
A FAWCETTE TECHNICAL PUBLICATION, FEBRUARY 1996 VOL. 6, NO. 2,

INCLUDES WINDOWS PROGRAMMING & VISUAL PROGRAMMING

R

P R O G R A M M E R ’ S J O U R N A L

Supplement to

Featuring

TECH TIPS

 For VB Developers

of the HOTTEST

2nd

Edition
2nd

Edition

 99 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

F

d

WELCOME TO THE VBPJ
TECHNICAL TIPS SUPPLEMENT!

VBPJ’s 99 Tech Tips are back by popular
demand. These tips and tricks were com-
piled by professional developers and the
editors at Visual Basic Programmer’s Jour-
nal using both Visual Basic 3.0 and Visual
Basic 4.0. To save hours of needless re-
keying, and to get the tips that wouldn’t fit
in this booklet, download them from VBPJ’s
Developer’s Exchange on the World Wide
Web. This service is available in our sub-
scriber hotline section—absolutely free to
VBPJ subscribers. To visit the Developer’s
Exchange point your Web browser to
http://www.windx.com.

VB3 VB4

BUILD DEBUGGING/PROFILING
INTO YOUR CODE
To build debugging and profiling into your code, add this to the
end of code lines:

'Code line Add this line (n should be replaced
'by a unique number)
i = j + 1 '*dbg* "Debug n" & time

Turn debugging/profiling on by simply doing a replace on all
modules of '*dbg* with :debug.print. When you run your code,
the output will be sent to the debug window. To turn off debug-
ging/profiling, replace :debug.print with '*dbg.*

Even more interesting is the fact that you can do this at the
procedure level as well. For example:

Sub Form_Load () '*dbg* "form_load:" & Time;

after replacement:

Sub Form_Load () : Debug.Print "form_load:" & Time;

Finally, if you like, you can change '*dbg* to a procedure name
Supplemen©1991–1996 Fawcette Technical Publications

t
that could write all output to a file.

—Robert Meyering
VB3 VB4

EXTRACT FILE NAMES
ROM FILE SPECIFICATIONS

Here is a simple way to extract file names from file specifications:

Function FName (filespec As String) As String
Dim i As Integer
Dim size As Integer
size = Len(filespec)
For i = size To 1 Step -1

If Mid$(filespec, i, 1) Like "[\:]" Then
FName = Right(filespec, size - i)
Exit Function

End If
Next i
End Function

For example:

File_name = FName("A:\test.dat")
File_name = FName("A:test.dat")
File_name = FName("A:\test\test.dat")

—Robert Meyering

VB3 VB4

OPTIMIZE LABEL CREATION
Place one label on your form, tailor its properties (such as left-
align and autosize), and copy and paste it to create the rest of
your labels.

—Robert Meyering

VB3

CREATE “TAG TIPS”
Use the Tag property and the MouseMove event to create “tag
tips,” which look like tool tips. Create a label to be used as the
tool tip box and set its visible property to False, and its AutoSize
property to True. Then add this code to the MouseMove event
of the control to which you are adding tag tip text:

Label1.Caption = Command1.Tag
Label1.Top = Command1.Top + Command1.Height
Label1.Left = Command1.Left + Command1.Width / 2
Label1.Visible = TRUE

Set the Tag property of the control to the text you want to
isplay as the tag tip:

Command1.TAG = "This is the TAG TIP"

Add this to the MouseMove event of the form. It turns off the
ag tip when you move your mouse off the control:
t to Visual Basic Programmer’s Journal FEBRUARY 1996 1

Label1.Visible = FALSE
—Robert Meyering

 99 TECH TIPS
For VB Developers
VB3

USE “&,” NOT “+,” WHEN
CONCATENATING STRINGS
Use an ampersand (&) instead of a plus sign (+) when concat-
enating strings. Depending on the data type of the operands,
using the plus sign may result in an addition.

—Robert Meyering

VB4

CENTER YOUR FORMS
Add a method in VB 4.0 to center your forms against the screen
or a parent form. Create a new project with two forms. Add this
code to Form2:

Public Sub ShowCentered(Optional vParent, _
Optional vShowMode)

Dim oParent As Object
Dim iMode%, iLeft%, iTop%

If IsMissing(vParent) Then 'default is Screen object
Set oParent = Screen

ElseIf TypeOf vParent Is Screen Or _
TypeOf vParent Is Form Then
Set oParent = vParent
'can add MDIForm to this condition

Else
Exit Sub

End If

If IsMissing(vShowMode) Then iMode = vbModeless Else _
iMode = Abs(vShowMode) Mod 2

'default is Modeless

If TypeOf oParent Is Form Then iLeft = oParent.Left: _
iTop = oParent.Top

'cannot use Left and Top for Screen

Move iLeft + (oParent.Width - Width) / 2, _
iTop + (oParent.Height - Height) / 2

Show iMode

End Sub

Put this code in Form1's Form_Load event:

Show

Form2.ShowCentered Me, vbModal

Omit either or both of the arguments to see how the Optional
parameter keyword in VB 4.0 increases the versatility of such
2 FEBRUARY 1996 Supplement to Visual Basic Programmer’s Jo

procedures.
—Ian Carter
VB4

DOCUMENT YOUR OLE SERVERS
Document the interface for your OLE server by using the Op-
tions button in the Object Browser. To provide more full-featured
documentation, use a help file. Use the Object Browser to tie
the help file to the OLE server.

—Deborah Kurata

VB4

RAISE YOUR OLE SERVER ERRORS
Don’t display errors from the OLE server. Instead, raise an error
to the client application. Use error numbers greater than
vbObjectError + 512 and less than vbObjectError + 5535. Values
between vbObjectError and vbObjectError + 512 can conflict with
OLE error values. Be sure to document error numbers in the
help file for your OLE server.

—Deborah Kurata

VB4

WATCH WHAT YOU PASS TO
YOUR OLE SERVERS
Don’t use any objects in the Visual Basic object library as pa-
rameters or return values for exposed properties or methods in
public classes. These objects are not intended to be used from
outside of a single project. Using them in that manner may cause
unexpected results. Use the Object Browser to review this list of
the Visual Basic (VB) objects.

—Deborah Kurata

VB4

OLE SERVER OBJECT
MANIPULATION
Don’t return references to Form and Control objects from your
OLE server. Rather, provide wrappers for the properties and
methods of forms and controls if they must be manipulated by
your OLE server. For example, instead of returning a text box
and allowing the client application to manipulate the text box,
provide wrapper methods in the OLE server for Move, and wrap-
per properties for Text.

—Deborah Kurata

VB4

BE CAREFUL WHEN
TERMINATING OLE SERVERS
Don’t provide a method that terminates your server. Let the server
automatically terminate when no references to the server exist. If
you provide an Exit menu option in an OLE server that displays a
user interface, simply unload the forms the user opened and free
urnal ©1991–1996 Fawcette Technical Publications

all object instances that were created.
—Deborah Kurata

 99 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

U
W
U
p
s
s
p

S
P
c
o
e

I
O
S
c
D
t
i

T
O
T
o
t
p
a

T
S
S
U
a
i

VB4

SET ALL OBJECT
VARIABLES TO NOTHING
Do set all object variables to nothing before ending the applica-
tion. When the End statement is executed in the OLE client ap-
plication, the OLE server is shut down and the Terminate events
of any objects that have not yet been terminated are not ex-
ecuted.

—Deborah Kurata

VB4

USE THE MOST SPECIFIC
OBJECT TYPE AVAILABLE
Instead of declaring an object As Object, use the specific object
type, such as CTask. This improves performance by minimizing
the OLE lookup requirements.

—Deborah Kurata

VB4

USE OBJECT SUBSTITUTION
Use object substitution to substitute a simple name with an ex-
tended object reference. Each “.” in the syntax represents an
OLE lookup. Better performance is achieved the fewer times look-
ups need to be performed. For example:

For i = 1 to 10
<some code>
txt(i) = myApp.TimeSheet.Employee.Name

Next I

Performs better if rewritten using substitution:

Dim emp as New Employee

' Create the substitution object variable
Set emp = myApp.TimeSheet.Employee

For i = 1 to 10
<some code>
txt(i) = emp.Name

Next I
—Deborah Kurata

VB4

MINIMIZING THE NUMBER OF
REPEATED OLE LOOKUPS
Use With...End With to minimize the number of repeated OLE
lookups. This has the added advantage of not requiring the tem-
Supplemen©1991–1996 Fawcette Technical Publications

porary substitution object.
—Deborah Kurata

f
c
f

VB4

SE IN-PROCESS SERVERS
HENEVER POSSIBLE

se in-process servers (OLE DLLs) whenever possible to improve
erformance. Calls to objects within the application’s process
pace, either in the application or in an in-process server, are
ignificantly faster than calls to objects outside the application’s
rocess space.

—Deborah Kurata

VB4

PEED OLE SERVER CALLS
ass as much data to and from the OLE server as possible in each
all. Data transfer is fast, but calling is slow, especially with out-
f-process servers. For example, you could pass a set of param-
ters in an array instead of calling the OLE server multiple times.

—Deborah Kurata

VB4

NITIALIZING AN IN-PROCESS
LE SERVER DLL

tart the in-process OLE server using a Sub Main procedure. In-
lude all server initialization code in the Sub Main procedure.
on’t show forms from the Sub Main procedure and don’t use

he Command Function to retrieve command line contents. There
s no command line when initializing an in-process server.

—Deborah Kurata

VB4

ESTING AN IN-PROCESS
LE SERVER DLL

est an in-process OLE server DLL by building it first as an out-
f-process server. This makes it possible to debug and test. Also,
he stability of the entire application will be affected by the in-
rocess server. It is a good idea to ensure the OLE server is stable
s an out-of-process server before converting it to an OLE DLL.

—Deborah Kurata

VB4

EST THE IN-PROCESS OLE
ERVER AS AN OUT-OF-PROCESS
ERVER

se the OLE Restrictions option to test the in-process OLE server
s an out-of-process server. The OLE DLL Restrictions option is
n the Advanced tab of the Options dialog box. This option en-
orces the DLL restrictions although you are using an out-of-pro-
ess server. This provides a better test of how the server will
t to Visual Basic Programmer’s Journal FEBRUARY 1996 3

unction as an in-process server.
—Deborah Kurata

4

 99 TECH TIPS
For VB Developers

A

N
T
E

S

'

D
A
O
s
n
e
g
b
D

j
T
b
c
W

w
s
t
w
D
c
D
D

P

s
E

'
P
D
'
'

VB4

UNLOADING THE
SERVER FROM MEMORY
Shut down the instance of Visual Basic that uses the compiled
in-process OLE server to unload the server from memory.
Changes to the in-process OLE server will not be seen until the
current version of the server is unloaded from memory and the
newest version is loaded.

—Deborah Kurata

VB4

SETTING THE MOUSEPOINTER IN
N IN-PROCESS OLE SERVER

Don’t set the MousePointer in an OLE DLL unless absolutely
necessary. The in-process OLE server can not retrieve the cur-
rent mouse pointer, so there is no way to set it back to what the
application expects. If you must set the MousePointer in an in-
process OLE server, always return it to the default value before
returning to the client application. If the client application has a
different MousePointer set, it is then responsible for returning it
to a desired value after calling the server property or method.

—Deborah Kurata

VB4

REDEFINE YOUR TAB ORDER
When you need to reset your tab indexes quickly (without buy-
ing a third party VB extension product), set the tabs in the re-
verse tab order assigning each tab index to zero (0). That is, go
to the very last control on the page that will receive a tab stop.
Bring up the properties window, locate TabIndex, hit the zero
key, click the second from the last control to receive a tab stop,
type zero, click the third from the last control, type zero, and so
on. This little trick will save you lots of time and aggravation,
and it works perfectly every time.

—John Chmela

VB4

CONVERTING STRINGS
TO TITLE CASE
I’ll present this tip the VB3 way and the VB4 way. I beat myself
for a couple of hours over this routine to convert a string to
Title Case. I used this with VB3:

Function TCase(StrInp As String)
Dim strout$
Dim x%
StrInp$ = LCase$(StrInp$)
strout$ = UCase$(Left(StrInp$, 1))
For x% = 2 To Len(StrInp$)

Select Case Asc(Mid$(StrInp$, x, 1))
 FEBRUARY 1996 Supplement to Visual Basic Programmer’s Jou

Case Is < 97, Is > 122
strout$ = strout$ & Mid$(StrInp$, x, 1)

'
O

Case 97 To 122
Select Case Asc(Mid$(StrInp$, x - 1, 1))

Case 97 To 122
strout$ = strout$ & _

Mid$(StrInp$, x, 1)
Case Else: strout$ = _

strout$ & UCase$(Mid$(StrInp$, x, 1))
End Select

End Select
ext
Case = strout$
nd Function

In VB4, one line replaces the whole function:

trConv(string, vbProperCase)

Where vbProperCase is a built in constant in VB4
—Jason Lee Stenklyft

VB3

EAL WITH THE DATACONTROL
T RUN TIME AND DESIGN TIME

ne of the greatest features of data-aware controls is that you
imply connect them to a DataControl and select the fields you
eed. You have just created a database program. It can’t get any
asier than that. The only problem is that if you share this pro-
ram, nine times out of 10 it won’t work. Why? Because the data-
ase name and directory structure are hard coded into the
atabaseName field in the DataControl.

Hard-coding the database name into the DataControl is a ma-
or programming no-no. Instead, you fill this field at run time.
hen, before you can ship (or even send the program out to
eta testers), you must remove the database names from your
ontrols. Then you add them back during design, and so on.
hat a headache.
I don’t have time for that. I created a nice Sub that does the

ork for me. Before I give it to you, I need to review a few idio-
yncrasies of loading a DataConrol. With my method, you leave
he original database names in the DataControl. The problem
ith this is that as soon as a form loads, it initializes the
ataControl. It tries to load the database and record set and
auses an error. To prevent this, set the Enabled property of the
ataControl to false. Use this code in each form that uses a
ataConrol:

rivate Sub Form_Initialize()
SetDataDBName frmIn:=ME,

DBName:="C:\MYPROG\DATA\MYDB.MDB"
nd Sub

Calls the following Sub:
ublic Sub SetDataDBName(frmIn As Form, sDBName As String)
im I As Integer
On Error needed to prevent problems
with refreshing bad values in the
rnal ©1991–1996 Fawcette Technical Publications

RecordSource property
n Error Resume Next

 99 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

©

En

V

T
In
th
to

be

La
La
La

La
La
La
La
La

Pic
an

Pi

• U
file
th
• I
wi
th
wh
no

t
m
p
f

P
W
y
p

P

E

P

E

p

I

T
O
T
i
f
l
e
a
e
p
t
f
i
S

S

End If
—William Storage
'Search through form's controls
For I = 0 To frmIn.Controls.Count - 1

'See if the control is a datacontrol
If TypeOf frmIn.Controls(I) Is Data Then

frmIn.Controls(I).DatabaseName = sDBName
frmIn.Controls(I).Enabled = True

'Refresh if there is something
'in the recordsource property

If Len(frmIn.Controls(I).RecordSource) _
> 0 Then
frmIn.Controls(I).Refresh

End If

End If
Next I

d Sub

That’s it, easy and painless!
—David McCarter

B4

ALK ABOUT REUSABLE CODE!
VB4 you can create a single Splash Screen or About Screen
at works with any program and automatically keeps itself up
date using the new properties of the App Object.
Create your form and make an attractive arrangement of la-

l controls on it. Then add code such as this to the Load Event:

bel1.Caption = App.ProductName
bel2.Caption = App.FileDescription
bel3.Caption = "Version " & App.Major & "." _

& App.Minor & "." & App.Revision _
& " (" & Format$(FileDateTime(App.Path & "\" & _
App.EXEName & ".EXE"), "Short Date") & " - " & _
(FileLen(App.Path & "\" & App.EXEName _
& ".EXE")) & " bytes)"

bel4.Caption = App.LegalCopyright
bel5.Caption = App.CompanyName
bel6.Caption = App.Title
bel7.Caption = App.LegalTrademarks
bel8.Caption = App.Comments

For graphics you can use your company’s logo or put a blank
tureBox on the form, create the graphic as a separate file,

d add this code to the Load Event:

cture1.Picture = LoadPicture(App.Path & "\logo.bmp")

There are two cautions, however:

ntil the first time you compile your code, there will be no EXE
, so the FileLen and FileDateTime functions will fail. To avoid

is problem, create a dummy file with the project name EXE.
f any of the referenced App properties are not set the form
ll load fine in the development environment but will generate
e run time error “Resource with identifier ‘Version’ not found”
Supplemen1991–1996 Fawcette Technical Publications

en compiled and run as an EXE (the error will say “Version”
 matter which property is not set).
App properties are set from the not-too-obvious location of
he Options button of the Make EXE menu selection of the File
enu. Once you set the properties they will be saved with the
roject and do not need to be set each time you make the EXE

ile.
—Daniel R. Nolte

VB4

ASSING A CONTROL ARRAY
orking with control arrays in VB3 was frustrating, but with VB4

ou can pass a control array as an argument to a function. Sim-
ly specify the parameter type as Variant:

rivate Sub Command1_Click(Index As Integer)
GetControls Command1()

nd Sub

ublic Sub GetControls(CArray As Variant)
Dim C As Control
For Each C In CArray

MsgBox C.Index
Next

nd Sub

Also, VB4’s control arrays have LBound, Ubound, and Count
roperties:

f Command1.Count < Command1.Ubound - _
Command1.Lbound + 1 Then _
Msgbox "Array not contiguous"

—William Storage

VB4

HE STARTMODE PROPERTY
F THE APP OBJECT

he StartMode setting in the Options dialog of the Tools menu
n VB4 determines only whether an application with no startup
orm continues to run after Sub Main has completed. This al-
ows testing of OLE Automation servers. But the StartMode prop-
rty of the App object allows you to determine in code whether
n application shows any visible interface to users. A single VB
xecutable file can be both an invisible server and a normal ap-
lication, just like Excel. The Sub Main procedure lets you test
he value of App.StartMode to decide whether or not to show a
orm. If the application is started directly by a user, the StartMode
s vbSModeStandalone. If started by a client application, the
tartMode is vbSModeAutomation.

ub Main
If App.StartMode = vbSModeStandalone Then

frmMain.Show
Else

'OLE server action...
t to Visual Basic Programmer’s Journal FEBRUARY 1996 5

 99 TECH TIPS
For VB Developers

Y
W
C
O
r
i
s
I
c

U
A
C
w
a
t
L
c
e
t

•
t

y

•
a
b
l

P

E

F

N

VB4

PROPERTIES COLLECTION OF
DATA ACCESS OBJECTS
The Properties collection of many data access objects is very
helpful when debugging. Execute this code from the debug win-
dow:

For i = 0 to Recordset1.Properties.Count- 1:Debug.Print _
Recordset1.Properties(i).Name &

Recordset1.Properties(i):Next
—William Storage

VB4

ADD PROPERTIES TO
DATA ACCESS OBJECTS
How many times have you wished field objects had a
“RequiredIfCondition1” or other user-defined property? You can
add one easily:

Set NewProperty = Field1.CreateProperty("FieldNote")
NewProperty.Type = dbText
 Field1.Properties.Append NewProperty

—William Storage

VB4 WIN32

USE THE SLEEP API FUNCTION
INSTEAD OF DOEVENTS
When in NT or Windows 95, use the Sleep API function instead
of DoEvents. DoEvents does this:

while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
}

DoEvents spends part of its time watching for other messages
in the same process. This behavior has no value in a preemp-
tive-multitasking operating system. Sleep yields more efficiently
to other processes. Sleep is declared as:

Public Declare Sub Sleep Lib "kernel32" _
Alias "Sleep" (ByVal dwMilliseconds As Long)

and can be called as:
6 FEBRUARY 1996 Supplement to Visual Basic Programmer’s Jou

Sleep 0&
—William Storage

i
c
l
n
t

VB4

OU CAN’T CREATE AN OLE DLL
ITH A PUBLIC CLASS SET TO
REATABLE -- SINGLE USE

nly one copy of a DLL can exist in memory at a time. For this
eason, VB doesn’t allow you to create DLLs exposing single use
nstancing classes. An EXE, however, allows you to create OLE
ervers that can be instanced multiple times for multiple clients.
f you need a new instance of the server for each client you must
reate an out-of-process server in an EXE file instead of a DLL.

—A. Nicklas Malik

VB4

SING THE FOR-EACH SYNTAX ON
 PRIVATE COLLECTION OBJECT

reating an object that looks and acts like a collection is a good
ay to implement a form of inheritance in VB4, where inherit-
nce is not provided by the language. Creating properties for
he Count and Item properties of your collection is not difficult.
ikewise, creating an Add and Remove method is fairly easy. You
an restrict the type of data added to a collection, and you can
ncapsulate all of the object handling in your class. However,
here are two problems.

 You can expose the Item property, but you can’t make the Item
he default property. Instead of writing:

val = MyCollection("Fubar")

ou must always write:

val = MyCollection.Item("Fubar")

 There is no way to allow a VB user to use the For-Each syntax
nd still keep your encapsulation complete. If you are willing to
reak your encapsulation, you can provide an Items property,

ike this:

roperty Get Items() As Collection
 Set Items = collMyInternalCollection

nd Property

Users can iterate your collection object like this:

or Each obj in MyCollection.Items
 ' Do something

ext

The problem with this method is that your users can now
nvoke the Add and Remove methods directly on the exposed
ollection. You have lost control of the data, and your encapsu-
ation is broken. If you are willing to trust that your users will
ot use either the Add or Remove properties on this object, then
rnal ©1991–1996 Fawcette Technical Publications

his is a possible workaround.
—A. Nicklas Malik

 99 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

A
C
T
w
d
s
d
y

W
I
Y
t
a
u
t
d
o
t

o
T
a

y

e

R
D
p
V
p
“

G
A
S
i
S
w
H
t
R

a
r
t
s
o
d

r

a
d
o
r

N
P
A
t
r

F

m

eter, use the IsMissing function to test the parameter.
—Crescent Tech Support
VB4

LIGN ALL YOUR
ONTROLS ON A FORM

o line up controls on a form in VB4, select all the controls you
ant to line up. Press F4 to bring up the properties window. Then
ouble-click on the property title of the property you want to
et. This could be, for example, the word “Left” in the properties
ialog. The value that appears is the value from the first control
ou selected.

—A. Nicklas Malik

VB4

HEN DOES A FORM-LEVEL OBJECT
NSTANCE CEASE TO EXIST?
ou have an object variable declared in the Declarations sec-
ion of a form. In the Form_Load event, you create an instance of
 class and assign it to the variable. However, when your form
nloads, the object class’ Terminate event does not fire because
he form has not yet ceased to exist. Simply unloading a form
oes not cause the form object to terminate. As long as the form
bject exists, it references the class. Set the form-level variable
o nothing to cause it to unload.

As a way to remember this, treat a form object like any other
bject. Assign it to a form variable when you want to create it.
his makes obvious the need to delete the reference when you
re done.

Thus, instead of writing:

 MyForm.Show vbModal
 Set MyForm = Nothing

ou should write:

 Dim FormRef as MyForm
 Set FormRef = New MyForm
 FormRef.Show vbModal
 Set FormRef = Nothing

This makes it clear that you are dropping an object refer-
nce in code.

—A. Nicklas Malik

VB4

ENAME THE “PRINTER” MODULE
o you have a module or class of the same name as a system-
rovided object? If so, VB will use your object, not its own. In
B3, where you couldn’t define your own objects, this was not a
roblem, but in VB4 it becomes an issue. Look for a module called
Supplemen©1991–1996 Fawcette Technical Publications

printer” and rename it.
—A. Nicklas Malik
VB4

ETTING A COUNT OF THE ROWS
FFECTED BY A SQL STATEMENT

QL Server does not return a result set for action queries (SQL
nsert, update, or delete statements). If you were to use the
QLExecute method and execute the statement directly, RDO
ould catch the returning row count and make it available to you.
owever, since the statement is executed in a stored procedure,

he row count information is not returned to ODBC. Hence, the
emote Data Object (RDO) can’t return this information.

If you run a stored procedure that contains a mix of select
nd action statements, and an action statement fails, an error is
eturned to RDO. The error comes back to VB in the form of a
rappable data error, which you can handle with the On Error
yntax. The only thing that is not available is the actual number
f rows affected by the action statement because the SQL Server
oes not return this information to RDO.

However, if your system must to know the actual number of
ows affected, you can put:

Select @@ROWCOUNT

fter any action statements in the stored procedure. This pro-
uces a one-column, one-row result set containing the number
f rows affected by the action statement. DBLib and ODBC API
equire the same procedure as RDO.

—A. Nicklas Malik

VB4

EW DECLARATION
OSSIBILITIES FOR VB4

dd Optional parameters to your procedure calls. Both Func-
ions and subs can now use the Optional keyword in the decla-
ation to indicate that the following parameter is optional:

unction mfbCheckDBStatus(Optional _
vroTest As Variant) As Boolean

This function can also be called without the parameter:

fbCheckDBStatus

If you need to check for the existence of an optional param-
t to Visual Basic Programmer’s Journal FEBRUARY 1996 7

8

 99 TECH TIPS
For VB Developers

“
t
t
i
i
t
“

s
c
t

(
o
e

VB4

WHY DOES THE TYPENAME OF A
FORM RETURN THE FORM’S NAME,
AND NOT ITS TYPE?
You create a routine that uses the Typename() function to find
out the type of an object, and based on that type, performs cer-
tain actions. However, when used in a Form object, the value
returned by Typename() is not the generic object class “Form.”
It is, instead, the specific object class “Form1.”

Try running this sample:

Private Sub Form_Load()
Dim frm as Form
set frm = Me
Debug.Print TypeName(frm), frm.Name
'<< prints: Form1

Form1
End Sub

You expect TypeName(frm) to resolve to “Form” instead of
Form1” but it doesn’t. That is because the type of the object, in
his case, is the form class itself, “Form1.” That you assigned it
o a Form object does nothing except to prevent you from call-
ng any of the “Form1” object’s methods and properties directly
n code. Similarly, a control never gives a type name of “Con-
rol.” Instead, the type name is always something like
CommandButton” or “PictureBox.”

Interestingly, while the TypeName function returns the most
pecific name, the If-TypeOf syntax will match either the generic
lass type or the specific object class. In other words, both of
hese If statements would return True:

Set frm = Me
If TypeOf frm Is Form1 Then Debug.Print "Form1"
If TypeOf frm Is Form Then Debug.Print "Form"
'<< both stmts are true

—A. Nicklas Malik

VB4

MINIMIZING ALL WINDOWS IN
WIN95
In Windows 95, only the VB windows with the property
ShowInTaskbar set to True are minimized if you select Minimize
All Windows from the task bar context menu. This is the way
Win95 handles the window class. Forms with
ShowInTaskbar=False work like property pages. You can easily
demonstrate this.

Bring up the Display properties dialog from the control panel
or by right-clicking on the desktop. Do a Minimize All. The prop-
erty page remains. If Win95 were to minimize the window, it would
 FEBRUARY 1996 Supplement to Visual Basic Programmer’s Jo

sit on top of the task bar, not in it. Win95 provides this function-
ality, while VB4 just sets the bit.
The way that standard Win95 applications handle this is by
having a main window that shows in the taskbar. All auxiliary
windows are owned by the main window. When an owner win-
dow is minimized, owned windows will hide, not minimize.

You can use code to make a VB window be owned by another
VB window, but there are implications to this solution. Owned
windows are always on top of the owner window.

On form load of each child window, do a GetWindow API call,
using GW_OWNER on the form’s window handle (hwnd) to get
the original owner window handle. Save this value for later use.
Proceed to make the subwindow “owned by” the main window
by calling SetWindowLong, like this:

iret = SetWindowLong(Form2.hwnd, _
GWL_HWNDPARENT, _
Form1.hwnd)

On form unload of the main window restore all remaining
owned) subwindows back to being owned by their original
wner window. Otherwise, you may get an Invalid Page Fault
rror.

—A. Nicklas Malik

VB4

DO YOU HAVE WRITE ACCESS TO
A DRIVE WITHOUT OPENING A
FILE ON THAT DRIVE?
Assume that you have the full path name of a file, and you need
to be able to tell if the drive is writeable (that is, if it is a CD-ROM
or a network drive to which you have write access). Checking
the attributes of the file is not enough, because the file may not
be marked read-only, but the drive may be a read-only drive.
However, if you open the file for Write or Append inside VB, it
will reset the file’s date stamp, which you don’t want.

To determine if a file is writeable without writing to it, get the
attributes of the file with GetAttr, and then attempt to change
them with SetAttr. This operation will fail if you do not have write
permission on the drive. On the other hand, if you are worried
about a file being locked for writing (like an EXE is while it is
running under Windows), you should use the OpenFile() API call
with the OF_WRITE switch. This call will generate an error if the
file cannot be opened for writing, but will not change the time
stamp if you simply close it right away.

—A. Nicklas Malik

VB4

DON’T REMOVE CONTROLS USING
TOOLS-REFERENCES
Use the Tools-Custom Controls dialog instead of Tools-References
to remove controls. The project file will show references to all
custom controls in the project’s toolbox, even if they are not
used by any window. Using the Custom Controls dialog removes
urnal ©1991–1996 Fawcette Technical Publications

the control from the toolbox, which removes the reference.
—A. Nicklas Malik

 99 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

f

y

t
y

End Function
VB4

MESSAGEBOX FROM OLE SERVER
COMES UP BEHIND THE APP
You have a VB4-based OLE Automation server that has no main
UI, and displays forms that are parented into Excel in response to
various automation calls. Sometimes you need to display a mes-
sage box instead of a form. If you haven't yet parented any forms
into Excel, the message box frequently appears behind Excel.

To make sure that the message box appears where the user
can see it—if all your forms are modal—the best way is to com-
pile the VB4 OLE Automation server as an in-process server
(DLL). The server becomes part of Excel's process space, and
all forms and message boxes are automatically parented as you
would expect them to be.

If your forms are modeless, you cannot use the DLL approach.
Your OLE Automation server must be an EXE. The following
workaround should do the trick.

Create a hidden, modeless form and use SetParent to make it
a child of Excel's main window. Make this the first thing you do
when Excel gets an instance of your object. Create a Public (vis-
ible throughout your project, but not outside) method for the
hidden modeless form. The Public method takes the same pa-
rameters as a message box, and its job is to call MsgBox with
those parameters. When your server needs to display a mes-
sage box when no other form is parented to Excel, call this
method. Excel should never hide the message box.

—A. Nicklas Malik

VB4

CREATE CUSTOM PROPERTIES FOR
FORMS OR CLASS MODULES
Have you ever wanted to push a variable onto a form without
using a tag? Property functions let you create custom proper-
ties for forms or class models. Use PropertySet, PropertyGet,
and PropertyLet statements to manipulate custom properties.

For example, you want to send a key value to a form so that the
key is there in time for an SQL query to use it in a condition. Include
a variable declaration for the property as a form-level variable:

Private msKey as String

Then add two procedures for PropertySet and PropertyLet
or the form:

Public Property Let GetKey(vNewValue)
msKey = vNewValue

End Property
Public Property Get GetKey()

GetKey = msKey
End Property

You can now set the property from elsewhere by using:

Form1.GetKey = "David"
Supplemen©1991–1996 Fawcette Technical Publications

In your form, use the variable you declared for any usage in
our code. Property Procedures can be a bit more complex. But,
he point is that the VB4 has become much more adaptable to
our needs. Customize it to fit.

—Crescent Tech Support

VB4

SEE THE METHODS
EXPORTED BY AN OCX
You can use the code window to see the events for an OCX, and
the properties window to see the properties of an OCX. To see
the OCX’s methods, use the Object Browser like this:

1. Start VB.
2. Press F7 to view code.
3. Press F2 to get the object browser.
4. Select an OCX from the libraries/projects drop down menu.
5. See the object’s methods displayed in the Methods window.

—A. Nicklas Malik

VB4

DETERMINE WHEN AN
APP IS COMPLETE
In VB3, you call GetModuleUsage() to determine when an app
you started with the Shell command was complete. However,
this call does not work correctly in the 32-bit arena of Windows
NT and Windows 95.

To overcome this obstacle, use a routine in both 16- and 32-
bit environments that will tell you when a program has finished,
even if it does not create a window.

The IsInst() routine uses the TaskFirst and TaskNext func-
tions defined in the TOOLHELP.DLL to see if the instance handle
returned by the Shell function is still valid. When IsInst() returns
False, the command has finished.

You can call it in a loop:

hInst = Shell("foobar.exe")
Do While IsInst(hInst)

DoEvents
Loop

Function IsInst(hInst As Integer) As Boolean
Dim taskstruct As TaskEntry
Dim retc As Boolean

IsInst = False
taskstruct.dwSize = Len(taskstruct)
retc = TaskFirst(taskstruct)
Do While retc

If taskstruct.hInst = hInst Then
 ' note: the task handle is: taskstruct.hTask

IsInst = True
Exit Function

End If
retc = TaskNext(taskstruct)

Loop
t to Visual Basic Programmer’s Journal FEBRUARY 1996 9

—A. Nicklas Malik

 99 TECH TIPS
For VB Developers

E

Y

P
O
T
t
c
l

•
•
•
c
•
•
t

P

End Sub
—A. Nicklas Malik
VB4

HANDLING ERRORS IN THE
FORM_LOAD ROUTINE
In VB3, the PostMessage API can cancel an error during
Form_Load. The form unloads if you send a WM_CLOSE mes-
sage to the loaded window in the error handler of the Form_Load
routine. It is not easy to find out from the calling routine exactly
why the form unloaded.

In VB4, you can create a property on your form to indicate
success or failure, and unload the form from the calling proce-
dure depending upon the value of that property:

Public SuccessfulLoad As Boolean
' creates the property Form1.SuccessfulLoad

Private Sub Form_Load()
SuccessfulLoad = True
If An Error Occurs Then
 SuccessfulLoad = False
End If

End Sub

In the calling procedure:

Sub LoadTheFubarForm()

Dim MyForm As Form1

Set MyForm = New Form1
Load MyForm
If MyForm.SuccessfulLoad Then
 MyForm.Show vbModal
End If
Unload MyForm
Set MyForm = Nothing

End Sub
—A. Nicklas Malik

VB4

SUPPORT THE FULL
IMAGELIST API IN VB4
To draw a selected transparent image in VB4 from an Imagelist
control, as you do in C++, follow these steps.

The ImageList_ API functions have many features that weren’t
passed through in the control. In order to support the full API,
the ImageList control exposes the property hImageList, which
returns a handle you can use when calling the API functions.

In the ListImage.Draw method, you can specify imlNormal,
imlTransparent, imlSelected, or imlFocus. In the underlying API
ImageList_Draw function, however, these are bit flags, and there
is an additional flag to draw a mask.

This function draws an image from an image list with any
combination of draw flags:
10 FEBRUARY 1996 Supplement to Visual Basic Programmer’s Jo

Sub DrawImage(img As ImageList, vIndex As Variant, _
hDC As Long, x As Long, y As Long, _
Optional vDraw As Variant)

If IsMissing(vDraw) Then _
vDraw = ILD_NORMAL Or ILD_TRANSPARENT

ImageList_Draw img.hImageList, _
img.ListImages(vIndex).Index - 1, hDC, _
x / Screen.TwipsPerPixelX, _
y / Screen.TwipsPerPixelY, vDraw

nd Sub

These functions are documented on the MSDN. Take a look.
ou may find many other uses for them.

—A. Nicklas Malik

VB4

LACING A COMBO BOX
NTO A TOOLBAR

o put a combo box on a toolbar, create a place holder and posi-
ion the combo box above the place holder in the z-order. You
an’t place the combo box inside the place holder. Instead, fol-
ow these steps:

 Create a button with the PlaceHolder style.
 Show the form.
 In the Form_Load event set the Top and Left properties of the
ombo box to the same value as the PlaceHolder button.
 Set the z-order of the combo box to zero to bring it to the front.
 In the Form_Resize event, make sure the Top and Left proper-
ies of the combo box are the same as the PlaceHolder button.

rivate Sub Form_Load()
Dim btnX As Button

Me.Show
Set btnX = Toolbar1.Buttons.Add()
btnX.Style = tbrSeparator
Set btnX = Toolbar1.Buttons.Add()
btnX.Style = tbrPlaceholder
btnX.Key = "combo"
btnX.Width = 2000

With Combo1
.ZOrder 0
.Width = Toolbar1.Buttons("combo").Width
.Top = Toolbar1.Buttons("combo").Top
.Left = Toolbar1.Buttons("combo").Left

End With
urnal ©1991–1996 Fawcette Technical Publications

 99 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

S
1
W
A
\
t
i

b
1
W
f
n

t
m
t

W
a
l
w
m

p

S
E
T
e
q

f
m
p
s
b

C
T

VB4

NUMERIC STRINGS AS KEYS
IN A TREEVIEW CONTROL
To use numeric strings as keys in a treeview control, the keys
must be strings containing a non-numeric character, not just
digits. A handy workaround is to append the string “_” to the
end of the string of digits, which you can now use as a key. Ap-
pend to the end because you can use the Val() function to get
the numeric value back out without doing any parsing.

—A. Nicklas Malik

VB4

LOAD NEW OCXS,
ERROR-MESSAGE FREE
Normally, to load a new OCX, you select Custom Controls from the
VB4 Tools menu. Then, in the Custom Controls dialog, click on the
browse button, select the OCX file, and click on OK to install it.

However, if the OCX does not run, it is probably missing the
DLL files it needs. OCX controls created using VC++ 2.x need these
files, which VB4 does not install: MFC30.DLL, MFCO30.DLL, and
OC30.DLL. Make sure they’re in your path and registered correctly.
They should be supplied by the control.

If the OCX was created using VC++ 4.0, the files MFC40.DLL and
OLEPRO32.DLL already should be installed on your system by VB4.

—A. Nicklas Malik

VB4

ERROR HANDLING IN
A CLASS MODULE
To signal errors from within a class method, use the Error.Raise
method and bubble it back up to the server. Check the docs for
Error.Raise and the books online.

One caveat is that errors in Class_Initialize and
Class_Terminate do not bubble back up. Like errors in an event
procedure of a form module, they’re not in the client’s call tree.
If they are untrapped, the OLE server will terminate abruptly.

On an out-of-process server, your client will be left with in-
valid references. If your server is in-process (an OLE DLL), the
situation is much more serious because your client will also ter-
minate abruptly. (When you’re in the same process, your fatal
errors are your client’s fatal errors.)

Therefore, always protect Class_Initialize and
Class_Terminate with bulletproof error-trapping, and never raise
Supplement©1991–1996 Fawcette Technical Publications

errors in them.
—A. Nicklas Malik

t
G
o
o
a

VB3

EARCHING FOR
6-BIT DLLS IN WINDOWS 95
indows 95 uses an extra step when searching for 16-bit DLLs.
 new registry key, “Known16DLLs,” in Windows 95 under
\HKEY_LOCAL_MACHINE\System\CurrentControlSet\Con-
rol\SessionManager functions in a similar way to KnownDLLs
n Windows NT.

Known16DLLs contains numerous subkeys, named after 16-
it DLLs, whose value is the name plus the DLL extension. If a
6-bit DLL is in this list, Windows 95 will first check the
indows\System directory for the 16-bit DLL and load it if it

inds it. If the DLL is not in the Windows\System directory, a
ormal search (CurDir, windows, system, path) begins.

Windows 95 puts a subkey for a 16-bit DLL in Known16DLLs
he first time it loads it from Windows\System. But it won’t re-
ove the subkey should the 16-bit DLL be no longer found in

he Windows\System directory.
To summarize, when a 16-bit DLL is loaded from the

indows\System directory it goes into this list. Whenever an
ttempt is made to load it in the future, Win95 will see it in the
ist and will search Windows\System directory first. The only
ay to ensure the expected search for this 16-bit DLL is to re-
ove the relevant subkey of Known16DLLs if it exists.

Special thanks to Oliver Hodgkins, Microsoft Customer Sup-
ort, England.

—A. Nicklas Malik

VB4

ETUP WIZARD COMPLAINS: NOT
NOUGH INFO IN OLE SERVER

he SetupWizard directly supports only self-registering OLE serv-
rs. The setup toolkit doesn’t directly support a server that re-
uires a REG file.

A workaround is use the Add Files button to add an REG
ile. The setup toolkit will register those keys on the user’s

achine. This is a partial solution. You can only use relative
aths, so the server directory must be on the PATH. Also, the
etup toolkit doesn’t know how to uninstall these changes made
y a REG file.

—A. Nicklas Malik

VB4

HECK AVAILABLE DRIVE SPACE
he setup kit supplied with VB has a DLL with a useful function

hat can be called from your own applications. The function,
etFreeDiskSpace, returns the amount of free space available
n a drive. Using this function in conjunction with the VB FileLen
r LOF functions, you can test whether there is enough space
 to Visual Basic Programmer’s Journal FEBRUARY 1996 11

vailable on a drive before you try to copy or save a file.
—Crescent Tech Support

 99 TECH TIPS
For VB Developers

Dim objXLRoot As [_ExcelApplication]
VB4

PRINTING FROM
THE RICHTEXT CONTROL
The on-line documentation on using the RichText control to print
tells how it is supposed to work. It does not mention two basic
problems. First, the RichText control doesn’t work with the com-
mon dialog hDC. Second, to skip the error generated when us-
ing the Printer object hDC, you must use On Error Resume Next.

These code fragments show how to print properly from the
RichText control:

On error resume next
printer.print ""
richtext.selprint printer.hdc
printer.enddoc

This wrapper function uses both the CommonDialog control
and the Printer object:

Function FilePrintDlgProc(rprnDlg As _
CommonDialog, rRTF As _
RichTextBox) As Boolean
On Local Error GoTo Error_Handler:
With rprnDlg

.CancelError = True

.Flags = cdlPDReturnDC + cdlPDNoPageNums
If rRTF.SelLength = 0 Then

.Flags = .Flags + cdlPDAllPages
Else

.Flags = .Flags + cdlPDSelection
End If
.ShowPrinter
On Local Error Resume Next
Printer.Print ""
rRTF.SelPrint Printer.hDC
Printer.EndDoc

FilePrintDlgProc = True

End With
Exit Function

Error_Handler:
If Err <> cdlCancel Then

MsgBox "Error " & Err & "; " & Error
End If

End Function
—Steven Mitchell

VBA

BINDING WITH MICROSOFT
WORD TYPE LIBRARY
The benefit of early binding is that performance improves and
12 FEBRUARY 1996 Supplement to Visual Basic Programmer’s Jo

code does not need to be localized for each international ver-
sion of Word. This is true only for the function that is being called,
not the strings that are passed as parameters. Performance gains
are two to 10 times faster, so mileage will vary.

Word is one of the easiest Office applications to completely
early bind, because it has so few exposed objects. To early bind
the Word Basic object, follow these steps:

• Select References from the Tools menu.
• Select Microsoft WordBasic 95 Type Library or browse for
WB70EN32.TLB. This file can be obtained from Microsoft on
Compuserve, Internet, or MSN.
• In the declarations section of your code add:

[Dim|Private|Public|Global] objReference as _
Word.WordBasic

• Initialize the objReference variable by using GetObject or
CreateObject:

Private Sub Command1_Click()
Dim objReference As Word.WordBasic
Set objReference = CreateObject("Word.Basic")
With objReference

.FileNewDefault

.Insert Text:="Hello from Me to you."

.InsertPara
End With

End Sub
—Steven Mitchell

VB4

EARLY BINDING
WITH MICROSOFT EXCEL
Early binding can be done with Excel 5.0 and 7.0 by taking ad-
vantage of two bugs in Excel. The first bug cannot do direct early
binding. The second bug is an unexposed bug in which to do
early binding. Be forewarned that using this method may not be
compatible in future versions of Excel.

Follow these steps to early bind with the Excel object:

• Select References from the Tools menu.
• Select Microsoft Excel 5.0 or Excel 7.0 Object Library:

[Dim|Private|Public|Global] objXLRoot _
as [_ExcelApplication]

[Dim|Private|Public|Global] objXLApp as Excel.Application

• To initialize the objXLRoot use the New method:

Set objXLRoot = New [_ExcelApplication]

• This complete code fragment illustrates the technique:

Private Sub Command2_Click()
Dim objXL As Excel.Application
urnal ©1991–1996 Fawcette Technical Publications

Dim objWKB As Excel.Workbook

 99 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

E

P
C
B
f
g
b
o

P

E

C
V
d
l
V
y

Ctrl-R—Replace.
—Barry Seymour
Set objXLRoot = New [_ExcelApplication]
Set objXL = objXLRoot.Application
objXL.Visible = True

Set objWKB = objXL.Workbooks.Add
objWKB.Worksheets(1).Range("A2").Formula = "Hello"
objWKB.Parent.ActiveCell.Formula = "Why"

nd Sub
—Steven Mitchell

VBA

ROGRAMMATICALLY
LOSE THE BINDER OBJECT

ecause of customer complaints and confusion, Microsoft Of-
ice applications will begin to implement this strategy for pro-
rammatically closing Office applications. First, hide the object
y setting Object.Visible to false. Then let the object variable go
ut of scope or set it to Nothing.

rivate Sub Command3_Click()
Dim objBinder As OfficeBinder.Binder
Dim objWord As Word.WordBasic

Set objBinder = CreateObject("Office.Binder")
objBinder.Visible = True
Set objWord = CreateObject("Word.Basic")
With objWord

.FileNewDefault

.FormatStyle Name:="Heading 1", Apply:=True

.Insert "Really cool tip from VBPJ"

.InsertPara

.FileSaveAs "c:\VBPJ Tip.DOC"

.FileClose
End With
Set objWord = Nothing
With objBinder

.Sections.Add filename:="c:\VBPJ Tip.doc"

.Sections(1).Name = "VBPJ Tip"

.SaveAs filename:="c:\VBPJ.obd", _
saveOption:=bindOverwriteExisting

.Visible = False
End With

Set objBinder = Nothing 'Close the Binder Object
nd Sub

—Steven Mitchell

VB3

HANGE YOUR EDITOR FONT
B 4.0 lets you pick the font you want for your editor. You can
o the same thing in VB 3.0 as well, but you’re font choices are

imited, and it’ll involve a little tinkering with Windows itself.
Supplemen©1991–1996 Fawcette Technical Publications

B 3.0 uses Windows’ Fixed System font. In order to change this
ou need to find another fixed font. The WINCIMTE.FON font,
which comes with CompuServe Information Manager is my fa-
vorite. It’s small, yet very readable.

To change your editor font, follow these steps:

WINDOWS 95:
1. Run Control Panel, then Fonts. Click Add New Font from the
File menu, and locate WINCIMTE.FON in the CSERVE\WINCIM
directory. When installing, make sure it’s copied to the
Windows\System directory.
2. Restart your computer in MS-DOS mode. Change to the
Windows\System directory. Copy VGAFIX.FON to VGAFIX.SAV.
Copy WINCIMTE.FON to VGAFIX.FON.
3. Restart your computer. Now every program that uses the VGA
Fixed System font (including Cardfile, Notepad and—you guessed
it—VB 3.0) will have the new, smaller font.

WINDOWS 3.X:
1. Use Fonts from the Control Panel to install the
C:\CSERVE\WINCIM\WINCIMTE.FON font.
2. Exit to DOS and perform the tasks in Step 2 for Windows 95.
3. Restart Windows. Now every program that uses the VGA Fixed
System font will have the new, smaller font.

Note that the font must be a Fixed font, or VB won’t like it.
Also note that if you’re running at high resolution with large fonts
you may need to replace 8514FIX.FON instead of VGAFIX.FON.

—Barry Seymour

VB3

VB3 KEYBOARD SHORTCUTS
Take a few moments to memorize these keystroke combinations
and you’ll find yourself rocketing through your project! Key com-
binations separated by commas mean they’re to be performed
sequentially.

VB 3.0 Keyboard Shortcuts
Alt F,V,F5—Save and Run.
Alt+Dash—Access system menu of current editor window or
form. This shortcut leads to others:

Alt+Dash, N—Minimize Window.
Alt+Dash, M—Maximize Window.

F3—Repeat last search. If you didn’t have a “last search,” the
search dialog opens automatically.

Editor Keys
Ctrl-Up—Move to previous sub in editor window.
Ctrl-Dn—Move to next sub in editor window.
Home, Shift-end—Select an entire line of text.
Ctrl-Home, Ctrl+Shift+End—Select all text in the current sub.
Ctrl-F—Find.
t to Visual Basic Programmer’s Journal FEBRUARY 1996 13

1

 99 TECH TIPS
For VB Developers

a
t
t

t
T
e
a

U
C
y
t
f
d
t

C
T
t
c
p
u
V
i
t
c

E
D
T
E
e
s
a
t
4

' Neither does this:
DBGrid.Columns(0).Value = "This is a test"
VB4

VB 4.0 KEYBOARD SHORTCUTS
Note that some key combinations are different from those for
VB 3.0:

Ctrl-T—Custom Controls.
Ctrl-E—Menu Editor.
Ctrl-F—Find (Unchanged from VB3).
Ctrl-H—Replace (H? Yes, H! Go Figure!).

—Barry Seymour

VB3 VB4

A REPLACEMENT FOR TABS
You say you want to use a tab control, but you have so many
topics the tabs will be unreadable? Try using a list box in con-
junction with a control array of picture controls. The list box
will contain entries the user can choose; the picture controls
will be containers for the various form subsections desired.

To demonstrate this, create a form with a list box (List1) on
the left and a Picture box (Picture1) on the right. Set the Index
property of Picture1 to zero, making it a control array. Then place
this code in Form_Load:

Private Sub Form_Load()
Dim x As Integer
For x = 0 To 15

List1.AddItem "Picture1(" & x & ")"
If x > 0 Then Load Picture1(x)
Picture(x).AutoRedraw = True

Picture(x).AutoRedraw = True
Picture(x).Visible = True
Picture(x).Left = Picture1(0).Left
Picture(x).Top = Picture1(0).Top
Picture(x).Width = Picture1(0).Width
Picture(x).Height = Picture1(0).Height
Picture1(x).Print "This is picture " & x

Next x
Me.Show: Me.Refresh
List1.ListIndex = 0

End Sub

In VB 4.0, you could use this syntax:

With Picture1(x)
.AutoRedraw = True
.Visible = True
.Left = Picture1(0).Left
.Top = Picture1(0).Top
.Width = Picture1(0).Width
.Height = Picture1(0).Height

End With

Note that for a real application you wouldn’t dynamically cre-
te picture controls. You’d create them at design time and fill
4 FEBRUARY 1996 Supplement to Visual Basic Programmer’s Jo

hem with the controls you need. To demonstrate the concept,
he example loads the control array at Form_Load.
Place the following code in List1_Click:

Picture1(List1.ListIndex).ZOrder

Whenever the user clicks an item in the list, the relevant pic-
ure control will pop to the top of the stack, becoming visible.
his provides tab-like functionality without the cost of a VBX or
xtra memory, and lets you create items with as many pictures
s you want, unfettered by tab width or tab caption readability!

—Barry Seymour

VB4

SING COMPONENTS
reating a new project with a lot of old components? In VB 4.0
ou can drag and drop files into the project window to add them
o the project. Use File Manager or Explorer to drag and drop
orms, modules, classes, or resource files onto the project win-
ow. Drag and drop OCX files (32-bit) or VBX files (16-bit) onto
he toolbox to add controls to your project.

—Barry Seymour

VB4

OMPILE ON DEMAND
he new version of Visual Basic will compile only those por-

ions of code it expects to run. This speeds load time, but the
ode may not be fully checked. To fully compile your project
rior to running it, with all the syntax checking you’ve become
sed to, press Ctrl+F5 instead of F5 to run your project. To set
B 4.0 permanently to compile any project fully before running

t, select Options from the Tools menu and click the Advanced
ab. Uncheck the Compile on Demand check box to force VB to
ompile your app fully before running it.

—Barry Seymour

VB4

RROR IN DBGRID
OCUMENTATION

he documentation for the DBGrid in VB4’s Professional and
nterprise Editions states that the control’s Text and Value prop-
rties allow you to read or set the contents of a cell. This would
eem to indicate that you could use these properties to update
 field in a record set to which the grid is bound. Unfortunately,
hat is not the case. The following code generates runtime error
38: “Object doesn’t support this property or method:”

' This doesn’t work:
DBGrid.Columns(0).Text = "Hello, world."
urnal ©1991–1996 Fawcette Technical Publications

 99 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

t
t
i

D
t
b
u

it is located.
—Lisa Vahey
The workaround is to update the data control’s record set
directly. The change will be reflected automatically in the bound
grid:

datCtl.Recordset.Edit
datCtl.Recordset.Fields(0) = "This is a test."
datCtl.Recordset.Update

—Phil Weber

VB4

PRINTER OBJECT QUIRK
You would think that the following code would change the cur-
rent font of the default printer, but it doesn’t under VB4:

Printer.FontName = "Arial"
Printer.FontSize = 11
Printer.Print "This is a test."

An undocumented feature of VB4’s Printer object requires
that each new page be initialized before the font can be changed.
This code works as expected:

' Start new page
Printer.Print

' Set margins as desired
Printer.ScaleMode = vbTwips
Printer.CurrentY = 720

' Now you can set the font
Printer.FontName = "Arial"
Printer.FontSize = 11
Printer.Print "This is a test."
Printer.EndDoc

—Phil Weber

VB4

FIX FOR DATA
CONTROL ERROR 3426
This code, which works fine under VB3, may generate runtime
error 3426—“The action was canceled by an associated object”—
in the 16-bit version of VB4:

Private Sub cmdUpdate_Click()

' Save contents of bound controls
' to underlying recordset
datCtl.Recordset.Update

End Sub
Supplement©1991–1996 Fawcette Technical Publications

The problem seems to occur because the 16-bit version of
VB4, unlike VB3, does not perform an implicit Edit method when
he Data control moves to a new record. The solution is to check
he record set’s EditMode and perform an explicit Edit method
f necessary:

Private Sub cmdUpdate_Click()

If datCtl.Recordset.EditMode = dbEditNone Then
datCtl.Recordset.Edit

End If
datCtl.Recordset.Update

End Sub

Another workaround is to replace the Update method with the
ata control’s UpdateRecord method, which is equivalent func-

ionally to performing an Edit followed by an Update. The draw-
ack is that UpdateRecord does not fire a Validate event, so don’t
se it if you rely on that event to perform data validation.

—Phil Weber

VB4

ERROR WHEN SETTING DBCOMBO
MATCHENTRY PROPERTY
When you try to set the MatchEntry property of a DBCombo
control to “1 – Extended Matching”(at run time or design time),
VB may report that the “Property is read-only.” The problem is
that Extended Matching may be used only with DBCombos whose
Style is “2 – Dropdown List.” Change the Style property accord-
ingly and the error will disappear (if only Microsoft had thought
to mention that in the documentation).

—Phil Weber

VB3 VB4

JUMP TO A FUNCTION
WITHIN YOUR PROJECT
When you are looking at code that calls a function or proce-
dure and you are not sure in which module the function or pro-
cedure is defined, you can highlight/procedure name and press
Shift-F2. Visual Basic will open the appropriate module and dis-
play the function/procedure. This is great in large projects when
you need to look for a particular module and are not sure where
 to Visual Basic Programmer’s Journal FEBRUARY 1996 15

1

 99 TECH TIPS
For VB Developers

u

VB3 VB4

DISPLAYING THE WINDOWS
REGISTERED USER
The strings related to the registered user of a particular copy of
Windows are stored in a string inside USER.EXE. You can retrieve
them with code. In the general declarations section, insert:

Declare Function GetModuleHandle Lib "Kernel" _
(ByVal Module As String) As Integer

Declare Function LoadString Lib "User" _
(ByVal hInst As Integer, _
ByVal wID As Integer, ByVal buf as Any, _
ByVal size As Integer) As Integer

To get the user name and company strings into a variable,
se this code:

Sub Form_Load ()
Dim hInst As Integer, user As String, _

org As String, title As String, length As Integer
user = Space$(256)
org = Space$(256)
hInst = GetModuleHandle("user.exe")
length = LoadString(hInst, 514, user, Len(user))
user = Left$(user, length)
length = LoadString(hInst, 515, org, Len(org))
organization = Left$(org, length)
Debug.Print user
Debug.Print organization
End Sub

—Bill Reid

VB3 VB4

DRAGGING A FORM BY A CONTROL
This code is reusable and small enough to paste into whatever
you’re doing and instantly have a form that has no need for a
title bar. In the general declarations section, insert these lines:

Declare Sub ReleaseCapture Lib "User" ()
Declare Function SendMessage _

Lib "User" (ByVal hWnd As Integer, _
ByVal wMsg As Integer, _
ByVal wParem As Integer, lParem As Any) As Long

In the Mousedown event of the control, insert:

Sub Command1_MouseDown (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

Dim Ret&
ReleaseCapture
Ret& = SendMessage(Me.hWnd, &H112, &HF012, 0)
6 FEBRUARY 1996 Supplement to Visual Basic Programmer’s Jo

End Sub
—Bill Reid
VB3

FOR...NEXT LOOP SPEEDUP
Whenever you use For…Next loops, it is faster NOT to use the
counter name after Next (of the For…Next loop). In nested loops,
it produces significantly faster code.

Sub Form_Load ()
Dim TStart!
Dim I As Integer

TStart! = Timer
For I = 1 To 32000
Next I

Debug.Print Timer - TStart!

TStart! = Timer
For I = 1 To 32000
Next ' I ' For readability, it is better

' to show the counter name
' by commenting it out.

Debug.Print Timer - TStart!

End Sub
—Mansoor A. Thange

VB3

SECOND EDITABLE
CODE WINDOW IN VB
Look for a thin horizontal line at the top of the client area in the
VB code window that comes up when you view code for a form
or a module. If you move the mouse pointer just above that line,
you can drag the bar down to reveal another editing code win-
dow, initially viewing the same module of code. You also can
load a different module to view both sets of code on the same
screen. This is extremely useful when you need to look at code
or declarations in one section of a project while writing code in
another. You can use this in the same module only. Another
module will have its own code window.

—Lawrence M. Rice

VB3

CREATE A CONTROLLED
DOEVENTS
I needed a way to issue a DoEvents to allow Windows time to
redraw controls on a form, but wanted to prevent the user from
clicking some other control within my application.

I created a tiny form called F_DoEvents with the following
properties:

ControlBox = False
MaxButton = False
urnal ©1991–1996 Fawcette Technical Publications

MinButton = False
BorderStyle = none

 99 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

two fields in that dynaset.
Sub Form_Load
Left = Width * -1
Top = Height * -1

End Sub

This makes the form essentially invisible. The only code in
the form is:

Sub Form_Activate
DoEvents
Me.Hide

End Sub

Now, whenever I want to issue a limited DoEvents, I code:

F_DoEvents.Show 1

Because the form is displayed modally, the current code is
suppressed while the F_DoEvents form is “displayed.” This form
issues the DoEvents and then hides itself, returning control to the
“caller.” I experienced no noticeable degradation in performance.
Hiding the form is much faster than unloading it each time.

One warning: be sure to terminate your application with an
END statement or explicitly unload F_DoEvents when you have
finished. Unloading the main form won’t remove F_DoEvents and
the application will appear to hang.

—Robert W. Boyd

VB3 VB4

SELECTING THE TEXT WHEN
ENTERING A FIELD
In many cases, it is best to select or highlight the full text of a
field when that field gains the focus. This allows the user to sim-
ply begin typing to replace the original text with new text or to
press tab to leave as is and move to the next field. This imple-
ments with very little code. In a global module, include this code:

Sub SetSelected()
Screen.ActiveControl.SelStart = 0
Screen.ActiveControl.SelLength =

Len(Screen.ActiveControl.Text)
End Sub

For each field, include this text:

Sub txtField_GotFocus()
SetSelected

End Sub
—Gordy Blackwell

VB3

USING ENTER TO TAB FORWARD
THROUGH USER ENTRY FIELDS
When users are comfortable using the Enter key to proceed to
Supplement©1991–1996 Fawcette Technical Publications

the next field, you can allow them to continue their old habits.
You need very little coding to accomplish this. Set the KeyPreview
property of the form to True, and include the following code:

Sub Form_KeyDown (KeyCode As Integer, Shift As Integer)
' To trick the system to think
' the Tab key was pressed
If KeyCode = 13 Then SendKeys "{TAB}"

End Sub

Sub Form_KeyPress (KeyAscii As Integer)
' To eliminate the annoying beep
If KeyAscii = 13 Then KeyAscii = 0

End Sub

—Gordy Blackwell

VB3

COUNT THE ROWS IN A TABLE
BEFORE SELECTING THOSE ROWS
This technique easily helps you avoid an Object not Set error,
and saves time by not sending unnecessary queries:

Sub Form1_Load ()
Dim db As database
Dim ds As snapshot
Dim iNum As Integer

Set db = OpenDatabase("c:\vb\biblio.mdb")
Set ds = db.CreateSnapshot("Select Count (*) _

from Authors Where AU_ID > 10")
iNum = ds(0)

MsgBox "The number is " + Str$(iNum)
End Sub

—Peter Chyan

VB3

DETECT NULL OR ZERO-LENGTH
FIELDS IN A DATABASE
This syntax is much faster than using an If…Then…Else con-
struct to detect null or zero-length fields, and it will ensure that
an error will not occur.

For strings:

Dim sVar As String
…
sVar = "" & ds!sField

For numbers:

Dim nVar As Integer
…
nVar = 0 & ds!nField

This assumes that ds is a dynaset and sField and nField are
 to Visual Basic Programmer’s Journal FEBRUARY 1996 17

—Hendrick H. Heimer

 99 TECH TIPS
For VB Developers
VB3

PRINTER OBJECT ENDDOC RESETS
FONTNAME
The Printer object’s EndDoc method resets the FontName prop-
erty. If you want your application to print separate documents,
invoking EndDoc at the end of each, set the FontName before
printing the first item.

—Duanne Morse

VB3

ALLOW MULTIPLE FILE NAMES IN
AN OPEN FILE DIALOG BOX
If you want to allow multiple file names in an open file dialog box
(Flags OFN_ALLOWMULTISELECT), the resulting FileName string
will consist of the drive and directory path followed by a space-
separated list of the files selected in that directory. For example,
selecting files X.TXT and Y.TXT in c:\a\b will result in a file name
of “c:\a\b\ x.txt y.txt” and NOT “c:\a\b\x.txt c:\a\b\y.txt.”

—Duanne Morse

VB3 VB4

PROGRAMMATICALLY CLOSE
ANOTHER PROGRAM
To have a program programmatically close another program,
use this code:

' Close an existing program

Title = "VBApp"
ihWnd = FindWindow(0&, Title)
ihTask = GetWindowTask(ihWnd)
iRet = PostAppMessage(ihTask, WM_QUIT, 0, 0&)
MsgBox "Check it out! The VB App should be history"

—Douglas Haynes

VB3

SS3D2.VBX AND WIN95 GPF
Running applications written in VB3 in the WIN95 OS is not al-
ways a clean conversion. This code would work fine in Windows
for Workgroups 3.11, but would GPF in WIN95. SS3D2.VBX, which
is from Sheridan Software and contains SSCombo and SSList,
among others. I got a GPF crash from Win95 when I placed the
SSCombo on top of the SSIDXTAB.VBX upon exit. The workaround
is to type in the Form_Unload event:

Dim rc as integer
rc = setparent(sscombo1.hwnd, form1.hwnd)

The workaround makes the combo a child of the form, not of
18 FEBRUARY 1996 Supplement to Visual Basic Programmer’s J

the index tab, during the unload. In addition to, add in the Gen-
eral Declarations:
Declare Function Setparent Lib "User.exe" _
(Byval hwndchild as integer, byval _
hwndparent as integer) as integer.

—Douglas Haynes

VB3

GIVE FOCUS TO ANOTHER 16-BIT
APPLICATION IN NT
Note that in writing in VB3.0, Visual Basic’s AppActivate state-
ment fails to make a 32-bit application the active window under
Windows NT. For example:

Sub Form_Load ()
AppActivate "Notepad - (Untitled)"

End Sub

Visual Basic fails to give focus to the Notepad session be-
cause the 16-bit Windows subsystems may not be fully available
to other 16-bit programs. To work around this, use the
FindWindow and SetWindowPos Windows API functions like this:

1. Start a new project in Visual Basic. Form1 is created by de-
fault.
2. Double-click on the form to open the code window. Select (gen-
eral) from the Object box. Enter the following in the (general)
(declarations) window:

Declare Function FindWindow% Lib "USER" _
(ByVal Class&, ByVal Caption$)

' The following Declare statement must be on one line:
Declare Sub SetWindowPos Lib "user" _

(ByVal hwnd%, ByVal hwndAfter%, _
ByVal x%, ByVal y%, ByVal cx%, _
ByVal cy%, ByVal swp%)

3. Select Form from the Object box. Add the following code to
the Form Click event:

Sub Form_Click ()

Const SWP_NOSIZE% = &H1
Const SWP_NOMOVE% = &H2
AppActivate "Notepad - (Untitled)"
x = FindWindow(0, "Notepad - (Untitled)")
SetWindowPos x, 0, 0, 0, 0, 0, _

SWP_NOSIZE Or SWP_NOMOVE
Debug.Print Hex$(x)
' Print return code from
' FindWindow API function.

End Sub

4. Start Notepad in Windows NT.
5. Start the Visual Basic program, or press the F5 key. Click on
the form to activate Notepad. When finished, close the form to
ournal ©1991–1996 Fawcette Technical Publications

end the Visual Basic program.
—Douglas Haynes

 99 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

A

S

i
q
d

e
t

VB3 VB4

ALLOW COMMAND LINE
INI FILES FOR MULTIPLE USERS
ON THE SAME PC
To allow different INI files for different users on the same ma-
chine, use the command line to specify the specific INI file path
and file name. Add a check to see if the INI file exists, and if it
doesn’t, create it. A different icon specifying a different INI file
on the command line can be set up for each user:

Sub Form_Click ()
Dim achIniFile As String
Dim Msg As String

If Command = "" Then ' If no command line.
achIniFile = App.Path & "\DEFAULT.INI"

‘ There is currently no command-line string."
Msg = "The INI file used is: '" & Command$ & "'"

Else ' Put command line into message.
achIniFile = App.Path & “\” & Command$

Msg = "The INI file used is: '" & Command$ & "'"
End If
MsgBox Msg ' Display message.

End Sub

—Don Yasuda

VB3 VB4

AVOID AN ODBC ERROR
REFERENCING SP_STATISTICS
After opening a record set on a SQL server, this ODBC error
occurs:

ODBC--call failed.
[Microsoft][ODBC SQL Server Driver][SQL Server]

(#20001)

Attach the SQL Server table and open a record set on the at-
tached table to solve the problem.

Do not use the OpenDatabase method to open the record set
while a transaction is pending. SP_STATISTICS, a catalog stored
procedure, retrieves information about the table on which you
create the record set. SQL Server does not allow this stored pro-
Supplement©1991–1996 Fawcette Technical Publications

cedure to run while a transaction is pending.
—Douglas Haynes

S

S

u
t
b

VB3 VB4

ENSURE CODE IS DELETED WHEN
 CONTROL IS DELETED

When a control is deleted from a form, any code behind that con-
trol is not deleted. It still exists in the code in the General area.
Such stranded code might not be a problem except that it increases
the size of your EXE, consumes memory, and makes for sloppy
work. After deletion, if a control is placed on the form with the
same name as the deleted control, the stranded code will relo-
cate to the new control, as long as the event name is the same. A
programmer that does not want this code left in (and who would?)
must manually delete each instance of stranded code.

—Douglas Haynes

VB3 VB4

CORRECTLY CONVERT SQL
ERVER FLOATS BY JET

When using the SQL Server ODBC driver and SQL Server, and If
ODBC prepared execution is used, certain floating-point values may
be incorrectly converted. Microsoft Access and Microsoft Visual
Basic commonly use the ODBC prepared execution. For example:

Dim db As Database
Dim ds As Dynaset

 Set ds = db.CreateDynaset("SELECT * FROM test")
ds.AddNew
ds.Fields("col1") = 3.9
ds.Update

A query that checks for equality of the float column to the value
nserted does not show the record inserted, whereas a nonqualified
uery shows the record. For example, the record set for the ds1
ynaset does not show the record inserted, but ds2 dynaset will:

Set ds1 = db.CreateDynaset("SELECT * FROM test _
WHERE col1=3.9")

Set ds2 = db.CreateDynaset("SELECT * FROM test")

The difference in behavior is because, in the case of prepared
xecution, the ODBC driver is doing the conversion to float. In
he case of nonprepared execution and DB-Lib client tools, SQL
erver is doing the conversion.

To work around this problem, do an explicit convert on the
QL Server using a statement similar to this:

UPDATE test SET foo= (CONVERT(FLOAT, _
CONVERT(VARCHAR, col1)))

You can do the same thing within a trigger to automatically
pdate the value for all new records inserted. Please note that
his problem does not occur using the pass-through mechanism
 to Visual Basic Programmer’s Journal FEBRUARY 1996 19

ecause in that case, the conversion is done by SQL Server.
—Douglas Haynes

2

 99 TECH TIPS
For VB Developers

C
a
m

s
r
i
g

A
•
•
c
•
t
•
t

T
(
H
J
q
n
i
i
w
2

i
D
(
f
f

C
C
T
f
V
a
f
r

f
r
c

D

VB3 VB4

SUCCESSFULLY CLOSE
ODBC CONNECTION
The Microsoft Access engine will maintain a persistent connec-
tion on an ODBC connection in order to be more efficient, even
after using a Close method on a database opened with ODBC.
The ODBC database process keeps running. To close the con-
nection successfully, you must end the Visual Basic application.
Even though this is by design, many times the connection is
unwanted. One way to force the connection closed is to set
ConnectionTimeout to the minimum setting of one second. A
setting of zero indicates to never close the connection. It is de-
faulted to a value of 600 seconds, or 10 minutes. If a Visual Basic
program does not reopen the ODBC connection after doing a
Close method, a timeout occurs and the connection closes au-
tomatically. You can control the timeout period by placing the
following line in your VB.INI or <vb_exe_app_name>.INI file,
where x is the number of seconds:

[ODBC]
ConnectionTimeout=x

To enforce the fastest possible timeout, you can set
onnectionTimeout to one. In addition, you can add this code
fter you close the database to make sure the connection is ter-
inated:

db.Close ' Close database, using
' database object variable (db).

Start = Timer
Do ' This loop pauses a second

' to allow a time-out
FreeLocks ' Tell Microsoft Access

' engine that program is idle.
DoEvents ' Tell Windows to do any

' pending events.
Loop While Timer <= Start + 1

This loop delays for a second after the db.Close. The FreeLocks
tatement tells the database engine that the user is idle. If you
un the Visual Basic program with ConnectionTimeout set to one
n your VB.INI or <vb_exe_app_name>.INI file, the database en-
ine will disconnect the one-second-old connection to the server.

 —Douglas Haynes

VB3 VB4

GPF IN VB.EXE
What do you do when you get a GPF in VB.EXE? Remember that
Windows requires you to ensure memory integrity when calling
API functions. A GPF in VB.EXE can be produced if an API is in-
correctly called. An example of the error is:

Application error: VB caused a General
0 FEBRUARY 1996 Supplement to Visual Basic Programmer’s Jo

Protection Fault in VB.EXE
at nnnn:nnnn

C
C
C

or one of the following error messages:

- Assertion failed.
- Bad handle.
- Bad heap block.

This can occur if any of these conditions are passed to an
PI:
 Incorrect placement of ByVal in the Declare statement.
 A passed string initialized to a value that is too short to re-
eive the return value.
 Undefined parameters in the function declaration or invoca-
ion.
 Incorrect type or length of parameters in the function declara-
ion or invocation.

—Douglas Haynes

VB3

O SYNC OR NOT TO SYNC
ASYNC) ODBC QUERIES
ere you are in VB3, you have loaded the compatibility layer for

et 2.0, and you are using ODBC. In this configuration, the ODBC
ueries will always run in asynchronous query execution mode,
o matter if DisableAsync is set to one or zero in the application's

nitialization file. Fortunately, the fix for this is readily available
n the form of a new DLL in the Microsoft Access Service Pack,
hich upgrades the Jet Engine (MSAJT200.DLL) to version

.50.1606.
When the VB compatibility layer is installed, the Jet Engine

s upgraded from version 1.0 to version 2.0. If the Microsoft ODBC
esktop Database Drivers are then installed, the Jet Engine

MSAJT200.DLL) will be upgraded to version 2.50.1117, which
orces a VB application into asynchronous query execution mode
orever.

—Douglas Haynes

VB3

REATE AN ACCESS/QUICKEN-LIKE
OMBO BOX

his example shows how to make a combo box act like those
ound in Quicken or Microsoft Access, without using a third-party
BX. As each character is typed, the elements in the combo box
re searched and, if a match is found, retrieved. If a match is not
ound, the original typed text is restored. The only code needed
esides in the KeyUp event of a combo box called combo1.

The combo box is sorted alphabetically, so it stops on the
irst alphabetical match. I use the SendMessage API to turn the
edraw of the combo box off and then on when the search is
omplete.

Here are the form-level declarations for the combo box:

im strCombo As String
onst WM_SETREDRAW = &HB
urnal ©1991–1996 Fawcette Technical Publications

onst KEY_A = 65
onst KEY_Z = 90

 99 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

h
l

c
c

s

Declare Function SendMessage Lib "User" _
(ByVal hWnd As Integer, _
ByVal wMsg As Integer, _
ByVal wParam As Integer, _
lParam As Any) As Long

The code in the KeyUp event looks like this:

Dim x%
Dim strTemp$
Dim nRet&

If Keycode >= KEY_A And Keycode <= KEY_Z Then
'only look at letters A-Z

strTemp = combo1.Text
If Len(strTemp) = 1 Then strCombo = strTemp
nRet& = SendMessage(combo1.hWnd, _

WM_SETREDRAW, False, 0&)
For x = 0 To (combo1.ListCount - 1)

If UCase((strTemp & _
Mid$(combo1.List(x), _
Len(strTemp) + 1))) =

UCase(combo1.List(x)) Then
combo1.ListIndex = x
combo1.Text = combo1.List(x)
combo1.SelStart = Len(strTemp)
combo1.SelLength = _

Len(combo1.Text) - (Len(strTemp))
strCombo = strCombo & _

Mid$(strTemp, Len(strCombo) + 1)
 Exit For

Else
If InStr(UCase(strTemp), _

UCase(strCombo)) Then
strCombo = strCombo & _
Mid$(strTemp, Len(strCombo) + 1)
combo1.Text = strCombo
combo1.SelStart = Len(combo1.Text)

Else
strCombo = strTemp

End If
End If

Next
nRet& = SendMessage(combo1.hWnd, _

WM_SETREDRAW, True, 0&)
Supplement©1991–1996 Fawcette Technical Publications

End If
—Dan Fox

G

VB3 VB4

MSDN IS INDISPENSABLE FOR
THOSE OFF-THE-WALL ERRORS
Use the Microsoft Developer Network to search for errors that
seem to defy explanation. VB4 comes with a short version of the
MSDN, and subscriptions are available through Microsoft.

—Douglas Haynes

VB3 VB4

HANDLING LONG INI FILE ENTRIES
INI file entries can be so extremely long that the normal way of
sizing a string before retrieving the entry may not be sufficient.
This most frequently is true when retrieving the keyword names
for an entire INI file section.

Many programmers code something like this:

IniEntry = Space$(512)' let's hope 512
' is big enough

Result = GetProfileString(Section, _
KeyWord, "", IniEntry, Len(IniEntry))

If Result > 0 Then
IniEntry = Left$(IniEntry, Result)

However, there is no indication that the returned string may
ave been truncated. This technique will accommodate any

ength INI string:

IniEntry = ""
Do

IniEntry = IniEntry + Space$(512)
Result = GetProfileString(Section, _

KeyWord, "", IniEntry, Len(IniEntry))
Loop Until Right$(IniEntry, 1) = " "

If IniEntry is not long enough, the rightmost character will
ontain a null character, so the loop will repeat until the rightmost
haracter remains as a space.

The same technique works when retrieving all keywords of a
ection like this:

KeyWords = ""
Do

KeyWords = KeyWords + Space$(512)
Result = GetProfileString(Section, 0&, "", _

KeyWords, Len(KeyWords))
Loop Until Right$(KeyWords, 1) = " "

This assumes that the “KeyWord” parameter for
etProfileString has been declared as:
 to Visual Basic Programmer’s Journal FEBRUARY 1996 21

ByVal lpKeyWord As Any
—Phil Parsons

2

 99 TECH TIPS
For VB Developers

E

f

B
D
W
r
w

C
W
e
Y
r
e
o
t

T
A
I
t
the label being one more than the text box.

—Douglas Haynes
VB3 VB4

KEEPING ACCURATE TIME IN VB
I developed a CBT project which required the user to read large
amounts of text. I wanted to prompt the user to take a break
after a period of time. The problem with the VB timer is that it
lasts just over a minute. I used the API function
GetCurrentTime(), which records the milliseconds since Win-
dows was started.

Place a Timer control on the form that starts the application
(make sure that this form remains loaded throughout the appli-
cation). Place this code in the Declarations section of the form:

Dim Start&, Elapsed&
Declare Function GetCurrentTime& Lib "User" ()

The Form_Load event of this form must also contain this code:

Start = GetCurrentTime

This routine sets the Timer interval to about a minute.

Sub Timer1_Timer ()

Dim MsgText$

Elapsed = GetCurrentTime()
' if 10 minutes has elapsed since
' the program was started
' or the last msgbox was displayed
If Elapsed - Start >= 600000 Then ' 10 minutes

MsgText = "Give your eyes a rest. _
Take a 5 minute break."

MsgBox MsgText, 16, "Take A Break"
' however long the msgbox is on the screen
' the timer is effectively set to 0 when the
' user presses OK
Elapsed = GetCurrentTime()
Start = Elapsed
Elapsed = 0

End If
End Sub

—David Mawson

VB4

COOL SCREEN WIPES
You can achieve some cool form wipes with judicious use of the
Move method. For example, to draw a curtain from right to left
use this routine:

Sub WipeRight (Lt%, Tp%, frm As Form)
2 FEBRUARY 1996 Supplement to Visual Basic Programmer’s Jo

Dim s, Wx, Hx, i
s = 90 'number of steps to use in the wipe
Wx = frm.Width / s 'size of vertical steps
Hx = frm.Height / s 'size of horizontal steps
' top and left are static
' while the width gradually shrinks
For i = 1 To s - 1

frm.Move Lt, Tp, frm.Width - Wx
Next

nd Sub

Call the routine from a command button by using this code:

L = Me.Left
T = Me.Top
WipeRight L, T, Me

It is also possible to wipe a form from bottom to top, and
rom both sides to the middle, using similar routines.

—David Mawson

VB3

EWARE OF DESIGN-TIME
DE LINKS

hen using DDE Links at design time, the link will be tempo-
arily cut when the program is run. Some, but not all, programs
ill reestablish the connection.

—Douglas Haynes

VB3 VB4

HANGE TAB ORDER SEQUENCE
hile in design mode, the tab order may get out of sequence,

specially if you add a control after all the others are set in place.
ou can set the TabOrder sequence by selecting each control in
everse order with your mouse, and setting the TabOrder prop-
rty to zero for each one. When done, you will find that all the
rders are in the reverse of the order you chose: they are now in
he correct sequence.

—Douglas Haynes

VB3 VB4

AB ORDER WITH LABELS
TTACHED TO CONTROLS

n order for a label to be associated with a control (such as a
ext box) for using hot keys, they must be in TabOrder sequence,
urnal ©1991–1996 Fawcette Technical Publications

 99 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

End Sub

— MicroHelp UnInstaller 95 team
VB3 VB4

PRINT A SINGLE SUB OR FUNCTION
The problem? You want to print a single sub but VB always prints
all the subs that are in the current form. You could copy it to the
clipboard and print it with the MS-Editor or Notepad. You could
buy expensive tools to do this seemingly simple task. Here’s a
less annoying solution to the problem. Generate a small form.
Add a command button. The caption may be “Print Sub.” Then,
add this code to the module:

Sub Command1_Click ()
' Make sure that VB has the focus
AppAcitvate "Microsoft Visual Basic"
' Move the cursor to the upper left corner.
' The sub can contain a maximum of 500 lines.
' send SHIFT together with the DOWN key
' to mark the whole sub.

SendKeys "{Home}{UP 500} + ({DOWN 500}) % (EC)", True
' Copy SUB to the clipboard

Printer.Print Clipboard.GetText()
' Print Clipboard

Printer.EndDoc
' Un-mark the SUB
SendKeys "{HOME}"
End Sub

Generate the EXE and run it together with VB. Move the Print-
Sub form to a convenient desktop position.

If you want a single sub of your project to be printed, set the
cursor to any position in this SUB and click on the Print-Sub
button.

I’ve tested the code with VB3 Pro. In other VB Versions (such
as the German Standard edition) you might have to change the
“%(EC)” portion. “EC” refers to the VB menu bar.

—Andreas Schilling

VB3 VB4

SCREAM THROUGH SEARCHES
WITH BYTE ARRAYS
This subroutine shows how byte arrays can speed a search
though a file. The routine is called with the file name, a string to
look for, a flag that tells it to use a string variable or a byte array
and a flag that tells it to look for Unicode or ANSII strings (strings
in VB4 EXEs are in Unicode). My test, with ibyte set to true (use
byte array) took about six seconds to search though 32-bit
WINWORD.EXE. The same file with ibyte set to false (use string
variable) ran in about 36 seconds. The file is almost 4 MB.
Supplement t©1991–1996 Fawcette Technical Publications

Sub Searchfile(sFile As String, sSearch As String, ibyte _
As Boolean, iUniCode As Boolean)
'sFile - file name
'sSearch - string to search for
'ibyte - use byte array to search
'iUniCode - look for UniCode strings
Dim iHandle As Integer
Dim sTemp As String
Dim lSpot As Long
Dim lFind As Long
Dim sSearch1 As String
Dim bTemp() As Byte
'another advantage of using a byte array
'is that we can easily look for UniCode strings
If iUniCode Or (Not ibyte) Then

'this line will look for unicode strings
'when using byte arrays, regular
'strings when using string variable
sSearch1 = sSearch

Else
'this line will look for ANSII strings
'when looking through a byte array
sSearch1 = StrConv(sSearch, vbFromUnicode)

End If

iHandle = FreeFile
Open sFile For Binary Access Read As iHandle
If iHandle Then

sTemp = Space$((LOF(iHandle) / 2) + 1)
ReDim bTemp(LOF(iHandle)) As Byte
If ibyte Then

Get #iHandle, , bTemp
sTemp = bTemp

Else
Get #iHandle, , sTemp

End If
Close iHandle

End If

Do
If ibyte Then

lFind = InStrB(lSpot + 1, sTemp, _
sSearch1, 1)

Else
lFind = InStr(lSpot + 1, sTemp, sSearch1, 1)

End If
lSpot = lFind

Loop Until lFind = 0
o Visual Basic Programmer’s Journal FEBRUARY 1996 23

 99 TECH TIPS
For VB Developers

,
M

M

E

U
I
t
c
s
w
c
p

'
'
D

P

E

'
'
'
P

P

E

P

E

P

E

Public Property Let Text(sString As String)
VB4

CONVERTING FILE NAMES
VB4’s commands for dealing with file names (such as KILL
MKDIR, and FILECOPY) support long file names without program-
mer interaction. A number of the Win95 API functions will re-
turn only the short name, and you’ll notice a number of short
file name entries if you’re digging through the registration data-
base. Therefore, occasionally you’ll need to convert a short file
name into a long file name.

This function lets you pass a long file name with no ill effects.
The file must exist for the conversion to succeed. Because this
routine uses Dir$ and “walks” the path name to do its work, it
will not impress you with its speed:

Function sLongName(sShortName As String) As String

'sShortName - the provided file name,
'fully qualified, this would usually be
'a short file name, but can be a long file name
'or any combination of long / short parts
'RETURNS: the complete long file name,
'or "" if an error occurs
'an error would usually indicate
'that the file doesn't exist

Dim sTemp As String
Dim sNew As String
Dim iHasBS As Integer
Dim iBS As Integer

If Len(sShortName) = 0 Then Exit Function
sTemp = sShortName
If Right$(sTemp, 1) = "\" Then

sTemp = Left$(sTemp, Len(sTemp) - 1)
iHasBS = True

End If
On Error GoTo MSGLFNnofile
If InStr(sTemp, "\") Then

sNew = ""
Do While InStr(sTemp, "\")

If Len(sNew) Then
sNew = Dir$(sTemp, 54) & "\" & sNew

Else
sNew = Dir$(sTemp, 54)
If sNew = "" Then

sLongName = sShortName
Exit Function

End If
End If
On Error Resume Next
For iBS = Len(sTemp) To 1 Step -1

If ("\" = Mid$(sTemp, iBS, 1)) Then
'found it
Exit For

End If
Next iBS
sTemp = Left$(sTemp, iBS - 1)
24 FEBRUARY 1996 Supplement to Visual Basic Programmer’s Jo

Loop
sNew = sTemp & "\" & sNew
Else
sNew = Dir$(sTemp, 54)

End If
SGLFNresume:

If iHasBS Then
sNew = sNew & "\"

End If
sLongName = sNew
Exit Function

SGLFNnofile:
sNew = ""
Resume MSGLFNresume

nd Function
— MicroHelp UnInstaller 95 team

VB4

SE A CLASS TO CONVERT CODE
n VB3 if you wanted to convert your code from one custom con-
rol to another, there were no options other than changing your
ode. By writing the proper class you can make use of your current
yntax with a different control. This code demonstrates how to
rite a VB class to change standard list-box syntax to use a ListView
ontrol. MyList.AddItem and .RemoveItem methods and the .Text
roperty will interface to the ListView Control using this class:

Form1 would have a listView control on it
dim a module wide object variable
im MyList As Object

rivate Sub Form_Load()
'create an instance of our class
Set MyList = New FakeList
'tell the class what control to use
Set MyList.ListItem = ListView1

nd Sub

The Class code follows
This holds the listview control
that we will interface with
ublic ListItem As ListView

ublic Sub AddItem(sString As String)
'convert AddItem to Add
ListItem.ListItems.Add , , sString

nd Sub

ublic Sub RemoveItem(lItem As Long)
'Convert RemoveItem to Remove
ListItem.ListItems.Remove lItem

nd Sub

ublic Property Get Text() As String
'Get the text from the selected item
Text = ListItem.SelectedItem.Text

nd Property
urnal ©1991–1996 Fawcette Technical Publications

'set the text in the selected item

 99 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

En

Fu

(L

Le

End Function
ListItem.SelectedItem.Text = sString
End Property

—MicroHelp UnInstaller 95 team

VB3 VB4

CHOOSE COMPARES CAREFULLY
A straight ASCII compare, such as ‘F “A” < “B” THEN’ is much faster
then using VB’s StrComp(“A”, “B”, 1). However, when you use this
test to sort an array of strings, your result will not be “interna-
tionally” correct. Using an ASCII compare simply tests the string
for which the ASCII values of one character come before those of
another. The StrComp() function uses the current code page set-
ting in Windows to determine which characters alphabetize be-
fore others based on the current country setting. Using the
StrComp() when sorting and displaying output to your user will
make your application much more internationally friendly.

If you are sorting and testing for internal purposes, an ASCII
compare is much faster. Make sure you are consistent with the
compares or your results might not be what you expect. Don’t
do a binary chop against an alphabetized array using an ASCII
compare or vice versa.

On the same note, using UCase$() (or LCase$()) is very fast.
However, these functions only zip through a string, setting or
clearing the fifth bit of characters “A-Z,” “a-z.” To adjust case
properly for international character sets, use StrConv(string$,
vbUpperCase|vbLowerCase). Once again, for your own code’s
internal use, use UCase$()/LCase$() because they are faster, but
for display purposes use StrConv().

During testing of UCase$() .versus StrConv(), both returned
the same results under VB4. However, since StrConv() provides
other services you may need (or in case this was simply a
Microsoft bug), you should still use StrConv() in place of
UCase$()/LCase$().

— MicroHelp UnInstaller 95 team

WIN95

TRIM A FILE PATH FOR
DISPLAY IN A TEXT BOX
With the advent of long file names in Windows 95, it may be
necessary to display a trimmed version of a path in a text box or
label. The following function takes in a long file path and creates
a trimmed version. For example, C:\MY VERY LONG
DIRECTORY\AND LONG SUBDIRECTORY\AND ANOTHER
SUBDIRECTORY\AND LONG FILENAME.TXT becomes C:\MY
VERY LONG DIRECTORY\...\AND LONG FILENAME.TXT.

This function takes the full path to the file along with the
maximum length that can be displayed in the text box, label,
etc. It uses SGBkwdInstrS to find backslashes. The function is
supplied below TruncatePath in the sample:

Private Function TruncatePath(ByVal sFileName _
As String, iMaxLen as Integer) As String
If Len(sFileName) Then

Dim iPos As Integer, iPos0 As Integer, _
Supplement t©1991–1996 Fawcette Technical Publications

iPos1 As Integer, iPos2 As Integer, _
iPos3 As Integer, iPos4 As Integer
iPos = SGBkwdInstrS(0, _
Left$(sFileName, Len(sFileName) - 1), "\")

iPos0 = InStr(sFileName, ":")
iPos1 = InStr(sFileName, "\")
iPos2 = InStr(iPos1, _

sFileName, "\"): iPos2 = iPos1 + iPos2
iPos3 = InStr(iPos2, sFileName, _

"\"): iPos3 = iPos2 + iPos3
iPos4 = InStr(iPos3, _

sFileName, "\"): iPos4 = iPos3 + iPos4
If Len(sFileName) > iMaxLen Then

If (iPos4 <> 0) And _
iPos4 +Len(Right(sFileName, iPos)) _
<= iMaxLen - 2 Then
sFileName = Left$(sFileName, _

iPos4) & "..." & Right(sFileName, _
Len(sFileName) - iPos)

ElseIf (iPos3 > 0) And _
iPos3 + Len(Mid$(sFileName, _
iPos)) <= iMaxLen - 2 Then
sFileName = Left$(sFileName, _
iPos3) & "..." & _
Right(sFileName, Len(sFileName) - iPos)

ElseIf (iPos3 > 0) And _
iPos3 + Len(Mid$(sFileName, iPos)) _
<= iMaxLen - 2 Then
sFileName = Left$(sFileName, iPos2) & _

"..." & Right(sFileName, _
Len(sFileName) - iPos)

Else
sFileName = Left$(sFileName, iPos0 + 1) _

& "..." & Right(sFileName, _
Len(sFileName) - iPos)

End If
End If

End If
TruncatePath = Left$(sFileName, Len(sFileName) - 1)

d Function

nction SGBkwdInstrS(ByVal iStart As Integer, _
ByVal sTarget As String, ByVal SPattern As String)
Dim IPtr As Integer, IPLen As Integer
IPLen = Len(SPattern)
If ((Len(sTarget) = zero) Or (IPLen = zero) Or

en(SPattern) > Len(sTarget))) Then Exit Function
If (iStart = zero) Then iStart = 1
If (iStart >= (Len(sTarget))) Then iStart =

n(sTarget)
iStart = Len(sTarget) - iStart + 1
On Error Resume Next
For IPtr = iStart To 1 Step True

If (SPattern = Mid$(sTarget, IPtr, IPLen)) Then
'found it
SGBkwdInstrS = IPtr
Exit For

End If
Next IPtr
o Visual Basic Programmer’s Journal FEBRUARY 1996 25

—MicroHelp UnInstaller 95 team

2

 99 TECH TIPS
For VB Developers

c
t

VB4

UNDERSTANDING UNICODE
VB4 introduces the use of double-byte characters. Most of this
is transparent to the programmer and requires no special con-
sideration. When calling API functions or reading/writing to a
file VB will handle the conversion for you automatically.

However, there may be times when you want to force a con-
dition that goes against VB’s will. For example, you might want
to write Unicode to a file, pass a Unicode string to a function, or
receive a Unicode string from a routine. In these cases you will
have to use VB4’s new Byte declaration. A String Byte can vary
between one or two bytes depending upon how it is used. A
Byte-byte is exactly that: one byte.

To convert a string variable into a byte array, use this code:

Redim MyByteArray(0 to len(MyString$)-1) as Byte
MyByteArray() = StrConv(MyString$, vbFromUniCode)

To convert a byte array to a string:

MyString$ = StrConv(BA(), vbUniCode)

Due to a bug or design limitation, VB4 does not allow you to
onvert a string to a binary array that is part of a Type struc-
ure. For example:

TYPE MyByteType
Bytes(0 to 255) as Byte

END TYPE

Dim MBA as MhByteType

MBA.Bytes() = StrConv(MyString$, vbFromUniCode)

returns an error. However,

MyString$ = StrConv(MBA.Bytes() , vbUniCode)

works as expected.
— MicroHelp UnInstaller 95 team

VB4

LIMITATIONS OF
IMAGELIST CONTROL
Each image that is displayed in a TreeView or ListView control
must first be placed in an ImageList control. If many items are
placed in the control, it will run out of memory (error 7). To
avoid this, reuse ImageList items whenever possible. For ex-
ample, if you are representing percentages, draw 100 items, each
representing a percentage, in the ImageList and reuse them. To
avert memory problems when you use the ImageList control,
draw the percentage item only when it is required.
6 FEBRUARY 1996 Supplement to Visual Basic Programmer’s J

— MicroHelp UnInstaller 95 team
VB4 WIN95

DOEVENTS() AND
PREEMPTIVE MULTITASKING
Windows 95 is a preemptive multitasking system. As a result of
this, no single application monopolizes the entire CPU at any
given time. Many of the DoEvents() calls previously used in Win-
dows 3.1 are unnecessary and can be removed. Removing un-
necessary DoEvents() will increase application performance. The
only DoEvents() calls your VB4 application requires are those
used within your application, for example, to stop processing to
offer the user the ability to cancel.

— MicroHelp UnInstaller 95 team

VB4

SPEEDY LIST BOXES
One way to speed list-box loading is to eliminate the constant re-
drawing required while loading. You can do this by calling the
LockWindowUpdate API. LockWindowUpdate accepts an HWND as
a parameter to start the lock and a zero parameter to unlock it. Only
one window can be locked at a time. If LockWIndowUpdate is called
with another HWND, the currently locked window will be unlocked.

To run this sample, put a command button and a list box on a
form and paste in this code. Your code may not require the DoEvents
within the loop that adds items, and a tight basic loop will keep the
list from updating. However, there are times when the DoEvents is
required.

Private Declare Function LockWindowUpdate Lib "user32"
(ByVal hwndLock As Long) As Long

Private Sub Command1_Click()
Dim i%
LockWindowUpdate (List1.hWnd)
For i% = 1 To 1000

List1.AddItem Str$(i%)
DoEvents

Next
LockWindowUpdate (0&)

End Sub

—MicroHelp UnInstaller 95 team

WIN95

SHARP = DRESSED ICONS
To make icons look better, Windows 95 uses three standard-size icons;
16-by-16, 32-by-32, and 48-by-48. These three standard sizes should
be included in any ICO file you create for inclusion in your program.
Windows 95 resizes icons to fit the available space on caption bars,
the desktop, and so forth. It most often chooses the closest size to
its needs before resizing in order to minimize distortion. Good-look-
ing icons will make your application look better to your user. You
must use an editor that will support these resolutions in one ICO file.
You can assign this Icon to the Icon property in a Form or MDIForm
ournal ©1991–1996 Fawcette Technical Publications

and WIN95 will use the icon of the appropriate size.

—MicroHelp UnInstaller 95 team

 99 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

D
C
P
f
p
s
c
d
a
H
c
y
f
A
c
c

C
B
A
m
n
f
m
c
B

C
F
W
a
o
i
n
a
y
l

t
s
W
i
y
t
t
A

both Windows 95 and Windows NT.
—MicroHelp UnInstaller 95 team
WIN95

ESIGN YOUR COLORS SO USERS
AN CHANGE THEM

ay close attention to the color selections you make in your
orms. Windows 95 gives the user more control over colors than
revious versions of Windows allowed. problems arise if the user
ets 3-D colors to something other than gray or sets a 3-D text
olor other than that used for window text (even Windows 95
oes not handle this case properly in some places). When avail-
ble, setting the Appearance property to 3D should handle this.
owever, you need to test for this by setting all your system
olors to something unusual. Create and save a test scheme in
our Control Panel/Display dialog so you can switch back and
orth between your usual cool colors and your ugly test colors.
 properly written Windows 95 program should not hard-code
olors for its windows. It should allow the user to decide what is
ool and what is ugly.

—MicroHelp UnInstaller 95 team

VB4 WIN95

ONTROL BOXES AND CLOSE
UTTONS

 form's control box property usually controls both the system
enu (control box) and the close button (X in the top right cor-

er) on the form. If the ControlBox Property is set to True, your
orm will have both a control box and a close button. You can

ake a dialog from a form without the control box, but with a
lose button by setting ControlBox to True, Icon to None and
orderstyle to 3 (Fixed Dialog).

—MicroHelp UnInstaller 95 team

VB4 WIN95

OMPARING LONG AND SHORT
ILE NAMES
hen you reference files in Windows 95, you may encounter situ-

tions when you are unsure whether you're working with a long
r short file name. This becomes a problem if you are compar-

ng file names or if you are searching for a specific file and do
ot know if it will be given in a long or short format. For ex-
mple, Dir$() will always return a long file name, but the file
ou are comparing it to may be entered by a user as either a
ong or short name.

To compare two file names on a level field, you must change
hem both to short or to long. Dir$() returns a long file name,
o you can take advantage of it as a built-in file name converter.
hat a plus! Pass it C:\PRIVAT~1\MYSTUF~1\NEWTEX~1.TXT and

t will return NEW TEXT DOCUMENT.TXT. The only hitch is that
ou do not get the path, so you must pass Dir$() to each direc-
ory in the path, one by one. To do this, loop backwards through
Supplemen©1991–1996 Fawcette Technical Publications

he full path string and let Dir$() convert each subdirectory.
fter you get the long file name from the path, call Dir$("
C:\PRIVAT~1\MYSTUF~1") and get My Stuff back. With each suc-
cessive call, take the long names that were returned and concat-
enate them into a full path string. This process will work even if
you begin with a long file name and path.

—MicroHelp UnInstaller 95 team

VB4 WIN95

INSTANT ABOUT BOXES
The ShellAbout API call provides a quick and easy way to show
an about box (using the standard Win95 format) without having
to include an additional form in your project. The call uses four
parameters: the hWnd of your main dialog, a string containing
the name of your application, another string containing an op-
tional additional line of text, and a long pointer to the handle of
an icon. Start by placing this code in a BAS module:

Global Const GWW_HINSTANCE = (-6)

Declare Function ShellAbout Lib "shell32.dll" _
Alias "ShellAboutA" (ByVal hwnd As Long, _
ByVal szApp As String, ByVal szOtherStuff _
As String, ByVal hIcon As Long) As Long

Declare Function ExtractIcon Lib "shell32.dll" _
Alias "ExtractIconA" (ByVal hInst As Long, _
ByVal lpszExeFileName As String, ByVal _
nIconIndex As Long) As Long

Declare Function GetWindowLong Lib "user32" _
Alias "GetWindowLongA" (ByVal hwnd As Long, _
ByVal nIndex As Long) As Long

Add this routine to a button or menu to call your about box:

Dim lRet As Long
Dim lNull As Long
Dim lIcon As Long
Dim lInst As Long

lInst = GetWindowLong_
(Form1.hwnd, GWW_HINSTANCE)

lIcon = ExtractIcon(lInst, "MYEXE.EXE", 0&)

lRet = ShellAbout(Form1.hwnd, _
"My App Name", "Copyright © 1995 _
My Company Name" & Chr(13) & _
Chr$(10) & "Serial # xxxxxxxxx-xxx", lIcon)

lRet will return true if the dialog was able to display and false
if there was a problem. All of the required functions operate in
t to Visual Basic Programmer’s Journal FEBRUARY 1996 27

 99 TECH TIPS
For VB Developers

e

b
P
p

S
D
S
r
g
u
I
t
f

D
C
I
w
c

R
U
I
a
c
f

D
D

P

VB4

NOTIFY THE SYSTEM OF CHANGES
A new Windows 95-only API call notifies the system that you’ve
changed something it should know about. The call,
SHChangeNotify, is very handy in a number of cases. You might
make this call in twenty different cases. This tip covers a few of
the most important. The call itself has only four parameters:

• wEventId contains the flag identifying what has changed, such
as:
SHCNE_ASSOCCHANGED Changed a file type association.
SHCNE_ATTRIBUTES Changed a file's attributes.
SHCNE_CREATE Created a file.
SHCNE_DELETE Deleted a file.
SHCNE_MKDIR Created a new directory.
SHCNE_RENAMEFOLDER Renamed a folder.
SHCNE_RENAMEITEM Renamed an item in afolder.
SHCNE_RMDIR Removed a directory.
SHCNE_UPDATEDIR Updated the contents of a directory.
SHCNE_UPDATEITEM Changed the properties of a printer

or file.
These flags let Explorer know that something it is showing

on screen might have changed and it needs to update its dis-
play.

• uFlags indicates what the next two parameters contain.
Generally, you’ll want to pass SHCNF_FLUSH so that the function
doesn’t return until it has processed the call. Instead, you may want
to pass SHCNF_FLUSHNOWAIT so that the call returns immediately
but the system continues to process the call in the background.

• dwItem1 is event specific, but for the flags you can pass null
for both of these items.

• dwItem2 is event specific.
—MicroHelp UnInstaller 95 team

VB3 VB4

SPEED CRYSTAL REPORTS
If Crystal Reports’ speed is lacking although your report con-
tains no large graphics or large numbers of groups, change these
two lines in your CRW.INI file to solve disk swapping problems:

MaxRecordMemory=0
MetapageSpillLimit=100

—Crystal, A Seagate Software Company Tech Support

VB3 VB4

AVOID ERRORS WHILE
SIMULATING A DATABASE IN
CRYSTAL REPORTS
When you’re creating a database that simulates a client’s data-
28 FEBRUARY 1996 Supplement to Visual Basic Programmer’s Jo

base for reporting purposes, errors such as “MSAccess Error: Buf
Too Short” or “Error Detected by Database DLL” may occur if fields

E

xpected by the database (but not in the report) are found.
Check the Verify on Every Print command under the Data-

ase menu before you ship the report. This feature causes the
rint engine to check for differences in the database and to com-
ensate for them.

—Crystal, A Seagate Software Company Tech Support

VB4

ET COLUMNS IN DBGRID AT
ESIGN TIME

et the number of columns in VB4’s DBGrid at design time by
ight-clicking on the grid and selecting Edit from the menu. (The
rid can now be edited interactively at design time.) Add col-
mns by right-clicking on the grid again and selecting Add or

nsert from the menu. When the grid is editable at design time,
he columns widths can also be set interactively. Click on the
orm or another control to leave design-time editing.

—Apex Software Tech Support

VB4

BGRID AUTOMATIC
ONFIGURATION

f the layout of VB4’s DBGrid is not changed at design time, it
ill automatically configure to a new record set when the Data
ontrol is refreshed with a new RecordSource.

—Apex Software Tech Support

VB4

EFERENCE DBGRID’S COLUMNS
SING OBJECT VARIABLES

n VB4, DBGrid’s columns can be referenced using object vari-
bles. This reduces the amount of typing required and makes
ode more readable. The code is also more efficient because the
ull name doesn't need resolved with each reference. For example:

im Col() As Column
im NumCols As Integer

rivate Sub Form_Load()
Data1.RecordSource = "SELECT * FROM Publishers;"
Data1.Refresh

NumCols = DBGrid1.Columns.Count
ReDim Col(NumCols)
Dim i As Integer

For i = 0 To NumCols - 1
Set Col(i) = DBGrid1.Columns(i)
Col(i).AllowSizing = False 'disable user sizing
Col(i).DividerStyle = 0 'right divider = none

Next i
urnal ©1991–1996 Fawcette Technical Publications

nd Sub
—Apex Software Tech Support

