
WINDOWS
PROGRAMMING

Click & Retrieve

Source

CODE!
Give your apps access to long file
names and learn about OLE strings,
thunking, and common dialogs in
the process.

by Jonathan Zuck

Take the Long
File Home
}

V
n
e
in
r
p
p
a
a
e
m

b
(
s
T
p
o
L
s
H
fo
d
(

a
s

P

Save As common dialogs. The common dialog VBX (and now
OCX) is just a thin wrapper around the common dialog API
functions. In the case of the file dialogs, the functions are
GetOpenFileName and GetSaveFileName. These functions live
on in the Win32 API, but now they provide an “Explorer” style
dialog and access to long file names.

If you do recall the piece [Windows Programming, “Uncommon
Dialogs,” VBPJ February 1995], you might remember that the
“pure” VB approach, with a couple of limitations due to the lack of
callbacks, allowed you to use the common dialogs without a
custom control, thereby eliminating the overhead and installation
of one more custom control with your applications. This month, I’d
like to revisit the common dialog functions with three goals in mind:
demonstrate their use in Win32, provide access to the 32-bit
versions of the dialogs and long file names from VB3 and 16-bit VB4,
and wrap it all up with a class similar to the common dialog to
facilitate migration from 16- to 32-bit.

The code in that previous article was a little messy, because the
OPENFILENAME structure requires pointers to strings. As you will
see, such machinations are no longer necessary because the
internal storage of VB strings has changed significantly and has
become more compatible with external processes.

The OPENFILENAME structure is defined this way in C:

typedef struct tagOPENFILENAME { /* ofn */
DWORD lStructSize;
HWND hwndOwner;
HINSTANCE hInstance;
LPCSTR lpstrFilter;
LPSTR lpstrCustomFilter;
DWORD nMaxCustFilter;
DWORD nFilterIndex;
LPSTR lpstrFile;
DWORD nMaxFile;
LPSTR lpstrFileTitle;

ven if you don’t remember the rock group Supertramp,
you most likely remember last year’s column about
using the Windows APIs to get at the File Open and File
Jonathan Zuck is vice president of client/server technology for
Advanced Paradigms Inc. in Alexandria, Virginia. He is a regular
contributor to Visual Basic Programmer’s Journal and a coauthor
of the first Visual Basic How-To, published by Waite Group Press.
Reach Jonathan on CompuServe at 76702,1605.

104 APRIL 1996 Visual Basic Programmer’s Journal ©1991
DWORD nMaxFileTitle;
LPCSTR lpstrInitialDir;
LPCSTR lpstrTitle;
DWORD Flags;
UINT nFileOffset;
UINT nFileExtension;
LPCSTR lpstrDefExt;
LPARAM lCustData;
UINT (CALLBACK* lpfnHook) (HWND, UINT, WPARAM,

LPARAM);

LPCSTR lpTemplateName;
 OPENFILENAME;

An LPCSTR is a long pointer to a null-terminated string. In
B3, strings aren’t naturally null terminated, and you also had
o easy way to store the address of a string into a structure
lement. Therefore, you had to declare these elements as Long
tegers and use the VarPtr function (exported from the VB

untime DLL) to determine the address of the string. Luckily, by
assing a string by value to the VarPtr function, you accom-
lished two things. First, passing ByVal dereferences the string
nd passes a long pointer to the string data. Second, it appends
 null character. So you were able to populate these long-integer
lements with an address to a null-terminated string. Not the
ost fun you’ve ever had, but doable.

Well, with VB4 the situation is greatly improved. Instead of
eing proprietary, VB strings are managed internally as OLE strings
BSTRING). Just like the HLSTR of yesteryear, the BSTRING has a
et of functions you should use to manipulate it from within a DLL.
he difference is that these are published interfaces, using ex-
orted functions. Much nicer. In addition, the BSTRING has an-
ther interesting property. It is stored internally a little like an
PCSTR. The BSTRING is a pointer to the actual string data and the
tring is maintained internally with a null on the end. Unlike the
LSTR, which was a pointer to a pointer to a string length that was
llowed by the string data, the BSTR is a pointer to the actual string

ata, which is proceeded—at least for now—by the string length
see Figure 1).

Therefore, joy of joys, you can use a BSTR as an LPCSTR both
s a parameter to a DLL but, more importantly, as a member of a
tructure. The OPENFILENAME type definition in VB4 looks this:

rivate Type OPENFILENAME
Let Me Point It Out. The BSTR is a pointer to the string
data, which is proceeded by the string length. The whole

thing is null terminated for easy use as an LPSTR.

FIGURE 1

BSTR
http://www.windx.com–1996 Fawcette Technical Publications

WINDOWS
PROGRAMMING

LI

 _

_

_

 _

_

If Index = 1 Then 'they want File Open dialog

h

CONTINUED ON NEXT PAGE.
VERSION 1.0 CLASS
BEGIN
MultiUse = -1 'True

END
Attribute VB_Name = "CommonDialog"
Attribute VB_Creatable = True
Attribute VB_Exposed = True
Option Explicit

#If Win32 Then
Private Type OPENFILENAME

lStructSize As Long
hwndOwner As Long
hInstance As Long
lpstrFilter As String
lpstrCustomFilter As String
nMaxCustFilter As Long
nFilterIndex As Long
lpstrFile As String
nMaxFile As Long
lpstrFileTitle As String
nMaxFileTitle As Long
lpstrInitialDir As String
lpstrTitle As String
Flags As Long
nFileOffset As Integer
nFileExtension As Integer
lpstrDefExt As String
lCustData As Long
lpfnHook As Long
lpTemplateName As String

End Type

Private Declare Function GetOpenFileName Lib _
"comdlg32.dll" Alias "GetOpenFileNameA" _
(pOPENFILENAME As OPENFILENAME) As Long

Private Declare Function GetSaveFileName Lib _
"comdlg32.dll" Alias "GetSaveFileNameA" _
(pOPENFILENAME As OPENFILENAME) As Long

Private Declare Function GetShortPathName Lib _
"kernel32" Alias "GetShortPathNameA" (ByVal _
lpszLongPath As String, ByVal lpszShortPath As
String, ByVal cchBuffer As Long) As Long

Private Declare Function GetActiveWindow Lib _
"user32" () As Long

#Else
Private Type OPENFILENAME

lStructSize As Long
hwndOwner As Integer
hInstance As Integer
lpstrFilter As String
lpstrCustomFilter As String
nMaxCustFilter As Long
nFilterIndex As Long
lpstrFile As String
nMaxFile As Long
lpstrFileTitle As String
nMaxFileTitle As Long
lpstrInitialDir As String
lpstrTitle As String
Flags As Long
nFileOffset As Integer
nFileExtension As Integer
lpstrDefExt As String
lCustData As Long
lpfnHook As Long
lpTemplateName As String

End Type

Private Declare Function GetOpenFileName Lib _
"commdlg.dll" (pOPENFILENAME As OPENFILENAME)
As Long

Private Declare Function GetSaveFileName Lib _
"commdlg.dll" (pOPENFILENAME As OPENFILENAME)
STING 1 Common but Classy. You can use this common dialog clas
dialog control in VB3 and VB4.

ttp://www.windx.com ©1991–1996 Fawcette Technical Publication
As Long
Private Declare Function GetActiveWindow Lib "user"

() As Integer
#End If

'here are some direct properties
Public DefaultExt As String
Public DialogTitle As String
Public Filter As String
Public FilterIndex As String
Public Flags As Integer
Public InitDir As String

'member variables
Dim mCMDLG As Object
Dim mFileName As String
Dim mFileTitle As String
Dim mhOwner As Long

Dim NullChar As String

Public Property Let Action(Index As Integer)
Dim OFN As OPENFILENAME, sFile As String, lResult _

As Long, iDelim As Integer
Dim zTemp As String, Temp As Variant
Dim i As Integer

If Index > 2 Then Exit Property 'get out if invalid

OFN.lStructSize = Len(OFN)
If mhOwner = 0 Then mhOwner = GetActiveWindow()
OFN.hwndOwner = mhOwner
OFN.Flags = Flags

OFN.lpstrDefExt = DefaultExt

'set the initial directory, otherwise uses current
Temp = InitDir
OFN.lpstrInitialDir = Temp

'retrieve the default file name\
'first check for wild cards
Temp = mFileName

#If Win32 Then
If (InStr(Temp, "*") = 0) And InStr(Temp, "?") _

= 0 Then
'try to convert it to a long file name
zTemp = Dir(OFN.lpstrInitialDir & "\" & Temp)
If Len(zTemp) Then 'we found a match

Temp = zTemp
End If

End If
#End If

OFN.lpstrFile = Temp & String$(255 - Len(Temp), 0)
OFN.nMaxFile = 255

OFN.lpstrFileTitle = String$(255, 0)
OFN.nMaxFileTitle = 255

'file type filter
'we need to replace pipes with nulls
zTemp = Filter
For i = 1 To Len(zTemp)

If Mid(zTemp, i, 1) = "|" Then Mid(zTemp, i, 1)
= NullChar

Next
zTemp = zTemp & String$(2, 0)
OFN.lpstrFilter = zTemp
OFN.nFilterIndex = FilterIndex

OFN.lpstrTitle = DialogTitle
Visual Basic Programmer’s Journal APRIL 1996 105

s, CMDLGX.CLS, as an OLE-server replacement for the common

s

1

WINDOWS
PROGRAMMING

E

s
L
le

D
T
fu
c
u

w
in the Set statement to assign the CMDLGControl property, one of
lStructSize As Long
hwndOwner As Long
hInstance As Long
lpstrFilter As String
lpstrCustomFilter As String
nMaxCustFilter As Long
nFilterIndex As Long
lpstrFile As String
nMaxFile As Long
lpstrFileTitle As String
nMaxFileTitle As Long
lpstrInitialDir As String
lpstrTitle As String
Flags As Long
nFileOffset As Integer
nFileExtension As Integer
lpstrDefExt As String
lCustData As Long
lpfnHook As Long
lpTemplateName As String

nd Type

Be advised, of course, that as before, you need to pad these
trings for incoming data because a DLL function expecting an
PSTR expects space to be preallocated and will not modify the
ngth of the string.

IALOGS WITH CLASS
he obvious thing to do, when implementing the common dialog
nctions in VB, is to create a class with an object model that’s

ompatible with the common dialog control so that you can easily
se it as a replacement for the control (see Listing 1).

The operation of this CommonDialog class is pretty straightfor-
ard, but it demonstrates a number of concepts. One of the more
teresting things about it is that a 16-bit application running under
06 APRIL 1996 Visual Basic Programmer’s Journal

 1)

E

P

E

P

E

P

CONTINUED FROM PREVIOUS PAGE.

©199
a 32-bit OS can use it. The thunking between 16- and 32-bit is a
byproduct of OLE, but I’ve added some goodies to facilitate the use
of long file names. Therefore, when you implement this class as an
OLE Automation server under both 16- and 32-bit, not only can 16-
or 32-bit applications use it, but it will also show the “best” dialog
for the OS it’s running on.

The code for the class begins by conditionally defining the
OPENFILENAME structure and the necessary Windows API decla-
rations. No surprises here. Stuff defined as unsigned integer (UINT)
in the C structure are short integers in 16-bit and long integers in 32-
bit. Next you have some simple properties, which you create using
the Public keyword:

Public DefaultExt As String
Public DialogTitle As String
Public Filter As String
Public FilterIndex As String
Public Flags As Integer
Public InitDir As String

The variables that begin with “m” are member variables (known
as fields in Delphi). You need to keep these properties hidden and
provide access to them only through property procedures. You
can set and read most of these properties with no problem:

Dim mCMDLG As Object
Dim mFileName As String
Dim mFileTitle As String
Dim mhOwner As Long

Just for the fun of it, I designed the class to be used in
conjunction with the control. For those who want to do most
of your work in the property editor rather than in code, this class
allows you, to a limited extent, to accomplish that. You can use
s

lResult = GetOpenFileName(OFN)
Else 'Save As... dialog

lResult = GetSaveFileName(OFN)
End If

If lResult <> 0 Then
iDelim = InStr(OFN.lpstrFileTitle, NullChar)
If iDelim > 0 Then

mFileTitle = Left$(OFN.lpstrFileTitle, iDelim -
End If
iDelim = InStr(OFN.lpstrFile, NullChar)
If iDelim > 0 Then

mFileName = Left$(OFN.lpstrFile, iDelim - 1)
End If

End If
nd Property

ublic Property Set CMDLGControl(C As Object)
Set mCMDLG = C
FileName = mCMDLG.FileName
DefaultExt = mCMDLG.DefaultExt
Filter = mCMDLG.Filter
FilterIndex = mCMDLG.FilterIndex
Flags = mCMDLG.Flags
InitDir = mCMDLG.InitDir
mhOwner = mCMDLG.Parent.hWnd
nd Property

ublic Property Let FileName(S As String)
mFileName = S
nd Property

ublic Property Get FileName() As String
FileName = mFileName
1–
End Property

Public Property Get ShortFileTitle() As String
ShortFileTitle = Long2Short(mFileTitle)

End Property

Public Property Get FileTitle() As String
FileTitle = mFileTitle

End Property

Private Function Long2Short(ByVal S As String) A
String
Dim Buff As String
Dim r As Integer

#If Win32 Then
If Dir(S) = "" Then

Open S For Output As #1
Close

End If
Buff = Space(256)
r = GetShortPathName(S, Buff, 256)
Long2Short = Left(Buff, r)

#Else
Long2Short = S

#End If
End Function

Public Property Get ShortFileName() As String
ShortFileName = Long2Short(mFileName)

End Property

Private Sub Class_Initialize()
NullChar = Chr(0)
http://www.windx.com

End Sub

1996 Fawcette Technical Publications

WINDOWS
PROGRAMMING
the properties of the CommonDialog class, to refer to an in-
stance of the common dialog OCX (not the VBX). This property
procedure then reads the essential properties from the control
into its own properties, eliminating the need to code them. Isn’t
thunking wonderful? The magic of OLE thunking means that the
code to implement this feature is very straightforward:

Public Property Set CMDLGControl(C As Object)
Set mCMDLG = C
FileName = mCMDLG.FileName
DefaultExt = mCMDLG.DefaultExt
Filter = mCMDLG.Filter
FilterIndex = mCMDLG.FilterIndex
Flags = mCMDLG.Flags
InitDir = mCMDLG.InitDir
mhOwner = mCMDLG.Parent.hWnd

End Property

Because every object in VB is an OLE object, it’s easy to access
them externally.

The heart of the class is the Action property, designed to
emulate the Action property of the common dialog control. Like
http://www.windx.com

LISTING 2 Class Access. Use this code to access the CommonDialog cl
the distinction between the FileName property, which it disp

most API functions, GetOpenFileName and GetSaveFileName

©1991–1996 Fawcette Technical Publicatio
aren’t that threatening once you get past the declarations. The
top part of the Action property procedure simply assigns values
to the OPENFILENAME structure from your properties:

OFN.lStructSize = Len(OFN)
If mhOwner = 0 Then mhOwner = GetActiveWindow()
OFN.hwndOwner = mhOwner
OFN.Flags = Flags

OFN.lpstrDefExt = DefaultExt

'set the initial directory, otherwise uses current
Temp = InitDir
OFN.lpstrInitialDir = Temp

Always remember to fill in the size of the structure. If you
leave that value blank, the procedure will fail with no discern-
ible error message.

The first interesting part of the code has to do with handling
long file names in the 32-bit version of this class. You can pass
a short file name to the Dir function (a wrapper around the
FindFileFirst and FindFileNext API functions), and it will return
the long file name. Therefore, a 16-bit application that has been
E
En
At
At
At

Di
Di

Pr
T

En

Pr
D

S
S

C
z
I

E
En

Pr
D

S
S

C
z
I

E

VERSION 4.00
Begin VB.Form Form1
Caption = "Form1"
ClientHeight = 4140
ClientLeft = 1545
ClientTop = 1830
ClientWidth = 6690
Height = 4830
Left = 1485
LinkTopic = "Form1"
ScaleHeight = 4140
ScaleWidth = 6690
Top = 1200
Width = 6810
Begin VB.TextBox Text1

Height = 1815
Left = 2040
MultiLine = -1 'True
ScrollBars = 3 'Both
TabIndex = 0
Text = "TEST.frx":0000
Top = 720
Width = 2655

End
Begin MSComDlg.CommonDialog CD

Left = 840
Top = 1320
_version = 65536
_extentx = 847
_extenty = 847
_stockprops = 0
defaultext = "TXT"
dialogtitle = "Test Dialog"
filename = "*.TXT"
filter = "Text Files (*.txt)|*.txt|All _|

Files (*.*)|*.*"
filterindex = 1
initdir = "C:\VB4"

End
Begin VB.Menu mnuFile

Caption = "&File"
Begin VB.Menu mnuFileOpen
 Caption = "&Open"
End
Begin VB.Menu mnuFileSaveAs
ass i
lays

En

ns
 Caption = "Save &As..."
End

nd
d
tribute VB_Name = "Form1"
tribute VB_Creatable = False
tribute VB_Exposed = False

m zRealFile As String
m zFileName As String

ivate Sub Form_Resize()
ext1.Move 0, 0, ScaleWidth, ScaleHeight
d Sub

ivate Sub mnuFileOpen_Click()
im C As Object

et C = CreateObject("cmdlgX.CommonDialog")
et C.CMDLGControl = CD

.Action = 1
FileName = C.filename
f Len(zFileName) Then
Me.Caption = "Notepad - " & zFileName
zRealFile = C.ShortFileName
Open zRealFile For Binary As #1
Text1.Text = Input(LOF(1), 1)
Close

nd If
d Sub

ivate Sub mnuFileSaveAs_Click()
im C As Object

et C = CreateObject("cmdlgX.CommonDialog")
et C.CMDLGControl = CD

.Action = 2
FileName = C.FileTitle
f Len(zFileName) Then
Me.Caption = "Notepad - " & zFileName
zRealFile = C.ShortFileName
Open zRealFile For Binary As #1
Put #1, , Text1.Text
Close

nd If
Visual Basic Programmer’s Journal APRIL 1996 107

n order to create file-open and file-save dialogs. The code makes
, and the ShortFileName property, which it uses to open files.

d Sub

WINDOWS
PROGRAMMING

E

G
P
s

t
b
d
(
c
P

h
e
s
S

working with a short file name such as PROGRA~1.TXT can
blindly pass it into the FileName property, and CommonDialog
will try to convert it and display it to the user:

#If Win32 Then
If (InStr(Temp, "*") = 0) And InStr(Temp, "?") _

= 0 Then
'try to convert it to a long file name
zTemp = Dir(OFN.lpstrInitialDir & "\" & Temp)
If Len(zTemp) Then 'we found a match

Temp = zTemp
End If

End If
#End If

This technique is similar to the techniques used by some
commercial utilities that allow 16-bit Windows apps to use long
file names.

One other thing to notice is that the code uses the String$
function to preallocate string parameters so that the API func-
tions have someplace to return data:

OFN.lpstrFile = Temp & String$(255 - Len(Temp), 0)
OFN.nMaxFile = 255

OFN.lpstrFileTitle = String$(255, 0)
OFN.nMaxFileTitle = 255

Finally, the Filter property is “filtered” such that the pipes
become the null characters expected by the function. This is a
classic C language string array. If you retrieve the environment
using API calls, it is returned in this null-delimited format as well.
A double null denotes the end of the array.

I included the ShortFileName and ShortFileTitle properties
as final elements to make this class useful to 16-bit programs. I
thought about trying to figure out whether a 16-bit application
was calling the code, and considered returning only short file
names in that case. But then I figured that even a 16-bit app
would want to show the long file name, even if it were using the
short one behind the scenes. This would provide the most
continuity to the user:

Private Function Long2Short(ByVal S As String) As String
Dim Buff As String
Dim r As Integer
108 APRIL 1996 Visual Basic Programmer’s Journal

#If Win32 Then

©1991
If Dir(S) = "" Then
Open S For Output As #1
Close

End If
Buff = Space(256)
r = GetShortPathName(S, Buff, 256)
Long2Short = Left(Buff, r)

#Else
Long2Short = S

#End If
nd Function

You implement these properties internally using the
etShortPathName API function, which is pretty straightforward.
assing in the long file name and a buffer will fill the buffer with the
hortened version (the one you often see at the DOS prompt).

The beauty of this approach is that you already know how to use
his class. You just set properties and use the Action property to
ring up the dialog. For example, a 16-bit editor application can
isplay an Explorer-style, file-open dialog and use long file names
see Figure 2). I’ve included the code to access the CommonDialog
lass the easy way, using a control for its properties (see Listing 2).
ractically no code at all!

Certainly you could do more with this class such as create error
andlers, and so on, but it should give you an idea of how to
ncapsulate system functionality into a compatible class. It also
hould drive home one of the benefits of OLE Automation: thunking.
ee you in 60!
Yes, Virginia, It Can Really Use Long File Names.
Here’s an example of a 16-bit Windows application

using the Windows 95 Common Dialogs.

FIGURE 2
http://www.windx.com–1996 Fawcette Technical Publications

