Message)

Sets the default notification window and message. Other WebLib API calls that take a    window
and message as parameters may reference NotifyWindow and Message by    passing
WL_DEFAULTNOTIFY in place of a window (message is ignored is this case and may be set to
zero).

NotifyWindow will also receive BrowserStart and BrowserExit events.

Arguments
NotifyWindow Handle of window to receive events.
Message Notification message.

Return Value
TRUE if successful, FALSE if an error occurred.

C/C++
BOOL WLSetDefaultNotify(HWND hwndNotify,UINT nMsg);

Visual Basic
Not currently supported

ConnectBrowser API

Browser ConnectBrowser(Options)

Establishes logical connection with Web browser.

Arguments
Options WL_STARTBROWSER starts the Web browser if it is not

already running. Other options are WL_POSTMESSAGE
(notify of events via PostMessage) and
WL_SENDMESSAGE (notify via SendMessage).

Return Value
Handle to browser object.

See Also
DisconnectBrowser

C
HBROWSER WLConnectBrowser(WORD wOptions);

C++
BOOL CWeblibBrowser::ConnectBrowser(WORD wOptions=WL_POSTMESSAGE|

WL_STARTBROWSER);

VBX
WLBrowser.Action = actionConnectBrowser(ByVal wOptions As Integer)

DisconnectBrowser API

Boolean DisconnectBrowser(ExitBrowser)

Closes logical connection with Web browser.

Arguments
ExitBrowser If TRUE and there are no other open connections to the

Web browser, the browser is requested to exit.

Return Value
TRUE if successful, FALSE if an error occurred.

See Also
ConnectBrowser

C
BOOL WLDisconnectBrowser(HBROWSER hBrowser,BOOL bExit);

C++
BOOL CWeblibBrowser::DisconnectBrowser(BOOL bExit=TRUE);

VBX
WLBrowser.Action = actionDisconnectBrowser(ByVal bExit As Integer)

GetWindowInfo API

Boolean GetWindowInfo(WindowID,URL,Title)

Returns the URL and title associated with a browser window.

Arguments
WindowID Browser window to get URL and Title for or

WL_ACTIVEWINDOW to get the URL and Title of the
active browser window.

URL URL of browser window is copied here.
Title Title of browser window is copied here.

Return Value
TRUE if successful, FALSE if an error occurred.

Netscape
This function fails if either URL or Title is not available.

C
BOOL WLGetWindowInfo(HBROWSER hBrowser,DWORD dwWindow,LPSTR lpszURL,int

cbURL,LPSTR lpszTitle,int cbTitle);

C++
BOOL CWeblibBrowser::GetWindowInfo(DWORD dwWindow,LPSTR lpszURL,int cbURL,LPSTR

lpszTitle,int cbTitle) const;

VBX
WLBrowser.Action = actionGetWindowInfo(ByVal dwWindow As Long)

Notes
Sets the properties URL and Title if successful.

ListWindows API

WindowID ListWindows(GetFirst)

Enumerates Web browser windows.

Arguments
GetFirst If TRUE, returns the first browser window, otherwise

returns the next browser window.

Return Value
Next browser window if successful or zero if there are no more browser windows or if an
error occurred.

C
DWORD WLListWindows(HBROWSER hBrowser,BOOL bFirst);

C++
DWORD CWeblibBrowser::ListWindows(BOOL bFirst) const;

VBX
WLBrowser.Action = actionListWindows()

Notes
Enumerates all browser windows in one call, setting the WindowList property
array. This array is delimited by a zero window ID.

ActivateWindow API

WindowID ActivateWindow(WindowID)

Activates a browser window.

Arguments
WindowID Browser window to activate or

WL_LASTACTIVEWINDOW to re-activate the last active
window.

Return Value
The browser window activated if successful or zero if an error occurred.

C
DWORD WLActivateWindow(HBROWSER hBrowser,DWORD dwWindow);

C++
DWORD CWeblibBrowser::ActivateWindow(DWORD dwWindow) const;

VBX
WLBrowser.Action = actionActivateWindow(ByVal dwWindow As Long)

Notes
Sets the Window property if successful.

CloseWindow API

Boolean CloseWindow(WindowID)

Closes a browser window.

Arguments
WindowID Browser window to close.

Return Value
TRUE if successful or FALSE if an error occurred.

C
BOOL WLCloseWindow(HBROWSER hBrowser,DWORD dwWindow);

C++
BOOL CWeblibBrowser::CloseWindow(DWORD dwWindow) const;

VBX
WLBrowser.Action = actionCloseWindow(ByVal dwWindow As Long)

SetWindowPos API

Boolean SetWindowPos(WindowID,X,Y,Width,Height)

Sets the position and size of a browser window.

Arguments
WindowID Browser window to size or move.
X New X coordinate of upper left corner of window.
Y New Y coordinate of upper left corner of window.
Width New window width or WL_NOCHANGE to retain current

width.
Height New window height or WL_NOCHANGE to retain current

height.

Return Value
TRUE if successful or FALSE if an error occurred.

Netscape
Requires X, Y, Width and Height (does not respect WL_NOCHANGE).

C
BOOL WLSetWindowPos(HBROWSER hBrowser,DWORD dwWindow,DWORD dwX,DWORD

dwY,DWORD dwWidth,DWORD dwHeight);

C++
BOOL CWeblibBrowser::SetWindowPos(DWORD dwWindow,DWORD dwX,DWORD

dwY,DWORD dwWidth,DWORD dwHeight) const;

VBX
WLBrowser.Action = actionSetWindowPos(ByVal dwWindow As Long, ByVal dwX As Long, ByVal

dwY As Long, ByVal dwWidth As Long, ByVal dwHeight As Long)

ShowWindow API

Boolean ShowWindow(WindowID,ShowFlag)

Minimizes, maximizes or restores a browser window.

Arguments
WindowID Browser window to minimize, maximize or restore.
ShowFlag WL_MINIMIZE, WL_MAXIMIZE or WL_NORMAL.

Return Value
TRUE if successful or FALSE if an error occurred.

C
BOOL WLShowWindow(HBROWSER hBrowser,DWORD dwWindow,UINT nShow);

C++
BOOL CWeblibBrowser::ShowWindow(DWORD dwWindow,UINT nShow) const;

VBX
WLBrowser.Action = actionShowWindow(ByVal dwWindow As Long, ByVal nShow As Integer)

ShowFile API

Transaction ShowFile(File,MIME,WindowID,URL,NotifyWindow,Message)

Displays a file in a browser window, sending progress events to NotifyWindow.

Arguments
File Name of local file to display.
MIME MIME type of file contents.
WindowID Browser window to display file in or WL_NEWWINDOW

to open a new browser window.
URL URL of file in case it needs to re-loaded.
NotifyWindow Handle of window to receive events or WL_NONOTIFY

for silence.
Message Notification message.

Return Value
Transaction ID if successful or zero if an error occurred.

C
DWORD WLShowFile(HBROWSER hBrowser,LPCSTR lpszFile,LPCSTR

lpszMIMEType,DWORD dwWindow,LPCSTR lpszURL,HWND hwndNotify,UINT nMsg);

C++
DWORD CWeblibBrowser::ShowFile(LPCSTR lpszFile,LPCSTR lpszMIMEType,DWORD

dwWindow,LPCSTR lpszURL,BOOL bNotify=TRUE) const;

VBX
WLBrowser.Action = actionShowFile(ByVal lpszFile As String, ByVal lpszMIME As String, ByVal

dwWindow As Long, ByVal lpszURL As String)

Notes
Sets the Transaction property if successful.

OpenURL API

Transaction OpenURL(URL,WindowID,Options,NotifyWindow,Message)

Opens a URL, sending progress events to NotifyWindow.

Arguments
URL URL to open.
WindowID Browser window to display URL in or

WL_NEWWINDOW to open a new browser window.
Options WL_NODOCUMENTCACHE (ignore document cache),

WL_NOIMAGECACHE (ignore image cache) or
WL_BACKGROUNDMODE (operate in background
mode). These options may be combined.

NotifyWindow Handle of window to receive events or WL_NONOTIFY
for silence.

Message Notification message.

Return Value
Transaction ID if successful or zero if an error occurred.

See Also
SaveURL

Netscape
The WL_NODOCUMENTCACHE, WL_NOIMAGECACHE and
WL_BACKGROUNDMODE options are ignored.

C
DWORD WLOpenURL(HBROWSER hBrowser,LPCSTR lpszURL,DWORD dwWindow,WORD

wOptions,HWND hwndNotify,UINT nMsg);

C++
DWORD CWeblibBrowser::OpenURL(LPCSTR lpszURL,DWORD dwWindow,WORD

wOptions,BOOL bNotify=TRUE) const;

VBX
WLBrowser.Action = actionOpenURL(ByVal lpszURL As String, ByVal dwWindow As Long, ByVal

wOptions As Integer)

Notes
Sets the Transaction property if successful.

SaveURL API

Transaction SaveURL(URL,File,WindowID,Options,NotifyWindow,Message)

Opens a URL and saves the loaded document to a file. Also sends progress events
toNotifyWindow.

Arguments
URL URL to open.
File Local file to save document in.
indowID Browser window to display URL in or

WL_NEWWINDOW to open a new browser window.
Options WL_NODOCUMENTCACHE (ignore document cache),

WL_NOIMAGECACHE (ignore image cache) or
WL_BACKGROUNDMODE (operate in background
mode). These options may be combined.

NotifyWindow Handle of window to receive events or WL_NONOTIFY
for silence.

Message Notification message.

Return Value
Transaction ID if successful or zero if an error occurred.

See Also
OpenURL

Netscape
The WL_NODOCUMENTCACHE, WL_NOIMAGECACHE and
WL_BACKGROUNDMODE options are ignored.

C
DWORD WLSaveURL(HBROWSER hBrowser,LPCSTR lpszURL,LPCST lpszFile,DWORD

dwWindow,WORD wOptions,HWND hwndNotify,UINT nMsg);

C++
DWORD CWeblibBrowser::SaveURL(LPCSTR lpszURL,LPCSTR lpszFile,DWORD

dwWindow,WORD wOptions,BOOL bNotify=TRUE) const;

VBX
WLBrowser.Action = actionSaveURL(ByVal lpszURL As String,ByVal lpszFile As String, ByVal

dwWindow As Long, ByVal wOptions As Integer)

Notes
Sets the Transaction property if successful.

PostFormData API

Transaction PostFormData(URL,WindowID,FormData,MIME,NotifyWindow,Message)

Sends FormData to URL using the HTTP POST method and displays the result in a browser
window, sending progress events to NotifyWindow.

Arguments
URL URL to post data to.
 WindowID Browser window to display result in or

WL_NEWWINDOW to open a new browser window.
FormData Data buffer to send, usually a url-encoded set of

variables and values similar to the output produced by
Web forms.

MIME MIME type of form data.
NotifyWindow Handle of window to receive events or WL_NONOTIFY

for silence.
Message Notification message.

Return Value
Transaction ID if successful or zero if an error occurred.

See Also
SaveFormData,AppendFormData,AccessFormData

C
DWORD WLPostFormData(HBROWSER hBrowser,LPCSTR lpszURL,DWORD

dwWindow,LPCSTR lpszFormData,LPCSTR lpszMIMEType,HWND hwndNotify,UINT
nMsg);

C++
DWORD CWeblibBrowser::PostFormData(LPCSTR lpszURL,DWORD dwWindow,LPCSTR

lpszFormData,LPCSTR lpszMIMEType,BOOL bNotify=TRUE) const;

VBX
WLBrowser.Action = actionPostFormData(ByVal lpszURL As String, ByVal dwWindow As Long,

ByVal lpszFormData As String, ByVal lpszMIMEType As String)

Notes
Sets the Transaction property if successful.

SaveFormData API

Transaction SaveFormData(URL,File,WindowID,FormData,MIME,NotifyWindow,Message)

Sends FormData to URL using the HTTP POST method and saves the result in file. Also sends
progress events to NotifyWindow.

Arguments
URL URL to post data to.
File Local file to save result in.
WindowID Browser window to display result in or

WL_NEWWINDOW to open a new browser window.
FormData Data buffer to send, usually a url-encoded set of

variables and values similar to the output produced by
Web forms.

MIME MIME type of form data.
NotifyWindow Handle of window to receive events or WL_NONOTIFY

for silence.
Message Notification message.

Return Value
Transaction ID if successful or zero if an error occurred.

See Also
PostFormData,AppendFormData,AccessFormData

C
DWORD WLSaveFormData(HBROWSER hBrowser,LPCSTR lpszURL,LPCSTR

lpszFile,DWORD dwWindow,LPCSTR lpszFormData,LPCSTR lpszMIMEType,HWND
hwndNotify,UINT nMsg);

C++
DWORD CWeblibBrowser::SaveFormData(LPCSTR lpszURL,LPCSTR lpszFile,DWORD

dwWindow,LPCSTR lpszFormData,LPCSTR lpszMIMEType,BOOL bNotify=TRUE) const;

VBX
WLBrowser.Action = actionSaveFormData(ByVal lpszURL As String, ByVal lpszFile As

String,ByVal dwWindow As Long, ByVal lpszFormData As String, ByVal lpszMIMEType As
String)

Notes
Sets the Transaction property if successful.

Cancel API

Boolean Cancel(Transaction)

Cancels a Transaction, sending the Canceled event.

Arguments
Transaction Transaction to cancel.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
ShowFile,OpenURL,SaveURL,PostFormData,SaveFormData

C
BOOL WLCancel(HBROWSER hBrowser,DWORD dwTransaction);

C++
BOOL CWeblibBrowser::Cancel(DWORD dwTransaction) const;

VBX
WLBrowser.Action = actionCancel(ByVal dwTransaction As Long)

RegisterProtocol API

Boolean RegisterProtocol(Protocol,NotifyWindow,Message)

Registers app as a handler for Protocol. A OpenURL event is sent to NotifyWindow when the Web
browser encounters a URL that uses Protocol.

Arguments
Protocol Protocol that app wants to handle. This may be a

standard protocol such as 'HTTP' or a custom, user-
defined protocol.

NotifyWindow Handle of window to receive events.
Message Notification message.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
UnregisterProtocol

C
BOOL WLRegisterProtocol(HBROWSER hBrowser,LPCSTR lpszProtocol,HWND

hwndNotify,UINT nMsg);

C++
BOOL CWeblibBrowser::RegisterProtocol(LPCSTR lpszProtocol) const;

VBX
WLBrowser.Action = actionRegisterProtocol(ByVal lpszProtocol As String)

UnregisterProtocol API

Boolean UnregisterProtocol(Protocol,NotifyWindow)

 Unregisters app as a handler for Protocol. OpenURL events will no longer be sent to
NotifyWindow when the Web browser encounters a URL that uses Protocol.

Arguments
Protocol Protocol that app no longer wants to handle.
NotifyWindow Handle of window that was receiving events.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
RegisterProtocol

C
BOOL WLUnregisterProtocol(HBROWSER hBrowser,LPCSTR lpszProtocol,HWND hwndNotify);

C++
BOOL CWeblibBrowser::UnregisterProtocol(LPCSTR lpszProtocol) const;

VBX
WLBrowser.Action = actionUnregisterProtocol(ByVal lpszProtocol As String)

RegisterURLEcho API

Boolean RegisterURLEcho(NotifyWindow,Message)

Registers app to receive URLEcho events whenever the Web browser opens a URL. The event is
sent to NotifyWindow.

Arguments
NotifyWindow Handle of window to receive events.
Message Notification message.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
UnregisterURLEcho

C
BOOL WLRegisterURLEcho(HBROWSER hBrowser,HWND hwndNotify,UINT nMsg);

C++
BOOL CWeblibBrowser::RegisterURLEcho() const;

VBX
WLBrowser.Action = actionRegisterURLEcho()

UnregisterURLEcho API

Boolean UnregisterURLEcho(NotifyWindow)

Unregisters app from receiving URLEcho events. Events are no longer sent to NotifyWindow.

Arguments
NotifyWindow Handle of window that was receiving events.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
RegisterURLEcho

C
BOOL WLUnregisterURLEcho(HBROWSER hBrowser,HWND hwndNotify);

C++
BOOL CWeblibBrowser::UnregisterURLEcho() const;

VBX
WLBrowser.Action = actionUnegisterURLEcho()

RegisterViewer API

Boolean RegisterViewer(MIME,Options,NotifyWindow,Message)

Registers app as a viewer for documents of a certain type. Depending upon Options,a
QueryViewer and/or a ViewDocFile event are sent to NotifyWindow when the Web browser loads
a document of type MIME.

Arguments
MIME MIME type to act as viewer for.
Options WL_SHELLEXECUTE (the browser calls ShellExecute

on the document file), WL_QUERYVIEWER (the
browser sends the QueryViewer event to obtain a
filename to save the document in) or
WL_VIEWDOCFILE (the browser sends the ViewDocFile
event to ask viewer to display a document). These
values may be combined.

NotifyWindow Handle of window to receive events.
Message Notification message.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
UnregisterViewer,SetFileName

C
BOOL WLRegisterViewer(HBROWSER hBrowser,LPCSTR lpszMIMEType,WORD

wOptions,HWND hwndNotify,UINT nMsg);

C++
BOOL CWeblibBrowser::RegisterViewer(LPCSTR lpszMIMEType,WORD wOptions) const;

VBX
WLBrowser.Action = actionRegisterViewer(ByVal lpszMIMEType As String, ByVal wOptions As

Integer)

UnregisterViewer API

Boolean UnregisterViewer(MIME,NotifyWindow)

Unregisters app as a viewer for documents of type MIME. QueryViewer and ViewDocFile events
are no longer sent to NotifyWindow.

Arguments
MIME MIME type to stop acting as viewer for.
NotifyWindow Handle of window that was receiving events.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
RegisterViewer

C
BOOL WLUnregisterViewer(HBROWSER hBrowser,LPCSTR lpszMIMEType,HWND hwndNotify);

C++
BOOL CWeblibBrowser::UnregisterViewer(LPCSTR lpszMIMEType) const;

VBX
WLBrowser.Action = actionUnregisterViewer(ByVal lpszMIMEType As String)

RegisterWindowChange API

Boolean RegisterWindowChange(WindowID,NotifyWindow,Message)

Registers app to receive WindowChange events for a browser window.

Arguments
WindowID Browser window to monitor for changes.
NotifyWindow Handle of window to receive events.
Message Notification message.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
UnregisterWindowChange,SetWindowPos

C
BOOL WLRegisterWindowChange(HBROWSER hBrowser,DWORD dwWindow,HWND

hwndNotify,UINT nMsg);

C++
BOOL CWeblibBrowser::RegisterWindowChange(DWORD dwWindow) const;

VBX
WLBrowser.Action = actionRegisterWindowChange(ByVal dwWindow As Long)

UnregisterWindowChange API

Boolean UnregisterWindowChange(WindowID,NotifyWindow)

Unregisters app from receiving WindowChange events for a browser window.

Arguments
WindowID Browser window to stop monitoring for changes.
NotifyWindow Handle of window that was receiving events.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
RegisterWindowChange

 
C

BOOL WLUnregisterWindowChange(HBROWSER hBrowser,DWORD dwWindow,HWND
hwndNotify);

C++
BOOL CWeblibBrowser::UnregisterWindowChange(DWORD dwWindow) const;

VBX
WLBrowser.Action = actionUnregisterWindowChange(ByVal dwWindow As Long)

ParseAnchor API

URL ParseAnchor(AbsoluteURL,RelativeURL)

Combines an absolute URL and a relative URL to form a new absolute URL.

Arguments
AbsoluteURL Base URL, must be absolute.
RelativeURL URL to combine with base URL, must be relative.

Return Value
The combination of AbsoluteURL and RelativeURL or NULL if an error occurred.

C
LPCSTR WLParseAnchor(HBROWSER hBrowser,LPCSTR lpszAbsoluteURL,LPCSTR

lpszRelativeURL);

C++
LPCSTR CWeblibBrowser::ParseAnchor(LPCSTR lpszAbsoluteURL,LPCSTR lpszRelativeURL)

const;

VBX
WLBrowser.Action = actionParseAnchor(ByVal lpszAbsoluteURL As String, ByVal

lpszRelativeURL As String)

Notes
Sets the URL property if successful.

GetVersion API

VersionInfo GetVersion(Major,Minor)

Returns the highest version of the Web browser's DDE interface that is compatible with Major and
Minor (i.e., less than or equal to Major and Minor).

Arguments
AbsoluteURL Base URL, must be absolute.
RelativeURL URL to combine with base URL, must be relative.

Return Value
Major (high word) and Minor (low word) version of DDE interface supported by the Web
browser or zero if an error occurred.

Netscape
 Major and Minor are ignored and can be any value.

C
DWORD WLGetVersion(HBROWSER hBrowser,WORD wMajor,WORD wMinor);

C++
DWORD CWeblibBrowser::GetVersion(WORD wMajor,WORD wMinor) const;

VBX
WLBrowser.Action = actionGetVersion(ByVal wMajor As Integer, ByVal wMinor As Integer)

Notes
Sets the MajorVersion and MinorVersion properties if successful.

QueryURLFile API

URL QueryURLFile(File)

Returns the URL that File was loaded from. This is a specialized API for applications that handle
document viewing.

Arguments
File Local file currently displayed in a browser window.

Return Value
URL associated with File or NULL if an error occurred.

Enhanced Mosaic
 This API is a no-op since it is Netscape-specific.

C
LPCSTR WLQueryURLFile(HBROWSER hBrowser,LPCSTR lpszFile);

C++
LPCSTR CWeblibBrowser::QueryURLFile(LPCSTR lpszFile) const;

VBX
WLBrowser.Action = actionQueryURLFile(ByVal lpszFile As String)

Notes
Sets the URL property if successful.

SetNotifyMethod API

Boolean SetNotifyMethod(Method)

Sets the method used to notify an application of events.

Arguments
Method WL_POSTMESSAGE (recommended) or

WL_SENDMESSAGE.

Return Value
TRUE if successful or FALSE if an error occurred.

C
BOOL WLSetNotifyMethod(HBROWSER hBrowser,WORD wMethod);

C++
BOOL CWeblibBrowser::SetNotifyMethod(WORD wMethod) const;

VBX
WLBrowser.Action = actionSetNotifyMethod(ByVal wMethod As Integer)

GetTransactionWindow API

WindowID GetTransactionWindow(Transaction)

Returns the browser window associated with a transaction ID. Once the browser window ID is
returned, the entry for Transaction is removed from an internal cache; subsequent calls to
GetTransactionWindow() using same transaction ID will fail.

The Finished event may also be used to obtain the browser window associated the with a
transaction.

Arguments
Transaction Transaction ID to return window for.

Return Value
Window ID if successful, 0xFFFFFFFF if window ID is not available yet or zero
there is no window ID associated with Transaction.

See Also
OpenURL,SaveURL,PostFormData,SaveFormData,ShowFile,Finished event

Netscape
The browser window is available immediately after calling OpenURL or another API that
returns a transaction ID.

Enhanced Mosaic
The browser window is not avaiable until the URL is completely loaded. Either grab the
window ID from the Finished Event or call GetTransactionWindow() in a loop until it
returns zero or a valid transaction ID (i.e., try again if 0xFFFFFFFF is returned).

C
DWORD WLGetTransactionWindow(HBROWSER hBrowser,DWORD dwTransaction);

C++
DWORD CWeblibBrowser::GetTransactionWindow(DWORD dwTransaction) const;

VBX
WLBrowser.Action = actionGetTransactionWindow(ByVal dwTransaction As Long)

SetFileName API

SetFileName(FileName)

Sets the filename used to store a document that the application is responsible for displaying. Only
call this function in response to the QueryViewer event.

Arguments
FileName File to save document in. This should be the name of a

file that does not already exist.

Return Value
None.

See Also
QueryViewer event.

C
void WLNSetFileName(LPARAM lParam,LPCSTR lpszFileName);

C++
Not needed since filename can be specified when handling event

VBX
Not needed since filename can be specified when handling event

CreateToolbar API

Toolbar CreateToolbar(Menu,NotifyWindow,Message)

Creates a toolbar that attaches itself to the Web browser.

Arguments
Menu Text describing toolbar that appears in the toolbar's

popup menu.
NotifyWindow Handle of window to receive events.
Message Notification message.

Return Value
Handle to toolbar object.

See Also
DeleteToolbar

 
C

HTOOLBAR WLCreateToolbar(LPCSTR lpszMenu,HWND hwndNotify,UINT nMsg);

C++
BOOL CWeblibToolbar::CreateToolbar(LPCSTR lpszMenu);

VBX
WLToolbar.Action = actionCreateToolbar(ByVal szMenuText As String)

Notes
Upon creation, the toolbar is initialized based on any design-time properties that have
been set. If the AutoCreate property is True, there is no need to call
actionCreateToolbar().

DeleteToolbar API

Boolean DeleteToolbar()

Deletes a toolbar.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
CreateToolbar

C
BOOL WLDeleteToolbar(HTOOLBAR hToolbar);

C++
BOOL CWeblibToolbar::DeleteToolbar();

VBX
WLToolbar.Action = actionDeleteToolbar()

SetActiveToolbar API

Boolean SetActiveToolbar()

Make this toolbar the active toolbar.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
IsToolbarActive

C
BOOL WLSetActiveToolbar(HTOOLBAR hToolbar);

C++
BOOL CWeblibToolbar::SetActiveToolbar() const;

VBX
WLToolbar.Action = actionSetActiveToolbar()

IsToolbarActive API

Boolean IsToolbarActive()

Determines if this toolbar is the active toolbar.

Return Value
TRUE if toolbar is active or FALSE if it is not.

See Also
SetActiveToolbar

C
BOOL WLIsToolbarActive(HTOOLBAR hToolbar);

C++
BOOL CWeblibToolbar::IsToolbarActive() const;

VBX
WLToolbar.Action = actionIsToolbarActive()

AddToolbarButton API

Boolean AddToolbarButton(ButtonID, ButtonIdx, Text, BitmapUp, BitmapSelected, BitmapFocus,
BitmapDisabled)

Adds a bitmap button to a toolbar. Each bitmap must be 24 x 24 pixels in size.

Arguments
ButtonID Unique identifier for button.
ButtonIdx Position of button starting from zero (leftmost position).
Text Text to display when cursor is placed over button.
BitmapUp Bitmap to display when button is up (required).
BitmapSelected Bitmap to display when button is pressed (optional).
BitmapFocus Bitmap to display when button has focus (optional).
BitmapDisabled Bitmap to display when button is disabled (optional).

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
RemoveToolbarButton,Weblib extension APIs

C
BOOL WINAPI WLAddToolbarButton(HTOOLBAR hToolbar,UINT nID,int nIdx,LPCSTR lpszText,

HINSTANCE hInstance,LPCSTR lpszBitmap,LPCSTR lpszBitmapSel,LPCSTR
lpszBitmapFocus, LPCSTR lpszBitmapDisabled);

Notes
This function can create a button by bitmap handle, integer resource ID or string resource
ID. To create a button using bitmap handles, pass WL_BITMAPHANDLES through
hInstance instead of an instance handle and pass HBITMAPs through lpszBitmap,
lpszBitmapSel,lpszBitmapFocus and lpszBitmapDisabled. To pass integer resource IDs,
use the MAKEINTRESOURCE macro.

C++
BOOL CWeblibToolbar::AddToolbarButton(UINT nID,int nIdx,LPCSTR lpszText,HINSTANCE

hInstance,LPCSTR lpszBitmap,LPCSTR lpszBitmapSel,LPCSTR
lpszBitmapFocus,LPCSTR lpszBitmapDisabled) const;

Notes
This function can create a button by bitmap handle, integer resource ID or string resource
ID. See the notes for WLAddToolbarButton().

VBX
WLToolbar.Action = actionAddToolbarButtonByHandle(ByVal nID As Integer, ByVal nIdx As

Integer, ByVal szText As String,ByVal bmUp As Integer,ByVal bmSel As Integer,ByVal
bmFoc As Integer,ByVal bmDis As Integer,ByVal bCopy As Integer)

WLToolbar.Action = actionAddToolbarButtonByID(ByVal nID As Integer, ByVal nIdx As
Integer,ByVal szText As String,ByVal nInst As Integer,ByVal bmUp As Integer,ByVal
bmSel As Integer,ByVal bmFoc As Integer,ByVal bmDis As Integer)

WLToolbar.Action = actionAddToolbarButtonByName(ByVal nID As Integer, ByVal nIdx As Integer,
ByVal szText As String,ByVal nInst As Integer,ByVal bmUp As String,ByVal bmSel As
String,ByVal bmFoc As String,ByVal bmDis As String)

Notes
The first function above creates a button based on bitmap handles (HBITMAP) and may
be used with the picture box control's Image property. When used with the Image
property, bCopy must be TRUE (copies the bitmap instead of using the original).

The latter two functions load bitmap resources from the executable or dynamic link library
whose instance handle is nInst.

RemoveToolbarButton API

Boolean RemoveToolbarButton(ButtonID)

Deletes a button from a toolbar.

Arguments
ButtonID Button to delete.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
SetActiveToolbar

C
BOOL WLRemoveToolbarButton(HTOOLBAR hToolbar,UINT nID);

C++
BOOL CWeblibToolbar::RemoveToolbarButton(UINT nID) const;

VBX
WLToolbar.Action = actionRemoveToolbarButton(ByVal nID As Integer)

IsToolbarButtonVisible API

Boolean IsToolbarButtonVisible(ButtonID)

Determines if toolbar button is visible.

Arguments
ButtonID Button to check for visibility.

Return Value
TRUE if button is visible or FALSE if button is hidden.

See Also
ShowToolbarButton

C
BOOL WLIsToolbarButtonVisible(HTOOLBAR hToolbar,UINT nID);

C++
BOOL CWeblibToolbar::IsToolbarButtonVisible(UINT nID) const;

VBX
WLToolbar.Action = actionIsToolbarButtonVisible(ByVal nID As Integer)

ShowToolbarButton API

Boolean ShowToolbarButton(ButtonID,ShowFlag)

Show or hides a toolbar button.

Arguments
ButtonID Button to show or hide.
ShowFlag TRUE to show button or FALSE to hide button.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
IsToolbarButtonVisible

C
BOOL WLShowToolbarButton(HTOOLBAR hToolbar,UINT nID,BOOL bShow);

C++
BOOL CWeblibToolbar::ShowToolbarButton(UINT nID,BOOL bShow) const;

VBX
WLToolbar.Action = actionShowToolbarButton(ByVal nID As Integer, ByVal bShow As Integer)

IsToolbarButtonEnabled API

Boolean IsToolbarButtonEnabled(ButtonID)

Determines if toolbar button is enabled.

Arguments
ButtonID Button to check enabled state for.

Return Value
TRUE if button is enabled or FALSE if button is disabled.

See Also
EnableToolbarButton

C
BOOL WLIsToolbarButtonEnabled(HTOOLBAR hToolbar,UINT nID);

C++
BOOL CWeblibToolbar::IsToolbarButtonEnabled(UINT nID) const;

VBX
WLToolbar.Action = actionIsToolbarButtonEnabled(ByVal nID As Integer)

EnableToolbarButton API

Boolean EnableToolbarButton(ButtonID,EnableFlag)

Enables or disables a toolbar button.

Arguments
ButtonID Button to show or hide.
EnableFlag TRUE to enable button or FALSE to disable button.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
IsToolbarButtonEnabled

C
BOOL WLEnableToolbarButton(HTOOLBAR hToolbar,UINT nID,BOOL bEnable);

C++
BOOL CWeblibToolbar::EnableToolbarButton(UINT nID,BOOL bEnable) const;

VBX
WLToolbar.Action = actionEnableToolbarButton(ByVal nID As Integer, ByVal bEnable As Integer)

GetToolbarText API

String GetToolbarText(ButtonID)

Returns the text for a toolbar or toolbar button.

Arguments
ButtonID Button to get text for or WL_TOOLBARTEXT to get

toolbar's text.

Return Value
Text for button or toolbar if successful or NULL if an error occurred.

See Also
SetToolbarText

C
LPCSTR WLGetToolbarText(HTOOLBAR hToolbar,UINT nID);

C++
LPCSTR CWeblibToolbar::GetToolbarText(UINT nID) const;

VBX
WLToolbar.Action = actionGetToolbarText(ByVal nID As Integer)

Notes
Sets the Text property if successful.

SetToolbarText API

Boolean SetToolbarText(ButtonID,Text)

Sets the text for a toolbar or toolbar button.

Arguments
ButtonID Button to set text for or WL_TOOLBARTEXT to set

toolbar's text.
Text Text to display for button or toolbar.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
GetToolbarText

C
BOOL WLSetToolbarText(HTOOLBAR hToolbar,UINT nID,LPCSTR lpszText);

C++
BOOL CWeblibToolbar::SetToolbarText(UINT nID,LPCSTR lpszText) const;

VBX
WLToolbar.Action = actionSetToolbarText(ByVal nID As Integer, ByVal szText As String)

GetToolbarFont API

Font GetToolbarFont(Type)

Returns the font used to draw toolbar text or button text.

Arguments
Type WL_BUTTONFONT or WL_TOOLBARFONT.

Return Value
Font for button or toolbar text if successful or NULL if an error occurred.

See Also
SetToolbarFont

 
C

HFONT WLGetToolbarFont(HTOOLBAR hToolbar,WORD wType);

C++
HFONT CWeblibToolbar::GetToolbarFont(WORD wType) const;

VBX
WLToolbar.Action = actionGetToolbarFont(ByVal nType As Integer)

Notes
Sets the Font property if successful.

SetToolbarFont API

Boolean SetToolbarFont(Type,Font)

Sets the font used to draw toolbar text or button text.

Arguments
Type WL_BUTTONFONT or WL_TOOLBARFONT.
Font Handle of font to use for drawing text. The application is

responsible for creating and deleting this font. Do not
delete the font while the toolbar is using it (delete the
toolbar before the deleting the font).

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
GetToolbarFont

C
BOOL WLSetToolbarFont(HTOOLBAR hToolbar,WORD wType,HFONT hFont);

C++
BOOL CWeblibToolbar::SetToolbarFont(WORD wType,HFONT hFont) const;

VBX
WLToolbar.Action = actionSetToolbarFont(ByVal nType As Integer, ByVal nFont As Integer)

GetToolbarBkgnd API

Color GetToolbarBkgnd()

Returns the background color of the toolbar.

Return Value
RGB color of the toolbar background.

See Also
SetToolbarBkgnd

C
COLORREF WLGetToolbarBkgnd(HTOOLBAR hToolbar);

C++
COLORREF CWeblibToolbar::GetToolbarBkgnd() const;

VBX
WLToolbar.Action = actionGetToolbarBkgnd()

Notes
Sets the Color property if successful.

SetToolbarBkgnd API

Boolean SetToolbarBkgnd(Color)

Sets the background color of the toolbar.

Arguments
Color New RGB color of toolbar background.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
GetToolbarBkgnd

C
BOOL WLSetToolbarBkgnd(HTOOLBAR hToolbar,COLORREF crBackground);

C++
BOOL CWeblibToolbar::SetToolbarBkgnd(COLORREF crBackground) const;

VBX
WLToolbar.Action = actionSetToolbarBkgnd(ByVal lBkgndColor As Long)

GetToolbarTextColor API

Color GetToolbarTextColor(Type)

Returns the color used to draw toolbar text or button text.

Arguments
Type WL_BUTTONTEXTCOLOR or

WL_TOOLBARTEXTCOLOR.

Return Value
RGB color of button or toolbar text if successful or NULL if an error occurred.

See Also
SetToolbarTextColor

C
COLORREF WLGetToolbarTextColor(HTOOLBAR hToolbar,WORD wType);

C++
COLORREF CWeblibToolbar::GetToolbarTextColor(WORD wType) const;

VBX
WLToolbar.Action = actionGetToolbarTextColor(ByVal nType As Integer)

Notes
Sets the Color property if successful.

SetToolbarTextColor API

Boolean SetToolbarTextColor(Type,Color);

Sets the color used to draw toolbar text or button text.

Arguments
Type WL_BUTTONTEXTCOLOR or

WL_TOOLBARTEXTCOLOR.
Color RBG color value for drawing text.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
GetToolbarTextColor

C
BOOL WLSetToolbarTextColor(HTOOLBAR hToolbar,WORD wType,COLORREF crText);

C++
BOOL CWeblibToolbar::SetToolbarTextColor(WORD wType,COLORREF crText) const;

VBX
WLToolbar.Action = actionSetToolbarTextColor(ByVal nType As Integer, ByVal lTextColor As Long)

AppendFormData API

FormData AppendFormData(Name,Data)

Creates a url-encoded string of the form 'Name=Data' and appends it to a data buffer, growing the
buffer if needed. Blanks are converted to '+', strings are joined with '&' and unprintable and
special characters are converted to '%XX' notation.

Arguments
Name Name of field or variable.
Data Value of field or variable

Return Value
Handle to data buffer if successful or NULL if an error occurred.

See Also
AccessFormData,GetFormDataLength

C/C++
HFORMDATA WLAppendFormData(HFORMDATA hFormData,LPCSTR lpszName,LPCSTR

lpszData,UINT cbData);

Notes
To create a new form data buffer, pass hFormData as NULL. A handle to the new buffer is
returned that may be used in subsequent calls to append data.

VBX
WLBrowser.Action = actionAppendFormData(ByVal lpszName As String,ByVal lpszData As

String,ByVal cbData As Integer)

Notes
A new form data buffer is created in two cases: the first time this function is called for the
control and on the first call to this function after actionAccessFormData().

GetFormDataLength API

Integer GetFormDataLength()

Returns the length of a form data buffer. The length includes the null terminator.

Return Value
Length of data buffer if successful or zero if an error occurred.

See Also
AppendFormData,AccessFormData

C/C++
UINT WLGetFormDataLength(HFORMDATA hFormData);

VBX
Not applicable.

AccessFormData API

Boolean AccessFormData(ReturnBuffer)

Copies a form data buffer to an application-supplied buffer, freeing the form data buffer.

Arguments
Return Buffer Application buffer where form data is copied. Call the

function GetFormDataLength() to determine how big this
buffer should be.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
AppendFormData,GetFormDataLength

C/C++
BOOL WLAccessFormData(HFORMDATA hFormData,LPSTR lpszRetBuf,UINT cbRetBuf);

Notes
Once this function has been called, hFormData is no longer a valid buffer handle.

VBX
WLBrowser.Action = actionAccessFormData()

Notes
Sets the property FormData if successful.

HtmlParseFile API

Parse HtmlParseFile(File,Options)

Parses the HTML document stored in File according to Options, creating a parse tree of HTML
elements (e.g., tags and text).

Arguments
File File that contains an HTML document.
Options WL_KEEPCLOSINGTAG or WL_KEEPATTRIBUTETAG

(or both).

Return Value
Handle to a parse tree if successful or NULL if an error occurred.

See Also
HtmlParseBuf,HtmlEndParse

C
HPARSE WLHtmlParseFile(LPCSTR lpszFilename,WORD wOptions);

C++
BOOL CWeblibHtml::ParseFile(LPCSTR lpszFilename,WORD wOptions);

VBX
WLParser.Action = actionHtmlParseFile(ByVal lpszFile As String,ByVal wOptions As Integer)

HtmlParseBuf API

Parse HtmlParseBuf(Buf,Options)

Parses the HTML document stored in Buf according to Options, creating a parse tree of HTML
elements (e.g., tags and text).

Arguments
Buf Memory buffer that contains an HTML document.
Options WL_KEEPCLOSINGTAG or WL_KEEPATTRIBUTETAG

(or both).

Return Value
Handle to a parse tree if successful or NULL if an error occurred.

See Also
HtmlParseFile,HtmlEndParse

C
HPARSE WLHtmlParseBuf(LPCSTR lpszBuf,DWORD cbBuf,WORD wOptions);

Notes
The value of cbBuf indicates whether lpszBuf is a far or huge pointer. If cbBuf is greater
than or equal to 64K, lpszBuf is assumed to be a huge pointer.

C++

BOOL CWeblibHtml::ParseBuf(LPCSTR lpszBuf,DWORD cbBuf,WORD wOptions);

Notes
The value of cbBuf indicates whether lpszBuf is a far or huge pointer. If cbBuf is greater
than or equal to 64K, lpszBuf is assumed to be a huge pointer.

VBX
WLParser.Action = actionHtmlParseBuf(ByVal lpszBuf As String,ByVal wOptions As Integer)

Notes
The VBX version cannot be used to parse buffers larger than 64K.

HtmlEndParse API

Boolean HtmlEndParse()

Frees a parse tree.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
HtmlParseFile,HtmlParseBuf

C
BOOL WLHtmlEndParse(HPARSE hParse);

Notes
After this function is called, hParse is no longer a valid parse tree handle.

C++
BOOL CWeblibHtml::EndParse();

VBX
WLParser.Action = actionHtmlEndParse()

HtmlEnumParseTree API

Boolean HtmlEnumParseTree(NotifyWindow,Message)

Enumerates a parse tree by sending the EnumParseTree event to NotifyWindow for each
element in the tree.

Arguments
NotifyWindow Handle of window to receive events.
Message Notification message.

Return Value
TRUE if successful or FALSE if an error occurred.

See Also
EnumParseTree event

C
BOOL WLHtmlEnumParseTree(HPARSE hParse,HWND hwndNotify,UINT nMsg);

C++
BOOL CWeblibHtml::EnumParseTree(UINT nEnumID);

VBX
WLParser.Action = actionHtmlEnumParseTree(ByVal nEnumID As Integer)

HtmlGetChild API

Element HtmlGetChild(Element)

Returns the child of a parse tree element.

Arguments
Element Element to get child of.

Return Value
Child element if successful or NULL if Element has no children.

See Also
HtmlGetParent,HtmlGetSibling

C
HELEMENT WLHtmlGetChild(HPARSE hParse,HELEMENT hElement);

C++
HELEMENT CWeblibHtml::GetChild(HELEMENT hElement) const;

VBX
WLParser.Action = actionHtmlGetChild(ByVal lElement As Long)

Notes
Sets the Element property if successful.

HtmlGetParent API

Element HtmlGetParent(Element)

Returns the parent of a parse tree element.

Arguments
Element Element to get parent of.

Return Value
Parent element if successful or NULL if Element has no parent (is the root element).

See Also
HtmlGetChild,HtmlGetSibling

C
HELEMENT WLHtmlGetParent(HPARSE hParse,HELEMENT hElement);

C++
HELEMENT CWeblibHtml::GetParent(HELEMENT hElement) const;

VBX
WLParser.Action = actionHtmlGetParent(ByVal lElement As Long)

Notes
Sets the Element property if successful.

HtmlGetSibling API

Element HtmlGetSibling(Element,Relationship)

Returns a sibling (element at the same level) of a parse tree element.

Arguments
Element Element to get sibling of.
Relationship Relationship of element to be returned to Element:

WL_FIRSTELEM, WL_NEXTELEM, WL_PREVELEM or
WL_LASTELEM.

Return Value
Sibling element if successful or NULL if Element has no such sibling.

See Also
HtmlGetParent,HtmlGetChild

C
HELEMENT WLHtmlGetSibling(HPARSE hParse,HELEMENT hElement,WORD wRel);

C++
HELEMENT CWeblibHtml::GetSibling(HELEMENT hElement,WORD wRel) const;

VBX
WLParser.Action = actionHtmlGetSibling(ByVal lElement As Long,ByVal wRel As Integer)

Notes
Sets the Element property if successful.

HtmlGetElementType API

Integer HtmlGetElementType(Element)

Returns the type of a parse tree element.

Arguments
Element Element to get type of.

Return Value
WL_ROOT (root of tree), WL_TAG, WL_TEXT, WL_SPECIALCHAR (e.g., <) or
WL_COMMENT

See Also
HtmlGetElementText

C
UINT WLHtmlGetElementType(HPARSE hParse,HELEMENT hElement);

C++
UINT CWeblibHtml::GetElementType(HELEMENT hElement) const;

VBX
WLParser.Action = actionHtmlGetElementType(ByVal lElement As Long)

Notes
Sets the Type property if successful.

HtmlGetElementText API

String HtmlGetElementText(Element)

Returns the text associated with a parse tree element.

Arguments
Element Element to get text for.

Return Value
Element text or NULL if element is not associated with any text (root element).

See Also
HtmlGetElementType

C
LPCSTR WLHtmlGetElementText(HPARSE hParse,HELEMENT hElement);

C++
LPCSTR CWeblibHtml::GetElementText(HELEMENT hElement) const;

VBX
WLParser.Action = actionHtmlGetElementText(ByVal lElement As Long)

Notes
Sets the Text property if successful.

HtmlGetTextAttr API

Long HtmlGetTextAttr(Element)

Returns the text attribute bitmask associated with a text element.

Arguments
Element Element to get text attributes for.

Return Value
Text attribute bitmask or zero if Element is not a text element.

See Also
HtmlGetElementType,HtmlGetElementText

C
DWORD WLHtmlGetTextAttr(HPARSE hParse,HELEMENT hElement);

C++
DWORD CWeblibHtml::GetTextAttr(HELEMENT hElement) const;

VBX
WLParser.Action = actionHtmlGetTextAttr(ByVal lElement As Long)

Notes
Sets the TextAttr property if successful.

HtmlGetTagName API

String HtmlGetTagName(Element)

Returns the name of a tag element.

Arguments
Element Tag element to get name of.

Return Value
Tag name or NULL if Element is not a tag element.

See Also
HtmlGetElementType,HtmlGetElementText

C
LPCSTR WLHtmlGetTagName(HPARSE hParse,HELEMENT hElement);

C++
LPCSTR CWeblibHtml::GetTagName(HELEMENT hElement) const;

VBX
WLParser.Action = actionHtmlGetTagName(ByVal lElement As Long)

Notes
Sets the Text property if successful.

HtmlGetTagType API

Integer HtmlGetTagType(Element)

Returns the type of a tag element.

Arguments
Element Tag element to get type of.

Return Value
Tag type (e.g.,HTML_BODY) or zero if Element is not a tag element.

See Also
HtmlGetElementType,HtmlGetTagName

C
UINT WLHtmlGetTagType(HPARSE hParse,HELEMENT hElement);

C++
UINT CWeblibHtml::GetTagType(HELEMENT hElement) const;

VBX
WLParser.Action = actionHtmlGetTagType(ByVal lElement As Long)

Notes
Sets the Type property if successful.

HtmlGetTagAttr API

TagAttr HtmlGetTagAttr(Element,TagAttr,Type,Attr,Value)

Gets the next attribute and its value from a tag element. For example, the tag    <IMG
SRC="my.gif" ALIGN=TOP> has three attributes:

IMG (stand-alone tag name)
SRC (value is "my.gif")
ALIGN (value is TOP)

HtmlGetTagAttr() may be used to enumerate each attribute in a tag and its value. To get the first
attribute, pass TagAttr as NULL. A handle to the next attribute is returned and may be used to
continue the enumeration.

Arguments
Element Tag element to get attribute from.
TagAttr Handle of tag attribute or NULL to get the first attribute.
Type The attribute data type is returned here: WL_WORD,

WL_NUMBER, WL_QUOTEDSTRING or
WL_STANDALONE.

Attr The name of the attribute is returned here.
Value The value of the attribute is returned here.

Return Value
Tag type (e.g.,HTML_BODY) or zero if Element is not a tag element.

See Also
HtmlExtractTagAttr

C
HTAGATTR WLHtmlGetTagAttr(HPARSE hParse,HELEMENT hElement,HTAGATTR

hTagAttr,WORD *pwType,LPSTR lpszAttr,UINT cbAttr,LPSTR lpszValue,UINT cbValue);

C++
HTAGATTR CWeblibHtml::GetTagAttr(HELEMENT hElement,HTAGATTR hTagAttr,WORD

*pwType,LPSTR lpszAttr,UINT cbAttr,LPSTR lpszValue,UINT cbValue) const;

VBX
WLParser.Action = actionHtmlGetTagAttr(ByVal lElement As Long,ByVal lTagAttr As Long)

Notes
 Sets the TagAttr,TagAttrType,TagAttrName and TagAttrValue properties if successful.

HtmlExtractTagAttr API

String HtmlExtractTagAttr(Element,Attr)

Extracts the value of a tag attribute from a tag element.

Arguments
Element Tag element to get attribute value from.
Attr Name of tag attribute to get value of (e.g., ALIGN)

Return Value
Value of tag attribute or NULL if Attr cannot be found or an error occurred.

See Also
HtmlGetTagAttr

C
LPCSTR WLHtmlExtractTagAttr(HPARSE hParse,HELEMENT hElement,LPSTR lpszAttr);

C++
LPCSTR CWeblibHtml::ExtractTagAttr(HELEMENT hElement,LPSTR lpszAttr) const;

VBX
WLParser.Action = actionHtmlExtractTagAttr(ByVal lElement As Long,ByVal lpszAttr As String)

Notes
Sets the TagAttrValue property if successful.

HtmlFindText API

Element HtmlFindText(Element,Text)

Finds a text element that contains the string Text.

Arguments
Element Search begins here and includes Element's children.
Text String to match.

Return Value
Element containing string or NULL if string was not found.

See Also
HtmlEnumFindText

C
HELEMENT WLHtmlFindText(HPARSE hParse,HELEMENT hElement,LPCSTR lpszText);

C++
HELEMENT CWeblibHtml::FindText(HELEMENT hElement,LPCSTR lpszText) const;

VBX
WLParser.Action = actionHtmlFindText(ByVal lElement As Long,ByVal lpszText As String)

Notes
Sets the Element property if successful.

HtmlFindSpecial API

Element HtmlFindSpecial(Element,Special)

Finds a special character element that matches the string Special.

Arguments
Element Search begins here and includes Element's children.
Special String to match.

Return Value
Element matching string or NULL if string was not found.

See Also
HtmlEnumFindSpecial

C
HELEMENT WLHtmlFindSpecial(HPARSE hParse,HELEMENT hElement,LPCSTR lpszSpecial);

C++
HELEMENT CWeblibHtml::FindSpecial(HELEMENT hElement,LPCSTR lpszSpecial) const;

VBX
WLParser.Action = actionHtmlFindSpecial(ByVal lElement As Long,ByVal lpszSpecial As String)

Notes
Sets the Element property if successful.

HtmlFindComment API

Element HtmlFindComment(Element,Comment)

Finds a comment element that contains the string Comment.

Arguments
Element Search begins here and includes Element's children.
Comment String to match.

Return Value
Element containing string or NULL if string was not found.

See Also
HtmlEnumFindComment

C
HELEMENT WLHtmlFindComment(HPARSE hParse,HELEMENT hElement,LPCSTR

lpszCommentText);

C++
HELEMENT CWeblibHtml::FindComment(HELEMENT hElement,LPCSTR lpszCommentText)

const;

VBX
WLParser.Action = actionHtmlFindComment(ByVal lElement As Long,ByVal lpszComment As

String)

Notes
Sets the Element property if successful.

HtmlFindTagType API

Element HtmlFindTagType(Element,Type)

Finds a tag element of a specific type.

Arguments
Element Search begins here and includes Element's children.
Type Type of tag to find (e.g., HTML_BODY).

Return Value
Element of specified type or NULL if tag of this type was not found.

See Also
HtmlEnumFindTagType

C
HELEMENT WLHtmlFindTagType(HPARSE hParse,HELEMENT hElement,UINT nType);

C++
HELEMENT CWeblibHtml::FindTagType(HELEMENT hElement,UINT nType) const;

VBX
WLParser.Action = actionHtmlFindTagType(ByVal lElement As Long,ByVal nType As Integer)

Notes
Sets the Element property if successful.

HtmlFindTagName API

Element HtmlFindTagName(Element,Tag)

Finds a tag element with a specific tag name.

Arguments
Element Search begins here and includes Element's children.
Tag Tag name to find (e.g., "BODY").

Return Value
Element having the specified name or NULL if tag with this name was not found.

See Also
HtmlEnumFindTagName

C
HELEMENT WLHtmlFindTagName(HPARSE hParse,HELEMENT hElement,LPCSTR lpszTag);

C++
HELEMENT CWeblibHtml::FindTagName(HELEMENT hElement,LPCSTR lpszTag) const;

VBX
WLParser.Action = actionHtmlFindTagName(ByVal lElement As Long,ByVal lpszTag As String)

Notes
Sets the Element property if successful.

HtmlFindTagAttr API

Element HtmlFindTagAttr(Element,Type,Attr,Value)

Finds a tag element having a certain type, tag attribute and value.

Arguments
Element Search begins here and includes Element's children.
Type Type of tag to find (e.g., HTML_IMG).
Attr Name of tag attribute to find (e.g., "ALIGN").
Value Value of tag attribute to find (e.g., "TOP").

Return Value
Element having the specified name or NULL if tag with this name was not found.

See Also
HtmlEnumFindTagAttr

C
HELEMENT WLHtmlFindTagAttr(HPARSE hParse,HELEMENT hElement,UINT nType,LPCSTR

lpszAttr,LPCSTR lpszValue);

C++
HELEMENT CWeblibHtml::FindTagAttr(HELEMENT hElement,UINT nType,LPCSTR

lpszAttr,LPCSTR lpszValue) const;

VBX
WLParser.Action = actionHtmlFindTagAttr(ByVal lElement As Long,ByVal nType As Integer,ByVal

lpszAttr As String,ByVal lpszValue As String)

Notes
Sets the Element property if successful.

HtmlEnumFindText API

Boolean HtmlEnumFindText(Element,Text,NotifyWindow,Message)

Enumerates text elements that contains the string Text, sending the EnumFindText event to
NotifyWindow for each match.

Arguments
Element Search begins here and includes Element's children.
Text String to match.
NotifyWindow Handle of window to receive events.
Message Notification message.

Return Value
Returns TRUE if successful or FALSE if an error occurred.

See Also
HtmlFindText,EnumFindText event

C
BOOL WLHtmlEnumFindText(HPARSE hParse,HELEMENT hElement,LPCSTR lpszText,HWND

hwndNotify,UINT nMsg);

C++
BOOL CWeblibHtml::EnumFindText(HELEMENT hElement,LPCSTR lpszText,UINT nEnumID);

VBX
WLParser.Action = actionHtmlEnumFindText(ByVal lElement As Long,ByVal lpszText As

String,ByVal nEnumID As Integer)

HtmlEnumFindSpecial API

Boolean HtmlEnumFindSpecial(Element,Special,NotifyWindow,Message)

Enumerates special character elements that match the string Special, sending the
EnumFindSpecial event to NotifyWindow for each match.

Arguments
Element Search begins here and includes Element's children.
Special String to match.
NotifyWindow Handle of window to receive events.
Message Notification message.

Return Value
Returns TRUE if successful or FALSE if an error occurred.

See Also
HtmlFindSpecial,EnumFindSpecial event

C
BOOL WLHtmlEnumFindSpecial(HPARSE hParse,HELEMENT hElement,LPCSTR

lpszSpecial,HWND hwndNotify,UINT nMsg);

C++
BOOL CWeblibHtml::EnumFindSpecial(HELEMENT hElement,LPCSTR lpszSpecial,UINT

nEnumID);

VBX
WLParser.Action = actionHtmlEnumFindSpecial(ByVal lElement As Long,ByVal lpszSpecial As

String,ByVal nEnumID As Integer)

HtmlEnumFindComment API

Boolean HtmlEnumFindComment(Element,Comment,NotifyWindow,Message)

Enumerates comment elements that contain the string Comment, sending the
EnumFindComment event to NotifyWindow for each match.

Arguments
Element Search begins here and includes Element's children.
Comment String to match.
NotifyWindow Handle of window to receive events.
Message Notification message.

Return Value
Returns TRUE if successful or FALSE if an error occurred.

See Also
HtmlFindComment,EnumFindComment event

C
BOOL WLHtmlEnumFindComment(HPARSE hParse,HELEMENT hElement,LPCSTR

lpszCommentText,HWND hwndNotify,UINT nMsg);

C++
BOOL CWeblibHtml::EnumFindComment(HELEMENT hElement,LPCSTR

lpszCommentText,UINT nEnumID);

VBX
WLParser.Action = actionHtmlEnumFindComment(ByVal lElement As Long,ByVal lpszComment

As String,ByVal nEnumID As Integer)

HtmlEnumFindTagType API

Boolean HtmlEnumFindTagType(Element,Type,NotifyWindow,Message)

Enumerates tag elements of a specific type, sending the EnumFindTagType event to
NotifyWindow for each match.

Arguments
Element Search begins here and includes Element's children.
Type Type of tag to find (e.g., HTML_BODY).
NotifyWindow Handle of window to receive events.
Message Notification message.

Return Value
Returns TRUE if successful or FALSE if an error occurred.

See Also
HtmlFindTagType,EnumFindTagType event

C
BOOL WLHtmlEnumFindTagType(HPARSE hParse,HELEMENT hElement,UINT nType,HWND

hwndNotify,UINT nMsg);

C++
BOOL CWeblibHtml::EnumFindTagType(HELEMENT hElement,UINT nType,UINT nEnumID);

VBX
WLParser.Action = actionHtmlEnumFindTagType(ByVal lElement As Long,ByVal nType As

Integer,ByVal nEnumID As Integer)

HtmlEnumFindTagName API

Boolean HtmlEnumFindTagName(Element,Tag,NotifyWindow,Message)

Enumerates tag elements having a specific tag name, sending the EnumFindTagName event to
NotifyWindow for each match.

Arguments
Element Search begins here and includes Element's children.
Tag Tag name to find (e.g., "BODY").
NotifyWindow Handle of window to receive events.
Message Notification message.

Return Value
Returns TRUE if successful or FALSE if an error occurred.

See Also
HtmlFindTagName,EnumFindTagName event

C
BOOL WLHtmlEnumFindTagName(HPARSE hParse,HELEMENT hElement,LPCSTR

lpszTag,HWND hwndNotify,UINT nMsg);

C++
BOOL CWeblibHtml::EnumFindTagName(HELEMENT hElement,LPCSTR lpszTag,UINT

nEnumID);

VBX
WLParser.Action = actionHtmlEnumFindTagName(ByVal lElement As Long,ByVal lpszTag As

String,ByVal nEnumID As Integer)

HtmlEnumFindTagAttr API

Boolean HtmlEnumFindTagAttr(Element,Type,Attr,Value,NotifyWindow,Message)

Enumerates tag elements having of a certain type, tag attribute and value, sending the
EnumFindTagAttr event to NotifyWindow for each match.

Arguments
Element Search begins here and includes Element's children.
Type Type of tag to find (e.g., HTML_IMG).
Attr Name of tag attribute to find (e.g., "ALIGN").
Value Value of tag attribute to find (e.g., "TOP").
NotifyWindow Handle of window to receive events.
Message Notification message.

Return Value
Returns TRUE if successful or FALSE if an error occurred.

See Also
HtmlFindTagAttr,EnumFindTagAttr event

C
BOOL WLHtmlEnumFindTagAttr(HPARSE hParse,HELEMENT hElement,UINT nType,LPCSTR

lpszAttr,LPCSTR lpszValueText,HWND hwndNotify,UINT nMsg);

C++
BOOL CWeblibHtml::EnumFindTagAttr(HELEMENT hElement,UINT nType,LPCSTR

lpszAttr,LPCSTR lpszValueText,UINT nEnumID);

VBX
WLParser.Action = actionHtmlEnumFindTagAttr(ByVal lElement As Long,ByVal nType As

Integer,ByVal lpszAttr As String,ByVal lpszValue As String,ByVal nEnumID As Integer)

ParseAbsoluteURL API

Boolean ParseAbsoluteURL(URL,Protocol,Host,Port,Path)

Parses a URL into its components.

Arguments
URL URL to parse (e.g., "http://www.xxx.com:80/dir/file").
Protocol Protocol part of URL is copied here (e.g., "http").
Host Host part of URL is copied here (e.g., "www.xxx.com").
Port Port part of URL is copied here (e.g., 80); zero if none.
Path Path part of URL is copied here (e.g., "dir/file").

Return Value
Returns TRUE if successful or FALSE if an error occurred.

C/C++
BOOL WLParseAbsoluteURL(LPCSTR lpszURL,LPSTR lpszProtocol,UINT cbProtocol,LPSTR

lpszHost,UINT cbHost,UINT *pnPort,LPSTR lpszPath,UINT cbPath);

VBX
WLParser.Action = actionParseAbsoluteURL(ByVal lpszURL As String)

Notes
Sets the properties Protocol, Host, Path and Port if successful.

Action Property

Action is a Long property which causes the VBX control to execute a function when set. This property
should only be set using the return value of an action function (see the Visual Basic Overview). Accessing
this property returns a constant that identifies the last action executed (e.g., ACTION_OPENURL).

Result Property

Result is a Boolean property that stores the status of the last action function executed. Make sure this
property is TRUE before accessing any properties returned by an action function.

Text Property

Text is a String property that is returned by actionHtmlGetElementText() and actionHtmlGetTagName().

TagAttrName Property

TagAttrName is a String property that is returned by actionHtmlGetTagAttr().

TagAttrValue Property

TagAttrValue is a String property that is returned by actionHtmlGetTagAttr() and
actionHtmlExtractTagAttr().

Protocol Property

Protocol is a String property that is returned by actionParseAbsoluteURL().

Host Property

Host is a String property that is returned by actionParseAbsoluteURL().

Path Property

Path is a String property that is returned by actionParseAbsoluteURL().

Element Property

Element is a Long property that is returned by actionHtmlGetChild(), actionHtmlGetParent() and several
other action functions. This property is reset each time an action function is executed.

TextAttr Property

TextAttr is a Long property that is returned by actionHtmlGetTextAttr().

TagAttr Property

TagAttr is a Long property that is returned by actionHtmlGetTagAttr().

Type Property

Type is an Integer property that is returned by actionHtmlGetElementType() and actionHtmlGetTagType().

TagAttrType Property

TagAttrType is an Integer property that is returned by actionHtmlGetTagAttr().

Port Property

Port is an Integer property that is returned by actionParseAbsoluteURL().

Text Property

Text is a String property that is returned by actionGetToolbarText().

Font Property

Font is an Integer property that is returned by actionGetToolbarFont(). Although this property's data type
is Integer, it really stores a font handle (HFONT).

Color Property

Color is an RGB color property that is returned by actionGetToolbarTextColor() and
actionGetToolbarBkgnd().

AutoCreate Property

AutoCreate is a Boolean design-time property. If True, the toolbar is created at the same time as the VBX
control.

ColorBkgnd Property

ColorBkgnd is an RGB color design-time property for the background color of the toolbar.

ColorToolbarText Property

ColorToolbarText is an RGB color design-time property for the toolbar text color.

ColorToolbarText Property

ColorButtonText is an RGB color design-time property for the button text color.

TextMenu Property

TextMenu is a String design-time property for the text that appears in the toolbar's popup menu.

TextToolbar Property

TextToolbar is a String design-time property for the toolbar text.

FontToolbar Property

FontToolbar is a String design-time property for the font used to draw the toolbar text.

FontButton Property

FontButton is a String design-time property for the font used to draw the button text.

Button Property

Button is an enumerated design-time property that specifies a button position in the toolbar.

ButtonID Property

ButtonID is an Integer design-time property for the button ID.

ButtonText Property

ButtonText is a String design-time property for the button text.

ButtonPic Property

ButtonPic is a Picture design-time property for the normal (up) bitmap.

ButtonPicSel Property

ButtonPicSel is a Picture design-time property for the selected (pressed) bitmap.

ButtonPicFocusProperty

ButtonPicFocus is a Picture design-time property for the focus bitmap.

ButtonPicDisabled Property

ButtonPicDisabled is a Picture design-time property for the disabled bitmap.

URL Property

URL is a String property that is returned by actionQueryURLFile(), actionGetWindowInfo() and
actionParseAnchor().

Title Property

Title is a String property that is returned by actionGetWindowInfo().

Window Property

Window is a Long property that is returned by actionGetTransactionWindow() and
actionActivateWindow().

WindowList Property

WindowList is a property array of Longs that is returned by actionListWindows(). The browser window
IDs in the array are delimited by a zero.

MajorVersion Property

MajorVersion is an Integer property that is returned by actionGetVersion().

MinorVersion Property

MinorVersion is an Integer property that is returned by actionGetVersion().

FormData Property

FormData is a String property that is returned by actionAccessFormData().

Transaction Property

Transaction is a Long property that is returned by actionOpenURL(), actionPostFormData() and other
action functions.

GenerateEvents Property

GenerateEvents is a Boolean property that controls event generation. Set this property to False to
disable event generation for the next action function. After the action function is executed, this property is
reset back to True.

OpenURL Event

OpenURL Event

Notifies application to    open a URL.

Parameters
Window Browser window to display document in.
Transaction Transaction ID returned by API that sent event.
Flags WL_NODOCUMENTCACHE, WL_NOIMAGECACHE or

WL_BACKGROUNDMODE.
URL URL to open.
MIME MIME type of document to open (may be NULL or

empty).
SaveFile File to save URL in (may be NULL or empty).
FormData Form data to post to URL (may be NULL or empty).

Return Value
Ignored.

See Also
RegisterProtocol
 

C
wParam contains WLN_OPENURL, extract parameters from lParam with

WLNGetWindow(),WLNGetTransaction(),WLNGetFlags(),WLNGetURL(),WLNGetMIM
EType(),WLNGetSaveFile() and WLNGetFormData().

C++
virtual void CWeblibBrowser::OnOpenURL(DWORD dwTransaction,DWORD dwWindow,DWORD

dwFlags,LPCSTR lpszURL,LPCSTR lpszMIME,LPCSTR lpszSaveFile,LPCSTR
lpszFormData);

VBX
OpenURL(Window As Long, Txn As Long, Flags As Long, URL As String, MIMEType As

String,SaveFile As String, FormData As String)

BeginProgress Event

BeginProgress Event

Notifies application to initialize app-maintained progress indicator.

Parameters
Transaction Transaction ID returned by API that sent event.
ProgressMsg Progress string to display.

Return Value
Ignored.

See Also
OpenURL,SaveURL,PostFormData,SaveFormData,ShowFile
 

C
wParam contains WLN_BEGINPROGRESS, extract parameters from lParam with

WLNGetTransaction() and WLNGetProgressString()

C++
virtual void CWeblibBrowser::OnBeginProgress(DWORD dwTransaction,LPCSTR lpszProgress);

VBX
BeginProgress(Txn As Long, ProgressMessage As String)

SetProgressRange Event

SetProgressRange Event

Notifies application of maximum progress value.

Parameters
Transaction Transaction ID returned by API that sent event.
MaxProgress Maximum progress value.

Return Value
Ignored.

See Also
OpenURL,SaveURL,PostFormData,SaveFormData,ShowFile
 

C
wParam contains WLN_SETPROGRESSRANGE, extract parameters from lParam with   

WLNGetTransaction() and WLNGetProgressMaximum().

C++
virtual void CWeblibBrowser::OnSetProgressRange(DWORD dwTransaction,DWORD

dwMaximum);

VBX
SetProgressRange(Txn As Long, MaxProgress As Long)

MakingProgress Event

MakingProgress Event

Notifies application to update app-maintained progress indicator.

Parameters
Transaction Transaction ID returned by API that sent event.
ProgressValue New progress value (between zero and ProgressMax).
ProgressMsg Progress string to display.

Return Value
Ignored.

See Also
OpenURL,SaveURL,PostFormData,SaveFormData,ShowFile
 

C
wParam contains WLN_MAKINGPROGRESS, extract parameters from lParam with

WLNGetTransaction(),WLNGetProgressValue() and WLNGetProgressString().

C++
virtual void CWeblibBrowser::OnMakingProgress(DWORD dwTransaction,DWORD

dwProgress,LPCSTR lpszProgress);

VBX
MakingProgress(Txn As Long, Progress As Long, ProgressMessage As String)

EndProgress Event

EndProgress Event

Notifies application to clear app-maintained progress indicator.

Parameters
Transaction Transaction ID returned by API that sent event.

Return Value
Ignored.

See Also
OpenURL,SaveURL,PostFormData,SaveFormData,ShowFile
 

C
wParam contains WLN_ENDPROGRESS, extract parameters from lParam with

WLNGetTransaction().

C++
virtual void CWeblibBrowser::OnEndProgress(DWORD dwTransaction);

VBX
EndProgress(Txn As Long)

Finished Event

Finished Event

Notifies application that a transaction is complete.

Parameters
Transaction Transaction ID returned by API that sent event.
Window Browser window where document is displayed.

Return Value
Ignored.

See Also
OpenURL,SaveURL,PostFormData,SaveFormData,ShowFile
 

C
wParam contains WLN_FINISHED, extract parameters from lParam with WLNGetTransaction()

and WLNGetWindow().

C++

virtual void CWeblibBrowser::OnFinished(DWORD dwTransaction,DWORD dwWindow);

VBX
Finished(Txn As Long, Window As Long)

Canceled Event

Canceled Event

Notifies application that a transaction was canceled.

Parameters
Transaction Transaction ID returned by API that sent event.

Return Value
Ignored.

See Also
OpenURL,SaveURL,PostFormData,SaveFormData,ShowFile,Cancel
 

C
wParam contains WLN_CANCELED, extract parameters from lParam with

WLNGetTransaction().

C++
virtual void CWeblibBrowser::OnCanceled(DWORD dwTransaction);

VBX
Canceled(Txn As Long)

URLEcho Event

URLEcho Event

Notifies application that a URL was loaded.

Parameters
Window Browser window where document is displayed.
URL URL that was loaded.
MIME MIME type of document that was loaded.
Referrer URL where load was launched (previous URL).

Return Value
Ignored.

See Also
RegisterURLEcho
 

C
wParam contains WLN_URLECHO, extract parameters from lParam with

WLNGetTransaction(),WLNGetURL(),WLNGetMIMEType() and WLNGetReferrer().

C++
virtual void CWeblibBrowser::OnURLEcho(DWORD dwWindow,LPCSTR lpszURL,LPCSTR

lpszMIME,LPCSTR lpszReferrer);

VBX
URLEcho(Window As Long, URL As String, MIMEType As String, Referrer As String)

WindowChange Event

WindowChange Event

Notifies application that the state, position or size of browser window has changed.

Parameters
Window Browser window that changed.
Flags WLF_MOVESIZE, WLF_MAXIMIZED,

WLF_NORMALIZED, WLF_MINIMIZED,WLF_CLOSED
or WLF_EXITING.

X New X coordinate of window.
Y New Y coordinate of window.
Width New width of window.
Height New height of window.

Return Value
Ignored.

See Also
RegisterWindowChange
 

C
wParam contains WLN_WINDOWCHANGE, extract parameters from lParam with

WLNGetWindow(),WLNGetFlags(),WLNGetX(),WLNGetY(),WLNGetWidth() and
WLNGetHeight().

C++
virtual void CWeblibBrowser::OnWindowChange(DWORD dwWindow,DWORD dwFlags,DWORD

dwX,DWORD dwY,DWORD dwWidth,DWORD dwHeight);

VBX
WindowChange(Window As Long, Flags As Long, XPos As Long, YPos As Long,XSize As Long,

YSize As Long)

QueryViewer Event

QueryViewer Event

Notifies application to provide a filename to store a document for viewing.

Parameters
URL URL of document to view.
MIME MIME type of document to view.

Return Value
Ignored.

See Also
RegisterViewer,SetFileName
 

C
wParam contains WLN_QUERYVIEWER, extract parameters from lParam with WLNGetURL()

and WLNGetMIMEType(). The application must set a filename with WLNSetFileName().

C++
virtual void CWeblibBrowser::OnQueryViewer(LPCSTR lpszURL,LPCSTR lpszMIME,LPSTR

lpszFile,UINT cbFile);

Notes
A default filename is provided in lpszFile which the app may change.

VBX
QueryViewer(URL As String, MIMEType As String, File As String)

Notes
A default filename is provided in File which the app may change.

ViewDocFile Event

ViewDocFile Event

Notifies application to view a document.

Parameters
URL URL of document.
MIME MIME type of document.
File File containing document.
Window Browser window that initiated event.

Return Value
Ignored.

See Also
RegisterViewer
 

C
wParam contains WLN_VIEWDOCFILE, extract parameters from lParam with

WLNGetURL(),WLNGetMIMEType(),WLNGetFileName() and WLNGetWindow().

C++
virtual void CWeblibBrowser::OnViewDocFile(DWORD dwWindow,LPCSTR lpszURL,LPCSTR

lpszMIME,LPCSTR lpszFile);

VBX
ViewDocFile(URL As String, MIMEType As String, File As String, Window As Long)

ButtonClicked Event

ButtonClicked Event

Notifies application that a toolbar button was clicked.

Parameters
ButtonID Button that was clicked.

Return Value
Ignored.

See Also
CreateToolbar
 

C

wParam contains WLN_BUTTONCLICKED, extract parameters from lParam with
WLNGetButtonID().

C++
virtual void CWeblibToolbar::OnButtonClicked(UINT nButtonID);

VBX
ButtonClicked(ButtonID As Integer)

EnumParseTree Event

EnumParseTree Event

Notifies application of an element in a parse tree enumeration.

Parameters
Type Type of element (e.g., WL_TAG).
Element Handle of HTML element.

Return Value
TRUE to continue enumeration or FALSE to stop enumeration.

See Also
HtmlEnumParseTree
 

C
wParam contains Type, lParam contains Element.

C++
virtual BOOL CWeblibHtml::OnParseTree(WORD wType,HELEMENT hElement,UINT nEnumID);

VBX
EnumParseTree(EnumID as Integer, ElementType As Integer, Element As Long, ContinueEnum

As Integer)

EnumFindText Event

EnumFindText Event

Notifies application of an element in a 'find text' enumeration.

Parameters
Type Type of element (e.g., WL_TAG).
Element Handle of HTML element.

Return Value
TRUE to continue enumeration or FALSE to stop enumeration.

See Also
HtmlEnumFindText
 

C
wParam contains Type, lParam contains Element.

C++
virtual BOOL CWeblibHtml::OnFindText(WORD wType,HELEMENT hElement,UINT nEnumID);

VBX
EnumFindText(EnumID as Integer, ElementType As Integer, Element As Long, ContinueEnum As

Integer)

EnumFindSpecial Event

EnumFindSpecial Event

Notifies application of an element in a 'find special character' enumeration.

Parameters
Type Type of element (e.g., WL_TAG).
Element Handle of HTML element.

Return Value
TRUE to continue enumeration or FALSE to stop enumeration.

See Also
HtmlEnumFindSpecial
 

C
wParam contains Type, lParam contains Element.

C++
virtual BOOL CWeblibHtml::OnFindSpecial(WORD wType,HELEMENT hElement,UINT

nEnumID);

VBX
EnumFindSpecial(EnumID as Integer, ElementType As Integer, Element As Long, ContinueEnum

As Integer)

EnumFindComment Event

EnumFindComment Event

Notifies application of an element in a 'find comment' enumeration.

Parameters
Type Type of element (e.g., WL_TAG).
Element Handle of HTML element.

Return Value
TRUE to continue enumeration or FALSE to stop enumeration.

See Also
HtmlEnumFindComment
 

C
wParam contains Type, lParam contains Element.

C++
virtual BOOL CWeblibHtml::OnFindComment(WORD wType,HELEMENT hElement,UINT

nEnumID);

VBX
EnumFindComment(EnumID as Integer, ElementType As Integer, Element As Long,

ContinueEnum As Integer)

EnumFindTagType Event

EnumFindTagType Event

Notifies application of an element in a 'find tag type' enumeration.

Parameters
Type Type of element (e.g., WL_TAG).
Element Handle of HTML element.

Return Value
TRUE to continue enumeration or FALSE to stop enumeration.

See Also
HtmlEnumFindTagType
 

C
wParam contains Type, lParam contains Element.

C++
virtual BOOL CWeblibHtml::OnFindTagType(WORD wType,HELEMENT hElement,UINT

nEnumID);

VBX
EnumFindTagType(EnumID as Integer, ElementType As Integer, Element As Long,

ContinueEnum As Integer)

EnumFindTagName Event

EnumFindTagName Event

Notifies application of an element in a 'find tag name' enumeration.

Parameters
Type Type of element (e.g., WL_TAG).
Element Handle of HTML element.

Return Value
TRUE to continue enumeration or FALSE to stop enumeration.

See Also
HtmlEnumFindTagName
 

C
wParam contains Type, lParam contains Element.

C++
virtual BOOL CWeblibHtml::OnFindTagName(WORD wType,HELEMENThElement,UINT

nEnumID);

VBX
EnumFindTagName(EnumID as Integer, ElementType As Integer, Element As Long,

ContinueEnum As Integer)

BrowserExit Event

BrowserExit Event

Notifies application that the Web browser has terminated.

Parameters
None.

Return Value
None.

See Also
SetDefaultNotify
 

C/C++
wParam contains WLN_BROWSEREXIT, lParam is not used.

VBX
Not currently supported.

BrowserStart Event

BrowserStart Event

Notifies application that the Web browser has started running.

Parameters
None.

Return Value
None.

See Also
SetDefaultNotify
 

C/C++
wParam contains WLN_BROWSERSTART, lParam is not used.

VBX
Not currently supported.

EnumFindTagAttr Event

EnumFindTagAttr Event

Notifies application of an element in a 'find tag attribute' enumeration.

Parameters
Type Type of element (e.g., WL_TAG).
Element Handle of HTML element.

Return Value
TRUE to continue enumeration or FALSE to stop enumeration.

See Also
HtmlEnumFindTagAttr
 

C
wParam contains Type, lParam contains Element.

C++
virtual BOOL CWeblibHtml::OnFindTagAttr(WORD wType,HELEMENT hElement,UINT

nEnumID);

VBX
EnumFindTagAttr(EnumID As Integer, ElementType As Integer, Element As Long, ContinueEnum

As Integer)

WebLib Software License Agreement

Please see the file LIC.TXT that is included with the software.

API Reference

Housekeeping APIs

 Startup Cleanup SetDefaultNotify

Web Browser APIs

 ConnectBrowser DisconnectBrowser GetWindowInfo
 ListWindows ActivateWindow CloseWindow
 SetWindowPos ShowWindow ShowFile
 OpenURL SaveURL PostFormData
 SaveFormData Cancel RegisterProtocol
 UnregisterProtocol RegisterURLEcho UnregisterURLEcho
 RegisterViewer UnregisterViewer RegisterWindowChange
 UnregisterWindowChange ParseAnchor GetVersion
 QueryURLFile SetNotifyMethod GetTransactionWindow
 SetFileName

Toolbar APIs

 CreateToolbar DeleteToolbar SetActiveToolbar
 IsToolbarActive AddToolbarButton RemoveToolbarButton
 IsToolbarButtonVisible ShowToolbarButton IsToolbarButtonEnabled
 EnableToolbarButton GetToolbarText SetToolbarText
 GetToolbarFont SetToolbarFont GetToolbarBkgnd
 SetToolbarBkgnd GetToolbarTextColor SetToolbarTextColor

HTML Parsing APIs

 HtmlParseFile HtmlParseBuf HtmlEndParse
 HtmlEnumParseTree HtmlGetChild HtmlGetParent
 HtmlGetSibling HtmlGetElementType HtmlGetElementText
 HtmlGetTextAttr HtmlGetTagName HtmlGetTagType
 HtmlGetTagAttr HtmlExtractTagAttr HtmlFindText
 HtmlFindSpecial HtmlFindComment HtmlFindTagType
 HtmlFindTagName HtmlFindTagAttr HtmlEnumFindText
 HtmlEnumFindSpecial HtmlEnumFindComment HtmlEnumFindTagType
 HtmlEnumFindTagName HtmlEnumFindTagAttr

Utility APIs

 AppendFormData GetFormDataLength AccessFormData
 ParseAbsoluteURL

VBX Properties

Each VBX control contains the Action and Result properties. The properties that are specific to a control
are listed below.

WLBrowser Properties

URL Title Window
WindowList MajorVersion MinorVersion
FormData Transaction GenerateEvents

WLToolbar Properties

Text Font Color
AutoCreate ColorBkgnd ColorToolbarText
ColorButtonText TextMenu TextToolbar
FontToolbar FontButton Button
ButtonID ButtonText ButtonPic
ButtonPicSel ButtonPicFocus ButtonPicDisabled

WLHtmlParser Properties

Text TagAttrName TagAttrValue
Protocol Host Path
Element TextAttr TagAttr
Type TagAttrType Port

Events

Global Events

BrowserExit BrowserStart

Web Browser Events

BeginProgress Event SetProgressRange Event MakingProgress Event
EndProgress Event Finished Event Canceled Event
OpenURL Event URLEcho Event WindowChange Event
QueryViewer Event ViewDocFile Event

Toolbar Events

ButtonClicked Event

HTML Parsing Events

EnumParseTree Event EnumFindText Event EnumFindSpecial Event
EnumFindComment Event EnumFindTagType Event EnumFindTagName Event
EnumFindTagAttr Event

Parse Tree Example

Here is a very simple HTML document:

<html>
This is BOLD text. How does it look?
<P>
OK!
<P>

</html>

The parse tree created by HtmlParseFile() (or HtmlParseBuf()) for this example document follows:

This tree has three levels: the root is at the top, under the root is the <html> container tag and under
<html> we find the leaves of the tree. Like the example document, the tree is very simple and does not
contain any comment elements (WL_COMMENT) or special character elements (WL_SPECIALCHAR).

The example tree was parsed with both the WL_KEEPCLOSINGTAG and WL_KEEPATTRIBUTETAG
options. Omitting both of these options would drop three elements from the tree:    the two HTML_BOLD
tags (i.e., and) and the closing HTML_HTML tag (i.e., </html>).

Lastly, note that the HTML_IMG tag (i.e.,) has two tag attributes which are
not explicity shown in the parse tree diagram. The first attribute is the IMGtag name and is of type
WL_STANDALONE. The second tag attribute is SRC which is of type WL_QUOTEDSTRING and has the
value http://host/file.

