
VBstrAPI ver 1.0 rev 1.40 Reference Manual
Copyright © 1995, Greg Truesdell

CIS ID : 74131,2175
Internet : 74131.2175@compuserve.com

VBstrAPI.DLL is a Visual Basic language extension module providing medium and large
arrays of strings and optimized string and file functions.

This DLL is designed for, and requires, Visual Basic for Windows.

Help File Updated: 95.06.24 - Ver 1.0 Rev 1.40

Contents

Introduction
Alphabetical Reference
Functional Reference
Constants
Limitations
Registration
History of Changes
Copyright

Reference

Glossary
Index

Introduction to VBstrAPI
Welcome to the VBstrAPI.DLL Visual Basic extension Library.    The library was written to
provide two enhancements to Visual Basic:

· An ultra-fast string search function and a smart file-copy function written mostly in assembler.

· Two large string handling objects: CatStr (a single 64k string manipulation object) and ArrayStr
(a huge multiple string array limited in size only by the amount of free global memory available).

The implementation of the fast string search function (actually two: case-sensitive and case-
insensitive) requires that the programmer pass a standard string to the function.    This allows you to
pass any string that Visual Basic handles (up to 64k).

The implementation of the two large string objects requires the DLL to maintain storage on the global
heap on behalf of the application.    Due to this requirement, and that many applications (or one
application requiring many large strings) may need to use the library at the same time, a Client-
Server paradigm was used.

Client-Server libraries must implement a method of identifying which application is accessing which
object.    Although there are many methods available for solving this problem, I have opted for the
unique handle method.

When you want to create a large string object for your application you will need to call a function that
will create the object and return a handle to it.    Your application then uses this handle to identify the
object it wants to use.

The diagram below demonstrates the relationship and differences between the two methods
described.

VBstrAPI was built to support two styles of application interface: Client-Server and Procedural.

The String and File functions are procedural because they are not required to access stored data between calls.

The CatStr and ArrayStr objects are Client-Server because they must store data for the calling application between
method calls.

This diagram shows that functional calls return the data without maintaining storage for the calling program.

CatStr and ArrayStr objects, however, must maintain large string buffers between calls, and therefore are
implemented using a Server paradigm.

The Server knows where the data is for a method call by maintaining handles to the object.    For this reason, calls
associated with objects require you to maintain the handle in your code.    The good news is that any number of
programs can use the library at once.    Also, any application can have more than one instance of each object.

Proper use of the string objects requires that you understand how they are created, used and
eventually destroyed.    It is important that you follow the steps outlined below in the next diagram.

In this next diagram you can see the proper use and operation of CatStr and ArrayStr objects.    The Object Handle
Database Server returns or uses the handle to a specific object.

The first step (Step One) is to create the object.    VBstrAPI returns a unique handle to the object that you will use to
access it.

In the second step (Step Two) you pass the handle to the object in one of the access methods.    The handle is used
to insure you are accessing the correct string object.

In the third step (Step Three), which is performed after you have completed using the object, you will destroy the
object, thus freeing any memory it used.

If you should forget to destroy the objects you use, their memory will be locked until the DLL is unloaded.    When
you are in development mode, this will usually happen automatically since Visual Basic unloads the DLL each time
the program ends normally.    Even if you break execution of the program abnormally.

Fortunately, using the functions provided, it is very easy to use string objects.    As you will recall from
the diagram above, you will use these objects in a three stage process.    Notice that the two string
objects use similar methods for access.    The CatStr Object is accessed through fewer methods than
the ArrayStr Object.    The more richly defined ArrayStr Object exports a number of special purpose
methods.

Create the String Object

' This example demonstrates the object creation
' step for CatStr objects and ArrayStr objects

Dim CHandle As Integer ' Handle to CatStr Object
Dim SHandle As Integer ' Handle to ArrayStr Object

 ' Create a CatStr Object

 CHandle = CreateNewCatString(32768)

 If CHandle > -1 Then

 Print "CatStr Object created! Handle is " & CHandle

 Else

 Print "Unable to create CatStr Object."

 End If

 ' Create ArrayStr Object of 10000 strings of 80 characters

 SHandle = CreateNewStringArray(10000, 80)

 If SHandle > -1 Then

 Print "ArrayStr Object created! Handle is " & SHandle

 Else

 Print "Unable to create String Array."

 End If

Use the String Object

' This example demonstrates sample use of
' the CatStr Object type

Dim File As Integer ' file handle
Dim rc As Integer ' return codes

 File = FreeFile
 Open "MyData.Fil" For Input As #File

 While Not Eof(File)

 Line Input #File, StrBuffer

 ' use CatStrAddLine to add a CR/LF terminated line

 rc = CatStrAddLine(CHandle, StrBuffer)

 Wend

 Close #File

 ' reset the Current Line Pointer

 CatStrResetCLP(CHandle)

 Print "CatStr is " & CatStrLength(CHandle) & " characters long."

 ' use CatStrNext to scan through the string line by line

 Print "Line 1:" & CatStrNext(CHandle)
 Print "Line 2:" & CatStrNext(CHandle)

Destroy the String Object
DestroyCatString(CHandle)
DestoryStringArray(SHandle)

Alphabetical Reference
ArrayStrBufferSize
ArrayStrClear
ArrayStrCLP
ArrayStrElements
ArrayStrMemSize
ArrayStrResize
ArrayStrSetCLP
CatStrAdd
CatStrAddLine
CatStrClear
CatStrCopy
CatStrFind
CatStrFindIC
CatStrLength
CatStrLineCount
CatStrLPSZ
CatStrResetCLP
CatStrMid
CatStrNext
CatStrNextLine
CatStrResetCLP
CatStrSetCLP
CenterString
CenterStringIn
CopyFile
CreateNewCatString
CreateNewStringArray
DeleteArrayStr
DestroyCatString
DestroyStringArray
FindString
FindStringIC
GetArrayBlk
GetArrayNext
GetArrayStr
InsertArrayStr
PutArrayBlk
PutArrayNext
PutArrayStr

ArrayStrBufferSize
This function returns the declared maximum size of the string.    The maximum size is defined in the
CreateNewStringArray() method.

Visual Basic Declaration
Declare Function ArrayStrBufSize Lib "VBstrAPI.DLL" (ByVal SHandle As
Integer) As Long

Parameters
· SHandle As Integer

String Handle returned by CreateNewCatString().

Returns
· Long

Length of the buffer for this string element.

Example
'
' Prints 81 (Which represents 80 character strings)
'
SHandle% = CreateNewStringArray(10000,81)
Print ArrayStrBufSize(SHandle)

ArrayStrClear
Used to clear the entire contents of the ArrayStr referenced by SHandle.

Visual Basic Declaration
Declare Sub ArrayStrClear Lib "VBstrAPI.DLL" (ByVal SHandle As Integer)

Parameters
· SHandle As Integer

The handle to this string returned by CreateNewStringArray()

Returns
· N/A

Example
'
' Prints ""
'
SHandle% = CreateNewStringArray(100,81)

rc& = PutArrayStr(SHandle%, 0, "First String")
rc& = PutArrayStr(SHandle%, 1, "Second String")

ArrayStrClear SHandle%

Print GetArrayStr(SHandle%, 0)

ArrayStrCLP
Returns the Current Line Pointer for the string object reference by the string handle.    The CLP is
used with PutArrayNext() and GetArrayNext() auto-incrementing methods.

Visual Basic Declaration
Declare Function ArrayStrCLP Lib "VBstrAPI.DLL" (ByVal SHandle As Integer)
As Long

Parameters
· SHandle As Integer

The reference handle for this string object.

Returns
· Long

The current auto-incremental line pointer.

Comments
The CLP is a property of    the ArrayStr object.    It is used to determine the next array element to
receive a string using the PutArrayNext method, or retrieve a string using the GetArrayNext
method.    You can set the starting CLP by using the ArrayStrSetCLP method.

ArrayStrElements
Used to determine the number of elements (dimensions) defined for the string referenced by the
string handle.

Visual Basic Declaration
Declare Function ArrayStrElements Lib "VBstrAPI.DLL" (ByVal SHandle As
Integer) As Long

Parameters
· SHandle As Integer

The reference handle for this string object.

Returns
· Long

The number of elements assigned to this array.

Example
'
' Prints '128'
'
SHandle% = CreateNewStringArray(128, 256)
Print ArrayStrElements(SHandle%)

ArrayStrMemSize
Returns the actual number of bytes consumed by the ArrayStr object reference by the string handle.

Visual Basic Declaration
Declare Function ArrayStrMemSize Lib "VBstrAPI.DLL" (ByVal SHandle As
Integer) As Long

Parameters
· SHandle As Integer

The reference handle for this string object.

Returns
· Long

The actual number of bytes used by this object.

Example
'
' Prints '20000'
'
SHandle% = CreateNewStringArray(100, 200)
Print ArrayStrMemSize(SHandle%)

ArrayStrResize
This method is used to resize the ArrayStr after it has been created.    You can expand or shrink the
size of the array.    See PutArrayStr method for information on how ArrayStr will expand automatically.

Visual Basic Declaration
Declare Function ArrayStrResize Lib "VBstrAPI.DLL" (ByVal SHandle As
Integer, ByVal NewSize As Long) As Integer

Parameters
· SHandle As Integer

The reference handle for this string object.

· NewSize as Long
Number of elements required.

Returns
· Integer

Returns 0 if successful, -1 if not.

ArrayStrSetCLP
This method is used to preset the CLP prior to using GetArrayNext and PutArrayNext methods.    The
CLP is the is a pointer to the next element to be stored (put) or retrieved (get).

Visual Basic Declaration
Declare Sub ArrayStrSetCLP Lib "VBstrAPI.DLL" (ByVal SHandle As Integer,
ByVal Element As Long)

Parameters
· SHandle As Integer

The reference handle for this string object.

· Element As Long
The next element to use for PutArrayNext and GetArrayNext methods.

Returns
· N/A

Example
'
' Example of ArrayStrSetCLP method.
'
' Prints "Blue"
'
SHandle& = CreateNewStringArray(1000, 512)
ArrayStrSetCLP SHandle&, 500

rc& = PutArrayNext(SHandle&, "Yellow")
rc& = PutArrayNext(SHandle&, "Blue")

Print GetArrayStr(SHandle&, 501)

CatStrAdd
Used to add (append) a new string to the CatStr object referenced by the string handle.

Visual Basic Declaration
Declare Function CatStrAdd Lib "VBstrAPI.DLL" (ByVal SHandle As Integer,
ByVal St As String) As Integer

Parameters
· SHandle As Integer

The reference handle for this string object.

· St As String
The string to append to the current contents of the object.

Returns
· Integer

Returns 0 if successful, -1 if no more room.

Example
'
' Prints "The moon in June is like a balloon."
'
SHandle% = CreateNewCatString(32000)

rc% = CatStrAdd(SHandle%, "The moon in June")
rc% = CatStrAdd(SHandle%, " is like a balloon.")

Print CatStrCopy(SHandle%)

CatStrAddLine
Used to add (append) a new line to the CatStr object referenced by the string handle. This line will
have CR/LF appended to it.

Visual Basic Declaration
Declare Function CatStrAddLine Lib "VBstrAPI.DLL" (ByVal SHandle As
Integer, ByVal St As String) As Integer

Parameters
· SHandle As Integer

The reference handle for this string object.

· St As String
The string to append to the current contents of the object.    This method appends a CR/LF
[Chr$(13) & Chr$(10)] to the end of the string.

Returns
· Integer

Returns 0 if successful, -1 if no more room.

Example
'
' Prints :
' "The moon in June"
' " is like a balloon."
'
SHandle% = CreateNewCatString(32000)

rc% = CatStrAddLine(SHandle%, "The moon in June")
rc% = CatStrAddLine(SHandle%, " is like a balloon.")

Print CatStrCopy(SHandle%)

CatStrClear
Used to clear the contents of the CatStr object referenced by the string handle.

Visual Basic Declaration
Declare Sub CatStrClear Lib "VBstrAPI.DLL" (ByVal SHandle As Integer)

Parameters
· SHandle As Integer

The reference handle for this string object.

Returns
· N/A

Example
'
' Prints ""
'
SHandle% = CreateNewCatString(32000)

rc% = CatStrAdd(SHandle%, "The moon in June")
rc% = CatStrAdd(SHandle%, " is like a balloon.")

CatStrClear SHandle%

Print CatStrCopy(SHandle%)

CatStrCopy
Used to copy the contents of the CatStr object referenced by the string handle.

Visual Basic Declaration
Declare Function CatStrCopy Lib "VBstrAPI.DLL" (ByVal SHandle As Integer)
As String

Parameters
· SHandle As Integer

The reference handle for this string object.

Returns
· String

Returns the entire contents (string) of the CatStr object.

Example
'
' Prints "The moon in June is like a balloon.")
'
SHandle% = CreateNewCatString(32000)

rc% = CatStrAdd(SHandle%, "The moon in June")

If rc% = 0 Then

 rc% = CatStrAdd(SHandle%, " is like a balloon.")

End If

Print CatStrCopy(SHandle%)

CatStrFind & CatStrFindIC
This function uses the FindString or FindStringIC function described elsewhere in this manual to
search for strings within CatStr Objects.    Since CatStr Objects can be larger that normal Visual
Basic strings, there is no easy way to search through them without this function.    See the
FindString function for more information.

Visual Basic Declaration
Declare Function CatStrFind Lib "VBstrAPI.DLL" (ByVal SHandle As Integer,
ByVal Start As Long, ByVal Target As String) As Long

Declare Function CatStrFindIC Lib "VBstrAPI.DLL" (ByVal SHandle As
Integer, ByVal Start As Long, ByVal Target As String) As Long

Parameters
· SHandle As Integer

The reference handle for this string object.

· Start As Long
A Long Integer is used here to allow Visual Basic to pass a number greater than 32768.    Since
CatStr objects can contain 65534 characters, it is necessary.

· Target As String
The string you are looking for.

Returns
· Long

The location in the CatStr object    where the Target String    was found, otherwise -1.

Example
'
' Note: See FindStringIC for more information.
'
' This example returns the location of "plastic" in
' the CatStr object
'
Locn& = CatStrFind(CHandle%, 1, "plastic")

CatStrLength
Returns the length of the string stored by the CatStr object.

Visual Basic Declaration
Declare Function CatStrLength Lib "VBstrAPI.DLL" (ByVal SHandle As
Integer) As Long

Parameters
· SHandle As Integer

The reference handle for this string object.

Returns
· Long

The length of the string stored in the object.

Example
'
' Prints 36
'
SHandle% = CreateNewCatString(32000)

rc% = CatStrAdd(SHandle%, "The moon in June")

If rc% = 0 Then

 rc% = CatStrAdd(SHandle%, " is like a balloon.")

End If

Print CatStrLength(SHandle%)

CatStrLineCount
This method returns the current line count for the CatStr object refered to by SHandle.

Visual Basic Declaration
Declare Function CatStrLineCount Lib "VBstrAPI.DLL" (ByVal SHandle) As
Long

Parameters
· SHandle As Integer

The reference handle for this string object.

Returns
· LongInt

Example
'
' Prints "3"
'
CHandle% = CreateNewCatString(65535)

rc% = CatStrAddLine(CHandle%, "This is Line 1 of Text.")
rc% = CatStrAddLine(CHandle%, "This is Line 2 of Text.")
rc% = CatStrAddLine(CHandle%, "This is Line 3 of Text.")

Print CatStrLineCount(CHandle%)

DestroyCatString CHandle%

CatStrLPSZ
Returns a long pointer to the zero-terminated string (lpsz) stored in the CatStr Object buffer.

Visual Basic Declaration
Declare Function CatStrLPSZ Lib "VBstrAPI.DLL" (Byval SHandle As
Integer) As Long

Parameters
· SHandle As Integer

The reference handle for this string object.

Returns
· Long

Long pointer to the string contents of the CatStr buffer.

Comments
This function is provided so the programmer can pass a pointer to the CatStr buffer to other DLLs.

CatStrResetCLP
This method resets the CLP property of the CatStr object. The Current Line Pointer is used internally
to maintain a pointer to the next line in the objects string buffer.

Visual Basic Declaration
Declare Sub CatStrResetCLP Lib "VBstrAPI.DLL" (ByVal SHandle As Integer)

Parameters
· SHandle As Integer

The reference handle for this string object.

Returns
· N/A

Example
'
' This example will print "0123456789"
'
CHandle% = CreateNewCatStr(13)

If CHandle% > -1 Then

 rc% = CatStrAddLine(CHandle%, "This is Line One.")
 rc% = CatStrAddLine(CHandle%, "This Is Line Two.")

 CatStrResetCLP CHandle ' reset the CLP

 Print CatStrNextLine(CHandle%, 10)
 DestroyCatString CHandle%

End If

CatStrMid$
This method is used to extract a string from a CatStr Object much as the Visual Basic Mid$ function
does.    This allows almost complete access to the very large string available in a CatStr Object
without resorting to a complete copy.

Visual Basic Declaration
Declare Function CatStrMid$ Lib "VBstrAPI.DLL" (ByVal SHandle As Integer,
ByVal Start As Long, ByVal cbSize As Long)

Parameters
· SHandle As Integer

The reference handle for this string object.

· Start As Long
Starting character of sub-string to select (1-based)

· cbSize As Long
Number of characters to extract.

Returns
· String

The extracted string.    Returns a Null string ("") if any invalid parameters are passed.    May also
cause a runtime error if the handle is invalid.

CatStrNext
This CatStr method is used to return the next cbSize block of characters from the object.    If the
remaining number of characters is less than cbSize then only the remaining characters will be
returned.

Visual Basic Declaration
Declare Function CatStrNext Lib "VBstrAPI.DLL" (ByVal SHandle As Integer,
ByVal cbSize As Long, Status As Integer) As String

Parameters
· SHandle As Integer

The reference handle for this string object.

· cbSize As Long
Size of block to read.

· Status As Integer
-1 if the method fails

Returns
· String

The returned block of characters.

Example
'
' This example will print "0123456789"
'
CHandle% = CreateNewCatStr(13)

If CHandle% > -1 Then

 rc% = CatStrAdd(CHandle%, "012345")
 rc% = CatStrAdd(CHandle%, "678910")

 Print CatStrNext(CHandle%, 10)
 DestroyCatString(CHandle%)

End If

CatStrNextLine
This method is used to return the next line from the object's string.

Visual Basic Declaration
Declare Function CatStrNextLine Lib "VBstrAPI.DLL" (ByVal SHandle As
Integer, Status As Integer) As String

Parameters
· SHandle As Integer

The reference handle for this string object.

· Status As Integer
-1 if method fails.

· Status As Integer
Return code if method fails.

Returns
· String

The next line.    Lines are terminated with CR/LF.

Example
'
' This example will print "This is Line One."
'
CHandle% = CreateNewCatStr(13)

If CHandle% > -1 Then

 rc% = CatStrAddLine(CHandle%, "This is Line One.")
 rc% = CatStrAddLine(CHandle%, "This Is Line Two.")

 CatStrResetCLP CHandle ' reset the CLP

 Print CatStrNextLine(CHandle%, 10)
 DestroyCatString CHandle%

End If

CatStrSetCLP
This method is used to preset the CLP prior to using CatStrNext* and CatStrAdd* methods.    The
CLP is the is a pointer to the next character location within the CatStr Object buffer.    You would
normally want to avoid doing this, but in cases where you know the starting character of a block or
line, you can use this method to set the next insert or retrieval point.    It is especially useful when
used with the CatStrFind method to move the CLP to the text located by the search.

Visual Basic Declaration
Declare Sub CatStrSetCLP Lib "VBstrAPI.DLL" (ByVal CHandle As Integer,
ByVal NewCLP As Long)

Parameters
· CHandle As Integer

The reference handle for this string object.

· NewCLP As Long
The new character index.

Returns
· N/A

CenterString
This general function centers the string in a string cbSize characters in length.    If cbSize is less than
or equal to the length of srcStr then srcStr is returned unchanged.

Visual Basic Declaration
Declare Function CenterString Lib "VBstrAPI.DLL" (ByVal srcStr As String,
ByVal cbSize As Integer) As String

Parameters
· srcStr As String

The string to be centered.

· cbSize As Integer
The field length to center the string.

Returns
· String

The modified string.

Example
'
' prints " HELLO "
'
Centered$ = CenterString("HELLO", 15)
Print Centered$

CenterStringIn
This general function centers the string in a string cbSize characters in length by padding the string
with the character Char.    If cbSize is less than or equal to the length of srcStr then srcStr is returned
unchanged.

Visual Basic Declaration
Declare Function CenterStringIn Lib "VBstrAPI.DLL" (ByVal srcStr As
String, ByVal Char As String, ByVal cbSize As Integer) As String

Parameters
· srcStr As String

The string to be centered.

· Char As String
The character used to fill the left and right sides of the string.

· cbSize As Integer
The field length to center the string.

Returns
· String

The modified string.

Example
'
' prints "**********HELLO**********"
'
Centered$ = CenterStringIn("HELLO", "*", 15)
Print Centered$

CopyFile
This general function copies a source file to a destination file using a very fast assembly language
routine.    The source and destination files are checked before the copy operation begins.

 Select this button to view return codes for this function.

Visual Basic Declaration
Declare Function CopyFile Lib "VBstrAPI.DLL" (ByVal srcFile As String,
ByVal destFile As String) As Integer

Parameters
· srcFile As String

Filename of the source file (copy from).

· destFile As String
Filename of the destination file (copy to).

Returns
· Integer

Success if 0, otherwise an error

Example
'
' An example of the CopyFile() function
'
rc% = CopyFile("C:\Windows\Win.INI", "D:\BackUp\Win.INI")

If rc% < 0 Then Print "Copy unsuccessful"

Constants
VBstrAPI.DLL Return Codes Reference

CopyFile Return Codes
' CopyFile Error Codes

Global Const CF_SUCCESS = 0 ' Successful
Global Const CF_SAME_ERROR = -1 ' Can't copy to same file
Global Const CF_ATTR_ERROR_SRC = -2 ' source file attribute error
Global Const CF_ATTR_ERROR_DEST = -3 ' destination file attribute
error
Global Const CF_OPEN_ERROR_SRC = -4 ' source file open error
Global Const CF_OPEN_ERROR_DEST = -5 ' destination file open error
Global Const CF_READ_ERROR = -6 ' source file read error
Global Const CF_WRITE_ERROR = -7 ' destination file write error
Global Const CF_CLOSE_ERROR = -8 ' destiation file close error
Global Const CF_ATTR_ERROR = -9 ' general attribute error
Global Const CF_FILE_INVALID = -10 ' source file is invalid
Global Const CF_PATH_INVALID = -11 ' destination file is invalid

CreateNewCatString
Used to create a new CatStr object.    CatStr Objects provide methods for accessing a single (up to)
65535 character string.    VBstrAPI.DLL is capable of handling up to 4,096 CatStr Objects.    That
represents 268,435,456 bytes of memory.

Visual Basic Declaration
Declare Function CreateNewCatString Lib "VBstrAPI.DLL" (ByVal cbSize As
Long) As Integer

Parameters
· cbSize As Long

The maximum size of the string buffer for the object. Values from 2 to 65536 are valid.    If a
number greater that 64k is used, the string length is set to 64k.

Returns
· Long

Returns an SHandle (string handle) to the newly created CatStr object.

Example
'
' Prints "The moon in June is like a balloon.")
'
SHandle% = CreateNewCatString(32000)

rc% = CatStrAdd(SHandle%, "The moon in June")
rc% = CatStrAdd(SHandle%, " is like a balloon."

Print CatStrCopy(SHandle%)

CreateNewStringArray
Used to create a new ArrayStr object.

The absolute maximum number of objects available to VBstrAPI.DLL is 32,767 objects.
The absolute number of items in a ArrayStr object is    2,147,483,646 items.    The maximum size of a
string element is 65,535 characters (65,536 bytes.)

Visual Basic Declaration
Declare Function CreateNewStringArray Lib "VBstrAPI.DLL" (ByVal cbItems As
Long, ByVal cbSize As Long) As Integer

Parameters
· cbItems As Long

Number of items (or elements) to create.    This defines the dimension of the ArrayStr. Maximum
is determined by the amount of available memory up to a maximum of 2,147,483,646 items.

For example:    4 MBytes free    (4,194,304 Bytes) will support 16,384 strings of 255 characters
(cbSize would be 256).

· cbSize As Long
The size of each item (or element) string. Maximum is 64k.    Remember that cbSize is set to the
maximum string length you want plus 1!

Also, if you assign a size greater than    65536, the object will default to 65536.

Returns
· Integer

Returns the SHandle that identifies this object.

If there is not enough memory to allocate the object, this method returns -1.

Example

'
' An example of how to create, use and destroy an ArrayStr Object
'

' Create a string array using 16,777,216 bytes of memory
' That is 16,384 strings of 1023 characters (1024 bytes)
'
' You should note that Windows can take quite awhile to
' move and allocate that much memory.

Print "Creating Working Buffer"

MousePointer = 11 ' hourglass

SHandle% = CreateNewStringArray(16384, 1024)

MousePointer = 0 ' normal

Print "Buffer Created."

File% = FreeFile

Open "Large.Txt" For Input As #File%

Print "Loading File"

MousePointer = 11

While Not Eof(File%)

 Line Input #File%, Buffer$
 rc% = PutArrayNext(SHandle%, Buffer$)

 If rc% < 0 Then ' something went wrong.

WEnd

Close #File%

MousePointer = 0

Print "File Loaded."

LineCount& = ArrayStrCLP(SHandle%)

Print "Loaded " & LineCount& & " lines."

' Show first 4 lines

For ii& = 0 To 3

 Print "Line #" & ii& & ":" & GetArrayStr(SHandle%, ii&)

Next

DestroyStringArray SHandle%

End

DeleteArrayStr
Method used to delete an element from the array.    This moves all other elements above this one
down to fill in the space.

Visual Basic Declaration
Declare Function DeleteArrayStr Lib "VBstrAPI.DLL" (ByVal SHandle As
Integer, ByVal Element As Long) As Integer

Parameters
· SHandle As Integer

The reference handle for this string object.

· Element As Long
The element to delete.    ArrayStr objects are zero-based arrays.    The first element is zero (0).

Returns
· Integer

Returns 0 if successful, otherwise -1.

Example
'
' This example prints "Line Three"
'
SHandle% = CreateNewStringArray(3, 11)

rc% = PutArrayStr(SHandle%, 0, "Line One")
rc% = PutArrayStr(SHandle%, 1, "Line Two")
rc% = PutArrayStr(SHandle%, 2, "Line Three")

' Delete line two (element #1)

rc% = DeleteArrayStr(SHandle%, 1)

' Print the current contents of element #1

Print GetArrayStr(SHandle%, 1)

DestroyStringArray SHandle%

DestroyCatString
This method is used to reclaim the memory used by the CatStr object referenced by SHandle.

Visual Basic Declaration
Declare Sub DestroyCatString Lib "VBstrAPI.DLL" (ByVal SHandle As Integer)

Parameters
· SHandle As Integer

The reference handle for this string object.

Returns
· N/A

Comments
It is important to remember to destroy all CatStr Objects before your application exits.    If you do not,
VBstrAPI.DLL will retain the memory allocated until it is removed.    As the DLL removes itself from
Windows, it will clean up any memory not handled by your application.

When in development mode, remember to remove the DLL after any UAE or other
crashes that your program might cause.    This will reclaim any memory retained by the
DLL.

DestroyStringArray
This method is used to reclaim the memory used by the ArrayStr object referenced by SHandle.

Visual Basic Declaration
Declare Sub DestroyStringArray Lib "VBstrAPI.DLL" (ByVal SHandle As
Integer)

Parameters
· SHandle As Integer

The reference handle for this string object.

Returns
· N/A

Comments
It is important to remember to destroy all ArrayStr Objects before your application exits.    If you do
not, VBstrAPI.DLL will retain the memory allocated until it is removed.    As the DLL removes itself
from Windows, it will clean up any memory not handled by your application.

When in development mode, remember to remove the DLL after any UAE or other
crashes that your program might cause.    This will reclaim any memory retained by the
DLL.

FindString & FindStringIC
These two general functions can search a string up to 65535 characters long for a string. FindString
is case-sensitive while FindStringIC is case-insensitive.

Both functions use a powerful search procedure written in assembler language.    There is a
noticeable difference in the speed of the FindString functions and the comparable Visual Basic InStr
function.

Visual Basic Declaration
Declare Function FindString Lib "VBstrAPI.DLL" (ByVal start As Integer,
ByVal srcStr As String, ByVal targetStr As String) As Long

Declare Function FindStringIC Lib "VBstrAPI.DLL" (ByVal start As Integer,
ByVal srcStr As String, ByVal targetStr As String) As Long

Parameters
· start As Integer

Starting location in the string.    The character at which to begin the search.

· srcStr As String
The string you are searching.

· targetStr As String
The string you are looking for.

Returns
· Long

The location in the srcStr where the targetStr was found, otherwise -1.

Example

'
' An example of FindStringIC
'
 File% = FreeFile

 SearchStr$ = "Potato"

 ' open and read the file to search

 Buffer$ = Space$(16384)
 Open "SearchMe.Txt" For Binary Access Read As #File%
 Get #File%, , Buffer$
 Close #File%

 MousePointer = 11

 ' search for string ignoring case

 idx& = FindStringIC(1, Buffer$, SearchStr$)

 If idx& > 0 Then

 Count% = 0
 ii& = 1

 While idx& > 0

 ' search for string ignoring case

 idx& = FindStringIC(ii&, Buffer$, SearchStr$)

 If idx& > 0 Then

 Count% = Count% + 1 ' count this one
 ii& = idx& + 1 ' set pointer for next search

 End If

 Wend

 Print SearchStr$ " found " & Count% & " times."

 Else

 Print SearchStr$ & " not found."

 End If

 MousePointer = 0

PutArrayBlk & GetArrayBlk
These specialized methods are provided to allow the programmer to store any data type into a
ArrayStr Object element.    These methods are far more vulnerable to errors on the part of the
programmer than any of the others!

These methods are capable of storing and retrieving any non-variant data type including user-
defined types (structures).    When using user-defined structure types, take care when determining
the length of the structure.    Some programmers use variable structure definitions and this method
may not work in all cases.

Visual Basic Declaration
Declare Sub GetArrayBlk Lib "VBstrAPI.DLL" (ByVal SHandle As Integer,
ByVal Element As Long, Block As Any, ByVal cbSize As Long)

Declare Function PutArrayBlk Lib "VBstrAPI.DLL" (ByVal SHandle As Integer,
ByVal Element As Long, Block As Any, ByVal cbSize As Long) As Integer

Parameters
· SHandle As Integer

The reference handle for this string object.

· Element As Long
The string element index.

· Block
Any variable to store in the element selected.

· cbSize as Long
Size of the item to store (Max: 65535)

PutArrayBlk Returns
· Integer

Returns 0 if successful, -1 if not.

Comments
Extreme care should be taken when using these methods.    The cbSize parameter
should indicate the exact size of the variable to store.    Do not pass a length greater
than the size of the variable as this will, in all likelihood, result in a UAE or other
system error.

Example

'
' Example usage of PutArrayBlk
'
' Prints "Louis Armstrong"
'
Type SampleRecord

 Name As String * 60
 Age As Integer
 Sex As String * 1

End Type

Dim MyRecord As SampleRecord

MyRecord.Name = "Louis Armstrong"
MyRecord.Age = 35
MyRecord.Sex = "M"

SHandle% = CreateNewStringArray(2, Len(MyRecord))

rc% = PutArrayBlk(SHandle, 0, MyRecord, Len(MyRecord))

MyRecord.Name = ""
MyRecord.Age = 0
MyRecord.Sex = ""

GetArrayBlk SHandle, 0, MyRecord, Len(MyRecord)

Print MyRecord.Name

GetArrayNext
This method is used to return the next string element from the ArrayStr object's array.    When the
Next methods are used to put and get strings, the CLP property is updated to index the next
element.    You can read and alter the CLP using the ArrayStrCLP and ArrayStrSetCLP methods.

Visual Basic Declaration
Declare Function GetArrayNext Lib "VBstrAPI.DLL" (ByVal SHandle As
Integer) As String

Parameters
· SHandle As Integer

The reference handle for this string object.

Returns
· String

The contents of the string element indicated by the internal CLP property.

Example
'
' An example of GetArrayNext
'
SHandle% = CreateNewStringArray(10, 40)
If SHandle% > -1 Then

 ' auto-store strings into the ArrayStr

 rc& = PutArrayNext(SHandle%, "Line 0")
 rc& = PutArrayNext(SHandle%, "Line 1")
 rc& = PutArrayNext(SHandle%, "Line 2")
 rc& = PutArrayNext(SHandle%, "Line 3")
 rc& = PutArrayNext(SHandle%, "Line 4")

 ArrayStrSetCLP(0) ' reset the CLP property to 0

 For ii& = 0 To 4

 Print GetArrayNext(SHandle%) ' get the next string element

 Next

 DestroyStringArray SHandle% ' release the array's memory

End If

GetArrayStr
This method is used to get a specified string from the string array.    In contrast to the GetArrayNext
method, this method doe not alter the CLP property.

Visual Basic Declaration
Declare Function GetArrayStr Lib "VBstrAPI.DLL" (ByVal SHandle As Integer,
ByVal Element As Long) As String

· SHandle As Integer
The reference handle for this string object.

· Element As Long
The zero-based element number.

Returns
· String

The contents of the string element.

Example
'
' An example of GetArrayStr
'
SHandle% = CreateNewStringArray(5, 7)
If SHandle% > -1 Then

 ' store strings into the ArrayStr

 rc& = PutArrayStr(SHandle%, 0, "Line 0")
 rc& = PutArrayStr(SHandle%, 1, "Line 1")
 rc& = PutArrayStr(SHandle%, 2, "Line 2")
 rc& = PutArrayStr(SHandle%, 3, "Line 3")
 rc& = PutArrayStr(SHandle%, 4, "Line 4")

 For ii& = 0 To 4

 Print GetArrayStr(SHandle%, ii&) ' get the indexed string
element

 Next

 DestroyStringArray SHandle% ' release the array's memory

End If

InsertArrayStr
The ArrayStr method inserts a string into the array at the point indicated by the element number.    All
string elements past this element are moved forward.    The contents of the last element, if used, is
lost.

Visual Basic Declaration
Declare Function InsertArrayStr Lib "VBstrAPI.DLL" (ByVal SHandle As
Integer, ByVal Element As Long, ByVal St As String) As Integer

Parameters
· SHandle As Integer

The reference handle for this string object.

· Element As Long
The element to insert at.    ArrayStr objects are zero-based arrays.    The first element is zero (0).

· St As String
String to insert at the supplied element number.

Returns
· Integer

Returns 0 if successful, otherwise -1.

Example
'
' This example prints
' "Inserted Line"
' "Line Two"
'
SHandle% = CreateNewStringArray(4, 11)

rc% = PutArrayStr(SHandle%, 0, "Line One")
rc% = PutArrayStr(SHandle%, 1, "Line Two")
rc% = PutArrayStr(SHandle%, 2, "Line Three")

' Insert at line two (element #1)

rc% = InsertArrayStr(SHandle%, 1, "Inserted Line.")

' Print the current contents of element #1

Print GetArrayStr(SHandle%, 1)
Print GetArrayStr(SHandle%, 2)

DestroyStringArray SHandle%

PutArrayNext
This method is used to store a string into the next string element in the ArrayStr object's array.   
When the *Next* methods are used to put and get strings, the CLP property is updated to index the
next element.    You can read and alter the CLP using the ArrayStrCLP and ArrayStrSetCLP
methods.

Begining with Version 1.0 Revision 1.40, this function now grows the Array object if
necessary and possible.    Now you can create an array of ONE element and let
PutArrayNext grow the array as necessary.

Visual Basic Declaration
Declare Function PutArrayNext Lib "VBstrAPI.DLL" (ByVal SHandle As
Integer, ByVal St As String) As Integer

Parameters
· SHandle As Integer

The reference handle for this string object.

· St As String
The string to be stored in the next element.

Returns
· Integer

Returns 0 if successful, -1 if not.

Example
'
' An example of PutArrayNext
'
SHandle% = CreateNewStringArray(1, 40)
If SHandle% > -1 Then

 ' auto-store strings into the ArrayStr

 rc& = PutArrayNext(SHandle%, "Line 0")
 rc& = PutArrayNext(SHandle%, "Line 1")
 rc& = PutArrayNext(SHandle%, "Line 2")
 rc& = PutArrayNext(SHandle%, "Line 3")
 rc& = PutArrayNext(SHandle%, "Line 4")

 ArrayStrSetCLP(0) ' reset the CLP property to 0

 For ii& = 0 To ArrayStrElements(SHandle%) - 1

 Print GetArrayNext(SHandle%) ' get the next string element

 Next

 DestroyStringArray SHandle% ' release the array's memory

End If

PutArrayStr
This method is used to store a string into a string element in the ArrayStr object's array.

Visual Basic Declaration
Declare Function PutArrayStr Lib "VBstrAPI.DLL" (ByVal SHandle As Integer,
ByVal Element As Long, ByVal St As String) As Integer

Parameters
· SHandle As Integer

The reference handle for this string object.

· Element As Long
The string element index.

· St As String
The string to be stored in the next element.

Returns
· Integer

Returns 0 if successful, -1 if not.

Example
'
' An example of PutArrayStr
'
SHandle% = CreateNewStringArray(10, 40)
If SHandle% > -1 Then

 ' store strings into the ArrayStr

 rc& = PutArrayStr(SHandle%, 0, "Line 0")
 rc& = PutArrayStr(SHandle%, 1, "Line 1")
 rc& = PutArrayStr(SHandle%, 2, "Line 2")
 rc& = PutArrayStr(SHandle%, 3, "Line 3")
 rc& = PutArrayStr(SHandle%, 4, "Line 4")

 For ii& = 0 To 4

 Print GetArrayStr(SHandle%, ii&) ' get the next string element

 Next

 DestroyStringArray SHandle% ' release the array's memory

End If

Functional Reference
VBstrAPI.DLL Functional Reference by Category

 4 Special String Functions
 1 File Related Function
 16 CatStr Buffered String Object Methods
 17 ArrayStr Huge String Array Methods

Functional Reference
VBstrAPI.DLL Functional Reference by Category

 4 Special String Functions
 CenterString
 CenterStringIn
 FindString
 FindStringIC
 1 File Related Function
 16 CatStr Buffered String Object Methods
 17 ArrayStr Huge String Array Methods

Functional Reference
VBstrAPI.DLL Functional Reference by Category

 4 Special String Functions
 1 File Related Function
 CopyFile
 16 CatStr Buffered String Object Methods
 17 ArrayStr Huge String Array Methods

Functional Reference
VBstrAPI.DLL Functional Reference by Category

 4 Special String Functions
 1 File Related Function
 16 CatStr Buffered String Object Methods
 CreateNewCatString
 DestroyCatString
 CatStrLength
 CatStrLineCount
 CatStrLPSZ
 CatStrCopy
 CatStrClear
 CatStrResetCLP
 CatStrAdd
 CatStrAddLine
 CatStrMid
 CatStrNext
 CatStrNextLine
 CatStrFind
 CatStrFindIC
 CatStrSetCLP
 17 ArrayStr Huge String Array Methods

Functional Reference
VBstrAPI.DLL Functional Reference by Category

 4 Special String Functions
 1 File Related Function
 16 CatStr Buffered String Object Methods
 17 ArrayStr Huge String Array Methods
 CreateNewStringArray
 DestroyStringArray
 GetArrayBlk
 PutArrayBlk
 GetArrayStr
 PutArrayStr
 GetArrayNext
 PutArrayNext
 DeleteArrayStr
 InsertArrayStr
 ArrayStrBufferSize
 ArrayStrMemSize
 ArrayStrResize
 ArrayStrElements
 ArrayStrClear
 ArrayStrCLP
 ArrayStrSetCLP

Limitations
 CatStr String Buffer Object
 ArrayStr Huge String Array Object

Limitations
 CatStr String Buffer Object
 Handles a maximum of 4096 global objects.
 Maximum string length is 65533 (65534 bytes)
 ArrayStr Huge String Array Object

Limitations
 CatStr String Buffer Object
 ArrayStr Huge String Array Object
 Total number of objects limited by available memory.
 Maximum number of string array elements limited only by memory.
 Maximum string array element size is 65,534 bytes.

Registration
To register VBstrAPI.DLL, you must obtain a registered version from the author.    The registered
version can then be included with your program.    This will disable the shareware registration dialog
that appears whenever the DLL is loaded or used by your program. You will also receive the latest
version of the library.    You will also receive a registration key that will work on all subsequent bug-fix
and minor revision releases until a new version is released.

Obtaining a Registered Version of the DLL
To obtain a registered version you must send the registration amount to:

Greg Truesdell
Suite 308
633 North Road
Coquitlam, BC
CANADA
V3J 1P3

Or CompuServe SWREG# 4760

Registration Fee Options:
· CompuServe SWREG ID# 4760: US$19.95

The registered version will be sent to you via CompuServe E-Mail within 24 hours of receipt.   
You will also receive a ZIP archive containing the distribution files.

· Mail: US$19.95 + US$3.50 S&H

The registered version will be sent to you via return mail.    You will also receive a 3½ disk
containing the distribution files. The package will be mailed to you within 24 hours after receiving
your payment.    With this option you MUST send a MONEY ORDER made out to GREG
TRUESDELL.

Registration Form:
Note: All registration information is held in the strictest of confidence.

--

 VBstrAPI Function Library (DLL) v1.0 Registration Form
--

 Mail this registration form to:

Greg Truesdell
Suite 308
633 North Road
Coquitlam, BC
CANADA
V3J 1P3

 or E-Mail to:

CIS User ID :74131,2175
Internet :74131.2175@compuserve.com

--

Registered User Name: [
]

Company Name: [
]

Address: [
]
 [
]
 [
]

City: []
State/Prov/etc: []
Zip/Postal Code: []

Tel: []

E-Mail or CIS User ID: []

Fee Option: [] E-Mail (US$19.95+US$2.00 S&H) [] Regular Mail
(US$19.95+US$3.50 S&H)

--

 REMEMBER: PAYMENT MUST BE MADE BY MONEY ORDER made payable to GREG
TRUESDELL.
 Checks will not be accepted unless you are a resident of
 BRITISH COLUMBIA, CANADA.
--

History of Changes
 Ver 1.0 Rev 1.00 (Release 1.10) 95.02.18
 Ver 1.0 Rev 1.20 (Release 1.12)
 Ver 1.0 Rev 1.21
 Ver 1.0 Rev 1.22
 Ver 1.0 Rev 1.30
 Ver 1.0 Rev 1.31
 Ver 1.0 Rev 1.32
 Ver 1.0 Rev 1.33
 Ver 1.0 Rev 1.40 (95.06.24)

History of Changes
 Ver 1.0 Rev 1.00 (Release 1.10) 95.02.18
 FindString, CenterString and CopyFile
 CatStr String Buffer Object
 ArrayStr Huge String Array Object
 Ver 1.0 Rev 1.20 (Release 1.12)
 Ver 1.0 Rev 1.21
 Ver 1.0 Rev 1.22
 Ver 1.0 Rev 1.30
 Ver 1.0 Rev 1.31
 Ver 1.0 Rev 1.32
 Ver 1.0 Rev 1.33
 Ver 1.0 Rev 1.40 (95.06.24)

History of Changes
 Ver 1.0 Rev 1.00 (Release 1.10) 95.02.18
 Ver 1.0 Rev 1.20 (Release 1.12)
 Corrected return codes from CopyFile
 Minor internal code changes
 Ver 1.0 Rev 1.21
 Ver 1.0 Rev 1.22
 Ver 1.0 Rev 1.30
 Ver 1.0 Rev 1.31
 Ver 1.0 Rev 1.32
 Ver 1.0 Rev 1.33
 Ver 1.0 Rev 1.40 (95.06.24)

History of Changes
 Ver 1.0 Rev 1.00 (Release 1.10) 95.02.18
 Ver 1.0 Rev 1.20 (Release 1.12)
 Ver 1.0 Rev 1.21
 Added the CatStrLineCount Method
 Ver 1.0 Rev 1.22
 Ver 1.0 Rev 1.30
 Ver 1.0 Rev 1.31
 Ver 1.0 Rev 1.32
 Ver 1.0 Rev 1.33
 Ver 1.0 Rev 1.40 (95.06.24)

History of Changes
 Ver 1.0 Rev 1.00 (Release 1.10) 95.02.18
 Ver 1.0 Rev 1.20 (Release 1.12)
 Ver 1.0 Rev 1.21
 Ver 1.0 Rev 1.22
 Added the CatStrLPSZ Method
 Ver 1.0 Rev 1.30
 Ver 1.0 Rev 1.31
 Ver 1.0 Rev 1.32
 Ver 1.0 Rev 1.33
 Ver 1.0 Rev 1.40 (95.06.24)

History of Changes
 Ver 1.0 Rev 1.00 (Release 1.10) 95.02.18
 Ver 1.0 Rev 1.20 (Release 1.12)
 Ver 1.0 Rev 1.21
 Ver 1.0 Rev 1.22
 Ver 1.0 Rev 1.30
 Added the GetArrayBlk and PutArrayBlk ArrayStr Methods
 Ver 1.0 Rev 1.31
 Ver 1.0 Rev 1.32
 Ver 1.0 Rev 1.33
 Ver 1.0 Rev 1.40 (95.06.24)

History of Changes
 Ver 1.0 Rev 1.00 (Release 1.10) 95.02.18
 Ver 1.0 Rev 1.20 (Release 1.12)
 Ver 1.0 Rev 1.21
 Ver 1.0 Rev 1.22
 Ver 1.0 Rev 1.30
 Ver 1.0 Rev 1.31
 Significantly reduced lower memory usage (Thanks, Jim Moran!)
 Ver 1.0 Rev 1.32
 Ver 1.0 Rev 1.33
 Ver 1.0 Rev 1.40 (95.06.24)

History of Changes
 Ver 1.0 Rev 1.00 (Release 1.10) 95.02.18
 Ver 1.0 Rev 1.20 (Release 1.12)
 Ver 1.0 Rev 1.21
 Ver 1.0 Rev 1.22
 Ver 1.0 Rev 1.30
 Ver 1.0 Rev 1.31
 Ver 1.0 Rev 1.32
 Added CatStrMid$ Method
 Added CatStrFindIC and changed CatStrFind Method behavior
 Corrected FindString and FindStringIC speed problem (Thanks, Jim Moran!)
 Ver 1.0 Rev 1.33
 Ver 1.0 Rev 1.40 (95.06.24)

History of Changes
 Ver 1.0 Rev 1.00 (Release 1.10) 95.02.18
 Ver 1.0 Rev 1.20 (Release 1.12)
 Ver 1.0 Rev 1.21
 Ver 1.0 Rev 1.22
 Ver 1.0 Rev 1.30
 Ver 1.0 Rev 1.31
 Ver 1.0 Rev 1.32
 Ver 1.0 Rev 1.33
 Corrected problem with CatStrMid$ if size of segment selected was equal to the size of the

string. (Thank's Colin Younger!)
 Ver 1.0 Rev 1.40 (95.06.24)

History of Changes
 Ver 1.0 Rev 1.00 (Release 1.10) 95.02.18
 Ver 1.0 Rev 1.20 (Release 1.12)
 Ver 1.0 Rev 1.21
 Ver 1.0 Rev 1.22
 Ver 1.0 Rev 1.30
 Ver 1.0 Rev 1.31
 Ver 1.0 Rev 1.32
 Ver 1.0 Rev 1.33
 Ver 1.0 Rev 1.40 (95.06.24)
 Modified the behavior of PutArrayStr to grow the array when the upper limit is reached.
 Added the ArrayStrResize method to dynamically change the size of the array.

Copyright
VBstrAPI.DLL and Documentation are Copyright (c) 1995 by Greg Truesdell.    Use of the
Shareware version of this DLL is permitted for an evaluation period not to exceed 30 days.   
After 30 days you must either discontinue using VBstrAPI.DLL, or register it.

Your use of VBstrAPI.DLL indicates your acceptance of the following terms
and conditions:

VBstrAPI.DLL ("the Library") is a Windows/Visual Basic DLL licensed by Greg L. Truesdell ("GLT").

Shareware license.

You are free to distribute the entire unmodified contents of the distribution package to anyone you
wish. You may NOT distribute any other programs that utilizes the Library without obtaining a
Registered User License for the Library from GLT. For a period of no more than 30 days, you may
use, test and duplicate the enclosed version of the Library.    Thereafter if you wish to continue using
the Library you must register the Library with GLT, or else you must cease all use of the Library. You
will be an infringer if you do not pay the registration fee and continue to use this version of
the Library for more than 30 days.

Registered User License.

If you pay the registration fee for the Library to GLT, GLT will grant a non-exclusive development
license for one natural person to use one copy of the software regardless if the owner of the license
is a person or a business ("the Licensee"). In addition the Licensee may distribute the VBstrAPI.DLL
("the DLL") with any or all products that use the DLL with the exceptions that (a) the recipients of any
such program ("the Recipients") are not licensed to use the DLL or the Library except with the
products produced by Licensees, and (b) the Recipients may not further redistribute the DLL, and (c)
the product using the DLL cannot enable the user to produce other programs using the DLL or other
parts of the supplied distribution package.    No purported transfer of the license shall be effective
until the licensee notifies GLT of the name and address of the person receiving the license ("the
Transferee"), and transfers all copies of the Library to the Transferee, and removes or destroys any
other copies of the Library in the possession of, or under the control of the Licensee.

Disclaimer of Warranties.

GLT makes no claims as to the suitability of the Library for any specific purpose.    GLT
DISCLAIMS ANY AND ALL WARRANTIES EXPRESS OR IMPLIED, WRITTEN OR ORAL,
INCLUDING ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY SPECIFIC
PURPOSE. The 30 day evaluation period is considered liberal enough for you to determine
the fitness of this product to your application.

Limitation of Liability.

In no event shall GLT be liable for any damages whatsoever arising out of the use of the Library,
including without limitation any direct, indirect or consequential damages or any damages for
business interruption, loss of profits, loss of information, or any pecuniary loss even if GLT has been
notified of the possibility of such damages. The limitation or exclusion of liability for incidental or
consequential damages may not be allowed in some states, and in these states those particular
prohibited limitations do not apply.

Copyright Information

The Library is protected by the copyright laws of Canada and the United States, and by the copyright

laws of many other countries pursuant to international treaties. The DLL and all other materials
provided in the distribution package are Copyright (c) 1995 by Greg Truesdell.    All Rights reserved.
No portion of the Library, documentation or examples may be copied, stored, or transmitted except
as provided by the license.

Other brand and product names are trademarks or registered trademarks of their respective holders.

Glossary

A
ArrayStr

C
CatStr

CLP

H
Handle

S
SHandle

Index

A
Alphabetical Reference

ArrayStrBufferSize

ArrayStrClear

ArrayStrCLP

ArrayStrElements

ArrayStrMemSize

ArrayStrResize

ArrayStrSetCLP

C
CatStrAdd

CatStrAddLine

CatStrClear

CatStrCopy

CatStrFind

CatStrLength

CatStrLineCount

CatStrLPSZ

CatStrMid

CatStrNext

CatStrNextLine

CatStrResetCLP

CatStrSetCLP

CenterString

CenterStringIn

Constants

CopyFile

Copyright

CreateNewCatString

CreateNewStringArray

Creating a New ArrayStr Object

D
DeleteArrayStr

DestroyCatString

DestroyStringArray

F
FindString

Functional Reference

G
GetArrayNext

GetArrayStr

Glossary

H
History of Changes

I
Index

InsertArrayStr

Introduction

L
Limitations

P
PutArrayBlk

PutArrayNext

PutArrayStr

R
Register

T
Topic1

V
VBstrAPI Reference Manual

Title

ArrayStr
Huge String Array Object.    Capable of storing, accessing and stepping through an unlimited number of
(up to) 64k strings.

CatStr
Concatentation String Object.    Capable of storing, accessing and line by line stepping a 64k string.

CLP
CLP = Current Line Pointer
An internal property of CatStr and ArrayStr objects which determines the next line to be read or written
using ...AddLine and ...NextLine methods.

Handle
A 16 bit integer representing an object.    VBstrAPI returns a handle when an object is created, and
requires the handle whenever the object is referenced.

SHandle
String Handle

An integer value returned by CreateNewStringArray() and CreateNewCatString() methods. This handle
is used to reference this specific string object.

A value of -1 is returned by Create* methods if no more objects are available or if the size of the string
defined will not fit in available memory.

