
6

O P T I M I Z I N G C L I E N T / S E R V E R

P

M
D
g
th
su
C
n
e
a
th
P
a
in
w

Make Your Client/Server
rograms Scream!

Click & Retrieve

Source
 BY MICHAEL MEE AND EMILY KRUGLICKCODE!
With a little more
coding effort and
some new
approaches, you
can deliver a lot
more client/server
performance.

ure, you can build client/server apps
with what you already know about
ISAM or PC database programming.S

But if you learn to take advantage of the
new features found in VB4 32-bit (and SQL
Server 6.0), you could find yourself turning
even simple client/server apps into rock-
ets that run two to 22 times faster (see
Figure 1) and consume fewer resources to
boot. And you don’t have to drop VB3 to
get there. Many of these optimizations
apply equally well to VB3 and VB4.

Some of the techniques involve code
changes. Others involve changing your user
interface to work with the server a different
way. But nothing we talk about requires you
0 MAY 1996 Visual Basic Programmer’s Jour

ichael Mee, a program manager in the
ata Access and Retrieval Technologies
roup at Microsoft, designs and coordinates
e Data Access Objects used by products
ch as Access, Visual Basic, and Visual

++. Emily Kruglick, a software test engi-
eer at Microsoft, is currently testing DAO,
specially for client/server usage. Michael
nd Emily were technical contributors to
e recent “Microsoft Jet Database Engine
rogrammers Guide” from MS Press. This
rticle, derived from chapter 9, “Develop-
g Client/Server Applications,” is published
ith the permission of Microsoft Corp.
to get a brain transplant. Mainly, you need
to unlearn some habits that served you well
in the past, and learn some new ones that
will serve you well in the future.

Moreover, in this article we’ve focused
on coding strategies that have proven suc-
cessful with people who haven’t written
much client/server code, and who gener-
ally need to get their app done yesterday.

For the sake of example, let’s look at
such an app: a simple database program
nal
called BookSale, programmed the old
ISAM/PC database way. Bookstore cus-
tomers use BookSale to look up books by
author or title and buy the books they
choose. The app allows you to add more
records to the database, enabling you to
see how the app functions with different
amounts of data.

To revamp BookSale, let’s start with
linked tables—perhaps the most misun-
derstood part of Jet/DAO remote data-
base access. Jet pro-
vides two ways of ac-
cessing data from a re-
mote database. First,
you can open the data-
base directly: this
method doesn’t de-
mand a local Microsoft
Jet database. The ODBC
connect string (such as
“ O D B C ; d s n = < d s n
n a m e > ; d a t a b a s e = <
database server>;uid
=<user id>;pwd=<
password>”) passes di-
rectly to the Open-
Database method, es-
tablishing a direct con-
nection to the remote
database.

Second, you can in-
stall a local Jet database
and create linked
tables (called “Attached
Tables” in Access 2.0)
pointing to the remote
database tables from
within this local data-
base. When using linked
tables, the application
first opens the local da-
tabase and then uses
the linked tables to re-
trieve the remote data.

BookSale was pro-
grammed with direct ac-
Client/Server Coding can reap spectacular
performance gains. A simple production app,

BookSale, was first coded using conventional ISAM/PC database-
era techniques, then optimized for client/server, for two to 22
times the performance.

FIGURE 1

Operation

T
im

es
 f

as
te

r

Deleting 1000 records from a table

Loading 1000 records into a table

Loading 100 records into the Books
List Box, when the underlying table
contains 1000 records.

Buying a book when the sales table
already contains 1000 records.

Loading 1000 records into the
Stores Combo Box

22

9
6

2.5
http://www.windx.com

O P T I M I Z I N G C L I E N T / S E R V E R

i
actually establishes a connection that
cess because it sounded like it would be
faster. But it isn’t. Every time BookSale
accesses a remote table, Microsoft Jet must
retrieve information about tables, such as
field names and types, before it can retrieve
the actual data. But when you link a table,
Jet caches the information in the local Jet
database, making it quickly accessible each
time BookSale opens the table, eliminating
several round trips to the server.

BookSale needs the speed linked tables
provide. We do this by having most of its
access to the remote database go through
the PUBS.MDB, which contains linked
tables to the remote-publications data-
base. For an example of this change in
code, look at the LoadStores subroutine
in the BOOKS.BAS module (see Listing 1).
The original line:

Set dbPubs = OpenDatabase("", False, _
False, gCONNECT$)

is replaced with

Set dbPubs = OpenDatabase(App.Path & _
"\pubs.mdb", False, True)

Performance is boosted dramatically
when only a few records are being ac-
cessed. Because well-designed client/
server apps should access only a few
records at a time, this modification can
lead to significant gains.

The issue of where to put the
PUBS.MDB file depends a lot on your envi-
ronment. Putting it on a read-only net-
work share, and opening the database as
read only and exclusive, enables you to
avoid most maintenance problems and
provides a single point of update. How-
ever, if you put it on the user’s local
machine, your app can create local que-
ries or download data locally. You may
want to use a combination of the two.
http://www.windx.com

& "', '"

Record Set Insertion. This subrou
the database and sets the connect s

call. Finally, it executes it using SQL passthro

LISTING 1
“DIRECT” ISN’T ALWAYS “FASTER”
VB3 users often access remote databases
directly because Jet supports SQL
passthrough, which tells the Jet Engine to
pass SQL queries directly to the remote
database engine for evaluation, instead of
Jet evaluating it and passing its own calls
to the server. If you use VB3 with a Jet
database, it ignores the SQL passthrough
option because it make sense only for
server data.

VB4 now lets you use SQL passthrough
with an MDB database (most likely con-
taining linked tables). The Database
object’s Connect property, normally un-
used with MDBs, can be set to an ODBC
connection string and be used for subse-
quent passthrough commands.

Another peek into BookSale’s
LoadStores subroutine reveals how this
extension of SQL passthrough works:

Set dbPubs = OpenDatabase(App.Path & _
"\pubs.mdb", False, True)

dbPubs.Connect = gCONNECT$ _
'"ODBC;dsn=<dsn name>;
'database=<database server>;
'uid=<user id>;pwd=<password>"

We can find more ways to speed data-
base access. Every operation on an ODBC
database requires a mechanism for con-
versing with the database server. Connec-
tions provide this mechanism, as well as
the key to improved performance.

To simplify things, Jet hides the con-
cept of connections. But to make things
faster for us, we need to see what Jet is
doing with connections on your behalf.

The first time you issue a command
that accesses the server, such as opening
a table, Jet opens a connection to the
server. Connections are relatively expen-
sive, so when you finish the operation Jet
will keep the connection open in anticipa-
Visual B

tine shows how to call a stored procedure to ins
tring to point to the appropriate SQL Server dat
ugh, to have the back end do the processing.
tion of the next operation. Similarly, if you
have a connection open for a long time
but aren’t doing anything with it, Jet will
silently close it, then reopen it when you
resume working.

In some situations, you may want to
control the timing of opening connec-
tions yourself, rather than when the first
operation occurs. If your program has a
startup or initialization routine already in
place, you may want to establish connec-
tions in that routine. Doing so front-loads
the execution time of your application,
making it easier to avoid delays later on.
Also, connections to your particular data-
base might take a long time to establish if
the database server resides across the
country, or if you’re relying on a modem
connection to the server.

To minimize delays in opening forms
or populating tables, try connecting the
database server when your application
starts. This technique, called
“preconnecting,” lets you set up the con-
nection to the database before users re-
quest data. Preconnecting effectively
speeds the first data retrieval operation
in your app by moving the delay to appli-
cation startup, where it will be less no-
ticeable to users.

In optimizing the sample application,
we’ll program the initial connect to the
database to occur during the load of the
first form. No other database activity is
occurring at this time. The Form_Load
routine of the frmStart Form performs the
initial connect:

Set dbPubs = OpenDatabase("", False, _
False, gCONNECT$)

dbPubs.Close

This routine appears to do nothing, so
t might look like it’s wasting time. But it
Sub BuyBook(lstboxidx%)
Dim dbPubs As Database
Dim strStoredProcCall$
Dim qdfInsertSale As QueryDef

If gintQuant% > 0 Then

Set dbPubs = OpenDatabase(App.Path & _
"\pubs.mdb")

dbPubs.Connect = gCONNECT$

strStoredProcCall$ = "InsertSale '" & _
gstrStoreId$ & "', '" & strOrderNumber$ _
strStoredProcCall$ = strStoredProcCall$ & _
Now & "', " & gintQuant% & ", '" & _
gstrPayTerms$

strStoredProcCall$ = strStoredProcCall$ & _
"', '" & gstrTitleArray(lstboxidx%) & "'"

dbPubs.Execute strStoredProcCall$, _
dbSQLPassThrough

dbPubs.Close
End If

End Sub
asic Programmer’s Journal MAY 1996 61

ert a record into the database. First it opens
abase. Then it sets up the stored-procedure

O P T I M I Z I N G C L I E N T / S E R V E R
hangs around waiting for the next data-
base call. When that call comes, the in-
place connection provides faster perfor-
mance than you’d get without the
preconnect.

Of course, sometimes you may not want
to cache the connection. You can prevent
idle connections from being cached by
setting the ODBC connection timeout value
to a low number. By default, you get a
ConnectionTimeout value of 600 seconds
62 MAY 1996 Visual Basic Programmer’s Jour

(10 minutes). To change this value, set the
ConnectionTimeout value in the ODBC
section of the application’s registry entry,
or set the value in the \Jet\3.0\Engines\
ODBC registry entry—this sets it globally
for all apps using Jet.

Jet closes the connection after the
specified number of seconds of idle time
unless prevented by a condition. Thus Jet
closes connections even if forms display-
ing remote data are still open. Jet auto-
matically reconnects when the applica-
nal

tion again requires a connection.
DATA-RETURN BOTTLENECKS
Once the app is using linked tables and
preconnecting, we can turn our attention
to the data being brought back. The big-
gest bottleneck in client/server access
stems from the amount of time taken to
communicate with servers across net-
works. Finely tuned apps request only
needed data. Less finely tuned apps tend
to choke because they request more fields
and/or records than they need.

Start your data-return tune-up by mak-
ing sure you request only the columns
you actually need. Some programmers
lean on the old standby “Select * from
<tablename>” no matter what fields they
want. This can really get you in trouble if
your record set contains large value fields
(such as memo fields) and you are open-
ing a snapshot. In this case all the data
stored in these large fields will march into
your application whether or not you read
from the fields.

The lesson to learn in this regard is to
carefully evaluate the columns you re-
quest. You may want to hold off request-
ing the larger data fields until the user
specifically asks to see that data: you
could create a detail form for displaying
more detail about a specific record. One
way or another, never request fields that
you don’t intend to use.

You can also limit rows returned across
the network. While DAO provides a lot of
great functionality, you don’t have to use
it—like bringing back all rows from a table
and then using FindFirst and other DAO
find functions to rummage for the rows
actually needed.

Instead, try using a Where clause on
the initial SQL statement that will filter
out unneeded records. You get the speed
that usually comes from letting the back
end do the work of filtering out records
before they go down the wire.

We can see a good example of this
optimization in BookSale’s LoadListBox
routine in its BOOKS.BAS module, which
loads the books list box first, without any
limits on data being passed back to the
app:

strWhereClause$ = " where"
'Set up where clause
'for count and select
strWhereClause$ = strWhereClause$ & _

" titles.title_id = _
titleauthor.title_id"

strWhereClause$ = strWhereClause$ & _
" and titleauthor.au_id = _
authors.au_id"

And then we optimize it, adding an extra
line to the Where clause to limit rows:

strWhereClause$ = " where"
'Set up where clause for
http://www.windx.com

O P T I M I Z I N G C L I E N T / S E R V E R

r

t
d
i
A
o

'count and select
strWhereClause$ = strWhereClause$ _

& " " & strSearchCriteria$ & " and"
'We add the criteria on to
'the string so it can choose
'only the data we need.
strWhereClause$ = strWhereClause$ _

& " titles.title_id = _
titleauthor.title_id"

strWhereClause$ = strWhereClause$ _
& " and titleauthor.au_id = _
authors.au_id"

The Where clause’s new filter has it
selecting only records that match the
search criteria. Because only needed
rows are returned now, we don’t need to
use find methods to select data to add to
the list box. All records will now be added
to the list box.

Now we’re only bringing back the data
needed, and using the fastest overall con-
nection method to the remote database,
so the actual records being returned have
been optimized. Next let’s optimize how
those records are returned.

SOMETIMES DYNASETS ARE FASTER
DAO provides two different types of record
sets that you can use with remote data-
bases: dynasets and snapshots (DAO’s
table-type record set won’t work on re-
mote databases). Dynasets, usually
updatable and dynamic, show changes
that others are making to the underlying
data.

Snapshots provide a picture of the
data at a given instant. You can’t update
snapshots and they don’t usually show
changes to the data after being opened.
Because snapshots don’t need to support
as much functionality, they usually work
faster. But if a snapshot contains any long
value fields (such as memos or OLE ob-
jects), it delivers them whether or not you
ever read them. So in this case you may
get more speed from a dynaset, which
only brings across the data you ask for
specifically.

But you don’t want to use a dynaset
accidentally. Many applications don’t
specify a type when opening record sets.
They then use the default type—for ODBC
data, a dynaset. Here you can dramati-
cally improve data-return speed by re-
questing snapshot-type record sets when
you only to read data and you won’t be
pushing long value fields down the wire
(for more information, see the sidebar
“Dynasets versus Snapshots”).

BookSale used dynasets when it didn’t
need to, as in the LoadStores and
LoadListBox routines in the BOOKS.BAS
module:

Set snpBooks = dbPubs.OpenRecordset_
http://www.windx.com

(strSelectBooks$, dbOpenDynaset)
Changing this load to a snapshot-type
ecord set helped a lot (see Listing 2):

Set snpBooks = dbPubs.OpenRecordset_
(strSelectBooks$, dbOpenSnapshot)

Beyond picking the right record-set
ype for the situation, you can also place
ifferent options on a record set to make

t run faster. For instance, you can use
ppend Only to open a dynaset that you’ll
nly use to add data to the database. This
Visual
saves time, because the record set does
not have to retrieve the pre-existing
records from the database. Instead it
needs only to add new records.

Another option, dbForwardOnly, cre-
ates a record set that only scrolls forward
one record at a time. While more restric-
tive than a regular record set, it does not
have to keep track of as much supporting
information (such as bookmarks), making
it faster than using a regular record-set.

Clever record-set management cer-
Basic Programmer’s Journal MAY 1996 63

O P T I M I Z I N G C L I E N T / S E R V E R

s
B
s
f
e
r
B

p
f
a
d
D
D

tainly boosts application and network per-
formance (see Listing 3). Add to that judi-
cious use of the SQL passthrough facility
and you can achieve escape velocity. SQL
passthrough was made just for client/
server apps. It takes a SQL statement and
passes it across the network to the data-
base server.

The server returns the results to the
app. For Select statements, Jet usually
sends the entire statement to the server,
but for operations such as Update, Jet
does a mixture of local and remote pro-
cessing (to provide partial update capa-
bility). This requires more network traffic
and more Jet operations, making it slower.

SQL passthrough bypasses Jet in ex-
ecuting non-Select operations (see List-
ing 4). Say you’re deleting many records
from a table. If you can build a single SQL
statement to select the records, then you
64 MAY 1996 Visual Basic Programmer’s Jour

can delete the records with a single delete

Using Snapshots. With this subrou
to be updated. For best performanc

record set will retrieve. You can also see how t
need—always a good practice.

LISTING 2
tatement, using the same Where clause.
ut you can use dbSQLPassthrough to
end the statement directly to the server
or efficient execution. Otherwise Jet
valuates the statement, deleting each
ecord one by one, as our original
ookSale app does:

db.execute "Delete * from authors
where
au_id like 'TT*'"

Now let’s boost by 22 times BookSale’s
erformance during deletion of records

rom tables in the pubs database. We
ccomplish this by adding the
bSQLPassthrough flag to the
ataCleanUp routine in the
ATALOAD.BAS module:

db.execute "Delete authors where au_id
like 'TT%', dbsqlpassthrough
nal

tine you use forward-only SQL passthrough sn
e, we’ve chosen the type of record set to use
o create a Where clause in your SQL call to lim
The SQL statements don’t match ex-
actly, though they provide the same func-
tionally. This demonstrates that when you
use SQL passthrough you must write the
SQL statement in the dialect of the data-
base server. If you don’t use SQL
passthrough, you must use the Jet syn-
tax. In most cases the SQL syntax will be
identical.

STORE PROCEDURES ON SERVERS
dbSQLPassthrough helps get you into true
client/server territory. And using it to
invoke stored procedures makes you a
client/server pro. Because stored proce-
dures are precompiled, preoptimized ex-
ecution plans, calling one avoids any
parsing—not so when you deliver a SQL
statement. In this case the database server
must compile and optimize that state-
ment before executing it. Stored proce-
dures let you avoid all that overhead.
CONTINUED ON NEXT PAGE.
Sub LoadListBox(stCriteria$)
Dim dbPubs As Database
'Database to retrieve data from.
Dim snpBooks As Recordset
'Recordset pointing at the database.
Dim snpCount As Recordset
'Recordset to contain count of records.
Dim strListBoxRow$
'Row to be added to the list box.
Dim strSelectBooks$
'Used to put together sql strings.
Dim strCurrentTitle$
Dim strSearchCriteria$
'Criteria String to search on,
'based on what field is being searched.

Dim intSpotInTitleArray%
Dim strAuthors$
Dim strWhereClause$
Dim intRecordCount%
Dim intRecordSetOptions%
Dim strSearchChar$
Dim intRecordSetType%

intRecordSetOptions% = dbSQLPassThrough + _
dbForwardOnly

intRecordSetType% = dbOpenSnapshot

frmBookList.lstBox.Clear
'Clean out all old values from database.
Set dbPubs = OpenDatabase(App.Path & "\pubs.mdb")
dbPubs.Connect = gCONNECT$

strSearchChar$ = "%"

If frmFind.optAuthor Then
'Set find string for use later.
strSearchCriteria$ = "au_lname like '" & _

stCriteria$ & strSearchChar$ & "'"
strSearchCriteria$ = strSearchCriteria$ & _

" or au_fname like '" & strSearchChar$ _
& "'"

Else
strSearchCriteria$ = "title like '" & _

stCriteria$ & strSearchChar$ & "'"
End If

strWhereClause$ = " where"
'Set up where clause for count and select
strWhereClause$ = strWhereClause$ & " " & _

strSearchCriteria$ & " and"
'We add the criteria onto the string to
'choose only the data we need.

strWhereClause$ = strWhereClause$ & _
" titles.title_id = titleauthor.title_id"

strWhereClause$ = strWhereClause$ & " and _
titleauthor.au_id = authors.au_id"

Set snpCount = dbPubs.OpenRecordset("select _
count(*) from titles, titleauthor, _
authors" & strWhereClause$, _
intRecordSetType%, intRecordSetOptions%)

intRecordCount% = snpCount(0)
'Get the count.
snpCount.Close
If intRecordCount% = 0 Then

MsgBox "There are no books matching _
this criteria"

Else
strSelectBooks$ = "Select titles.title_id, _

title, "
strSelectBooks$ = strSelectBooks$ & _

"price, _
http://www.windx.com

apshots to retrieve data that does not need
based on the definition of the data that the

it the amount of data returned to what you

O P T I M I Z I N G C L I E N T / S E R V E R

p
u
t

CONTINUED ON PAGE 68.
They also let you put application logic
on the server instead of the client pro-
gram. For example, a stored procedure
might add a record to a table and also
add all the foreign keys to other tables
within that record if they didn’t already
exist. You can execute such a stored
procedure with a single call across the
network to the database server. In con-
trast, without stored procedures you
must create an insert SQL statement for
the main table and query each of the
foreign tables to see if the key needed to
be added, and then send insert state-
ments to any foreign tables that needed
keys added.

For every step, you must send a SQL
statement across the network, and some
will cause data to be retrieved. If you’re
dealing with a table that has two foreign
tables associated with it and the keys
aren’t already in the tables, you’ll send
http://www.windx.com

CONTINUED FROM PREVIOUS PAGE.
out five server calls. Yet only two of those
calls will return data (the ones querying
to see if keys exist).

BookSale was built using the usual
calls, adding a record using a record set
and the addnew/update functionality:

Set dbPubs = OpenDatabase("", False, _
False, gCONNECT$)

Set rstSales = _
dbPubs.OpenRecordset("Select * _
from sales", dbOpenDynaset)

rstSales.AddNew
rstSales!title_id = _

gstrTitleArray(lstboxidx%)
rstSales!stor_id = gstrStoreId$
rstSales!ord_num = gstrOrderNumber$
rstSales!ord_date = Now
rstSales!qty = gintQuant%
rstSales!payterms = gstrPayTerms$
Visual B

En
db

End S
rstSales.Update
rstSales.Close

dbPubs.Close

Now we’ll optimize all this with a stored
rocedure to do the same record-adding
pdate. We call the stored procedure on
he server directly, using dbSqlpassthrough:

Set dbPubs = OpenDatabase(App.Path & _
"\pubs.mdb")

dbPubs.Connect = gCONNECT$
s$ = "InsertSale '" & _

gstrStoreId$ & "', '" & _
gstrOrderNumber$ & "', '"

s$ = s$& Now & "', " & _
gintQuant% & ", '" _
& gstrPayTerms$

s$ = s$ & "', '" & _
gstrTitleArray(lstboxidx%) & "'"
pubdate, au_lname, "
strSelectBooks$ = strSelectBooks$ & _

"au_fname from titles, "
strSelectBooks$ = strSelectBooks$ & _

"titleauthor, authors "
strSelectBooks$ = strSelectBooks$ & _

strWhereClause$ & " order by title"
Set snpBooks = _

dbPubs.OpenRecordset(strSelectBooks$, _
intRecordSetType%, intRecordSetOptions%)
'This should return records since
'we have a count.

'Verify you have found records before
'assuming they are there.
ReDim gstrTitleArray(intRecordCount%)
'Allocate Space.

strCurrentTitle$ = ""
'Clear Title String.
strListBoxRow$ = ""
'Clear String for Inserting into list box.

intSpotInTitleArray% = 0
While Not snpBooks.EOF
'The listbox only takes one column, so we must
'parse the data into a string to be added to
'the list box.

If strCurrentTitle$ <> snpBooks!title_id Then
'First we see if we are looking at a new
'title, or if this is one we have already
'started working on

If strListBoxRow$ <> "" Then
'If it is new then as long as this is
'not the first record--
strListBoxRow$ = strListBoxRow$ & _

strAuthors$
'Add the Author string to the rest
'of the title

frmBookList.lstBox.AddItem _
strListBoxRow$
'Add the whole thing to list box.

End If
strAuthors$ = ""
'Clear author string since it
'is a new title.
gstrTitleArray(intSpotInTitleArray%) = _

snpBooks!title_id
'Put title in title array, for access
'from listbox index.

intSpotInTitleArray% = _
intSpotInTitleArray% + 1
'Increment array counter.

strListBoxRow$ = snpBooks!Title & " " _
& snpBooks!price & _
" " & snpBooks!pubdate & " "
'Put title info together.

End If
If strAuthors$ <> "" Then strAuthors$ = _

strAuthors$ & ", "
'Add each author to authors list.
strAuthors$ = strAuthors$ & _

snpBooks!au_fname & " " & snpBooks!au_lname
strCurrentTitle$ = snpBooks!title_id

'Save current title before
'switching records.

snpBooks.MoveNext
Wend
If strListBoxRow$ <> "" Then
'We still must add last item to list.

strListBoxRow$ = strListBoxRow$ & strAuthors$
frmBookList.lstBox.AddItem strListBoxRow$

End If

frmBookList.Show
'Now show the form.
snpBooks.Close
d If
Pubs.Close
ub
asic Programmer’s Journal MAY 1996 65

6

O P T I M I Z I N G C L I E N T / S E R V E R

d
d

f
i
p
c
s
s

s
c
c
o
r
o
d
s
u
f
t
C
t
t

d values can range between five and 1200

e

bPubs.Execute s$, dbSQLPassThrough
bPubs.Close

It’s true that you can change the add
rom opening a record set to simply creat-
ng an insert statement and using
assthrough to get it to the server. But
reating this stored procedure lets the
erver compile and optimize the SQL in-
ert string in advance for greater speed.

Another feature that lets you play
quarely in client/server territory, data
aching, comes with DAO 3.0. Use data
aching with dynaset-type Recordset
bjects, which generally take longer to
ead data than snapshot-type Recordset
bjects do. You may still want to use
ynaset-type records in many common
cenarios, though, due to their convenient
pdatability. To scroll through the data

asterespecially when a form is using
he dynasetuse the Recordset
acheSize and CacheStart properties and

he FillCache method. In BookSale we use
his code to open our form:

sBooks.CacheSize = 20
6 MAY 1996 Visual Basic Programmer’s Jour

Tuning Queries. LoadStores prov
records to expect, then query the d

xceeds what can be retrieved with acceptab

LISTING 3
dsBooks.CacheStart = dsBooks.Bookmark
dsBooks.FillCache

This preloads an internal buffer with
20 records’ worth of data. As the user
moves through those records from your
app’s UI, the apps display quickly be-
cause the app doesn’t need to retrieve
them from the server.

To use caching, specify the number of
records to be stored by the value of
CacheSize (a Long integer) and the begin-
ning record by the bookmark stored as the
value of CacheStart (a String variable).
Apply the FillCache method to automati-
cally retrieve every value in the cache
range and fill the cache with server data.
This method works faster than filling the
cache because each record is fetched. If
you know ahead of time that all records in
the cache range will be visited, call FillCache
every time you move CacheStart.

Fetches within the cache boundary
occur locally, speeding display of the
cached records in a data sheet or in a
continuous form. CacheSize allowable
nal

En

ides an example of how your program can firs
atabase to return the records. Always check t
le performance, then ask users to limit the cri
records. If the cache size exceeds avail-
able memory, the excess records spill
into a temporary disk file. You’ll typi-
cally set CacheSize’s value to 100. To
recover the cache memory, set
CacheSize to zero.

Once you set the CacheSize and
CacheStart properties, as you move
through records, the program will cache
fetched data until you leave the defined
range. Once you’ve hit the end of the
range defined by CacheSize and
CacheStart, move the CacheStart setting
to a new position to stay synchronized
with a particular set of records. Caching
will continue with the new range, reusing
values appropriately if the new cache
range overlaps the old.

Watch performance jump when you
specify a cache—especially if your app
requires backward scrolling within the
cached region. Depending on your sce-
nario, using a cache may deliver more
performance than using a read-only, for-
ward-only snapshot, especially if the snap-
shot contains memo or long binary fields
that get referenced only occasionally.
Sub LoadStores()
Dim dbPubs As Database
Dim snpStores As Recordset
Dim intStoreArrayIndex%
Dim strStoreInfo$
Dim intFieldIndex%
Dim snpStoresCount As Recordset
Dim intRecordCount%
Dim intRecordSetOptions%
Dim strSelectStmt$

intRecordSetOptions% = dbSQLPassThrough + _
dbForwardOnly

Set dbPubs = OpenDatabase(App.Path & _
"\pubs.mdb", False, True)

dbPubs.Connect = gCONNECT$

Set snpStoresCount = _
dbPubs.OpenRecordset("Select count(*) _
from stores", dbOpenSnapshot, _
intRecordSetOptions%)

intRecordCount% = snpStoresCount(0)
snpStoresCount.Close

strSelectStmt$ = "Select stor_id, stor_name, _
stor_address, "

strSelectStmt$ = strSelectStmt$ & "city, _
state, zip from stores "

strSelectStmt$ = strSelectStmt$ & "order by _
stor_name, State, Zip, "

strSelectStmt$ = strSelectStmt$ & "city, _
stor_address"

Set snpStores = _
dbPubs.OpenRecordset(strSelectStmt$, _
dbOpenSnapshot, intRecordSetOptions%)

ReDim gstrStoreArray(intRecordCount%)
intStoreArrayIndex% = 0
While Not snpStores.EOF

gstrStoreArray(intStoreArrayIndex%) = _
snpStores("stor_id")

strStoreInfo$ = ""
For intFieldIndex% = 1 To _

snpStores.Fields.Count - 1
'Start at the second field.

If Not IsNull(snpStores_
(intFieldIndex%)) And _
snpStores(intFieldIndex%) <> "" Then
strStoreInfo$ = strStoreInfo$ & _

snpStores(intFieldIndex%) & " "
End If

Next intFieldIndex%
frmWelcome!cboStoreName.AddItem _

Trim$(strStoreInfo$)
snpStores.MoveNext
intStoreArrayIndex% = _

intStoreArrayIndex% + 1
Wend
snpStores.Close
dbPubs.Close

d Sub
http://www.windx.com

t query the database to find out how many
he number of records being returned. If it
teria of the records selected.

(
m
d
3
i
b

http://www.windx.com

The new Remote Data Access objects
RDO) in VB4 Enterprise Edition comple-
ents the client/server methods we’ve
iscussed so far. Unlike DAO/Jet version
.0, RDO writes directly to ODBC, exploit-
ng next-generation ODBC features such as
ulk fetching of records. RDO also im-

Both dynasets and snapshots have
strengths you should know about. Of
the two record sets, dynasets are
trickier. The simplest dynaset-type
record-set is a collection of bookmarks
that lets you uniquely identify each
record in a server database table. Each
bookmark corresponds to one record
on the server. Normally, the value of
the bookmark corresponds to the pri-
mary key value for that record. For
example, if you have an Orders table
on the server database, with a pri-
mary key on its OrderID field, then
internally to Microsoft Jet, the dynaset
contains all the OrderID values corre-
sponding to the records that satisfy
the query.

When you access data in dynaset

http://www.windx.com
Visual B

O P T I M I Z I N G C L I E N T / S E R V E R

proves support for server features such as
stored procedure parameters.

Use RDO’s extra functionality if you’re
building complex client/server applica-
tions in VB4. But don’t despair if you have
a large existing code base written to DAO.
The next version will bring RDO function-

Dynasets vs. Snapshots

fields, Microsoft Jet uses the bookmark
for the record to issue a query in the
form “SELECT field1, field2,... FROM
ORDERS WHERE ORDERID=bookmark.”
This statement is then sent to the server.
(For best performance, Microsoft Jet
actually includes up to 10 bookmarks in
the Where clause.) Then, as you request
the data on a field-by-field basis,
Microsoft Jet calls the ODBC SQLGetData
function to return the data from each
field.

Due to this field-by-field behavior,
data for a field is not retrieved from the
server unless that field is explicitly re-
trieved by your application’s code. For
example, you would only retrieve the
Photo field from the server if your code
contained a line such as:

Visual B
asic Programmer’s Journal MAY 1996 67

ality and performance to all Microsoft
apps using the same DAO object model
you know and love.

If you take advantage of the techniques
and new features we’ve discussed here,
from linked tables to RDO, from code
changes to new ways to interface with the

strNew = rstOrders!Photo

Thus if the table you’re accessing has
binary or memo fields with large
amounts of data, Jet does not have to
retrieve them from the server if you
don’t reference those large fields in
your code.

Snapshots are simpler. They are a
complete copy of all the requested
fields in your query. As you move
through a snapshot-type record set for
the first time, all data is copied first
into memory and then, if need be, into
a temporary Jet database in the tempo-
rary directory on the user workstation.
The resulting data set is read-only, and
by default can be scrolled forward and
backward.—M.M. and E.K.

asic Programmer’s Journal MAY 1996 67

O P T I M I Z I N G C L I E N T / S E R V E R

"

End Sub

LISTING 4 Passing Through. This code lets you put together a SQL passthrough Insert statement so you can add records to the titles
table in the pubs database. First you create the statement, then you execute it with the dbSQLPassthrough flag. In this case,

we use a loop to be able to add more than one record. A stored procedure, as shown in Listing 1, would execute even faster—go to the
extra effort of building one if it’s a critical part of your app.
server, you should see real client/server
performance gains and better resource
consumption. A little more coding effort—
using this new way of thinking—can get
you a long way.

We’ve talked about old and new ver-
sions of BookSale that embody these prin-
ciples. If you’d like more detail, download
both versions of the complete app. You
can find them in the Magazine library of
the VBPJ forum on CompuServe (GO
WINDX), in the VBPJ library on The
68 MAY 1996 Visual Basic Programmer’s Jour
Microsoft Network (GO WINDX), and on
VBPJ’s Development Exchange on
the World Wide Web (http://
www.windx.com). Both versions are titled
PUBS.VBP. The starting version is in the
SHPSTART directory; the optimized ver-
sion in the SHPEND directory. We’ve in-
cluded a readme file which will tell you
more of what the application does and
how we put it together.

When you first run the app, use the
Setup Database Button. This will ask you
nal

l

a

t
r
f
r e
cmdButton_Click event to:
for information on the SQL server that the
app will run against. You’ll need SQL Server
6.0, including the sample pubs that ship
with SQL Server. You’ll also need 32-bit
ODBC set up on your machine and a regis-
tered DSN pointing to your SQL Server.

We hope these sample apps will help
you apply what we’ve discussed here. To
keep things in the real world, we pur-
posely limited the development time to
emulate a typical client/server app rush
job—like your own next project.
Sub DataAlterTitles(dbPubs As Database, num&)
Dim intRecordLoop& 'Loop control variable
Dim strInsert$

For intRecordLoop& = 0 To (num& Mod gMAXTITLES&)
strInsert$ = "Insert into Titles values _

('" & gTITLESID$ & _
Format$(intRecordLoop&, "0000")

strInsert$ = strInsert$ & "', '" & _
gTITLESID$ & Format$(intRecordLoop&, _
"0000")

strInsert$ = strInsert$ & "', 'business', _
'1389', 10, 100, 24, 100"

strInsert$ = strInsert$ & ", 'Memo for " _
& gTITLESID$ & Format$(intRecordLoop&, _
"0000")

strInsert$ = strInsert$ & "', '" & Now & "')

dbPubs.Execute strInsert$, dbSQLPassThrough
Next intRecordLoop&
y
es

 _

s

y
e
 to
t

User Tip

WHEN DBGRID
REFRESHES
INCORRECTLY

If you change a data control’s
RecordSource at run time to a table
or query that shares field names
with the previous RecordSource, a
bound DBGrid will not refresh
correctly; the common field names
remain in their original positions
rather than appearing in the order
specified in the new table or query.
If the common field names in the
new RecordSource are capitalized
differently than in the original, the
DBGrid won’t show any data in that
column. To duplicate the problem,
create a form containing a data
control (datCtl), a DBGrid, and a
command button (cmdButton). Set
the DBGrid’s DataSource property
to the name of the data control. Add
this code:
Private Sub Form_Load()
datCtl.DatabaseName = _

"biblio.mdb"
datCtl.RecordSource = "SELECT _

Au_ID, Author FROM Authors;"
End Sub

Private Sub cmdButton_Click()
' Reverse field order — DBGrid wil
' continue to display Au_ID first
datCtl.RecordSource = "SELECT _

Author, Au_ID FROM Authors;"
datCtl.Refresh

' If you set the RecordSource to
' this (note capitalization)...
'
' "SELECT Author, au_ID FROM
' Authors;"
'
' the DBGrid won’t display any dat
' in the second column

End Sub

The workaround is to “reset”
he DBGrid by pointing it at a
ecordset that shares no common
ield names with the current
ecordset. For example, change th
Private Sub cmdButton_Click()
Dim SQL As String
' Reset DBGrid by creating empt
' recordset with unique field nam

SQL = "SELECT Author AS [Unique
Field Name] FROM Authors _
WHERE False;"

datCtl.RecordSource = SQL
datCtl.Refresh

' DBGrid will now display field
' as listed
datCtl.RecordSource = "SELECT _

Author, Au_ID FROM Authors;"
datCtl.Refresh

End Sub
—Phil Weber, VBPJ Technical
Review Board

SEND YOUR TIP
If it’s cool and we publish it, we’ll pa
you $25. If it includes code, limit cod
length to 10 lines if possible. Be sure
include a clear explanation of what i
does and why it is useful. Send to
74774.305@compuserve.com or
Fawcette Technical Publications, 209
Hamilton Ave., Palo Alto, CA, USA,
94301-2500.
http://www.windx.com

