
J E T R E P L I C A T I O N

P A U L L I T W I N

Replication, once a
daunting endeavor
for VB and Access
developers, is easy
when you use VB
4.0’s Jet engine.

Satellite

NodeHub

Node

StarTopology	

Latency

Load Distribution

Network Traffic

Reliability

Comments:

Appropriate for many situations.

All exchanges are intiated by the center

(hub) node.	

Star

Moderate

Uneven

Low

Good as long as

hub doesn’t fail;

bad if hub fails

Keep in Sync with
Jet Replication

Click & Retrieve

Source

CODE!
f you wanted to keep two or more
copies of a database synchronized
using prior versions of Visual BasicI

or Access, many obstacles impeded your
progress. In fact, database synchroniza-
tion required so much coding that few
developers attempted it. With the sup-
port for replication and synchronization
built right into the Jet 3.0 database engine
used in Visual Basic 4.0 and Access 95,
replication is finally a reality for many
developers.

Replication amounts to making spe-
cial copies of a regular Access database.
These copies are enabled in such a way
44 MARCH 1996 Visual Basic Programmer

Paul Litwin is the editor of Smart Access,
from Pinnacle Publishing, and an indepen-
dent developer focusing on Microsoft Access
and SQL Server solu-
tions. Paul just finished
work on two Access 95
books: Microsoft Ac-
cess 95 Developer’s
Handbook, from Sybex,
and Microsoft Access 95
How-To, from Waite
Group Press. This ar-
ticle was adapted from Microsoft Access 95
Developer’s Handbook by Paul Litwin, Ken
Getz, Mike Gilbert, and Greg Reddick. Reach
Paul on CompuServe at 76447,417 or on the
Internet at PaulLitwin@msn.com.
that you can easily transfer changes made
in one copy to each of the other copies.
Jet replication is composed of three steps:
replication, synchronization, and conflict
resolution.

When you replicate a normal Access
database, Jet makes many changes to the
database’s schema, enabling the database
to exchange updates with other databases.
When you convert a nonreplicated data-
base into a replicated database, you end
Pick Your Topology. LANs can be implemented
using a variety of topologies, but each topology presents

its own set of considerations from the standpoint of synchronization.
Choose a topology according to your priorities: how important is
latency, network load, and synchronization reliability to you? For
example, if short latency is essential but network traffic is
reasonable and the size of the LAN is small, you may want to use
a fully connected topology.

FIGURE 1
up with the design master
of a new replica set. A rep-
lica set of one, however, is
not very useful: there
would be no one to ex-
change rules with. Nor-
mally you create a second
member of the replica set
by replicating the design
master. You can create ad-
ditional members of a rep-
lica set by replicating any
of its existing replicas.

Two replicas can ex-
change updates only if
they are descendants of
the same design master—
that is, members of the
same replica set. The de-
sign master is a special
member of a replica set.
While you can make
schema changes only in
the design master, you can
make changes to data in
any replica of a replica set
(unless you elect to make
a replica read only).

When you make up-
dates to a replica that’s a
member of a replica set,
Jet tracks the updates us-
ing the extra tables and
fields it added to the data-
base when you first repli-
’s Journal

cated it. Jet does not, how-

©1991–1996 Fawcette Tech
ever, send changes to the other members
of the replica set without your interven-
tion. In fact, unlike networked databases
in a multiuser file server or client/server
environment, replicas are not connected
except when you temporarily connect
them—two at a time—during a synchro-
nization exchange.

When you synchronize two replicas,
Jet sends updates from one replica to
another. Jet sends only the updates, a
http://www.windx.comnical Publications

J E T R E P L I C A T I O N

affect other users, if the network is al-

Topolo

Latenc

Load D

Netwo

Reliab

Comm
Best la
since e
every
Approp
small n
must b

Topolo

Latenc

Load D

Netwo

Reliab

Comm
Approp
especia
distrib
process that is much more efficient than
importing and exporting records between
two nonreplicated databases.

Normally, synchronization occurs in
both directions, but you can elect to syn-
chronize in only one direction if you wish.
It’s up to you to control when, and be-
tween which replicas, synchronization
occurs. In addition, you must first estab-
lish a physical connection between the
two replicas before you can make a syn-
chronization exchange.

In between synchronization ex-
changes, it’s possible that two users may
modify the same row in different repli-
cas. When this occurs, Jet flags a conflict
the next time the replicas are synchro-
nized. Jet uses a simple algorithm to
determine which user’s changes are pre-
served, based on which replica modified
the record the greatest number of times.
You can override this automated deci-
sion by creating custom conflict resolu-
tion code (unfortunately, space con-
straints don’t permit me to discuss the
creation of custom conflict resolution
code in this article).

WHEN TO USE IT?
When you think about it, replication is
just another way to share data, and can be
http://www.windx.com

gy	

y

istribution

rk Traffic

ility

ents:

tency but the most network traffic

very replica must exchange with

other replica in the replica set.

riate for applications with a

umber of nodes where latency

e kept to a minimum.	

Fully connected

Low

Even

High

Good

gy	

y

istribution

rk Traffic

ility

ents:

riate for many situations,

lly when you need to evenly

ute the load.

Ring

Moderate

Even

Low

Good, if direction

can be reversed in

the event of a

node failure

Fully Conne

Ring

©1991–1996 Fawcett
used in many of the same situations that
classic file server and client/server sys-
tems are employed. You may benefit from
Jet replication in many situations. In gen-
eral, whenever you need to keep multiple
copies of the same database synchro-
nized, Jet replication is a good candidate.

When designing a system for a local area
network, you may have difficulty deciding
whether to share a single copy of a
nonreplicated database across a workgroup
or to distribute replicated copies of the
database to each user and regularly syn-
chronize changes between the replicated
copies. In most cases the more traditional
file-server approach makes more sense
because of the need for the immediate dis-
semination of updates to all users.

A replicated system has a greater time
lag between the dissemination of updates.
This lag period—called the update la-
tency—may vary from an hour to several
hours or days, depending on the number
of users, the volume of updates, the fre-
quency of conflicts, the synchronization
topology, and the synchronization sched-
ule. On the other hand, using replication
in this scenario might make sense in one
of these situations: if data is updated
infrequently, if updates do not usually
Visual Basic P

Topology	

Latency

Load Distribution

Network Traffic

Reliability

Comments:

Simple to implement but worst update

latency. May be appropriate for

single-master model (data updates

made only to the design master).	

Linear

High

Even

Low

Bad; if any

node fails,

synchronization

is disrupted

Topology	

Latency

Load Distribution

Network Traffic

Reliability

Comments:

May be most efficient for applications

where data updates occur only in

selected nodes.	

Tree

Variable

Uneven

Low

Depends on where

the failure occurs

cted

e Technical Publications
ready overloaded, or if the network is
often down.

Another alternative might be to create
a hybrid system that uses replication and
file-server sharing, especially when you
have an overloaded network and can’t
afford to move to a client/server system.
You would create multiple workgroups,
each tied to a workgroup server machine.
Users within a workgroup would share a
database residing on the workgroup’s file
server. The database would be replicated
across workgroup servers, which would
be synchronized on a regular schedule.
This hybrid system would distribute the
load over multiple servers.Update latency
would be small within a workgroup, and
greater between machines in different
workgroups.

The speed of the connection between
two nodes (computers) on a wide-area
network is slower than that of a LAN. This
factor usually rules out the use of a file-
server sharing model on a WAN in favor of
a client/server system.

With the introduction of replication,
however, you may wish to consider repli-
cation instead of a classic client/server
system when using a WAN. Because syn-
chronization exchanges transfer only the
changed records, not whole tables, repli-
rogrammer’s Journal MARCH 1996 45

Linear

Tree

J E T R E P L I C A T I O N

a
t
t
a
s
n
d
w
o
b
m

a
n
t
s

W
W

cation is well suited for WANs.
In addition to the reasons given for

using replication on LANs, you may wish
to consider using replication on a WAN if
the move to a client/server system is
considered too expensive.

Replication is probably not a good
choice:

• If users generate many updates, and
especially if multiple users often update
the same records, causing a large number
of conflicts.
• If there is a need for the immediate
dissemination of updates to all users.
• If data consistency is critical.

In these situations you’d be better off
using a classic client/server, transaction-
oriented approach or the replication ser-
vices of a server database. (see the
sidebar, “Contrasting Jet Replication with
Microsoft SQL Server 6.0 Replication”).

LOOSELY CONNECTED NETWORKS
Mobile laptop users, connecting either
infrequently or over slow modem lines
to LANs or WANs, do not fit well into
either the file-server or client/server sys-
tem, especially when two-way transfer of
updates is needed. This type of system is
often ideally suited for Jet replication
because users can take a replica with
them when they go on the road, plugging
back into the corporate network every
so often to exchange updates with the
“main” database.

Two potential stumbling blocks, how-
ever, affect the use of Jet replication on
laptops. First, many existing laptops will
be underpowered for replication—
laptops running VB must have at least 8
MB, and laptops running Access 95 must
have 12 MB of RAM. Because there’s no
support for the replication of partial
tables, there’s no easy way to have each
salesperson’s laptop contain only the
subset of data pertaining to his or her
region.

Fortunately, several possible
workarounds address this shortcoming.
One possibility is to have laptop users
synchronize their data only to the main
database. Another potential workaround
would be to have separate “territory”
tables for each user that could be com-
bined for analyses using a Union query
or a routine that created a temporary
combined table.

Even if you decide not to use replica-
tion to share data in a file-server environ-
ment, you may wish to consider using it
for maintaining “warm” backups. By rep-
licating a database and regularly synchro-
nizing it with another replica (every 15
minutes or hourly, for example), you’ll be
ready in the event of a disaster that cor-
46 MARCH 1996 Visual Basic Programmer
rupts or destroys the main database.
If you’re developing applications us-

ing Access, where the application is stored
in the database, you may also wish to
consider using replication to distribute
application updates, significantly reduc-
ing the maintenance burden associated
with updating an application distributed
to tens or hundreds of workstations.

When replicating a database, you
must decide on a synchronization to-
pology and schedule for the replica set.
The topology defines the replicas that
exchange updates with other replicas,
and the direction of such exchanges.
The schedule defines when the ex-
changes occur and who initiates the
exchanges. The topology and schedule
you choose for your replica set affect
update latency.
’s Journal ©1991–1996 Fawcette Techn
Various topologies might be used on
 LAN (see Figure 1). The synchroniza-
ion topology you choose depends on
he importance of latency, network load,
nd synchronization reliability. If a very
hort latency is of utmost importance,
etwork traffic is not a concern, and you
on’t have many nodes, then you may
ant to use the fully connected topol-
gy. Otherwise, the star usually works
est, with the ring topology another com-
on choice.

All the topologies shown in Figure 1
re possible on a WAN or a loosely con-
ected network. You might also use a
opology that interconnects several
tars or rings.

HAT CHANGES IN REPLICATION?
hen you replicate a database, Jet makes
Microsoft has added replication capabilities to Microsoft SQL Server 6.0, as well
as to Jet 3.0. However, the two products handle replication in substantially
different ways.

On the most fundamental level, Jet replication treats the data equally in every
replica. You can make a change to data anywhere, and it will eventually propagate
around the entire replica set. In contrast, SQL Server replication employs a “publish
and subscribe” metaphor. One copy of the database publishes a table, and many
others may subscribe to it. SQL Server replication is a one-way-only process (multiple
SQL Server databases may publish parts of the same table using horizontal or vertical
partitioning, but these multiple publications may not overlap).

Because SQL Server replication operates on a table rather than a database
level, it’s easy to replicate tables from one database into a second, otherwise
dissimilar database.

SQL Server offers rich scheduling options for maintaining synchronization
between replicas. Because the server keeps a transaction log, it has the ability to
synchronize every time a specified number of transactions has taken place in a
table. Thus, you can ensure that SQL Server replicas differ by no more than a
maximum number of changed records from the publishing database without
resorting to frequent, possibly unneeded synchronizations. Text and image
columns—the SQL Server rough equivalents of memo and OLE fields—cannot
participate in transaction-based replication. They must be replicated using
schedule-based replication instead.

SQL Server does not replicate schema changes to a published table. If you
need to change the design of a table in a replicated SQL Server database, you
must delete the old publication, create a new one, and manually synchronize the
new table into every replica.

SQL Server replication offers an additional level of flexibility through the use
of stored procedures to customize replication. A subscribing database can call a
stored procedure on any replicated insert, delete, or update. This capability
allows you to design replication schemes in which the data on the subscriber is
stored differently than it is on the publisher.

Although SQL Server uses ODBC to move data into subscribing databases,
neither Jet 3.0 nor SQL Server 6.0 is yet capable of heterogeneous replication.
Microsoft has announced that SQL Server 6.5 will support replication to Jet and
other ODBC data sources. Meantime, if you have a client/server database using
VB or Access for the front end and SQL Server for the back end, you’ll need to use
the replication capabilities of both products to maintain multiple copies in
synchronization. For example, you might use Jet replication to ensure that
geographically diverse users have the same forms and reports while using SQL
Server replication to publish the data to servers to which those same users
connect. —Mike Gunderloy

Contrasting Jet Replication with
Microsoft SQL Server 6.0 Replication
http://www.windx.comical Publications

J E T R E P L I C A T I O N
a number of changes to the database,
such as adding fields to each replicated
table in the database, changing sequen-
tial AutoNumber fields to random
AutoNumber fields, adding several sys-
tem tables to the database, and adding
properties to database document ob-
jects. These changes can significantly
increase the size of your database.

The tables that replication adds to
the database are used to track the names
and locations of replicas and replicated
tables in the replica set, log synchroniza-
tion exchanges, track deleted records,
and log synchronization conflicts and
errors. All replication system tables are
read only. Most of the fields in these
tables are readable, except for some fields
where the data is stored in binary form
as OLE objects.

In addition to the hidden system tables,
Jet creates local (non-replicated) conflict
tables whenever outstanding conflicts oc-
cur in a database table as a result of a
synchronization exchange. Jet constructs
the name of the conflict table by append-
ing “_Conflict” to the end of the table that
contains conflicts. For example, the con-
flict table for tblCustomer would be
tblCustomer_Conflict.

When a conflict occurs during syn-
chronization because a row has been
updated in both replicas, Jet creates a
row in the conflict table of the losing
replica (if this is the first conflict for a
table, Jet first creates the conflict table)
and stores in it the losing row. Conflict
rows appear only in the losing replica.
The replica with the winning update is
not notified in any way of the conflict. Jet
also adds several fields to each repli-
cated table (see Table 1). All the replica-
tion fields are read only.

Jet also alters the behavior of existing
AutoNumber fields. If a table contains a
long-integer AutoNumber field with a
NewValues property setting of Increment,
Jet changes the property to Random.
This significantly reduces the chance that
two replicas will assign the same
AutoNumber value, because each
AutoNumber field will be based on a
randomly selected number between -2
billion and +2 billion. If this still pro-
duces too many duplicate values across
a replica set, you may wish to use an
AutoNumber field of type Replication ID
instead. When you use an AutoNumber
field with a Replication ID field size, Jet
assigns numbers using a globally unique
identifier.

While no system can ever guarantee
that a number will always be unique, glo-
bally unique identifier (GUID) numbers
have been designed with global unique-
ness in mind. These numbers are also
http://www.windx.com

sometimes referred to as universally

©1991–1996 Fawcett
unique identifiers, or UUIDs.
A Jet-generated GUID is a 16-byte

string made of several parts that, when
concatenated, have an infinitesimal
chance of ever generating duplicate val-
ues. And the “global” in GUID means
that each GUID will be unique through-
out the world, regardless of where or
when it was generated (see Figure 2.)

GUIDs are used in several places in a
replicated database to uniquely identify
many parts of a replicated system, in-
Visual Basic Pe Technical Publications
cluding rows in a replicated table, each
table in a replicated database, each rep-
lica in a replica set, each synchroniza-
tion exchange, each database genera-
tion, and each schema change.

Replicating a database adds proper-
ties to database objects (see Table 2). In
addition to the properties in Table 2, Jet
adds several other properties to the
MSysDb and UserDefined documents of
the Databases container that only Ac-
cess uses to manage replication.
rogrammer’s Journal MARCH 1996 47

48 MARCH 1996 Visual Basic Programmer’s Journal

J E T R E P L I C A T I O N

C
f
t

O
d
d
c

©199
Jet also adds properties to some TableDef fields. The
olGeneration property is added to Memo and OLE Object

ields. ColGeneration identifies the name of the field used to
rack generations for these large object fields.

GET REPLICATED
The first step in employing Jet’s replication services is to
convert an existing nonreplicated database into a replicated
design master.

Using the Jet Data Access Object (DAO), you convert a
nonreplicated database into a replicated design master by setting
the Replicable property of the database to “T.” In an odd stroke
of inconsistency with the rest of VB, Access, and Jet, Microsoft
has given this and other true/false replication properties a string
datatype that must be set to the literal String value of “T” or “F.”

Since the Replicable property of the database will not exist
until you set it for the first time, you’ll need to add the
property to the database’s properties collection in order to
set it. For example, you could use this code to make a new
design master from a nonreplicated database:

Sub CreateNewReplicaSet(ByVal strDb As String)
Dim db As Database
Dim prp As Property
Set db = DBEngine.Workspaces(0). OpenDatabase(strDb, _

Exclusive:=True)
Set prp = db.CreateProperty("Replicable", dbText, "T")
db.Properties.Append prp
MsgBox txtDb & " has been replicated.", _

vbOKOnly + vbInformation, "Create Replica Set"
End Sub

Note that I have set the Exclusive parameter of the
penDatabase method to True. To convert a nonreplicated
atabase to a replicated design master, you must have the
atabase open exclusively. When using Access, you can’t
onvert the currently open database.

CREATING ADDITIONAL REPLICAS
Use the CreateReplica method of the database object to
create additional replicas. Here’s the syntax:

database.MakeReplica replica_name, _
SEND YOUR TIP
If it’s cool and we publish it, we’ll pay you $25. If it includes
code, limit code length to 10 lines if possible. Be sure to
include a clear explanation of what it does and why it is
useful. Send to 74774.305@compuserve.com or Fawcette
Technical Publications, 209 Hamilton Ave., Palo Alto, CA,
USA, 94301-2500.

User Tip

VB3

OVERCOME ODBC ERROR
While using MS SQL Server by way of ODBC, Visual
Basic 3.0 and Access 2.0 Compatibility layer, the
ODBC error message 3146 may occur:

ODBC-call failed. [Microsoft][ODBC SQL Server
Driver]Connection is

busy with results for another hstmt [#0]

This occurs when you use DB_SQLPASSTHROUGH
on either CreateSnapshot or CreateDynaset
methods and another snapshot or dynaset is
created.

This behavior did not occur before the compatibil-
ity layer was installed. The solution for the changed
behavior of the Microsoft Access 2.0 engine is to add
an explicit <your data access object>.MoveLast after
each query executed using DB_SQLPASSTHROUGH,
thereby forcing full population of the result set. This
is no slower than the original Visual Basic version
3.0 performance (and possibly faster), and it avoids
the error. Note that this problem is fixed in Visual
Basic 4.0 for Windows.
—Douglas Haynes
Replication Fields Added to Each Table. These fields will appear in the Access UI only when you have elected to show
system objects. All added replication fields are read only.TABLE 1

Field DataType Purpose Comments

s_Generation Long Integer Tracks changes (generations) to a row. If value is 0, this represents an added row or a changed row
that needs to be sent to other replicas during the next
synchronization exchange. If it is a nonzero value, it
represents the generation of the replica during
which this change was made.

s_GUID AutoNumber, Replication ID Uniquely identifies the row This field will not be added to the table if the
across replicas, even if the table contains an existing AutoNumber field
primary key values change. with a field size of Replication ID.

s_Lineage OLE Object This field tracks the history of changes to the record.

Gen_Field Long Integer One Gen field is added for each large object This field tracks changes to the large object
(memo or OLE object) user field in the table. It name takes the format Gen_Field where

Field is the name of the large object field.
http://www.windx.com1–1996 Fawcette Technical Publications

http://www.windx.com

description [, dbRepMakeReadOnly]

For example, you could use this sub-
routine to create a new read/write replica:

Sub CreateReplica(_
ByVal strReplica1 As String, _
ByVal strReplica2 As String, _
Optional ByVal varDesc As Variant)
Dim db As Database
Set db = DBEngine.Workspaces(0). _
OpenDatabase(strReplica1)

E

p

Evidence of Replication. The tblCu
The s_GUID field is a 16-byte string th

all replicas using a sophisticated algorithm that i
ID, and several other numbers.

FIGURE 2

©1991–1996 Fawcette
 Visual Basic Pr

J E T R E P L I C A T I O N

M
t
f
t
a
s
i

M
r

r
m
s
I
f
t
a
t
q
t
K
y

c
T

O

D
D

If IsMissing(varDesc) _
Then varDesc = strReplica2

db.MakeReplica strReplica2, _
varDesc

MsgBox strReplica2 _
& " has been created.", _
vbOKOnly + vbInformation, _
"Make Replica"

nd Sub

Jet stores the value of the description
arameter in the Description field of

stomer table shows the replication fields.
at uniquely identifies each record across
ncorporates the system clock, the network

 Technical Publications
 ogrammer’s Journal MARCH 1996 49

SysReplicas. You can view and change
he value using Replication Manager. In
act, when you use Replication Manager,
he description—not the replica name—
ppears in the Replicas drop-down box,
o you may want to create succinct but
nformative descriptions.

If you include the optional dbRe
akeReadOnly property, the created

eplica will be read only.
Before you convert a database into a

eplicated design master, prevent docu-
ent objects from being replicated by

etting their KeepLocal property to “T.”
n Access, you can manipulate KeepLocal
or any document object, including
ables, queries, forms, reports, macros,
nd code. In VB applications, you need
o concern yourself only with tables and
ueries, both of which are members of
he Tables container. By default, the
eepLocal property doesn’t exist until
ou create it.

For example, to prevent Jet from repli-
ating the tblLocal table in the
oBeReplicated.mdb database, use:

n Error Resume Next

im db As Database
im doc As Document

J E T R E P L I C A T I O N

next synchronization.
Dim prp As Property
Const conErrPrpNotFound = 3270

Set db = DBEngine.Workspaces(0). _
OpenDatabase("ToBeReplicated.mdb")

Set doc = _
db.Containers!Tables. _
Documents!tblLocal

doc.Properties!KeepLocal = "T"
If Err = conErrPrpNotFound Then

Set prp = _
doc.CreateProperty("KeepLocal", _
dbText, "T")

doc.Properties.Append prp
End If

Because you cannot be sure if the
KeepLocal property has already been cre-
ated, you need to set it in two steps. This
50 MARCH 1996 Visual Basic Programmer

A Synch Function. glrDbSync() syn
of a replica set. While Jet will sync

decide which databases to synchronize, and
sure the two replicas are connected when you

LISTING 1
routine first attempts to set the value of the
property. If the property doesn’t exist, er-
ror 3270 will occur. If this error occurs, the
code creates the property and appends it to
the document’s Properties collection.

After you have replicated a database,
the KeepLocal property becomes read
only. However, you can use the Replicable
property of objects to make an object
local or replicated. You can set this prop-
erty to “T” or “F” (for true or false) in the
design master, but you can’t set this prop-
erty to “T” for local objects in nondesign
master replicas.

When you change the Replicated prop-
erty of an object from “T” to “F,” Jet makes
the object local to the design master and
deletes it from other replicas during the
’s Journal

chronizes changes between two members
hronize two databases for you, you must

when. You’re also responsible for making
 want to synchronize them.

g

g

©1991–1996 Fawcette Tech
SYNCHRONIZING REPLICAS
When you make a synchronization ex-
change between two replicas, Jet cop-
ies schema changes and data updates
between the two replicas. The default
exchange method is two way, which
means that data updates move in both
directions. You can also opt for a one-
way data exchange between two repli-
cas. Regardless of whether you choose
two-way or one-way exchanges, Jet al-
ways propagates schema changes prior
to data synchronization.

Synchronizing two databases is simple:
Jet does all the work. It’s up to you, how-
ever, to decide when to synchronize and
with whom. You’re also responsible for
making sure the two replicas are connected
when you want to synchronize them.

Initiate synchronization exchanges
using the Synchronize method of the da-
tabase object. The Synchronize method
uses this syntax:

database.Synchronize DbPathName _
[, ExchangeType]

where DbPathName is the path and name
of the replica you wish to exchange with,
and ExchangeType is one of these
constants: dbRepExportChangesSend,
dbRepImportChangesReceive, and
dbRepImpExpChanges.

The dbRepImpExpChanges constant,
which tells Jet to send and receive data
changes between both replicas, is the
default. A function called glrDbSync() syn-
chronizes changes between two members
of a replica set (see Listing 1).

If you need to synchronize replicas on
a regular basis and you’ve purchased the
Access 95 Developer’s Toolkit, you may
want to use it instead of DAO to schedule
synchronizations. It’s easier to use, re-
quires no programming, and maintains
an excellent history of the exchanges.

However, creating your own synchro-
VB4

Function glrDbSync(ByVal
strFromDb As String, _

ByVal strToDb As String, _
Optional ByVal varExchType As

Variant) As Boolean

‘ Synchronizes two databases
‘ varExchType must be one of
‘ following constants:
‘ dbRepImpExpChanges (the
‘ default),
‘ dbRepExportChanges, or
‘ dbRepImportChanges
‘ Returns True if successful;
‘ otherwise returns False

On Error GoTo glrDbSync_Err

Dim dbFrom As Database
glrDbSync = False

Set dbFrom = _

DBEngine.Workspaces(0)_
If IsMissing(varExchType) Then _
varExchType = _
dbRepImpExpChanges

dbFrom.Synchronize strToDb, _
varExchType

glrDbSync = True

lrDbSync_Exit:
On Error GoTo 0
Exit Function

lrDbSync_Err:
Select Case Err
Case Else

MsgBox "Error" & Err.Number _
& ": " _
& Err.Description, _
vbOKOnly + vbCritical, _
"Synchronize Replicas"

End Select
Resume glrDbSync_Exit

End Function

.OpenDatabase(strFromDb)
s:
Properties Added to a Database. In addition to these properties, the database object has two replication method
MakeReplica and Synchronize.TABLE 2

Object Property Description Read/Write Status

Database DesignMasterID Unique identifier assigned to the design master of a replica set. Read/write

ReplicaID Unique identifier for replica. Read-only

All document objects KeepLocal Set to “T” before the database is first replicated to make an object nonreplicated (local). Read/write before the
database has been replicated.

Replicable Set to “T” after the database is replicated to start replicating an object that was local Read/write
or to “F” to stop replicating an object.

Table document ColIsGuid The column in the table that serves as the globally unique identifier (GUID); Read-only
objects only usually s_GUID, but Jet will use a user-created field of type GUID if the table

already contains one.
http://www.windx.comnical Publications

J E T R E P L I C A T I O N
nization schedule using DAO has some
advantages. For example:
• It allows you to deliver a VB-only solu-
tion. You don’t have to install and use
Replication Manager (see the accompa-
http://www.windx.com

i

©1991–1996 Fawcett
nying sidebar, “Tools for Managing Jet
Replication” for more information on
managing replicated databases).
• You have more flexibility in scheduling.
Replication Manager uses a day-of-week
Visual Basic Pe Technical Publications
schedule and allows synchronization only
every 15 minutes.
• You can create a hybrid synchroniza-
tion system based on both a regular timed
schedule and update volume.

If you decide to implement a synchro-
nization system using DAO, you’ll need to
decide how the process will be driven.
Most likely you’ll employ a hidden form
that’s automatically loaded when the ap-
plication is started with code attached to
the form’s Timer event.

This form would likely follow a sched-
ule that was stored in a table in the data-
base. But where will this hidden form and
table reside? Should it be part of the
normal application that runs on each desk-
top, or should it perhaps run only on
selected desktops?

The answer depends on your chosen
synchronization topology. In any case,
you don’t want all replicas attempting
to synchronize with each other at the
same time.

One solution might be to keep this part
of the application separate from the rest
of your application. This application could
run off the file server or the database
administrator’s desktop.

You may wish to implement a syn-
chronization system based on update
volume rather than (or in addition to) a
regular schedule. You can determine the
update volume by counting the number
of records in each replicated table in the
database where the s_Generation field
equals 0. This number represents the
number of records that have been up-
dated or added since the last synchroni-
zation exchange.

I’ve created a sample form,
UpdateVolume, that demonstrates this
technique (see Figure 3). Open this form,
select a replica, and click the Count Up-
dates button. After a brief delay, the
number of updated records in the repli-
cated tables in the database is displayed
in a text box on the form.

This example doesn’t do anything
with the value, but once you’ve deter-
mined the number of updated records,
you can easily decide whether it’s time
to synchronize.

Replication is an exciting new addi-
tion to the Jet engine. Jet 3.0’s support
for replication increases your available
options for sharing data. Now it’s your
turn to dig in and put Jet replication to
work.

The code in this article is included in
a sample VB project called REP1.VBP
that you can download from the VBPJ
Developer’s Exchange on CompuServe
(GO WINDX), The Microsoft Network
(GO WINDX) and the World Wide Web
Count the Updates. The UpdateVolume form counts the number of updated
records since the last synchronization exchange. This number could be used to

nitiate a synchronization exchange only after so many updates were made to a replica.

FIGURE 3
(http://www.windx.com).
Remote Management. Replication Manager is used to manage a replica
set across a WAN. The local machine, Wombat is exchanging updates with

a replica on the remote machine, Zebra.

FIGURE A

Tools for Managing Jet Replication

VB is great for creating applications that manipulate replicated databases, but
you may find it easier to use Access 95 or Replication Manager to set up and
manage replicas. You can use the Access 95 menus to easily replicate and
synchronize databases. You can also use Access to resolve synchronization
conflicts and transfer the design master status from one replica to another. The
replication-related commands are located under Tools selection of the Replication
submenu.

The Access 95 Developer’s Toolkit includes a utility called Replication
Manager (see Figure A). Like Access, you can use Replication Manager to
replicate and synchronize replicas and transfer the design master status from
one replica to another. In addition, Replication Manager includes a facility for
creating a regular synchronization schedule that a companion program called
the Transporter uses to perform unattended synchronization exchanges.
Replication Manager also includes tools for reviewing synchronization logs and
for easing the management of remote replicas. —P. L.
rogrammer’s Journal MARCH 1996 51

