
VISUAL
PROGRAMMING

Click & Retrieve

Source

CODE!
Use objects as threads in Visual
Basic 4.0, thanks to the Win32 API
and C/C++.

by Stephen R. Husak

Threading in VB4
S
C
R
g
h
1

t
V
u
m
f I
C

t
M
m .
P f
C -
e
p

t
s
i t
l
n
t

e -
t .
E
t -
a
w
W
V
w
c
a

t

-
-
-

ems such as Windows 95 and Windows NT. Because native
isual Basic 4.0 does not have the built-in ability to generate and
se threads using pure VB code, the VB4 runtime is not
ultithreaded. Visual Basic 4.0 cannot pass a Visual Basic

unction address to an API function that the Win32 AP
reateThread function requires.

CreateThread needs an address of a function for which the
hread should start executing (you can think of this as the Sub

ain of the thread). One means for utilizing these true
ultitasking operating systems exists in using objects as threads
reviously, developers needed a relatively deep knowledge o
/C++ to implement threads, but now with some minor knowl
dge of C/C++ and the Win32 API, you can make a Visual Basic
rogram that rivals most C/C++ programs.

Threads are a specific path of execution within a process. A
hread typically has its own stack space in the process’ address
pace, and its own set of CPU registers. Assuming a process is an
nstance of a running program, each executing process has a
east one thread called the primary thread. All threads that are
ot primary threads are known as worker threads, and they do
he small specific tasks within the program.

An application normally uses threads for small, quickly
xecuted, specific tasks, such as Excel’s background recalcula
ion of a spreadsheet, and Word 95’s backup spell-checking
ven Visual Basic 4.0’s development environment uses threads
o compile in the background. Threads give the user the appear
nce of responsiveness from an application. Excel users can
atch the bottom line change as they enter year-end data. In
ord, the user can see spelling mistakes as he or she types. In
B4, the user can run the program almost instantaneously after
riting a function because most of the program is already
ompiled. By accomplishing these specific tasks, applications
ppear much more functional to the end user.

The programmer creates this responsiveness by having
hreads that are controlled or scheduled by the operating

lthough VB4 is 32-bit, a disappointment with the lan
guage is the inability to create multithreading applica
tions that take advantage of enhanced operating sys
tephen R. Husak is a software engineer at Zenith Data Systems
orporation, a world-wide computer manufacturer of Intel and
ISC-based machines for large corporations, education, the federal
overnment, and resellers. Reach Stephen by e-mail at
usak@netcom.com or s.husak@zds.com, or by CompuServe at
02467,3223.

http://www.windx.com ©1991–1996 Fawcette Technical Publicatio
system based on priorities assigned to the threads. You can
schedule threads by four main priorities: real-time, high, nor-
mal, and idle. You will rarely use real-time priority. Usually,
programmers use it for applications that communicate directly
to hardware that cannot be interrupted. High-priority threads—
such as the one that watches for the Control-Alt-Delete key
combination to display the Task Manager in Windows 95—are
extremely responsive when running.

No matter what is happening in the system, the task manager
is promptly displayed when the user presses Control-Alt-Delete.
The majority of applications run with normal-priority threads.
The foreground application, however, always has a slightly
higher priority than the others. By default, all threads are
initially assigned normal priority. Programmers typically use
idle-priority threads for applications that monitor the system,
such as the thread that zeros pages in RAM. Idle-priority threads
only run when no other threads are running. Threads are run
and scheduled by the operating system. The OS interrupts the
CPU, executes the thread with the highest priority at that time,
and waits until it is time to run the next thread. This is ideal on
machines with multiple CPUs where multiple threads can actu-
C

n

Private Sub cmdThread_Click()
Dim lAddress As Long
' address of the thread’s function
Dim lID As Long
' thread id
Dim dd As DIRDATA
' DirData structure for thread function
Screen.MousePointer = vbArrowHourglass
' clear form and lock the controls
Call ClearFrmMain
Call LockFrmControls(True)
' get starting time and start the polling timer
TimeStarted = CDbl(Now)
tmrPollThread.Enabled = True
' get address of DirBrowseThread function in our dll
lAddress = GetProcAddress(gh_Library, _
"DirBrowseThread")

' set up the structure to pass to the thread
dd.hWndList = lstDirectories.hWnd
dd.hWndDirs = txtDirCount.hWnd
dd.hWndFiles = txtFileCount.hWnd
dd.sFileSpec = "*.*"
dd.lFileSpecLen = 3
dd.sPath = Left$(drvDrives.Drive, 1) & ":"
dd.lPathLen = 2
' create the thread in the context of VB’s main thread
gh_Thread = 0
gh_Thread = CreateThread(ByVal _
vbNullString, 0, lAddress, dd, 0, lID)

' user still has control ->
' timer will watch thread from here
' NOTE: if you have no need to watch
' the thread, the function
' would simply end here -> nothing else to do
End Sub

Creating a Thread. This code demonstrates how the
thread is set up, as well as how the Win32 API call

reateThread is called after the DIRDATA structure is set up.

LISTING 1
Visual Basic Programmer’s Journal APRIL 1996 111s

VISUAL
PROGRAMMING

c
p
i

t
o
D
u
(
c
F
d
m
u

o
t
W

d
t
g
t
h
w
m

ally be running at the same time on different CPUs.
Threads are best used when they can make the most of the

CPU’s time and optimize the user’s time as well. Recalculating a
spreadsheet or printing in the background are typical examples
of how to use threads. Notice that these examples are small
tasks that do not disturb the user as he or she works on the
system. Typically the programmer uses threads in these situa-
tions when the user is not affected by the performance of the
thread.

GENERATING AND USING THREADS
Where data integrity is essential, pay close attention to how you
use multiple threads. For example if two threads are writing to
the same global variables or structures, and if one thread
depends on the results of another, there is a danger that one
thread will access the same area that the other thread is
accessing. This can disrupt the integrity of the data. You can use
thread synchronization techniques to manage this.

Thread synchronization works by creating objects that
“watch” and wait for certain events to happen. Three such
objects are events, mutexes, and semaphores. Events are basi-
cally Boolean states that either are signaled or nonsignaled.
Mutexes are used to synchronize multiple threads and are
owned by a thread. Semaphores are used for resource counting
and are not owned by a thread. The Win32 API call
WaitForSingleObject suspends a thread until the object be-
112 APRIL 1996 Visual Basic Programmer’s Journal

LISTING 2 The Worker Bees. These two functions do all the work for th
needed to support the threading in Visual Basic. The DirBr

browse by recursively calling DirBrowse. Message Crackers, for sendin
readable.

;

char work[MAX_PATH];

©199
omes signaled. Likewise the call WaitForMultipleObjects sus-
ends a thread until all objects in the list become signaled. Data

ntegrity is safe-guarded with these objects.
You can use threads in VB4 by using an external C/C++ DLL

hat contains the thread’s function. The Visual Basic code uses
nly the Win32 API to achieve the multithreading along with the
LL function. I will present sample code that shows you how to
se a timer to communicate when the thread has terminated
you may download the DLL and all the code described in this
olumn from a file titled VP0496.ZIP on VBPJ’s CompuServe
orum, and World Wide Web and Microsoft Network sites. For
etails, see “How to Reach Us” in Letters to the Editor.) This
inimizes VB program performance degradation and keeps the

ser abreast of the status of the thread.
Visual Basic isn’t good at synchronizing threads. You can

vercome this limitation by suspending Visual Basic’s main
hread by using the Win32 API calls for WaitForSingleObject or

aitForMultipleObjects.
You could synchronize threads with a “watcher” thread, but

oing so will cause two threads to be created for each thread
hat needs to be executed. The implementation here is not
enerally recommended for watching threads because it con-
inually polls the thread waiting for the termination of it. This is,
owever, the only way for VB’s main thread to know when the
orker thread has completed without suspending Visual Basic’s
ain thread. If Visual Basic’s main thread does not need to know
DLLEXPORT DWORD WINAPI DirBrowseThread(DIRDATA * dd)
{
char * sPath;
// buffer for path
char * sFileSpec;

// buffer for file specification
// allocate buffers and adjust
// character widths passed from VB
sPath = (char *) malloc(dd->lPathLen + 1);
strncpy(sPath, dd->path, dd->lPathLen);
sPath[dd->lPathLen] = 0;
sFileSpec = (char *) malloc(dd->lFileSpecLen + 1);
strncpy(sFileSpec, dd->filespec, dd->lFileSpecLen)
sFileSpec[dd->lFileSpecLen] = 0;
// set global variables
gl_DirCount = 0;
gl_FileCount = 0;
// start the browse
DirBrowse(sPath, sFileSpec, _

dd->hWndList, dd->hWndDirs, dd->hWndFiles);
// deallocate buffers & reset global variables
free(sPath); free(sFileSpec);
gl_DirCount = 0;
gl_FileCount = 0;
// exit the thread
ExitThread(ERROR_SUCCESS);
return (ERROR_SUCCESS);

}

DLLEXPORT void WINAPI _
DirBrowse(LPSTR path, LPSTR filespec, HWND _
hWndList,

HWND hWndDirs, HWND hWndFiles) {
WIN32_FIND_DATA finddata;
// find data structure filled by calls
HANDLE fSearch;

// handle to the file find instance
BOOL rc = TRUE;
// boolean return code fails when FindNextFile
//fails
e
ow
g

1–
// work buffer to build paths and file specs
// build the string required
// by FindFirstFile (path\filespec
// eg. c:*.*)
sprintf(work, “%s\\%s”, path, filespec);
// find the first file matching the spec
fSearch = FindFirstFile(work, &finddata);
while (rc && (fSearch != INVALID_HANDLE_VALUE)) {

// weed out directories return as . and ..
if (finddata.cFileName[0] != ‘.’) {

// send the name to the listbox
sprintf(work, “%s\\%s”, path, _

finddata.cFileName);
ListBox_AddString(hWndList, work);
if (finddata.dwFileAttributes & _

FILE_ATTRIBUTE_DIRECTORY) {
// this is a directory
// so count it and
// recurse its structure
sprintf(work, “%s\\%s”, path, _

finddata.cFileName);
gl_DirCount += 1;
DirBrowse(work, filespec,

hWndList, hWndDirs, hWndFiles);
}
else // it is a file

gl_FileCount += 1;
}
// report stats to textboxes
sprintf(work, “%i”, gl_DirCount);
Edit_SetText(hWndDirs, work);
sprintf(work, “%i”, gl_FileCount);
Edit_SetText(hWndFiles, work);
// get next matching file
rc = FindNextFile(fSearch, &finddata);

}
// we’ve gotten all files so
// close search and exit function
FindClose(fSearch);
return;
http://www.windx.com

 DLL. They are simple C/C++ functions that perform the functions
se While inner loop does most of the work of the directory tree

 a message back to Visual Basic, are used to make the code more

}

1996 Fawcette Technical Publications

VISUAL
PROGRAMMING

n
t
i
l
w

B
T
c
t
i
t
R

t
u
l
Y
e
n
y
y

p
t
B
C

f
t
F
a
d
t
s
structure. When FindNextFile returns false, there are no more
when the worker thread has completed, then the timer and
polling function is unnecessary.

Given a specified drive, the thread function DirWalk “walks”
the directory tree of the drive recursively. It updates counters
in the main application that provide the total count of files and
directories searched. I’ve created a sample program that illus-
trates this function. It has three buttons: the first, labeled “No
Thread” (cmdNoThread), executes the function without creat-
ing a thread. The second button executes the function using a
thread, and the third button executes the function using a
thread offering a button to cancel the thread as it executes.
When the DirWalk function is executed with the thread, the user
has complete control over the VB application and can do other

EVEN VB4’S DEVELOPMENT

ENVIRONMENT USES THREADS TO

COMPILE IN THE BACKGROUND.

tasks with the main program as it is executing (such as moving
the window). When the dialog with the cancel button is shown,
the user can cancel the thread as it is executing.

The Visual Basic portion of the program is easy to under-
stand. The main code for creating the thread resides in the
“Thread” button’s (cmdThread) event code (see Listing 1).
Before this code can run, you must load the DLL through the
LoadLibrary Win32 API call. LoadLibrary will return a handle to
the instance of the loaded DLL (note that in Win32 an instance
handle is the same as a module handle). I loaded the DLL with
LoadLibrary in the Sub Main of the program and assigned its
value to a global variable gh_Library. The constant
APP_DLLPATHNAME contains the DOS name of the DLL:

Sub Main()
gh_Library = LoadLibrary(APP_DLLPATHNAME)
End Sub

After you have the instance handle to the DLL, you can pass
that to the function GetProcAddress along with the name of the
exported function that is defined in the C/C++ code for the DLL:

lAddress = GetProcAddress(gh_Library, _
"DirBrowseThread")

This returns the address in the DLL that is loaded in memory
to the start of the function DirBrowseThread. With this address
you can now create the thread using CreateThread and give it
some other parameters required for execution:

Declare Function CreateThread Lib "kernel32" _
(lpThreadAttributes As Any, _
ByVal dwStackSize As Long, _
ByVal lpStartAddress As Long, _
lpParameter As Any, _
ByVal dwCreationFlags As Long, _
lpThreadId As Long) As Long

You set the lpThreadAttributes variable that is passed to
http://www.windx.com ©1991–1996 Fawcette Technical Publicatio
ull, and you set dwStackSize to zero indicating you want simply
he default stack size for the thread (1 MB). The lpStartAddress
s the lAddress you derived from GetProcAddress. The variable,
pParameter, is a structure that contains the parameters you
ish to pass to the thread.

You set dwCreationFlags to zero, and lpThreadID is a Visual
asic Long variable that will return the ID number of the thread.
he CreateThread function returns a handle to the thread
reated or zero in case of failure. Because dwCreationFlags is set
o zero (the default), the thread immediately starts executing. If
t were set to CREATE_SUSPENDED, the thread would be set up
o run but would need to be started using the Win32 API call
esumeThread defined in Visual Basic as:

Declare Function ResumeThread Lib "kernel32" _
(hThread as Long) as Long

The DIRDATA user-defined type that I use to pass parameters
o the thread is set up before the call to CreateThread. I set this
p by making hWndList equal to the handle of the list box and

ikewise for the edit boxes that contain the folder and file counts.
ou set sFileSpec to the file specification for the search (in this
xample, *.* returns all files and folders). Set lFileSpecLen to the
umber of characters contained in sFileSpec (three). Likewise,
ou set sPath to the drive selected in the drive selection box and
ou set lPathLen to two:

Public Type DIRDATA
hWndList As Long
hWndDirs As Long
hWndFiles As Long
sFileSpec As String * MAX_FILE_SPEC
lFileSpecLen As Long
sPath As String * MAX_FILE_PATH
lPathLen As Long
End Type

I have found that this is the best way to pass multiple
arameters to the thread function and mimic other examples
hat use C/C++ exclusively. (I didn’t use variable-length Visual
asic strings or Variants in this example, in an effort to make the
/C++ code clear and concise.)

THE DIRBROWSE FUNCTION GOES TO WORK
The DirBrowse function in the DLL is a simple recursive function
that runs through the directory tree of a given drive. The
prototype for DirBrowse takes a string for the path and file
specification plus three window handles, the first for a list box
to add the elements into and the last two for edit boxes to update
the count of folders and files. I used edit boxes because Visual
Basic does not make the handle to a static text box available:

DLLEXPORT void WINAPI DirBrowse(LPSTR path, _
LPSTR filespec, HWND hWndList, HWND _
hWndDirs, HWND hWndFiles);

The inner loop does most of the work of the DirBrowse
unctionality (see Listing 2). The Win32 API provides functions
hat make browsing the directory structure of a drive quite easy.
indFirstFile starts the search by matching the file specification,
nd returning a handle to the search instance and filling in the find
ata structure with information about the first file found. From
his call, FindNextFile continues finding files with the same file
pecification continually putting the information in the find data
Visual Basic Programmer’s Journal APRIL 1996 113ns

VISUAL
PROGRAMMING

a process’ space.

G
T
u
D
f
a
t
V
p
t
t
T
i
f
E

d
P
r
f
f
s
u
a

b
t
a
o

t
V
s
T
V
a
r
g
r
s
u

t
h
S
c
u
t
w
t
c
t
b
w
t

9
a
t
R
e
s
O
t
n
e

files available and FindClose closes the searching instance.
In the inner loop, the test for a directory is based on the

attributes of the found element. The directories “.” and “..” are
ignored. If the file is a directory, DirBrowse is called again with
the same parameters but with a different starting path, the path
of the next level of the directory structure. In this way, the
function recursively searches the drive directory tree.

The DirBrowse function is called directly by the button
labeled “No Thread” (cmdNoThread). When called this way it is

WHERE DATA INTEGRITY IS ESSENTIAL,

PLAY CLOSE ATTENTION TO HOW YOU USE

MULTIPLE THREADS.

not created on a thread and is called in the traditional sense in
Visual Basic using a Declare statement:

Declare Sub DirBrowse Lib "thread.dll" _
(ByVal path As String, ByVal filespec _
As String, hWndList As Long, hWndDirs _
As Long, hWndFiles As Long)

Notice that when the DirBrowse function is called directly
through Visual Basic, the interface of the program is unrespon-
sive. You cannot move the form, the list box is not refreshed as
items are added into it, and the folder and directory counts are
not updated as the function is being run.

When the DLL is called from Visual Basic using the
114 APRIL 1996 Visual Basic Programmer’s Journal ©1991–1996 Fawcette Tech
etProcAddress method and Create-
hread, the function DirBrowseThread is
sed to set up the parameters from the
IRDATA structure to call the DirBrowse

unction. The DirBrowseThread function
lso calls the Win32 API call ExitThread
o signal to the operating system (and
isual Basic) that the thread has com-
leted its task and can be destroyed. Note
hat using ExitThread on a process’ main
hread effectively ends the application.
he only parameter that ExitThread takes

s the return code of the thread. For this
unction this return code will always be
RROR_SUCCESS.

There are a couple ways you can pass
ata between the DLL and Visual Basic.
assing handles through the function pa-
ameters is the easiest way in this case and
or the purposes of updating the interface
or the user. When using this method, Vi-
ual Basic can watch for change events and
se them to synchronize interface elements
s the thread is running.

For example, the counting of the list
ox items in the statistic frame (even
hough on a timer) is updating as items
re being added to it from the DLL. An-
ther way Visual Basic can get data from
he DLL functions is somewhat similar to the Win32 API.
isual Basic can call another exported function in the DLL to
imply retrieve the information that the thread has collected.
hink of this as the typical MoveNext type method used when
isual Basic accesses data in a database using the data
ccess objects. The database effectively retrieves (or has
eady) all elements the query has requested, but the pro-
rammer must iterate through the items to retrieve all the
esults. This is also similar to some of the Win32 API functions
uch as RegEnumKeyEx, which returns one key after another
ntil no more are available.

When the thread is running, a timer is running in Visual Basic
hat makes the Win32 API call GetExitCodeThread, passing the
andle of the active thread to the function. It will return either
TILL_ACTIVE or the actual return code of the thread (in this
ase, this is ERROR_SUCCESS). If the thread is not active, the code
pdates the statistics and stops the timer. Otherwise the statis-
ics are updated and the timer continues. This way, Visual Basic
ill know when the thread has completed executing. To cancel a

hread while it is executing, the Win32 API call TerminateThread
ancels a thread given a handle to a thread and an exit code. With
his call, you can have a cancel dialog as demonstrated by the
utton labeled Thread Dialog (cmdThreadDlg). Using PView,
hich comes with Visual C++, you can observe the VBPJSAMP.EXE

hread process in action (see Figure 1).
This technique works well with Visual Basic 4.0 in Windows

5 and Windows NT. A good reference for learning about threads
nd how they work is Advanced Windows: The Developer’s Guide
o the Win32 API for Windows NT 3.5 and Windows 95, by Jeffrey
ichter (Microsoft Press, ISBN: 1-55615-677-4). This book is an
xcellent source of information on threads, processes, thread
ynchronization techniques, and other advanced Win32 topics.
ther sources of information are the Microsoft Win32 SDK and

he Microsoft Developer Network. Experimenting with the tech-
iques introduced here in your own code can help you find
ffective ways to use threads.
View Processes in Action. Two threads are listed for VBPJSAMP.EXE when
it is run using a thread; when the thread is finished executing the count goes

back down to one. Using Pview, you can observe the number of threads executing within

FIGURE 1
http://www.windx.comnical Publications

