
INFORMATION PROVIDED IN THIS DOCUMENT AND ANY SOFTWARE THAT MAY ACCOMPANY THIS DOCUMENT (collectively
referred to as an Application Note) IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR
PURPOSE. The user assumes the entire risk as to the accuracy and the use of this Application Note. This Application Note may be copied
and distributed subject to the following conditions: 1) All text must be copied without modification and all pages must be included; 2) If
software is included, all files on the disk(s) must be copied without modification (the MS-DOS® utility diskcopy is appropriate for this
purpose); 3) All components of this Application Note must be distributed together; and 4) This Application Note may not be distributed for
profit.

Copyright © 1995 Microsoft Corporation. All Rights Reserved.
Microsoft, MS-DOS, Visual Basic, and Windows are registered trademarks of Microsoft Corporation.

CompuServe is a registered trademark of CompuServe, Inc.
GEnie is a trademark of General Electric Corporation.

This document was created using Microsoft Word for Windows.

Table Of Contents

Overview...2

How to Use the Examples in This Application Note...2
Using the DLOGSMPL.XLS File..2
Using the Examples in the Text of This Application Note..2

Examples of Visual Basic Code to Use with Dialog Box Controls..3
Labels..3
Edit Boxes...4
Group Boxes...4
Buttons...5
Check Boxes...7
Option Buttons..8
List Boxes..9
Drop-Down List Boxes..11
Combination List-Edit Boxes..12
Combination Drop-Down Edit Boxes...14
Scroll Bars...15
Spinners..15

Other Examples and Tips..16
Avoiding the "Out of Stack Space" Error Message..16
Using the .Focus Property...16
Using an Edit Box As a Password Entry Control...16
Changing the Height of the Dialog Box Frame...17
Using the .Caller Property..17

Where to Find More Information..18
The Object Browser..18
Microsoft Knowledge Base..18
FastTips Technical Library Catalog...18

Microsoft Product Support Services

Microsoft® Excel for WindowsÒ
®®

Versions: 5.0, 5.0c Product Support Services

Subject: Sample Visual BasicÒ Code for Controlling
Dialog Boxes

Application Note

Contents: 18 Pages, 1 Disk
5/95 - WE1162

Sample Visual Basic Code for Controlling Dialog Boxes Page 2

Overview

This Application Note will help you learn some
techniques for writing Visual Basic, Applications
Edition, code for use with custom dialog boxes. The
DLOGSMPL.XLS file included with this Application
Note contains code examples you can run. These
code examples can be used with the following ele-
ments: labels, edit boxes, group boxes, buttons,
check boxes, option buttons, list boxes, drop-down
boxes, combination list-edit boxes, combination
drop-down edit boxes, scroll bars, and spinners. The
DLOGSMPL.XLS file also contains code that dem-
onstrates how to: set the focus in a dialog box, cre-
ate a "masked" password dialog box, adjust the
dialog box height, and use the .Caller property.

The text of this Application Note includes additional
explanations for some of these elements, and it also
points you to other sources of information. Each
section of the text contains an introduction for a
particular control, followed by some sample Visual
Basic code. Some sections also contain a brief de-
scription of the commonly used properties and
methods for that control.

Note that although the examples in this Application
Note are created to illustrate the use of controls on a
dialog sheet, many of these controls can be used on
a worksheet or a chart sheet if you make minor
changes to the code. For more information about
using controls in other types of sheets, see Chapter
13 of the User's Guide or Chapter 11 of the Visual
Basic User's Guide.

Microsoft provides examples of Visual Basic proce-
dures for illustration only, without warranty either
expressed or implied, including but not limited to the
implied warranties of merchantability and/or fitness
for a particular purpose. These Visual Basic proce-
dures are provided 'as is' and Microsoft does not
guarantee that they can be used in all situations.
Microsoft does not support modifications of these
procedures to suit customer requirements for a par-
ticular purpose.

How to Use the Examples in This
Application Note

Using the DLOGSMPL.XLS File

To use the DLOGSMPL.XLS file, copy it to a direc-
tory on your hard disk drive, and open it in Microsoft
Excel.

To install DLOGSMPL.XLS on your hard disk

1. If you received a disk with this Application Note,
insert the disk in the appropriate floppy disk
drive. If you downloaded this Application Note
from an online service, skip to step 2. This pro-
cedure assumes that you have already down-
loaded and extracted the compressed file.

2. Copy the DLOGSMPL.XLS file from the WE1162
disk (or from the directory to which you down-
loaded and extracted WE1162.EXE) to the ap-
propriate directory on your hard disk drive.

For more information about copying files, see your
Windows User's Guide or Windows online Help.

To use DLOGSMPL.XLS

1. Start Microsoft Excel, and choose Open from the
File menu.

2. Select the directory to which you installed the
DLOGSMPL.XLS file, select DLOGSMPL.XLS,
and choose the Open button.

Using the Examples in the Text of This
Application Note

The examples in the text portion of this Application
Note demonstrate ways you can use Visual Basic,
Applications Edition, code to accomplish basic tasks
with dialog box controls.

To use this code, set up your workbook as follows:

· The module containing the code must be lo-
cated in the same workbook as the dialog
sheet that contains the controls.

· The dialog sheet that contains the controls must
be named "Dialog1" and must be the first
dialog sheet in the workbook.

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 3

In some examples, to run the sample code, you can
choose Macro from the Tools menu, select the
name of the macro, and choose the Run button. In
other examples, you will run the code by assigning it
to a control (usually a button) in the dialog box,
running the dialog box, and then choosing the
control. To run a dialog box, select the dialog sheet
that contains the dialog box and choose the Run
Dialog button on the Forms toolbar. (Examples that
require you to run the code this way contain
instructions about which control to assign the code
to.)

For more information about associating a macro
with a button, see the "Assigning Code to Controls

and Dialog Boxes" section of the Visual Basic User's
Guide.

For more information about running a macro, see
pages 14–15 of the Visual Basic User's Guide, or
choose the Search button in Help and type:

macros, running

Also, note that in the sample code, objects are re-
ferred to by their ordinal numbers rather than by
name. For example, in code referring to the first
button in a dialog box, the button is referred to as
Buttons(1) rather than as Buttons("Button 12").

Examples of Visual Basic Code to Use with Dialog Box Controls

Labels

Labels are mainly used to add descriptive text to other controls on a dialog box. The most commonly used
properties of this control are the .Text and the .Caption properties, which are interchangeable. Labels cannot be
edited by the user while the dialog box is running, although a macro can make changes to the text at any time.

Note: The font size of the text in a label is fixed. If you want to have a control that resembles a label but has
a font size and background color that can be changed, use a text box. The Text Box button is located on the
Drawing toolbar.

To use a With statement to change the text property of a label

1. Create a dialog box with at least three label controls.

2. Enter the following code in a Visual Basic module:

Sub LabelExample1()
 With ThisWorkbook.DialogSheets("Dialog1")
 labels(1).Text = "Labels can be an empty string"
 labels(2).Text = ""
 labels(3).Text = "...such as Label 2 above."
 End With
End Sub

To change the .Text property of a label using a For Each...Next statement

1. Create a dialog box with at least one label control.

2. Enter the following code in a Visual Basic module:

Sub LabelExample2()
 Dim Label As Variant
 For Each Label In ThisWorkbook.DialogSheets(1).labels
 Label.Caption = "Example text for" & Label.Name
 Next Label

End Sub

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 4

To cycle through (index) a collection of dialog box labels

1. Create a dialog box with at least three label controls.

2. Enter the following code in a Visual Basic module:

Sub LabelExample3()
 Dim MyDlgLbls As Object, x as Integer
 Set MyDlgLbls = DialogSheets(1).labels
 For x = 1 To 3
 MyDlgLbls(x).Text = Format(Now + x, "dddd - mmmm,yyyy hh:mm AM/PM")
 Next
End Sub

Edit Boxes

Edit boxes are framed boxes that accept user input when the dialog box is running. The font size for text in an
edit box is fixed (that is, it cannot be customized).

If you want text to wrap in an edit box, set the .MultiLine property to true. To restrict the type of information the
edit box will accept (its input type), use the .InputType property. To set these properties, use macro code, or
select the edit box and choose Object from the Format menu. If you set the .InputType property with code, you
can use the constants xlFormula, xlInteger, xlNumber, xlReference, and xlText. The default input type is text
(or xlText).

To retrieve the text in an edit box that has restricted input type

1. Create a dialog box with at least one edit box control.

2. Enter the following code in a Visual Basic module:

Sub EditExample1()
 Dim theText As String
 With ThisWorkbook.DialogSheets(1).EditBoxes(1)
 .InputType = xlInteger
 theText = .Text
 End With
 MsgBox theText,,"Edit Box Value"
End Sub

To display information in an edit box

1. Create a dialog box with at least one edit box.

2. Enter the following code in a Visual Basic module

Sub EditExample2()
ThisWorkbook.DialogSheets(1).EditBoxes(1).Text = "123"

End Sub

Group Boxes

Group boxes allow you to group controls on a dialog sheet, worksheet, or chart sheet. Group boxes are
especially useful for grouping option buttons—when option buttons are in a group box, only one of the option
buttons can be selected at a time. The font size and background color of a group box cannot be changed.

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 5

Although group boxes display a group of objects, changes to the group box do not affect the objects within that
group box (that is, the objects within a group box do not become a collection).

To change the text that is displayed along the top edge of a group box control, use the .Caption property.

To change the caption text of a group box

1. Create a dialog box with at least one group box control.

2. Enter the following code in a Visual Basic module:

Sub GroupBoxExample1()
 With DialogSheets(1).GroupBoxes(1)
 If .Caption = "Example Caption Text" Then
 .Caption = "Another Example Caption Text"
 Else
 .Caption = "Example Caption Text"
 End If
 End With
End Sub

To hide a group box or make a group box visible

1. Create a dialog box with a group box control.

2. Enter the following code in a Visual Basic module:

Sub GroupBoxExample2()
 With DialogSheets(1).GroupBoxes(1)
 If .Visible = True Then .Visible = False Else .Visible = True
 End With
End Sub

3. Add a button control and assign the GroupBoxExample2 macro to the button.

Buttons

Buttons are primarily used for triggering an event. Some commonly used button properties
include: .DefaultButton, .CancelButton, .DismissButton, and .HelpButton. You can set these properties using
code, or you can set them by selecting the button, choosing Object from the Format menu, and selecting the
Default, Cancel, Dismiss, and Help check boxes. These properties control what happens to the dialog box when
the user chooses a button in that dialog box. For example, if you set a .DefaultButton property to true, that
button will be activated when the user presses the ENTER key (if no other button has the focus on that dialog box).
Only one button in a dialog box can have the .DefaultButton property. For additional information, please see the
following article in the Microsoft Knowledge Base:

ARTICLE-ID: Q105552
TITLE : XL5: Static and Dynamic Default Buttons

You cannot change the font or color of a button. However, once you place the control on a dialog sheet, you can
paste a picture over the button to accomplish a similar effect. For additional information, please see the following
article in the Microsoft Knowledge Base:

ARTICLE-ID: Q115046
TITLE : XL5: Customizing Button Fonts on Dialog Sheets

To use the .OnAction property to assign a macro to a button

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 6

1. Create a dialog box with at three button controls.

2. Enter the following code in a Visual Basic module:

Sub ButtonExample1()
 DialogSheets(1).Buttons(3).OnAction = "ChangeText"
End Sub

3. To run the ButtonExample1 macro, you must also create the following function macro (this macro is assigned
to the third button on the dialog box by the ButtonExample1 macro with the .OnAction property):

Function ChangeText()
With DialogSheets(1).Buttons(3)

If .Text = "Run" Then
 .Text = "Stop"
Else
 .Text = "Run"
End If

End With
End Function

To associate a Help file with a dialog box button

1. Create a dialog box with at least three button controls.

2. Enter the following code in a Visual Basic module:

Sub ButtonExample2()
With DialogSheets(1).Buttons(3)

.Text = "Help"

.HelpButton = True

.OnAction = "GetHelp"
End With

End Sub

Sub GetHelp()
Application.Help "C:\WINDOWS\CALC.HLP"

End Sub

Note: In the code example above, because the Help property for button 3 is set to True, if you run the
dialog box and press F1 (or choose Help), Windows Calculator Help is displayed.

For additional information, please see the following articles in the Microsoft Knowledge Base:

ARTICLE-ID: Q109424
TITLE : XL5: How to Use the Help Button in Custom Dialog Boxes

ARTICLE-ID: Q116059
TITLE : XL5: Pressing F1 on Custom Dialog May Not Activate Help Button

To assign an accelerator key to a button

If the letter to which you assign the accelerator key exists in the text of the button, that letter will be underlined
only when the dialog box is run. Accelerator keys are activated by pressing the letter on the keyboard or by
pressing the letter in combination with the ALT key. An accelerator key is not case sensitive.

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 7

1. Create a dialog box with at least one button control.

2. Enter the following code in a Visual Basic module:

Sub ButtonExample3()
DialogSheets(1).Buttons(1).Text = "Test"
With DialogSheets(1).Buttons(1)

If .Accelerator = "T" Then
 .Accelerator = "e"
Else
 .Accelerator = "T"
End If

End With
End Sub

When you run this code, the accelerator key for Button 1, which has the .Text property set to "Text," is toggled
between "T" and "e."

Note: To set the accelerator key manually, choose Object from the Format menu, select the Control tab,
and type the letter you want to assign to the accelerator key in the Accelerator Key box.

Check Boxes

Check boxes enable the user to select an item. When you use check boxes in a group box, the user can select
one or more items in the group. The font and color of a check box are fixed (that is, they cannot be customized).
A check box can be in one of three states: on, off, or mixed. To indicate the state of a check box, set the .Value.
property with the xlOn, xlOff, or xlMixed constant.

To obtain the value of the first check box in the dialog box

1. Create a dialog box with at least one check box control.

2. Enter the following code in a Visual Basic module:

Sub CheckBoxExample1()
 If DialogSheets(1).CheckBoxes(1).Value = xlOn Then
 MsgBox "Is checked."
 Else
 MsgBox "Is not checked."
 End If
End Sub

3. Assign the CheckBoxExample1 macro to the check box you created in step 1.

To discern which check boxes are selected

1. Create a dialog box with at least two check box controls.

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 8

2. Enter the following code in a Visual Basic module:

Sub CheckBoxExample2()
 Dim myCheckBoxes As Object
 Dim chk As Variant
 Set myCheckBoxes = DialogSheets(1).CheckBoxes
 For Each chk in myCheckBoxes
 If chk = xlOn Then MsgBox chk.Name & " is selected."
 Next
End Sub

3. Assign the CheckBoxExample2 macro to the check boxes you created in step 1.

To discern the state of check boxes on a dialog box

1. Create a dialog box with at least three check box controls. Do the following to assign a different state to each
check box:

a. Select a check box.

b. From the Format menu, choose Object, select the Control tab, and select the Unchecked, Checked, or
Mixed option.

c. Repeat steps a and b for each check box so that each box is assigned a different state.

2. Enter the following code in a Visual Basic module:

Sub CheckBoxExample3()
 Dim myCheckBoxes As Object, chk As Variant
 Set myCheckBoxes = DialogSheets(1).CheckBoxes
 For Each chk in myCheckBoxes
 Select Case chk
 Case xlOn
 MsgBox chk.Name & " is Checked."
 Case xlOff
 MsgBox chk.Name & " is Unchecked."
 Case xlMixed
 MsgBox chk.Name & " is Mixed."
 End Select
 Next
End Sub

3. Add a button control and assign the CheckBoxExample3 macro to the button.

Option Buttons

Unlike check boxes, only one option button in a group can be selected at a time. To separate option buttons into
groups, create a group box, and then draw the option buttons inside the box. The font and background color of
an option button are fixed (that is, they cannot be customized).

To discern which option button is on

1. Create a dialog box with at least two option buttons.

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 9

2. Enter the following code in a Visual Basic module:

Sub OptionExample1()
 Dim myButtons As Object, btn As Variant
 Set mybuttons = DialogSheets(1).OptionButtons
 For Each btn In mybuttons
 If btn = xlOn Then MsgBox btn.Name & " is selected."
 Next
End Sub

3. Add a button control and assign the OptionExample1 macro to the button.

To select or clear the first option button

1. Create a dialog box with at least one option button control.

2. Enter the following code in a Visual Basic module:

Sub OptionExample2()
 With DialogSheets(1).OptionButtons(1)
 If .Value = xlOn Then: .Value = xlOff: Else .Value = xlOn
 End With
End Sub

3. Add a button control and assign the OptionExample2 macro to the button.

List Boxes

List boxes present the user with a list of scrollable items that can be selected. Commonly used list box methods
are .RemoveItem and .RemoveAllItems. Note that these methods do not work if the list box is linked to a
worksheet. If you use a macro to set the selected property in a list box item to false, it will not be reflected in the
list box while the dialog box is running. The font in a list box is fixed (that is, it cannot be customized).

To populate a list box with cells on a worksheet using the .ListFillRange method

1. Create a dialog box with at least one list box control.

2. In cells A1:A10 on sheet1, type the values that you want to use to populate the list box.

3. Enter the following code in a Visual Basic module:

Sub ListBoxExample1()
 DialogSheets(1).ListBoxes(1).ListFillRange = "Sheet1!A1:A10"
End Sub

To populate a list box using an array of data

1. Create a dialog box with at least one list box control.

2. Enter the following code in a Visual Basic module:

Sub ListBoxExample2()
 DialogSheets(1).ListBoxes(1).List = Array("Mon", "Tue", "Wed", "Thu",
"Fri")
End Sub

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 10

To return all items in a list box using a For Each...Next statement

1. Create a dialog box with one list box control, and populate the list box using either ListBoxExample1 or
ListBoxExample2.

2. Enter the following code in a Visual Basic module:

Sub ListBoxExample3()
 Dim mTemp As Object, myList As Variant, LItem As Variant
 Set mTemp = DialogSheets(1).ListBoxes(1)
 myList = mTemp.List
 For Each LItem In myList
 MsgBox LItem
 Next
End Sub

3. Add a button control to the dialog box and assign the ListBoxExample3 macro to the button.

Note: Using a For Each...Next statement with a list box may cause an error if you don’t use an object for the
list box. For additional information, please see the following article in the Microsoft Knowledge Base:

ARTICLE-ID: Q112330
TITLE : XL5: 'For Each Item in List' Doesn't Work

To obtain the selected item in a single-select list box

1. Create a dialog box with at least one list box control, and populate the list box using either ListBoxExample1
or ListBoxExample2.

2. Enter the following code in a Visual Basic module:

Sub ListBoxExample4()
 Dim theContents As String
 With DialogSheets(1).ListBoxes(1)
 theContents = .List(.ListIndex)
 End With
 MsgBox theContents
End Sub

3. Add a button control to the dialog box and assign the ListBoxExample4 macro to the button you created in
step 1.

To obtain the selected items of a multi-select list box

1. Create a dialog box with one list box control, and populate the list box using either ListBoxExample1 or
ListBoxExample2.

2. Enter the following code in a Visual Basic module:

Sub ListBoxExample5()
 Dim CurList As Object, ListTemp As Variant, ListItem As Variant
 Dim MultiList As ListBox, counter As Integer
 'Set an object name for easy referencing of the list box.
 Set CurList = DialogSheets(1).ListBoxes(1)
 'Put the selected array into the variable ListTemp
 ListTemp = CurList.Selected
 'Initialize a counter variable.

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 11

 counter = 1
 'Iterate through the loop once for each item in the array.
 For Each ListItem In ListTemp
 'If the value of the current item is True . . .
 If ListItem = True Then
 'Show a message box indicating the item is selected.
 MsgBox CurList.List(counter)
 End If
 'Increment the counter to get the next selected item.
 counter = counter + 1
 Next
End Sub

3. Add a button control to the dialog box and assign the ListBoxExample5 macro to the button.

For additional information, please see the following article in the Microsoft Knowledge Base:

ARTICLE-ID: Q111564
TITLE : XL5: Determining Which Items Are Selected in a List Box

To use a horizontal array of cells on a worksheet to populate a list box

1. Create a dialog box with one list box control.

2. In the range A1:F1 of sheet1 of your workbook, enter the values that you want to appear in the list box.

3. Enter the following code in a Visual Basic module:

Sub ListBoxExample6()
 DialogSheets(1).ListBoxes(1).List = Worksheets("Sheet1").Range("A1:F1")
End Sub

Note: Ordinarily, list boxes are populated with a column of data. The above example makes it possible to
populate a list box with a row of data.

To clear all items in a list box using the .RemoveAllItems method

1. Create a dialog box with one list box control, and populate the list box using either ListBoxExample1 or
ListBoxExample2 above.

2. Enter the following code in a Visual Basic module:

Sub ListBoxExample7()
DialogSheets(1).ListBoxes(1).RemoveAllItems

End Sub

3. Place a button control on the dialog box and assign the ListBoxExample7 macro to the button.

Drop-Down List Boxes

A drop-down list box allows the user to select a single item from a list. The main difference between a drop-down
list box and a regular list box is the amount of space the control takes up in the dialog box.

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 12

To add items to a drop-down list box using values on a worksheet with .ListFillRange

1. Create a dialog box with at least one drop-down list box control.

2. Type the values that will appear in the drop-down list box into cells A2:A10 on sheet1 of your workbook.

3. Enter the following code in a Visual Basic module:

Sub DropDownExample1()
DialogSheets(1).DropDowns(1).ListFillRange = "Sheet1!A2:A10"

End Sub

To return the selected item of a drop-down list box

1. Create a dialog box with one drop-down list box control, and populate the drop-down list box using the
DropDownExample1 code.

2. Enter the following code in a module:

Sub DropDownExample2()
 Dim theContents As String
 With DialogSheets(1).DropDowns(1)
 theContents = .List(.ListIndex)
 End With
 MsgBox theContents
End Sub

3. Add a button control to the control box and assign the DropDownExample2 macro to the button.

To clear all items from a drop-down list box

1. Create a dialog box with one drop-down list box control, and populate the drop-down list box using
DropDownExample1.

2. Enter the following code in a module:

Sub DropDownExample3()
 DialogSheets(1).DropDowns(1).RemoveAllItems
End Sub

3. Add a button control to the dialog box and assign the DropDownExample3 macro to the button.

Combination List-Edit Boxes

A combination list-edit box is similar to a standard list box, except that there is an edit box associated with the list
box. The edit box portion of the combination list-edit box contains the value selected in the list portion. This value
can be edited and subsequently added to the list box. Note that combination list-edit boxes cannot be used on a
worksheet. For additional information, please see the following article in the Microsoft Knowledge Base:

ARTICLE-ID: Q104303
TITLE : XL5: Some Limitations for Controls on Sheets and Dialogs

Although a combination list-edit box is a built-in dialog box element, it can also be created by placing an edit box
and a list box on a dialog sheet and then using the following code to link the two objects:

ActiveDialog.DrawingObjects(Array("List Box 1", "Edit Box 1")).LinkCombo

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 13

To obtain the selected value in the list box portion of a combination list-edit box

1. Create a dialog box with one combination list-edit box control.

2. To populate the combination list-edit box, choose Object from the Format menu, select the Control tab, and
then enter a cell reference in the Input Range box.

3. Enter the following code in a Visual Basic module:

Sub ListEditExample1()
 Dim myAnswer As String
 With DialogSheets(1).ListBoxes(1)
 myAnswer = .List(.ListIndex)
 MsgBox myAnswer,,"Selected List Item"
 End With
End Sub

4. Place a button control on the dialog box and assign the ListEditExample1 macro to the button.

Note: The ListEditExample1 macro is exactly the same method used to obtain the selected value of a list
box. The edit box portion of the combination list-edit box is the same as an edit box control.

To obtain the value in the edit box portion of a combination list-edit box

1. Create a dialog box with one combination list-edit box control.

2. To populate the combination list-edit box, choose Object from the Format menu, select the Control tab, and
then enter a cell reference in the Input Range box.

3. Enter the following code in a Visual Basic module:

Sub ListEditExample2()
 Dim myText As String
 myText = DialogSheets(1).EditBoxes(1).Text
 MsgBox myText,,"Edit Box Value"
End Sub

4. Add a Button control to the dialog box and assign the ListEditExample2 macro to the button.

To add the edit box value to the list box portion of a combination list-edit box

1. Create a dialog box with one combination list-edit box control.

2. To populate the combination list-edit box, choose Object from the Format menu, select the Control tab, and
then enter a cell reference in the Input Range box.

3. Enter the following code in a Visual Basic module:

Sub ListEditExample3()
 Dim theText As String
 theText = DialogSheets(1).EditBoxes(1).Text
 DialogSheets(1).ListBoxes(1).AddItem Text:=theText
End Sub

4. Add a button control to the dialog box and assign the ListEditExample3 macro to the button.

Note: The .AddItem method will clear any .ListFillRange that is being used. If you want to add an item to
an existing list that comes from a range of cells on a worksheet, you need to place the edit box value into
the appropriate cell and then redefine the .ListFillRange of the combination list-edit box.

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 14

Combination Drop-Down Edit Boxes

A combination drop-down edit box is similar to a standard drop-down box except that the text in the caption
portion of the drop-down box can be edited. A combination drop-down edit box cannot be used on a worksheet.

To add items to a combination drop-down edit box using .ListFillRange

1. Create a dialog box with one combination drop-down edit box control.

2. Enter the following code in a Visual Basic module:

Sub ComboDropDownExample1()
DialogSheets(1).DropDowns(1).ListFillRange = "MyWorksheet!A2:A10"

End Sub

To return the selected item from a combination drop-down edit box

1. Create a dialog box with one combination drop-down edit box control.

2. To populate the combination drop-down edit box, choose Object from the Format menu, select the Control
tab, and then enter a cell reference in the Input Range box.

3. Enter the following code in a module:

Sub ComboDropDownExample2()
 Dim textAnswer As String
 With DialogSheets(1).DropDowns(1)
 textAnswer = .List(.ListIndex)
 MsgBox textAnswer
 End With
End Sub

4. Add a button control to the dialog box and assign the ComboDropDownExample2 macro to the button.

Note: When an item in a combination drop-down edit box has been edited, don’t try to get the value
of .List(.ListIndex). The .ListIndex property has a value of 0 in this case, and List(0) results in an error
because there is no element 0.

To add the edited text value to the drop-down list

1. Create a dialog box with one combination drop-down edit box control.

2. To populate the drop-down list, choose Object from the Format menu, select the Control tab, and then enter a
cell reference in the Input Range box.

3. Enter the following code in a module:

Sub ComboDropDownExample3()
 Dim captionText As String
 captionText = DialogSheets(1).DropDowns(1).Caption
 DialogSheets(1).DropDowns(1).AddItem Text:=captionText
 MsgBox captionText & " has been added to the list.",,"Add Item"
End Sub

4. Add a button control to the dialog box and assign the ComboDropDownExample3 macro to the button.

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 15

Note: The .AddItem method will clear any ListFillRange that is being used. If you want to add an item to an
existing list, and if the list comes from a range of cells on a worksheet, you need to place the edit box value
into the appropriate cell and then redefine the .ListFillRange of the combination drop-down edit box.

To clear all items from a combination drop-down edit box

1. Create a dialog box with one combination drop-down edit box control.

2. To populate the combination drop-down edit box, choose Object from the Format menu, select the Control
tab, and then enter a cell reference in the Input Range box.

3. Enter the following code in a Visual Basic module:

Sub ComboDropDownExample4()
 DialogSheets(1).DropDowns(1).RemoveAllItems
End Sub

4. Add a button control to the dialog box and assign the ComboDropDownExample4 macro to the button.

Scroll Bars

You can create a vertical or horizontal scroll bar. To create a horizontal scroll bar, press and hold the CTRL key
when you choose the Scroll Bar tool. In general, a scroll bar is used to increment or decrement the value of a cell
on a worksheet, which in turn changes all the cells linked to that cell in a “what-if” scenario.

To obtain the value of the scroll bar

1. Create a dialog box with one edit box.

2. Enter the following code in a module:

Sub ScrollBarExample1()
DialogSheets(1).EditBoxes(1).Text = DialogSheets(1).ScrollBars(1).Value

End Sub

3. Add a scroll bar control to the dialog box and assign ScrollBarExample1 macro to the scroll bar.

Spinners

A spinner is similar to a scroll bar, except that a spinner does not have the LargeChange property. Spinners are
often placed next to edit boxes so that the user can increment or decrement a value without having to type in a
number. For an edit box to have an associated spinner control, create a separate spinner object and add the
code to link the spinner value to the edit box.

To associate a spinner with an edit box

1. Create a dialog box with one edit box and one spinner control.

2. Enter the following code in a Visual Basic module:

Sub SpinnerExample()
 DialogSheets(1).EditBoxes(1).Text = DialogSheets(1).Spinners(1).Value
End Sub

3. Add a spinner control to the dialog box and assign the SpinnerExample macro to the spinner.

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 16

Other Examples and Tips

Avoiding the "Out of Stack Space" Error Message

In Microsoft Excel, when you choose a control in a dialog box that is assigned to an event macro when there are
a total of three dialog boxes on the screen that have not been dismissed, you may receive the following error
message(s):

 Not Enough Stack Space to Run Macro

 -or-

 Error 28: Out of Stack Space

For information about how to avoid these error messages, please see the following article in the Microsoft
Knowledge Base:

ARTICLE-ID: Q111867
TITLE : XL5 Err Msg: "Not Enough Stack Space to Run Macro"

Using the .Focus Property

Use the .Focus dialog box property when you want a specific control to be active when the dialog box is run. A
dialog box needs to be running before the .Focus property can be set. In other words, you cannot set the .Focus
property and then run the dialog box. The .Focus property must be set as the dialog box is opening or while it is
running.

Note: The control that has the initial focus when a dialog box is run can also be set by moving the control
name to the top of the tab order. To set the tab order, activate the dialog sheet, and choose Tab Order from
the Tools menu.

To set the focus of an edit box

1. Create a dialog box with four edit boxes.

2. In a Visual Basic module, enter the following code:

Sub FocusExample1()
 DialogSheets(1).Focus = "Edit Box 4"
End Sub

Sub FocusExample2()
 DialogSheets(1).Focus = ActiveDialog.EditBoxes(1).Name
End Sub

3. To use one of the code examples, assign either macro to the dialog frame.

Using an Edit Box As a Password Entry Control

Although edit boxes do not contain the "show password as asterisks" feature that is available in Microsoft Visual
Basic 3.0, this capability can be emulated by placing an edit box on the dialog sheet, outside of the dialog frame.
By placing the edit box in this manner, you can create code that will show asterisks in an edit box placed within
the dialog frame when the user types in the password. In the following code, Edit Box 4 is the edit box that has
been placed outside of the dialog frame.

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 17

Assign this macro to the hidden edit box that is outside of the dialog frame:

Sub DisplayAsterisks()
Var1 = DialogSheets(1).EditBoxes("Edit Box 5").Text
DialogSheets(1).EditBoxes("Edit Box 5").Text = Var1 & "*"

End Sub

Assign this subroutine to the dialog frame of the dialog sheet:

Sub SetFocus()
DialogSheets(1).Focus = "Edit Box 4"

End Sub

For additional information, please see the following article in the Microsoft Knowledge Base:

ARTICLE-ID: Q125422
TITLE : XL5: Creating a Masked Password Dialog Box in Visual Basic

Changing the Height of the Dialog Box Frame

You may want a dialog box to change size while the dialog box is running. This can be accomplished by
changing the .Height property of the dialog frame. For example, in the following code, choosing Button 1
increases and shrinks the size of the dialog frame:

1. Create a dialog box with a button control.

2. Enter the following code in a module:

Sub Button_Click()
 If DialogSheets(1).DialogFrame.Height = 180 Then
 DialogSheets(1).DialogFrame.Height = 110
 Else
 DialogSheets(1).DialogFrame.Height = 180
 End If
End Sub

3. Assign the Button_Click macro to the button in the dialog box.

Using the .Caller Property

The .Caller property can return the name of the control that called a subroutine. This property is useful when a
subroutine is designed to perform a specific action based on the dialog box control that called it. For instance, a
dialog box may have four different spinners that change the contents of four associated Labels. Instead of having
four separate subroutines, the spinners can all be assigned to the same subroutine. The following code assumes
this type of situation.

Sub CallerExample1()
 Dim ControlName As String
 Dim ControlNum As Integer
 ControlName = Application.Caller
 'Note: The right function obtains the Spinner number
 ControlNum = Right(ControlName, 1)
 DialogSheets(1).Labels(ControlNum).Text = _
 DialogSheets(1).Spinners(ControlName).Value
End Sub

Microsoft Product Support Services

Sample Visual Basic Code for Controlling Dialog Boxes Page 18

Where to Find More Information

The Object Browser

A complete list of all of the properties and methods for a specific dialog box control is available in the Object
Browser. To find this information, switch to a Visual Basic module, choose Object Browser from the View menu,
and then select the name of the desired control from the list of Excel Libraries/Workbooks.

For more information about using the Object Browser, see pages 77–79 of the Visual Basic User's Guide.

Microsoft Knowledge Base

The Microsoft Knowledge Base is a primary Microsoft product information source for Microsoft support engineers
and is also available to Microsoft customers. This comprehensive database contains more than 40,000 detailed
articles with technical information about Microsoft products, fix lists, documentation errors, and answers to
commonly asked technical support questions. These articles are also available through CompuServeÒ, GEnieÒ,
the Microsoft TechNet CD-ROM, and the Microsoft Developer Network CD-ROM.

FastTips Technical Library Catalog

Microsoft FastTips is an automated, toll-free service that provides technical information about key Microsoft
products and is available 24 hours a day, 7 days a week in the United States and Canada. Through the FastTips
system, you can receive automated answers to common technical problems and access popular articles from the
Microsoft Knowledge Base. This information is delivered over the phone through recorded voice scripts, by fax,
or through the U.S. mail.

Home Products FastTips (800) 936-4100
Desktop Applications FastTips (800) 936-4100
Personal Operating Systems FastTips (800) 936-4200
Development Tools FastTips (800) 936-4300
Business Systems FastTips (800) 936-4400

Microsoft Product Support Services

	Overview
	How to Use the Examples in This Application Note
	Using the DLOGSMPL.XLS File
	To install DLOGSMPL.XLS on your hard disk
	To use DLOGSMPL.XLS

	Using the Examples in the Text of This Application Note

	Examples of Visual Basic Code to Use with Dialog Box Controls
	Labels
	To use a With statement to change the text property of a label
	To change the .Text property of a label using a For Each...Next statement
	End Sub
	To cycle through (index) a collection of dialog box labels

	Edit Boxes
	To retrieve the text in an edit box that has restricted input type
	To display information in an edit box

	Group Boxes
	To change the caption text of a group box
	To hide a group box or make a group box visible

	Buttons
	To use the .OnAction property to assign a macro to a button
	To associate a Help file with a dialog box button
	To assign an accelerator key to a button

	Check Boxes
	To obtain the value of the first check box in the dialog box
	To discern which check boxes are selected
	To discern the state of check boxes on a dialog box

	Option Buttons
	To discern which option button is on
	To select or clear the first option button

	List Boxes
	To populate a list box with cells on a worksheet using the .ListFillRange method
	To populate a list box using an array of data
	To return all items in a list box using a For Each...Next statement
	To obtain the selected item in a single-select list box
	To obtain the selected items of a multi-select list box
	To use a horizontal array of cells on a worksheet to populate a list box
	To clear all items in a list box using the .RemoveAllItems method

	Drop-Down List Boxes
	To add items to a drop-down list box using values on a worksheet with .ListFillRange
	To return the selected item of a drop-down list box
	To clear all items from a drop-down list box

	Combination List-Edit Boxes
	To obtain the selected value in the list box portion of a combination list-edit box
	To obtain the value in the edit box portion of a combination list-edit box
	To add the edit box value to the list box portion of a combination list-edit box

	Combination Drop-Down Edit Boxes
	To add items to a combination drop-down edit box using .ListFillRange
	To return the selected item from a combination drop-down edit box
	To add the edited text value to the drop-down list
	To clear all items from a combination drop-down edit box

	Scroll Bars
	To obtain the value of the scroll bar

	Spinners
	To associate a spinner with an edit box

	Other Examples and Tips
	Avoiding the "Out of Stack Space" Error Message
	Using the .Focus Property
	To set the focus of an edit box

	Using an Edit Box As a Password Entry Control
	Changing the Height of the Dialog Box Frame
	Using the .Caller Property

	Where to Find More Information
	The Object Browser
	Microsoft Knowledge Base
	FastTips Technical Library Catalog

