
22 APRIL 1996 Visual Basic Prog

W E B S E R V E R

Microsoft’s new
Internet Informa
Server makes da
access easy, and
OLEISAPI suppor
taps the power o

Carl Franklin writes Q&A for VB
co-owner of Carl & Gary’s Vis
Home Page (http://www.apexsc
Portions of this material may b
Carl’s book, Visual Basic Inte
gramming, to be published by W
puter Books. Material is reprinte
publisher’s permission. Reach
CarlF@apexsc.com.
Download sample
code in OLEISAPI.ZIP
on VBPJ’s CIS, MSN,
and Internet sites, and
at Carl & Gary’s VB
File Archive on the
Web (file:/ ftp.apexsc.
com/pub/cgvb/misc/
oleisapi.zip).

Click & Retrieve

Source

CODE!
Serving Up
The Web

B Y C A R L F R A N K L I N
tion
ta

t
f VB.

w
M
o
b
t
C
(
p
r
p
i
F
d
w
b
M
I
t

nector bypasses external Common Gate-
lthough Microsoft has been late in
responding to the popularity of
the Internet and the World WideA

Web, slowly but surely Bill Gates and
company have been putting together the
pieces of an Internet tools strategy. The
two key tools are Visual Basic Script, with
its ability to code Internet applications
that run inside a Web browser, and the
new Microsoft Internet Information Server
(MIIS), formerly known by its code name,
Gibraltar.

Microsoft’s Internet Information
Server has many parts. I spent a long
rammer’s Jou

PJ and is
ual Basic
.com/vb).
e used in
rnet Pro-
iley Com-
d with the
 Carl at

C
w

eekend exploring a late beta copy of
IIS and found it confusing at first. But

nce I understood the architecture I was
lown away, especially when I grasped
he importance of the Internet Database
onnector and the Internet Server API
ISAPI)—technologies that are key to the
ower of this package. I sat in a dark
oom for nearly an hour to let all the
ossibilities sink in. In case you missed

t, Microsoft formally introduced MIIS
ebruary 12. This free Web server can be
ownloaded from the Web at http://
ww.microsoft.com/infoserv. It’s also
undled with Windows NT (for more on
IIS, see “Piece Together Microsoft’s

nternet Puzzle,” by Roger Jennings, in
his issue).

In short, the Internet Database Con-
rnal ©1991–1996 Fawcette Tech
way Interface scripting for data access.
ISAPI (specifically, OLEISAPI.DLL) lets
users access OLE Automation servers
through the Web. The power and simplic-
ity of this approach may inspire you to
rethink your development strategy. A core
advantage of this new architecture is re-
duced coding redundancy, and we all
know that redundancy is bad.

Before I go into the technical details,
I’ll put this new package into perspective.
The Database Connector makes data ac-
cess easy because it’s part of the server
itself. On the VB side, the Internet Server
API does for CGI what IDC does for data-
base access.

Dynamic link libraries written with ISAPI
run in the server’s address space, requiring
less time and fewer resources to process
scripts. Also, OLEISAPI lets you access an
Microsoft Internet Information Server

Microsoft

Access driver

Other

drivers

SQL Server

driver

Gopher

Service

FTP

Service

WWW

Service

Oleisapi.dll Httpodbc.dll

VB Code ODBCOLE Server

Database

DatabaseDatabase

Other

DBMS

SQL

Server

Tight integration

of OLE, ODBC, and

VB is the clear advantage

of the MIIS architecture

Access drivers

are built in

Web Service built in

Architecturally Sound. Microsoft is playing to its strengths by integrating
OLE, ODBC, and VB capability into its Web server. The Internet Database

onnector is a key component of easy Web development. Database access occurs from
ithin the server itself using HTTPODBC.DLL to access any ODBC data source.

FIGURE 1
http://www.windx.comnical Publications

W E B S E R V E R

VB4
OLE Server DLL from the Web site.
While using the API instead of CGI

scripts to directly access the database is
a powerful capability, MIIS offers nothing
like the base of shareware utilities and
pragmatic maintenance features of more
mature Unix servers. For example, the
plethora of free programs available in the
Unix world doesn’t yet exist for Gibraltar.
Nonetheless, these should evolve in time.

The first technology to consider is the
Internet Database Connector. This ap-
proach makes it easy to post data for Web
pages. The simplest way to understand the
power of this architecture is by comparing
how VB programmers had to use Common
Gateway Interface coding only last winter.
My article titled, “Spin Your Own Web Site,”
in the December issue of VBPJ, showed
methods for posting data from a Web page
using Windows CGI with Visual Basic and
O’Reilly’s WebSite HTTP server.

In brief, here’s how it works. A user
fills out your HTML form and clicks on the
submit button. The server writes the en-
tered data to an INI file and runs your VB
application, passing the name of the INI
file. The VB app then opens a database,
executes a query using the specified data,
and returns an HTML result string to the
server, which passes it to the user.

However, using MIIS, the server does
the hard work for you. A user fills out your
HTML form and clicks on the submit but-
ton. The server reads an IDC script, a
small text file that contains an ODBC data
source, user name, user password, a SQL
query, and an HTX file (the file extension
is short for Extended HTML). The server
then opens the database and executes
the query using the specified data.
http://www.windx.com

m
w
a
(

©1991–1996 Fawcett
Lastly, the server sends back an HTML
response that includes the resulting data
that is displayed using the HTML Exten-
sion file as a template.

Excuse me, but where does Visual Ba-
sic fit in? So far, it doesn’t. The process
never leaves the server. But don’t worry:
you’re VB skills aren’t becoming obso-
lete. That’s the second half of the story.
You can easily integrate VB applications
to your server because IDC works
smoothly with the ISAPI.

Instead of firing up a VB executable to
do the database work, the server calls
HTTPODBC.DLL, which is already resi-
dent in memory, to query the database
Visual B

Pa

LI

e Technical Publications
and return the results.
There is no down time in opening the

database after the first call because
HTTPODBC has its own connection man-
agement scheme (see Figure 1). The
power of IDC lies in the use of three
types of files:

• HTM Files. These are standard HTML
format files, with no special consider-
ation required except for the fact that
they reference an IDC file rather than any
other type of CGI script.
• IDC Files. Internet Database Connector
scripts are small text files that contain, at
minimum, an ODBC data source name, a
<html>
<body>
<title>Sample IDC Form</title>
<p>
This is a simple example of using
the Database Connector
that queries an ODBC data source
called Biblio, an Access
database (BIBLIO.MDB).
<p>
Enter the partial name of a
publisher below (ex: "Ran*"
might return "Random House")
<p>
<form action="http:/scripts/
test.idc" method="POST">
<input name=Search>
<input type=submit value="Query">
</Form>
<p>
</body>
</html>

Data Access Made Easy. The
Internet Database Connector

akes it easy to establish data access
ithout using VB. This HTML code queries
n Access ODBC data source called Biblio
BIBLIO.MDB).

LISTING 1
Parse Field/Value Pairs. The ParseParameters routine copies all of the field/
value pairs specified by the client into a Pairs array, for easy access.

rseParameters calls the szReplaceString function.

STING 2

Sub ParseParameters(szRequest As String)

Dim nPos As Integer
Dim szTemp As String
Dim szNextParam As String
'Replace the plusses with spaces
szTemp = szReplaceString(szRequest, "+", " ")
NumPairs = 0
Do

nPos = InStr(szTemp, "&")
If nPos Then

NumPairs = NumPairs + 1
ReDim Preserve Pairs(1 To NumPairs)
szNextParam = Left$(szTemp, nPos - 1)
szTemp = Mid$(szTemp, nPos + 1)
nPos = InStr(szNextParam, "=")
If nPos Then

Pairs(NumPairs).Parameter = Left$(szNextParam, nPos - 1)
Pairs(NumPairs).Data = _
Mid$(szNextParam, nPos + 1)

Else
Exit Do

End If
Else

If Len(szTemp) Then
NumPairs = NumPairs + 1
ReDim Preserve Pairs(1 To NumPairs)
nPos = InStr(szTemp, "=")
If nPos Then

Pairs(NumPairs).Parameter = Left$(szTemp, nPos - 1)
Pairs(NumPairs).Data = Mid$(szTemp, nPos + 1)

End If
End If
Exit Do

End If
Loop

End Sub
Function szReplaceString(szOriginal As String, szFind As String, _

szReplace As String)
Dim szTemp As String
Dim nPos As Integer
szTemp = szOriginal
Do

nPos = InStr(szTemp, szFind)
If nPos Then

szTemp = Left$(szTemp, nPos - 1) & szReplace & Mid$(szTemp, _
nPos + Len(szFind))

Else
Exit Do

End If
Loop
szReplaceString = szTemp

End Function
asic Programmer’s Journal APRIL 1996 23

W E B S E R V E R
SQL query, and a reference to an HTX file.
Using variables in the query that represent
the data passed by the form, you can allow
users to supply data for the query.
• HTX Files. HTML extension files look like
normal HTML files, but like the IDC file, they
contain variables representing data fields.
HTML Extension also defines flow control
tags so you can return specified results if a
certain condition is true, false, or whatever.
The HTX file is merely a template—it does
24 APRIL 1996 Visual Basic Programmer’s Jou

not represent the HTML sent back to the
user. The server uses it to create the final
output with the user data.

UNDERSTANDING FILE TYPES
Let’s look at these file types, beginning
with a simple HTML file that runs an IDC
script (see Listing 1). The form for the
HTML code consists of one field (Search)
and a button that runs TEST.IDC in the
\scripts directory off of the Web server
root.

TEST.IDC contains:
rnal ©1991–1996 Fawcette Tech
Datasource: Biblio
Template: test.htx
SQLStatement:
+SELECT Name, Address FROM Publishers
+WHERE Name Like "<%Search%>"

The Datasource field specifies an ODBC
data source (not the database name), while
the Template field specifies an HTML Exten-
sion file to be used as the output template,
and the SQLStatement field specifies a SQL
Query. Although a few fields are optional,
three fields are required.

First, you must have a plus sign in front
of each line of the query. When the server
reads this IDC file, it opens the ODBC data
source called “Biblio” and executes the
SQL statement:

"SELECT Name, Address FROM Publishers
WHERE Name Like <search term>"

The variable <%Search%> is replaced with
the contents of the Search field on the
form when the query is run. You can
reference any of the HTML form’s fields
within your query in this way.

When the data comes back from
HTTPODBC.DLL, it is merged with the
TEST.HTX file:

<html>
<body>
<title>Query Results</title>
Here are the results of your query:
<p>
<%begindetail%>
<pre>

Company Name: <%Name%>
Address: <%Address%>

</pre>
<%enddetail%>
</body>
</html>

Remember, the HTX file is a template
that the server uses to construct the final
HTML output, and it does not represent
the code that is actually sent. The
<%begindetail%> and <%enddetail%> sec-
tions delimit where rows returned from
the database will appear in the document.
Columns returned from the query are
surrounded by <%%>, such as <%Name%>
and <%Address%>.

HTML RESERVED WORDS
When writing HTX files you have consider-
ably more control than HTML alone gives
you. For example, you can test conditions
within the HTX file by using this syntax:

<%if condition %>
HTML text

[<%else%>
HTML text]
http://www.windx.com

<%endif%>

nical Publications

W E B S E R V E R

in the same address space as MIIS.

E
L
c
S
(
a
F
i
f
a
d
s

where condition is of the form:

value1 operator value2

and operator can be one of these:

EQ if value1 equals value2
LT if value1 is less than value2
GT if value1 greater than value2
CONTAINS if any part of value1
contains the string value2

For example, let’s say that you want to
return a special message if one of the names
returned from the earlier query was “Acme”:

<%begindetail%>
<%If Name EQ "Acme"%>

<H2>
Acme is having a sale on all
size boxes of magnetic
bird seed!
</H2><p>

<%EndIf%>
<%enddetail%>

The operands value1 and value2 can
be column names, one of the built-in vari-
ables (CurrentRecord or MaxRecords),
an HTTP variable name, or a constant.
When used in an <%if%> statement, val-
ues are not delimited with <% and %>. The
CurrentRecord built-in variable contains
the number of times the <%begindetail%>
section has been processed.

The first time through the
<%begindetail%> section, the value is zero.
Subsequently, the value of CurrentRecord
changes every time another record is
fetched from the database. The
MaxRecords built-in variable contains the
value of the MaxRecords field in the
Internet Database Connector file.

You can access parameters from the
IDC file in the HTX file by prefixing the name
of the parameter with “idc” and a period.
For example, if you want to get the actual
value the user entered in the Search field on
the form, you can do something like this:

<%begindetail%>
<pre>

Company Name: <%Name%>
Address: <%Address%>

</pre>
<%enddetail%>
<%if CurrentRecord EQ 0 %>

There are no matches with the term,
<%idc.Search%>
<%endif%>

Several variables used in HTML exten-
sion files give a lot of information about
the environment and the Web client con-
nected to the server. While I can’t docu-
ment all of them here, I’ve described some
of the important ones (see Table 1).
http://www.windx.com ©1991–1996 Fawcette
NTER VB AND ISAPI
et’s move on to integrating VB 4.0 appli-
ations in your server using the Internet
erver Application Programming Interface
ISAPI). ISAPI was developed by Microsoft
nd Process Software Corp., of
ramingham, Massachusetts, in 1995 to
mprove the performance of Windows EXE
iles used as CGI scripts. Both companies
re promoting ISAPI as a free public stan-
ard. You can download ISAPI technical
pecifications from the Process Software
Visual B Technical Publications
Web site at http://www.process.com/
news/spec.htp. ISAPI lets Windows pro-
grammers write their CGI scripts as in-
process DLLs. The DLLs are loaded into
the same address space as the server,
and the entry points are called by their
actual address, not by going through an
import library and creating a new pro-
cess. This method is faster than loading
an EXE file, because a DLL stays loaded in
memory, and because ISAPI DLLs reside
asic Programmer’s Journal APRIL 1996 25

26 APRIL 1996 Visual Basic Programmer’s Jou

W E B S E R V E R

C
d
w
t

t
p
c

VB4
OLE Automation makes ISAPI technol-
ogy available to any OLE Automation ob-
ject, which could be created with tools
other than VB4 (such as VC++). The key to
calling methods in OLE Automation serv-
ers as your CGI interface is the
OLEISAPI.DLL, written by David Stutz, one
of the founding fathers of OLE technology

at Microsoft. OLEISAPI.DLL lets you call which consists of CFOISAPI.VBP,

the StandardPage string function.
OLE methods as CGI
programs that ex-
ecute and return
HTML text to the cli-
ent. OLEISAPI.DLL
comes standard with
MIIS.

But why use OLE
Automation with VB
when you can di-
rectly access data
using the Internet
Database Connec-
tor? It’s the same rea-
son that both Access
programmers and
Visual Basic pro-
grammers exist.
With the IDC you can
read and write to a
database.

Tapping Visual
Basic through OLE
Automation gives
you greater function-
ality. Evaluate both
OLEISAPI and the
Internet Database
rnal

VB4

par

LIS

©1991–1996 Fawcette Tech
onnector and develop a thorough un-
erstanding of what both can do. This
ay, you will be prepared to decide what

o use in a real-world situation.
Microsoft included a sample program

o show how OLEISAPI works, but it wasn’t
articularly interesting. In lieu of that, I
reated an OLE server called CFOISAPI—
ll
e

User Tip

LOADING A STATIC
COLOR CURSOR
(CUR)

As with VB3, you can specify
what mousepointer should be
visible when the pointer is over
a form or control. Additionally,
VB4 permits you to provide your
own cursors.

To use a custom cursor, set the
MousePointer property of the
form or control to vbCustom
and load the cursor into
MouseIcon. You can also use
LoadPicture at runtime.

You don’t even have to use a
cursor file! VB will make a
cursor for you out of an icon,
but you’ll have no control over
the hot spot (always in the
middle, for better or for worse)
and few icons really look like
cursors. Also, Win16 doesn’t
support color cursors, so if you
load color icons (most of those
supplied with VB), you’ll get
garbage because the colors will
be more or less randomly
converted to monochrome.

For this reason, always use
cursors rather than icons for
the MouseIcon property. Unfor-
tunately, VB doesn’t come with
cursors, but you can create
them or modify them from icon
or bitmap images with Imagedit
(in the tools directory on the
VB4 CD).
—A. Nicklas Mali

SEND YOUR TIP
If it’s cool and we publish it, we’ll pay
you $25. If it includes code, limit code
length to 10 lines if possible. Be sure to
include a clear explanation of what it
does and why it is useful. Send to
74774.305@compuserve.com or
Fawcette Technical Publications, 209
Hamilton Ave., Palo Alto, CA, USA,
94301-2500.
Craft a Standard Page. You can automate creation of
standard Web pages using code in Listing 4 and Listing

5 to create a sample form. To build this page, an OLE server calls

FIGURE 2
Public Sub Method_Get (Request As String, Response As String)
Dim szName As String
Dim szEmailAs String
Dim szPhoneAs String
Dim szReplyAs String
Dim nIndex As Integer
'Copy the returned data into the Pairs array
ParseParameters Request
'Set local variables
For nIndex = 1 to NumPairs

Select Case UCase$(Pairs(nIndex).Parameter)
Case "NAME"

szName = Pairs(nIndex).Data
Case "EMAILADDRESS"

szEmail = Pairs(nIndex).Data
Case "PHONENUMBER"

szPhone = Pairs(nIndex).Data
End Select

Next
'Create a reply message
szReply = "Hello, " & szName & "! If we need to " & _

"contact you we’ll either reach you by phone " & _
"at " & szPhone & " or by email at " & szEmail

'Send the reply
Response = "Content-Type: text/html" & _

vbCrLf & vbCrLf & "<html><head><title>" & _
szReply & "</body></html>"

End Sub

Calling ParseParameters. One of the advantages of MIIS is the ability to ca
ParseParameters from within your OLE server. This code retrieves all th

ameters sent by the client as discrete strings using the Pairs array.

TING 3
http://www.windx.comnical Publications

W E B S E R V E R

a

a

Joe Schmoe

P
u
,

path information, query specifications, remote object names, and server name.

s
O
<
c
l

POST or GET]">
CFOISAPI.BAS, and CFOISAPI.CLS, which I
will demonstrate.

OLEISAPI-callable methods must take
two string arguments. The first argu-
ment is the request data passed from
the server. The second argument is a
response string—an HTML reply from
your application created by your
method. Consider this object definition,
which could be called using
OLEISAPI.DLL:

DLL Name: OLETEST.DLL
Class Name: TestClass
Public Sub Method_Get (Request As _

String, Response As String)
Response = "Content-Type: _

text/html" & vbCrLf & vbCrLf & _
"<html><head><title>" & _
"<H1>Here is the request " & _
"string you sent: " & _
"</H1>" & _
Request & vbCrlf & _
"</body></html>"

End Sub

Within your HTML form, you might
call this method like this:

<form action="oleisapi.dll/_
OLETEST.TestClass.Method_Get"_
 method="POST">

First Name: <input _
name="FirstName"><p>

Last Name: <input _
name="LastName"><p>

<input type="submit" value="Click _
here">

</form>

This is a simple form with a submit
button and two text boxes, one for the
http://www.windx.com

first name and one for the last name.

VB4

©1991–1996 Fawcett
When the user clicks the button, the
erver accesses OLEISAPI.DLL and passes
LETEST.TestClass.Method_Get. The
form …> tag defines the action that oc-
urs when you click the submit button
ike this:

<form action = "[full path to _
oleisapi.dll]/ [DLL Name].[Class _
Name].[Method]"
method = "[Access method: either _
Visual Be Technical Publications
The request is passed as a string:

[Field1]=[Value1]&[Field2]=[Value2]…

Each field/value pair is separated with
n ampersand character. For example:

FirstName=Joe&LastName=Schmoe
Within the fields themselves, spaces

re encoded into plus signs. So the string:
HTTP Variables For HTML Extension Files. These are the most important HTT
variables that can be accessed from within an HTML extension file. MIIS gives yo

full CGI header access and more. Key variables include content type, special header information

CONTENT_TYPE The content type of the information supplied in the body of a POST
request.

HTTP_ACCEPT Special case HTTP header. Values of the Accept: fields are concatenated,
separated by “, ”; for example, if these lines are part of the HTTP header:
accept: */*; q=0.1
accept: text/html
accept: image/jpeg
the HTTP_ACCEPT variable will have a value of:
/; q=0.1, text/html, image/jpeg

PATH_INFO Additional path information, as given by the client. This is the
trailing part of the URL after the script name but before the query string
(if any).

QUERY_STRING The information following the ? in the URL that referenced this script.
REMOTE_ADDR The IP address of the client.
REMOTE_HOST The host name of the client.
REMOTE_USER This contains the user name supplied by the client and authenticated by

the server.
REQUEST_METHOD The HTTP request method.
STRING
SERVER_NAME The server’s host name (or IP address) as it should appear in

self-referencing URLs.

TABLE 1

Variable Description
Public Sub Method_Get(Request As String, _
Response As String)
Dim szName As String
Dim szEmailAs String
Dim szPhoneAs String
Dim szTitleAs String
Dim szBody As String
Dim szDescrip As String
Dim szFooter As String
Dim nIndex As Integer
'Copy the returned data into the Pairs array
ParseParameters Request
'Set local variables
For nIndex = 1 To NumPairs

Select Case UCase$(Pairs(nIndex).Parameter)
Case "NAME"

szName = Pairs(nIndex).Data
Case "EMAILADDRESS"

szEmail = Pairs(nIndex).Data
Case "PHONENUMBER"
szPhone = Pairs(nIndex).Data

End Select
Next
'Create the title
szTitle = "OLEISAPI Demo Page"
'Create a reply message
szBody = "Hello, " & szName & "! If we need to _

contact " & "you we’ll either reach you by phone _
at " & szPhone & " or by email at " & szEmail

'Now the footer.
szFooter = "<center>OLEISAPI is a " & _

"trademark of Microsoft, Inc.</font " & _
"size=1></center>"

'Create the description
szDescrip = "This is a reply from CFOISAPI.DLL"
'Send the reply
Response = StandardPage(szTitle, szBody, _

szDescrip,szFooter, "lyellow.gif", "logo.gif", _
"http://my.url.com")

End Sub
ns
eb
Automate Web Page Creation. Calling StandardPage is as easy as executing this code. The StandardPage function retur
the HTML text for a standard Web page that contains all the specified elements. You can modify this function to fit your W

page design criteria.

LISTING 4
asic Programmer’s Journal APRIL 1996 27

W E B S E R V E R

End If

VB4

t
c
c
f
s

T
a
t
y

u
W
p
c
r
t
t
t
s
o
l

i
g
(
p
c

y
u
y
L

becomes:

Joe+Schmoe

Before you can access this data in your
class, you must parse the request string
into field/value pairs. I wrote a routine
called ParseParameters (included in
CFOSAPI.CLS) that does exactly that (see
Listing 2). ParseParameters requires these
declarations in your class:

Private Type ParameterType
Parameter As String
Data As String

End Type
Dim Pairs() As ParameterType
Dim NumPairs As Integer

Call ParseParameters passing the request
string, and all the Field/Value pairs are
copied into the Pairs array. The NumPairs
member contains the number of fields.

If you had a form with three text fields
on it, such as Name, EmailAddress, and
PhoneNumber, you would use
ParseParameters to extract these three
pieces of data when the Method_Get
method is invoked (see Listing 3).

Once you have the data from the form,
you can run a query against a database
and return the results in the Response
string. I’ll skip over the database part now
and show you the next piece of what I
consider to be required code for any
OLEISAPI-aware object.

StandardPage is a function that re-
turns a string containing the HTML for a
standard document. In other words, you
can set up a template for your pages so
28 APRIL 1996 Visual Basic Programmer’s Jou

they all have the same look and feel. i
Instead of having to custom program
he HTML for each and every page, you
an just create the critical elements with
ode, and let the StandardPage routine
ormat it to your standard using this
yntax:

HTML$ = StandardPage(Title$, _
TextBody$[, Description$] _
[, Footer$][, BackgroundImage] _
[, LogoImage][, LogoURL])

The first two arguments (Title$ and
extBody$) are required. All the other
rguments are optional. Keep in mind
hat you can alter StandardPage to suit
our needs.

Title$ is the title of the page. This is
sually displayed on the TitleBar of the
eb browser and also at the top of the

age. TextBody$ designates the main
ontent of the page—it should be al-
eady encoded as HTML text. Descrip-
ion$ is a short description of the con-
ents of the page that will appear at the
op under the title. Footer$ is an HTML
tring that appears at the very bottom
f the page (copyright information, text

inks, things like that).
BackgroundImage is the name of an

mage file that will be used as the back-
round. This should be a small image
composed of no more than 50 by 50
ixels) because it gets tiled automati-
ally by the Web browser.

LogoImage is another small bitmap
ou can use as a logo. It appears in the
pper left-hand corner of the page. If
ou specify a URL following the
ogoImage argument (LogoURL), click-

ng on that image will jump to the site at
rnal ©1991–1996 Fawcette Tech
the specified URL. Execute the code in
Listing 4 to build your standard HTML
Web page (see Figure 2). The
StandardPage function itself is the key
to crafting this page (see Listing 5).

OLEISAPI AND REMOTE SERVERS
The folks at Microsoft told me that you
can’t access remote objects with OLEISAPI
now, but this feature may be added in the
future. You can, however, create a remote
object in your local OLEISAPI object to
access the remote object indirectly. For
example, consider this object definition:

DLL Name: OLETEST.DLL
Class Name: TestClass
Private RemoteObject As New
RemoteClass
Public Sub Method_Get (Request As _

String, Response As String)
'Access the remote object here and
'return the results
Response = RemoteObject.GetResults_

(...)
End Sub

In the absence of direct support, you
can use your VB class to access the re-
mote object.

I’m impressed with the technology in
MS Internet Information Server—I re-
serve final judgement on performance,
however. As of this writing, I’ve seen
only the second release, and thus can-
not fairly comment on MIIS performance
under heavy load.

However, I think the potential for this
server is impressive, and that your wor-
ries about doing powerful CGI scripting
could be long gone.
Function StandardPage(szTitle As String, _
szBodyText As String, Optional Description _
As Variant, Optional Footer As Variant, _

Optional BackgroundImage As Variant, _
Optional LogoImage As Variant, _
Optional LogoURL As Variant) As String

'This is just a work string used internally
Dim szWorking As String
'Flags for the optional arguments
Dim nBackGroundImage As Integer
Dim nLogoImage As Integer
Dim nLogoURL As Integer
Dim nDescription As Integer
'Set the argument flags
nBackGroundImage = Not IsMissing(BackgroundImage)
nLogoImage = Not IsMissing(LogoImage)
nLogoURL = Not IsMissing(LogoURL)
nDescription = Not IsMissing(Description)
'Start with the HTML header and title
szWorking = "Content-Type: text/html" & _

vbCrLf & vbCrLf & "<html><head><title>" & _
szTitle & "</title><body"
'Use background bitmap?
If nBackGroundImage Then

szWorking = szWorking & " background =" & _
BackgroundImage & ">"

Else
szWorking = szWorking & ">"

End If
'Logo image?
If nLogoImage Then

's there a link in the image?
If nLogoURL Then

szWorking = szWorking & _
""

End If
'Here's the image itself
szWorking = szWorking & "<img src=" & _

LogoImage & " align=left " & "hspace=20 border=0>"
'If there's a link then close the anchor.
If nLogoURL Then

szWorking = szWorking & ""
Manage Web Page Elements. The StandardPage function controls construction of your pages, including the display of
headers, footers, titles, background graphics, and text. Once elements are specified, the HTML text builds your standard Web

page. You can modify this function to fit your Web page design criteria.

LISTING 5
http://www.windx.comnical Publications

