
4

H T M L S C R I P T I N G T O O L S

J

o

M
M
p
s
c
R
o
W

Collision Course:
avaScript and VB Script
VB Script

BY MICHAEL TEMPLEMAN

Prepare for a
head-to-head
competition in a
new category:
HTML scripting tools.

-

-

-

-

J
k
th
th
to
fe

v
N
N
o
Ja
Ja
Ja
ti
N
browser supporting JavaScript. For more

Click & Retrieve

Source

CODE!
Editor’s Note: This feature article is a depar
ture from our normal technical articles.
VBPJ usually insists that its articles cover
products our readers can use now, and
focus more on solving problems than on
product shoot-outs and future technologies.

However, given the hype, misunder
standings, and rapid changes in Internet
development tools, we thought a compari
son of the two exciting competitors in the
emerging field of Web scripting tools justi
fied special treatment. At this writing,
JavaScript could be used only in Netscape’s
version 2.0 browser, which had just shipped,
and VB Script was in alpha and required an
alpha version of Microsoft’s browser. So,
what we could demonstrate about VB Script
is much more limited than what we could
do with its competitor.

Undoubtedly, the final specifications and
implementations in VB Script will change
by its commercial release. Because
Microsoft has promised support for
JavaScript in its browsers and other Internet
tools, both products are directly relevant to
6 APRIL 1996 Visual Basic Programmer’s Jour

ur readers.

ichael Templeman is president of
etaBridge Inc., a Seattle-based com-
any providing information design and
oftware development services for
ompanies doing business on the Internet.
each Michael at miket@metabridge.com
n the Internet. Visit the MetaBridge Inc.
eb site at www.metabridge.com.
avaScript. Visual Basic Script (VB
Script or VBS). What are they?
What are the implications of this

ind of technology? As I try to answer
ese questions in this article, I’ll provide
e succession of examples I used myself
 demonstrate the capabilities and dif-
rences between each language.

JavaScript is a scripting language de-
eloped and promoted by Sun and
etscape and supported by the latest
etscape Navigator 2.0 Gold and several
f the latest Navigator 2.0 beta browsers.
vaScript is not Java: it merely resembles
va. Although Netscape states that
vaScript is based on Java, shared func-
onality appears limited. Currently
etscape Navigator seems to be the only
nal ©1991–1996 Fawcette Tech
up-to-date information from Netscape,
visit http://proto.netscape.com/ and
download the latest version of Netscape
Navigator.

VB Script is a scripting language under
development by Microsoft and will be
supported in the next version of
Microsoft’s browser, Internet Explorer 3.0.
VB Script is a reduced version of Visual
Basic for Applications. No browsers other
than Internet Explorer support VB Script.
However, the price seems right—it’s free
as long as you don’t change the language,
and you agree to Microsoft’s compatibil-
ity tests. Visit http://www.microsoft.com/
intdev/sweeper/sweeper.htm to down-
load the tools for VB Script development
and other Microsoft Internet development
tools (code-named Sweeper).
http://www.windx.comnical Publications

H T M L S C R I P T I N G T O O L S

JavJav

g
i
d
b
t
o
m
l
m
c

t
W
u
V
3
a
p
u

It’s important to grasp what these lan-
uages are not. Neither are compiled into
ntermediate code. The source is embed-
ed in an HTML page for all to see and
orrow. The browsers parse and interpret
he scripting. Neither language is object
riented and there is no inheritance, poly-
orphism, or operator overloading. Both

anguages are object based, which usually
eans at least the capability to package

ode and data together.
I developed the samples for this ar-

icle using a 24 MB Pentium 90 running
indows 95. I tested the JavaScript code

sing Netscape Navigator 2.0. I tested the
B Script samples using Internet Explorer
.0 (alpha) running under Windows 95,
nd they use the libraries and controls
rovided by the Sweeper SDK. I did not
se Java applets in the JavaScript samples.

HELLO, JAVA HEADS!
JavaScript is a simple, C-like language that
is passed to the browser embedded within
an HTML document. The language sup-
ports creation of objects, events, func-
tions, methods, and a serviceable set of
functions. An object model integrates the
browser, document, forms, elements,
applets, and plug-ins. JavaScript, like Java,
cannot read or write to your hard disk for
security reasons. It is loosely typed and
interpreted by the browser.

I always start with the canonical “Hello
World” application (see Figure 1) to en-
sure that the environment is working well
enough to write a string of text. To create
the standard Hello World application, I
needed a way to put a string on the output
http://www.windx.com

aScriptaScript

©1991–1996 Fawcet
stream. I had to find a method and make
certain that the script called the method:

<!— My first JavaScript Page. —>

<HTML>
<HEAD>

<!— to hide script contents from _
old browsers that don't _
understand the SCRIPT tag, _
use HTML comment

<SCRIPT LANGUAGE="JavaScript">
document.write("Hello world")
</SCRIPT>

// end hiding contents from _
old browsers —>

</HEAD>
<BODY>

</BODY>
</HTML>

The method is a standard HTML docu-
ment with a script tag and some code. The
script is executed by the browser when
the page is loaded. Functions are stored
on load and called by events. The script
puts the string onto the document by
invoking the write document method.

I wrote a simple script that validates a
registration form before submitting it. This
has real-world validity: why load the
server with sanity checks on input forms?

I needed to create a registration form,
access the fields in the form during vali-
dation, validate the registration fields
when the user tries to submit the form,
and alert the user to a problem in the
registration form without disturbing the
form. I also needed to keep the code as
tight as possible (see Listing 1).

When I first wrote the checkForm func-
tion, I assumed I would pass it the form
object I wanted validated. This function is
closely coupled with the form elements. If
you change the form elements, you change
the function. Thus I prefer to put the brute-
force validation into other functions I could
easily reuse if the form changed.

I wrote the CheckAlpha and CheckNum
functions to validate alphameric and nu-
meric fields. I also added field range check-
ing. The checkForm function calls the dif-
ferent validation functions, and if the field
does not pass validation, the alert method
is invoked. A tighter solution would be to
put the alert in the validation functions and
concatenate the functions in one expres-
sion. JavaScript provides C-type short-cir-
cuit logical expression evaluation, which
would be a desired enhancement. The
CheckNum and CheckAlpha functions
demonstrate string operations. Given a
Visual Bte Technical Publications
string, you can extract a substring, make
comparisons, change the case, and check
the length.

The final task, validating the form be-
fore sending, remained. I tried putting an
onClick method into the submit button
field, which achieved the input validation,
but sent the form regardless of whether it
was valid. I found in the documentation
an event for the form called OnSubmit. I
tried to use this single line:

onSubmit = "checkForm(frmRegister)"

but, it still submitted the form. Appar-
ently the function return did not affect
the onSubmit event.Instead I tried insert-
ing the code directly in the tag:

onSubmit="if
(!checkForm(frmRegister))_

return false"

which worked. Apparently, the function
didn’t return a compatible result for the
submit event, but putting code in line did.
This code will check each field. The name
must be filled in with text. At least one
address field must be filled in, and the city
name must be filled in with text. The state
code must be exactly two text characters,
and a numeric zip code must be there.
When run, the code performs these simple
checks. If the form fields pass validation,
the form is sent.

USING CLOCK FUNCTIONS
My final JavaScript sample is aimed at
recurring events. Specifically, I wanted to
see if a timer was available in JavaScript.
I had encountered a clock example on the
World Wide Web that seemed to do the
trick, so I looked at what already existed
and added some comments and minor
changes to demonstrate a couple more
aspects of JavaScript.

My goal was to build an analog clock
applet and use JavaScript to drive the
timing. This proved impossible in the time
available, so I compromised with an input
field. However, if you have a Java applet
that displays an analog or digital clock,
it’s a simple matter to swap the input field
with the Java applet. The interface to Java
applet properties is the same as that of
form elements.

To build a clock, you need only a timer,
a way to field timer events, a way to get the
current system time, and an output field
(see Listing 2). JavaScript functions pro-
vide a one-shot timer and a simple way to
provide a timer callback function. Globals
are declared in the script block and initial-
ized when the page is loaded. You need a
global to hold the timer identifier so that
you don’t stop a non-existent timer. You
also need a flag for the timer to indicate
asic Programmer’s Journal APRIL 1996 47

4

H T M L S C R I P T I N G T O O L S

t
i
u
a
S
o
f

hat the timer is active, and functions to
nitialize the clock, field the event, and
pdate the clock fields. These operations
re in the Showtime() function.
howtime() pulls the current system time
ut of the JavaScript-provided GetDate()

unction, which returns the current date
8 APRIL 1996 Visual Basic Programmer’s Jou
and time in milliseconds as a date object.
The date object provides methods to ex-
tract the current time, which the
Showtime() function uses to build a string
containing the current time. You could
use the ToLocalString() method of a date
object to have a date/time string created
rnal

f
s
u
p

i
t
r
a
S
f
b
i
c
e
t
h
f
y
b
T
w
e
p
Y
t
w

a
r
t
a
t
t
t

o

e

©19
or you, but the re-
ult is limited, so I
sed the other ap-
roach.

You could try to
nitialize the clock in
he same way as the
egistration form ex-
mple: call the
howtime function
rom the JavaScript
lock when the page

s loaded. This will
ause a JavaScript
rror telling you that
he object frmClock
as no properties:

rmClock does not
et exist and cannot
e assigned values.
he JavaScript code
as loaded and ex-
cuted before the
age was created.
ou must initialize

he clock after the
indow is created.

Navigator fires
n event at just the
ight time. It is called
he onLoad event
nd you can see how
o link the event to
he function in the
ag:

<BODY
bgcolor="#ffffff"_
onLoad="startclock()">
91–1996 Fawcette Tech
Once the window has been loaded
(onLoad can be used for frames, too), the
onLoad event is fired. This calls the
startclock() function, which formats the
clock object, starts the timer, and tells the
timer to call startclock() when the timer
fires.

The clock example also provides the
option to write out the time for Navigator’s
status bar (the text field at the bottom of
the window). Access this field by setting
the window status field to the time string.
If the global variable fStatusDisplay is
true, then the Showtime() function will
also set the window status field to the
current time.

FStatusDisplay is initialized to false when
the page is loaded. When clicked, the
fldStatFlag check box element generates an
event to which I tie a snippet of JavaScript
code to the FStatusDisplay global to the
value of the check box:

onClick="fStatusDisplay = _
this.form.fldStatFlag.checked"

I first assigned fStatusDisplay the re-
sult of this form, fldStatFlag.value, but
doing so returned a string. I determined
that the Checked() method returns a Bool-
ean that could be assigned to the
fStatusDisplay global, so after adding this,
everything worked as advertised.

JavaScript is available now for Naviga-
tor users. it is object based; and it pro-
vides a usable object model for Naviga-
tor, HTML, Java applets, and in-line plug-
ins. JavaScript also allows a programmer
to define and create new objects, pro-
vides dynamic binding, and is very much
like C. JavaScript appears to be secure:
programmers cannot read or write to the
hard disk or system properties.

JavaScript appears to be well inte-
grated with the Navigator and HTML ob-
ject model. You can trap events at reason-
able states, read and write Navigator and
HTML object properties, and invoke meth-
ods for those objects. I did not see any
way for plug-ins and Java applets to fire
events that could be fielded by JavaScript
code, a real limitation to integrating Java
and JavaScript.

Developing with JavaScript is challeng-
ing. I developed the code in Developer
Studio and ran code in a Navigator win-
dow. To test the page, I switched to the
test Navigator window and reloaded the
page. When Navigator encounters a pars-
ing error or a runtime error, it puts up a
dialog and reports the error. I debugged
the scripts using alerts as variable watches
and breakpoints.

 Like HTML, once you implement in
JavaScript, anyone on the Internet can
incorporate your code in their own pages.
This is also true of VB Script, so put your
Hello Java World. This “Hello world” was written with JavaScript (ready for
embedding in a Web site), downloaded from the Web, and run in a browser. It’s

a standard HTML document with only a script tag and some code.

FIGURE 1
User Tip

CHANGING THE ATTACHED
PICTURE BACK TO NONE
Once a graphic (bitmap, icon, or metafile) is attached
to a form or picture control, Visual Basic will seem t
thwart any attempt to change the property to the
original default of <none>. To work around this
behavior, click the Picture property in the Properties
list before highlighting the graphic value. Another
way is to change the focus to any other property on
the Properties window and reselect the Picture
property. The DEL key then correctly deletes the
graphic value and changes the value to <None>. The
graphic correctly disappears from the form or pictur
control.
—Douglas Haynes

SEND YOUR TIP
If it’s cool and we publish it, we’ll pay you $25. If it
includes code, limit code length to 10 lines if possible. Be
sure to include a clear explanation of what it does and
why it is useful. Send to 74774.305@compuserve.com or
Fawcette Technical Publications, 209 Hamilton Ave.,
Palo Alto, CA, USA, 94301-2500.
http://www.windx.comnical Publications

ht

LIS
be

htt
H T M L S C R I P T I

tp://www.windx.com

<HTML>
<HEAD>
<TITLE>Registration Validation Sample</TITLE>
<SCRIPT LANGUAGE="JavaScript">

//Validate that this string contains no digits
function CheckAlpha(str, min, max)
{

if (str.length < min || str.length > max)
return false

for (var i = 0; i < str.length; i++) {
var ch = str.substring(i, i + 1)
if (ch >= "0" && ch <= "9") {

return false
}

}

return true
}

//Validate that this string contains only
// digits
function CheckNum(str, min, max)
{

if (str.length < min || str.length > max)
 return false

for (var i = 0; i < str.length; i++) {
var ch = str.substring(i, i + 1)
if (ch < "0" || ch > "9") {

TING 1 JavaScript Form Validation. This code performs a serie
digits are not allowed. At least one address field must be fi

exactly two text characters. If the form fields pass validation, the f

©1991–1996 Fawcette Technical Publicationp://www.windx.com
Visual Basic Programmer’s Journal APRIL 1996 49

N G T O O L S

CONTINUED ON PAGE 53.

alert(alertStr)
return false

}
}

return true
}

// Check all the fields of the form
// for validity.
function checkForm(form)
{

// first, check that the name has no numbers in it
// that isn't a valid name
if (!CheckAlpha(form.fldName.value, 1, 65)) {

alert("You must enter a valid name")
return false

}

// Next, check that there was at least one address
// field and a city field entered.
// Note that numbered cities are also invalid
if (form.fldAddr1.value == "" _

&& form.fldAddr2.value == "") {
alert("You must enter at least one address line")
return false

}
if (!CheckAlpha(form.fldCity.value, 1, 65)) {

alert("Invalid city name")
return false

s of simple checks. For example, the name must be filled in and
lled in with some text, and the state code must appear and must
orm is sent.

s Visual Basic Programmer’s Journal APRIL 1996 49

H T M L S C R I P T I N G T O O L SH T M L S C R I P T I N G T O O L S

i
e
s
T
h
f
s
b
w

C
g
e

f
s
t
i
M
t

proprietary code into OCXs, Java applets,
and plug-ins, and glue them together with
these scripting languages.

HELLO WORLD OCX?
Because VB Script is earlier in its develop-
ment phase than JavaScript and using it
requires the alpha release of Internet Ex-
plorer 3.0, developing with the VB Script
alpha was shaky. Both the feature set and
50 APRIL 1996 Visual Basic Programmer’s Jou

CONTINUED FROM PAGE 51.

procedures in VB Script may change by
the time it’s released. Take the code shown
here with a grain of salt.

N
a
e

t
i

LISTING 2 Build a JavaScript Digital Cloc
and an output field. JavaScript fun
Internet Explorer, with the VB Script
nterpreter OCX, does not report any
rrors. The rewrite for VB Script de-
cribes Navigator, not Internet Explorer.
he VB Script OCX provided in the SDK
ad no error reporting, and the MsgBox

unction didn’t work. A parser error
eemed to invalidate the entire script,
ut without any kind of error report it
as hard to tell. It was all code and pray.
ot all OCX properties appeared to be
ccessible, and not all events fired prop-
rnal

{

er

rly. Finally, inserting objects by their e

k. You need a timer, a way to field timer eve
ctions provide a one-shot timer and a simple

©1991–1996 Fawcette Tech
LASSID is definitely not the most pro-
rammer-friendly way to go about refer-
ncing OCXs.

I intended to build a form validation
ield, but without any kind of working mes-
age box and HTML Programming direc-
ions, I had to forgo that exercise. Accord-
ng to the online documentation for Sweeper,

icrosoft intends to provide that informa-
ion and the version of Internet Explorer
hat will support it. We might get access to
t at the Professional Developers Confer-
nce in March 1996.
_

>

}

// Better check the state, too
if (!CheckAlpha(form.fldState.value, 2, 2))

alert("Invalid state code")
return false

}

// Now validate the zip code
if (!CheckNum(form.fldZip.value, 5, 9)) {

alert("Invalid zipcode")
return false

}

// Passed all the tests.
// The form may be submitted

return true

}

</script

// end hiding contents from old browsers -->

</HEAD>

<!-- Now, the body of the form -->
<H1 align=center>Mike's JavaScript Form validator</
H1>

<FORM NAME="frmRegister" METHOD="POST" onSubmit="if
(!checkForm(frmRegister)) return false">

<P>
Name: <INPUT NAME="fldName" VALUE=""

MAXLENGTH="65" _
SIZE=65>

Address1: <INPUT NAME="fldAddr1" VALUE="" _
MAXLENGTH="65" SIZE=65>

Address2: <INPUT NAME="fldAddr2" VALUE="" _

MAXLENGTH="65" SIZE=65>

City: <INPUT NAME="fldCity" VALUE=""
MAXLENGTH="35" _

SIZE=35> State:
<INPUT NAME="fldState" VALUE="" MAXLENGTH="2" SIZE=2
Zipcode<input name="fldZip" VALUE="" MAXLENGTH=9 _

size=9>

<INPUT TYPE=SUBMIT VALUE="Submit" _

NAME="btnSubmit">
</FORM>

</BODY>
</HTML>
CONTINUED ON NEXT PAGE.
<HTML>
<HEAD>
<TITLE>JavaScript Clock</TITLE>
<SCRIPT LANGUAGE="JavaScript">

<!-- to hide script contents from old browsers

// First set up the global variables needed for the
// clock
var idTimer = null;
var fTimerOn = false;
var fStatusDisplay = false;

// We need an initialize/clear function for the tim
// stop the clock if it is on, then clear the timer
// flag
function stopclock (){

if(fTimerOn)
clearTimeout(idTimer);

fTimerOn = false;
}

// Start up the timer clock.
// lets try to only start it once!
function startclock () {

// Make sure the clock is stopped
stopclock();
showtime();
}

// Compute the current time
// and stuff it into the timer
// field
function showtime () {

// get the date and time
var now = new Date();
var hours = now.getHours();
var minutes = now.getMinutes();
var seconds = now.getSeconds()

// convert to a 12 hour clock
// until the US understands a
// normal 24 hour clock
var timeValue = "" + ((hours >12) ? hours -12 _

:hours)
timeValue += ((minutes < 10) ? ":0" : ":") + _

minutes
timeValue += ((seconds < 10) ? ":0" : ":") + _

seconds
timeValue += (hours >= 12) ? " P.M." : " A.M."
document.frmClock.fldClock.value = timeValue;
http://www.windx.com

nts, a way to get the current system time,
way to provide a timer callback function.

nical Publications

H T M L S C R I P T I N G T O O L S

of Internet Explorer updates. Also, com-

CONTINUED FROM PREVIOUS PAGE.

e time

l

}

/
<

< </HTML>
As before, the canonical Hello World is
the simplest possible way to make certain
that the environment works. The goal is
to reduce programmer error to verify that
everything else works.

Without an object model or OLE Au-
tomation interface for Internet Ex-
plorer, I could not write “Hello World”
to the HTML document in the same
simple way as with JavaScript. Nor
could I know how to reference an input
field element. So I wrote the string to a
rich-text OCX, using the sample sup-
plied by Microsoft in the Sweeper SDK
as a starting point. Only some aspects
of the sample worked, but the rich text
control accepted strings assigned from
VB Script.

The next problem I encountered was a
lack of a way to write text to the rich-text
OCX at page-load time. I found no event to
provide a point in time when all objects
had been instantiated and were ready for
business. I inserted a ThreeD Button OCX
and used the click event as a way to write
“Hello World” to the Rich Text control.
The click event function for the ThreeD
button, Cmd1_Click(), assigns the Hello
World string to the Rich Text control.
Click the button and Hello World appears
in the rich-text field:

<HTML>
<HEAD>
<TITLE>Hello world home page</TITLE>
</HEAD>
<BODY>
<H1 align=center>Hello World Test</H1>

<!- SSCommand - threed32.ocx>
<pre>
Make it say hello world: <INSERT _

CLSID="{0ba686b4-f7d3-101a-993e-_
0000c0ef6f5e}" HEIGHT=30 _
WIDTH=100 ID=Cmd1>

</pre>
http://www.windx.com ©1991–1996 Fawcett
<!- RichText - richtx32.ocx>
<pre>
Output field: <INSERT _

CLSID="{0ba686b4-f7d3-101a-993e-_
0000c0ef6f5e}" HEIGHT=30 _
WIDTH=100 =ID=Cmd1>

</pre>

<!- RichText - richtx32.ocx>
<pre>
Output field: <INSERT =_

CLSID="{3b7c8860-d78f-101b-b9b5- _
04021c009402}" HEIGHT=40 _
WIDTH=300 =ID=RichText1>

</pre>

<!- abasic.ocx - Hidden ActiveBasic
Control>
<INSERT CLSID="{9A03A790-_

2C33-11CF-B2E2-00AA00C0178F}"
HEIGHT=10 WIDTH=10 ID=Page
CODE=”Sub Cmd1_Click()

RichText1.text = _
Visual Be Technical Publications
'Hello world'
End Sub"

>
</BODY>
</HTML>

The “Hello World” example has turned
into an event-driven page that loads the
VB Script interpreter, the Rich Text con-
trol, and the ThreeD button (see Figure
2). The documentation and sample code
show that VB Script is indeed a subset of
VBA as Microsoft states. While the lan-
guage itself is important, the browser/
HTML/applet interfaces are more so.
Microsoft has developed a new OLE inter-
face for scripting, IScriptEngine, which
any script engine can support. The cur-
rent VB Script uses the interface to drive
Internet Explorer. Implementing VB Script
through such an interface means that VB
Script updates can be made independently
// If we want to have the status bar update th
// set this flag to true
if (fStatusDisplay) {

window.status = timeValue;
}

// set the timer to fire once a second
// and put the timer identifier into our globa
// call showtime every time the timer fires
idTimer = setTimeout("showtime()",1000);

// and set our timer on flag to true
fTimerOn = true;

/ end hiding Javascript from old browsers -->
/script

/HEAD>
<BODY bgcolor="#ffffff" onLoad="startclock()">

<H1 align=center>One Second timer Example</H1>

<FORM NAME="frmClock" onSubmit="0">

<P>
The current time is: <INPUT NAME="fldClock" VALUE="" _

MAXLENGTH="15" SIZE=15>

<P>
See a clock on the status bar? <INPUT TYPE="checkbox" _

value = false NAME="fldStatFlag" _
onClick="fStatusDisplay = _
this.form.fldStatFlag.checked">

</FORM>

</BODY>
OLE Overkill. Writing “Hello World” in VB Script was a challenge. I had to send
a string to a rich text OCX. But in fairness, this is an early version of VB Script:

running it requires the alpha release of Microsoft Internet Explorer 3.0.

FIGURE 2
asic Programmer’s Journal APRIL 1996 51

5

H T M L S C R I P T I N G T O O L S

p
t

C
J
t
J
l
c
d
r
I
3

t
t
J
p
o
v
t
S
t
s

J
e
S

a
i
b
w
t
t
e
t
f
p

t
t
g
T
J
l
n
s
J

p
a
3
r
N
t
h
J
N

b
d
I
c
S
b
b

download the OCX that implements the
etitors may deliver an alternative solu-
ion to VB Script in Internet Explorer.

OMPARING THE TWO
ava is much further than VB Script in
he development cycle. Netscape’s
avaScript has a way to go before re-
ease, but it’s on its way. VB Script is
learly in an alpha state at this time. I
on’t know if this state reflects the cur-
ent development of VB Script, the
ScriptEngine interface, Internet Explorer
.0, or all three.

For both JavaScript and the Naviga-
or object model, substantial documen-
ation is available online. The Netscape
avaScript page, as well as many third-
arty JavaScript pages, provide a suite
f samples in which the functions pro-
ided by the interpreter were opera-
ional. Because it’s pre-alpha, the VB
cript documentation is limited and no
hird parties have put up VB Script
ample pages.

For C and Java programmers,
avaScript’s reserved-word list and op-
rator list are easy to understand. VB
cript is a natural for VB developers.

Technically, the weakest architectural
spect of JavaScript is its apparent inabil-
ty to extend itself to handle events fired
y applets and plug-ins. Thus if a designer
ere to add a Java applet to a document

hat fired an event, there would be no way
o write a JavaScript function to field that
vent. If an event passed parameters to
he event method, there should be a way
or the object generating the event to
ass the parameters to the event method.

One method might be a simple timed
rigger from an audio player. Presume
hat an audio player fires events to Navi-
ator at predetermined times during play.
his event could be picked up by a
avaScript function and used to change a
abel, change color, or force a load of a
ew picture, for example. This is not fea-
ible with the current implementation of
avaScript, but it is feasible with VB Script.

Market acceptance of JavaScript de-
ends not only on technical issues, but
lso on JavaScript’s incompatibility with
0 percent of the browser market. Cur-
ent estimates indicate that Netscape
avigator is used by about 70 percent of

he market, and many of those users don’t
ave JavaScript-capable browsers. For
avaScript to become the standard,
etscape must dominate the market.

Microsoft is giving away the VB Script
inary, freeing itself from the need to
ominate the browser market with

nternet Explorer. If a significant per-
entage of browser providers use the VB
cript engine, a good chunk of the
rowser market will deliver a competing
ut incompatible standard, resulting in
2 APRIL 1996 Visual Basic Programmer’s Jou
script-enhanced HTML pages that are
incompatible with many browsers on the
market. Embedding scripts into tags that
are ignored by incompatible browsers is
no solution. These scripts are the “glue”
holding together pages: imagine how the
pages will behave when the glue is re-
moved.

Microsoft’s response is that the OLE
Scripting interface allows the browser to
rnal ©1991–1996 Fawcette Tech
language. This is like thinking that C++
will solve the cross-platform problem,
when it just turns API incompatibility to a
framework incompatibility.

Both scripting languages promise to
provide glue for applets and HTML.
JavaScript has partly delivered on that
promise and Microsoft will do so soon.
Both languages are sound, but the transi-
tion to widespread use will engender many
compatibility problems.
http://www.windx.comnical Publications

