
I
S
S
p
o
a
K

n
t
m
b
a
G
m
a
d
p

V
e

9

PROGRAMMING
WITH CLASS

M

t
o
l
d
t
w

f
o
a
W
s
a
t
V
L
b
t
u
r

Click & Retrieve

Source

CODE!
apping Objects to Databases

Use classes to map objects to
databases and enhance your
object-oriented development
environment.

by Ken Fitzpatrick
iques while building their applications. You can not only
ake advantage of OLE Automation, but also take VB program-
ing to a higher level by developing powerful applications

ased on robust Business Object Models (BOMs). Developing
 nonvisual BOM first, instead of taking the conventional,
UI-centric approach to application design, allows you to
ake frequent, even drastic, changes to the model of your

pplication without changing the corresponding GUI and
atabase components (for more information, see the accom-
anying sidebar, “Don’t Drop the BOM”).

But how far can you take object-oriented development in
B4, where the class module and the Collection object are
ssentially the only available object-oriented programming

ow that VB4 offers the new class module and Collec-
tion object, Visual Basic developers can begin to use
real object-oriented design and programming tech-
ools? How do these tools fit in with the
ther great aspects of VB, such as its

anguage, graphical user interface, and
atabase features? How does the VB da-
abase factor into the object-oriented
orld?

Wouldn’t it be nice if all of these VB
eatures were seamlessly integrated with
ne another to create an enriched VB
pplication development environment?
ouldn’t it be great to be able to use the

ame object-oriented techniques of man-
ging class modules and Collections as
he primary means of managing the other
B features such as the RecordSet,
istBox, ComboBox, DBGrid, and other
ound controls? Using the same approach
o develop both the object model and
ser interface code would significantly
educe your development time.
n addition to working as a Visual Basic and
mallTalk programmer/analyst at USAA in
an Antonio, Texas, Ken develops shareware
roducts that enhance Visual Basic’s object-
riented features. Reach Ken by e-mail
t 73367.3470@compuserve.com or
enFitzpatrick@msn.com. RecordSet property.

6 APRIL 1996 Visual Basic Programmer’s Journal ©199
Even though this level of object-oriented capability isn’t
readily available in VB4, the basic tools to provide these
features are available. It just takes some thought and crafty
coding. One way to apply object-oriented techniques to your
application is to directly associate your application’s objects
with its database. You may be familiar with the object-ori-
ented concept of encapsulation: objects “know” certain de-
tails about how they will be used. Mapping objects to a
database means that the object must have knowledge about
how its properties relate to database fields. With this knowl-
edge centralized, you can change either the object or the
database without affecting any outside component, and your
application doesn’t need to be concerned with the details of
the mapping exercise each time it accesses the database. I’ll
show you how to map objects to databases, then I’ll describe
how to add data-management support to your classes by
replacing the VB4 Collection object with an equivalent object
that supports data-aware behavior.

THE LONELY CLASS MODULE
For the several years since the release of Visual Basic 2.0, the
“VB Threesome”—its highly integrated language, GUI, and
database capabilities—has provided an excellent platform
for developing rich, GUI-based applications. But VB4’s new
object-oriented features, namely its class module and Collec-
tion object, are currently isolated and excluded from the
An Object for an Object. You can easily transform the SmallBusiness
example, found in Chapter 7 of the VB Programmer’s Guide, into a database

application by replacing its Collection objects with data-aware Collection objects. This
illustration shows how the data-aware Collection object can control the data control’s

FIGURE 1
http://www.windx.com1–1996 Fawcette Technical Publications

t
e
h
w
t
a

PROGRAMMING
WITH CLASS
threesome. In order to fully exploit these features, you must
integrate the class module and Collection object into the
mainstream VB development environment. Arguably, the
easiest way to integrate them is to integrate them into any
one of the three components, most likely the GUI or the
database. Integrating into both would be even better.
f
t
I
e
c
o

f
t
c
y
v
o
o
f
SmallTalk to store their objects in an ob-

THE OBJECT MUST HAVE

KNOWLEDGE ABOUT HOW

ITS PROPERTIES RELATE TO

DATABASE FIELDS.
Because the solution should support
the nonvisual BOM approach, you shouldn’t
link the class modules to the GUI as the
initial target. This leaves the VB4 database
as the initial point of integration of the VB4
class module into the threesome.

In order to integrate the class module
and Collection object into the VB data-
base, you must resolve these problems:

• How do you map a class module to a data
source?
• How does a row in the data source map to
an object?
• How can you implement the BOM object
containment hierarchy over a relational

database model? j

e
h
a
a
D
b

a
s
o

• How can you support the needs of the VB GUI?
• How can you process VB GUI controls in an object-oriented
manner?

It seemed reasonable that in addition to the class module,
the VB4 Collection object should play a key role in the integra-
tion process. However, for successful integration, the role of
the Collection object should automatically and implicitly inter-
face with the VB database.

Because the VB4 Collection object doesn’t have methods
http://www.windx.com

Don’t Drop

©1991–1996 Fawcette Technical Publicatio
hat allow it to access databases, you would need to either
nhance it or replace it with an equivalent object that does
ave methods for accessing databases. Because enhancement
asn’t an immediate option, I elected to functionally replace

he Collection object with an equivalent object that adds
utomatic data-management capabilities to its object-oriented
Visual

 the BOM

ns
unctions. In other words, I supplemented
he Collection object’s methods such as
tem, Add, and Remove with several oth-
rs geared to supporting the data-aware
apabilities of the replacement Collection
bject.

But before discussing the replacement
or the Collection object, let me start with
he first problem I listed: mapping the
lass module to the data source. When
ou’re working with a homogeneous de-
elopment environment consisting of an
bject-oriented language and an object-
riented database, this is easy. It’s natural

or object-oriented languages such as
ect-oriented DBMS. But you’re faced with a heterogeneous
nvironment when you work with VB4: VB4’s class modules
ave object-oriented capabilities, but they’ll be connecting to
 relational database such as Microsoft Jet. Because the VB
pplication must store the data for its objects in a relational
BMS, you’ll have to do a little work to provide a correlation
etween the DBMS and the class modules.

One of the first steps in resolving this issue is to decide the
ppropriate place to store the name of the applicable data
ource for each class module. It is considered an acceptable
bject-oriented practice for an object to be aware of certain
RecordSet processing.—K.F.
One of the most interesting opportuni-
ties presented by object-oriented tech-
nology is that it allows you to develop
a nonvisual business object model
(BOM) before applying any GUI or
database features to the application.
In the same way you should lay and
verify the foundation of a building
before the walls go up, you should
develop and test a nonvisual BOM
before you finalize the user interface
and databases.

The BOM-first approach allows you
to model frequent, even drastic,
changes without having to perform si-
multaneous maintenance to corre-
sponding GUI and database compo-
nents. In fact, the longer you can defer
the design and finalization of the user
interface and databases, the better,
because you’ll be able to remain flex-
ible during the early stages of develop-
ment. This technique supports wide-
open creativity because it encourages
the pursuit of numerous, varying, and
unconventional design approaches that
can be modeled and evaluated cheaply
and quickly. This would not be consid-
ered an option under conventional, GUI-
centric design techniques because of
the time and costs associated with tak-
ing such ventures.

Rather than following the conven-
tional “waterfall” methodologies to ap-
plication design and development, this
approach supports cyclical development:
each subsequent iteration of the BOM
typically offers more than the previous
and is closer to being “correct.” Nearly
all first-time object-oriented develop-
ment projects go through several “false-
start” scenarios, but the very nature of
object-oriented design prevents any of
these from actually being considered a
loss or a failure. Instead, each subse-
quent iteration is typically an improve-
ment on the previous one, and each
contributes something to the ultimate
solution.

Another advantage of the nonvisual
BOM is that you can deploy it in many
forms, not just under a GUI. For example,
class modules that have no user inter-
face are ideal for deployment as OLE
B

components to support reports, spread-
sheets, and other OLE Automation pur-
poses. By comparison, if the class mod-
ules contain user interface code or if
the business rules are interlaced
throughout the GUI, as is the case with
conventional VB development ap-
proaches, it might be difficult to pro-
vide such a multifaceted degree of sup-
port.

A data-aware replacement for the
Collection object integrates well with
the BOM-first approach, because its
capabilities include effortlessly bring-
ing RecordSet management capabili-
ties to the role of the collection. This
allows you to design and develop the
BOM as usual before any database is
available or even defined. Then, when
the database becomes available, you
can exploit it through the data-aware
collection without any changes to the
BOM. While you’re developing the
BOM, you can focus on meeting the
business requirements, rather than
making allowances for future
asic Programmer’s Journal APRIL 1996 97

PROGRAMMING
WITH CLASS

-

-

f

-

-

MyFirstName = _

E

e
n
o
l
i
d
t
C
m
t
u
c

l
t
p
r
m
j
m
c
c

details of how it will be used, such as
this, and to provide that information to
any code that calls the object through
one of its public methods.

For purposes of this article, the class
module needs to know only the name of
the data source to which it will map.
However, depending on any number of
factors, it might be appropriate for the
class module to know other database-
mapping processes, such as a SQL state-
ment that retrieves data rows for itself or
its contained objects. It’s best to resolve
this issue on a case-by-case basis, ac-
cording to your application’s require-
ments. In general, it’s a good idea to have
a one-to-one correspondence of class
modules to database tables or updateable
queries. Each class module, then, would
equate to its applicable data source.

Each class module should have a pub-
lic method that returns the name of the
applicable data source (or other informa-
tion). In the interest of polymorphism, you
should decide on a common method
name such as “TableName” or
“DataSourceName”:

Public Function DataSourceName() _
98 APRIL 1996 Visual Basic Programmer’s Jou
As String)
' Return the name of my
' associated data source

DataSourceName = "Employee"
End Sub

If the class module is the proper place
to encapsulate information about its as
sociated data source, then it must also
be the proper place to encapsulate de
tails about mapping a row of the data
source to its internal properties. Each
class module should have a public
method that copies values from a row o
the referenced data source to the class
module’s properties. The data-aware
Collection-object replacement would
execute this method any time it has a
RecordSet row that needs to be trans
lated into an object. Again, decide on a
polymorphic method name such as
“InitializeFromRecordSet.” Here’s an ex
ample of the program code found in this
method:

Public Sub InitializeFromRecordSet_
(RecordSet As RecordSet)
MyLastName = RecordSet("LastName")
rnal

v
w
e
t
t
t
s
d
o
d
m
o
o

©1991–1996 Fawcette Techn
RecordSet("FirstName")
ObjectID = RecordSet("ObjectID")

nd Sub

Note that this example includes a refer-
nce to the property “ObjectID.” You might
eed a property of this type to identify the
bject within the Collection object and,

ikewise, the row within the correspond-
ng data source. In general, a good candi-
ate for this field in the database table is
he surrogate-key column, which has the
ounter attribute and is mapped to a class
odule property that has the Long at-

ribute. It’s a good idea for all class mod-
les and database tables to use an identi-
al field name for this purpose.

Each class module should have a pub-
ic method, such as “InitializeRecordSet,”
hat copies values from the class module’s
roperties to the data source row (the
everse functionality of the previous
ethod). The data-aware Collection-ob-

ect replacement would execute this
ethod any time it needs to update the

orresponding RecordSet row with the
urrent property values on the object:

Public Sub _
InitializeRecordSet_
(RecordSet As RecordSet)
RecordSet("LastName") = MyLastName
RecordSet("FirstName") = _

MyFirstName
RecordSet("ObjectID") = ObjectID

End Sub

The object might not always know the
alue of the field “ObjectID,” such as
hen a new object instance is being gen-
rated and ObjectID equates to a column
hat has the Counter attribute. Under
hese conditions, you can’t determine
he field’s value until after the corre-
ponding row has been inserted into the
atabase. One way to determine the value
f the ObjectID field is to instruct the
ata-aware Collection-object replace-
ent to automatically set the new

bject’s ObjectID property to the value
f the Counter column.

RELATIONSHIPS IN A RELATIONAL
DATABASE
The relational database doesn’t inher-
ently support object containment, but
you’ll need to work around that in order
to continue the mapping process. Nearly
every object model features an object
containment hierarchy in which certain
objects “contain” others. But the rules of
table relationships and those of object
containment are very different. You must
resolve this in order to map the object
containment hierarchy over the rela-
http://www.windx.comical Publications

PROGRAMMING
WITH CLASS

k
w
j
t
a
w

p
o
l
o
i

LISTING 1 Open for Business. This example uses the data awareness of the Collection-object replacement to instantiate its contained
objects from the database. At the conclusion of this event, the three data controls—“datEmployees,” “datCustomers,” and

“datProducts”—are ready for use.

P

'
'
'

'

base
tional database model.
To illustrate this, let me explain these

opposing concepts. In the relational world,
“children” know about their “parents”
(because foreign keys are located in the
“child” rows), and the parent rows do not
http://www.windx.com ©1991–1996 Fawcette
now who their children are. In the object
orld, the reverse is true: container ob-

ects (the parent objects) know about
heir contained objects (the child objects),
nd the contained objects do not know
ho their containing objects are.
Visual B

I
d
s
a
“
i
e
t
r
O
o

m
b
i
n
s
s
d
t
p
t
c
t

e
P
l
l
c
c
p
c
c
i
s

 Technical Publications
In VB4, the Collection object is the
rimary mechanism for implementing
bject containment. To retain the Col-

ection object’s ability to implement the
bject containment hierarchy while add-

ng relational database mapping features,
 decided to store all object containment
etails in a separate, dedicated data
tore, independent of both the parent
nd child data stores, similar to the
many-to-many” resolution tables used
n relational database design. That is, for
ach instance of object containment in
he BOM, the dedicated data store
ecords the containing object’s type and
bjectID along with the contained
bject’s type and ObjectID.

The solution automatically imple-
ents the object containment hierarchy
y encapsulating the process of generat-

ng and executing the SQL statements
eeded to automatically retrieve the as-
ociated rows from the appropriate data
ource of the contained objects. It coor-
inates with the class module to instan-
iate objects of the appropriate class and
opulate those objects with data from
he returned rows. It then gathers the
ontained objects and returns them to
he application as a Collection object.

As it would apply to the SmallBusiness
xample in Chapter 7 of the VB
rogrammer’s Guide, instances of my Col-

ection-object replacement or similar so-
ution would exist in the SmallBusiness
lass module as container objects for the
ollections of the SmallBusiness’s Em-
loyees, Customers, and Products. Of
ourse, with these new capabilities you
ould easily expand the example to store
ts data in a database with tables corre-
ponding to the contained class mod-
rivate Sub Form_Load()

Dim SampleEmployee As New Employee
Dim SampleCustomer As New Customer
Dim SampleProduct As New Product

Set Database = _
OpenDatabase(App.Path & "\MyDB.MDB")

 retrieve the appropriate rows from the
 Employee Table and instantiate
 Employee objects
SmallBusiness.Employees._

InstantiateFromDatabase _
Parent:=SmallBusiness, _
SampleObject:=SampleEmployee, Database:=Database

 set the datEmployees.RecordSet to the
' RecordSet created within the
' DataAwareCollection
Set datEmployees.RecordSet = _

SmallBusiness.Employees.RecordSet

SmallBusiness.Customers._
InstantiateFromDatabase _
Parent:=SmallBusiness, _
SampleObject:=SampleCustomer, Database:=Data

Set datCustomers.RecordSet = _
SmallBusiness.Customers.RecordSet

SmallBusiness.Products._
InstantiateFromDatabase _
Parent:=SmallBusiness, _
SampleObject:=SampleProduct, _
Database:=Database

Set datProducts.RecordSet = _
SmallBusiness.Products.RecordSet

End Sub
asic Programmer’s Journal APRIL 1996 99

t
R

1

PROGRAMMING
WITH CLASS
ules (see Figure 1).
As the instances of the data-aware

Collection-object replacement are ref-
erenced for the first time, they perform
the necessary SQL-related functions to
retrieve the data rows, instantiate and
populate objects, and return the col-
lection of contained objects to the ap-
plication.

In this example, the Form_Load event
procedure automatically instantiates the
Employees, Customers, and Products for
the SmallBusiness (see Listing 1). At the
conclusion of this event, all of the neces-
sary objects have been instantiated and
the three data controls—“datEmployees,”
“datCustomers,” and “datProducts”—are
ready for use.

At this point, you should have a high
level of integration between the VB4 class
module and the VB4 database through
successful mapping of objects to the re-
lational database. Now you need to inte-
grate the VB4 class module with the VB
GUI.

GIVE THE GUI WHAT IT NEEDS
You could reason that if you can map a
class module to a row in a record set,
then you can map the data-aware Collec-
tion-object replacement to the entire
record set. Managing RecordSet as a
Collection object would help you use
object-oriented techniques to manage
VB controls that rely on RecordSet or
that are bound to VB Data controls.

By using the data-aware replacement
for the Collection object, you can design
and develop the BOM without thinking
about the needs of the database or GUI.
Then, as you add the GUI and database
components, you can exploit the capa-
bilities of the data-aware Collection ob-
ject to satisfy the needs of the VB
RecordSet, Data control, and any bound
controls.

The data-aware Collection-object
replacement, called the “Data-
AwareCollection” here, should include
methods for supporting the RecordSet
property of the Data control in an
object-oriented manner. An example of
this code is:

Dim MyCollection As
DataAwareCollection

.

.

.
Set MyDataControl.RecordSet = _

MyCollection.RecordSet

Now you have an excellent opportunity
o provide various other object-oriented
ecordSet manipulation methods such as
00 APRIL 1996 VBPJ http://www.windx.com

“Add,” “Remove,” “Replace,” “Item,” “Re-
fresh,” “InstantiateFromDatabase,”
“InitializeFromRecordSet,” “Initialize-
RecordSet,” and “(Set) RecordSet.”

At this point, you’ve provided a high
level of integration between the class mod-
ule and the GUI through the data-aware
Collection-object replacement and its
compatibility with the class module and
the data control.

Through an interface of public meth-
ods, the data-aware Collection-object re-
placement exposes its underlying
RecordSet object so an application can
use it. As shown in the code example, an
application could use the exposed
RecordSet object to set the RecordSet
property of one of its data controls. This
would essentially allow the application
to have a bound control (say, a DBGrid)
bound to that data control, and that
bound control would be the GUI equiva-
lent of the Collection.

In effect, the BOM is thinking “a col-
lection of employees of the company”
(note the collection implication) while
the GUI is thinking “a DBGrid showing
the employees of the company.” It’s
reasonable to assume that any VB con-

http://www.windx.com

l
i
l
V
w
l

©1991–1996 Fawcett
trols bound to such a data control
should be able to receive similar ben-
efits from this object-oriented ap-
proach, typically in the form of object-
oriented wrappers designed especially
for those VB controls.

Visual Ba

PROGRAMMING
WITH CLASS

THE RELATIONAL DATABASE

DOESN’T INHERENTLY

SUPPORT OBJECT

CONTAINMENT.

For example, you could construct a
ist box wrapper to serve as a special
nterface between your data-aware Col-
ection-object replacement and a given
B GUI control type. In this case, the
rapper would provide an interface that

ets you use the contents of your data-

e Technical Publications
aware Collection-object replacement to
populate the associated list box. So you
could have a data-aware collection of
employees, a list box intended to display
employees, and a wrapper that interfaces
the list box with the contents of the data-
aware collection.

Methods would exist to populate the
list box with data from the contained
objects, to get or set the objects corre-
sponding to the selected items in the list
box, and so on. This process provides an
object-oriented alternative for the con-
ventional, GUI-centric means of managing
a ListBox where the application must treat
the ListBox as a holder of strings rather
than objects. Similarly, you could build
wrappers for the ComboBox, DBGrid, and
DBList that support an object-oriented
method of managing those VB Controls,
as well.

The code discussed in this column is
available online in a file called PC0496.ZIP.
Download the file from VBPJ’s Develop-
ment Exchange on the World Wide Web
at http://www.windx.com, or from the
VBPJ CompuServe Forum, or MSN site.
For details, see “How to Reach Us” in
VBPJ’s Letters to the Editor.

sic Programmer’s Journal APRIL 1996 101

