
VISUAL
PROGRAMMING

VISUAL
PROGRAMMING
Create Windows
API Object Controls
9

R
P
i
A
7

b

o
o
s
u
o
t

“
l
w
c
i
m

t
o
c
e
s

•
•
•
•
•
p
f
•
•
r
•
t

g

Using a Timer control is one thing,
but knowing how it works
internally is another.

y Richard Hale Shaw

As any reader of this column knows, objects are the wave
f the future. While OLE has been a portent of an object-
riented Windows, OLE is only the beginning. In future ver-
ions of Windows, most of your programming will involve
sing objects. Rather than using APIs, you’ll instantiate an
bject for a particular Windows service, and interact with
hat object in order to put the service into use.

This kind of object-oriented Windows used to be termed
Cairo,” but the concept of Cairo has changed a great deal in the
ast several months. A lot of what we once thought of as Cairo
ill appear in Windows NT 4.0 this spring: the Win95 shell, PC
ard support, and distributed OLE. Instead, Cairo will now
nclude connectivity and Internet-related features that will be

ore powerful than what was originally envisioned.
But a significant aspect of all new versions of Windows is

hat most new Windows services—and eventually, many older
nes—will be packaged as OLE controls. And many of these
ontrols will provide encapsulations of various APIs. For
xample, there are plenty of APIs whose use requires a
equence of events such as these:

 Initialize a data structure.
 Call an API to register the data structure with Windows.
 Call another API to establish a callback function address.
 Call various APIs to actually perform the required service.
 Implicitly register an application window with Windows by
assing a window handle as an argument to various API

unctions.
 Respond to invocations of the callback function by Windows.
 Respond to messages sent to your application window as a
esult of calling various APIs.
 Call an API to de-register the data structure and terminate
he service.

This kind of thing goes on all the time in Windows, and a

his month, I’ll take a break from the DigitalClock
control and look at a different issue: creating objects
that encapsulate the Windows API.
6 MARCH 1996 Visual Basic Programmer’s Journal

ichard Hale Shaw is a contributing editor to Visual Basic
rogrammer’s Journal and PC Magazine. He’s currently complet-
ng Visual Programming++, a book about Visual C++. He lives in
nn Arbor, Michigan, and can be reached on CompuServe at
2241,155, or the Internet at 3998368@mcimail.com.

reat deal of what an object-oriented development tool such

©1991
as the Microsoft Foundation Classes provides is encapsula-
tion of the core behavior that makes all this work. But some-
times MFC by itself isn’t enough. Using an MFC object means
instantiating it and writing code to utilize its member func-
tions and data members. You can access an OLE control,
however, simply by dragging and dropping it from a tool
palette into your program. And many OLE controls let you
access data through properties (exposed in property sheets)
and activate functionality by setting other properties (such
as an Enabled property). So you often don’t have to write any
code to use an OLE control.

INTRODUCING THE TIMER APIs
A great example of a set of APIs that you can easily encapsu-
late—not just with an MFC object, but through an OLE control—
are the Windows Timer APIs. The Timer APIs let you implement
periodic processing that’s initiated on receipt of a WM_TIMER
message. They let you create a Windows timer that will send
WM_TIMER messages to a given window in your application.
The timer sends the WM_TIMER messages on a regular basis at
an interval that you specify when you create the timer. You have
to add WM_TIMER handling to the specified window, or design
your program’s message loop to monitor the receipt of these
messages and then have the window procedure dispatch them
to a particular window.

Using the Timer APIs requires you to make a few decisions.
First, of course, you have to decide what your program is going
to do every time it gets a timer message. You create a handler for
WM_TIMER messages (a message-mapped override of
CWnd::OnTimer in an MFC application); or, instead, specify a
callback function that Windows will directly invoke. You’ll also
have to decide how long the timer interval—the interval be-
tween WM_TIMER messages—will be. You specify this interval
in milliseconds: the faster the timer, the smaller the timer
interval. Thus, a fast timer might generate WM_TIMER messages
10 times a second (a 100-millisecond interval), a more moderate
timer might generate messages every second (a 1000-millisec-
ond interval), and a slower timer would generate a WM_TIMER
message every 10 seconds (a 10,000-millisecond interval).

To create a timer, call the SetTimer API function
(CWnd::SetTimer in MFC), and specify the interval, the ad-
dress of the timer callback function (or NULL to handle the
WM_TIMER messages yourself), and a timer ID. The timer ID
lets you create more than one timer, where each WM_TIMER
message includes the ID of the timer that generated the
message. (This ID is passed as a parameter to CWnd::OnTimer
in an MFC application.) Once you call SetTimer, the WM_TIMER
messages will continue at the appropriate interval until you
call the KillTimer API (CWnd::KillTimer in MFC), passing it
the timer ID as an argument. KillTimer will destroy the timer.

One problem with the Windows Timer APIs is that there’s
no convenient way to stop and restart the same timer, or to
change the timer interval on a timer. If you want to temporarily
http://www.windx.com

stop and then restart a timer, you have to call KillTimer to

http://www.windx.com–1996 Fawcette Technical Publications

VISUAL
PROGRAMMING

• Code to start the timer when the control’s window was

information, and configure the ClassView window.

VISUAL
PROGRAMMING
destroy the timer, and then SetTimer to re-create it. And you
have to use the same approach to change the timer interval.
There’s no way to change the interval in mid-stream, so you’ll
have to go through the creation-destruction process again.

This can end up being a lot of work. MFC helps, of course,
but its encapsulation of the Timer APIs is kind of thin. And it
doesn’t solve the stop-restart and interval change problems.
So having a timer control—an encapsulation of the Timer
APIs in the form of an OLE control—will definitely help.

Fortunately, Visual Basic 4.0 comes with such a control.
You probably saw it in the form of a VBX in previous versions
of VB. The VB4 Timer control can be drag-and-dropped into
a form or dialog. You can specify the timer interval through
the Interval property, and just set the Enabled property to
True to enable the control. Whenever the Enabled property is
True and the Interval property is greater than zero, the Timer
control will send Timer Events to its parent form or dialog at
the specified interval. Probably the only disadvantage to
using the Timer control is that it’s available only in the Visual
Basic 4.0 environment. You can’t use it in VC4 or other OLE
control containers.

Just using the Timer control is one thing, but knowing how
it works internally is another. So I decided to clone the Timer
control and figure out how it works. In this column, I’ll show
you how I built my own Timer control—one that you can use
in VC4 as well as VB4.

ENCAPSULATING THE TIMER APIs
I started by using ControlWizard to generate a pretty vanilla
control. The one option that I took advantage of was “Invis-
ible At Runtime,” which causes ControlWizard to add the
OLEMISC_INVISIBLEATRUNTIME bit to the miscellaneous reg-
istry settings in the generated code:

static const DWORD BASED_CODE
_dwTimerOleMisc =
OLEMISC_INVISIBLEATRUNTIME |
OLEMISC_ACTIVATEWHENVISIBLE |
OLEMISC_SETCLIENTSITEFIRST |
OLEMISC_INSIDEOUT |
OLEMISC_CANTLINKINSIDE |
OLEMISC_RECOMPOSEONRESIZE;

IMPLEMENT_OLECTLTYPE(CTimerCtrl,
IDS_TIMER, _dwTimerOleMisc)

With this bit-setting option on, the control container knows
to display the control only during development, but not at
run time. After all, timers need to be used programmatically,
but the end user doesn’t need to see them displayed in a form
or a dialog. Therefore, the VB4 and VC4 environments will
display the control in a form or dialog, but at run time, VB4
and an MFC4 application won’t display the control. I made the
Timer Control part of an OCX called “SHAW WINAPI
OBJECTS.OCX,” and the associated programmatic ID
SHAWWINAPIOBJECTS.TimerCtrl.1, the name that refers to
this control in the system registry. With these steps in place,
I could now start modifying the code generated by
ControlWizard.

Getting the initial timer support in place wasn’t too diffi-
cult. The VB4 timer control uses two properties: Enabled, a
BOOL stock property, and Interval, a short-integer custom
property. I used ClassWizard to add support for these. For the
Interval property, I selected the ClassWizard option for creating
http://www.windx.com

a pair of Get/Set methods to create a pair of member functions,

http://www.windx.com ©1991–1996 Fawcette Technical Publicatio
GetInterval and SetInterval, for controlling access to the Interval
property. I additionally needed to create a data member to store
both properties, so I used the Visual C++ 4.0 ClassView to add
the new data member. You simply select the ClassView tab to
display the ClassView, right-click on the class name, select “Add
Function” (see Figure 1), and enter the new data member type
and name (see Figure 2). With these two properties in place, I
had to add some program logic:
Right-Click for More Options. Right-click on any class
name in ClassView to display this menu. You can use it

to add new data members and member functions, look up browsing

FIGURE 1
Adding New Data Members to the Class. After selecting
“Add Variable…” in ClassView, you can specify the dataFIGURE 2
Visual Basic Programmer’s Journal MARCH 1996 97

type and name of a new data member and add it to the class.

ns

VISUAL
PROGRAMMING

f

l

-

-

-

l

b
t
t
t
m
j
m

v
{

}

created, provided that Enabled was True
and Interval was greater than zero.
• Code to detect changes to either o
these properties, and start or stop the
timer depending on their settings.
• Code to save changes to the Interva
property whenever it changed.
• Code to stop the timer, provided it was
already running, when the control’s win
dow was destroyed.

Code that starts a timer would use
CWnd::SetTimer; code that stops the
timer would use CWnd::KillTimer. To
accommodate these changes, I added a
data member, m_isRunning, which
would always identify the state of the
timer control and whether the timer
was running. This became particularly
useful when the Enabled property
changed, because the default implemen
tation of this stock property is through
a data member and a member function
in COleControl: COleControl::m_
bEnabled and COleControl::OnEnabled
Changed. This default implementation
doesn’t give you any granular contro
over the actual change to the Enabled
98 MARCH 1996 Visual Basic Programmer’s Jo

property, so you have to distinguish S
etween the previous state of the con-
rol (as defined by m_isRunning) and
he current state of the control (as re-
urned by COleControl::m_bEnabled and
y own m_interval). Fortunately this

ust required a little housekeeping in
y OnEnabledChanged override:

oid CTimerCtrl::OnEnabledChanged()

COleControl::OnEnabledChanged();
if(m_bEnabled && (m_interval > 0))

{
if(m_isRunning)

return;
SetTimer(1,m_interval,NULL);
m_isRunning = TRUE;
}

else
{
if(!m_isRunning)

return;
KillTimer(1);
m_isRunning = FALSE;
}

I had to add similar logic to the
urnal

a
d

a
t

s
p

p
e
t
r
c
W
h

etInterval function.

©1991–1996 Fawcette Techn
CREATING A CUSTOM EVENT
With the timer running, the control’s
window would get WM_TIMER messages
at the appropriate interval (remember
that because COleControl is a CWnd-
derivative, every COleControl has a win-
dow—an HWND—associated with it). I
needed to fire an event to the control
container’s window, which is the form
or dialog that contains the control. So I
used ClassWizard to add support for a
custom Timer event, using its Add Event
pane. ClassWizard will make a few
changes to your control source code
when you add this custom event. First,
it adds an entry to the event map (a lot
like an MFC message-map) to define a
new custom event and specify the event-
firing function:

BEGIN_EVENT_MAP(CTimerCtrl,
COleControl)
//{{AFX_EVENT_MAP(CTimerCtrl)
EVENT_CUSTOM”Time”, FireTimer,

VTS_NONE)
//}}AFX_EVENT_MAP

END_EVENT_MAP()

It also defines the event-firing function
s an inline function in your control class
efinition:

//{{AFX_EVENT(CTimerCtrl)
void FireTimer()

{FireEvent(eventidTimer,EVENT_PARAM(
VTS_NONE));}

//}}AFX_EVENT

The variable, eventidTimer, is simply
n ID that ClassWizard assigns to a cus-
om event in a set of enumerated values:

enum {
//{{AFX_DISP_ID(CTimerCtrl)
dispidInterval = 1L,
eventidTimer = 1L,
//}}AFX_DISP_ID

Note that ClassWizard uses this same
et of enums to assign an ID to the Interval
roperty as well.

With the custom event support in
lace, the control can now fire Timer
vents to the control container by calling
he FireEvent function. So I added an over-
ide of CWnd::OnTimer—which will be
alled whenever the control gets a
M_TIMER message from the timer—and

ad the override call FireEvent:

void CTimerCtrl::OnTimer(UINT
nIDEvent)

{

http://www.windx.com

if(m_isRunning)

ical Publications

VISUAL
PROGRAMMING
FireTimer();
COleControl::OnTimer(nIDEvent);

}

Note that the implementation here lets
the control fire a timer event whenever it
gets a WM_TIMER message, and as long
as m_isRunning is True. This would let me
alter the design of OnEnabledChanged in
a future implementation of the control so
that the timer would keep running even if
Enabled was False, but the timer mes-
sages would be translated into events
only if Enabled was True.

CREATING A NONRESIZABLE WINDOW
With this, the basic timer control infra-
structure was in place. But now I had
two additional problems. The first was
to draw a nonresizable bitmap on the
control window during development
(remember, at run time the control won’t
be seen because of the OLEMISC_
INVISIBLE-ATRUNTIME bit). Drawing the
bitmap wasn’t too difficult, and that was
added as the implementation of the
control’s OnDraw function. OnDraw, as
you may recall, is a virtual function in
http://www.windx.com

COleControl that will be invoked when-

©1991–1996 Fawcet
ever the control needs to redisplay it-
self. By overriding this virtual function
in a COleControl-derivative, you can add
your own drawing code to the control.
The first parameter to OnDraw is the
device context to draw on. The second
and third parameters specify the bound-
aries of the control’s rectangle and the
portion of that rectangle to be re-drawn,
respectively.

I screen-snapped the bitmap used by
the VB4 timer control to create a new
bitmap, pasted it into the VC4 bitmap
editor, and then added it to the control’s
resources. The OnDraw override in the
Timer control begins by loading that
bitmap from the resources:

CBitmap bitmap;
bitmap.LoadBitmap(IDB_BITMAP1);

CBitmap is the MFC bitmap class, de-
rived from CGdiObject, which encapsu-
lates most of the Windows GDI APIs.
OnDraw instantiates a CBitmap object,
and LoadBitmap loads the bitmap and
attaches it to that object.

Next, OnDraw instantiates a CPicture-
Visual Ba

Holder object to display the bitmap in the

te Technical Publications
control’s window. CPictureHolder was
designed for implementing picture prop-
erties (an OLE control feature that origi-
nated in VBXs), and for displaying
bitmaps, icons, and metafile picture prop-
erties in a window. You can use
CPictureHolder::CreateFromBitmap to
associate a CBitmap with a CPicture-
Holder:

CPictureHolder picHolder;
picHolder.CreateFromBitmap(bitmap,

NULL,
FALSE);

Then, tell the CPictureHolder object
to draw the bitmap in a specified device
context with CPictureHolder::Render:

picHolder.Render(pdc, rcBounds,
rcBounds);

CBITMAP IS THE MFC

BITMAP CLASS, DERIVED

FROM CGDIOBJECT, WHICH

ENCAPSULATES MOST OF

THE WINDOWS GDI APIs.

This takes care of getting the bitmap
to display properly when the control is
drag-and-dropped on a form. Note, by
the way, that OnDraw doesn’t have to
release the original bitmap through a
call to CGdiObject::DeleteObject: the
CGdiObject destructor does this for you
automatically.

The second and more difficult prob-
lem involved getting the control to dis-
play in a nonresizable window. As with
the original VB4 timer control, I didn’t
want a developer to be able to resize the
control window. Instead, the control
should snap back to its original size
whenever you try to resize it. After a
great deal of hunting (and a few flurries
of e-mail to a friend on the MFC team at
Microsoft), I found two helpful func-
tions in COle-Control: OnSetExtent and
OnSetObjectRects.

COleControl::OnSetExtent encapsu-
lates the implementation of the control’s
IOleObject::SetExtent function, to
handle resizing the control. By overrid-
sic Programmer’s Journal MARCH 1996 99

ing this function, I was able to force the

VISUAL
PROGRAMMING

c
c
a
n
t
t
c
c
d
s
b
a
o
t
o
w
i
p
c

control always to be resized to the same
size:

BOOL CTimerCtrl::OnSetExtent(LPSIZEL
lpSizeL)

{
lpSizeL->cx = lpSizeL->cy =

MinMaxSize;
return TRUE;

}

Returning True indicates that the size
change was accepted (when, of course,
the function has forced a specific size).
The MinMaxSize value contains the
control’s bitmap dimensions.

The other function, COleControl::On-
SetObjectRects, implements IOleIn-
Place-Object::SetObjectRects to handle
repositioning and resizing of the
control’s window. I didn’t need an over-
ride of this function in place to get the
control to display properly in VB4 or
VC4—but it made a difference in how
the control was displayed by the con-
trol Test Container, which comes with
VC4. Test Container appears to do some
of its drawing differently from other
100 MARCH 1996 Visual Basic Programmer’s J

containers. I wasn’t worried about this,
because control users have no reason
to use Test Container. But, to make the
control look a little better there, I over-
rode this function and plugged in the
appropriate control dimensions:

BOOL CTimerCtrl::OnSetObjectRects(
LPCRECT lpRectPos,

LPCRECT lpRectClip)
{

CRect* lpPos = (CRect*)lpRectPos;
CRect* lpClip = (CRect*)lpRectClip;
lpPos->right = lpClip->right =

(lpPos->left + MinMaxSize);
lpPos->bottom = lpClip->bottom =

lpPos->top + MinMaxSize;
return

COleControl::OnSetObjectRects(lpPos,lpCl
ip);

}

Finally, I had one particular problem
concerning VB4 itself. I noticed that the
timer simply didn’t work correctly in VB4,
even though it worked just fine in the
control Test Container as well as in an
MFC4 application. In VB4, the timer wasn’t
being created when Enabled was True
ournal

and Interval was greater than zero.

o
C
w
w
c
i
c
a
c
V

t
t
3
t
C
W
V
W
s
o

©1991–1996 Fawcette Techn
A little debugging showed that the
ontrol’s OnCreate override wasn’t being
alled when the control was used in VB4,
nd thus that the control’s window was
ever being created. I had to conclude
hat, by default, VB4 doesn’t get the con-
rol to create a control window if the
ontrol is “Invisible At Runtime” like this
ontrol was. (Apparently, there’s no stan-
ard on what a container should do with
uch a control, hence the differences in
ehavior between VB4 on the one hand,
nd VC4 and the Test Container on the
ther hand.) The only way to ensure that
he control’s window was created was to
verride COleControl::OnSetClientSite,
hich is called whenever the container

nitializes an OLE object’s client site: the
oint at which the object connects to and
ommunicates with the container.

A GREAT EXAMPLE

OF A SET OF APIs THAT

YOU CAN EASILY

ENCAPSULATE ARE THE

WINDOWS TIMER APIs.

Because this has to be done by every
container for every control, an override

f OnSetClientSite could call COle-
ontrol : :RecreateControlWindow,
hich forces a control to destroy its
indow (if it has one), and then re-
reate that window or initially create it,
f it didn’t have one. Even though the
ontrol worked fine in Test Container
nd MFC4 applications without this
ode, it allowed my control to work in
B4 also:

void CTimerCtrl::OnSetClientSite()
{

RecreateControlWindow();
}

I’ve provided a VB4 program that shows
he use of both my timer control clone and
he original timer control in VB4 (see Figure
). You can download this program from
he Magazine Library of the VBPJ Forum on
ompuServe (type “GO WINDX” with
inCIM and search for VP0396.ZIP), the

BPJ Development Exchange World Wide
eb site (http://www.windx.com), the VBPJ

ite on The Microsoft Network (GO WINDX),
http://www.windx.com

r the VBCD.

ical Publications

