
D
T
o
D
Z
o
R
P
s

a

c
f
s
t
tb

9

PROGRAMMING
WITH CLASS

E
Y

Click & Retrieve

Source

CODE!
Breathe some fresh air into those
legacy applications by giving them
access to OLE servers.

y Deborah Kurata

xtend the Life of
our VB3 Apps
V
i
c
w
t
t

M
f
y

'
'
' Date: December 10, 1995
VBXs that have worked so tried and true. Maybe they just don’t
have a business need or available resources. Whatever the
reason, deciding to keep your applications in VB3 doesn’t mean
you can’t program with class.

As I discussed in my last Programming with Class column
[“Creating OLE Servers,” VBPJ March 1996], one of the exciting
things you can do with classes is create an OLE server. OLE
servers provide a mechanism for encapsulating business logic
or other processing in an executable unit and allow other
applications to access that processing through a set of pre-
defined interfaces, called properties and methods. You can
write OLE servers in either the 16-bit or 32-bit version of Visual
Basic 4.0 (or in Visual C++).

So how does that help your Visual Basic 3.0 applications? Any
VB3 application running on the same machine as a 16-bit or 32-bit
OLE server can access that server through OLE Automation. A VB3
application can also access a 32-bit OLE server running in a 32-bit
operating system through Remote Automation (see Figure 1). As a
result, you can use the new features of Visual Basic 4.0 within Visual
Basic 3.0 by encapsulating those features within a VB4 OLE server
and accessing that server through OLE Automation.

CHANGING BUSINESS RULES
Picture this scenario: you come back from your vacation to find
some major changes in your organization. The entire inventory
control system must be rewritten to support new inventory
control business rules. At this point, you have three options: (1)
Return to your vacation and hope all will be fixed by the time you
return, (2) Rewrite significant routines in all of the VB3 applica-
tions that access inventory, or (3) Develop an OLE server for the
inventory control routines, remove a significant amount of code
from the current VB3 applications that access inventory, and

ot all Visual Basic developers are porting their VB3
applications to VB4. Maybe they are still concerned
about finding bug-free replacement OCXs for those
eborah Kurata is principal consultant and cofounder of InStep
echnologies, a consulting group that designs and develops object-
riented Microsoft Windows applications. She is the author of
oing Objects in Microsoft Visual Basic 4.0, published by
iff-Davis Press, which focuses on a pragmatic approach to object-
riented design and development of Visual Basic applications.
each her at InStep Technologies, 5424 Sunol Blvd. #10-229,
leasanton, CA 94566; or find her leading the Beginner’s Corner
ection of the VBPJ Forum on CompuServe at 72157,475.

6 MAY 1996 Visual Basic Programmer’s Journal
dd code to these applications to call the new server.
Because neither of the first two options seem to further your

areer, the third option becomes your choice. To get started,
ollow the tips and samples in my last column to create an OLE
erver using VB4. If you’ve been wanting to learn VB4 in depth,
his is a great opportunity. After that, modify the VB3 applica-
ions to become OLE client applications.

This is much easier than it sounds. Simply remove from the
B3 applications the code that is no longer required (because it

s now in the OLE server), and replace it with the appropriate
alls to properties and methods in the server application. I’ll
alk you through a prototype VB3 application that will access

he OLE server described in the March column. You could adapt
his code to work within any VB3 application.

It’s always a good idea to start with a header comment block.
ake sure the VB3 application has a clear header, and don’t

orget that all-important Option Explicit statement to ensure
ou don’t misspell any variable names:

 Form Name: frmInventory
 Author: Deborah Kurata, InStep Technologies
A New Lease on Life. Extend the life of your VB3 app
with OLE. Using OLE Automation or Remote Automation,

your VB3 applications can access both 16-bit and 32-bit servers.

FIGURE 1

16-bit

OLE

Server

VB3

App

OLE

Automation

Windows 3.1 or

Windows for Workgroups

32-bit

OLE

Server

VB3

App

Windows 95 or

Windows NT

16-bit

OLE

Server

OLE

Automation

OLE
Automation

Remote Automation
http://www.windx.com

For lCount = 1 To m_Inv.Count

u
d
e

OLE Automation check box on the screen for Step 2.

PROGRAMMING
WITH CLASS
' Description: Allows for adding and removing items
' from inventory
' Revisions:
' 2/20/96 D Kurata Replace code that processed
' the inventory with code to access the
' Inventory Control OLE server
Option Explicit

Next, create a member variable that will store the reference
to the object from the top-level class of the server. This variable
is called an object variable because it references an object:

' Private member variables
Dim m_Inv As object

Notice that in VB3 you declare the variable generically as
“object,” and not as the specific class of object as you would with
VB4 (Dim m_Inv as CInventory). VB3 has no references and no
knowledge of public classes registered by OLE servers. As a
result, you cannot declare the object variable to be from a
specific class. VB3 performs “late binding” as opposed to the
“early binding” available with VB4: the VB3 application does not
know about the class or its methods and properties until run
time. No property and method syntax checking, no Object
Browser support, and no “early binding” performance benefits
are available in VB3.

Next write some code that defines constants for the com-
mand buttons on the form. Using constants instead of hard-
coded numbers, known as “magic numbers,” improves the
readability and maintainability of the code:

' Constants for the command buttons
Const iCLOSE = 0
Const iRECEIVE = 1
Const iSELL = 2

The top-level inventory object is created in the Form_Load
event. The “Dim x as New CClass” and “Set x = New CClass” syntax
used in VB4 is not available in VB3, but you can use the CreateObject
LISTING 1 It’s Just a Click Away (from VB4). Clicking on a button i
this code in the Button_Click event for the button control a

' displayed to the user here

http://www.windx.com
function instead. The parameter to this function is the name of the
OLE server application (Inventory) and the name of the class from
which an object is to be created (CInventory):

Sub Form_Load ()
Dim lCount As Long
On Error Resume Next

' Create an instance of the inventory class
Set m_Inv = CreateObject("Inventory.CInventory")
If Err <> 0 Then

' A more friendly error message would be
' displayed to the user here
' With a more detailed message printed to a log
MsgBox Error$(Err)
Unload Me
GoTo EXIT_Form_Load

End If

' Fill the combo box with values
en

End Sub
Private Sub cmdInventory_Click (Index As Integer)
Dim iTotal As Integer, ix As Integer
Dim sProductNumber As String

' Index into the collection
ix = cboItems.ListIndex + 1

Select Case Index

Case iCLOSE
Unload Me

Case iRECEIVE
' NOTE: combo's are 0 based
' collections are 1 based
sProductNumber = m_Inv.Item(ix).ProductNumber

' Add the defined amount to the inventory
On Error Resume Next
iTotal = m_Inv.AddInventory(sProductNumber, _

Val(txtReceived.Text))
If Err <> 0 Then

' A more friendly error message would be
n a
rr
' With a detailed message printed to a log
MsgBox Error$(Err)

End If

' Display the revised inventory amount
txtTotal.Text = iTotal

Case iSELL
' Product number for the inventory item
sProductNumber = m_Inv.Item(ix).ProductNumber

' Remove defined amount from the inventory
On Error Resume Next
iTotal=m_Inv.RemoveInventory(sProductNumber, _

Val(txtReceived.Text))
If Err <> 0 Then

' A more friendly error message would be
' displayed to the user here
' With a detailed message printed to a log
MsgBox Error$(Err)

End If

' Display revised inventory amount on the scre
txtTotal.Text = iTotal

End Select
Can’t Do OLE Automation Without Them. When yo
create the setup disks for VB3, include the files require

for OLE Automation. If you use the VB3 SetupWizard, check th

FIGURE 2
Visual Basic Programmer’s Journal MAY 1996 97

 VB3 application does the processing in a VB4 application. Put
ay.

PROGRAMMING
WITH CLASS
cboItems.AddItem _
m_Inv.Item(lCount)._
ProductNumber & _
Space(5) & m_Inv._
Item(lCount).ProductName

Next lCount
EXIT_Form_Load:

End Sub

98 MAY 1996 Visual Basic Programmer’s Jou
If the object was created without an
error, the code accesses the server to get
the Count property, then loops through
all inventory items and loads the items
into a combo box control. Use the Item
method of the CInventory class to re-
trieve the item and the ProductNumber
and ProductName properties of the Item
rnal
to retrieve the product information.
Because the user interface of this test

OLE client application provides three
buttons---close, receive inventory, and sell
inventory---you also need to write code in
the Button_Click event for the button con-
trol array (see Listing 1). This code dem-
onstrates how you can use the methods
and properties of the OLE server within a
VB3 application.

As you do with VB4, set the object to
Nothing when the object is no longer
necessary:

Private Sub Form_Unload (Cancel As _
Integer)
' Clear the instance
Set m_Inv = Nothing

End Sub

USING JET 3.0 AND RDO FROM VB3
Not only can you revise your VB3 apps to
accommodate business rules that have
changed, but you can also give them new
functionality. Through OLE servers, your
VB3 applications can access a lot of fea-
tures that you might have thought were
available only to VB4 applications. For
instance, although there’s no “compatibil-
ity layer” to let your VB3 apps access the
cool new features of Jet 3.0, you can create
an OLE server to do the job. (For details on
Jet’s new features, see “Moving to Jet 3.0”
in the December 1995 issue of VBPJ.)

This OLE server will act as a database
server. All requests to the database could
be submitted to this OLE server and all
requests from the database would pass
back through the OLE server. Suddenly,
all the new performance optimizations,
recordset processing, and replication
capabilities are available to your VB3 ap-
plication.

You face one restriction, however, in
this scenario. Because Jet 3.0 is 32-bit
only, the OLE server needs to be 32-bit
and needs to be executed on a 32-bit
operating system, such as Windows 95 or
Windows NT. To access the 32-bit OLE
server, your VB3 application either needs
to run on that platform also, or use Re-
mote Automation from a machine run-
ning Windows 3.1 or Windows for
Workgroups (see Figure 1).

If you are accessing remote databases
from your VB3 application, you could
improve your performance by using the
new remote data objects provided in the
Enterprise Edition of Visual Basic 4.0.
These remote data objects provide a thin
layer over ODBC for significant perfor-
mance improvements. For details about
RDO, see “A Walking Tour of RDO” in the
March 1996 issue of VBPJ.
Use RDO from your VB3 application the

http://www.windx.com

same way you would access Jet 3.0. Simply encapsulate the
desired processing in a 32-bit OLE server. Then modify the VB3
application to access the server through OLE Automation or
Remote Automation.

In addition to creating OLE servers to use RDO and Jet 3.0, you
can create an OLE server to facilitate deployment of your applica-
tion in different languages. There is no easy way to localize VB3
applications. Your only choices are to store all the strings in a

Be Sure to Share. When creating the setup disks for the
OLE server, be sure to identify it as a shared component.

When the OLE server is installed, it will automatically be registered
for use.

FIGURE 3

99 MAY 1996 Visual Basic Programmer’s Journal

PROGRAM
WITH C
MING
LASS

http://www.windx.com

database and maintain the database, add a lot of If…Else…End If
or Case statements in your code, or develop multiple versions of
the application.

With VB4, you can use resource files to store and retrieve
needed strings. (You can also store bitmaps and other binary
data in the resource files.) To make use of this functionality in
your VB3 application, create a localization OLE server that
provides strings or other resources from the resource file to
your VB3 application.

In closing, I should say a few words about installation issues
to ensure that your use of VB4 OLE servers from VB3 is success-
ful. First, there is no easy way to install the VB4 OLE server with
your VB3 application. The easiest thing to do is provide two sets
of install disks: one for the VB3 application and one for the VB4
application.

Second, when creating the setup disks for VB3, be sure to
include the files required for OLE Automation. If you use the VB3
SetupWizard, check the OLE Automation check box on the
screen for Step 2 (see Figure 2). VB3 cannot use OLE Automation
without these files. Third, when creating the setup disks for the
OLE server, identify it as a shared component. When the OLE
server is installed, it will automatically be registered for use (see
Figure 3).

So before you groan at your boss’ announcement that the
company won’t be porting its VB3 applications, consider extend-
ing their life by turning them into OLE client applications. This
way they can tap into the capabilities of VB4 by accessing VB4
OLE servers that provide whatever functionality you need.

