
 VSFlex 1.0
VideoSoft Custom Control Library

To learn how to use help, press F1

Introduction
Find out about:
Installation,      Product support,      Licensing,
Registration, and      Other VideoSoft products.

vsFlexArray
Display and operate on tabular data. FlexArray gives you total
flexibility to display, sort, merge, and format tables containing
strings and pictures.

Introduction      Reference      QuickStart

vsFlexString
A powerful regular expression engine. FlexString lets provide
regular expression search-and-replace capabilities, parse input
strings, and much more.

Introduction      Reference      QuickStart

Introduction
Welcome to VSFlex 1.0, a VideoSoft Custom Control Library.

VSFlex contains two custom controls designed to save you from writing tedious, repetitive, error-
prone code. The controls are innovative and efficient. They are distributed as a single VBX to make
installation easier.

Our distribution policy is almost as innovative as the controls. We want every Visual Basic
programmer to get a copy of VSFlex and try it for as long as they want. Those who like the product
and find it useful (almost everybody, we hope) can buy a license for a reasonable price. The only
restriction is that unlicensed copies of VSFlex display a VideoSoft banner whenever they are
loaded, to remind developers to license the product.

We hope you'll like VSFlex. If you have suggestions and ideas for new features or new controls,
call us or write.

VideoSoft
2625 Alcatraz Avenue, Suite 271
Berkeley, CA 94705
(510) 704-8200 (phone)
(510) 843-0174 (fax)

Control Summary
Icon Object Description

vsFlexArray Display and operate on tabular data.
FlexArray gives you total flexibility to
display, sort, merge, and format tables
containing strings and pictures.

vsFlexString A powerful regular expression engine.
FlexString lets provide regular
expression search-and-replace
capabilities, parse input strings, and
much more.

Installation
To install VSFlex, just copy the following files to your WINDOWS\SYSTEM directory:

VSFLEX.VBX This file contains the controls. To use VSFlex from Visual Basic, you must include
this file in your project.

VSFLEX.LIC This is the VSFlex license file.    If VSFlex cannot find this file when it starts
running, it displays a VideoSoft banner and waits for the user to click Ok, unless
the project was compiled on a machine that had VSFLEX.LIC installed.

VSFLEX.HLP This file contains the VSFlex on-line help.

If you would rather install VSFlex in a different directory, thats fine. As long as the help and license
files are either in the same directory as the VBX, in the WINDOWS\SYSTEM directory, or in the
WINDOWS directory, VSFlex will find them for you.

Distribution
VSFlex is royalty-free. You may include copies of the VBX and HLP files with as many copies of as
many applications you ship.

You cannot distribute the license file VSFLEX.LIC. And you dont have to: as long as you have
the license file installed on your machine, VSFlex will stamp every application you compile so the
banner will not appear when your users run the applications.

If you work with other developers, you may be interested in VideoSofts site licenses. Call us for
details.

If you havent yet registered your copy of VSFlex and would like to do it now, click HERE to get an
Order Form.

Product Support
Product support for VSFlex is available to licensed users through the following channels:

CompuServe CIS 74774,420
or join our forum by typing GO VIDEOSOFT

Mail VideoSoft
2625 Alcatraz Avenue, Suite 271
Berkeley, California 94705

Phone (510) 704-8200

Fax (510) 843-0174

Before calling for technical support, please make sure you know what version of VSFlex you are
using. The version number appears in the About box that pops up when you double-click the About
property in any of the VSFlex controls.

Also, please make sure you check the last section of the manual, Hints and Troubleshooting. It
contains answers to the most common questions people ask our technical support staff. Maybe you
can find your answer there.

Using the FlexArray Control
FlexArray is a control that allows you to display and operate on tabular data in a totally new way.
On the surface, FlexArray is similar to a spreadsheet, but it allows total flexibility to display, sort,
merge, and format tables containing strings and pictures.

The FlexArray control was designed to be compatible with Microsofts Grid control (GRID.VBX).
FlexArray implements most of the Grid controls properties, so it is easy to modify older projects to
take advantage of FlexArrays extra functionality:

Individual cell formatting: use FlexArrays Cell* properties to control individual cell colors and
fonts.

Sorting: use FlexArrays Sort property to sort information with speed and complete flexibility.

Row and Column moving: use FlexArrays RowPosition() and ColPosition() properties to
rearrange information at run time.

Cell Merging: use FlexArrays exclusive MergeCells property to create clear, concise, and
attractive data summaries without programming.

Design-time layout development: use FlexArrays FormatString property to define column and
row headers, widths, and alignment at design-time.

Cell Editing: use FlexArrays CellTop, CellLeft, CellWidth, and CellHeight properties to place
controls directly over the current cell, simulating in-cell editing with total program control.

Other FlexArray advantages are: long strings in cells (up to 32k), more than 2000 rows, invisible
columns and rows, more control over fonts (see the FontWidth property), more options for
customizing colors and grid styles, for aligning text and pictures, less flicker, more control over
cursor and selection appearance, and more.

Best of all, the FlexArray is small and does not require separate DLLs, so installation is quick and
easy.

FlexArray QuickStart
This section of the manual takes you step-by-step through the creation of three Visual Basic
projects using the FlexArray control:

Merge
This sample project illustrates some of FlexArrays sorting and merging capabilities. It shows how
FlexArray can be used to implement a display that groups information by category, allowing the
user to modify the order in which information is presented.

Edit
This sample project illustrates some of FlexArrays events and container capabilities. It shows how
FlexArray can be used to implement a spreadsheet with in-cell editing using standard Visual Basic
controls.

Outline
This sample project illustrates some of the FlexArrays cell formatting capabilities. It shows how
FlexArray can be used to implement an outline-style display, with heading items that can be
collapsed or expanded with the mouse.

Since the sample projects are a little long, you may want to print them (using the File|Print menu
option) and work along as you read the code descriptions.

MERGE: Grouping and sorting information

This sample project illustrates some of FlexArrays sorting and merging capabilities. It shows how
FlexArray can be used to implement a display that groups information by category, allowing the
user to modify the order in which information is presented.

Create Controls
Start a new Visual Basic project including the VSFLEX.VBX file (if you dont know how to add
VBX files to a project, consult the Visual Basic manual). The VSFLEX control icons will be added
to the Visual Basic toolbox.

Create a FlexArray object on the form by clicking the FlexArray icon on the toolbox, then clicking
and dragging on the form.

Set Properties
Click on the FlexArray object you just created by clicking on it, then press F4 to bring up the
Properties window. Set the following properties (dont worry about the number of spaces in the
FormatString):

Name = FA              to save some typing
Cols = 4
FontName = Arial
FontBold = False
MergeCells = 2        restrict rows
FormatString = <Region                      |<Product
|<Employee        |>Sales

Make the form wider, if you have to, so the entire control is visible. Your form should look like this:

Notice how the FormatString property affected column headings, alignment, and widths. The pipe character delimits
the fields, and the arrows indicate alignment.
Create Data In a real application, your data would probably come from a database. In this sample, we will create

some dummy data to work with.

Double-click the form (not the FlexArray) to add code to the Form_Load event. Type in the
following:

Sub Form_Load ()
        Dim i%

        ' create dummy data
        For i = fa.FixedRows To fa.Rows - 1
            fa.TextArray(fai(i, 0)) = RandString(0)    region
            fa.TextArray(fai(i, 1)) = RandString(1)    product
            fa.TextArray(fai(i, 2)) = RandString(2)    employee
            fa.TextArray(fai(i, 3)) = Format(Rnd * 10000, "#.00")
        Next

        ' set up merging
        fa.MergeCol(0) = True
        fa.MergeCol(1) = True
        fa.MergeCol(2) = True

        ' sort to see the effects
        DoSort
End Sub

You cant run this project yet, because we have to define a couple of general routines. The first one
calculates an index to be used with the TextArray property. Here it is:

Function fai (r%, c%) As Integer
        fai = c + fa.Cols * r
End Function

For details on how this works, see the TextArray property in the reference section of the manual.

The second routine sorts all the random data:

Sub DoSort ()
        fa.Col = 0
        fa.ColSel = fa.Cols - 1
        fa.Sort = 1 generic ascending
End Sub

The routine selects an entire row, then uses the Sort property to sort the entire grid in ascending
order based on columns 0, 1, 2, and 3. Notice that the generic sort option works for strings and
numbers.

Finally, heres the function that returns random strings to fill up the FlexArray with dummy data:

Sub RandomString (kind%)
        Select Case kind

            Case 0    region
                Select Case (Rnd * 1000) Mod 5
                    Case 0: Region = "1. Northwest"
                    Case 1: Region = "2. Southwest"
                    Case 2: Region = "3. Midwest"
                    Case 3: Region = "4. East"
                    Case Else: Region = "5. Overseas"
                End Select

            Case 1    product
              Select Case (Rnd * 1000) Mod 5
                        Case 0: Product = "1. Wahoos"
                        Case 1: Product = "2. Trinkets"
                        Case 2: Product = "3. Foobars"
                        Case Else: Product = "4. Applets"
                End Select

            Case 2    employee
                Select Case (Rnd * 1000) Mod 4
                    Case 0: Employee = "Mary"
                    Case 1: Employee = "Sarah"
                    Case 2: Employee = "Donna"
                    Case Else: Employee = "Paula"
            End Select
        End Select
End Sub

Were almost done. If you run the project, it should look like this:

Pretty neat, huh? You can see at a glance which products sold in each region, and who sold them.
Dynamic Layout

Were not done yet. Why not let the user switch views, to see for example which products are being
sold by which employees? We only need two very short routines to do this:

Sub fa_MouseDown (Button%, Shift%, X!, Y!)
        fa.Tag = ""
        If fa.MouseRow <> 0 Then Exit Sub
        fa.Tag = Str(fa.MouseCol)
        MousePointer = 9
End Sub

This routine checks when the user presses the mouse button over the heading row, and uses the
Tag property to save the column number. (This way, we dont have to declare any global variables.)
We also change the cursor to give the user some feedback.

And finally, we need to trap the MouseUp event as well:

Sub fa_MouseUp (Button%, Shift%, X!, Y!)
        MousePointer = 0
        If fa.Tag = "" Then Exit Sub
        fa.Redraw = False
        fa.ColPosition(Val(fa.Tag)) = fa.MouseCol
        DoSort
        fa.Redraw = True
End Sub

This routine first restores the cursor, then checks to see if the Tag property currently holds a valid
column number. If it does, then we set Redraw to False to reduce flicker while we work.

Next, we use the ColPosition property to move the selected column to the desired position, and call
DoSort to reorganize the data. Finally, we set the Redraw property back to True so the FlexArray
shows the data in its new state.

Try running the project now. Drag the Employee column over to the left, and the Product column
next to it. The FlexArray will look like this:

Its not just data anymore. Its information.

EDIT In-cell editing

This sample project illustrates some of FlexArrays events and container capabilities. It shows how
FlexArray can be used to implement a spreadsheet with in-cell editing using standard Visual Basic
controls.

Create Controls
Start a new Visual Basic project including the VSFLEX.VBX file (if you dont know how to add
VBX files to a project, consult the Visual Basic manual). The VSFLEX control icons will be added
to the Visual Basic toolbox.

Create a FlexArray object on the form by clicking the FlexArray icon on the toolbox, then clicking
and dragging on the form.

Now create a Text Box, but dont place it on the form. Place it on the FlexArray instead. To make
sure you got it right, try to drag the text box off the FlexArray. If you cant, that means its really on
the FlexArray, and youre Ok. If you can, delete it and try again.

Set Properties
Click on the FlexArray object you just created by clicking on it, then press F4 to bring up the
Properties window. Set the following properties (dont worry about the number of spaces in the
FormatString):

Name = FA                to save some typing
FontName = Arial
FontSize = 9
FontBold = False
FillStyle = 1            repeat
FocusRect = 2            heavy

Now click on the Text Box and set the following properties:

Name = Text
FontName = Arial
FontSize = 9
FontBold = False
BorderStyle = 0            none
Visible = False

Your form should look like this:

Add Row and Column Headings
To make the FlexArray look like a spreadsheet, double-click on the form and attach the following
code to the Form_Load event:

Sub Form_Load ()
        Dim i%

        ' make first column narrow
        fa.ColWidth(0) = fa.ColWidth(0) / 2
        fa.ColAlignment(0) = 1    center center

        ' label rows and columns
        For i = fa.FixedRows To fa.Rows - 1
                fa.TextArray(fai(i, 0)) = i
        Next

        For i = fa.FixedCols To fa.Cols - 1
                fa.TextArray(fai(0, i)) = i
        Next

        ' initialize edit box (so it loads now)
        text = ""
End Sub

When the form loads, we set the width of the first column to half of its default width, and make
center-align its contents. Next, we fill the header rows and columns with labels to identify the cells.
To do this, we use the TextArray property and the same helper function we had used earlier to
calculate an index for the TextArray property. Here it is again:

Function fai (r%, c%) As Integer
        fai = c + fa.Cols * r
End Function

If you run the project now, you will have a spreadsheet with no editing capability. You can navigate
around, though, and select ranges using the keyboard or the mouse.

Add In-Cell Editing
We are ready to add editing capabilities to the project. Lets say we want to bring up an edit box
whenever the user starts typing or double-clicks on a cell.

We start by adding the following code:

Sub fa_KeyPress (KeyAscii%)
        FlexArrayEdit fa, Text, KeyAscii
End Sub

Sub fa_DblClick ()
        FlexArrayEdit fa, Text, 32    simulate a space
End Sub

The FlexArrayEdit is a really useful routine, so we should place it in a separate module so we can
reuse it in other projects. For now, well define it like this:

Sub FlexArrayEdit (FlexArray As Control, Edt As Control,
                                      KeyAscii%)

    ' use the character that was typed
    Select Case keyascii
 
        ' a space means edit the current text
        Case 0 To 32
            Edt = FlexArray
            Edt.SelStart = 1000
 
        ' anything else means replace the current text
        Case Else
            Edt = Chr(keyascii)
            Edt.SelStart = 1
    End Select
 
    ' show Edt at the right place
    Edt.Move FlexArray.CellLeft, FlexArray.CellTop
    Edt.Width = FlexArray.CellWidth
    Edt.Height = FlexArray.CellHeight
    Edt.Visible = True
 
    ' and let it work
    Edt.SetFocus
End Sub

This routine takes care of initializing the Text box at the right spot and passing it the focus, so the
user can type into it. It would be easy to extend or create variations using Combo boxes or other
controls.

Now we need to add some code to the Edit box so it knows how to update the data and when to
return control to the FlexArray. Again, we call a generic function that can be reused. Here it is:

Sub Text_KeyPress (KeyAscii%)
          eat returns to get rid of beep
        If KeyAscii = 13 Then KeyAscii = 0
End Sub

Sub Text_KeyDown (KeyCode%, Shift%)
        EditKeyCode fa, text, KeyCode, Shift
End Sub

Sub EditKeyCode (FlexArray As Control, Edt As Control,
                                  KeyCode%, Shift%)

    ' standard edit control processing
    Select Case KeyCode

        Case 27 ' ESC: hide, return focus to FlexArray
            Edt.Visible = False
            FlexArray.SetFocus

        Case 13 ' ENTER return focus to FlexArray
            FlexArray.SetFocus

        Case 38 ' up
            FlexArray.SetFocus
            DoEvents
            If FlexArray.Row > FlexArray.FixedRows Then
                FlexArray.Row = FlexArray.Row - 1
            End If

        Case 40 ' down
            FlexArray.SetFocus
            DoEvents
            If FlexArray.Row < FlexArray.Rows - 1 Then
                FlexArray.Row = FlexArray.Row + 1
            End If
    End Select
End Sub

Ok, now the editor knows how to handle the keyboard and return the focus to the FlexArray. There
is only one last thing we have to do: tell the FlexArray what to do with the information when it
becomes available.

We need to handle only two situations: when the Edit control voluntarily returns the focus to the
FlexArray, and when the user clicks on a different cell thereby activating the FlexArray.

In both situations, what we have to do is check whether the text box is up. If it is, copy the
information from it and hide it. Here is the code:

Sub fa_GotFocus ()
        If Text.Visible = False Then Exit Sub
        fa = Text
        Text.Visible = False
End Sub

Sub fa_LeaveCell ()
        If Text.Visible = False Then Exit Sub
        fa = Text
        Text.Visible = False
End Sub

Were done. In a real application, the above routines could include all kinds of data validation, and
refuse to copy the contents of the Edit box into the FlexArray in case errors were detected.

Run the project, and type something into the cells. Notice that you can select a range and fill it

easily, or use the ESC key to cancel changes while you are editing a cell. Heres what the program
looks like:

OUTLINE: An outline-style expense report

This sample project illustrates some of the FlexArrays cell formatting capabilities. It shows how
FlexArray can be used to implement an outline-style display, with heading items that can be
collapsed or expanded with the mouse.

Create Controls
Start a new Visual Basic project including the VSFLEX.VBX file (if you dont know how to add
VBX files to a project, consult the Visual Basic manual). The VSFLEX control icons will be added
to the Visual Basic toolbox.

Create a FlexArray object on the form by clicking the FlexArray icon on the toolbox, then clicking
and dragging on the form. Your form should look like this:

Set Properties
Click on the FlexArray object you just created by clicking on it, then press F4 to bring up the
Properties window. Set the following properties (dont worry about the number of spaces in the
FormatString):

Name = FA                to save some typing
Cols = 4
FontName = Arial
FontBold = False
GridLines = 0            none
SelectionMode = 1    by row
FocusRect = 0            none
FillStyle = 1            repeat
FormatString = ^          |Description                            |
                                >Date                                |>Amount

Make the form wider, if you have to, so the entire control is visible. Your form should look like this:

Notice how the FormatString property affected column headings, alignment, and widths. The pipe character delimits
the fields, and the arrows indicate alignment.
Create Data In a real application, your data would come from a database or from the user. In this sample, we will

create some dummy data to work with.

Double-click the form (not the FlexArray) to add code to the Form_Load event. Type in the
following:

Sub Form_Load ()
    Dim i%, tot%
    Dim t$, s$

      create some dummy data
    t = Chr(9)
    fa.Rows = 1

    fa.AddItem "*" + t + "Air Fare"
    s = "" +t+ "SFO-JFK" +t+ "9-Apr-95" +t+ "750.00"
    For i = 0 to 5
        fa.AddItem s
    Next

    fa.AddItem "*" + t + "Meals"
    s = "" +t+ "Flint's BBQ" +t+ "25-Apr-95" +t+ "35.00"
    For i = 0 to 5
        fa.AddItem s
    Next

    fa.AddItem "*" +t+ "Hotel"
    s = "" +t+ "Center Plaza" +t+ "25-Apr-95" +t+ "817.00"
    For i = 0 to 5
        fa.AddItem s
    Next

    add up totals and format heading entries
    For i = fa.Rows - 1 To 0 Step -1
        If fa.TextArray(i * fa.Cols) = "" Then
            tot = tot + Val(fa.TextArray(i * fa.Cols + 3))
        Else
            fa.Row = i
            fa.Col = 0
            fa.ColSel = fa.Cols - 1
            fa.CellBackColor = &HC0C0C0
            fa.CellFontBold = True
            fa.CellFontWidth = 8
            fa.TextArray(i * fa.Cols + 3) = Format(tot, "0")
            tot = 0
        End If
    Next

    select the first row
    fa.Col = 1
    fa.Row = 1
    fa.ColSel = fa.Cols - 1
End Sub

Sorry for all the typing, but now were almost done. If you run the project, it should look like this:

Notice how the special formatting sets off the headings.
Collapse/Expand

Now we are ready to add the code that collapses and expands headings. Stop the program,
double-click the FlexArray, and add the following code to the FlexArrays DblClick event:

Sub fa_DblClick ()

        Dim i%, r%

          ignore top row
        r = fa.MouseRow
        If r < 1 Then Exit Sub

        ' find field to collapse or expand
        While r > 0 And fa.TextArray(r * fa.Cols) = ""
                r = r - 1
        Wend

        ' show collapsed/expanded symbol on first column
        If fa.TextArray(r * fa.Cols) = "*" Then
                fa.TextArray(r * fa.Cols) = "+"
        Else
                fa.TextArray(r * fa.Cols) = "*"
        End If

        ' expand items under current heading
        r = r + 1
        If fa.RowHeight(r) = 0 Then
                Do While fa.TextArray(r * fa.Cols) = ""
                        fa.RowHeight(r) = -1    default row height
                        r = r + 1
                        If r >= fa.Rows Then Exit Do
                Loop

        ' collapse items under current heading
        Else
                Do While fa.TextArray(r * fa.Cols) = ""
                        fa.RowHeight(r) = 0    hide row
                        r = r + 1
                        If r >= fa.Rows Then Exit Do
                Loop
        End If
End Sub

Thats it. Notice how setting the RowHeight() property to -1 resets it to the default height,
determined by the font size, and setting it to 0 hides the entire row.

Run the project and double-click on the rows to expand and collapse headings. Your form should
look like this:

You could easily modify this project to show pictures instead of + and * characters, or add additional levels to the
outline.

FlexArray Control Reference
Description A FlexArray control displays a series of rows and columns. The intersection of a row and column is

a cell. You can read and set the contents of each cell programmatically.

Remarks You can put text, a picture, or both in any cell of a FlexArray. The Row and Col properties specify
the current cell in a grid. You can specify the current cell in code, or the user can change it at run
time using the mouse or the arrow keys. The Text property references the contents of the current
cell.

If a cell's text is too long to be displayed in the cell, and the WordWrap property is set to True, the
text wraps to the next line within the same cell. To display the wrapped text, you may need to
increase the cell's column width (ColWidth property) or row height (RowHeight property).

Use the Cols and Rows properties to determine the number of columns and rows in a FlexArray
control.

When a new element of a control array is loaded at run time, the new element does not inherit the
original control's run-time properties.

File Name VSFLEX.VBX

Object Type FlexArray

Note              Before you can use a FlexArray control in your application, you must add VSFLEX.VBX to your
project (see the Visual Basic manual for details). To automatically include VSFLEX.VBX in new
projects, put it in an AUTOLOAD.MAK file. When distributing your application, you should install
the VSFLEX.VBX file in the user's Microsoft Windows SYSTEM subdirectory.

FlexArray Summary
Properties (default: Text)

* (About) Align BackColor
* BackColorBkg * BackColorFixed * BackColorSel

BorderStyle * CellAlignment * CellBackColor
* CellFontBold * CellFontItalic * CellFontName
* CellFontSize * CellFontWidth * CellForeColor
* CellHeight * CellLeft * CellPicture
* CellPictureAlignment * CellTextStyle * CellTop
* CellWidth * Clip * Col
* ColAlignment() * ColData() * ColPosition()
* Cols * ColSel * ColWidth()

DragIcon DragMode Enabled
* FillStyle * FixedCols * FixedRows
* FocusRect FontBold FontItalic

FontName FontSize FontStrike
FontUnder * FontWidth ForeColor

* ForeColorFixed * ForeColorSel * FormatString
* GridColor * GridColorFixed * GridLines
* GridLinesFixed Height HelpContextID
* HighLight hWnd Index

Left * LeftCol * MergeCells
* MergeCol() * MergeRow() * MouseCol

MousePointer * MouseRow Name
Parent * Redraw * Row

* RowData() * RowHeight() * RowHeightMin
* RowPosition() * Rows * RowSel
* SelectionMode * ScrollBars * ScrollTrack
* Sort TabIndex TabStop

Tag * Text * TextArray()
* TextStyle * TextStyleFixed Top
* TopRow * Version Visible

Width * WordWrap

Events
Click DblClick DragDrop
DragOver * EnterCell GotFocus
KeyDown KeyPress KeyUp

* LeaveCell LostFocus MouseDown
MouseMove MouseUp * RowColChange

* Scroll * SelChange

Methods
* AddItem * Clear Drag

LinkSend Move Refresh
* RemoveItem ZOrder

AddItem Method
Description Adds a new row to a grid control at run time.

Syntax              [form!]FlexArray.AddItem item [, index]

Remarks The AddItem method has these parts:

item
String expression to add to the control. Use the tab character (character code 9) to separate
multiple strings you want inserted into each column of a newly added row.

index
Integer representing the position within the control where the new row is placed. For the first row,
index = 0. If index is omitted, the new row becomes the last.

BackColorBkg, BackColorFixed, BackColorSel Properties
Description Determine the background color of various elements of the FlexArray.

Usage              [form!]FlexArray.BackColorBkg[= colorexpression]

Remarks The picture below shows what part of the FlexArray each property refers to:

To set the background color of individual cells, use the CellBackColor property.
Data Type Long (Color)

CellAlignment Property
Description Determines the alignment of data in a cell or range of selected cells. Not available at design time.

Usage              [form!]FlexArray.CellAlignment[= numericexpression]

Setting              The CellAlignment property settings are:

0 - Left Top 3 - Center Top 6 - Right Top
1 - Left Center 4 - Center Center 7 - Right Center
2 - Left Bottom 5 - Center Bottom8 - Right Bottom
9 - General (default: Left Center for strings and Right Center for numbers)

Remarks Changing this property affects the current cell or the current selection, depending on the setting of
the FillStyle property.

To set the alignment of entire columns, use the ColAlignment property.

To set column alignments at design time, use the FormatString property.

Data Type Integer (Enumerated)

CellBackColor, CellForeColor Properties
Description Determines the background and foreground colors of individual cells or ranges of cells.

Usage              [form!]FlexArray.CellBackColor[= colorexpression]

Remarks Changing this property affects the current cell or the current selection, depending on the setting of
the FillStyle property.

Setting either of these properties to zero causes the FlexArray to paint the cell using the standard
background and foreground colors. If you want to set either of these properties to black, set them to
one instead of zero.

To set the colors of various FlexArray elements, use the BackColor* and ForeColor* properties.

Data Type Long (Color)

CellFont* Properties
Description Determine the font to be used for individual cells or ranges of cells.

Usage              [form!]FlexArray.CellFont*[= fontspec]

Remarks Changing this property affects the current cell or the current selection, depending on the setting of
the FillStyle property.

Data Type String (CellFontName)
Single (CellFontSize, CellFontWidth)
Boolean (CellFontBold, CellFontItalics)

CellForeColor, CellBackColor Properties
Description Determines the background and foreground colors of individual cells or ranges of cells.

Usage              [form!]FlexArray.CellBackColor[= colorexpression]

Remarks Changing this property affects the current cell or the current selection, depending on the setting of
the FillStyle property.

Setting either of these properties to zero causes the FlexArray to paint the cell using the standard
background and foreground colors. If you want to set either of these properties to black, set them to
one instead of zero.

To set the colors of various FlexArray elements, use the BackColor* and ForeColor* properties.

Data Type Long (Color)

CellHeight, CellLeft, CellTop, CellWidth Properties
Description Determine the position of the current cell, in Twips.

Usage              variable = [form!]FlexArray.CellTop

Remarks These properties are useful if you want to emulate in-cell editing. By trapping the FlexArrays
KeyPress event, you can place a text box or some other control over the current cell and let the
user edit its contents.

See the FlexArray demo on the distribution diskette for an example that uses text boxes and combo
boxes to edit cells.

Whenever you read any of these properties, the FlexArray assumes that you want to work on the
current cell and it automatically brings it into view, scrolling if necessary.

These properties are read-only.

Data Type Long

CellPicture Property
Description Determines a graphic to be displayed in the current cell or in a range of cells.

Usage              [form!].FlexArray.CellPicture[= picture]

Remarks You can set this property at run time using the LoadPicture function on a bitmap, icon, or metafile,
or by assigning to it another controls Picture property.

Changing this property affects the current cell or the current selection, depending on the setting of
the FillStyle property.

Each cell may contain text and a picture. The relative position of the text and picture is determined
by the CellAlignment and CellPictureAlignment properties.

Data Type Picture

CellPictureAlignment Property
Description Determines the alignment of pictures in a cell or range of selected cells. Not available at design

time.

Usage              [form!]FlexArray.CellPictureAlignment[= numericexpression]

Setting              The CellPictureAlignment property settings are:

0 - Left Top 3 - Center Top 6 - Right Top
1 - Left Center 4 - Center Center 7 - Right Center
2 - Left Bottom 5 - Center Bottom8 - Right Bottom
9 - Stretch 10 - Tile

Remarks Changing this property affects the current cell or the current selection, depending on the setting of
the FillStyle property.

See also the CellPicture property.

Data Type Integer (Enumerated)

CellTextStyle Property
Description Determines 3D effects for text on a specific cell or range of cells.

Usage              [form!]FlexArray.CellTextStyle [= setting]

Remarks The CellTextStyle property settings are:

0 - Flat
1 - Raised
2 - Inset
3 - Raised Light
4 - Inset Light

Settings 1 and 2 work best for large and bold fonts. Settings 3 and 4 work best for small regular
fonts.

Changing this property affects the current cell or the current selection, depending on the setting of
the FillStyle property.

See also the TextStyle and TextStyleFixed properties.

Data Type Integer

CellTop, CellWidth, CellHeight, CellLeft Properties
Description Determine the position of the current cell, in Twips.

Usage              variable = [form!]FlexArray.CellTop

Remarks These properties are useful if you want to emulate in-cell editing. By trapping the FlexArrays
KeyPress event, you can place a text box or some other control over the current cell and let the
user edit its contents.

See the FlexArray demo on the distribution diskette for an example that uses text boxes and combo
boxes to edit cells.

Whenever you read any of these properties, the FlexArray assumes that you want to work on the
current cell and it automatically brings it into view, scrolling if necessary.

These properties are read-only.

Data Type Long

Clear Method
Description Clears the contents of the FlexArray. This includes all text, pictures, and cell formatting.

Syntax              [form!]FlexArray.Clear

Remarks The Clear method does not affect the number of rows and columns on the FlexArray.

Clip Property
Description Determines the contents of the cells in a FlexArray's selected region. Not available at design time.

Usage              [form!]FlexArray.Clip[= stringexpression]

Remarks The stringexpression can contain the contents of multiple rows and columns. In stringexpression, a
tab character (ANSI character 9) indicates a new cell in a row, and a carriage return (ANSI
character 13) indicates the beginning of a new row. Use the Chr function to embed these
characters in strings. For example, this code puts text into a selected area two rows high and two
columns wide:

S$ = "1st" & Chr(9) & "a" & Chr(13) & "2nd" & Chr(9) & "b"
FlexArray.Clip = S$

When placing data into a grid, only the selected cells are affected. If there are more cells in the
selected region than are described in stringexpression, the remaining cells are left alone. If there
are more cells described in stringexpression than in the selected region, the unused portion of
stringexpression is ignored.

Data Type String

Col, Row Properties
Description Determine the active cell in a FlexArray. Not available at design time.

Usage              [form!]FlexArray.Col[= colnum]
[form!]FlexArray.Row[= rownum]

Remarks Use these properties to specify a cell in a FlexArray or to find out which row or column contains the
current cell. Columns and rows are numbered from zero, beginning at the top for rows and at the
left for columns.

Setting these properties automatically resets RowSel and ColSel, so the selection becomes the
current cell. Therefore, to specify a block selection, you must set Row and Col first, then set
RowSel and ColSel.

Note              The Col, Row properties are not the same as the Cols, Rows properties.

Data Type Integer

ColAlignment() Property
Description Determines the alignment of data in a column. Not available at design time (except indirectly

through the FormatString property).

Usage              [form!]FlexArray.ColAlignment(colnum)[= numericexpression]

Setting              The ColAlignment property settings are:

0 - Left Top 3 - Center Top 6 - Right Top
1 - Left Center 4 - Center Center 7 - Right Center
2 - Left Bottom 5 - Center Bottom8 - Right Bottom
9 - General (default: Left Center for strings and Right Center for numbers)

Remarks Any column can have an alignment that is different from other columns. This property affects all
cells in the specified column, including those in fixed rows.

If colnum is -1, then the FlexArray assumes you want to set the alignment of all columns at once.

To set individual cell alignments, use the CellAlignment property.

To set column alignments at design time, use the FormatString property.

Data Type Integer (Enumerated)

ColData(), RowData() Properties
Description These properties are arrays of long integer values with one item for each row (RowData) and for

each column (ColData) of the FlexArray. Not available at design time.

Usage [form!]FlexArray.RowData(rownum)[= numericexpression]
[form!]FlexArray.ColData(colnum)[= numericexpression]

Remarks Use the RowData() and ColData() properties to associate a specific number with each row or
column on a FlexArray. You can then use these numbers in code to identify the items.

For example, you can add rows containing totals to a FlexArray and identify those rows by setting
their RowData() property to a non-zero value. To update the totals later, you can delete the old
totals by scanning the RowData() array and removing the appropriate rows.

Another typical use of the RowData property is to keep an index into an array of data structures
associated with the items described on each row.

Data Type Long integer

ColPosition(), RowPosition() Properties
Description Allow you to move rows and columns to specific positions on the FlexArray.

Usage              [form!]FlexArray.ColPosition(colnum)[= newcolnum]
[form!]FlexArray.RowPosition(rownum)[= newrownum]

Remarks The index and setting must correspond to valid row or column numbers (in the range 0 to Rows - 1
or Cols - 1) or an error will be generated.

For example, the following code moves a column to first position when the user clicks on it:

Sub FlexArray_Click ()
    FlexArray.ColPosition(FlexArray.MouseCol) = 0
End Sub

When a row or column is moved with these properties, all formatting information moves with it,
including width, height, alignment, colors, fonts, etc. To move text only, use the Clip property
instead.

Data Type Integer

Cols, Rows Properties
Description Determine the total number of columns or rows in a FlexArray. The minimum is 0. The maximum

number of rows and columns is limited by the memory available on your computer.

Usage              [form!]FlexArray.Cols[= numericexpression]
[form!]FlexArray.Rows[= numericexpression]

Remarks You can use these properties to expand and shrink a FlexArray dynamically at run time.

Note              The Cols, Rows properties are not the same as the Col, Row properties.

Data Type Integer

ColSel, RowSel Properties
Description Determine the starting or ending row or column for a range of cells. Not available at design time.

Usage              [form!]FlexArray.RowSel[= numericexpression]
[form!]FlexArray.ColSel[= numericexpression]

Remarks You can use these properties to select a specific region of the FlexArray from code, or to read into
code the dimensions of an area that the user selects.

The FlexArray cursor it the cell at Row, Col. The FlexArray selection is the region between rows
Row and RowSel and columns Col and ColSel. Note that RowSel may be above or below Row,
and ColSel may be to the left or to the right of Col.

Whenever you set the Row and Col properties, RowSel and ColSel are automatically reset so the
cursor becomes the current selection. If you want to select a block of cells from code, you must set
the Row and Col properties first, then set RowSel and ColSel.

Data Type Integer

ColWidth() Property
Description Determines the width of the specified column in Twips. Not available at design time.

Usage              [form!]FlexArray.ColWidth(colnum)[= numericexpression]

Remarks You can use this property to set the width of any column at run time. For instructions on setting
column widths at design-time, see the FormatString property.

You can set ColWidth to zero to create invisible columns, or to -1 to reset the column width to its
default value, which depends on the size of the current font.

If colnum is -1, then the FlexArray assumes you want to set the width of all columns at once.

Data Type Long

EnterCell Event
Description Occurs when the currently active cell changes to a different cell.

Syntax              Sub FlexArray_EnterCell ()

Remarks This event occurs whenever the user clicks a cell other than the selected cell or when you
programmatically change the active cell within a selection.

See also the LeaveCell event.

FillStyle Property
Description Determines whether setting the Text property or one of the Cell formatting properties of a FlexArray

applies the change to all selected cells.

Usage              [form!]FlexArray.FillStyle[= style]

Setting              The FillStyle property settings are:

0 - Single Changing the Text/Cell* properties only affects the active cell.
1 - Repeat Changing the Text/Cell* properties affects all selected cells.

Data Type Integer (Enumerated)

FixedCols, FixedRows Properties
Description Determine the total number of fixed columns or fixed rows for a FlexArray. By default, a FlexArray

has one fixed column and one fixed row.

Usage              [form!]FlexArray.FixedCols[= numericexpression]
[form!]FlexArray.FixedRows[= numericexpression]

Remarks A fixed column is a stationary column on the left side of the FlexArray. A fixed row is a stationary
row along the top of the FlexArray. You can have zero or more fixed columns and zero or more
fixed rows. Fixed columns and rows do not move when the other columns or rows in the grid are
scrolled. You can select the colors, font, grid and text style use for the fixed columns and rows.

Fixed columns and rows are typically used in spreadsheet applications to display row numbers and
column names or letters.

Data Type Integer

FocusRect Property
Description Determines whether the FlexArray control should draw a focus rectangle around the current cell.

Usage              [form!]FlexArray.FocusRect[= setting]

Setting              The FocusRect property settings are:

0 - None
1 - Light (default)
2 - Heavy

Remarks If a focus rectangle is drawn, then the current cell is painted in the background color, as in most
spreadsheets and grids. Otherwise, the current cell is painted in the selection color, so you can see
which cell is selected even without the focus rectangle.

Data Type Integer (Enumerated)

FontWidth Property
Description Determines the width of the font to be used for text displayed in a FlexArray.

Usage              [form!]FlexArray.FontSize[= points]

Remarks The font width is normally chosen by Windows to match the selected font height and provide a
standard aspect ratio. FlexArray allows you to specify fonts that are narrower or wider than the
default so you can display more information in a cell or highlight certain cells.

When you specify a font width, Windows will try to select or generate a font to match your request.
For best results, use TrueType fonts, which are more flexible. The Courier New font, for instance,
looks very good when you make it a little narrower than its default.

To restore the default font width, set this property to zero.

To set the font of individual cells or cell ranges, use the CellFont* properties.

Data Type Single

ForeColorFixed, ForeColorSel Properties
Description Determine the color used to draw text on each part of the FlexArray.

Usage              [form!]FlexArray.ForeColorFixed[= colorexpression]

Remarks The picture below shows what part of the FlexArray each property refers to:

To set the text color of individual cells, use the CellForeColor property.
Data Type Long (Color)

FormatString Property
Description Allows you to set up a FlexArrays column widths, alignments, and fixed row and column text at

design time.

Usage              [form!]FlexArray.FormatString[= string]

Remarks FlexArray parses the FormatString at design time and interprets it to get the following information:
number of rows and columns, text for row and column headings, column width, and column
alignment.

The FormatString is made up of segments separated by pipe characters (|). The text between pipes
defines a column, and it may contain the special alignment characters <, ^, or >, to align the entire
column to the left, center, or right. The text is assigned to row zero, and its width defines the width
of each column.

The FormatString may also contain a semi-colon (;), which causes the remaining of the string to be
interpreted as row heading and width information. The text is assigned to column zero, and the
longest string defines the width of column zero.

FlexArray will create additional rows and columns to accommodate all fields defined by the
FormatString, but it will not delete rows or columns if only a few fields are specified. If you want,
you can do this by setting the Rows and Cols properties.

The examples below illustrate how the FormatString property works.

 ** set column headers
s$ = <Region        |<Product        |<Employee      |>Sales
FlexArray.FormatString = s$

 ** set row headers (note semicolon at start)
s$ = ;Name|Adress|Telephone|Social Security#
FlexArray.FormatString = s$

 ** set column and row headers
s$ = |Name|Adress|Telephone|Social Security#
s$ = s$ + ;|Robert|Jimmy|Bonzo|John Paul
FlexArray.FormatString = s$

Data Type String

GridColor, GridColorFixed Properties
Description Determine the color used to draw the lines between FlexArray cells.

Usage              [form!]FlexArray.GridColor[= colorexpression]
[form!]FlexArray.GridColorFixed[= colorexpression]

Remarks The GridColor property is used only when the GridLines property is set to 1 Lines, and
GridColorFixed is used only when GridLinesFixed is set to 1 Lines. Raised and inset grids lines are
always drawn in black and white.

Data Type Long (Color)

GridLines, GridLinesFixed Properties
Description Determines what type of lines should be drawn between cells.

Usage              [form!]FlexArray.GridLines[= setting]

Setting              The GridLines property settings are:

0 - None
1 - Lines (default for GridLines)
2 - Inset (default for GridLinesFixed)
3 - Raised

When the GridLines property is set to 1 - Lines, the color of the lines is determined by the GridColor
property.

Data Type Integer (Enumerated)

HighLight Property
Description Determines whether selected cells appear highlighted.

Usage              [form!]FlexArray.HighLight[= setting]

Setting              The HighLight property settings are:

0 - Never
1 - Always (default)
2 - With Focus

Remarks When this property is set to zero and the user selects a range of cells, there is no visual cue that
shows which cells are currently selected.

Data Type Integer (Boolean)

LeaveCell Event
Description Occurs immediately before the currently active cell changes to a different cell.

Syntax              Sub FlexArray_LeaveCell ()

Remarks This event is useful if you want to implement cell-editing capabilities. In this case, you can trap this
event to validate and apply changes to a cell before the user activates another cell .

The code below shows how this can be done. It assumes that there is an edit box called TextEdit
that is used to edit the contents of the current cell.

Sub FlexArray_LeaveCell ()
    ' ** if the edit box is up, copy its contents
    If TextEdit.Visible Then
        FlexArray = TextEdit
        TextEdit.Visible = False
    End If
End Sub

See also the EnterCell event.

LeftCol Property
Description Determines the leftmost visible column (other than a fixed column) in the FlexArray. Not available at

design time.

Usage              [form!]FlexArray.LeftCol[= numericexpression]

Remarks You can use this property in code to scroll a FlexArray programmatically. Use the TopRow property
to determine the topmost visible row in the FlexArray.

Data Type Integer

MergeCells Property
Description Determines whether cells with the same contents should be grouped in a single cell spanning

multiple rows or columns.

Usage              [form!]FlexArray.MergeCells[= setting]

Setting              The MergeCells property settings are:

0 - Never (default)
1 - Free
2 - Restrict Rows
3 - Restrict Columns
4 - Restrict Both

Remarks The FlexArray cell merging technology allows you present data in a clear, appealing way. To see
how cell merging is can be used in concert with FlexArrays sorting and column ordering
capabilities, see the MERGE.MAK example on the distribution diskette.

To use FlexArrays cell merging capabilities, you must do two things:

1: Set MergeCells to a value other than zero. (The difference between the settings is explained
below.)

2: Set the MergeRowcs_MergeColMergeRowProperties() and MergeCol() array properties to True
for the rows and columns you wish to merge.

Thats all there is to it. FlexArray will merge cells with the same contents, and will update the
merging automatically whenever you change the contents of any cells.

The difference between Free and Restricted merging is whether cells with the same contents
should always be merged or only when adjacent cells    to the left or to the top    are also merged.
This is hard to explain, but easy to show:

No Merging

MergeCells = 0
MergeRow(0) = True
MergeRow(1) = True
MergeRow(2) = True
MergeRow(3) = False

This is the regular
spreadsheet view.

Free Merging

MergeCells = 1
MergeRow(0) = True
MergeRow(1) = True
MergeRow(2) = True
MergeRow(3) = False

Notice how the third
employee cell (Donna)
merges across products to
its left and across sales to
its right.

Restricted Merging

MergeCells = 2
MergeRow(0) = True
MergeRow(1) = True
MergeRow(2) = True
MergeRow(3) = False

Notice how the third
employee cell (Donna) no
longer merges across
sales.

Note              When MergeCells is set to a value other than 0 - Never, selection highlighting is automatically
turned off. This is done mainly to speed up repainting, but also because selection of ranges
containing merged cells may lead to counterintuitive results.

Data Type Integer (Enumerated)

MergeCol(), MergeRow() Properties
Description Determine which rows and columns should have their contents merged when the MergeCells

property is set to a value other than 0 - Never.

Usage              [form!]FlexArray.MergeRow(rownum)[= { True|False }]
[form!]FlexArray.MergeCol(colnum)[= { True|False }]

Remarks If the MergeCells property is set to a non-zero value, adjacent cells with identical values are
merged if they are in a row with the MergeRow property set to True or in a column with the
MergeCol property set to True.

For details on how FlexArrays merging technology works, see the MergeCells property.

Data Type Integer (Boolean)

MouseCol, MouseRow Properties
Description Determine over which row and column the mouse pointer is. Not available at design time, read-only

at run time.

Usage              rowvar = [form!]FlexArray.MouseRow
colvar = [form!]FlexArray.MouseCol

Remarks You can use this property in code to determine where the mouse is and act accordingly. These
properties are especially useful to display context-sensitive help on the contents of individual cells
or to test whether the user has clicked on a fixed row or column.

Data Type Integer

Redraw Property
Description Enables or disables redrawing of the FlexArray control.

Usage              [form!]FlexArray.Redraw[= { True|False }]

Remarks You can use this property in code to reduce flicker while making extensive updates to the contents
of the FlexArray.

For example, the code below turns repainting off, makes several changes to the contents of the
FlexArray, and then turns repainting back on to show the results:

 ** freeze FlexArray to avoid flicker
FlexArray.Redraw = False
 ** update FlexArray contents
For I% = FlexArray.FixedRows To FlexArray.Rows - 1
    FlexArray.TextArray(faIndex(i%, 1)) = GetName(i%, 1)
    FlexArray.TextArray(faIndex(i%, 2)) = GetName(i%, 2)
Next
 ** show results
FlexArray.Redraw = True

Data Type Integer

RemoveItem Method
Description Removes a row from a FlexArray control at run time

Syntax              [form!]FlexArray.RemoveItem index

Remarks The RemoveItem method has these parts:

index
Integer representing the row to remove. To remove the first row, use index = 0.

Row, Col Properties
Description Determine the active cell in a FlexArray. Not available at design time.

Usage              [form!]FlexArray.Col[= colnum]
[form!]FlexArray.Row[= rownum]

Remarks Use these properties to specify a cell in a FlexArray or to find out which row or column contains the
current cell. Columns and rows are numbered from zero, beginning at the top for rows and at the
left for columns.

Setting these properties automatically resets RowSel and ColSel, so the selection becomes the
current cell. Therefore, to specify a block selection, you must set Row and Col first, then set
RowSel and ColSel.

Note              The Col, Row properties are not the same as the Cols, Rows properties.

Data Type Integer

RowColChange Event
Description Occurs when the currently active cell changes to a different cell.

Syntax              Sub FlexArray_RowColChange ()

Remarks This event occurs whenever the user clicks a cell other than the selected cell or when you
programmatically change the active cell within a selection.

You can trigger this event in code by changing the current cell using the Col and Row properties.

The RowColChange event also occurs when a user clicks a new cell, but does not occur when you
programmatically change the selected range without changing the active cell.

RowHeight() Property
Description Determines the height of the specified row in Twips. Not available at design time.

Usage              [form!]FlexArray.RowHeight(rownum)[= numericexpression]

Remarks You can set RowHeight to zero to create invisible rows, or to -1 to reset the row height to its default
value, which depends on the size of the current font.

If rownum is -1, then the FlexArray assumes you want to set the height of all rows at once.

Data Type Long

RowHeightMin Property
Description Allows you to specify a minimum row height for the entire control, in Twips.

Usage              [form!]FlexArray.RowHeightMin[= numericexpression]

Remarks Use this property if you wish to use small fonts but want the rows to be tall. Setting this property is
sometimes easier than setting individual row heights with the RowHeight() property.

Data Type Long

RowPosition(), ColPosition() Properties
Description Allow you to move rows and columns to specific positions on the FlexArray.

Usage              [form!]FlexArray.ColPosition(colnum)[= newcolnum]
[form!]FlexArray.RowPosition(rownum)[= newrownum]

Remarks The index and setting must correspond to valid row or column numbers (in the range 0 to Rows - 1
or Cols - 1) or an error will be generated.

For example, the following code moves a column to first position when the user clicks on it:

Sub FlexArray_Click ()
    FlexArray.ColPosition(FlexArray.MouseCol) = 0
End Sub

When a row or column is moved with these properties, all formatting information moves with it,
including width, height, alignment, colors, fonts, etc. To move text only, use the Clip property
instead.

Data Type Integer

Rows, Cols Properties
Description Determine the total number of columns or rows in a FlexArray. The minimum is 0. The maximum

number of rows and columns is limited by the memory available on your computer.

Usage              [form!]FlexArray.Cols[= numericexpression]
[form!]FlexArray.Rows[= numericexpression]

Remarks You can use these properties to expand and shrink a FlexArray dynamically at run time.

Note              The Cols, Rows properties are not the same as the Col, Row properties.

Data Type Integer

RowSel, ColSel Properties
Description Determine the starting or ending row or column for a range of cells. Not available at design time.

Usage              [form!]FlexArray.RowSel[= numericexpression]
[form!]FlexArray.ColSel[= numericexpression]

Remarks You can use these properties to select a specific region of the FlexArray from code, or to read into
code the dimensions of an area that the user selects.

The FlexArray cursor it the cell at Row, Col. The FlexArray selection is the region between rows
Row and RowSel and columns Col and ColSel. Note that RowSel may be above or below Row,
and ColSel may be to the left or to the right of Col.

Whenever you set the Row and Col properties, RowSel and ColSel are automatically reset so the
cursor becomes the current selection. If you want to select a block of cells from code, you must set
the Row and Col properties first, then set RowSel and ColSel.

Data Type Integer

Scroll Event
Description Occurs when the FlexArray scrolls its contents, either through the scroll bars, keyboard, or code

changing the TopRow or LeftCol properties.

Syntax              Sub FlexArray_Scroll ()

Remarks You can use this event to perform calculations or to manipulate controls that must be coordinated
with ongoing changes in scroll bars.

SelChange Event
Description Occurs when the selected range changes to a different cell or range of cells.

Syntax              Sub FlexArray_SelChange ()

Remarks The SelChange event occurs whenever the user clicks a cell other than the selected cell and as a
user drags to select a new range of cells. A user can also select a range of cells by pressing the
Shift key and using the arrow keys.

You can trigger this event in code by changing the selected region using the Row, Col, RowSel, or
ColSel properties.

The RowColChange event also occurs when a user clicks a new cell but does not occur while a
user drags the selection across the grid.

SelectionMode Property
Description Specifies whether a FlexArray should allow regular cell selection, selection by rows, or selection by

columns.

Usage              [form!]FlexArray.SelectionMode[= setting]

Setting              The SelectionMode property settings are:

0 - Free (default)
1 - By Row
2 - By Column

Remarks Setting 0 - Free allows selections to be made normally, spreadsheet-style. Setting 1 - By Row
forces selections to span entire rows, as in a multi-column list-box or record-based display. Setting
2 - By Column forces selections to span entire columns, as if selecting ranges for a chart or fields
for sorting.

Data Type Integer (Enumerated)

ScrollBars Property
Description Specifies whether a FlexArray has horizontal or vertical scroll bars.

Usage              [form!]FlexArray.ScrollBars[= setting]

Setting              The ScrollBars property settings are:

0 - None
1 - Horizontal
2 - Vertical
3 - Both (default)

Remarks Scroll bars appear on a FlexArray only if its contents extend beyond the FlexArrays borders. For
example, a vertical scroll bar appears when the FlexArray can't display all of its rows. If ScrollBars
is set to False, the FlexArray will not have scroll bars, regardless of its contents.

Note that if the FlexArray has no scroll bars in either direction, it will no allow any scrolling in that
direction, even if the user uses the keyboard to select a cell that is off the visible area of the control.

Data Type Integer (Enumerated)

ScrollTrack Property
Description Specifies whether FlexArray should scroll its contents while the user moves the scroll box along the

scroll bars.

Usage              [form!]FlexArray.ScrollTrack[= { True|False }]

Remarks This property should normally be set to False to avoid excessive scrolling and flickering. Set it to
True only if you want to emulate other controls that have this behavior.

Data Type Integer (Boolean)

Sort Property
Description Action-type property that sorts selected rows according to selected criteria. Not available at design-

time, write-only at run time.

Usage              [form!]FlexArray.Sort[= setting]

Setting              The Sort property settings are:

0 - None
1 - Generic Ascending guesses whether text is string or number
2 - Generic Descending
3 - Numeric Ascending converts strings to numbers
4 - Numeric Descending
5 - String Ascending case-insensitive string comparison
6 - String Descending
7 - String Ascending case-sensitive string comparison
8 - String Descending
9 - Custom uses Compare event to compare rows

Remarks The Sort property moves always sorts entire rows. The range to be sorted is specified by setting
the Row and RowSel properties. If Row and RowSel are the same, FlexArray assumes that you
want to sort all non-fixed rows.

They keys used for sorting are determined by the Col and ColSel properties, always from the left to
the right. For example, if Col = 3 and ColSel = 1, the sort would be done according to the contents
of columns 1, then 2, then 3.

The method used to compare the rows is determined by the setting, as explained above. The 9 -
Custom setting is the most flexible, since it fires the Compare event that allows you to compare
rows in any way you want, using any columns in any order (see the Compare event for details).
However, this method is also much slower that the others, typically by a factor of ten, so it should
be used only when really necessary.

An alternative to using the 9 - Custom setting is to create an invisible column, fill it with the keys,
then sort based on it with one of the other settings. This is a very good approach for sorting based
on dates, for example.

The code and pictures below shows how the sort property works:

 ** fill FlexArray with random data (left picture)
For i% = FlexArray.FixedRows to FlexArray.Rows - 1
    FlexArray.TextArray(faIndex(i%, 1)) = RandomName()
    FlexArray.TextArray(faIndex(i%, 2)) = RandomNumber()
Next
 ** sort by name (center picture)
FlexArray.Row = 1
FlexArray.Col = 1
FlexArray.Sort = 1    Generic Ascending
 ** sort by name and number (right picture)
FlexArray.Row = 1
FlexArray.Col = 1
FlexArray.ColSel = 2
FlexArray.Sort = 1    Generic Ascending

 Data Type Integer (Enumerated)

Text Property
Description Sets or retrieves the text contents of a cell or range of cells.

Usage              [form!]FlexArray.Text [= string]

Remarks When retrieving, the Text property always retrieves the contents of the current cell, defined by the
Row and Col properties.

When setting, the Text property sets the contents of the current cell or of the current selection,
depending on the setting of the FillStyle property.

See also the TextArray property.

Data Type String

TextArray() Property
Description Sets or retrieves the text contents of an arbitrary cell.

Usage              [form!]FlexArray.TextArray(cellindex) [= string]

Remarks This property allows you to set or retrieve the contents of a cell without changing the Row and Col
properties.

The cellindex parameter determines which cell to use. It is calculated by multiplying the desired row
by the Cols property and adding the desired column. The clearest and most convenient way to
calculate cellindex is to define a function to do it, as show below:

 ** calculate index for use with TextArray property
Function faIndex(row%, col%) As Long
        faIndex = row * FlexArray.Cols + col
End Function

Sub Form_Load()
Dim i%
 ** fill FlexArray with data using TextArray property
For i% = FlexArray.FixedRows to FlexArray.Rows - 1
      ** column 1
    FlexArray.TextArray(faIndex(i%, 1)) = RandomName()
      ** column 2
    FlexArray.TextArray(faIndex(i%, 2)) = RandomNumber()
Next

See also the Text property.

Data Type String

TextStyle, TextStyleFixed Properties
Description Allows you to specify 3D effects for displaying text. TextStyle determines the style of regular

FlexArray cells, and TextStyleFixed determines the style of fixed rows and columns.

Usage              [form!]FlexArray.TextStyle [= setting]
[form!]FlexArray.TextStyleFixed [= setting]

Setting              The TextStyle and TextStyleFixed property settings are:

0 - Flat
1 - Raised
2 - Inset
3 - Raised Light
4 - Inset Light

Remarks Settings 1 and 2 work best for large and bold fonts. Settings 3 and 4 work best for small regular
fonts.

See also the CellTextStyle property.

Data Type Integer

TopRow Property
Description Determines the uppermost row displayed in the FlexArray. Not available at design time.

Usage              [form!]FlexArray.TopRow[= numericexpression]

Remarks You can use this property in code to programmatically read or set the visible top row of the
FlexArray. Use the LeftCol property to determine the leftmost visible column in the FlexArray.

When setting this property, the largest possible row number is the total number of rows minus the
number of rows that can be visible in the FlexArray. Attempting to set TopRow to a greater row
number will cause the FlexArray to set it to the largest possible value.

Data Type Integer

Version Property
Description This property returns the version of the VSFlex controls currently loaded in memory.

Usage              checkversion = [form!]FlexArray.Version

Remarks You may want to check this value at the Form_Load event, to make sure the version that is
executing is at least as current as the version used to develop your application.

The version number is a three digit integer where the first digit represents the major version number
and the last two represent the minor version number. For example, version 1.23 would return 123.

This property is read-only.

Data Type Integer

WordWrap Property
Description This property determines whether text within a cell should be broken between words if a word

would extend past the edge of the cell. Return characters    Chr(13)    also force line breaks.

Usage              [form!]FlexArray.WordWrap [= {True|False}]

Remarks FlexArray can display text slightly faster if you set WordWrap to False.

Data Type Integer (Boolean)

Using the FlexString Control
FlexString is a control that allows you to incorporate regular-expression text matching into your VB
programs. This allows you to easily parse complex text input or to offer regular expression search
and replace features such as those found in professional packages such as Microsoft Word, Visual
C++, and Visual Basic.

FlexString looks for text patterns on its Text property, and lets you inspect and change the matches
it found. The text patterns are specified through the Pattern property, using regular expressions.
The syntax for regular expressions is described below.

Matching
As soon as you assign a string to the Text or Pattern properties, FlexString tries to find as many
matches as it can, and returns the number of matches found in the MatchCount property. You can
then scan through the matches by changing the MatchIndex property and reading the MatchString
property.

For example, the following code would scan a string and print all phone numbers in the San
Francisco area (the phone pattern used in the example is not very flexible, but its good enough to
show how the control works):

Dim i%
Dim PhonePat$

FlexString.Text = ClientList$
PhonePat = (415)[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]
FlexString.Pattern = PhonePat
Debug.Print FlexString.MatchCount    match(es) found.
For i% = 0 to FlexString.MatchCount - 1
    FlexString.MatchIndex = I
    Debug.Print FlexString.MatchString
Next

Replacing
You can also replace matches automatically, using the Replace property. For example, say you
wanted to change all instances of the (415) area code with (510):

Dim PhonePat$

FlexString.Text = ClientList$
PhonePat = (415)
FlexString.Pattern = PhonePat
Debug.Print FlexString.MatchCount    match(es) found.
FlexString.Replace = (510)

When a string is assigned to the Replace property, FlexString immediately replaces all matches
with the new string.

Tag Matches
The FlexString control also allows you to do tagged matches. By tagging matches, you can easily
determine what parts of the string matched what parts of the pattern.

For example, say you wanted to make your letters more informal by replacing all occurrences of Mr.
John Doe, Ms Jane Doe, and Mrs. Penny Doe, with John, Jane, and Penny. Heres the code to do
it:

FlexString.Text = ClientList$
FlexString.Pattern = Mr\.? {[A-Za-z]+} {[A-Za-z]+}
FlexString.Replace = {0}
FlexString.Pattern = Ms\.? {[A-Za-z]+} {[A-Za-z]+}
FlexString.Replace = {0}
FlexString.Pattern = Mrs\.? {[A-Za-z]+} {[A-Za-z]+}
FlexString.Replace = {0}

The curly brackets mark the tagged parts of the pattern. In this example, there are two tags, {0} and
{1}, that match the persons first and last names. The first tag is used in the replace string to retrieve
the persons first name.

Regular expressions
A regular expression is a notation for specifying and matching strings. Like an arithmetic
expression, a regular expression is a basic expression or one created by applying operators to
component expressions.

FlexString has a string property called Pattern that holds a regular expression. FlexString
recognizes the following special characters in Pattern:

Char Meaning
^ Matches the beginning of a string.
$ Matches the end of a string.
. Matches any character.
[] Character class, or complemented character class if the first character inside

the brackets is a caret (^).
* Repeat previous zero or more times.
+ Repeat previous one or more times.
? Repeat previous zero or one time.
\ Escape next character.
{ } Tagged match.

The following examples illustrate these:

Pattern Matches
^stuff strings that start with stuff.
stuff$ strings that end with stuff.
^...$ any 3-character string.
[AEIOU] any uppercase vowel.
[0-9] any digit.
[AZaz][0-9] any letter followed by any digit.
[^0-9] any character except a digit.
[A-Z][0-9]* any upper-case letter optionally followed by any

number of digits.
[A-Z][0-9]+ any upper-case letter followed by at least one digit.
[A-Z][0-9]? any upper-case letter optionally followed by one digit.
[+-]?[0-9]+ any integer optionally preceded by a sign.
[+-]?[0-9]+\.?[0-9]* any real number.

FlexString Control Reference
Description The FlexString control is a powerful regular expression engine. With FlexString, you can define, find

and replace patterns in strings.

Remarks Use FlexString it to provide regular expression search-and-replace capabilities similar to those
available in professional packages such as Word, Visual C++, or Visual Basic. Or use it to parse
input strings in complex formats.

File Name VSFLEX.VBX

Object Type FlexString

Note              Before you can use a FlexArray control in your application, you must add VSFLEX.VBX to your
project (see the Visual Basic manual for details). To automatically include VSFLEX.VBX in new
projects, put it in an AUTOLOAD.MAK file. When distributing your application, you should install
the VSFLEX.VBX file in the user's Microsoft Windows SYSTEM subdirectory.

FlexString Summary
Properties (default: Text)

(About) * Error Left
* MatchCount * MatchIndex * MatchLength
* MatchStart * MatchString Name

Parent * Pattern * Replace
Tag * TagCount * TagIndex

* TagStart * TagLength * TagString
* Text Top * Version

Error Property
Description Returns status information after you set the Pattern or Text properties. Read-only.

Usage              err = [form!]FlexString.Error

Setting              The settings returned by the Error property are:

0 - None
1 - Out of memory
2 - Unbalanced '[' in pattern
3 - Unbalanced '{' in pattern
4 - No valid pattern
5 - Bad TagIndex in replacement string
6 - No match
7 - MatchIndex too high

Remarks You should always check the Error property when a match fails.

Error 1 - Out of Memory will occur if you assign a string that is too long to the Text property or a
pattern that is to complex to the Pattern property. This should rarely occur, since FlexString can
handle strings with up to 32,000 characters.

Errors 2 - Unbalanced '[' in pattern and 3 - Unbalanced '{' in pattern occur when you assign invalid
patterns to the Pattern property. If you really want to match brackets, remember to escape them
with the backslash character (i.e. use \{ instead of {).

Error 4 - No valid pattern occurs when you try to retrieve the results of a match when the Pattern or
Text properties are empty.

Error 5 - Bad TagIndex in replacement string occurs when you use a tag in a replacement string for
which there is no match (i.e. Pattern = {[a-z]*}    , Replace = {0} {1}).

Error 6 - No match occurs when you try to retrieve the results of a match and the match failed.

Error 7 - MatchIndex too high occurs when you try to select a match greater then or equal to
MatchCount.

Data Type Integer (Enumerated)

MatchCount Property
Description Returns the number of matches found after you set the Pattern or Text properties. Read-only.

Usage              count = [form!]FlexString.MatchCount

Remarks You can retrieve information about each match by setting the MatchIndex property to a value
between 0 and MatchCount - 1 and reading the MatchLength, MatchStart, and MatchString
properties.

Data Type Integer

MatchIndex Property
Description Determines the current match.

Usage              [form!]FlexString.MatchIndex[= numericexpression]

Remarks You can retrieve information about the current match by reading the MatchLength, MatchStart, and
MatchString properties.

The MatchIndex property can range from 0 to MatchCount - 1.

Data Type Integer

MatchLength Property
Description Returns the length of the current match, in characters. Read-only.

Usage              varlen = [form!]FlexString.MatchLength

Remarks You can retrieve information about the current match by reading the MatchLength, MatchStart, and
MatchString properties.

Data Type Integer

MatchStart Property
Description Returns the position of the current match within the Text property string, starting from zero. Read-

only.

Usage              varstart = [form!]FlexString.MatchStart

Remarks You can retrieve information about the current match by reading the MatchLength, MatchStart, and
MatchString properties.

Data Type Integer

MatchString Property
Description Sets or returns the string corresponding to the current match.

Usage              [form!]FlexString.MatchString[= string]

Remarks If you assign a new string to the MatchString property, FlexString will modify the string in the Text
property and will attempt to do a new match.

Data Type String

Pattern Property
Description Sets or returns the regular expression being used for matching.

Usage              [form!]FlexString.Pattern[= string]

Remarks The syntax for the Pattern property is described in detail in the FlexString QuickStart section of this
document.

Data Type String

Replace Property
Description Replaces all matches with a specified string.

Usage              [form!]FlexString.Replace[= string]

Remarks The replacement occurs as soon as you assign the new text to the Replace property. If you wish to
perform the replacement on several strings, you need to assign the replacement string once for
each string, as shown below:

FlexString.Pattern = hte
While Not EOF(1)
    FlexString.Text = GetLine (1)
    FlexString.Replace = the
Wend

The Replacement string may contain tag replacements, specified using curly brackets. The tag
replacements expand into the matched text. For example:

FlexString.Pattern = "{[A-Za-z]+}\.{...}"
FlexString.Text = AUTOEXEC.BAT
FlexString.Replace = File {0}.{1}, Name: {0}, Ext: {1}
Debug.Print FlexString.Text
    File AUTOEXEC.BAT, Name: AUTOEXEC, Ext: BAT

Note how the first dot in the Pattern is escaped with the backslash character to really match a dot.
The remaining dots match any character.

Data Type String

TagCount Property
Description Returns the number of tags found after you set the Pattern, Text, or MatchIndex properties. Read-

only.

Usage              count = [form!]FlexString.TagCount

Remarks You can retrieve information about each tag by setting the TagIndex property to a value between 0
and TagCount - 1 and reading the TagLength, TagStart, and TagString properties.

Tags are defined by enclosing parts of the regular expression string in the Pattern property between
curly brackets. For example:

FlexString.Text = Mary had a little lamb
FlexString.Pattern = Mary had {.*}
Debug.Print FlexString.TagCount; FlexString.TagIndex;
Debug.Print [+ FlexString.TagString +]
    1    0 [a little lamb]

Data Type Integer

TagIndex Property
Description Determines the current tag.

Usage              [form!]FlexString.TagIndex[= numericexpression]

Remarks You can retrieve information about the current tag by reading the TagLength, TagStart, and
TagString properties.

The TagIndex property can range from 0 to TagCount - 1.

For example:

FlexString.Text = Mary had a little lamb
FlexString.Pattern = {[^]*} had {.*}
FlexString.TagIndex = 0
Debug.Print [+ FlexString.TagString +]
    [Mary]
FlexString.TagIndex = 1
Debug.Print [+ FlexString.TagString +]
    [a little lamb]

Data Type Integer

TagLength Property
Description Returns the length of the current tag, in characters. Read-only.

Usage              varlen = [form!]FlexString.TagLength

Remarks You can retrieve information about the current tag by reading the TagLength, TagStart, and
TagString properties.

Data Type Integer

TagStart Property
Description Returns the position of the current tag within the Text property string, starting from zero. Read-only.

Usage              varstart = [form!]FlexString.TagStart

Remarks You can retrieve information about the current tag by reading the TagLength, TagStart, and
TagString properties.

Data Type Integer

TagString Property
Description Sets or returns the string corresponding to the current tag.

Usage              [form!]FlexString.TagString[= string]

Remarks If you assign a new string to the TagString property, FlexString will modify the string in the Text
property and will attempt to do a new match.

Data Type String

Text Property
Description Sets or returns the text to be scanned searching for the Pattern string.

Usage              [form!]FlexString.Text[= string]

Remarks FlexString will try to perform a match as soon as you assign a string to the Text or to the Pattern
properties.

To find out how many matches were found, read the MatchCount property.

To retrieve information about each match, set the MatchIndex property to a value between 0 and
MatchCount - 1 and read the MatchLength, MatchStart, and MatchString properties.

Data Type String

Version Property
Description This property returns the version of the VSFlex controls currently loaded in memory.

Usage              checkversion = [form!]FlexString.Version

Remarks You may want to check this value at the Form_Load event, to make sure the version that is
executing is at least as current as the version used to develop your application.

The version number is a three digit integer where the first digit represents the major version number
and the last two represent the minor version number. For example, version 1.23 would return 123.

This property is read-only.

Data Type Integer

VideoSoft Products
To get an order form, click HERE.

VSVBX
A set of three custom controls for interface design and text parsing.

Icon Name Object Description

Elastic vsElastic Smart containers that resize themselves and their
child controls, automatically create labels and 3-D
frames for its child controls, and can also be used as
progress indicators and labels.

IndexTab vsIndexTab Allows you to group controls by subject, using the
familiar notebook metaphor that has become a
Windows standard.

Awk vsAwk Parsing engine named and patterned after the
popular Unix utility, plus a powerful expression
evaluator.

VSVIEW
A set of four custom controls for creating, viewing, and printing text and graphics.

Icon Name Object Description

InForm vsInForm A control that you can drop into any container to
customize its title bar, frame, resizing behavior, and
frame buttons. InForm also allows you to monitor the
clipboard, drag and drop files from File manager, and
more.

Printer vsPrinter A much improved printer object with word wrap,
headers and footers, multi-column printing, graphics,
and multi-page Print Preview capability.

ViewPort vsViewPort A control that gives you a scrollable virtual area so
you can fit more controls in your windows. Great for
implementing Print Preview and programs that look
like the Program Manager.

Draw vsDraw A versatile drawing control that lets you create
complex images, view them on the screen, copy them
to the clipboard, or print them. Great for technical
drawings, maps, and diagrams.

VSFLEX
A set of two custom controls for analyzing, formatting, and displaying information.

Icon Name Object Description

FlexArray vsFlexArray A new way to display and operate on tabular data.
FlexArray gives you total flexibility to display, sort,
merge, and format tables containing strings and
pictures.

FlexString vsFlexString A powerful regular expression engine. With
FlexString, you can find and replace patterns in
strings. Use it to provide regular expression search-
and-replace capabilities or to parse input strings.

CODEBOOK
A handy, integrated suite of utilities to help you develop Visual Basic applications.

Order Form
(You may print this form by selecting the File|Print command).

TO: VideoSoft
2625 Alcatraz Avenue, Suite 271
Berkeley, California 94705

To order by phone, call
(800) 547-7295 (from within the US)
(510) 704-8200 (from anywhere)
(510) 843-0174 (fax)

Please register my copy of the following VideoSoft products. I am enclosing a check or money order for the amount
of:

VSVBX Single developer US$ 45.00
      Additional developers __ x 45.00
VSVIEW Single developer 99.00
      Additional developers __ x 99.00
VSFLEX Single developer 99.00
      Additional developers __ x 99.00
CODEBOOK Single developer 45.00
      Additional developers __ x 45.00
Shipping and Handling Domestic 6.00
Shipping and Handling International 10.00
CA Sales Tax (CA residents only) 8.5%
TOTAL US$

Note: Call us for details on site licenses and volume discounts.

Name:

Company:

Street:

City, State, ZIP:

Country:

Phone:

Where did you hear about the VideoSoft products?

