
60 APRIL 1996 Visual Basic

R E U S I N G D A T A F O R M S

Senior consultant Mike Amu
izes in system design and inte
transportation industry. He
SAMS book Teach Yourself
gramming with Visual B
Days, contributed to
SAMS’ Visual Basic 4
Unleashed, and is a
contributing editor on
Cobb’s “Inside Visual
Basic for Windows”
newsletter. You can
reach him on Compu-
Serve at 102461,1267.

Bring real cod
into your data
apps. Use cont
tables to insta
a generic form
build the spec
forms you nee

A
t
m
c
a

b
a
f
s
a
w
f
p

Click & Retrieve

Source

CODE!
VB3 Forms
on the Fly
I’ve used the GenForm engine on site

B Y M I C H A E L C . A M U N D S E N

e reuse
base
rol
ntiate
 and
ific
d.
fter years of coding and recoding
clients’ custom data-entry forms,
I’ve finally given up on the whole

hing. In the process I’ve halved develop-
ent time, improved data-entry screen

onsistency and usability, and slashed
pplication training and support costs.

I rarely do custom forms anymore,
ecause I provide a forms generator in
ll my apps. This way, one data-entry
orm is used by almost every data-entry
creen in the application. If clients need
 special form, I modify the generic one
ith control tables—that is, control in-

ormation stored in INI files. Clients ap-
reciate the benefits of the single-form
 Programmer’s Jou

ndsen special-
gration for the
 cowrote the

 Database Pro-
asic 4 in 21
approach, especially because the con-
trol table options give them nearly all
the customization they ask for.

If you take the time to design and code
a forms generator for your data-entry
screens, you can call just one function
that reads the data source, builds the
form, and handles all the database update
functions with a minimum of code. With a
forms engine in place, a single line of code
can create a fully functional data-entry
screen (see Figure 1):

nResult = GenForm("biblio.mdb", _
"Titles",0)

And when you add a new field to the
data table it pops up on all the necessary
rnal ©1991–1996 Fawcette Tech
data-entry screens without any changes
to your VB code. You can string together
calls to GenForm to create a multilevel
data-entry application, or even incorpo-
rate the function into the menus of an MDI
form that lets users open more than one
data-entry form at once.

On the down side, boilerplate data-
entry forms may not seem very “user-
centric” to you. In his book About Face,
Alan Cooper makes a strong case for pro-
gramming and designing apps that do
exactly what users want—that’s the idea
of the GUI. My GenForm system falls short
of that ideal, but users do appreciate the
consistency and predictability it gives
them.
One Line of Code Built This Form. A single call to the GenForm routine opens
a database, loads a record set, populates a form with all the needed controls,

enables the command buttons, and waits for user input. You get practical code reuse
without having to master the intricacies of object-oriented programming.

FIGURE 1
http://www.windx.comnical Publications

R E U S I N G D A T A F O R M S

ts,
to quickly build fully functional data-en-
try screens for clients to test after initial
data designs are developed. Using the
forms engine this way offers a great op-
portunity for users and developers to
refine their thinking about the data that is
needed, and the order that fields should
appear in, before approving the final data-
base design. Usually my clients are very
impressed with the screens and appreci-
ate being able to test the data model
before committing to a major develop-
ment project.

But ultimately you have to please the
one who is paying for the project. And at
the end of the day a forms engine lets you
do decent data-entry forms quicker, more
accurately, and cheaper—especially at
three points in the life of a typical project:

• Initial development stage: Generate a
quick series of screens to show clients
how things will work. Rapid application
development at its finest!
• Final acceptance stage: Customers want
you to modify the standard screens a bit.
Being able to do this from control tables
may mean making a completion date that
would otherwise slip.
• Maintenance stage: A year later you need
to add a new field to a table. Just update
some control tables and all the screens
that call the new data table get the new
field automatically.

To get all these benefits, you just need
to learn how to use data table information
to generate the input controls needed to
populate a data-entry form. The code that
does this automatically adds check boxes,
date fields, formatted currency fields, and
free-form memo fields as well as simple
text and number fields to data-entry
screens. You also need the know-how to
write routines that automatically size and
space these controls as needed. In addi-
tion, such routines let you add customiz-
ing features to the generic form, including
methods for handling hidden, required,
or display-only fields. Finally, you need
the ability to store the layout data in
control tables for future use, and to use
these tables to create customized data-
entry screens for specific users—or for
an entire installation site.

DESIGNING A RUNTIME FORMS ENGINE
Before you start coding a runtime forms
engine, look at some basic design param-
eters, along with the major operations
that a forms engine handles. Design pa-
rameters determine how the forms en-
gine will interact with your VB programs,
as well as how the engine generally be-
haves when it creates data-entry forms
http://www.windx.com

and processes user-form interactions. LCONTINUED ON PAGE 64.

©1991–1996 Fawcette
Option Explicit ' global vars
Global db As Database ' single db object
Global ds() As Dynaset ' data set object array
Global frmList() As Form ' display form array
Global cDynaset() As String ' data set name array
Global nFrmCount As Integer ' for forms array
Global nDBOpen As Integer ' open db flag
Global nErr As Integer ' error flag
Global Const DB_FIXEDFIELD = &H1 ' Field Attributes
Global Const DB_VARIABLEFIELD = &H2
Global Const DB_AUTOINCRFIELD = &H10
Global Const DB_UPDATABLEFIELD = &H20
Global Const DB_BOOLEAN = 1 ' Field Data Types
Global Const DB_BYTE = 2
Global Const DB_INTEGER = 3
Global Const DB_LONG = 4
Global Const DB_CURRENCY = 5
Global Const DB_SINGLE = 6
Global Const DB_DOUBLE = 7
Global Const DB_DATE = 8
Global Const DB_TEXT = 10
Global Const DB_LONGBINARY = 11
Global Const DB_MEMO = 12
Function GenForm (cDB As String, cRS As String, nMode As Integer) As Integer

On Error GoTo GenFormErr
nErr = False
GenForm = -1 ' assume an error occurs
If nDBOpen = False Then

OpenDB cDB ' open database
End If
If nErr = False Then

GenForm = LoadForm(cRS, nMode) ' load recordset
End If
GoTo GenFormExit

GenFormErr:
MsgBox "Err:" & Str(Err) & "[" & Error(Err) & "]", 0, "GenMain Error"
nErr = True
nDBOpen = False
GenForm = -1
Resume Next

GenFormExit:
End Function
Function LoadForm (cRecordSource As String, nMode As Integer) As Integer

On Error GoTo LoadFormErr
' get recordsource and start a new form
nFrmCount = nFrmCount + 1
ReDim Preserve frmList(nFrmCount) As Form
ReDim Preserve cDynaset(nFrmCount) As String
ReDim Preserve ds(nFrmCount) As Dynaset
cDynaset(nFrmCount) = cRecordSource
Set frmList(nFrmCount) = New frmGenForm
Load frmList(nFrmCount)
frmList(nFrmCount).Show nMode
LoadForm = nFrmCount
GoTo LoadFormExit

LoadFormErr:
MsgBox "Err:" & Str(Err) & "[" & Error(Err) & "]", 0, "LoadForm Error"
nErr = True
LoadForm = -1
Resume Next

LoadFormExit:
End Function
Sub OpenDB (cDBF As String)

On Error GoTo OpenDBErr
Set db = OpenDatabase(cDBF, False, False) ' open new db

If nErr = False Then
nDBOpen = True

Else
nDBOpen = False

End If
GoTo OpenDBExit

OpenDBErr:
MsgBox "Err:" & Str(Err) & "[" & Error(Err) & "]", 0, "OpenDB Error"
nErr = True
Resume Next

OpenDBExit:
End Sub

Declare Your Array. GENMOD.BAS contains the global variables, constanISTING 1
Visual Basic Programmer’s Journal APRIL 1996 61

and all three high-level routines needed to invoke the runtime forms engine.

 Technical Publications

CONTINUED FROM PAGE 61.

6

R E U S I N G D A T A F O R M S
Once you understand the basic design specs you can elaborate
on them if you need to.

With this method, one call to one routine generates fully
functional forms. The routine accepts two parameters: the
name of the database to open and the record source to load. I
use the Microsoft Jet database, but you could extend this forms
engine to work with any valid data source, including ODBC or
other desktop DBMSs.

The record source can have any valid Microsoft Jet table
name, querydef, or Microsoft Jet SQL SELECT statement that
creates a data set. I’ll use Microsoft Jet dynaset objects for all
data sets, but you could enhance the routine to allow the
creation of snapshot or table objects.

Our basic engine design will produce only one-page data-
entry forms—no tabbed dialogs or “More>>” buttons. A single
set of command buttons (Top, Next, Back, and Last) will let
users navigate the data set. And a simple Find button will let

users enter any valid SQL WHERE clause (again, you can elabo-

l

p t
sh

L

2

Option Explicit
Dim InpFld() As Control ' form/field stuff
Dim InpLbl() As Control
Dim btnText(9) As String
Dim nFlds As Integer
Dim nTop As Integer
Dim nAdd As Integer
Dim nForm As Integer
Const nLblLeft = 120 ' constants for form
Const nLblHigh = 300
Const nLblWide = 1200
Const nTxtLeft = 1400
Const nTxtWide = 3600
Const nTxtHigh = 300
Const nMmoWide = 3600
Const nMmoHigh = 1200
Const nMmoLeft = 1400
Const nBtnWide = 600
Const nBtnHigh = 300
Const nBtnSpace = 60
Sub Form_Activate ()

If nErr = True Then
Unload Me

End If
End Sub
Sub Form_Load ()

On Error GoTo FormLoadErr
nErr = False ' create a dynaset
nForm = nFrmCount
nTop = 600
MakeData ' load dataset
MakeFields ' load input controls
MakeForm ' finish off form
LayoutLoad ' get old layout
RecRead ' read first record
GoTo FormLoadExit

FormLoadErr:
MsgBox "Err:" & Str(Err) & " [" & Error(Err) & "]", _

0, "FormLoad Error"
nErr = True
Resume Next

FormLoadExit:
End Sub
Sub Form_Unload (Cancel As Integer)

On Error Resume Next
Me.WindowState = 0
LayoutSave
ds(nForm).Close
Unload Me

End Sub

Create a Jet Dynaset Object. The form-leve
declarations and Form_ events for GENFORM.FRM

rovide a code-reuse project for forms. The Form_Load even
ows the main operations required to build a form at run time.

ISTING 2
 APRIL 1996 VBPJ http://www.windx.com

variables and the high-level routines
rate on this if you need to). Finally, to
update the data set contents, the form
will contain buttons such as Add, Delete,
Save, and Undo.

This forms engine can also store input-
form details such as the location and type
of controls used and the data fields bound
to those controls. And the engine can cap-
ture details about each field; for example,
it can spot enabled controls and whether
they should be visible on the input form.
Store all this form information in a modifi-
able ASCII text file so you can customize
©1991–1996 Fawcetthttp://www.windx.com
data-entry form contents and behavior.
Obviously you need to invest some

programmer-hours to build your library
of data-entry screen-generating routines.
But you can amortize this effort across
multiple VB projects. To make it easy,
organize your project into two members:
the GENFORM.FRM form and the
GENMOD.BAS module. The form holds all
form-level code and variables needed to
create data-entry forms. The module holds
a handful of global-level constants and
e Technical Publications Visual B
needed to make calls to the form.
GENMOD.BAS needs to declare an ar-

ray of forms and dynasets at the global
level. Then you can run multiple forms at
once. The engine also needs to determine
the data field types in each field of the
record source. So you also need a set of
declared constants that define all pos-
sible data field types (see Listing 1).

GENMOD.BAS also contains three high-
level routines for invoking the forms en-
gine. The first, GenForm, invokes the
runtime engine and calls two other rou-
tines: OpenDB, which uses the first pa-
rameter passed to GenForm as the data-
base file to open, and LoadForm.
LoadForm adds new members to several
arrays, then creates, loads, and shows a
new data-entry form.

Making all these calls work requires a
generic VB form object that contains all
the required input controls and command
buttons, VB code for responding to user
actions on the form, and routines for de-
termining types of input controls needed
and for positioning these controls prop-
erly on the form.

USING CONTROL ARRAYS AT RUN TIME
To create the generic form, start by add-
ing a set of controls to the form object at
design time. You’ll need at least one con-
trol for each data type on the data-entry
form, including text, numeric, date, cur-
rency, memo, and Boolean (True/False)
data fields. Because you’re building a
runtime engine, you won’t know just how
many and what type of input controls you
need until the program is already run-
ning. Fortunately, you can use the VB
control array—a perfect built-in program-
ming paradigm for just such a situation.

VB can create control arrays at run
time. Just add one instance of each re-
quired control to the form at design time.
Then, when the program starts, you can
use VB code to add additional copies
(instances) of any control already placed
on the form.

I need to warn you that things can get
tricky here. You can add a control at run
time only if at least one instance was
added to the form at design time. And that
instance must already belong to a control
array.

To create a control array, start VB
and/or load a new project. Add a text box
control to your project by double-click-
ing on the text-box icon in the VB toolbox
window. Select the text box on your form
by clicking on it once to give it focus. Note
the default name that VB assigns to the
control (“Text1”). Select the Properties
box, set the Index to zero, and you’ve got
a control array.

With a set of control arrays for the
form you can load new instances of any
asic Programmer’s Journal APRIL 1996 63

R E U S I N G D A T A F O R M S
needed control at run time, safely gener-
ating data-entry forms that contain as
many copies of any control you need.
GENFORM can handle text, numeric, date,
currency, memo, and Boolean fields. You
need a control array for each unique field
type—except for date and currency fields.
Use the masked edit control for those. I’ve
provided a list of data-field types matched
to their corresponding input controls (see
Table 1). You’ll notice one special case on
the list: the COUNTER data type. Jet lets
users define an auto-incrementing field.
You can use this as a unique, nonupdatable
key field. The generic form can display
the counter data while preventing users
from editing that field.

You need one last control array for the
generic input form: command buttons.
This gives the form navigation and data
update capability. Add a single array of
nine command buttons to the form at
design time, because the size of this array
won’t change.

Without control arrays you can certainly
add nine command buttons to the project
and place any needed code behind each
button. But using control arrays here pro-
64 APRIL 1996 Visual Basic Programmer’s Jou

duces VB code you can read and maintain

c

Copying Controls. GENFORM.FRM handles adding all required control
arrays at design time. By creating a set of control arrays for the form, you can

now load new instances of any control at run time. This form generated the data-entry

FIGURE 2
screen shown in Figure 1.

End Sub
Sub MakeFields ()
Dim x As Integer
Dim lDbType As Long
On Error GoTo MakeFieldsErr
ReDim InpFld(nFlds) As Control
ReDim InpLbl(nFlds) As Control
For x = 0 To nFlds

lDbType = ds(nForm).Fields(x).Type
Select Case lDbType

Case Is = DB_BOOLEAN
FldBoolean x

Case Is = DB_MEMO
FldMemo x

Case Is = DB_SINGLE
FldNumber x

Case Is = DB_DOUBLE
FldNumber x

Case Is = DB_LONG
FldNumber x

Case Is = DB_INTEGER
FldNumber x

Case Is = DB_CURRENCY
FldCurrency x

Case Is = DB_BYTE
FldNumber x

Case Is = DB_DATE
FldDate x

Case Else
FldText x

End Select
InpFld(x).Visible = True
InpFld(x).TabIndex = x
If ds(nForm).Fields(x).Attributes And _

DB_UPDATABLEFIELD Then
InpFld(x).Enabled = True

Else
InpFld(x).Enabled = False

End If
rnal ©1991
Next x
GoTo MakeFieldsExit

MakeFieldsErr:
MsgBox "Err:" & Str(Err) & "[" & Error$ & "]", 0, _

"MakeFields Error"
nErr = True
Resume Next

MakeFieldsExit:
End Sub
Sub MakeLabels (x As Integer, nHigh As Integer)

If x <> 0 Then ' set up
label for field

Load Label1(x)
End If
Set InpLbl(x) = Label1(x)
InpLbl(x).Top = nTop
InpLbl(x).Height = nHigh
InpLbl(x).Left = nLblLeft
InpLbl(x).Width = nLblWide
InpLbl(x).Alignment = 1
InpLbl(x).Visible = True
InpLbl(x).FontBold = False
InpLbl(x).BackStyle = 0
InpLbl(x).Caption = ds(nForm).Fields(x).Name & ":"

End Sub
Sub FldText (x As Integer)

If x <> 0 Then
Load Text1(x)

End If
Set InpFld(x) = Text1(x)
InpFld(x).Top = nTop
InpFld(x).Height = nTxtHigh
InpFld(x).Left = nTxtLeft
InpFld(x).Width = nTxtWide
InpFld(x).FontBold = False
InpFld(x).MaxLength = ds(nForm).Fields(x).Size
InpFld(x).Tag = ds(nForm).Fields(x).Name
MakeLabels x, nTxtHigh
nTop = nTop + nTxtHigh + 90
What Kind of Control Do You Need? Make and Fld routines read the Dyanset field collection and generate input and label
controls for your data-entry form. GENFORM.FRM’s MakeFields routine uses the Fields.Type value to decide what kind of input

ontrol to add to the form.

LISTING 3
http://www.windx.com–1996 Fawcette Technical Publications

http://www.windx.com

more easily. Instead of needing nine sepa-
rate routines, all button clicks of a control
array arrive at a single routine. Now you can
code all button actions in a Select Case…End
Select structure (see Figure 2).

DYNASET OBJECT FIELDS COLLECTIONS
Once you’ve populated the form with
controls, add code to use the record
source parameter passed in the
GenForm function to create a Microsoft
Jet dynaset object. Then you can load
the field information and build the form

Field Type Control Type

BOOLEAN Checkbox control
INTEGER Text control
LONG Text control
CURRENCY Masked Edit control
SINGLE Text control
DOUBLE Text control
DATE Masked Edit Control
TEXT Text control
MEMO Text control (multiline with scroll bars)
COUNTER Label control

What’s Your Control Type?
Here’s each data-field type and

the corresponding input control that you’ll
use on your form in the GENFORM code
reuse project.

TABLE 1

©1991–1996 Fawcetthttp://www.windx.com
R E U S I N G D A T A F O R M S
Visual Ba

for data entry (see Listing 2).
The Form_Load event shows the main

operations needed to build a form at run
time. For now, note that the MakeData
routine performs the steps needed to cre-
ate a new Dynaset object. Once created,
the Dynaset lets you get information about
the number, types, and sizes of the data
fields. You’ll use this information to cre-
ate the input controls needed for the data-
entry form.

You can get detailed information about
fields in a dynaset with its fields collec-
tion. This contains information about ev-
ery field in the data object, including field
name, type, size, and any special data
field attributes, such as whether it’s auto-
incrementing or nonupdatable.

GENFORM.FRM’s MakeFields routine
uses the Fields.Type value to pick the in-
put control to add to the form. This routine
also calls the MakeLabels routine to create
an onscreen prompt for the input control
(see Listing 3). The MakeData, MakeFields,
and MakeLabels routines call various rou-
tines that you use to size and position the
input controls.

While you’re working with this set of
routines, note the use of the Type prop-
erty of the fields collection in the Select
Case…End Case loop of the MakeFields
routine. The Type property returns an
integer value that’s compared (using the

“
s

n
t
f
S
w
T
d
o
a
w
s
s
s
f

s
c
r
c
r
t
(
s
f

r
C
t
c
v

e Technical Publications Visual Ba
sic Programmer’s Journal APRIL 1996 65

Case Is =” construct) to global-level con-
tants defined in GENMOD.BAS.

The results determine the type of field
eeded for the input form. The same rou-
ine uses the Attributes property of the
ield collection to see if a field is updatable.
ome data sets that result from SQL JOINS
ill have one or more nonupdatable fields.
his usually happens when you build a
ata set that contains fields related to
ther fields in other physical tables. You’ll
lso get one or more nonupdatable fields
hen you perform SQL SELECTS on a

ubset of a table located on the “many”
ide of a defined one-to-many relation-
hip. GENFORM disables nonupdatable
ields on the input form.

The code for the FldText routine
hows what you need to do to add a new
ontrol to the form at run time. First the
outine checks to see if this is the first
ontrol on the form (x=0). If not, the
outine loads a new instance of the con-
rol before setting the local control array
InpFld). Then it establishes the control’s
ize and location, based on predefined
orm-level constants.

The Top property is based on the cur-
ent location of the control on the form.
ontrols are added down the left side of

he form in a single row. As you add more
ontrols, the routine updates the nTop
ariable to reflect the next available loca-

sic Programmer’s Journal APRIL 1996 65

6

R E U S I N G D A T A F O R M S

t
c
u
f
t
s

f
s
c
p
M three routines in the Select Case…End
ion on the form. Finally, it updates the
ontrol’s MaxLength and Tag properties
sing values directly from the dynaset’s

ields collection. Before exiting the rou-
ine, MakeLabels is called to create an on-
creen label to the left of the input control.

Once the controls are added to the
orm, GENFORM knows the data-entry
creen’s final size. Then GENFORM adds
aptions to the command buttons and
ositions them on the on form, using the
akeBtn and MakeForm routines, then
6 APRIL 1996 Visual Basic Programmer’s Jou
displays the form for the user (see List-
ing 4).

To make it all work you need the set of
routines that handles reading and writing
the data set and responding to user clicks
on the button bar. Three routines move
data between the controls and the data-
base: RecInit (to initialize controls),
RecRead (to move data from data set to
controls), and RecWrite (to move data
from controls to data set). You use these
rnal

a
(
g
i
l

i
y
i

©1991–1996 Fawcette Tech
Select loop in the cmdBtn_Click event.
The cmdBtn_Click event code handles all
user button-bar activity (see Listing 5).

You need one more record-handling
routine to take care of user Find opera-
tions: RecFind. It’s pretty basic but it
works. It asks users for any valid SQL
Where clause to apply against the data
set. You can enhance this if you need a
more powerful search tool.

USING GENFORM IN YOUR PROGRAMS
Now that the nuts and bolts are in place,
take the GENFORM engine for a quick
spin. Start a new project. Make sure you
have the Masked Edit control and the
Sheridan 3D controls in your VB Pro
toolbox window. With VB4 make sure
you’ve referenced the correct data-ac-
cess object library as well. Then load
GENMOD.BAS and GENFORM.FRM into
your current project and you’re set.

Save this project (for future GENFORM
work) as GENFORM.VBP. Next time you
need to start a new project using
GENFORM, copy this project to a new
name and start from there.

You can write a simple GENFORM
project with fewer than a dozen lines of
code, using your new project template.
First, add a BAS module to the project.
Create a Sub Main routine and add this
code to the Main routine:

Public Sub Main()
Dim x as Integer
Dim vbModelessForm as Integer
Mid vbModalForm as Integer
vbModelessForm = 0
vbModalForm = 1
' be sure to point to the
' biblio.mdb on your system
x = GenForm("biblio.mdb", _

"Authors",vbModelessForm)
End Sub

Change the Startup Form to Sub Main
nd save the project with a new name
GENTEST). Now run the project---you’ve
ot a data-entry screen ready to use. Add-
ng more lines to the Sub Main routine will
et you open several data sets at once.

The GenForm function returns a pointer
nto the frmList forms array. If you want to,
ou could use this pointer to get other
nformation from the form or its controls:

Public Sub Main()
Dim x as Integer

Dim vbModelessForm as Integer
Mid vbModalForm as Integer
vbModelessForm = 0
vbModalForm = 1
' be sure to point to the
' biblio.mdb on your system
x = GenForm("biblio.mdb", _
http://www.windx.com

"Authors",vbModelessForm)

nical Publications

R E U S I N G D A T A F O R M S

f
b

S
U
L
p
f
a
r
B
i
i
C
s
c
m
i
e
d

'
'
'

'
c

x
'

x = GenForm("biblio.mdb", _
"Publishers", vbModelessForm)

x = GenForm("biblio.mdb", _
"Titles", vbModelessForm)

End Sub

In this example, GENFORM loads each
data set and shows you a data-entry form
for each call. You can move between
these forms, performing data-entry as
needed.

The version of GENFORM described
here treats all forms as modeless dialogs.
You can have several forms up at the
same time and switch between them when-
ever you want. But on occasion you may
want to put up a series of modal forms.
This code example shows you how:

Public Sub Main()
Dim x as Integer
Dim vbModelessForm as Integer
Mid vbModalForm as Integer
vbModelessForm = 0
vbModalForm = 1
' be sure to point to the
' biblio.mdb on your system
x = GenForm("biblio.mdb", _

"Authors",vbModalForm)
x = GenForm("biblio.mdb", _

"Publishers", vbModalForm)
x = GenForm("biblio.mdb", _

"Titles", vbModalForm)
http://www.windx.com

End Sub

End Sub

position the command buttons on the form be

o

©1991–1996 Fawcett
This minor change can help you build
data-entry applications that use cascad-
ing data-entry forms. GENFORM can also
make itself useful as a child of an MDI
form. You can build a simple MDI form
containing a menu that lets users call up
other forms for data entry. Each menu
option can invoke a call to the GENFORM
engine. To accomplish this you need to
make one change to the GENFORM.FRM
file: set the MDIChild property to True.

Unfortunately, because this property
is read-only at run time, you can’t set it
using VB code. But you can make a file
copy of GENFORM.FRM, adjust it for MDI
use, then save it under the name
GENMDI.FRM. Then if your project calls
for an MDI version of GENFORM, you can
load the GENMDI.FRM. Use the original
GENFORM.FRM for projects that won’t
run under an MDI form. My GENTMDI.VBP
uses the GENMDI.FRM version of the forms
engine as a child for an MDI form (see
Figure 3).

When you use GENFORM in this way,
it enables you to simultaneously call up
more than one instance of the same
form and dynaset—excellent for users
who need to look up one master record
while updating a second one in the same
table.

Now that you can use GENFORM in VB
projects in at least three different ways
(modeless dialogs, modal cascading
Visual Ba

s

fore displaying it for the user.

l
G
t
o
L
t
f
o
s
t
T
s
f

•
•
•
•

n
e
i
l
t
t
s
c
w
d
c

s

e Technical Publications
orms, and MDI child forms), add a few
ells and whistles.

OME BELLS AND WHISTLES
sing Microsoft Jet to create SQL SE-
ECT statements, you can customize dis-
lays by creating dynasets with only the

ields your users really need. For ex-
mple, perhaps a user wants to enter and
eview data in the Publishers table of
IBLIO.MDB. The user would need two

nput screens: one for name and address
nformation and another for editing the
omments field. Instead of creating two
eparate data forms in your project, you
ould simply use two different SQL state-
ents as the RecordSource parameters

n your calls to the GENFORM engine. In
ffect, you are using SQL statements to
esign your data-entry forms:

 When using SQL to design forms be
 sure to point to the biblio.mdb on
 your system.
x = GenForm("biblio.mdb", " _

Publishers",0)
 full screen
Select="SELECT PubID, Name,Comments _
FROM Publishers"

 = GenForm("biblio.mdb", cSelect, 0)
 comment screen

You can also make a forms engine pay
ff by adding the ability to store form

ayouts for modification and later use.
ENFORM has two routines to do just

hat. LayoutSave saves the layout details
f a data-entry form upon exit, and
ayoutLoad can load these details when
he form is first created. The ASCII text
ile format lets you use Notepad or any
ther ASCII editor to inspect and change
ettings. As a result, you can create cus-
om screens without adding VB code.
his version of GENFORM saves and re-
tores some key information for each
orm:

Form caption, size, and location.
Input control location and size.
Label captions.
Label control location and size.

The routine saves data in a file that’s
amed for the RecordSource and that
nds with an FRL file extension (see List-
ng 6). You can use the file to change the
ocation of any control and even change
he prompt captions. Once you’ve done
his, all users who call up the form will
ee the modifications. Now you can have
ustomers all over the country, each
ith the same source code but distinct
ata-entry forms—all with a simple ASCII-
ontrol file.

Using control files also lets you make
elected fields read only by setting their
Sub MakeBtns ()
btnText(0) = "&Top" ' load text for command button
btnText(1) = "&Next"
btnText(2) = "&Back"
btnText(3) = "&Last"
btnText(4) = "&Find"
btnText(5) = "&Add"
btnText(6) = "&Del"
btnText(7) = "&Save"
btnText(8) = "&Undo"

End Sub
Sub MakeForm ()

Dim x As Integer
Me.Width = (9 * nBtnWide) + (9 * nBtnSpace) + 240
' set up form
Me.Height = nTop + 600
Me.Caption = db.Name & "[" & ds(nForm).Name & "]"
MakeBtns
' load button captions
For x = 0 To 8
' place buttons on form

cmdBtn(x).Top = 120
cmdBtn(x).Width = nBtnWide
cmdBtn(x).Height = 300
cmdBtn(x).Left = 120 + (nBtnWide * x) + (nBtnSpace * x)
cmdBtn(x).Caption = btnText(x)
cmdBtn(x).TabIndex = x + nFlds + 1

Next x
Me.Top = (Screen.Height - Me.Height) / 2

' center form on screen
Me.Left = (Screen.Width - Me.Width) / 2
Position Your Buttons. The MakeBtns and MakeForm routines set captions
for the button bar and for the final dimensions of the input form. They alsoLISTING 4
sic Programmer’s Journal APRIL 1996 67

R E U S I N G D A T A F O R M S
Enabled property to False in the FRL con-
trol file. This helps with multiuser sites
where many users view data, but only a
handful have permission to modify it.

Later on you can add new fields to data
tables, using a forms engine to cut down
on the retro-programming of old screens.
You just need to update physical tables
with the new field information. Then the
new fields will show up on screen the next
time someone starts the form. You may
need to modify some control tables to
account for the new field, but at least you
don’t have to add a lot of new VB code to
your old programs.

FUTURE ENHANCMENTS
This GENFORM engine can do useful
work for you, but a number of enhance-
ments could improve its overall useful-
ness and versatility. For example, even
though GENFORM lets you modify form
layouts and store them in the FRL files,
you have to perform this modification
using an ASCII text editor. It would be
nice if you could load the form as if you
were about to edit records, but instead
switch to “Form Edit” mode, then use
68 APRIL 1996 Visual Basic Programmer’s Jou

nAdd = True
It Works with MDI, Too. GENMDI.FRM uses the forms engine as a child for MDI
forms. Using it, you can build a simple MDI form containing a menu that lets

users call up other forms for data entry.

FIGURE 3
en

cm

cm
En
Sub cmdBtn_click (Index As Integer)
Dim x As Integer
Dim cMsg As String
On Error GoTo cmdBtnErr
Select Case Index ' handle button

pushers
Case Is = 0 ' top

RecWrite
ds(nForm).MoveFirst
RecInit
RecRead

Case Is = 1 ' next
RecWrite
If ds(nForm).EOF Then

ds(nForm).MoveLast
Else

ds(nForm).MoveNext
End If
RecInit
RecRead

Case Is = 2 ' previous
RecWrite
If ds(nForm).BOF Then

ds(nForm).MoveFirst
Else

ds(nForm).MovePrevious
End If
RecInit
RecRead

Case Is = 3 ' last
RecWrite
ds(nForm).MoveLast
RecInit
RecRead

Case Is = 4 ' find
RecFind
RecInit
RecRead

Case Is = 5 ' add new
RecWrite
rnal ©1991–1
ds(nForm).AddNew
RecInit

Case Is = 6 ' delete
ds(nForm).Delete
If Not ds(nForm).EOF Then

ds(nForm).MoveNext
Else

ds(nForm).MoveLast
End If
RecInit
RecRead

Case Is = 7 ' update
RecWrite
RecInit
RecRead

Case Is = 8 ' restore
nAdd = False
If Not ds(nForm).EOF And Not ds(nForm).BOF Then

RecInit
RecRead

End If
End Select
Select Case Index ' handle button
able/disable stuff

Case Is = 5
For x = 0 To 6

cmdBtn(x).Enabled = False
Next x
cmdBtn(7).Enabled = True
cmdBtn(8).Enabled = True

Case Else
For x = 0 To 8

cmdBtn(x).Enabled = True
Next x

End Select
GoTo cmdBtnExit
dBtnErr:
cMsg = "err:" & Str(Err) & "[" & Error$ & "]"
MsgBox cMsg, 0, "cmdBtn Error"
nErr = True
Resume Next
dBtnExit:
d Sub
Deal with Button-Bar Events. You need a routine to handle user actions on the button bar, such as the cmdBtn_Click event
code listed here. This routine handles all the actions that a user will need to add, edit, delete, or locate records in the table.LISTING 5
http://www.windx.com996 Fawcette Technical Publications

R E U S I N G D A T A F O R M S
your mouse to move fields to their de-
sired locations and toggle the Visible
and Enabled properties of a field using
popup menus.

Once you have the screen as you like
it, save the modified control values for
future use. Mostly you’ll set up context
menus (right-mouse popups) that you
invoke using some unlikely combination
of control keys and mouse clicks over an
unused portion of the form.
http://www.windx.com

If you’re working with data tables that

©1991–1996 Fawcett
build in a lot of referential integrity, MS
Jet can handle most data validation for
you. But if you need additional data-entry
validation, you may want to consider
building a set of validation routines into
the GENFORM engine.

To add validation routines, establish a
set of default validation requirements
(such as numeric data only, capital let-
ters only, and so on) and create a set of
routines for the engine to call as needed.
Set values in the Tag property of the
Visual Ba

s
d
e

c
t
f
c
d

l
c
f
a
s
t
b
l
g
t
t
c
i

r
m
s
e
t
d
d
p

w
d
w
s
u
s
f

n
a
t
p

e Technical Publications
ontrol to indicate the validation rou-
ines you need to run, and add code to the
orms that checks the Tag property and
alls the routines as the user performs
ata entry.

For more refinement, add flags for form-
evel validations as well, plus optional
ommand buttons at the bottom of the
orm to call user-defined routines, such
s those that call additional GENFORM
creens. Do this by defining a global array
hat contains captions for the optional
uttons. Load these buttons at run time,

ike the other input controls. Build a single
lobal Select Case…End Case structure
o hold all calls to the user-defined rou-
ines. This way you can generate quick
ustom screens and add calls to special-
zed routines right on the same form.

For more sophisticated storage and
etrieval of forms data, you’ll want to
odify my simple GENFORM. In multiuser

ettings try storing separate FRL files for
ach user, possibly in their system direc-
ories. This way individual users can see
ifferent versions of the same screen,
epending on their security levels or user
references.

Also, the ASCII format I’ve specified,
hile handy, should give way to using a
atabase if you need scalability. This
ould keep the data close to the app, yet

till let you provide custom sets based on
ser ID. And you could modify individual
creens without having to update the FRL
iles on each and every workstation.

As you can see, it takes a bit of plan-
ing to construct a forms generator, even
 simple one. But you’ll be glad you made
he investment when you need to get a big
Form.Title=D:\VB3\BIBLIO.MDB _
[Authors]

Form.Top= 3975
Form.Left= 3375
Form.Height= 1980
Form.Width= 6180
Au_ID.Number= 0
Au_ID.FldLeft= 1400
Au_ID.FldTop= 600
Au_ID.FldHeight= 300
Au_ID.FldWidth= 800
Au_ID.FldVisible=-1
Au_ID.FldEnabled=-1
Au_ID.LblCaption=Au_ID:
Au_ID.LblLeft= 120
Au_ID.LblTop= 600
Au_ID.LblHeight= 300
Au_ID.LblWidth= 1200
Au_ID.LblVisible=-1

Real Reuse Power. FRL file
such as AUTHORS.FRL, create

by GENFORM, let you make a forms engin
payoff. They add the ability to store form
layouts for modification and later use.

LISTING 6
sic Programmer’s Journal APRIL 1996 69

roject out in a hurry.

