
WINDOWS
PROGRAMMING

Click & Retrieve

Source

CODE!
NT Events are a Terrible
Thing to Waste

Read event logs on Windows NT
with 32-bit VB 4.0 code and
32-bit API calls.
L
p
p
t
7

by L.J. Johnson

h
B
s
u
t
I
p

S
s
d
(
t
S
i
V
l
e

a
r
c
c
c
S
t
a
m

c
o
t

•
v
c

1

ardware or software problems on NT, this article isn’t for you.
ut if any of this applies to you, you probably already know
omething about the event logs. Through a defined API, you can
se the event logs as a single place to store and retrieve informa-
ion about security events, system events, or application events.
n this column I’ll demonstrate how to read the event logs
rogrammatically from the 32-bit version of Visual Basic 4.0.

Windows NT creates and maintains a set of event logs:
ystem, Security, and Application. Physically, the three logs are
tored as three files in the \%SystemRoot%\system32\config
irectory as: SysEvent.Evt, SecEvent.Evt, and AppEvent.Evt
where %SystemRoot% is the Windows NT directory). Examine
he HKEY_LOCAL_MACHINE\SYSTEM\CurrentControl-
et\Services\Eventlog key in the 32-bit registry for further
nformation on these logs. If you haven’t yet used the Event
iewer applet in NT, bring it up now and browse the three event

ogs before you read the rest of column—doing so will make it
asier to understand the concepts.

You can look at the event logs on your local machine, or on
ny other NT computer on the network to which you have read
ights to that event log. It is not a trace facility, and it does
onsume resources such as disk space and logging time, but it
an be invaluable for tracking subtle problems. For example,
onsider an application that logs all low-memory conditions.
everal low-memory occurrences in the log might indicate that
he system needs more memory in order to successfully run this
pplication, or that the application has a bug that causes a
emory leak over time.

The System log records events logged by the NT system
omponents. You do not have to enable system logging—it
ccurs automatically. On my system, the System log contains
hese records:

 Application Popup: System Popup—Wrong Volume. The wrong
olume is in the drive (This refers to my CD-ROM drive. I had
hanged a CD too early).

f you aren’t running a Windows NT server or workstation,
don’t read any further. If you are not an administrator for
an NT server and/or workstation, or if you never have
.J. Johnson is a technical consultant on the Mary Kay InTouch
roject at Mary Kay Cosmetics in Dallas, Texas. He has been
rogramming in Visual Basic since 1.0, and is a section leader on

he VBPJ Forum on CompuServe. Reach him on CompuServe at
4777,3047.

04 MARCH 1996 Visual Basic Programmer’s Journal ©1991
• The browser has forced an election on network
\Device\Nbf_Elnk32 because a master browser was stopped.
• The Event Log service was started.
• Debug: ShareThisPrinter NetShareDel failed, Printer
LP_LaserJet3 sharename LJet3, Error 2114, deleting share.
• The redirector has timed out a request to ntbr61. (I got this RAS
message when I lost the connection to the remote server).
• User configuration data for parameter COM1 overriding firm-
ware configuration data.

The Security log records security events. You must enable
security logging in the User Manager, under the Audit menu item
of the Policies menu, for success or failure of such things as:

• Logon and logoff.
• File and object access.
• Use of user rights.
• User and group management.
• Security policy changes.
• Restart, shutdown, and system.
• Process tracking.

Using these settings in conjunction with the settings in File
Manager under the Auditing menu item of the Security menu,
you can actually look at who reads, writes, executes, deletes, or
changes permissions on a single file or group of files.

The Application log is perhaps the most interesting of all the
logs. The Security log is designed primarily for system adminis-
trators, although logging which users accessed or executed a
particular file might be useful for some applications. The System
log is a mixed bag.

The Application log, however, is utilized by applications—
those things we build for a living. For example, you might build
a program to automatically check an entire group of NT servers
and workstations daily for certain types of events in the Appli-
cations log (or, for that matter, the System or Security log), and
warn the network supervisor if any were found. Or you might
want to save certain types of event log entries to a text file before
clearing (deleting) that log. I won’t cover writing to the Applica-
tion log in this column, but it is possible to do it from VB. That
topic might make a good future column.

Reading an event log is more complicated than you might
first expect. It requires a number of 32-bit API calls, and a
number of workarounds to some of the limitations of VB. Be-
cause of the complexity, the entire functionality is encapsulated
in an in-process OLE server.

I should say something here about error handling: the VB 4.0
manuals give two ways to pass error information from the OLE
server back to the calling application—using the Err object and
raising an error in the calling app, or passing the error informa-
tion back from each exposed method or property. Because I did
not like either of these options, I used a third. The two main
public methods, OpenAnyEventLog and ReadEventEntries, re-
turn False if any errors occur while you’re opening or reading
http://www.windx.com–1996 Fawcette Technical Publications

)

WINDOWS
PROGRAMMING

LIST
for e
prop

P

_

T

http
ublic Function ReadEventEntries() As Long
Dim pbyteBuffer() As Byte
'missing declarations

'missing code to check EventType has been
' set and set the starting date and time bias

' Make sure that the event log has been opened
If mlngEventLogHwd = &HFFFFFFFF Then

' Has never been set -- see Initialize event
LastEventErrorNumber = (ERR_LOG_NOT_OPENED + _

vbObjectError)
LastEventErrorSource = EVENT_SOURCENAME & _

"ReadEventEntries"
LastEventErrorDescription = "The Event Log” & _

“has not been opened yet. Use” & _
OpenAnyEventLog property."

ReadEventEntries = False
mlngCount = 0
Exit Function

ElseIf mlngEventLogHwd <> 0 Then
plngEventLogHwd = mlngEventLogHwd

Else
' Error info set when set the Server Name
ReadEventEntries = False
mlngCount = 0
Exit Function

End If

' See how many event records are in this log
If API_NumberOfEventLogRecords(plngEventLogHwd) =

True Then
plngNumRecords = CountEventRecords

End If

If plngNumRecords <= 0 Then
' No records -- set number of records to zero
' and exit the function
ReadEventEntries = False
mlngCount = 0
Exit Function

Else
' Redimension the type array to
' total number of records
ReDim colEventRecord(1 To plngNumRecords) _

As EventRecord
End If

If mlngEventReadLogForward = True Then
plngReadFlags = EVENTLOG_SEQUENTIAL_READ Or _

 EVENTLOG_FORWARDS_READ
Else

plngReadFlags = EVENTLOG_SEQUENTIAL_READ Or _
 EVENTLOG_BACKWARDS_READ

End If

'missing code to initialize variables

' Loop thru the record numbers
Do While plngNumUnfilteredRecords < plngNumRecords

plngNumBytesToRead = 1024 * (plngNumRecords - _
plngNumUnfilteredRecords)

If plngNumBytesToRead > 16384 Then
plngNumBytesToRead = 16384

ElseIf plngNumBytesToRead < 4096 Then
plngNumBytesToRead = 4096

End If

ryAgain:
ING 1 Read All About It. The ReadEventEntries method is the main
log you selected through the OpenAnyEventLog property, and fil

ach log item in the filtered or unfiltered list. Access the various piece
erties and an index value in the calling program.

ReDim pbyteBuffer (0 To plngNumBytesToRead - 1)

://www.windx.com ©1991–1996 Fawcette Technical Publications
' Read the event log (multiple records) and
' check for errors
plngRtn = ReadEventLog(plngEventLogHwd, _

plngReadFlags, plngReadRecordOffset, _
pbyteBuffer(0), plngNumBytesToRead, _
plngNumBytesRead, plngMinNumBytesNeeded)

If plngRtn = False Then
If Err.LastDllError = ERROR_HANDLE_EOF Then

' End of the records
Exit Do

ElseIf Err.LastDllError = _
ERROR_INSUFFICIENT_BUFFER Then
' OK, 16K wasn't big enough -- set to
' the value returned by the function
' for the number of bytes needed
plngNumBytesToRead = plngMinNumBytesNeeded
GoTo TryAgain

Else
'missing code to set the substitute error
'properties as above
ReadEventEntries = False
mlngCount = 0
Exit Function

End If
End If

ReDim Preserve pbyteBuffer(0 To _
plngNumBytesRead - 1)

pstrMultiRecBuffer = Space$(plngNumBytesRead)
CopyMem ByVal pstrMultiRecBuffer, _

pbyteBuffer(0), plngNumBytesRead
Erase pbyteBuffer

' Loop for each record in the buffer
Do While Len(pstrMultiRecBuffer) > 0

If plngNumUnfilteredRecords > _
plngNumRecords Then
Exit Do

End If

plngNumUnfilteredRecords = _
plngNumUnfilteredRecords + 1

' Get the length of the next record and
' set the buffer to that length
plngRecLen = CVL(Mid$(pstrMultiRecBuffer, 1, 4)
pstrBuffer = Mid$(pstrMultiRecBuffer, _

1, plngRecLen)
pstrMultiRecBuffer = Mid$(pstrMultiRecBuffer, _

plngRecLen + 1)

' Get the raw info from the event log
plngRecNum = CVL(Mid$(pstrBuffer, 9, 4))
pvntAddDate = CVL(Mid$(pstrBuffer, 13, 4))
pvntTimeGenerated = DateAdd("s", _

CLng(pvntAddDate) - plngBiasTimeSecs, _
pvntStartDate)

plngEventID = CVL(Mid$(pstrBuffer, 21, 2))
plngEventIdForFile = CVL(Mid$(pstrBuffer, _

21, 4))
pintEventType = CVI(Mid$(pstrBuffer, 25, 2))
'missing code to extract rest of items
'from the buffer

' Get the EventSourceName and
' EventComputerName strings
pstrTmp = Mid$(pstrBuffer, 57)
On Error Resume Next
plngPos = InStr(pstrTmp, Chr$(0))
Visual Basic Programmer’s Journal MARCH 1996 105

 interface method for the server. It reads all the entries in the
ters the records if requested. It also fills in a private type array
s of each log item, such as EventID and Event Type, through

CONTINUED ON PAGE 106.

WINDOWS
PROGRAMMING
the event logs. The same information that could be returned
through the Err properties is instead returned through the
LastEventErrorNumber, the LastEventErrorSource, and the

LastEventErrorDescription public properties.

CONTINUED FROM PAGE 105.

_

1

1

s

colEventRecord(plngRecCount)._

106 MARCH 1996 Visual Basic Programmer’s Journal ©1991
OPEN SESAME
The OpenAnyEventLog method takes a single parameter,
ServerName, and returns either True or False. Before calling this
method, you must set the TypeEventLog. If you do not set the
E

If plngPos > 0 Then
pstrEventSourceName = Mid$(pstrTmp, 1, _

plngPos - 1)
End If

If plngPos > 0 Then
pstrTmp = Mid$(pstrTmp, plngPos + 1)
plngPos = InStr(pstrTmp, Chr$(0))
If plngPos > 0 Then

pstrEventComputerName = Mid$(pstrTmp,
1, plngPos - 1)

End If
End If

' Get the message string
If pintNumStrings > 0 Then

pstrStrings = Mid$(pstrBuffer, _
plngStringOffset + 1, _
(plngDataOffset - plngStringOffset))

End If
pstrMsgString = _

ResourceString(pstrEventSourceName, _
pintNumStrings, pstrStrings, _
plngEventIdForFile)

Select Case CLng(pintEventType)
Case EVENTLOG_SUCCESS

pstrEventType = "Success"
'missing code to set string for other
'types of EventType return value

End Select

' For no filter, all records match
If mlngFilterType = Filter_Type_None Then

plngIsMatch = True

' Have a filter -- this record may or
' may not match
Else

plngIsMatch = False
Select Case mlngFilterType

Case Filter_Type_TimeBefore
If CDate(pvntEventTimeWritten) < _

CDate(mvntFilter) Then
plngNumFilteredRecords = _

plngNumFilteredRecords +
plngIsMatch = True

End If
Case Filter_Type_EventID

If CLng(plngEventID) = _
CLng(mvntFilter) Then
plngNumFilteredRecords = _

plngNumFilteredRecords +
plngIsMatch = True

End If
'missing code to handle other
'types of filters

End Select
End If

' Only add to array if this is a matching
‘ record (with no filter, all records match)
If plngIsMatch = True Then

If mlngFilterType = Filter_Type_None Then
plngRecCount = plngNumUnfilteredRecord

Else
plngRecCount = plngNumFilteredRecords

End If

colEventRecord(plngRecCount)._
EventRecordNum = plngRecNum
–1
EventTimeWritten = pvntEventTimeWritten
'missing code to fill rest of type array

If plngSidLength = 0 Then
colEventRecord(plngRecCount)._

EventUserName = "N/A"
Else

pstrTmp = Mid$(pstrBuffer, _
plngSidOffset, plngSidLength)

pstrSid = ""
For pintInnerLoop = 1 To plngSidLength

pstrSid = pstrSid & _
Format$(Hex$(Asc(Mid$(pstrTmp, _
pintInnerLoop, 1))), "00") & " "

Next pintInnerLoop
colEventRecord(plngRecCount)._

EventUserName = pstrSid
End If

If plngDataLength > 0 Then
pstrTmp = Mid$(pstrBuffer, _

plngDataOffset + 1, _
plngDataLength)

pstrData = ""
' Convert to hex only if less than 256
' bytes or if the user wants it that way
If mlngEventDataReturnHex = False Then

If Len(pstrTmp) > 256 Then
pstrData = pstrTmp

Else
For pintInnerLoop = 1 To _

plngDataLength
pstrData = pstrData & _

Format$(Hex$(Asc_
(Mid$(pstrTmp, _
pintInnerLoop, _
1))), "00") & " "

Next pintInnerLoop
End If

Else
For pintInnerLoop = 1 To _

plngDataLength
pstrData = pstrData & _

Format$(Hex$(Asc(Mid$_
(pstrTmp, pintInnerLoop, _
1))), "00") & " "

Next pintInnerLoop
End If
colEventRecord(plngRecCount)._

EventData = pstrData
Else

colEventRecord(plngRecCount)._
EventData = "N/A"

End If
End If

Loop
Loop

' Re-adjust the number of items in array if it
‘ was filtered, and set the number of records
‘ in the module-level variable
If mlngFilterType <> Filter_Type_None Then

ReDim Preserve colEventRecord(1 To _
plngNumFilteredRecords)

mlngCount = plngNumFilteredRecords
End If

On Error GoTo 0
nd Function
http://www.windx.com996 Fawcette Technical Publications

10

WINDOWS
PROGRAMMING
event log type first, or if you pass an incorrect event log type, the
LastEventErrorNumber, LastEventErrorSource, and LastEvent-
ErrorDescription properties are set.

The OpenAnyEventLog method encapsulates the Open-
EventLog API call, which takes only two parameters: the server
name (in UNC format, although the server name itself will work
if you are already attached to that server) and the type of log.
That is why you use a Property Let to set the type of log, instead
of a simple global variable as a property. With Property Let, you
can check for valid types. Using a blank string for the server
name opens the log on the local computer. The Open-
AnyEventLog, if successful, also sets the private variable
mlngEventLogHwd that is used by the other methods and
properties in this class.

After opening the log, you have two choices concerning how
to view the returned event log entries. The first choice is
whether to filter the returned values. If you want to filter the
values, set the EventFilter property before calling the
ReadEventEntries method. If you do not need to filter the
returned values, just call ReadEventEntries. Note that filtering
the events will reduce the time for the OLE call, because the
server’s internal type array is filled with only the filtered records,
not all the records for that log.

The second choice is whether you want to read the log
backwards (latest events first) or forwards. By default the Event
Viewer applet displays the log backwards, which is also the
default for the ReadLogForward method (that is, FALSE = 0).

The EventFilter property has an interesting job—the filter
itself can be a date/time stamp, a long, an integer, or a text string.
In order to be able to check for valid parameters, the property
also accepts a filter type parameter. VB does not allow con-
stants from an OLE object to be exposed (like other OLE objects
in the Object Viewer).

Here’s where I get on my soapbox: how does the programmer
using the OLE object know about these constants, or about the
properties that he or she must set before calling a particular
method? The only answer is a complete help file that you include
with the object. Arguably, the most important part of an OLE
server is the quality of the included help file. Generally, the
programmer cannot see your code. He or she can see only the
public interface. You should include examples to make it easy to
cut and paste from the help file to the calling application. Think
of your OLE server as a third-party tool you purchased by mail-
order—it would be difficult or impossible to use that tool
effectively without documentation or online help.

READ IT AGAIN, SAM
The heart of the program is the ReadEventEntries method
(see Listing 1), which sets up an array (collection) of all the
matching event records. At the beginning of the function, set
the start date—event-log times are formatted in seconds past
midnight on 01/01/1970—and the time bias, which is the
difference in seconds between Coordinated Universal Time
and local time. Actually, the API call GetTimeZoneInformation
returns the time in minutes, but the private function
GetTimeBias converts it to seconds, the format the event log
requires.

Next, make sure the event log has been opened and use the
private variable mlngEventLogHwd to ensure you have a
valid event log handle. The NumberOfEventLogRecords prop-
erty encapsulates the GetNumberOfEventLogRecords API call.
Note that at this point the number of records is the number
of unfiltered records.

The ReadEventLog call is an interesting exercise in work-
ing around some of VB’s limitations. The primary problem is
7 MAR 1996 VBPJ ©1991–1996 Fawcette Technical Publications

WINDOWS
PROGRAMMING
the EVENTLOGRECORD structure. Un-
like most of the API typedefs, this par-
ticular one can change for each record
that is read. As a result, declaring a
Type variable in VB to match the C
typedef is not possible. However, you
can read this information with a byte
array (new to VB 4.0). The CopyMem
API function then converts the byte ar-
108 MARCH 1996 Visual Basic Programmer’s J

ray to a string:
Public Declare Sub CopyMem _
Lib "kernel32" Alias _
"RtlMoveMemory" (dst As Any, _
src As Any, ByVal Size As Long)

and the private CVL or CVI functions ex-
tract any numeric values from that string
to longs or integers.

Another programming choice is
whether to read only one record at a time,
ournal ©1991–1996 Fawcette Techn
or read multiple event records at once. To
read only one record at a time, set the
number of bytes to be read (plngNumBytes-
ToRead) to less than the length of a single
record, call ReadEventLog, trap the error
ERROR_INSUFFICIENT_BUFFER, and re-call
the function with the number of bytes set
to plngMinimumBytesNeeded. While this
works, it is programmatically cleaner to
read multiple records at one time. I tried it
both ways, and saw no significant speed
differences between the two, for either a
large or a small number of total records.

DON’T TAKE TOO BIG A BITE
Note that I arbitrarily set the buffer size
for a single read to 16K. Setting it to
higher values may reduce the number of
cycles in the loop, but may not necessar-
ily reduce the total time the function
needs. One big variable (pun intended)
is the amount of memory installed on
your NT computer. Feel free to experi-
ment with various maximum buffer sizes.
Note that some records may be bigger
than 16K (thanks to Karl Peterson for
sending a log indicating the problem—a
utility called DrWatson can generate sys-
tem dumps and include them in the log
entry). In this case, I trap the ERROR_
INSUFFICIENT_BUFFER and reset the size
to the plngMinimumBytes needed, as I
explained.

After getting the records, “trim” the
byte array to the size of the number of
bytes actually read (the ReadEventLog
API function returns only full records) by
using the plngNumBytesRead return
value. Byte arrays are hard to work with,
so use the CopyMem API function to con-
vert the array into a string.

The main loop parses the individual
event records from the multiple-record
string. Fortunately, after you convert the
first four bytes of each record string into
a long integer, you have the record length
of that record. The CVL function uses
CopyMem to convert the passed string
(four bytes) into a long integer. Once the
record length of the first record is deter-
mined, that string length is isolated into a
new string for further processing.

Now that you have the string for just
one event record, you can process that
string into the individual elements of a
type array. The functions CVL and CVI
convert substrings to long integers or
integers. The date substring uses the VB
function DateAdd to add the number of
seconds from the base timestamp to the
timestamp returned from the event log.
The program parses out the Event-
SourceName and ComputerName by look-
ing for Chr$(0). The Message string, SID,
http://www.windx.com

and Data strings are located with the vari-

ical Publications

WINDOWS
PROGRAMMING

e
a
A
t
c
a
M
T
f

s
A
r
f
f

ous offset and length values returned by
the event record. Both SID and Data val-
ues are converted to hex before being put
into the type array.

Actually, the inclusion of system
dumps in some event logs presents an
interesting problem. These dumps are
stored as Data values, and tend to be
large (12K to more than 16K). If the server
translates them to hex, it will take a long
time to return to the calling program:
string concatenation in VB 4.0 is even
slower than in VB 3.0. Because they are
already in hex/ASCII format (hex on left),
the data will be indecipherable.

As a kludge, you can set the property
EventDataReturnHex. The default, if you
don’t set it, is false. When it’s false, it returns
the hex values for Data strings that are 256
bytes or fewer but untranslated values for
strings of more than 256 bytes. All the val-
ues I have seen for Data (except for the
dumps) were displayed as hex in the Event
Viewer and were 32 bytes or fewer.

One interesting aside is the EventID. Use
the EventID as a pointer to the correct
string to look up in the resource file. Simply
take the correct four bytes from the record
and convert them to a long integer using
CVL. But that number is not the same num-
ber as appears in the Event Viewer applet.
In order to get the Event Viewer number,
you must take only the two low-order bytes
and convert them into a long integer. I guess
Microsoft was concerned with the confu-
sion that some of the very large numbers
could create among the users of the Event
Viewer—so they made it confusing to the
programmer instead.

DO WE NEED AN INTERPRETER?
The Message string is the most compli-
cated of all the items returned from the
ReadEventLog API call. The message that
is returned from the event record is not
the message that you see in the Event
Viewer. Most messages contain replace-
able strings (for example, %1, %2, etc.).

The private function ResouceString
encapsulates all the API calls you need to
return the filled-in Message string. It gets
the resource name using the passed
SourceName to look up the full path of
that resource in the 32-bit registry
(through a private class module,
RegistryDB). Any replaceable environ-
mental parameters such as %System-
Root% in the returned string are replaced
with the ExpandEnvironmentalStrings API
call. The full path is then used to load that
resource (normally an EXE or DLL). You
can find the ResourceString function in
WP0396.ZIP, in the Magazine Library of
the VBPJ Forum on CompuServe.

Next, any passed replaceable param-
http://www.windx.com ©1991–1996 Fawcet
ters are parsed into an array, and that
rray is passed to the function Translate-
rray. This function hides a messy solu-

ion—the FormatMessage API call will ac-
ept only a type variable from VB, not an
rray, when you are using the FORMAT_
ESSAGE_ARGUMENT_ARRAY bit flag.
hanks to Karl E. Peterson and Microsoft

or this critical piece of information.

THE EVENT LOG’S

FUNCTIONALITY IS

ENCAPSULATED IN AN

IN-PROCESS OLE SERVER.

The function FormatMsgFrom-Re-
ources encapsulates the FormatMessage
PI call. With this one API call, you can
etrieve the specific message you need
rom the resource (based on the EventID
rom the event record), and replace all
Visual Baste Technical Publications
the replaceable parameters, if any.
Actually, it’s a little more complicated

than this, because the algorithm I de-
scribed doesn’t work for some of the en-
tries (perhaps 1 percent or so). For these
event log entries, when you retrieve the
strings from the resource (used to re-
place the %1, and so on in the message
string), those resource strings themselves
have placeholders in the format %%1234.

So, if the returned resource string
contains any “%%,” that string is sent to
another private function, Resource-
String2. In order to find the resource file
to look up the parameter, in you look at
the registry again, but with the value
..\..\Parameter-MessageFile instead of
..\..\Event-MessageFile. The number im-
mediately after the %% is used as a pointer
to get the exact text string from the Pa-
rameter-MessageFile, just as with the
original lookup into the Message file, and
that string is used to replace the %%xxxx
placeholder.

Finally, after all the data and strings for
a particular event record have been re-
solved, each item is placed in its own ele-
ment in a type array. Because VB 4.0 does
not allow you to pass a UDT from an OLE
ic Programmer’s Journal MARCH 1996 109

WINDOWS
PROGRAMMING

o

C
T
f
g
w

•

server, the calling program will access each
of these elements of the type array as a
property, and pass an index value to indi-
cate which item in the collection you are
requesting. Because you’re creating your
own collection, more or less, the indexes
will run from 1 to the number of event log
items. Then, go to the top of the loop to
either read the next event record from the
110 MARCH 1996 Visual Basic Programmer’s J

already-retrieved byte array, or read an- D
ther set of records into a new byte array.

ALL IT OUT
he full code for this column includes a help

ile for the DLL server and an example pro-
ram. At a minimum, the calling program
ould:

 Instantiate the object:
im pEventLog As New EventLogs
ournal ©1991–1996 Fawcette Techn
• Set the filter:
pEventLog.EventFilter(FilterText) = _

Filter Type
• Set the log type:
pEventLog.TypeEventLog = "Application"
• Open the log:
If pEventLog.OpenAnyEventLog_

("ServerName") = False Then
' Get the error information

• Read the log entries:
If pEventLog.ReadEventEntries = _

False Then
' Get error information

• Get a count of the records:
plngEventCnt = _

pEventLog.CountEventRecords
• Redim a type array to hold return
values.
• Loop through the properties (passing
the index) to fill in the type array.
• Set the object to Nothing:
Set pEventLog = Nothing

You could do several things to im-
prove the server, but I’ll leave those as an
exercise for you. It would be nice to add
sorting as a property of the OLE server.
Another would be to optimize the
sublookups for those items that have
placeholders in the resource string. This
could be either a very important optimi-
zation or an insignificant point, depend-
ing upon the type of log items retrieved.

Finally, if you are doing multiple look-
ups with different filters, it would be nice
to read and store the entire event log
internally in the server, even on filtered
items, but return only the items that match
the filter. Then, another call to the same
log with another filter could just reread the
stored items and apply the new filter with-
out having to reread the log. However, you
would have to at least check to see if the
number of items had changed since the
last time it was called, and reread the
entire log if a new item had been added.
You would also have to come up with some
method to ensure that you had consecu-
tive index numbers for a filtered string.

You can find the complete code for
this project, along with the code for a test
program to exercise the in-process server
and a help file, in the VBPJ Forum on
CompuServe. Search for the file
WP0396.ZIP.
http://www.windx.com

Author’s Note: Because no installation pro-
gram is included, you must either manually
register the DLL with REGSVR32.EXE, or
compile the DLL again, which will automati-
cally register the server. In the test program,
under the References item in the Tools menu,
uncheck the ReadEventLogs reference. After
you register the DLL, go to References again
and check “Read NT EventLogs.”

ical Publications

