
1

OLE EXPERT

S
B
B
S
i
c
r
a
T
V
I
o
L
o

1

OLE EXPERT

b

c
a
t
d
i
g
S
s

M
s
e
t
i
t
m
i
n
v
m
l
p
t
c
g
a
c
v

T
P

ackling OLE Control

roblems
Find out everything you ever
wanted to know about OLE control
installation, but were afraid to ask.

y Sam Patterson
omponent companies that provide a wide breadth of add-on
nd add-in products. Many of these companies have overcome
he same obstacles that we faced when creating, testing, and
istributing our OLE controls for Visual Basic 4.0. Much of the

nformation in this article is basic information that I have
athered over the past three years working with OLE controls.
o even though it may seem basic at first, you should find
omething in this column that will be useful.

My first experience programming OLE controls was for
icrosoft. I wrote nine controls for the Visual Basic group and

even are included in the Visual Basic 4.0 box. It was quite an
xperience working directly with the Visual Basic developers on
his project, and I learned many new tricks and techniques for
mproving the performance and understanding the whole archi-
ecture of OLE controls. Because I wasn’t directly involved in
ost of the testing, installation, setup, and support issues

nvolved with these controls, there were many things that I did
ot have a chance to learn from the experience. I was to learn
ery quickly, however! <g> Since joining MicroHelp as general
anager of the Component Product Division in July 1995, I have

earned more about OLE controls than I would have just by
rogramming them alone or from the Microsoft experience. In
he process of creating many different retail packages of OLE
ontrols for MicroHelp, many issues have come up when pro-
ramming, installing, using, and supporting OLE controls that
re appropriate for the OLE Expert column. In this month’s
olumn, I will explain all of the hurdles we overcame in creating
arious retail packages with a special emphasis on the installa-

et me start by saying that this column is not meant to be
a commercial endorsement for the company I am cur-
rently working for. There are many great third-party
20 MAY 1996 Visual Basic Programmer’s Journal

am Patterson is general manager of the Component Products
usiness Unit of MicroHelp Inc. and a contributing editor of Visual
asic Programmer’s Journal. He is also owner of Gold Leaf
ystems, a Los Angeles, California-based consultancy specializing
n VBX/OLE Control component software development. He is
oauthor of MicroHelp’s OLETools, VBTools, SpellPro, Thesau-
us, and VBComm 3.0 Communications Library. He is also the
uthor of the MCI, MAPI, Masked Edit, Rich Text, Toolbar, and
abStrip OLE controls included with Microsoft’s Visual Basic 4.0,
isual FoxPro 3.0, and Visual C++ 4.0. Contact Sam at MicroHelp

nc., by e-mail at SamP@microhelp.com or by fax at 404-645-2122;
r at Gold Leaf Systems, by mail at 5301 Beethoven Street #190,
os Angeles, CA 90066-7061 or by fax at 310-574-6301. Reach Sam
n CompuServe at 72000,1751.

20 MAY 1996 Visual Basic Programmer’s Journal
tion of the controls under various platforms. I also will discuss
the support issues that we have faced once the controls made
it onto users’ systems. Many of these issues will become more
and more important to Visual Basic programmers as the next
version of Visual Basic has been purported by the trade press to
create OLE controls.

ARCHITECTURE AND FILES
First, let’s talk a little about the OLE control architecture. OLE
controls are like any other OLE objects. They are programmable
objects that implement certain functionality that they expose
through various OLE interfaces. One of the first obstacles to
overcome when installing and using an OLE control is to make
sure that all of the supporting files, such as the OLE DLLs,
language DLLs, and so forth that are needed to allow the actual
control to execute are present. For example, if you build your 32-
bit controls using Visual C++ 4.0 using MFC and you selected the
option to use MFC40.DLL, you have to distribute MSVCRT40.DLL
and MFC40.DLL on your installation disks. MSVCRT40.DLL is the
runtime DLL for the C++ programs and MFC40.DLL is the founda-
tion class runtime library. You also need to distribute any other
DLLs that your control uses.

For example, in OLETools we have a runtime DLL that encap-
sulates many of the common routines used across our controls
called MHRUN32.DLL. This has to be distributed and installed
before any of our controls can operate. The most up-to-date OLE
DLLs should also be distributed. This includes (but is not
limited to) OLE32.DLL, OLEAUT32.DLL, OLECLI32.DLL, and so
forth. We have found that having our OLE controls running on
older builds of the OLE DLLs can cause many problems ranging
from GPFs to very odd runtime behavior. If you are distributing
a 16-bit OLE control, you need to distribute the correct 16-bit
MFC DLLs, along with OC25.DLL, the DLL that implements the
16-bit version of OLE custom controls. You must also make sure
that the OLE DLLs, MFC DLLs, and the OC25.DLL are registered. If
they are not registered your control will neither register nor load.

The next step before you can actually use the control is to
“register” the control. OLE controls and other OLE objects use the
registry to record information about the location of their execut-
able, help file, and so forth. These are all tied together using a
unique number called a Class ID (CLSID). OLE uses this number, or
key, to create the objects. Most OLE-enabled applications are “self
registering.” This means that the first time you run the application
they register all the information about the OLE components that
the application provides. OLE controls are somewhat different.
Because OLE controls are not EXEs—they are actually DLLs—
there is no way for them to “automatically” self-register when they
run. To overcome this problem, most OLE controls have two
functions internally that can be called to register all the compo-
nents that the control provides. Any language that supports
DLLs can call these functions, DLLRegisterServer and
DLLUnregisterServer. Typical pseudo C code to load an OCX and
call its register function looks something like this:

hmod = LoadLibrary("mhcmbo32.ocx");
http://www.windx.comhttp://www.windx.com

OLE EXPERT

a
m
t
i
w
a
t
w
w
j

c
h
n
(
r

OLE EXPERT
lpfnRegister = GetProcAddress(hmod, _
"DLLRegisterServer");

lpfnRegister();

When calling this function, the OLE control registers itself by
writing its class information into the HKEY_CLASSES_ROOT
section of the registry. It also adds a type library key into the
appropriate section (the typelib section under
HKEY_CLASSES_ROOT). A type library is a “standard” way of
providing access to all of the names, parameter information,
events, method names, and so forth for a specific OLE object. It
also can contain constant names and values that programming
languages such as Visual Basic can use. You can retrieve and use
type library information from C as well as other applications
that support the OLE type library interfaces. VB provides access
to this through the object browser. The object browser shows
what type libraries are referenced in your application. You also
can use the object browser to look at all of the objects, methods,
and other items contained within each referenced type library.

WHAT HAPPENED?
Once registered, the controls can be used in an OLE control
container. However, even though registering the controls sounds
easy and straightforward, many things can go wrong during the
registration process. First and foremost relates back to the
section where I explained that you need to distribute all DLLs
and other files needed by the controls. This is especially true
during the registration process. When you try to load an OLE
control (as a DLL) using LoadLibrary, all files that are needed to
load that DLL into memory must be present. For OLETools for
example, if the MHRUN32.DLL is not present on the disk, then
the LoadLibrary would fail. You therefore would not be able to
register the control. The error messages returned from
LoadLibrary do not provide a clue as to why the load failed
either, so it can be difficult to determine what is going on. If any
of the OLE DLLs, MFC DLLs, and so forth are missing, you get a
cryptic error message that doesn’t help you find the problem. So
if you are trying to register the control, and you get the message
back that it “can’t load the library,” or “LoadLibrary failed,”
make sure all your required files are there. Similar errors are
generated if you are using the Microsoft REGSVR16 or REGSVR32
utilities. These generate a message box that is caused by trying
to load an MhTree control without the MHRUN32.DLL present.
As you can see, with this message box you might never figure out
why you are unable to register the control (see Figure 1).

Other problems might arise when writing to the registry. For
example, one such problem is corrupted registries. Although we
have not seen this very often under 32-bit operating systems
such as Win95 or NT, it has happened many times under Win 3.1
and Win 3.11. If something has corrupted the registry before you
try to register your controls, some of your controls may register,
and some may not. We have seen situations where half of the 16-
bit controls register, and the rest cause GPFs when trying to
register. This is often caused by a corrupted registry.

Registry corruption can be caused by many different things.
User interaction and manual editing using REGEDIT can some-
times cause problems. It may also result from corrupt sectors on
the hard disk, or other hardware-related error. Under Win 3.11
you also can have the problem with the registry getting corrupted
just by writing information using the API commands. One of the
main problems that causes corruption with the Win 3.1x registry
is the 64K size limit of data contained in the registry. During the
first month of shipping OLETools we had a small number of users
calling and saying that after they had installed OLETools their
registry was corrupted. They discovered this when running VB4
http://www.windx.comhttp://www.windx.com
fter they had installed OLETools. Their systems displayed a
essage box telling them that their “Registry is corrupt.” Some of

hese users had backups of their registry before the OLETools
nstall, and sure enough, when we tested the install we found out
hat was happening. Because of the number of controls and the
mount of entries that are added to the registry during installa-
ion, an overrun of the 64K limit was occurring and the registry
as being corrupted. Unfortunately the API calls for the registry
ere not returning errors when the registry was full; they were

ust overwriting parts of the registry at random!
What is even more unfortunate is that there is no way of

hecking the size of the “internal” data in the registry, and you
ave no way of knowing (until corruption occurs) whether or
ot you have hit the magical 64K boundary. The external size
the size reported by the DOS Dir command) varies. Some of the
egistries contained nearly 64K of data, and their size reported
Visual Basic Programmer’s Visual Basic Programmer’s
from DOS was 96K. Af-
ter the corruption oc-
curred it was 59K. We
now make a backup
copy of the registry, in-
stall our controls, and
try to read one of the
entries from the regis-
try. If we are not able to
read our first entry we
restore the registry file
and let the user know
that his or her registry
is approaching the 64K point and that he or she might want to
clean it up. There are many things you can delete from the
registry if they are not being used. For example, VB4 creates
OCA files for each OLE control that you use. These files are like
“cache” files that let OLE controls load much faster the second
and subsequent times that they are used. These files each get an
entry in the registry. We have seen many duplications of the
OCA files in our registries, so cleaning up these duplicates can
provide some much needed space. The only other option you
have if your registry is full is to move to a 32-bit operating system,
which doesn’t have this 64K limitation.

OTHER OCA PROBLEMS
Gustavo Eydelsteyn from VideoSoft wanted to make sure I
mentioned a problem that has shown up in VideoSoft’s day-to-
day testing and in various tech support calls. These problems
are caused by OCA files. If you update a control (such as adding
new properties, events, or methods), copy that control over an
existing control, and then register it, Visual Basic may still
behave strangely. Visual Basic will not rebuild the existing OCA
file that is there unless you actually delete it even though the
control on which it is based has changed! If you don’t delete it, the
incorrect cache information is read from that file. The moral of
the story is: make sure you delete any OCA files when installing
new controls. Another similar issue is the installation of an
upgraded OCX file that has the “OLE” internal version number
incremented. For example, if you look in a Visual Basic Project
(VBP) file for the reference to the OLE control, it will look
something like this:

Object={96A6D86D-FE3D-11CE-A0DD-_
00AA0062530E}#1.0#0; MHCMBO32.OCX

This reference loads the control in the project. The line contains
a CLSID, the version number of the control, and the file name.
When vendors release new major versions of controls they
RegSvr32 Error Message
Box. If a file is missing when

you try to register, an OLE control error
may occur.

FIGURE 1
Journal MAY 1996 121Journal MAY 1996 121

OLE EXPERT
increment the version number. In the above
example, “#1.0#” would change to “#2.0#.”
The problem lies in the fact that new ver-
sions of the control will retain the same
name. There will no longer be a version 1.0
control on your system. This confuses
Visual Basic and it will say that it can’t load
your form because the form will look for
version 1.0 and the new version of the
control is 2.0. To remedy this problem you
can update the reference line to point to
the new version, 2.0 in this example. Your
updated line would look like this:

Object={96A6D86D-FE3D-11CE-A0DD-_
00AA0062530E}#2.0#0; MHCMBO32.OCX

Another common problem users have
encountered follows this scenario: a user
installs and registers an OLE control, and
then deletes the file, or moves the file to
another location and does not reregister
it. When you try to insert that object into
VB you will get an error, and I have even
seen GPFs occur when this happens. A
few users had registered controls directly
from a CD and then removed the CD, so
the controls could not be loaded. This is
definitely a user education issue and
should start to improve as more OLE-
enabled applications are out there. You
must reregister controls if their location is
changed! This same thing applies to any
OLE application. When you register an
OLE application, it writes information on
the location of that server into its registry
keys. When OLE tries to create that ob-
ject, it looks in the registry for the path of
the server and tries to start or load that
server. If it is no longer present, you get
the error.

Another important consideration when
installing OLE controls is that you have to
reregister a new build of the same control.
At first this doesn’t seem that important. If
you have a new release of the control, and
all of its properties, events, methods, and
so forth are still the same, why would you
have to reregister it? We still haven’t fig-
ured out why, but if you don’t reregister it
and just copy it into the same location as
the last control, many ugly events may
happen. The main one is that often times,
VB just won’t load the control.

Even though OLE controls are still
“new,” utilizing some of these hints when
distributing your applications or OLE con-
trol packages can really help you over-
come the issues before they become prob-
lems. This information may seem impor-
tant only to OLE control developers, but it
is important to you also. If you use and
distribute OLE controls with your appli-
cation, any one of these problems may
happen to you.
VBPJ MAY 1996 122http://www.windx.com

