
INTERACTIVE
DEVELOPER

Click & Retrieve

Source

CODE!
Use Bitmap Animation for
Real-Time Graphing

A few controls, a few API calls,
and voilà! Spinning globes and
scrolling graphs in your apps.

 by Mark Pruett

early all Windows applications use some kind of anima-
tion, from simple ones like command buttons (i.e., two
framed animation sequences) and percentage controls

(showing the progress of a task) to those little bitmap se-
quences that web browsers display during HTML document
loads.

You can program such animations several ways in VB. Let’s
start by doing simple frame animation using VB’s Picture Clip
control, which takes the least amount of program code. It can
run a succession of bitmaps to create the computer equivalent
of a movie.

You’ll probably have more trouble creating the bitmapped
pictures themselves than using the control. Fortunately, many
graphics apps can help you create a variety of two- and three-
dimensional animation sequences. Even Windows Paintbrush
lets you create simple and effective animation sequences.

However, for this exercise I used Virtual Reality Lab’s
VistaPro to create the animation sequence. It helps you create
and render computer generated landscapes. With it I created
33 frames showing a medieval castle (see Figure 1). Each frame
shows the castle from a slightly different angle, as if you walked
around it, taking a photo every few yards, stopping just short
of your starting point. With this I could create a continuous
animation loop.

My frame animation of the castle just needed one form
containing three controls: a picture box, a timer, and the Picture
Clip control (add it to your VB3 or VB4 toolbox if you don’t have
it there by default).

The Picture Clip control lets you store and access the many
individual frames needed to create a realistic animation. At
design time, the control resembles a conventional picture box
control, complete with a Picture property that we’ll use to load
a bitmap. The Picture Clip control only stores a single bitmap.
To display all 33 frames of our animation, we break up a single
large bitmap into smaller pieces.

By setting its Rows and Cols properties you tell the control to
treat the single bitmap it contains as if it were
a two-dimensional array of bitmaps. A Pic-
ture Clip control with Rows set to 2 and Cols
92 MAY 1996 Visual Basic Programmer’s Journal

Mark Pruett is the author of Black Art of Visual
Basic Game Programming, published by Waite
Group Press. Reach him on CompuServe at
74133,3406 or on the internet at
pruettm@vancpower.com.
set to 3 can be accessed, via a property called GraphicCell, as a
sequence of six separate bitmaps, numbered zero through 5. For
example, Frame 3 would be the first bitmap in the second row.

This means you have to take all your separate frame bitmaps
and store them in a single large bitmap. You can do this by
cutting and pasting the separate frames via Windows Paint-
brush or just about any bitmap editor.

My CASTANIM.BMP bitmap holds 33 rows of individual
frames in a single column. I could have used other variations,
such as 3 rows of 11 columns, just as easily. I assigned this
bitmap to the Picture Clip control in my project by setting its
Picture property. Then I set its Rows property to 33 and its Cols
property to 1. Figure 1 shows how the form looks at design
time, with part of the Picture Clip control running off the
bottom of the form.

My program takes one frame from the Picture Clip control
and displays it in the form’s picture box control. Animating it
only takes a few lines of code (see Listing 1).
t
w
P
y
P

Going Around and Around. A design-time view of a
simple animation program shows the Picture Box where

he animation will be displayed and part of the PictureClip control
here the actual animation frames are stored. Users don’t see the
ictureClip control at run-time. And a simple Windows API call lets
ou achieve the same level of animation without using the

FIGURE 1
ictureClip control.

http://www.windx.com

INTERACTIVE
DEVELOPER
ON TO WINDOWS API BITBLTING
Picture Clip works fine for simple animations, but for more
speed and scalability we’ll turn to the Windows API’s Bit-Block
Transfer function. Luckily, it only takes a few more lines of code
to make the single Windows API call needed to mimic Picture
Clip. Then you can use the BitBlt function to copy all or part of
a bitmap onto another bitmap.

Don’t let the size of BitBlt’s function declaration put you off:

Declare Function BitBlt Lib "GDI" _
 (ByVal hDestDC As Integer, _
 ByVal x As Integer, _
 ByVal y As Integer, _
 ByVal nWidth As Integer, _
 ByVal nHeight As Integer, _
 ByVal hSrcDC As Integer, _
 ByVal xSrc As Integer, _
 ByVal ySrc As Integer, _
 ByVal dwRop As Long) As Integer

Consider VB’s Left and Top properties. These usually refer to
how far you should place a control from the top and left sides of
a form. You can view BitBlt’s x and y parameters similarly: x
indicates a point x pixels from the left of the bitmap, and y
indicates y pixels from the top. So you’d indicate the upper left
corner of a bitmap as x-y coordinate (0,0).

This function really says, “Copy to location (x,y) in bitmap
hDestDC a portion of bitmap hSrcDC.” The portion of hSrcDC
is nWidth pixels wide and nHeight pixels high, and starts at
location (x,y) in hSrcDC. The final parameter, dwROP, is a flag
specifying how to copy the bitmap. You have a number of
options. We’ll use the most common one, SRCCOPY, to tell
BitBlt to replace the destination area with the source bitmap.

Now we can rewrite our first example, using BitBlt instead
of a Picture Clip control. We delete the Picture Clip control
from the form at design time, replacing it with a second
picture box control, Picture2. We assign the this control’s
Picture property to the same bitmap we used before,
CASTANIM.BMP.

To emulate Picture Clip we need to set two properties in the
picture box control. First, we set Picture2’s AutoRedraw prop-
erty to True. This property forces Visual Basic to maintain a
LI
,

n
seq n
seq .

http://www.windx.com
copy of Picture2’s bitmap in memory, making it a persistent
bitmap in Windows parlance. Next, we set the Visible property
of Picture2 to False, rendering the control invisible at run-time.
And of course we add the BitBlt function to our form’s declara-
tion section, along with the needed SRCCOPY constant:

Const SRCCOPY = &HCC0020

Then we modify the Timer event of our program to complete the
change:

Sub Timer1_Timer ()
Static CellNum As Integer
Dim rc As Integer
CellNum = (CellNum + 1) Mod 33
 rc = BitBlt(Picture1.hDC, 0, 0, _
 100, 100, Picture2.hDC, 0, _
 CellNum * 100, SRCCOPY)
End Sub

We still use CellNum to cycle through the bitmap’s “frames.”
The Mod function forces CellNum’s value back to zero after
displaying the last frame to close the animation loop. The BitBlt
function cuts a 100-by-100 pixel frame out of the appropriate
section of Picture2, and displays it in Picture1. By passing a ySrc
parameter of CellNum * 100, we tell BitBlt how far down in
Picture2 we should go to find the proper frame.

Therefore, half a dozen extra lines of code let us mimic the
Picture Clip control’s abilities and avoid having to distribute yet
another VBX or OCX with our apps.

DRAWING ON A PICTURE BOX
Picture Boxes display bitmaps nicely, and provide dynamic
drawing surfaces as well. You can draw lines and shapes directly
onto a Picture Box, using either built-in methods such as Circle,
Line, and PSet, or Windows API graphics functions, which
usually run faster. Let’s use them to build a realtime graphing
control within a Picture Box.

Realtime graphing lets you display data from a source as the
data is acquired. For example, you might want to graph tempera-
ture changes that your app is receiving through a PC’s serial
port, connected in turn to an external device.

Let’s say that as the program receives new data, it graphs the
data on the Picture Box’s y axis. With each new data reading, the
currently displayed data scrolls to the left, and the new data is
plotted at the right side of the Picture Box. Old data eventually
disappears off the left side of the Picture Box. Users see a
smoothly scrolling line graph (see Figure 2).

We create the appearance of scrolling with a little BitBlt trick.
We previously used BitBlt to copy from one Picture Box to
another. This time we’ll use BitBlt to copy a piece of a bitmap
within the same Picture Box. Actually we’ll be copying the right
side of the graph in a Picture Box to the left side of the same
Picture Box. This will leave us a narrow area on the right side on
which we can draw our new incoming data, using the simple
Windows API calls MoveTo and LineTo:

Declare Function MoveTo Lib "GDI" _
 (ByVal hDC As Integer, _
 ByVal x As Integer, _
 ByVal y As Integer) As Long
Declare Function LineTo Lib "GDI" _
 (ByVal hDC As Integer, _
 ByVal x As Integer, _
 ByVal y As Integer) As Long
STING 1 Create a Simple Frame Animation. Use a PictureClip
Picture Box and Timer control to create an animatio

uence. Applications like Mosaic and Netscape use animatio
uences to provide a visually appealing method of user feedback

Sub Form_Load ()
' Make sure picture box is same size as animation
' frame
 Picture1.AutoSize = True
' Set and turn on the timer
 Timer1.Interval = 50
 Timer1.Enabled = True
End Sub
Sub Picture1_Click ()
' Toggle timer on and off by clicking on picture box
 Timer1.Enabled = Not Timer1.Enabled
End Sub
Sub Timer1_Timer ()
Static CellNum As Integer
' Display next frame in the animation, looping back
CellNum = (CellNum + 1) Mod (PicClip1.Rows *
PicClip1.Cols)
 Picture1.Picture = PicClip1.GraphicCell(CellNum)
End Sub
Visual Basic Programmer’s Journal MAY 1996 93

p
a
d
p
s
p

Y

t
s
a

f
g
o
ber the previous y value of each graph. The MoveTo function

9

INTERACTIVE
DEVELOPER
roperty and an x-y coordinate inside it. MoveTo doesn’t actu-
lly draw. Just as you often lift and move your hand when
rawing on a piece of paper, MoveTo moves a “virtual pen” to a
oint on the Picture Box drawing surface. When you provide a
ubsequent call to LineTo, VB draws a line from the point of the
revious MoveTo to the point specified by LineTo.

Think of a line graph as a collection of short line segments.
ou use MoveTo and LineTo to draw a new segment each time
LISTING 2 Graphing in Real Time. This example program defines th
up to 10 real-time graphs simultaneously.

_

 _

 Me.Caption = fps & " fps"

4 MAY 1996 Visual Basic Programmer’s Journal
he app gets new data. By combining this technique with the
crolling BitBlt technique, we can graph virtually any x-y data in
 Picture Box (see Listing 2).

I encapsulated all the graphing work into the single reusable
unction UpdateGraph. This function supports up to 10 different
raphs, each in its own Picture Box. We assign each graph its
wn logical “channel” because UpdateGraph needs to remem-
_

)

End Sub
Option Explicit
' A Realtime Graphing Demonstration by Mark Pruett
Const RED = &HFF&
' Constants and Windows API Calls
Const GREEN = &HFF00&
Const SRCCOPY = &HCC0020
' Windows GDI Bitmap API constants and functions
Const SRCBLACK = &H42
Declare Function BitBlt Lib "GDI" (ByVal hDestDC As

Integer, ByVal x As Integer, ByVal y As _
Integer, ByVal nWidth As Integer, ByVal nHeight
As Integer, ByVal hSrcDC As Integer, ByVal _
XSrc As Integer, ByVal YSrc As Integer, ByVal _
dwRop As Long) As Integer

Declare Function LineTo Lib “GDI” (ByVal hDC As _
Integer, ByVal x As Integer, ByVal y As Integer) _
As Long

Declare Function MoveTo Lib "GDI" (ByVal hDC As _
Integer, ByVal x As Integer, ByVal y As Integer) _
As Long

Sub btnOnOff_Click ()
' This subroutine feeds new “data” to the graphs
Static x1 As Integer, y1 As Integer
Static x2 As Integer, y2 As Integer
Static Running As Integer
Dim fps As Integer, sec As Single
Dim i As Integer
Dim rc As Integer
 Running = Not Running

' Turn graph on or off If Not Running Then
 btnOnOff.Caption = "Start"
 Exit Sub
 End If
 btnOnOff.Caption = "Stop"
 sec = Timer
 While Running

' Scroll and update
x1 = x1 + 1
' Calculate the new y1 position
y1 = (Sin(x1 * 132) * 60) + _

(picGraph1.ScaleHeight / 2
 If x1 >= 118 Then x1 = 0)

' Reset x to avoid overflow in y calculation
 x2 = x2 + 1

' Calculate the new y2 position
 y2 = Rnd * picGraph2.ScaleHeight
 For i = 1 To scrSpeed.Value

' Pause briefly
 DoEvents
 Next
 UpdateGraph picWork, 2, x2, y2

' Update the two graphs
 UpdateGraph picGraph1, 1, x1, y1
 rc = BitBlt(picGraph2.hDC, 0, 0, _

picWork.ScaleWidth, _
 picWork.ScaleHeight, picWork.hDC, _

0, 0, SRCCOPY)
 fps = fps + 1

' Show statistics for frames-per-second
 If Timer - sec > 1 Then
e

 fps = 0
 sec = Timer
 End If
 Wend
End Sub
Sub Form_Load ()
' Make sure all Picture Box ScaleModes are set
' to PIXEL, the mode used by Windows API calls
Const PIXEL = 3
picGraph1.ScaleMode = PIXEL
 picGraph2.ScaleMode = PIXEL
 picWork.ScaleMode = PIXEL
picWork.Width = picGraph2.Width
' Make picWork a persistent bitmap
 picWork.Height = picWork.Height
 picWork.Visible = False
 picWork.AutoRedraw = True
End Sub
Sub Form_Unload (Cancel As Integer)
' Terminate program when form unloads
End
End Sub
Sub UpdateGraph (PicBox As PictureBox, ByVal Channel _
As Integer, XValue As Integer, YValue As Integer)

' Update graph in PicBox (which is associated with
' Channel) using new x-y coordinates from XValue and
' YValue
Static yprev(1 To 10) As Integer
Dim rc As Long
Dim ScrollAmt As Integer
ScrollAmt = 2
' Shift Bitmap to the left

 rc = BitBlt(PicBox.hDC, 0, 0, PicBox.ScaleWidth -
ScrollAmt, PicBox.ScaleHeight, PicBox.hDC, _
ScrollAmt, 0, SRCCOPY)

' Clear area where we will draw new plot (right
' side of PictureBox)
rc = BitBlt(PicBox.hDC, PicBox.ScaleWidth - _
ScrollAmt, 0, ScrollAmt, PicBox.ScaleHeight,

PicBox.hDC, PicBox.ScaleWidth - 1, 0, SRCBLACK
PicBox.ForeColor = GREEN
 If (XValue Mod 20) = 0 Then

' Draw Vertical Grid Line
rc = MoveTo(PicBox.hDC, PicBox.ScaleWidth - _

1, 0)
rc = LineTo(PicBox.hDC, PicBox.ScaleWidth - 1, _

PicBox.ScaleHeight)
 End If
 rc = MoveTo(PicBox.hDC, PicBox.ScaleWidth -
ScrollAmt, _
 PicBox.ScaleHeight \ 2)
 ' Draw Horizontal Grid Line
 rc = LineTo(PicBox.hDC, PicBox.ScaleWidth, _

PicBox.ScaleHeight \ 2)
PicBox.ForeColor = RED

' Plot the new point
 rc = MoveTo(PicBox.hDC, PicBox.ScaleWidth - _

ScrollAmt - 1, yprev(Channel))
 rc = LineTo(PicBox.hDC, PicBox.ScaleWidth - 1, _

YValue)
yprev(Channel) = YValue
 DoEvents
 reusable subroutine UpdateGraph, which can be used to display

http://www.windx.com

Realtime Graphing. This example program shows
how to display scrolling, realtime graphs with a few

Windows API calls and a standard Picture Box control. You can
package all the necessary code in a single, reusable, Visual Basic
subroutine. The caption bar displays how many frames are being
displayed per second.

FIGURE 2

INTERAC
DEVELO

http://www.windx.com
uses this to move to the appropriate starting point for the next
line segment.

One warning: since the UpdateGraph, as written, draws
directly onto on-screen Picture Boxes, VB doesn’t maintain a
persistent bitmap in memory. No problem—until another win-
dow partially obscures your graph. BitBlt is using the actual
contents of the screen as the source for its bitmap. So when
another window takes that location, BitBlt does its job, copying
a rectangular area at a particular location, copying what it
“sees.” You will then see your graph looking like a section of the
other window.

You can get around this with the BitBlt technique I used to
display my animated castle. Instead of rendering directly onto
an onscreen Picture Box, draw your graph onto an invisible,
persistent Picture Box, then copy it to an on-screen Picture Box
as if it were an animation frame. I use this technique in Listing 2
for the bottom graph. Try running the program, then partially
obscure the right side of the form with another window. The
bottom graph continues to display normally while the upper
graph is trashed.

Or try setting the on-screen Picture Box to True. Then, after
each call to UpdateGraph (or better yet, as the last statement
within UpdateGraph), call the Picture Box’s Refresh method.
The graph is drawn into the Picture Box’s persistent bitmap,
then displayed on-screen with a call to Refresh. You can modify
UpdateGraph to include this behavior.

Now you can add realtime graphing to any VB3 program. For
VB4 just modify the BitBlt, LineTo, and MoveTo calls to their
GDI32 equivalents.

Visual Basic Programmer’s Journal MAY 1996 95

TIVE
PER

