
S
B
B
S
i
c
a
o
O
F
e
G
A
C

.

1

WINDOWS
PROGRAMMING

G
t

Click & Retrieve

Source

CODE!
Use the 32-bit API to improve the
performance of your applications

et on the Track
o Faster Apps
by Sam Patterson

Visual Basic actually does many things pretty quickly, espe-
cially when you consider the amount of time it takes to write the
application. In my last Windows Programming column [“API
Calls to Help You Optimize,” VBPJ January 1996], I used the
performance API to measure some of the performance-related
issues for your Visual Basic 4.0 programs. This month I’ll exam-
ine how to use the Windows 32-bit API to improve the perfor-
mance of your applications by calling some API functions that
decrease the memory and resource usage of your applications.
Programmers often overlook the idea of decreasing memory
and resource usage as a way of increasing application perfor-
mance. Performance-related issues seem to be a hot topic, so I
want to present some neat techniques that can help boost your
application’s performance.

Around six months ago I was approached by Ward Hitt to
write a chapter for his Optimizing Visual Basic 4 book from Que.
I want you to know up front that I am not receiving royalties from
this book, and I only wrote the one chapter on using the API to
optimize your application. This small plug is genuine: it is a great
book. If performance issues plague your VB4 application, this
book contains some neat tips and techniques that help optimize
the resource usage of your application and improve perfor-
mance. I thought it would be interesting to include some of these
API tips in this month’s column.

As you have probably learned from my past columns, using
the Windows API can be a good way to speed up the internals
of your application. You can also use it to reduce memory

ne of the most often heard complaints about Visual
Basic 4.0 is that it can be somewhat slow, depending on
what your application does. However, I’ve found that
am Patterson is general manager of the Component Products
usiness Unit of MicroHelp Inc. and a contributing editor of Visual
asic Programmer’s Journal. He is also owner of Gold Leaf
ystems, a Los Angeles, California-based consultancy specializing
n VBX/OLE Control component software development. He is
oauthor of MicroHelp’s OLETools, VBTools, SpellPro, Thesaurus,
nd VBComm 3.0 Communications Library. He is also the author
f the MCI, MAPI, Masked Edit, Rich Text, Toolbar, and TabStrip
LE controls included with Microsoft’s Visual Basic 4.0, Visual
oxPro 3.0, and Visual C++ 4.0. Contact Sam at MicroHelp Inc., by
-mail at SamP@microhelp.com or by fax at 404-645-2122; or at
old Leaf Systems, by mail at 5301 Beethoven Street #190, Los
ngeles, CA 90066-7061 or by fax at 310-574-6301. Reach Sam on
ompuServe at 72000,1751.

08 MAY 1996 Visual Basic Programmer’s Journal
requirements and limit the number of resources that your
application uses. Calling the Windows API can, at times, be
very easy. At other times, because of its vastness, you might
have difficulty finding the information and functions to use.
The Windows API covers many diverse areas of functionality.
Most API calls are directly accessible from Visual Basic, but
some are not. If you need an API function that provides call-
back functionality, or a function that has a parameter that
requires a pointer to a function to be passed, then you need to
use an intermediate method to call it. Many third-party compa-
nies provide callback OLE controls that provide the function-
ality needed to use these callback functions: the MhSubClass
control in MicroHelp’s OLETools or Desaware’s SpyWorks/
OCX, for example. You should not overlook callback functions
because they often can provide performance boosts or pro-
vide functionality that otherwise would be unavailable to your
application.

USE THE API WISELY
One word of warning: using the API can sometimes be a risky
business while you are learning it. You may inadvertently
cause Access Violations (formerly known as GPFs) if you
accidentally call the wrong function with the wrong informa-
tion. Keep this in mind while you are programming, and always
save your project before you try to test it. I give this advice
because it still happens to me. In fact it even happened to me
while writing this article!

As you may also have learned from previous Windows Pro-
gramming columns, Visual Basic itself is a Windows application
that was written in C++ using the Windows API. Many of the built-
in functions, properties, and methods of Visual Basic objects
are really just calls that are passed on from your Visual Basic
program to the underlying operating system. By calling these
functions directly, you bypass much of the overhead involved
What Do These Dialogs Have in Common? Whether
you use the API or the Common Dialog OLE control,

these two dialogs look the same.

FIGURE 1
http://www.windx.com

WINDOWS
PROGRAMMING
with setting a property in Visual Basic or calling a method on an
object. For example, say you have a list box on a form and you
implement this code:

List1.Clear

Visual Basic, when it executes the code, is using the API
function SendMessage to send the message LB_RESETCONTENT
to the list box. You could replace this code with your own
appropriate SendMessage code and therefore bypass the over-
head of the Visual Basic method. The code would look some-
thing like this:

Private Declare Function SendMessage _
Lib "user32" Alias "SendMessageA" _
(ByVal hwnd As Integer, ByVal msg _
As Integer, ByVal wp As Integer, _
ByVal lp As Long) As Long

b = SendMessage(List1.hWnd, &H184, 0, 0)

The time saved by this technique would be negligible be-
cause you have to write code that accesses the hWnd property
on the list box object in order to send the message. If you need
to clear this list box thousands of times in an application,
however, then the SendMessage API would make a small but
noticeable difference in overall execution speed. If you find an
API call that does something like this, you should investigate
whether or not the speed or efficiency of your application could
improve by using it, and whether the improvement justifies the
extra code you have to write.

COMMON DIALOGS WITHOUT THE OCX
Let’s look at a more complicated example. Most applications
that allow loading, saving, or using disk files usually use the
Windows common dialogs to get the file name and path the user

wants. Using the common dialogs is a good reuse of resources

LISTING 1 Calling the FileOpen Common Dialog. To use this cod
add this code to create the example program that calls th

http://www.windx.com
because Windows always has the common dialog library loaded
(COMDLG32.DLL). Many programmers think that to use the
common dialogs from Visual Basic you have to use the Common
Dialog OLE custom control (COMDLG32.OCX) that comes in the
box with Visual Basic. This is not necessarily true. The Common
Dialog control makes it easier for some programmers to get the
functionality of the dialogs easily, quickly, and modularly into
an application. To tune performance of your application, how-
ever, you should try to use as few custom controls as possible.
Most of the common dialog routines in the Win32 API are
directly callable from Visual Basic.

For example, I’ve included code to bring up the FileOpen
common dialog box (see Listing 1). By calling the COMDLG32.DLL,
it gives you the FileOpen functionality without all the extra
resource and memory overhead of loading the Common Dialog
OLE control. This method takes a little more code than you
would have to use to get the file name from the OLE control, but
the dialogs that are displayed are the same (see Figure 1).
Although the final EXE size differs by only a few hundred bytes,
the amount of resources used during run time and the distribut-
able code size goes down quite a bit. You also no longer have to
distribute the 80K+ COMDLG32.OCX file on your diskettes.

One thing to watch out for: you might lose some features by
using the API to bring up the FileOpen dialog. If you rely on the
Help Button on the dialogs, the Common Dialog control uses the
HelpFile property to bring up your help file when a user presses
that button. If you want to have something similar happen when
using the API, you will either have to use a callback OLE control
as I mentioned earlier, or write a C DLL wrapper around your call
to the Common Dialog code that will handle the notification
message that results from the user pressing the help button. If
you choose to write a wrapper, it still beats the extra overhead
of the full Common Dialog control.

Bringing up the color-selection common dialog box is a
similar process, but it takes a small amount of additional pro-
gramming because the ChooseColor user-defined type contains
a member called lpCustColors (see Listing 2). lpCustColors is a
Private Type OPENFILENAME
lStructSize As Long
hwndOwner As Long
hInstance As Long
lpstrFilter As String
lpstrCustomFilter As String
nMaxCustFilter As Long
nFilterIndex As Long
lpstrFile As String
nMaxFile As Long
lpstrFileTitle As String
nMaxFileTitle As Long
lpstrInitialDir As String
lpstrTitle As String
flags As Long
nFileOffset As Integer
nFileExtension As Integer
lpstrDefExt As String
lCustData As Long
lpfnHook As Long
lpTemplateName As String

End Type

Private Declare Function GetOpenFileName Lib _
"comdlg32.dll" Alias "GetOpenFileNameA" _
e,
e
(pOpenfilename As OPENFILENAME) As Long

Private Sub Command1_Click()
Dim ofn As OPENFILENAME

ofn.lStructSize = Len(ofn)
ofn.hwndOwner = Form1.hwnd
ofn.hInstance = App.hInstance
ofn.lpstrFilter = "Text Files (*.txt)" + Chr$(0) + _

"*.txt" + Chr$(0) + "Rich Text Files (*.rtf)" + _
Chr$(0) + "*.rtf" + Chr$(0)

ofn.lpstrFile = Space$(254)
ofn.nMaxFile = 255
ofn.lpstrFileTitle = Space$(254)
ofn.nMaxFileTitle = 255
ofn.lpstrInitialDir = "c:\"
ofn.lpstrTitle = "Our File Open Title"
ofn.flags = 0

a = GetOpenFileName(ofn)

If (a) Then
MsgBox "File to Open: " + Trim$(ofn.lpstrFile)

Else
MsgBox "Cancel was pressed"

End If
End Sub

End Sub
Visual Basic Programmer’s Journal MAY 1996 109

 start a new project. Add a command button (Command1), and
FileOpen common dialog routines.

WINDOWS
PROGRAMMING

P

E

t
f
s
l
s
a
s
c
o
A
w
m
l
V

r
t
t
t
a
a
m
b
f
a

LISTING 2 Show Your True Colors. After you start a new project and add a command button (Command1), add this code to create
the example program that brings up the Color common dialog box.

s

End Sub
pointer to an array of long integers. Because there is no way to
directly pass lpCustColors in Visual Basic, send a string (allocat-
ing four bytes for each entry) for each of the 16 custom colors
that the dialog supports. On return from the ChooseColor API
function call, convert these four characters back into a long
integer that you store in an array of custom colors.

From the sample code you should be able to work with the
other common dialogs and get them implemented in code
instead of using their OLE control equivalents. In the future,
Microsoft will continue adding new dialogs to the Common
Dialog controls. The more you use the underlying code that they
have written as opposed to the control itself, the smaller your
applications will be.

MULTIMEDIA SUPPORT
Many applications provide or use some type of multimedia
support, whether or not they are really considered a “multime-
dia” application. If you play wave sound files (WAV), or start a
Video for Windows (AVI) file, you may benefit from using the
MCI API directly. Currently you probably are using the Multime-
dia Control Interface OLE custom control (MCI32.OCX) in your
application. Again, if you remove this custom control, your
resource usage will go down—in this case by quite a bit. The MCI
control not only uses resources for bitmaps, but also incurs
other Windows overhead as it creates a button hWnd for each
of the buttons that are visible on the control. By eliminating the
need for this control, you also improve your load-time perfor-
mance.

To play a wave file using the MCI interface, add this code to
a form:

Private Declare Function mciSendString _
Lib "winmm.dll" Alias _
"mciSendStringA" (ByVal _
lpstrCommand As String, ByVal _
lpstrReturnString As String, _
110 MAY 1996 Visual Basic Programmer’s Journal
ByVal uReturnLength As Long, ByVal _
hwndCallback As Long) As Long

rivate Sub Form_Click()
Dim ReturnString As String
ReturnString = Space$(255)
a = mciSendString(“play d:\win95\media\tada.wav”,)
ReturnString, Len(ReturnString), 0)

nd Sub

The mciSendString API call can provide most of the func-
ionality of the MCI OLE control, minus the graphical inter-
ace of course. With a few lightweight image controls and
ome mouse-handling code, you will have a result that works
ike the MCI without all the associated overhead. You may
till need to do some additional work to get all the function-
lity of the OLE control, such as subclassing (using a
ubclassing or callback control) to let your application re-
eive specific notification messages. For further information
n what commands are available through the mciSendString
PI call, see the Windows Multimedia help file that is included
ith the Win32 SDK, or look in the appropriate Win32 users’
anual. Supported devices include, but are not necessarily

imited to, wave sound files (WAV), MIDI, Mixer, Video Disc/
CR, and Digital Video (AVI).

As you can see, the API can be a great way to lower the
esource and memory usage of your application. When using
he API, you can also include fewer OLE controls to decrease
he amount of disk space needed to distribute your applica-
ion. If you use it wisely, this diverse tool can improve your
pplication’s actual speed—the API can even improve your
pp’s perceived speed because it can quicken load times. In
y next column I’ll examine routines that execute faster

ecause they call API routines instead of built-in Visual Basic
unctions, methods, or objects. Until then, examine the API
nd happy programming.
Private Type ChooseColor
lStructSize As Long
hwndOwner As Long
hInstance As Long
rgbResult As Long
lpCustColors As String
flags As Long
lCustData As Long
lpfnHook As Long
lpTemplateName As String

End Type

Private Declare Function ChooseColor Lib
"comdlg32.dll" _
Alias "ChooseColorA" (pChoosecolor As ChooseColor) _

As Long

Private Sub Command1_Click()
Dim cc As ChooseColor
Dim CustColor(16) As Long

cc.lStructSize = Len(cc)
cc.hwndOwner = Form1.hWnd
cc.hInstance = App.hInstance
cc.flags = 0
'NOTE: We can't pass an array of pointers so
' we fake this passing a string of chars: In thi
'example we set all custom colors to 0, or black.
cc.lpCustColors = String$(16 * 4, 0)

a = ChooseColor(cc)

Cls
If (a) Then

MsgBox "Color chosen:" & Str$(cc.rgbResult)

'Create the custom color array based on
'the colors passed back from the String
For x = 1 To Len(cc.lpCustColors) Step 4

c1 = Asc(Mid$(cc.lpCustColors, x, 1))
c2 = Asc(Mid$(cc.lpCustColors, x + 1, 1))
c3 = Asc(Mid$(cc.lpCustColors, x + 2, 1))
c4 = Asc(Mid$(cc.lpCustColors, x + 3, 1))

CustColor(x / 4) = (c1) + (c2 * 256) + _
(c3 * 65536) + (c4 * 16777216&)

Print "Custom Color"; Int(x / 4); "="; _
CustColor(x / 4)

Next x
Else

MsgBox "Cancel was pressed"
End If
http://www.windx.com

