
R
W
o
M
D
s
b
R
S
d
Q
7
R

1

DATABASE DESIGN

b

U
R
D
a
o
p

Click & Retrieve

Source

CODE!
se Jet for
ealtime Device Control
p

d
p
v
i
t
p
M
y Roger Jennings

atabase apps using realtime data
cquisition and device control
ffer real opportunities to VB
rogrammers.
t

t
p
i
a
n
A
t

q
p
b
d

a
a
a
f

U
I
A
V
(
m
V
d
d
o

applications. VB4 makes writing these a breeze.
Applications for supervisory control and data acquisition

(SCADA) range from chemical process automation to factory-
floor production monitoring to multimedia. Most commercial
SCADA applications run under UNIX today, but Windows NT
is coming on strong. For example, General Electric’s Fanuc
Automation North American subsidiary, a leading factory
monitoring and control systems maker, announced last De-
cember that it is porting the firm’s Cimplicity factory automa-
tion software to NT. It currently runs on various UNIX flavors
as well as DEC VMS. I expect other SCADA systems builders to
follow GE Fanuc’s lead over this year and next.

The SCADA market looks promising for VB developers,
especially those who know manufacturing technology and
process control. And you can take the same principles off the
factory floor and into places like TV studios, which do scads
of realtime data acquisition and control for video editing and
broadcasting. VB4’s database connectivity and data-bound
controls really help you store, retrieve, and analyze all the
time-based data associated with video production.

As a consequence Multi-Media Computing Solutions was
able to write Video Magician entirely in VB, producing a full-
featured, tape-based video editing app. ASC Audio Video’s
Virtual Recorder, used as a live “sideline editor” at Super
Bowl XXX, stored digital video on multiple 9Gb drives to
provide almost instant recall of a series of the game’s “big

verybody’s talking client/server and Internet, but
many heavy-duty VB applications involve neither.
Take real-time data acquisition and device control
oger Jennings, a principal of OakLeaf Systems, consults on
indows client/server database front ends. Roger is the author

f Using Access 95, Special Edition and Discover Windows 3.1
ultimedia for Que; and Access 95 Developer’s Guide and
atabase Developer’s Guide with Visual Ba-
ic 4 for Sams. He also co-wrote Sams’ Data-
ase Developer’s Guide with Visual C++ 4.
oger is now writing Using Windows NT
erver 4.0, Special Edition and Using Win-
ows Desktop Video, Special Edition for
ue. Reach him via CompuServe at

0233,2161 or on The Microsoft Network as
oger Jennings.

f
c
B
(
i
L

t
d
S
H
f
m
f

02 MAY 1996 Visual Basic Programmer’s Journal
lays.”
Video Magician and Virtual Recorder handle video data

ifferently, but both store timecodes in a database. Timecodes
rovide the beginning (in point) and end (out point) of
ideoclips. You can then automatically replay the videoclips

n any sequence. Video Magician uses the Jet database engine
o store the data needed to log and edit multiple video
rojects. High-end interactive video systems, such as
icrosoft Media Server, use client/server RDBMSs for real-

ime video scheduling and distribution.
I recently wrote a simple VB4 database application, VidLog,

o control a videotape recorder for logging and automatic
layback of several hours of source videotape for an upcom-

ng TV documentary. Several commercial DOS and Windows
pps support logging videotapes, but none had everything I
eeded to automate the digitizing process, which employs
dobe Premiere and Interactive Images’ Plum PCI video cap-

ure card.
 It took me several days to write and test VidLog, but I
uickly recovered my investment during the final capture
rocess—mainly by saving rental time on a $250 per day
roadcast-quality videotape player. I needed the player to
igitize Sony Betacam SP footage shot in rural Mississippi.

You can use VidLog’s low-cost real-time image capture
nd storage coding technique for any multimedia database
pp that handles live analog video content. And even if you
ren’t doing video apps, you can use this technique for other
orms of realtime control.

SE VISCA TO GET THE TIMING RIGHT
 based my app on Sony’s popular Video Systems Control
rchitecture (ViSCA) protocol. Windows 95 has a built-in
iSCA driver (MCIVISCA.DRV) for the Media Control Interface
MCI), so you can use the 16-bit mciSendString or 32-bit
ciSendStringA functions to issue English-like commands to
iSCA devices, which MCI calls the vcr device type. A full
iscussion of the MCI command string syntax for the vcr
evice type comes with the “Media Control Interface” section
f the Win32 SDK on the MSDN Development Library CD-ROM.

Before you can use either function, you must declare two
unction prototypes (mciSendString and mciGetErrorString)
ontained in 32-bit WINMM.DLL or 16-bit MMSYSTEM.DLL.
oth of these libraries are installed during Windows 95 setup
see Listing 1). Set up the vcr device (alias Vdeck in VidLog)
n the Form_Load subprocedure of the main VidLog form (see
isting 2 and Figure 1).

VidLog’s behind-the-scenes data acquisition activity cen-
ers on a Timer control that interrogates the Vdeck device to
etermine tape position. Videotape timecode is based on the
ociety of Motion Picture and Television Engineers (SMPTE)
H:MM:SS:FF format, where FF represents video or movie

rames. SMPTE timecode resembles the time headers in SCADA
essages. And every 100 milliseconds (about three video

rames), VidLog’s timSMPTE_Timer event handler interro-
http://www.windx.com

DATABASE DESIGN

G
A
t
t

gates the Vdeck, which returns the current tape position as
an SMPTE HH:MM:SS:FF string to the txtReturn text box.

When SCADA systems aren’t interrupt-driven, most use a
similar interrogation-response system to obtain data from
remote sensors or transducers. If the in and/or out points of
the video clip aren’t set, I use a routine to write the current tape
position continuously to the databound txtIn and/or txtOut
text boxes:

Private Sub timSMPTE_Timer()
 'Load timecode for in and out point

'text boxes; timer interval is set
'at 100 ms (3+ frames)

 Call SendCommand(“Status Vdeck Position”)
 'Don’t overwrite clip’s in & out points
 If Not fMarkIn Then
 txtIn.Text = txtReturn.Text
 End If
 If Not fMarkOut Then
 txtOut.Text = txtReturn.Text
 End If
End Sub

If you mark the in and out points with the Mark In and Mark
Out command buttons while the tape is moving, you can get
up to a four-frame offset. Instead, use the tape position
buttons at the bottom of the form as the primary means to
obtain frame-accurate clips.

Use the Pause, Forward, and Reverse buttons to move to
a specific frame with the step command (due to space limita-
tions, this listing is posted on the Visual Basic Programmer’s
Journal online sites described at the end of this column). Or
you can type the timecodes in the In and Out text boxes. To
visually check in and out points by playing the clip, just click
the Test Clip button.
LISTING 1 Have it Both Ways. The multimedia MCI functions come
compiler directives and function aliases to write the declar

bit VB4 apps. MMSYSTEM.DLL primarily uses integers while WINMM
this code in any VB4 app that works with MCI command strings, includin
(WAV and AVI files).

http://www.windx.com

Public mciCommand As String
RAB PICONS WITH SNAPPY
fter completing the 32-bit version of VidLog, I decided to add

he ability to capture and store Picons in the VidLog database
o visually identify each clip. (Picon = picture + icon—small
You Can’t Misplace this VCR Remote Control.
The main VidLog form includes command buttons at

the bottom of the form to control almost every function of the
Vdeck, including export, load, reverse, play, and eject.

FIGURE 1
6

Option Explicit
#If Win32 Then
'Windows 95 MCI functions follow
Declare Function mciSendString Lib

"winmm.dll" Alias "mciSendStringA" _
(ByVal lpstrCommand As String, ByVal _
lpstrReturnString As String, _
ByVal uReturnLength As Long, _
ByVal hWndCallback As Long) As Long

Declare Function mciGetErrorString Lib "winmm.dll" _
Alias "mciGetErrorStringA" (ByVal dwError As Long, _
ByVal lpstrBuffer As String, _
ByVal uLength As Long) As Long

#Else
Declare Function mciSendString Li "mmsystem" _

(ByVal lpstrCommand As String, _
ByVal lpstrReturnString As String, _
ByVal uReturnLength As Integer, _
ByVal hWndCallback As Integer) As Long

Declare Function mciGetErrorString Lib "mmsystem" _
(ByVal wError As Long, ByVal lpstrBuffer As String, _
ByVal uLength As Integer) As Integer

#End If
i

.

'Command
Public mciReturn As String * 256
'Return string
Public mciErrString As String * 25
'Error string
Public mciError As Long
'Error number
#If Win32 Then
Public mciReturnLen As Long

'Length of return string
Public mcihWnd As Long

'Callback window handle
Public mciErrLen As Long

'Length of error string
Public mciErrResult As Long

'Return value of error
#Else
Public mciReturnLen As Integer
Public mcihWnd As Integer
Public mciErrLen As Integer
Public mciErrResult As Integer

#End If
n 16-bit (MMSYSTEM.DLL) and 32-bit (WINMM.DLL) flavors. Use
ations section of a module so you can use it in both 16-bit and 32-
DLL requires long integers for arguments and return values. Use
g programs for manipulating waveaudio and digitalvideo devices

Visual Basic Programmer’s Journal MAY 1996 103

,

l

-
,
,

i
i
s
d

h
t
c

i

LISTING 2 Set Up the VCR MCI Device When You Load the Main Form. Call the SendCommand subprocedure with an MCI
command string argument to check that a tape is in the VCR, then have the VCR detect the timecode of the tape. Hi8

camcorders and VCRs use non-dropframe timecode, while U.S. and Japanese (NTSC) DV camcorders use SMPTE dropframe
timecode (29.97 frames per second). So you must specify the type of timecode in use. If your VCR can display timecode over the
video signal, the Index device on command enables this feature (called a “timecode window burn”). The SendCommand
subprocedure executes MCI commands and sends return values or error messages, if any, to unbound text boxes at the bottom of
the main form.

End Sub

DATABASE DESIGN
bitmaps of representative frames of video). If you have a
video overlay card, you can use the MCI overlay device to
save the content of the video buffer to a BMP file, then use the
LoadPicture function to transfer the data from the file to the
Picture property of the Image control.

For a more elegant (and probably lower cost) approach
use Play, Inc.’s $180 (estimated street price) Snappy video
capture device and the SNAPPY.VBX Picon capture custom
control, available in the SNAP_SDK.EXE file on Play’s Web
site, http//www.play.com (see Figure 2). Snappy plugs into
your PC printer port. Its RCA connectors provide composite
analog video input from a VCR or camcorder and optiona
loop-through output to a television monitor. Installation takes
five minutes or less. And it doesn’t need an open expansion
slot or link to your graphics card’s feature connector, unlike
high-end video overlay cards. True, SNAPPY.VBX limits you
to 16-bit Visual Basic 4.0 and a Jet 2.5 (Access 2.0) MDB file to
store the clip data and images, but 16-bit and 32-bit OLE
Controls are in the works.

Setting Snappy control’s SnapFileType property to 1 - DIB
on Clipboard places a copy of the captured device-indepen
dent bitmap on the Clipboard. Set SnapSize to 1 - Still
SnapSource to 0 - Tape, SnapState to 0 - Off, Stretch to True
VideoThru to False (unless you connect a TV monitor to

Snappy’s video output connector), and Visible to False. p

104 MAY 1996 Visual Basic Programmer’s Journal
My Snappy-adapted VidLog can capture a 320 x 240 pixel
mage, paste the image into the data-bound 180 x 120 pixel
mgPicon control (with the Stretch property set True), then
ave the data from imgPicon in a LongBinary field of the
atabase:

Private Sub cmdSnap_Click()
 'Place deck in pause mode for capture
 Call SendCommand("Pause Vdeck wait")
 'Copy a DIB to the Clipboard with Snappy
 snp320x240.SnapState = 2
 'Paste the data to the Image control
 imgPicon.Picture = Clipboard.GetData()
 'Update the record in place
 dtcLog.Recordset.Edit
 dtcLog.Recordset.Update
End Sub

By the way, don’t try adding code to the PicSnapped event-
andler to paste the DIB to the Image control. PicSnapped
riggers when Snappy grabs the video data, long before the
apture process is complete.

Various commercial apps enhance Snappy’s realtime video
mage acquisition capability. Examples include one for em-
loyee identification badges using low-cost color printers,
Private Sub Form_Load()
'Set up initial conditions

Me.Left = (Screen.Width - Me.Width) / 2
Me.Top = (Screen.Height - Me.Height) / 2
fMarkIn = True
txtIn.Font.Bold = True
fMarkOut = True
txtOut.Font.Bold = True
dtcLog.EOFAction = 0
Call SendCommand("Open vcr1 alias Vdeck")
'Open the ViSCA device
Call SendCommand("Status Vdeck media present")
'Check for tape in drive
If txtReturn.Text <> "true" Then
'No tape in drive

MsgBox "Please insert a tape _
in the drive.", 0, "Drive Not Ready"

End If
Call SendCommand("Set Vdeck time mode detect")
'Turn on ViSCA RCTC detection
If fDropFrame Then

Call SendCommand("Set Vdeck time format smpte 30 drop")
'Set the time code to SMPTE dropframe (29.97 fps)
Else
Call SendCommand("Set Vdeck time format smpte 30")
'Set the time code to SMPTE nondropframe (30.00 fps)
End If
Call SendCommand("Set Vdeck index timecode")
'Set screen display to timecode
Call SendCommand("Index Vdeck on")
'Turn on timecode display, if available
Call SendCommand("Set Vdeck preroll 00:00:00:20")
'Set preroll time to 20 frames

End Sub
Private Sub SendCommand(mciCommand As String)

'Sends MCI command string, receives return value
'Retrieves error message if an error is encountered
mciReturnLen = Len(mciReturn) - 1
mciErrLen = Len(mciErrString) - 1
txtCommand.Text = mciCommand
mcihWnd = 0
mciError = mciSendString(mciCommand, _

mciReturn, mciReturnLen, mcihWnd)
txtReturn.Text = Left$(mciReturn, (mciReturnLen - 1))
If mciError > 0 Then 'An error occurred

mciErrResult = mciGetErrorString(mciError, _
mciErrString, mciErrLen)

txtError.Text = LTrim$(Str$(mciError)) & " " & _
Left$(mciErrString, (mciErrLen - 1))

Else
txtError.Text = "OK" 'Command executed

End If
http://www.windx.com

Snapping Picons Aids Clip Identification. To keep
track of video images, you can click the Picon command

button, and the SNAPPY.VBX custom control will grab the current
video frame and copy it to the Clipboard as a device-independent
bitmap (DIB).

FIGURE 2

DATABASE

http://www.windx.com
and others for capturing images for industrial quality control,
automating surveillance systems (including sharp blowups
of surveillance tapes), and publishing semi-live still pictures
on the Internet.

For Internet apps, use Snappy’s variable-quality JPEG format
(SnapFileType = JPEG) and save the image to a JPG file linked to
your home page. MCI commands can start and stop the record-
ing process if your camcorder has a LANC connector as well as

Command Buttons Engage the Gears. The event-
handlers for the Click event of the Test Clip, Eject,

Reverse, Stop, Pause, Forward, and Eject command buttons control
the Vdeck’s tape drive mechanism.

FIGURE 3

Visual Basic Programmer’s Journal MAY 1996 105

DESIGN

take advantage of the camera-direct output to produce sharper
images. Snappy’s rendering of video content, even from low-
cost camcorders, offers substantially better quality than still
pictures shot with today’s $1,000 consumer-grade electronic
cameras. Images captured from a Sony DCR-VX1000 DV
camcorder in Snappy’s maximum-resolution (1500 x 1125 pixel)
mode with the 4 - Highest value for the SnapQuality property
rival pictures shot on 35-mm film.

BATCH THE CAPTURE PROCESS
I built VidLog to create an ASCII batch capture file for Adobe
Premiere from the Log table of VidLog.mdb. Premiere uses
the ViSCA driver for capturing AVI clip files from Sony DCR-
VX1000 camcorder and an Abbate Video (now part of Videonics
Inc.) Video ToolKit driver for RS-422 control of the Betacam
SP playback deck.

Premiere’s batch capture file import format requires a tab-
separated text file with Reel Name (tape number), In, Out, and
File Name, with optional Comment and Settings fields (see
Figure 3). Controls are bound to the Recordset object of the
dtcLog Data control, so I used a Recordset clone to create the
required text file (due to space limitations, this listing is
posted on the Visual Basic Programmer’s Journal online sites
described at the end of this column). I captured video content
with the Plum card using predetermined settings for an
average data rate of about 3.5 MB per second, including a 16-
bit, 44.1-kHz stereo sound track.

This data rate corresponds to a Motion-JPEG compression

106 MAY 1996 Visual Basic Programmer’s Journal

DATABASE
DESIGN

http://www.windx.com

ratio of roughly 5:1, considered to be Betacam SP quality. You
can fill a 4.3Gb drive with 20 minutes of compressed video in
AVI format, so the production version of VidLog’s text file
export subprocedure includes a test for required free drive
space before exporting the capture file. Vidlog adds a drive
letter prefix to the AVI file name, determined by the estimated
accumulated size of the clip files.

I designed VidLog for a highly specialized data acquisition
and control application, but the overall design typifies simple
SCADA-type device control programs. And you too can write
effective realtime control applications with VB4 and the Jet
database engine. As Windows NT gains ground as an operat-
ing system for real-time SCADA factory-floor monitoring and
process control, I think that 32-bit VB4 will replace C/C++ as
the SCADA programming language of choice. You’ll probably
find your first opportunities in non-critical logging applica-
tions and prototyping process control programs.

Once these programs demonstrate that 32-bit VB can
create industrial-quality code, VB developers will close the
loop with realtime process control applications that deliver
the availability and reliability generally attributed to C
programs

To download the sample code for this article, as well as additional
text (including a discussion of ViSCA devices you can buy), visit
The Development Exchange on the World Wide Web at http://
www.windx.com, or the VBPJ CompuServe Forum, or MSN site. For
details, see “How to Reach Us” in Letters to the Editor.

