
INTERACTIVE
DEVELOPER

M
B
G
l
R
7
a

B
W

Click & Retrieve

Source

CODE!
uild Multimedia SoundTracks
ith WaveMix API
lpWaveMix = WaveMixOpenWave _
Use the WaveMix API for
harmonious mixing of multiple
WAV file audio tracks.

by Mark Pruett

alarm in Number Two Boiler... Low Water alarm” In a museum,
a touch-screen kiosk program features the digitized voice of a
narrator, explaining the histories of antique musical instruments.
The user presses a button on the screen next to a picture of a
harpsichord, and as the narrator continues uninterrupted, the
sounds of the harpsichord can be heard in the background. These
are both examples of mixed wave-form audio, the ability to dynami-
cally layer several audio layers into a single sound track. You can
do this today using the WaveMix dynamic link library.

Microsoft Windows has supported the playback of wave-form
audio, or WAV files, since Windows 3.0. This ability became a
standard feature of Windows 3.1. To play back WAV files, the
computer must be equipped with a compatible sound card and
Windows sound drivers. Most multimedia computers sold today
come with these prerequisites installed.

A simple call to the Windows API function, sndPlaySound, is all
that is needed to play a WAV file. But Windows’ innate ability to play
wave-form audio is limited to one WAV file at a time. Attempting to
play a second WAV file silences the first WAV file.

Microsoft overcame this dilemma when it released Microsoft
Arcade for Windows 3.1. To handle the multiple layered sounds
it needed for this set of classic arcade games, Microsoft devel-
oped a 16-bit set of routines called WaveMix. This set of
routines was later documented and released to developers in
Microsoft’s Multimedia JumpStart CD and as part of the
Microsoft Developer’s Library CD. Since then, a 32-bit version
of this tool, WavMix32, has been released. There’s little differ-
ence between the two versions, except for the 32-bit size of
many of the data elements involved. I’ll focus on the 32-bit
version here, but the concepts are applicable to the 16-bit
version as well.

THE WAVEMIX API
WaveMix has one simple purpose: it provides an easy way for

n a Control Room application, the operator is alerted to a
potential problem by a repeating alarm bell. At the same
time, a digitized human voice calmly repeats “Low Water
ark Pruett is the author of
lack Art of Visual Basic
ame Programming, pub-

ished by Waite Group Press.
each him on CompuServe at
4133,3406 or on the Internet
t pruettm@vancpower.com.

the programmer
to create layered
wave-form au-
dio. It requires
only two files:
WAVEMIX.INI,
placed in the
\WINDOWS di-

http://www.windx.com ©1991–1996 Fawcette Technical Publicatio
rectory, and WAVMIX32.DLL, placed in the \WINDOWS\SYSTEM
directory. The DLL is a set of about a dozen function calls.

Conceptually, WaveMix provides a set of eight independent
channels. Each of these channels can play a different WAV file.
Channels can be looped, so their assigned WAV file plays
repeatedly. In my control room example, the alarm bell sound
would certainly have been looped so that it would continue to
sound automatically until the control room operator shut it off.

Because each channel is independent, it can be started and
stopped at any point during program execution. The sound from
one channel doesn’t interrupt another channel; it is simply
heard together with it, just as the dialogue in a movie can be
heard over the background music.

WaveMix is like an engine. It needs to be started up before it’s
used, and it needs to be shut down when its work is done. Two
WaveMix API calls let you fire up the WaveMix DLL. The easiest
of the two, the WaveMixInit function, requires no parameters. It
returns a Long Integer value called a handle, which will be a
required parameter for virtually all of the subsequent WaveMix
function calls. WaveMixInit uses values specified in the
WAVEMIX.INI file to initialize the WaveMix engine.

The WaveMixConfigInit function gives you more control over
how WaveMix starts up. It requires a tMixConfig user-defined
type as a parameter. The tMixConfig structure lets you override
some of the values in WAVEMIX.INI. In practice, probably the
only value you’ll want to set is wChannels, which enables
WaveMix to play stereo sounds.

WaveMix plays up to eight WAV files simultaneously. Indi-
vidual WAV files are assigned to channels. Two calls are re-
quired to assign a WAV file to a channel: WaveMixOpenWave
and WaveMixOpenChannel.

WaveFileName = "C:\WINDOWS\DING.WAV"
Test Combinations with WavePlayer. Assign different
WAV files to the eight available channels, optionally

looping selected channels.

FIGURE 1
Visual Basic Programmer’s Journal APRIL 1996 89ns

9

INTERACTIVE
DEVELOPER

R

a
b
T
W

(hMixSession, WaveFileName, 0, 0)
eturnCode = WaveMixOpenChannel (hMixSession, 5, 0)

In the example, WaveMix opens the DING.WAV file and
ssigns it to channel five. WaveMix’s eight channels are num-
ered zero through seven, and can be assigned in any order.
he hMixSession parameter passed to both functions is the
aveMix handle we were assigned when we started up the
0 APRIL 1996 Visual Basic Programmer’s Journal

LISTING1 Starting to Hide Complexity. This BAS module was dev
of the more complex aspects of the WaveMix DLL.

©199
WaveMix DLL earlier. Always keep track of the audio resources
you’ve opened. In our example, that means keeping track of the
value WaveMix assigns to lpWaveMix. You’ll need this later to
release the Windows resources that WaveMix allocates for
each WAV file.

Actually, as I’ll show you, the WAV file loaded by
WaveMixOpenWave doesn’t have to be played on channel five.
It can be played on any channel previously opened by a call to
D

D

D

D
D

'
'
P

E

P

E

S
L
'
'
'
'
D

E
S
'
'
D
D

Option Explicit
' WAVEMIX.BAS
' This module contains declarations for all the
' functions in the WaveMix DLL, and provides some
' higher-level functions to simplify using WaveMix
Global hMixSession As Long
Global lpWaveMix() As Long
Global WaveHandle As Long
Global WAVMIX_Quiet As Integer
Global Const WAVEMIX_MAXCHANNELS = 8
Type tChannelInfo
Loops As Long
WaveFile As String

End Type
Type tWaveMixInfo
wSize As Integer
bVersionMajor As String * 1
bVersionMinor As String * 1
szDate(12) As String
dwFormats As Long

End Type
Type tMixConfig
wSize As Integer
dwFlagsLo As Integer
dwFlagsHi As Integer
wChannels As Integer
wSamplingRate As Integer

End Type
Private Type tMixPlayParams
wSize As Integer
hMixSessionLo As Integer
hMixSessionHi As Integer
iChannelLo As Integer
iChannelHi As Integer
lpMixWaveLo As Integer
lpMixWaveHi As Integer
hWndNotifyLo As Integer
hWndNotifyHi As Integer
dwFlagsLo As Integer
dwFlagsHi As Integer
wLoops As Integer

End Type

Declare Function WaveMixInit Lib _
"WAVMIX32.DLL" ()As Long

Declare Function WaveMixConfigureInit Lib _
"WAVMIX32.DLL" (lpConfig As tMixConfig) As Long

Declare Function WaveMixActivate Lib "WAVMIX32.DLL" _
(ByVal hMixSession As Long, ByVal fActivate As _
Integer) As Long

Declare Function WaveMixOpenWave Lib "WAVMIX32.DLL" _
(ByVal hMixSession As Long, ByVal szWaveFilename _
As String, ByVal hInst As Long, ByVal dwFlags _
As Long) As Long

Declare Function WaveMixOpenChannel Lib
"WAVMIX32.DLL" _
(ByVal hMixSession As Long, ByVal iChannel As Long, _
ByVal dwFlags As Long) As Long

Declare Function WaveMixPlay Lib "WAVMIX32.DLL" _
(lpMixPlayParams As Any) As Integer

Declare Function WaveMixFlushChannel Lib _
"WAVMIX32.DLL" _
(ByVal hMixSession As Long, ByVal iChannel As _
elop

1–1
Integer, ByVal dwFlags As Long) As Integer
eclare Function WaveMixCloseChannel Lib
"WAVMIX32.DLL" _
(ByVal hMixSession As Long, ByVal iChannel As _
Integer, ByVal dwFlags As Long) As Integer
eclare Function WaveMixFreeWave Lib "WAVMIX32.DLL" _
(ByVal hMixSession As Long, _
ByVal lpMixWave As Long) _
As Integer
eclare Function WaveMixCloseSession Lib _
"WAVMIX32.DLL"(ByVal hMixSession As Long) _
As Integer
eclare Sub WaveMixPump Lib "WAVMIX32.DLL" ()
eclare Function WaveMixGetInfo Lib "WAVMIX32.DLL" _
(lpWaveMixInfo As tWaveMixInfo) As Integer
 These two functions are needed to reverse the word
 ordering of fields in the WaveMixPlay function.
rivate Function HiWord(ByVal l As Long) As Integer
l = l \ &H10000
HiWord = Val("&H" & Hex$(l))
nd Function

rivate Function LoWord(ByVal l As Long) As Integer
l = l And &HFFFF&
LoWord = Val("&H" & Hex$(l))
nd Function

ub WAVMIX_SetFile(FileName As String, AChannel As
ong)
 Assign a new wave file, FileName, to the specified
 channel, AChannel. If this channel is currently
 assigned another wave file, stop playing the channel
 and free the active wave file.
im rc As Long
If WAVMIX_Quiet Then Exit Sub
If AChannel > UBound(lpWaveMix) Then

ReDim Preserve lpWaveMix(AChannel)
WaveHandle = AChannel

End If
' If another wave is currently assigned to this
' channel, free it.
If lpWaveMix(AChannel) <> 0 Then

WAVMIX_StopChannel AChannel
rc = WaveMixFreeWave(hMixSession, _

lpWaveMix(AChannel))
End If
' Open the new wave and assign it to this channel.
lpWaveMix(AChannel) = WaveMixOpenWave(hMixSession, _

FileName, 0, 0)
rc = WaveMixOpenChannel(hMixSession, AChannel, 0)
nd Sub
ub WAVMIX_Close()
 Stop playing all channels and free all wave files,
 then close down this WaveMix session.
im rc As Long
im i As Integer
If WAVMIX_Quiet Then Exit Sub
If (hMixSession <> 0) Then

For i = 0 To UBound(lpWaveMix)
If lpWaveMix(i) <> 0 Then

WAVMIX_StopChannel CLng(i)
rc = WaveMixFreeWave(hMixSession, _

lpWaveMix(i))
End If

Next
http://www.windx.com

ed for the 16-bit version of WaveMix. The functions hide some

CONTINUED ON PAGE 92.

996 Fawcette Technical Publications

INTERACTIVE
DEVELOPER

W
t
a

W

R

O

M
N
n
s

aveMixOpenChannel. I’ve made it a habit to always call these
wo functions in tandem. That way, I always know that I have an
vailable channel for any loaded WAV file.

To reassign a channel you’ve used before, call the
aveMixFreeWave function:

eturnCode = WaveMixFreeWave(hMixSession, lpWave)
http://www.windx.com

t
p

a
o

D
D
D

C
M
M
M
M
M
M
M
M
M
M
M
M
r

t
W
h
n
Y
p
t
w
L
m

M

r

W

m
W
u
p
i

w
a
e
w

d
B
W

CO

0)

e

©1991–1996 Fawcette Technical Publicatio
After that, just call WaveMixOpenWave and WaveMix-
penChannel again, this time assigning your new WAV file.

AKING NOISE
ow that you’ve assigned all your waves to WaveMix chan-
els, you’re ready to play a channel. The good news is that a
ingle call, WaveMixPlay, handles this task. The bad news is
hat it requires a rather Byzantine user-defined type as a
arameter.

Actually, it’s not that bad. WaveMixPlay takes tMixPlayParams
s a parameter, and this data structure must be filled with a lot
f necessary information:

im MixPlay As tMixPlayParams
im ChannelNum as Long
im rc As Long

hannelNum = 5
ixPlay.wSize = Len(MixPlay)
ixPlay.hMixSessionLo = LoWord(hMixSession)
ixPlay.hMixSessionHi = HiWord(hMixSession)
ixPlay.iChannelLo = LoWord(ChannelNum)
ixPlay.iChannelHi = HiWord(ChannelNum)
ixPlay.lpMixWaveLo = LoWord(lpWaveMix)
ixPlay.lpMixWaveHi = HiWord(lpWaveMix)
ixPlay.hWndNotifyLo = 0
ixPlay.hWndNotifyHi = 0
ixPlay.dwFlagsHi = 5
ixPlay.dwFlagsLo = 0
ixPlay.wLoops = LoopWave
c = WaveMixPlay(MixPlay)

Because of the word ordering required by this user-defined
ype, the WaveMix handle, the value assigned by
aveMixOpenWave, and several other fields must have their

igh and low 16-bits swapped. Once all the word-swapping
onsense is done, the only field of real interest to us is wLoops.
ou can loop the audio in a channel so that after the WAV file is
layed, it can automatically restart at its beginning. Set wLoops
o the number of times you want the WAV file to repeat. Set
Loops to -1 and the WAV will loop until you tell it to stop.
ooping is an excellent way to take a relatively short piece of
usic and create a continuous background track.

To stop the sound in a channel, just call Wave-
ixFlushChannel:

c = WaveMixFlushChannel (hMixSession, ChannelNum, 0)

Again, hMixSession is the handle returned when you initialized
aveMix, and ChannelNum is the channel you want to shut off.
When your program is finished using WaveMix, it absolutely

ust shut it down properly. Luckily, this is easy to do. First, call
aveMixFreeWave for each WAV file you previously loaded

sing WaveMixOpenWave. Then call WaveMixCloseSession,
assing it the hMixSession handle assigned when WaveMix was

nitialized. Now WaveMix is properly shut down.
While using the WaveMix API isn’t all that difficult, there’s

ay too much “bookkeeping” involved. You need to worry
bout starting WaveMix, setting up the user-defined types prop-
rly, releasing Windows resources, and shutting down the thing
hen you’re done.

I first started using WaveMix in its 16-bit incarnation. I
ecided to encapsulate some of the boring tasks into a Visual
asic 3.0 BAS module, which made programming a lot easier.
hen I moved to 32-bit WaveMix, I ported that module into the
NTINUED FROM PREVIOUS PAGE.
CONTINUED FROM PAGE 90.

rc = WaveMixCloseSession(hMixSession)
hMixSession = 0

End If
End Sub
Function WAVMIX_InitMixer() As Integer
' Initialize and activate the WaveMix DLL.
Dim rc As Long
Dim config As tMixConfig
If WAVMIX_Quiet Then Exit Function
WaveHandle = 0
ReDim lpWaveMix(0)
ChDir App.Path
config.wSize = Len(config)
config.dwFlagsHi = 1
config.dwFlagsLo = 0
'Allow stereo sound
config.wChannels = 2
hMixSession = WaveMixConfigureInit(config)
rc = WaveMixActivate(hMixSession, True)
If (rc <> 0) Then

WAVMIX_InitMixer = False
Call WaveMixCloseSession(hMixSession)
hMixSession = 0

Else
WAVMIX_InitMixer = True

End If
End Function
Sub WAVMIX_StopChannel(ByVal ChannelNum As Long)
' Stop playing the specified channel.
Dim rc As Integer
If WAVMIX_Quiet Then Exit Sub
If (hMixSession = 0) Then Exit Sub
rc = WaveMixFlushChannel(hMixSession, ChannelNum,

End Sub
Sub WAVMIX_Activate(Activate As Long)
' Activate the WaveMix DLL.
Dim rc As Integer
If WAVMIX_Quiet Then Exit Sub
If (hMixSession = 0) Then Exit Sub
rc = WaveMixActivate(hMixSession, Activate)

End Sub
Sub WAVMIX_PlayChannel(ChannelNum As Long, _
LoopWave As Long)

' Play a specified channel, and indicate whether th
' sound should be looped.
Dim params As tMixPlayParams
Dim rc As Long
If WAVMIX_Quiet Then Exit Sub
If ChannelNum > UBound(lpWaveMix) Then Exit Sub
If (hMixSession = 0) Then Exit Sub
params.wSize = Len(params)
params.hMixSessionLo = LoWord(hMixSession)
params.hMixSessionHi = HiWord(hMixSession)
params.iChannelLo = LoWord(ChannelNum)
params.iChannelHi = HiWord(ChannelNum)
params.lpMixWaveLo = LoWord(lpWaveMix(ChannelNum))
params.lpMixWaveHi = HiWord(lpWaveMix(ChannelNum))
params.hWndNotifyLo = 0
params.hWndNotifyHi = 0
params.dwFlagsHi = 5
params.dwFlagsLo = 0
params.wLoops = LoopWave
rc = WaveMixPlay(params)

End Sub
Visual Basic Programmer’s Journal APRIL 1996 91ns

9

INTERACTIVE
DEVELOPER

V

W
w
W

t
a

W
W
t
t
s
t
p

o
m

B4 world (see Listing 1).
Even though I had hidden much of the drudge work inside

AVMIX.BAS, I hadn’t reached the level of encapsulation I
anted. With the advent of classes in VB4, I could now take
aveMix a step further: I could create a WaveMix object.
The cWaveMix class module describes that object. Rather

han rewriting all my code from scratch, cWaveMix is a wrapper
round my WAVEMIX.BAS functions.

HY A CLASS?
hy bother building a class? One big reason is to make use of

he class’ built-in Initialize and Terminate events. Because
hese events are fired automatically, I can place my WaveMix
tart-up and shut-down code in these events, and be guaran-
eed they’ll be called properly. Using my cWaveMix class, the
rogrammer no longer needs to remember to call these
2 APRIL 1996 Visual Basic Programmer’s Journal

LISTING 2 A WaveMix Class. This VB4 class module is a wrapper
around WAVMIX.BAS. It hides virtually all of the internals

f the WaveMix DLL, exposing just three properties and two
ethods.

)

n
t

l
o
m
c
c
s
m
d
W
c

w
o
W
c

w
e
b
i
C
c
t
(
o
L

k
p
r
U
C
n
b
e
f

©199
routines. In fact, the programmer doesn’t even need to know
about them.

The cWaveMix class is very simple, consisting of only three
properties and two methods (see Listing 2). In designing the
interface to this class, I wanted to make it as simple and as
foolproof as possible. There are easily a half-dozen alterna-
tives one might take in designing this class. I chose the one that
worked best for me.

Remember that eight channels are available for playing
sounds. I considered presenting an array of some sort to the
programmer, but that direction never seemed clean enough. I
finally chose a selector property called CurrentChannel which
you set to a value from zero to 7. After that, any other proper-
ties that are set, or methods that are called, are effective for
that particular channel.

The other two properties are FileName and AutoLoop. Two
methods, Play and Quit, start and stop the sounds playing in
the current channel. A simple example illustrates how these
are used:

WaveMix.CurrentChannel = 5
WaveMix.FileName = "C:\WINDOWS\DING.WAV"
WaveMix.AutoLoop = 0
WaveMix.Play

Here, I assign the wave-form audio file DING.WAV to chan-
el five and play it one time. This is a lot easier than calling all
hose API functions.

Here’s an interesting aside: I implemented a Quit method to
et the programmer stop a currently playing channel. I had
riginally wanted to call it the Stop method because this was
ore consistent with terminology used by the MCI Multimedia

ontrol. Unfortunately VB4 didn’t care much for my idea be-
ause the name Stop conflicts with Visual Basic’s own Stop
tatement, used to suspend program execution. I find this
ore than a little bewildering. I’d expect VB to be able to
istinguish between WaveMix.Stop and Stop, because
aveMix.Stop is unambiguous. But it can’t, so I decided to just

all my method Quit. Hey, I’m flexible.
To tie all the pieces of this WaveMix journey together, I

rote an example program that allows you to play with most
f WaveMix’s features. WavePlayer lets you assign a different
AV file to each channel, and lets you optionally loop each

hannel (see Figure 1).
You can get the source code for the example program, as

ell as all the code shown here, from VBPJ’s online sites. The
xample program, contained in the file ID0495.ZIP, is short
ecause all the messy details of the WaveMix DLL are hidden

nside the cWaveMix class. Just add WAVMIX.BAS and
WAVEMIX.CLS to your projects and take advantage of eight-
hannel stereo wave-form audio. Download ID0495.ZIP from
he VBPJ Development Exchange on the World Wide Web
http://www.windx.com), or from VBPJ’s CompuServe Forum
r MSN site. For details, see “How to Reach Us” in VBPJ’s
etters to the Editor.

Finally, Microsoft recently released its Game SDK, also
nown as DirectX, designed to make game and multimedia
rogramming easier. Part of the SDK is DirectSound, a set of
outines that provide low-level access to sound devices.
nfortunately for VB programmers, DirectX is designed as a
++ class library. At the very least, much of DirectX will likely
eed to be wrapped in helper DLLs or OCXs before it is usable
y VB. The advantage of WaveMix is that you can use it in
ither Windows 3.1 or Windows 95, and you can run it today
rom VB.
Option Explicit
' cWaveMix Class - encapsulates the WavMix32 DLL.
Dim Channel(0 To 7) As tChannelInfo
Public CurrentChannel As Long
' The Initialize Event - makes sure the WaveMix DLL is
' started properly.
Private Sub Class_Initialize()
If Not WAVMIX_InitMixer() Then

MsgBox "Unable to Initialize WaveMix DLL", _
vbOKOnly Or vbExclamation, _
"WaveMix Error"

End
End If

End Sub
' The Terminate Event- makes sure the WaveMix DLL is
' shut down properly.
Private Sub Class_Terminate()
WAVMIX_Close

End Sub
' The Play Method-starts playing the wave file
' associated with the current channel.
Public Sub Play()
WAVMIX_PlayChannel CurrentChannel, _

Channel(CurrentChannel).Loops
End Sub
' The FileName Property - associates the current
channel
' with a particular wave file.
Public Property Get FileName() As String
FileName = Channel(CurrentChannel).WaveFile

End Property
Public Property Let FileName(ByVal AFileName As String
Channel(CurrentChannel).WaveFile = AFileName
WAVMIX_SetFile Channel(CurrentChannel).WaveFile, _

CurrentChannel
End Property
' The Quit Method - Stops the current channel if it's
' playing.
Public Sub Quit()
WAVMIX_StopChannel CurrentChannel

End Sub
' The AutoLoop Property - determines if the current
' channel will loop its wave file.
Public Property Get AutoLoop()
AutoLoop = Channel(CurrentChannel).Loops

End Property

Public Property Let AutoLoop(LoopWave)
Channel(CurrentChannel).Loops = LoopWave

End Property
http://www.windx.com1–1996 Fawcette Technical Publications

