
TTC Gopher Custom Control v1.00a
© 1995 Edward B. Toupin
All Rights Reserved

Agreement Software licensing and agreement.

Connectivity Custom Controls Introducing the other custom controls available for you to
develop state of the art Internet connectivity applications.

Enhancements Describes the enhancements since the previous release of
the custom control.

Error Codes Error codes generated by custom controls during run-time
operation.

Feedback Provide feedback to us about you and your development!

Gopher Custom Control Details the methods and members of the custom control
and how to use it in your application.

Installation Install the custom control for use with your applications.

Internet Communications
Overview

Overview of Internet communications.

Obtaining Support Instructs you on how to obtain support for the custom
controls.

Registration Information and form for registering the control.

Requirements and Information Requirements for using the custom control as well as other
information.

Sample Code Sample code using the Gopher Custom Control.

Shareware Explanation of Shareware.

What Is Gopher Defines the custom control and its associated operation
and protocols.

Enhancements

The Gopher Custom Control

The Gopher Custom Control encapsulates the Internet Gopher protocol designed for distributed
document search and retrieval.    Originally developed at the at the University of Minnesota, Gopher
allows you to access the wealth of information available on the Internet by way of a simple textual
interface.

The purpose of developing these controls are : 1) To provide a means of retrieval of information on the
Internet 2) To provide Internet utilities for    users to plug into their 32-bit container/controlling applications.

To use the control you must first incorporate the control into a 32-bit container's environment.    Once
added the custom controls functionality is available to your container environment.    You have access to
the following members for the control :

GOPHER.ErrorNum

Member containing the last error encountered.

GOPHER.AboutBox()

Displays the About dialog box for the control to provide copyright information.

GOPHER.QueryServer(SrvrAdrs As String, Query As String, OutApp As String, PortNum As String)

This member method accesses the servers whose IP Address is provided in SrvrAdrs and performs a
query on that server.    The information provided in Query is used as the query information on the server.   
For instance, a null query (e.g., an empty string) is used to retrieve all of the main menu available for that
particular Gopher server.    This menu might be files, or directories or other servers.

Each of the entries in the menu contains a set of descriptors of how to retrieve files or communicate with
other servers.    As shown below, each line retrieved from a Gopher Server contains 4 tab delimited
entries :

0About This Server 0/about_srvr gopher.srvr.net 70
1Other Files Here 1/otherfiles gopher.srvr.net 70
gSmiley Face Grafix g/smiley gopher.srvr.net 70

The first and second entries are preceded by identifiers which represent the type of information
represented by the entry.    In the sample, the 0 represents a text file, 1 a file directory, and g a GIF
graphic file.    The second entry of the first line, 0/about_srvr,    is the information used to query the server
for the information About This Server.    Additional information types are also available via Gopher.    All
Query strings are required to be of a specific format for the server to process information correctly --
Query Formats.

The second entry is placed into Query to the IP address of the server named in the third entry,
gopher.srvr.net.    The final entry, 70, is the port to connect to communicate with the Gopher server.

The OutApp argument designates a filename for output or an application for viewing.    This argument is
not provided by a remote Gopher server but is instead used for local file management.    If the types are 8
or T, for Telnet access, you should set OutApp to the name of the Telnet application you have available on
your system.    If the types are a file type, this should contain the name of the local file in which you wish
to save the remote file.

The final argument, PortNum, is the port number provided by a remote Gopher server.    This port is to be
used with a specific request as defined by a Gopher Entry.

This function will place an error code in ErrorNum and returns a NULL string if errors occur.    If
successful, the function returns the textual return information from the Gopher server.

Sample Code

The following source performs simple Gopher queries on remote Gopher servers. The first call retrieves
the proper IP address for the node passed to the GetHostAdrs() method.    The second call initiates a
query on the remote node whose address we now have.

'Use the Gopher control to retrieve the Gopher menu

Private Sub Command1_Click()

'In the Text2 control we could use mudhoney.micro.umn.edu

Adrs$ = GetAdrs1.GetHostAdrs(Text2.TEXT)

If Adrs$ = "" Then

MsgBox Str(GetAdrs1.ErrorNum)

Else

'Text3 contains the query, Text4 contains the output

' app or file and Text5 contains the port number

Text1.TEXT = Gopher1.QueryServer(Adrs$, Text3.TEXT, Text4.TEXT,
Text5.TEXT)

If Text1.TEXT = "" Then

MsgBox Str(Gopher1.ErrorNum)

End If

End If

End Sub

What Is Gopher

The Gopher protocol is designed to act as a distributed document delivery system.    While documents
(and services)    reside on many servers across the Internet, Gopher clients present to the user a
hierarchy of items and directories that resemble a file system.    The hierarchical arrangement of
information is familiar to many users.    Hierarchical directories containing items (such as documents,
servers, and subdirectories) are widely used in electronic bulletin boards and other information systems.

By applying a type attribute to items in the hierarchical pseudo-file system, it is possible to accommodate
complex documents in addition to the simple text documents.    Complex database services can be
handled as a separate type of item.    For instance, you can retrieve graphic images into a file for viewing
locally, view entire text documents, or search for information in a database all using the same client
software.

An extension to Gopher is the World Wide Web.    If you have ever browsed around the Web you found
numerous graphical images embedded into text documents.    Gopher is the underlying method of
information transfer and display for the user but, as we have discussed, Gopher is text based while the
WWW is graphically represented.

Other Gopher Types
Symbol Description Representation

| An Image File |/imagename

0 Text File 0/fname

1 Disk Directory. 1/dir

2 CSO Phonebook Directory 2/dir

3 Error 3/error

4 BinHexed Macintosh File 4/fname

5 Unknown DOS Binary File 5/fname

6 UNIX UUENCODEd File 6/fname

7 Index-Search Server 7/index

8 Text-Based Telnet 8

9 Binary File 9/fname

g GIF File g/fname

T Text-based TN3270 Session T

Gopher Query Formats
All queries made to a Gopher server must be made in a specific format so that the Gopher server will be
able to process the requested information correctly.    For the most part, all queries are straight-forward,
however, a few of them are very specific.

Querying for Files

The following types are specific to files that must be saved to a disk file using the functionality of the
Gopher Custom Control. The format for the QueryServer() method for files is as follows :

'Graphic Image File |/imagenm

'Example : |Curry |/Curry mudhoney.micro.umn.edu 70

GOPHER.QueryServer("134.84.134.72", "|/Curry", "c:\temp\curry.pic", "70")

'BinHexed Macintosh File 4/fname

'Example : 4Curry 4/Curry mudhoney.micro.umn.edu 70

GOPHER.QueryServer("134.84.134.72", "4/Curry", "curry.ext", "")

'Unknown DOS Binary File 5/fname

'Example : 5Curry 5/Curry mudhoney.micro.umn.edu 70

GOPHER.QueryServer("134.84.134.72", "5/Curry", "curry.ext", "")

'UNIX UUENCODEd File 6/fname

'Example : 6WholeApp 6/WholeApp mudhoney.micro.umn.edu 70

GOPHER.QueryServer("134.84.134.72", "6/WholeApp", "app.ext", "")

'Binary File 9/fname

'Example : 9BFile 9/BFile mudhoney.micro.umn.edu 70

GOPHER.QueryServer("134.84.134.72", "9/BFile", "bfile.ext", "")

'GIF File g/fname

'Example : gGIFImage g/Curry mudhoney.micro.umn.edu 70

GOPHER.QueryServer("134.84.134.72", "g/Curry", "curry.gif", "")

As shown, all of the arguments are passed as literals, however, variables or controls may be passed to
provide flexibility to the application.    The query, in the second argument, is used by the remote Gopher
server.    The third argument contains the name of the file to which the remote file will be saved as the file
is retrieved by the Gopher client.    The final argument is the port over which the communications will
occur.    If the port number is left NULL, as in some of these examples, the port defaults internally to 70 for
Gopher communications.

Querying for Buffer or Files

In addition to saving information from Gopher to files you can also output the information to a buffer.    This
buffer is in turn passed back to the container application so that you can manipulate the information for
use within your application.

'Text File 0/fname

'Example : 0FAQ0/FAQ mudhoney.micro.umn.edu 70

GOPHER.QueryServer("134.84.134.72", "0/FAQ", "", "")

'Disk Directory1/dir

'Example : 1Phone Books 1/Phone Books teal.csn.net 70

GOPHER.QueryServer("199.117.27.22", "1/Phone Books", "", "")

'Index-Search Server 7/index

'Example : 7CSU7/ON/MISC/ln6phbk/WAIS.PHONE.INDEX/index
yuma.acns.colostate.edu 70

GOPHER.QueryServer("129.82.100.64",
"7/ON/MISC/ln6phbk/WAIS.PHONE.INDEX/index Smith", "", "")

Each of the queries look identical to all of the other queries you have seen, however, the remote Gopher
server processes each of them differently.    For instance, text files are simple sent across to the
requesting client, directory information is read from the disk and sent to the client, and index servers
locate specified information.

With regards to the index server at yuma.acns.colostate.edu, notice how the query in the second
argument for the QueryServer() method is formatted.    The index server query is succeeded by a tab then
the string to be used in the index search.    In this instance, the Gopher server at yuma.acns.colostate.edu
uses the index search routine in /ON/MISC/ln6phbk/WAIS.PHONE.INDEX/index to locate any text
containing Smith.

All information retrieved from the Gopher server can also be saved into a local file.    This is accomplished
by merely supplying the name of a local file in which to store the data for the third argument.

Querying for Buffer or Files

An application can also initialize a Telnet application in order to connect to remote hosts.    As shown in
the following examples, a Telnet applications name is supplied which is started and connected to the
remote host specified.

'Text-Based Telnet 8

'Example : 8Host 8/Host director.mines.colorado.edu 23

GOPHER.QueryServer("138.67.1.3", "8/Host", "telnet.exe", "23")

'Text-Based TN3270 Session T

'Example : THost T/Host director.mines.colorado.edu 23

GOPHER.QueryServer("138.67.1.3", "T/Host", "qws3270x.exe", "23")

In these examples, Telnet application names are specified in the third argument.    Once executed, the
specified Telnet application is started and connected to the named host on the specified port.

Non-Standard Types

The Gopher Custom Control also handles types that have not been discussed in this document as well as
types that are specified to a Gopher server.

'Example : 7Connect to a host ftphack gopher.cit.cornell.edu 7071

GOPHER.QueryServer("132.236.218.10", "ftphack", "", "7071")

In the above example, notice that there is no identifier preceding the query string in the second argument.
When the Gopher Custom Control receives such a query it will pass the retrieved information back in a
buffer to the container for use within the application.    If a filename is provided in the third argument the
information is saved to the file.

You can also query the above using the information as follows.    The following query returns a string
defining how you can communicate with the Microsoft FTP site via FTP.

'Example : 7Connect to a host ftphack gopher.cit.cornell.edu 7071

GOPHER.QueryServer("132.236.218.10", "ftphackmicrosoft", "", "7071")

The string returned from the above query, as shown below, can be formatted and used to query for
information at the Microsoft FTP site.

'Example : 1Link to ftp server ftp.microsoft.com ftp:ftp.microsoft.com@/
gopher.cit.cornell.edu 7070

GOPHER.QueryServer("132.236.218.10", "ftp:ftp.microsoft.com@/", "", "7070")

When the Microsoft FTP site responds, the following information is stored in a buffer for use by the
application.    You can then use the query information from the following information to retrieve information
or query other hosts.

1bussys ftp:ftp.microsoft.com@/bussys/ gopher.cornell.edu 7070

1deskappsftp:ftp.microsoft.com@/deskapps/ gopher.cornell.edu 7070

1developrftp:ftp.microsoft.com@/developr/ gopher.cornell.edu 7070

0dirmap.htm ftp:ftp.microsoft.com@/dirmap.htm gopher.cornell.edu
7070

0dirmap.txt ftp:ftp.microsoft.com@/dirmap.txt gopher.cornell.edu
7070

0disclaimer.txtftp:ftp.microsoft.com@/disclaimer.txt gopher.cornell.edu
7070

0index.txt ftp:ftp.microsoft.com@/index.txt gopher.cornell.edu
7070

1KBHelp ftp:ftp.microsoft.com@/KBHelp/ gopher.cornell.edu 7070

0ls-lR.txt ftp:ftp.microsoft.com@/ls-lR.txt gopher.cornell.edu
7070

9ls-lR.Z ftp:ftp.microsoft.com@/ls-lR.Z gopher.cornell.edu 7070

5LS-LR.ZIP ftp:ftp.microsoft.com@/LS-LR.ZIP gopher.cornell.edu
7070

0MSNBRO.DOC ftp:ftp.microsoft.com@/MSNBRO.DOC gopher.cornell.edu
7070

0MSNBRO.TXT ftp:ftp.microsoft.com@/MSNBRO.TXT gopher.cornell.edu
7070

1peropsysftp:ftp.microsoft.com@/peropsys/ gopher.cornell.edu 7070

1Servicesftp:ftp.microsoft.com@/Services/ gopher.cornell.edu 7070

1Softlib ftp:ftp.microsoft.com@/Softlib/ gopher.cornell.edu 7070

0support-phones.txt ftp:ftp.microsoft.com@/support-phones.txt
gopher.cornell.edu 7070

0WhatHappened.txt ftp:ftp.microsoft.com@/WhatHappened.txt
gopher.cornell.edu 7070

Agreement
This software, hereafter referred to as the software, Copyright © 1995 Edward B. Toupin has been
developed by Edward    B. Toupin, hereafter referred to as the author, and remains the property of
Edward B. Toupin, Denver, CO.

The software and accompanying documentation are protected by a United States Copyright.    Any use of
the software in violation of copyright laws or the terms of this agreement will be prosecuted to the best of
our ability. Under no circumstances will the user remove the copyright notices made part of this software
or documentation.

The author makes no warranty of any kind, express or implied, including without limitation, any warranties
of merchantability and/or fitness for a particular purpose.    The author shall not be held liable for any
damages, whether direct, indirect, special or consequential arising from a failure of the software to
operate in the manner desired by the user.

The author does not assume any liability for the use of the software.    In no event will the author be liable
for any damages including lost profits, lost savings, damage to property or other incidental or
consequential damages arising out of your use or inability to use the software, or any claim by any other
party.

The software is warranted to operate in the manner as described in the software documentation.    If you
should encounter an error in the documentation or the software, a description of the problem should be
sent directly to the author.    The error will be fixed and an update of the documentation and/or software
will be returned to you.

By using the software, including any of the associated files, you agree to the terms of this agreement.    If
you do not agree, you should immediately return the software and documentation.

Please complete the included registration and feedback and include any comments or suggestions for
future enhancements regarding the software. This registration will help us stay in touch with our
customers and their needs.    Email the feedback and US mail the registration as well as any comments or
suggestions to Edward B. Toupin at etoupin@toupin.com or Compuserve 75051,1160.

Connectivity Custom Controls
Plug-n-Play for the Highway

Plug-n-Play
With the evolution of component software users have come to appreciate the ability to simply connect
applications together to create a seamless application that meets their specific needs.    The Connectivity
Custom Control Pack provides you with that plug-n-play capability for network communications across the
Information Superhighway.

No Programming Knowledge Necessary
The advantage to the Connectivity Custom Control Pack is that it can be used by anyone with any level of
programming knowledge.    The management of communications and application protocols are
encapsulated in several small control libraries which allow you to connect to and manage information on
the Information Superhighway.

All you need to use the Connectivity Custom Control Pack is Windows Sockets v1.1, a
container/controlling application for 32bit operating systems, and a SLIP/PPP connection to the Internet.

Connectivity Custom Controls
The Connectivity Custom Control Pack comes with the following controls :

1. ARCHIE CLIENT Utilize ARCHIE services.
2. CHATTER Create applications to talk with other users on the Internet.
3. CONNECT Connect to providers and remote servers using dialup PPP.
4. FINGER Query hosts for user information.
5. FTP File transfer via File Transfer Protocol.
6. GETHOST Address and name resolution using the Domain Name System.
7. GOPHER CLIENT Utilize GOPHER services.
8. IRC Internet Relay Chat
9. MAIL Send (SMTP) and receive (POPv3) electronic mail.
10. NEWS Retrieve, read, and submit to newsgroups.
11. SNMP Network management via Simple Network Management Protocol.
12. TELNET Telnet terminal emulation.
13. TIME Set your computers time from a remote host.
14. WAIS CLIENT Utilize Wide Are Information Server services.
15. WEB CLIENT Retrieve and view WWW home pages.
16. WEB SERVER Create and administer a WWW server.
17. WHOIS Locate hosts and users on the Internet.
18. WSOCK Develop low-level socket applications.

Error Codes

When an error occurs the member functions will return a NULL string or a 0 and an error value will be
placed into the ErrorNum member variable.    The following list are possible error numbers that will occur
and can only be handled within your container :

9 SOCK_BAD Generic error for invalid format, bad
format.

13 SOCK_ACCESS Generic error for access violation.

14 SOCK_FAULT Generic error for fault.

22 SOCK_INVALID Generic error for invalid format,
entry, etc.

24 SOCK_FILE Generic error for file error.

25 SOCK_BADDR The IP address provided is not valid
or the host specified by the IP does
not exist.

48 SOCK_ADDRINUSE The specified address is already in
use.

49 SOCK_ADDRNOTAVAIL The specified address is not
available.

50 SOCK_NETDOWN The connected network is not
available.

51 SOCK_NETUNREACH The connected network is not
reachable.

52 SOCK_NETRESET The connected network connection has
been reset.

53 SOCK_CONNABORTED The current connection has been
aborted by the network or
intermediate services.

54 SOCK_CONNRESET The current socket connection has
been reset.

57 SOCK_NOTCONN The current socket has not been
connected.

58 SOCK_SHUTDOWN The connection has been shutdown.

60 SOCK_TIMEDOUT The current connection has timedout.

61 SOCK_CONNREFUSED The requested connection has been
refused by the remote host.

63 SOCK_NAMETOOLONG Specified host name is too long.

64 SOCK_HOSTDOWN Remote host is currently unavailable.

65 SOCK_HOSTUNREACH Remote host is currently unreachable.

91 SOCK_SYSNOTREADY Remote system is not ready.

92 SOCK_VERNOTSUPPORTED Current socket version not supported

by application.

93 SOCK_NOTINITIALISED Socket API is not initialized.

101 SOCK_DISCON Socket has been disconnected.

110 SOCK_FTP_RESTART A restart marker has been received
from the remote host.

120 SOCK_FTP_SYS_DELAY FTP service ready in nnn minutes.

125 SOCK_FTP_CONN_X FTP data connection already open.

150 SOCK_FTP_FILEOK FTP File status is okay.

200 SOCK_FTP_OK FTP command is okay.

202 SOCK_FTP_CMD_IMP1 FTP command is not implemented

210 MAIL_NOCNCT No mail connection available.

211 SOCK_FTP_SYS_STAT Current FTP reply is a system status
or system help reply.

211 MAIL_BADORIG Originating email address is invalid.

212 SOCK_FTP_DIR_STAT Current message is a directory
status.

212 MAIL_BADDEST Destination email address is invalid.

213 SOCK_FTP_FILE_STAT Current message is an FTP file
status.

213 MAIL_BADDOM Domain name provided to SMTP is
invalid.

214 SOCK_FTP_HELP_MSG Current message is a help message.

214 MAIL_NODATA Cannot send email data.

215 SOCK_FTP_SYS_NAME FTP system type.

215 MAIL_NOEND Cannot end the transmission of email.

216 MAIL_NOQUIT Unable to end the email session.

217 MAIL_BADCC CC address(es) are invalid.

220 SOCK_FTP_SVC_READY FTP service ready for new user.

220 POP_NOCNCT POP connection not available.

221 SOCK_FTP_SVC_CLOSING FTP server closing control
connection.

221 POP_NOSTAT POP statistics unavailable.

222 POP_NOLIST POP email list unavailable.

223 POP_INVUSER Invalid POP account username.

224 POP_INVPASS Invalid POP account password.

225 SOCK_FTP_CONN_NOX No FTP connection.

225 POP_NOOFF Unable to logoff of POP.

226 SOCK_FTP_CLOSE_CONN FTP server closing data connection.

226 POP_NODEL Unable to delete mail.

227 SOCK_FTP_PASSIVE Passive Mode (h1,h2,h3,h4,p1,p2).

227 POP_NOGET Unable to get mail.

228 POP_NOUNDEL Unable to undelete mail.

230 SOCK_FTP_LOGIN Unable to log into FTP server.

250 SOCK_FTP_FILEACT_OK Requested file action okay,
completed.

257 SOCK_FTP_PATH_CREATE "PATHNAME" created.

331 SOCK_FTP_PASS Invalid FTP password.

332 SOCK_FTP_ACNT1 Invalid FTP account.

350 SOCK_FTP_FILE_WAIT File action pending further
information.

421 SOCK_FTP_SVC_NOT_AVAIL Service not available.

425 SOCK_FTP_CONN_CLOSED Cant open data connection.

426 SOCK_FTP_XFR_ABORT Connection closed; transfer aborted.

450 SOCK_FTP_FILE_BUSY Requested file action not taken.

451 SOCK_FTP_LOCAL_ERROR Local error in processing.

452 SOCK_FTP_INSUFF_SPC Insufficient storage space in system.

500 SOCK_FTP_CMD_SYNTAX Syntax error, command unrecognized.

501 SOCK_FTP_ARG_SYNTAX Syntax error in arguments.

502 SOCK_FTP_CMD_IMP2 FTP command not implemented.

503 SOCK_FTP_BAD_SEQ Bad FTP sequence.

504 SOCK_FTP_CMD_IMP3 FTP command not implemented.

530 SOCK_FTP_NOLOGIN Not logged into remote host.

532 SOCK_FTP_ACNT2 Need account on remote host to store
files.

550 SOCK_FTP_FNOT_FOUND Requested action not taken.

551 SOCK_FTP_PAGE_UNK Page type unknown.

552 SOCK_FTP_XEED_STOR Exceeded storage allocation

553 SOCK_FTP_NAME_NOTALL File name not allowed.

926 SOCK_FTP_INVFILE_HANDLE Local file is invalid

927 SOCK_FTP_INVFILE Local file is invalid

1001 SOCK_HOST_NOT_FOUND Host not found

1002 SOCK_TRY_AGAIN Not authorized, host not found

1003 SOCK_NO_RECOVERY Non recoverable error

1004 SOCK_NO_DATA No data available for request

1010 SOCK_GPH_NOFNAME Query requires an output file.

1011 SOCK_GPH_NOEXEC Unable to execute application.

1012 SOCK_NO_SND_DATA Unable to send data

1013 SOCK_NO_CNCT_DATA Unable to connect to remote

The Toupin Corporation

An Internet Services Company

A port is doorway through which a connection to a remote Internet host passes.    Ports are accessed by
their number where each type of service on the Internet utilizes a particular port number.    For Gopher,
the port number is 70.

An IP Address is much like your own address for your home.    Everyone of your friends knows your house
by your name where, for instance, a house is the Smiths house.    The post office knows that the Smiths
house is located at 1122 South Street.    On the Internet, all nodes have a name (e.g., toupin.com) and an
associated address (e.g., 199.117.41.151).    The address, being the IP Address, is used to send
information to remote nodes.    The address can be resolved for a known host name using the GetHost
custom control.

Installation

To install the custom control you should perform the following steps :

Copy the custom control and the help file into a directory of your liking.    Normally this directory is the
Windows system subdirectory

The control must be registered into the system registry before it can be used by any application.   
Using the included REGSVR32.EXE application, type the following command line :

REGSRVR32 <directory>\ FNAME.OCX

From within your container application, include the custom control and access the methods and members
of the control for your custom Internet application.

NOTE : If you move the control you must reregister the control to take into account the new directory.

Registration

Make checks payable to and mail to :

Edward B. Toupin
448 East Arden Circle
Highlands Ranch, CO 80126

Order Form

NAME :
COMPANY :
ADDRESS :
CITY :
STATE : ZIP :
COUNTRY :

PHONE:
FAX :

EMAIL :
COMPUSERVE:

CONTROL QTY UNIT TOTAL
ARCHIE CLNT v1.00a _______ $ 25.00 ______________
CHATTER v1.00a _______ $ 20.00 ______________
CONNECT v1.00a _______ $ 55.00 ______________
FINGER v2.00a _______ $ 10.00 ______________
FTP v2.05a _______ $ 35.00 ______________
GOPHER CLNT v1.00a _______ $ 35.00 ______________
GETHOST v2.50a _______ $ 10.00 ______________
IRC v1.00a _______ $ 40.00 ______________
MAIL v2.00a _______ $ 35.00 ______________
NEWS v1.00a _______ $ 35.00 ______________
SNMP v1.00a _______ $ 250.00 ______________
TELNET v1.00a _______ $ 50.00 ______________
TIME v2.00a _______ $ 10.00 ______________
WAIS v1.00a _______ $ 25.00 ______________
WEB CLIENT v1.00a _______ $ 275.00 ______________
WEB SERVER v1.00a _______ $ 425.00 ______________
WHOIS v1.00a _______ $ 10.00 ______________
WSOCK v1.51a _______ $ 35.00 ______________

TOTAL ______________

Feedback

CONTACT

Name :
Company :
Position :
Address :
City : State : Zip :
Country :

Phone :   
Fax :
Email :

Name and version of custom control :

Where did you acquire the application ?

Purpose of your Company :

How is this system going to be used :

Type of Computer and    Peripherals :

Suggestions for future systems or enhancements to this system :

EXPERIENCE

LEVEL OF INTERNET USER EXPERIENCE : Beg Int Adv

LEVEL OF INTERNET CONNECTIVITY KNOWLEDGE : Beg Int Adv

LEVEL OF INTERNET APPLICATION DEVELOPMENT EXPERIENCE : Beg Int Adv

LEVEL OF CUSTOM CONTROL USER EXPERIENCE : Beg Int Adv

LEVEL OF CUSTOM CONTROL DEVELOPMENT EXPERIENCE : Beg Int Adv

SYSTEM DESCRIPTION

WINDOWS VERSION : Windows NT Windows 95 Windows 3.11 Windows 3.1

32-BIT CONTAINER APPLICATION SUPPORTING VBA OR VB :

INTERNET PROVIDER :

VISUAL C++ 2.0 OR LATER :

MEMORY, HARD DRIVE(S), MODEM (TYPE, BAUD, ETC.), ETC :

DO YOU WANT INFORMATION ON UPDATES EMAILED TO YOU : Y N

DO YOU SUPPORT UUENCODING AND PKZIP 2.X ?

Requirements and Information

The custom control was designed and developed under Windows NT 3.5 as a 32-bit custom control
(OCX).    To utilize the functionality of the system you will require the following :

Windows NT 3.5 or greater or Windows 95

Windows Sockets v1.1 or compliant socket interface

Connection to the Internet (e.g. SLIP/PPP via Internet provider)

For dial-up services, Remote Access (or equivalent) for communications

A 32-bit container application or development environment

Shareware
This software, hereafter referred to as the software, is NOT a public domain or free program. It is being
distributed as Shareware.    The Association of Shareware Professionals (ASP) offers the following
definition of Shareware:

Shareware distribution gives users a chance to try software before buying it.    If you try a Shareware
program and continue using it, you are expected to register.    Individual programs differ on details
some request registration while others require it, some specify a maximum trial period.    With
registration, you get anything from the simple right to continue using the software to an updated
program with printed manual.

Copyright laws apply to both Shareware and commercial software and the copyright holder retains all
rights, with a    few specific exceptions as stated below.      Shareware authors are accomplished
programmers, just like commercial authors, and the programs are of comparable quality. The main
difference is in the method of distribution. The author specifically grants the right to copy and
distribute the    software, either to all or to a specific group. For example, some authors require written
permission before a commercial disk vendor may copy their Shareware.

Shareware is a distribution method, not a type of software.    You should find software that suits your
needs and pocketbook, whether it's commercial    or Shareware. The Shareware system makes fitting
your needs easier, because you can try before you buy.    And because the overhead is low, prices are
low as well. Shareware has the ultimate money-back guarantee    -- if you don't use the product, you
don't pay for it.

Registration licenses you to use the software.    Any unregistered use other than trial use to determine if
the software meets your needs is a violation of our license agreement and is forbidden.

The registered software license authorizes use of one copy of the software on one machine at a time.    If
you have multiple computers, either standalone, networked, or multi-user, you need to register one copy
of the software for each workstation on which it will be used.

Commercial or government organizations should contact the author for site-licensing or distribution
options.

Internet Communications Overview

01. What is the Internet? Brief overview and explanation of the Internet.

02. What is TCP/IP? Basic definitions and brief overview of TCP/IP.

03. TCP/IP Protocols and
Communications

Description of the TCP/IP protocol suite.

04. The Application Layer Examine the application layer of the
communications stack.

05. TCP Layer Examine the Transmission Control Protocol
Layer of TCP/IP

06. IP Layer Examine the Internet Protocol Layer of
TCP/IP.

07. Network Layer Examine the Network Layer of the
communications stack.

08. Datagrams User datagrams and connectionless
communications.

09. Routing Routing between remote hosts on the Internet.

10. Other Protocols Other network protocols available with TCP/IP.

11. The Domain Name System Resolving IP addresses on the Internet.

What is TCP/IP?
TCP/IP (Transmission Control Protocol / Internet Protocol) is a suite of protocols used to allow
cooperating computers to share resources across a network. In actuality, the more accurate description of
the set of protocols is the Internet protocol suite. A few of the protocols of TCP/IP (e.g., IP, TCP, and UDP)
provide low level functions needed for many applications. These low level functions provide a means of
encapsulating data and sending it out onto the network.

Other higher level protocols are used for performing specific tasks such as transferring files between
computers, sending mail, or finding out who is    logged    in    on another computer.    These high level
protocols are known as application protocols because they are specific to an application and reside above
the lower level TCP/IP network level protocols. The more important of these protocols and TCP/IP
services are:

File Transfer The file transfer protocol (FTP) allows a user on any computer to send or retrieve files
from another computer.    Security is handled by requiring the user to specify a    user    name and
password acceptable on the other computer.

Remote Login The network terminal protocol (TELNET) allows a user to log in to any other computer
on the network that supports TELNET.    You start a remote session by specifying a computer to
connect to thus allowing you to send your keystrokes to the    other    computer.      When you type you
are still communicating with your own computer but the TELNET application makes the remote
computer look as though it were your local computer.

Electronic Mail Electronic mail allows you to send messages to users on other    computers. When
you send mail, the mail software expects to be able    to    open    a    connection    to    the    addressee's
computer in order to send the mail.    In many cases, users have an intermediate mail server that
accepts mail for users.    A user can then log onto the mail server at their leisure and accept their mail
from the server.

Even though many people can perform the above operations from a single computer, that computer will
occasionally call on the resources of other computers located on the network. This method of resource
sharing has    led    to    the    client/server    model of    network services.        A server is a system that
provides specific services to client systems that reside on a network. The following is a list of typical
servers available within the framework of TCP/IP on many of todays networks :

File Systems File servers allow computers on the network to be more closely coupled to remote
applications than otherwise available through standard FTP.    A network file server provides a means
of allowing the client computers to view the servers disk as though it were local to the client computer.

Printing Print servers allows you to    access    printers    on    other computers    as if they were directly
attached to yours.

Remote Execution This method of resource sharing allows you to request that a particular program
be executed on a different computer on the network. There are two primary types of remote execution
: command basis and remote procedure call.    The command based execution allows you to request
that a    specific    command or    set    of commands execute on a remote computer. Remote procedure
calls allow a program to    call    a    subroutine    that    resides on a remote computer.

Name Servers Name servers provide a means of associating host names to host addresses.    In   
large    network installations there are a number of different collections of names that have to    be   
managed including users, names and network addresses for computers, and accounts. Computers
requesting access to other computers on a network use the name server protocol used to keep track
of host names and addresses on    the    Internet.

Terminal Servers Terminal servers are generally small computers that use the TELNET protocol and
handle incoming calls and accesses from remote TELNET clients.

Network Based Window Systems Network    window    systems    allow    applications to use a display

on a remote computer as opposed to having to execute high-performance graphics    programs on a
graphics screen directly attached to the computer. Network window systems allows you to distribute
jobs out to remote systems    but    manage a graphically-based    user    interface.

What is the Internet?

The Internet is not just one network but is instead a collection of networks including Arpanet, NSFnet,
regional networks such as NYsernet, local networks at a number of University and research institutions,   
and    a    number    of    military networks.    The term Internet applies to this entire set of networks that
constitute the world-wide communications paths available today.

The subset of the available networks that are managed by the    Department    of    Defense    is referred   
to    as the Defense Data Network (DDN) which includes research-oriented networks, and specific military
networks. All of these networks are connected to each other allowing users to send    messages    from
one network to another quite transparently.

One portion of the Internet -- the ARPANet Gateway

TCP/IP Protocols and Communications
The TCP/IP suite of protocols is known as a layered set of protocols.    Essentially, a layered set of
protocols involves the hierarchical association of functionality for communications between applications
on the Internet.    To understand what this hierarchy consists of let us take a look at the process of sending
email across the Internet.

The first level of the protocol for email is the Simple Mail Transfer Protocol (SMTP).    This protocol defines
a set of commands used for sending mail from one machine to another.    These commands allow the
identification of the sender and the recipient as well as the body of    the    message.    This protocol,
however, is not all that is required to simply send the information to another node.    SMTP assumes that a
mechanism exists that allows the SMTP information to be sent reliably between the two computers. Being
a standard application protocol    SMTP merely defines a common set of commands and messages.    This
protocol resides on top of a communications protocol like TCP and IP.

The basic communications stack

The TCP communications protocol is responsible for guaranteeing reliable transfer of information
between the machines.    TCP monitors the information that is being sent and retransmits any information
that was not received at the other end.    TCP also manages the segmentation of messages.    If
messages are too large for a particular packet, or datagram, TCP segments the information into    several
datagrams and makes sure that they all arrive in order and intact.

TCP resides above and calls on the services provided by IP. IP, which provides the basic    service    of   
routing datagrams    to their destination, allows you to communicate in the protocol specific to the
available network. The layered approach allows applications such as mail to call on the services of the
layers immediately below.

Routing
TCP/IP assumes that there are a large number of independent networks connected together by gateways
allowing users access to resources on any of the networks that make up the Internet. Because of these
numerous gateways, datagrams usually pass through several networks before reaching their destination.
In order to accomplishing the routing through the numerous network, each gateway must know the path
to each consecutive network for the ultimate destination. As    far    as    the    user    is concerned, all they
need to know in order to access a remote system is the IP Address of the    remote system.    This address
looks like 199.41.151.74 and is actually a 32-bit representation of the remote nodes address, however, it
is normally represent with the 4 decimal numbers each representing 8    bits of    the    address. The
address structure can provide you with some information about how to get to the remote system.    For

example, 199.41 is a network number assigned by a central authority to an organization.    This
organization uses the following value octet to indicate which of the organizations networks is involved in
the communication.    199.41.151 could be the primary network for a research facility of the organization.
The final value allows for up to 254 systems on each network.

As you probably have seen we refer to systems by name rather than by a systems Internet address.   
When a name is specified the network communications software locates the name in a central database.
The database, containing all network names and associated addresses, returns the corresponding
Internet address of the computers name.

Communications
TCP/IP is    built    on a connectionless    technology where information    is transferred as a sequence of
datagrams.    Datagrams are a collection of information that is sent as a single message with each
datagram being sent through the network individually and independently of the others.    Even for those
conversations that are established and continue for some time, information from those connections is
broken up into datagrams, and    those    datagrams    are    treated    by    the network    as completely
separate.    The protocols involved in the communication will break up the information into separate
datagrams and send them to the other end. Once they arrive at the other end they will be put back
together into the original message.

One point to note is that while those datagrams are in    transit the network is not aware that there is any
relation between the intransit datagrams.    In certain circumstances it is possible    for datagram 10 to
arrive before datagram    9. In another circumstance it is also possible that an error will occur on the
network thus keeping a datagram from arriving.    In this situation that datagram would have to be resent.

The TCP Layer

The top layer of the two layer TCP/IP stack is TCP (Transmission Control Protocol) and is responsible for
breaking up messages into datagrams,    reassembling them at the other end, resending anything that
does not arrive at the remote end of a connection, and    reassembling segmented messages.    The IP
(Internet Protocol) handles all of the routing of individual datagrams.

On a small network, IP is not really utilized to its fullest, however, on the Internet, simply getting a
datagram to its destination can be a complex job. A remote connection    sometimes requires that a
datagram route through several networks and network media.    Managing the routes to all of the
destinations and handling incompatibilities among different transport media turns out to be a complex job.
Note that the interface between TCP and IP is fairly simple where TCP simply hands IP a datagram with a
destination address associated with it.

If you have multiple connections to a single host, TCP must has to know which connection is associated
with which inbound datagram.    The task of managing datagram-connection associations is known as
demultiplexing.    The information required to perform the demultiplexing is located in a series of headers
which are simply a few extra bytes preceding the data of a datagram.

Lets say you want to send a file to another computer.    This file starts out as a stream of bytes that is
submitted to TCP for submission onto the network.    In order to properly handle the data on the network,
TCP segments the stream into smaller pieces of information, or datagrams.

On the front of each of the datagrams TCP attaches a header containing at least 20 bytes including a
source and destination port number    and a sequence    number.        The    port numbers    are used to
keep track of different conversations.    Suppose 3 different people are transferring files.    Your TCP might
allocate port numbers 1000, 1001, and 1002 to these transfers.    When you are sending a datagram, this
becomes the source port number since you    are    the source of the    datagram while TCP on the
receiving computer has assigned a port number of its own for the conversation.    The local TCP has to
know the port number used by the other end as well to place it into the destination port field.

Every datagram has a unique sequence number that is used so that the other end can make sure that the
datagrams are received in the correct order and that no datagrams are missed. The computation for
determining the sequence number is not based on the numeric order of the datagram but on the number
of bytes being sent for the entire stream of data.    For instance, if there are 50 octets of    data    in    each
datagram,    the first datagram might be numbered 0, the second 50, the next 100, the next 150, etc.

Within the header of each datagram is a calculated checksum value. This is a numeric representation of
the data contained in the datagram and is computed by adding up the values of all bytes in the datagram.
The receiving end computes the checksum again and, if the two computed and transmitted checksums
disagree, an error occurred in the transmission and that datagram is discarded.

TCP Header and Data

With regards to other fields of the header, these are involved with managing the connection between the
remote and local nodes. For instance, the acknowledgment number is used to inform the remote TCP to
respond with an acknowledgment of receipt of the specific datagram.    When the remote TCP responds
with an acknowledgment of receipt that field contains a numeric response value.    For instance, sending   
a    packet    with    an    acknowledgment    number of    500 indicates that you have received all the data up
to byte number 500. If the sender does not receive an acknowledgment within a reasonable amount of
time, the data is sent again to the recipient.

The    window field indicates the number of bytes of data a machine is ready to accept and is    used    to
control    how    much    data can be in transit at any one time.    It is not efficient to wait for each datagram
to be acknowledged before sending the next one nor can you just send data otherwise a high-speed
machine might overrun the capacity of a slower machine. As the recipient receives data, the value in
window decreases until it reaches 0.    At 0 the sender has to stop sending until the recipient processes
the data it currently has received.    As more processing space becomes available the window value
increases indicating that it is ready    to    accept    additional data.

The urgent field allows one end to tell the other to skip ahead in its processing to a particular byte.    This
type of functionality is often useful in handling asynchronous events such as when you type a control
character or other command that interrupts output.

The IP Layer

Once TCP has completed processing of the datagrams, it submits each datagram to the IP layer.    With
each of these datagrams is the IP address of the computer for which the datagram is destined. The IP
layer is not concerned about the contents of the datagram but is instead concerned about determining the
best route for the datagram to reach the remote computer.

To properly route the datagram and allow intermediate systems to forward the datagram, IP adds its own
header to the datagram. This header contains the source and destination IP address, the    protocol   
identifier,    and    another    checksum.        The source address is simply the address of the originating
machine while the destination address is the address of the recipient machine. The informs the IP layer at
the recipient to send the datagram to the appropriate protocol handler. Even though much of the common
IP traffic uses TCP the stack allows other protocols to use IP so you must inform IP of the destination
protocol handler.

As with TCP, the checksum allows IP to determine if the header    was damaged during it travel through
the network. IP maintains its own checksum in order to verify that its header did not get damaged in
transit.

IP Header and Data

Some of the other fields of the header contain information and flags to keep track of the datagram if it
should need to be split up. In many cases, this additional segmentation can occur if the size of a
datagram exceeds the maximum size allowable on a given network.

The time to live field is a number that is decremented whenever the datagram passes through a network
system.    When this values is decremented down to 0 the datagram is discarded. This field has been
implemented so that the datagram does not continue to travel aimlessly through a system should a loop
condition occur somewhere in the network.

The Network Layer
Lets examine the bottom layer of the communications stack, the network layer, and how information
travels across one of the more common network architectures -- the Ethernet.    This layer is important in
that, regardless of the network medium, it too maintains a header that is applied to a TCP/IP datagram
above and beyond the TCP and IP headers.

In addition to the IP addresses discussed in the IP layer we also have to contend with Ethernet
addresses. Ethernet addresses are maintained by a 48 bit (6 byte) address that is intended to keep
multiple machines from obtaining the same address across the board. Ethernet equipment vendors have
to register with a central address management group to make sure that the numbers they assign do not
overlap with any other manufacturer.

The Ethernet uses a multiple access, or shared, medium for communications in that every machine on a
local network sees every packet on that local network.    As with TCP/IP a header is added so that the
Ethernet frame is accepted by the correct destination node. The Ethernet packet contains a 14-byte
header that includes the source and destination Ethernet address, and a protocol identifier. The machines
on the network only accept those packets with the appropriate Ethernet address in the destination field.
There is no direct correlation between the Ethernet address and the IP address so there exists a table on
the local network that relates Ethernet addresses with IP addresses.

The    protocol identifier allows for several different protocol families to be used on the same network
including TCP/IP, DECnet, etc. simultaneously.      Each of the different types of protocols maintain a
different protocol identifier so that the Ethernet stack can properly route the Ethernet frame to the proper
protocol stack.

The Ethernet physical layer drivers compute a checksum of the entire packet, just as the TCP and IP
layers calculate their checksums.    In the case of Ethernet checksums, the checksum is appended to the
end of the Ethernet frame. If the computed and original checksums do not agree at the receiving end, the
packet is merely discarded and no request for a resend is made.    This request for resend is the
responsibility of the higher level protocols.

Ethernet Header    and Data

The Application Layer
Over a network, there are methods available that allow you to open a connection to a specified computer,
log into it, request files or resources, and control the resources or the transmission of    a file. All of the
aforementioned operations are handled by application    protocols.    These application protocols reside
above and utilize the resources of TCP/IP.

Lets assume that you want to send a file to a machine whose IP address is 199.117.41.151.    In order to
send the file you must not only connect to the node at the IP address but you must also connect to the
FTP (File Transfer Protocol) server on that node.    Network applications on network nodes perform
specialized tasks so connecting to a nodes address is not enough to handle all of the functionality
required on the network. In order to specify that you wish to communicate with the FTP server you must
connect to the specific port for the server. This port is the port that TCP uses in its header to keep track of
individual conversations. Specific port numbers are assigned to the applications, or servers, that wait for
requests from client applications. If you want to send a file, you will open a port with a random number on
your end which connects to port number 21 on the remote machine -- the official port number for the FTP
server.

Clients and Servers connect over a common service port.

Once we have established this connection using TCP and IP we can continue in establishing
communications between the two applications. This next step of communications is in establishing an
agreement on what set of    commands the application will understand, and the    format in which they are
to be sent. For example, the mail protocol operates as follows :

A mail application establishes a connection with a mail server.

The mail application sends the host machine's name, the sender of the message, and the recipients
of the message.

The mail application sends a command to initiate the message.

The mail server starts accepting the message.

The mail application sends the text of the message.

The mail application sends and end-of-message character.

The mail application and the mail server end the communications and close the connection.

The file transfer protocol, on the other hand, involves two separate connections : one for data and one for
commands. Communications begins just like mail, however, once    the command    to    transfer data is

sent, a second connection is opened for the data itself.    It is possible to send data    on the same
connection, however, file transfers often take a long period of time and the originators of    FTP decided it
was best to allow users to issue commands while the transfer is going on (e.g., abort transfer, etc.).

Other Protocols
Recall that TCP is    responsible    for    taking a message stream and segmenting it into datagrams for
transmission on the network.    In some situations however you may need to send a message that fits
wholly into one datagram. One such example is that of a name lookup where an IP address is located for
a given host name.    In this situation a user attempts to make a connection    to another system by
specifying the system by name.    The users system has to translate the name into an IP address before
the connection can be transmitted.    The user's system will send a query to one of the systems that
maintains the name/address database and then wait for a response.    This response will consist of one
datagram therefore the full utilization of TCP would be overkill.    In this situation the application could
utilize UDP (User Datagram Protocol).    UDP is designed specifically for situations where sequencing and
reassembly of datagrams is not necessary. When sending data, UDP prepends a header to the data and
submits it to the IP layer.    Unlike TCP, UDP does not segment data into multiple datagrams, nor does it
track what it has sent in case of a resend.    The one similarity between UDP and TCP is that it does
provide for port number assignment information for proper routing.

Another alternative protocol is ICMP (Internet    Control    Message Protocol) which is primarily used    for
error messages, and other messages intended for the TCP/IP software itself.    ICMP is used for error
messages sent back from remote hosts or intermediate systems (e.g., Host Unreachable, Network Down,
etc.) and can also be used to find out information about the network. ICMP is similar to UDP in that it
manages information in a single datagram however it is even simpler than UDP since it does not rely on
port numbers nor contain port numbers in its header. Since all ICMP messages are interpreted by the
network software itself, no port numbers are needed to route messages to any user application.

The Domain Name System

Users generally prefer to refer to computers on a network by name than by address. TCP/IP network
software requires a 32-bit Internet address in order to establish a connection between to nodes or send a
datagram to a remote node. To associate the user required node names and the node addresses these
exists a database that allows network software to look up a host name and find the corresponding
address.

For a small network this operation is simple since each system on the network would maintain a file
containing all other systems names and addresses on the network.    For the Internet, things are not that
simple so to remedy this situation these name / address files are replaced by name servers that manage
host    names and    their corresponding addresses. The host names stored on the name servers follow a
hierarchical structure such as PEGASUS.TOUPIN.COM. In order to find its Internet address,    you    might
potentially    have    to consult    3    different    servers.    First, you would ask a central, root, server of the
location of the COM server.    COM is a server that keeps track of for-profit organizations on the Internet.   
The root server would give you the names and Internet addresses of several servers for COM.

You would then ask COM for the server for TOUPIN. The COM server    would    give    you    names    and
Internet addresses of several servers for TOUPIN. Finally you would ask TOUPIN where the server for
PEGASUS is located.    The final result would be the Internet address for PEGASUS.TOUPIN.COM.   
Each    of    these    levels    is referred    to    as    a    domain while the entire name,
PEGASUS.TOUPIN.COM , is called a domain name.

A few things to note.    First, the root name servers also happen to be the name servers for the top-level
domains such as COM, EDU, ORG, etc. therefore a single query to a root server will get    you    to   
TOUPIN.        Second,    address resolution software caches prior look-ups therefore once you look up a
name at PEGASUS.TOUPIN.COM the software remembers where to find servers    for
PEGASUS.TOUPIN.COM, TOUPIN.COM, and COM.

Routing

The IP    layer is responsible for the task of passing datagrams to a destination indicated by    the
destination address. This task of determining the best path to get a datagram to its destination is referred
to as routing.

Routing is based entirely upon the network number of the destination    address.    For each computer
there exists a table of network numbers. For each network number there exists a gateway that is used to
access that network.    The gateway does not have to be physically connected to the network, however, it
is the best path to follow in order to access the desired network for the destination address.

Before sending a datagram, the IP of the originating computer checks to see if the destination address is
on the computers own local network.    If on the local network, the datagram can be sent directly to the
destination address.    If the destination node is not on the local network    the system attempts to locate
and an entry for the network on which the destination address is located. The IP submits the datagram on
the network to the gateway listed in the entry associated with the destination address entry.

For the gateways along the path each gateway determines the next path over which the datagram should
pass.    This operation occurs on the Internet until a gateway to the destination nodes network is found or
until the time to live field of the frame reaches 0.

Datagrams

TCP/IP was originally designed for use with many different networks, however, not all network vendors
have agreed to a maximum packet size for their particular network implementations. Ethernet packets can
be 1500 bytes and Arpanet    packets have    a    maximum    of around 1000 bytes while some of the faster
network allow larger packet sizes.

Settling on the smallest possible packet size seems legitimate, however, this would introduce
performance problems for end to end communications.    To pass over many different networks we need
to reach some sort of compromise.    The transfer of large pieces of information is quite efficient with large
packets, however, since the maximum packet sizes vary, we cannot establish a standard size. To manage
these variable packet sizes TCP negotiates datagram    size when a TCP connection first opens with a
remote computer.

When negotiating packet sizes, TCP segments datagrams in order to accommodate the network whose
maximum packet size is the smallest. The IP header    contains    fields    indicating    the    a datagram has
been split and enough information to let the pieces be put back together.    If one gateway connects an
Ethernet to the Arpanet, the Ethernet based TCP layer must be prepared to take 1500-byte Ethernet
packets and segment them into packets that will fit onto the Arpanet.        The destination node must then
reassemble the segmented packets into the original message.

Support
Support for the Connectivity Custom Controls can be obtained by emailing the problem report below to
Edward B. Toupin at :

Internet : etoupin@toupin.com

Compuserve : 75051,1160

An online problem report can be filled out at :

WWW : http://www.toupin.com/~etoupin/cccprob.html

http://www.toupin.com/~etoupin/welcome.html

Email is checked regularly so a response will be emailed as soon as the mail is received and examined.   
If you are a registered user, the problem will be investigated and a problem resolution will be emailed
back to you.    If the problem exists with the custom control a new custom control will be emailed to you
otherwise an explanation on how to remedy the problem will be sent.

Problem Report
Name :

Company :

Area Code & Phone :

CompuServe ID :

Internet Address :

Problem Title :

Product and Version :

Operating System :

32bit Container App :

Network type :

Network protocol : version :

Network cabling :

LAN or WAN :

Modem : baud :

Service Provider :

What type of application were you developing :

How was the control being used :

Detailed problem description :

Steps to reproduce the problem (please explain step by step):

