
18 MAY 1

D B B E N C H M A R K S

D

Steve Jack
ing VB, SQ
Aeronutro
is a VBPJ
leader. Pra
at Loral c
Steve on C

J
of u
op
da
op
rec
en
mo
ne
ava

exe
de
ser
me
(se
ing
wit

Click & Retrieve

Source

COD
Clocking
ata Access

E!
m
h
p
s
d

s
t
n
a
p
t
t
w
c
d

v
w

D

u
g

•
•
r
•
t

B Y S T E V E J A C K S O N

m
e
n
t
a
o
i

Query execution
can vary by a ratio
of 24:1 depending on
the data access
technique. Study
these benchmarks to
determine the right
approach for you.

ust as VB developers can choose
between different versions of VB and
different operating systems, those

s doing client/server database devel-
ment must choose between several
ta access techniques, including Jet
tions, direct ODBC API calls, and most
ently RDO. VB4 comes with a new Jet

gine and Data Access Object (DAO)
del, 16-bit and 32-bit versions, and the

w Remote Data Object (RDO) model,
ilable only in 32-bit mode.
As part of a team assigned to define and
cute benchmark tests, my task entailed

fining and performing a suite of client/
ver data-access benchmarks to comple-
nt Ward Hitt’s feature on VB speed tests
e “Benchmark Battle,” this issue). Dur-
 the definition phase, I worked closely
h VBPJ database columnist and VBITS
996 Visual Basic Programmer’s Jour

son develops network apps us-
L Server, and other tools at Loral
nic in Southern California. Steve
author and CompuServe section
deep Shah and other colleagues

ontributed to this article. Reach
ompuServe at 72040,1640.
speaker Andrew Brust. While conducting
tests, I consulted with colleagues at Loral,
as well as VBPJ staff and contributing edi-
tors. I learned some interesting optimiza-
tion tricks and discovered a 24-to-1 perfor-

ance ratio between the fastest and slow-
st data access techniques. Users can wait
early half a minute for query results, or
hey can snap up data in
 fraction of a sec-
nd—with options

n between.
•
•
•
•
•
W
•
w

Maximizing data access speed depends
for the most part on your choice of tech-
niques. I’ll walk you through the options
based on my test results.

Speed is the key consideration in mak-
ing the right data access choice for client/
server database design, although other
criteria, such as ease of use, maintainabil-
ity, and portability must be weighed. In my
company, database performance is fore-
most in every developer’s mind. If an appli-
cation is too slow, no one will use it no
nal
atter how inspired the user interface or
ow clever the code. I wrote a database-
erformance test program and ran it on
everal different platforms to obtain hard
ata on the fastest back-end techniques.

Here at Loral, my results have started
everal lively debates on the benefits and
rade-offs of different programming tech-
iques. Applying some of the lessons to an
ctual application at Loral resulted in a 33
ercent reduction in the overall startup
ime by improving the speed of seven da-
abase queries. Developers here are still
eighing the alternatives, but one thing is
ertain: everyone is looking closely at their
atabase access code.

My testing criteria included trade-offs in
ersions of VB, operating systems, hard-
are configuration, and data access tech-

niques. I wanted answers to a variety of
questions, including: How is client/server
data-access performance affected when
moving from Windows 3.11 to Windows
95, or to Windows NT? What is the im-
pact of the machine processor and RAM?
What are the performance differences
between VB3, VB4/16, and VB4/32? How

do different programming techniques
compare, and how does the new Remote
ata Object (RDO) perform?

The test program timed a series of tests
sing these platforms and database pro-
ramming techniques:

 Jet DAO snapshots and dynasets.
 Jet DAO using an MDB attached to the
emote database server tables.
 DAO using SQL passthrough to bypass
he Jet engine.
 Jet DAO QueryDefs.
 ODBC API calling ODBC directly.
 Remote Data Object (32-bit only).
 VB3, VB4/16, and VB4/32.
 Windows 3.11, Windows 95, and
indows NT 3.51.

 486/66 with 8 MB RAM, Pentium/100
ith 32 MB RAM.
http://www.windx.com

D B B E N C H M A R K S

d
te
te
w
re
k
a
v
would be possible if a search were needed
I restricted tests to remote SQL data-
base servers using SQL Server and Oracle,
and did not run any tests on file-based
databases, such as Access, Paradox, or
FoxPro.

 I tested client/server performance be-
cause in our corporate environment (and
in most large organizations), we need the
recovery and integrity features built into
a true database server. What is optimal
coding for an Access database is not al-
ways the best technique for a remote
database server.

The test program was compiled in VB3,
VB4/16, and VB4/32, with only slight modi-
fications between VB3 and VB4 to use the
new VB4 Jet DAO syntax. The VB4 16-bit
and VB4 32-bit code was identical except
for some API call declarations. RDO was
tested only in the VB4/32 test program
because it’s available only in VB4/32 En-
terprise Edition.

To compare the effects of processor
speed and RAM, the Windows 95 and Win
3.11 tests were performed on a Pentium/
100 processor and 32 MB of RAM and on
a 486/66 processor and 8 MB of RAM. The
NT machines had slightly different con-
figurations due to hardware availability
and software requirements.

For the back end I used Microsoft SQL
Server version 6.0 running on a Pentium/
100 NT server, and all the client machines
ran Microsoft TCP/IP stacks and ODBC
drivers. I could not run the 32-bit test on
the 486/66 with 8 MB of RAM because SQL
Server ODBC drivers have a stated RAM
requirement of 16 MB.

A small set of the tests was also run
using an Oracle server and a Pentium
client. The Oracle results should not be
compared to SQL Server because the
server hardware, network, and machine
load were different—the test was meant
to show the relative differences between
programming techniques.

Of course your database applications
will not perform exactly as the test pro-
gram performed, but these tests are valu-
able for comparing performance of vari-
ous data-access techniques, configura-
tions, and platforms.

You can download the test suite from
VBPJ sites on CompuServe, MSN, and the
Web (see “How To Reach Us” in the Let-
ters section, or the instructions opposite
the Table of Contents for details). Search
for DBBENCH.ZIP. Eric Busby of QuickStart
Technologies duplicated my tests using
comparable platforms (see the sidebar,
“Duplicating Data Access Benchmarks”).

THE TEST DESIGN
I tested a series of simple SQL operations
that included queries based on an in-
dexed key, search queries based on a
nonindexed column, updates, inserts,
http://www.windx.com
eletes, and a two-way table join. These
sts simulate a transaction-oriented sys-
m such as an order entry application,
here typical operations might include
trieval of customer data by an indexed

ey, adding new rows with order data,
nd updating the customer data and in-
entory data. Longer-running queries
Visual
on a nonindexed column—for example,
retrieving all products with a particular
product code. I also included a query to
retrieve all the rows in a small 200-row
table, like one that might load into a
memory array once at the start of a pro-
gram and be used for code validation.

For the SQL tests I created the tables
Customer, ProductCode, and OrderEntry
Testing Under Windows 95 on a Pentium. These database access test
results were obtained on a client Pentium/100 with 32 MB of RAM running

Windows 95, and a SQL Server 6.0 back-end database server running on Windows NT 3.51.
There was a 24-to-1 difference between the different programming techniques, with direct
ODBC API calls screamingly fast, and 32-bit RDO close behind. For a given programming
technique, VB4/16 and VB4/32 were both slightly slower than VB3. The programming
technique made more of a difference than versions of VB used. Timings are in seconds.

TABLE 1

Jet Jet DAO Jet ODBC RDO RDO
DAO Attached SQL MDB API 32-bit Prepared

MDB Passthru Query only Stmt

Select rows by indexed key 20 times

VB3 12.36 3.07 5.90 3.89 0.28 n/a n/a

VB4/16 12.40 3.22 6.00 3.30 0.26 n/a n/a

VB4/32 13.78 3.89 5.98 3.85 0.38 1.74 1.25

Select all rows small table

VB3 0.55 0.25 0.43 0.26 0.10 n/a n/a

VB4/16 0.59 0.29 0.45 0.29 0.09 n/a n/a

VB4/32 0.71 0.30 0.48 0.42 0.13 0.33 0.34

Search on nonindexed value

VB3 0.95 0.49 0.24 0.52 0.02 n/a n/a

VB4/16 0.95 0.49 0.31 0.54 0.02 n/a n/a

VB4/32 1.23 0.52 0.29 0.78 0.02 0.10 0.12

Select and update 20 rows

VB3 14.91 5.67 5.97 6.52 .067 n/a n/a

VB4/16 14.17 4.80 5.99 4.91 .056 n/a n/a

VB4/32 14.74 5.50 6.49 5.96 .074 2.24 1.78

Insert 20 rows

VB3 2.63 2.64 0.29 3.65 0.29 n/a n/a

VB4/16 1.54 1.60 1.09 3.35 0.29 n/a n/a

VB4/32 1.53 1.50 1.13 3.47 0.29 1.19 0.40

Delete 20 rows

VB3 14.94 5.67 0.27 5.67 0.28 n/a n/a

VB4/16 15.07 5.76 1.08 5.78 0.27 n/a n/a

VB4-32 16.48 7.90 1.10 8.08 0.26 1.16 0.29

Two-table join

VB3 3.50 2.90 0.28 2.86 0.06 n/a n/a

VB4/16 3.31 2.91 0.30 2.84 0.09 n/a n/a

VB4/32 3.62 3.31 0.35 2.80 0.07 0.17 0.18

TOTAL TIME

VB3 54.3 22.1 15.5 25.0 2.2 n/a n/a

VB4/16 52.7 20.4 17.0 22.7 2.1 n/a n/a

VB4/32 56.2 24.6 17.7 29.3 2.4 9.3 5.5
 Basic Programmer’s Journal MAY 1996 19

I
b
m
e

a
t
t
e
p
r
hours when there was little network and database server traffic,

3
a
t
t
3

r
sn
co t
b .
C
modifications to the code.

L

D B B E N C H M A R K S
on SQL Server, and wrote a VB program to populate them with
test data. The Customer table was loaded with 101,000 rows of
data created at random by the load program. The ProductCode
table was loaded with 200 rows, and the OrderEntry table was
loaded with 20,000 rows.

The larger Customer table was used for most of the tests,
the smaller ProductCode table was used for a test that read all
the rows in the 200-row table, and Customer and OrderEntry
tables were used for a two-table join.

I called the Windows API call GetTickCount() to time the tests
before and after operations by getting the number of milliseconds
since the system was started. The VB timer control uses this same
internal timer. GetTickCount() is accurate only to about 55
milliseconds because it’s based on a system timer that fires 18.2
times a second. However, Windows has a multimedia timer that
fires more frequently and allows finer measurements.

Early in the coding of the test program I used the multimedia
timer API, but I experienced random variations in network through-
put and server response, so it was difficult to get a consistent
measure of an individual database call down to the millisecond.
20 MAY 1996 Visual Basic Programmer’s Journal
 went back to the the GetTickCount() API call for ease of use
etween 16-bit and 32-bit platforms, and decided instead to
easure a series of database calls and measure the speed of the

ntire series.
To accurately measure the faster operations, I generated

rrays of random keys for select, insert, and delete tests before
he code that started the timer, then started the timer, executed
he operation 20 times using the array of random keys, and
nded the timer count. The elapsed seconds were then com-
uted as (EndTime - StartTime)/1000, and written to a log file. I
an the tests several times on each machine during weekend
Moving to Win 3.11 on the Pentium. The tests run on
Windows for Workgroups 3.11 and a Pentium/100 with

2 MB of RAM show VB3 times slightly slower than Windows 95 times,
lthough VB4/16’s times were very close to Windows 95’s times. Like

he Windows 95 test, the big difference was between programming
echniques, with the ODBC API 24 times faster than using Jet/DAO. No
2-bit tests were run because Windows 3.11 is 16-bit.

TABLE 2

Jet Jet DAO Jet ODBC
DAO Attached SQL MDB API

MDB Passthru Query

Select rows by indexed key 20 times

VB3 12.70 4.66 5.60 4.77 0.38

VB4/16 13.77 3.79 5.88 4.99 0.39

Select all rows small table

VB3 0.61 0.33 0.55 0.49 0.11

VB4/16 0.66 0.38 0.49 0.38 0.11

Search on nonindexed value

VB3 0.88 0.82 0.27 0.82 0.05

VB4/16 1.04 0.93 0.32 0.93 0.01

Select and update 20 rows

VB3 14.80 6.43 7.14 7.19 0.77

VB4/16 14.16 6.81 6.92 6.76 0.77

Insert 20 rows

VB3 2.63 2.30 0.66 3.35 0.33

VB4/16 1.10 1.32 1.10 3.34 0.33

Delete 20 rows

VB3 17.31 7.30 0.49 7.69 0.38

VB4/16 17.36 7.42 1.10 7.84 0.38

Two-table join

VB3 3.62 3.13 0.28 2.86 0.06

VB4/16 3.74 3.30 0.31 2.91 0.08

TOTAL TIME

VB3 57.2 27.1 17.1 28.8 2.2

VB4/16 56.3 25.2 17.7 28.1 2.4
'In the declarations section
Dim henv As Long
Dim hdbc As Long
Global Const SQ = "'" '1 single quote

Function ODBCGetRowByKey(sKey As String)
As String
Dim sSQL As String, hstmt As Long
Dim rc As Integer, lValueLen As Long
Dim sLastName As String
Dim sFirstName As String
lValueLen = 100
sLastName = String$(100, Chr$(0))
sFirstName = String$(100, Chr$(0))
sSQL = "Select LastName, FirstName from Customer _

where CustID = " & SQ & sKey & SQ
rc = SQLAllocStmt (hdbc, hstmt)
' SUB ShowStatus() writes to log file
If rc <> SQL_SUCCESS Then

ShowStatus "Error in AllocStmt " & Str$(rc)
Exit Function

End If
'run the query
rc = SQLExecDirect(hstmt, sSQL, Len(sSQL))
If rc <> SQL_SUCCESS Then

ShowStatus "Error in ExecDirect " & Str$(rc)
rc = SQLFreeStmt(hstmt, SQL_DROP)
Exit Function

End If
' get a row
rc = SQLFetch(hstmt)
If rc <> SQL_SUCCESS Then

sLastName = "ERROR - NOT FOUND!"
sFirstName = ""

Else
' get a data value
rc = SQLGetData(hstmt, 1, SQL_C_CHAR, sLastName, _

100, lValueLen)
rc = SQLGetData(hstmt, 2, SQL_C_CHAR, sFirstName, _

100, lValueLen)
If rc <> SQL_SUCCESS Then

sLastName = "ERROR - NOT FOUND!"
sFirstName = ""

End If
End If
'SUB TrimNulls() strips C style terminating nulls from
'the string
Call TrimNulls(sLastName)
Call TrimNulls(sFirstName)
'De-allocate statement
rc = SQLFreeStmt(hstmt, SQL_DROP)
ODBCGetRowByKey = RTrim$(sLastName) & ", " & _

RTrim$(sFirstName)
End Function

The ODBC API Trade-Off. ODBC API code to retrieve
a row is much longer than simply opening a dynaset o

apshot. The ODBC API is blazing fast, but requires more work to
de. There is no trappable error handling, so each API call mus

e checked for errors, and the API does not support bound controls
hanging the column definitions in the table would require

ISTING 1
http://www.windx.com

s
m -
b

for the ODBC API. Clearly, the choice of

21

D B B E N C H M A R K S
so results weren’t influenced by heavy
network traffic.

THE ENVELOPE, PLEASE
The ODBC API is the fastest data access
technique, turning in a total test time of 2.2
seconds using 16-bit VB4 on a Pentium/
100 running Windows 95 (see Table 1).
When evaluating all results, I was surprised
by the wide difference in data access speed.

For example, the ODBC API result of 2.2
 MAY 1996 Visual Basic Programmer’s Journ
seconds was more than 24 times faster
than the VB4/16 time of 52.7 seconds using
Jet Data Access Objects. VB4/16 was
slightly faster than VB3 on the Pentium,
but only by 3 percent (Jet/DAO) to 5 per-
cent (Attached MDB), and was 9 percent
slower using the SQL passthrough option.
VB4/32 was somewhat slower than 16-bit
VB4 and VB3, but at 5.5 seconds, 32-bit
RDO was faster than any other test except
Jet Jet DAO Jet ODBC RDO
DAO Attached SQL MDB API

MDB Passthru Query

Select rows by indexed key 20 times

VB3 16.51 4.93 6.53 6.46 0.51 n/a

VB4/16 16.03 4.59 6.91 6.16 0.50 n/a

VB4/32 12.6 4.16 3.04 4.35 0.49 1.09

Select all rows small table

VB3 0.77 0.32 0.51 0.38 0.13 n/a

VB4/16 0.78 0.30 0.57 0.41 0.11 n/a

VB4/32 0.61 0.37 0.43 0.29 0.12 0.38

Search on nonindexed value

VB3 2.05 1.47 0.45 0.83 0.06 n/a

VB4/16 2.15 1.25 0.51 0.79 0.06 n/a

VB4/32 0.95 0.77 0.55 0.48 0.02 0.11

Select and update 20 rows

VB3 21.18 10.82 8.64 10.75 1.02 n/a

VB4/16 20.70 10.47 8.93 10.58 0.96 n/a

VB4/32 20.28 5.76 3.96 5.95 0.90 1.46

Insert 20 rows

VB3 4.10 3.07 0.45 4.10 0.51 n/a

VB4/16 4.05 2.89 0.51 3.98 0.47 n/a

VB4/32 1.43 1.61 1.31 3.03 0.25 0.29

Delete 20 rows

VB3 24.45 9.79 0.32 11.39 0.38 n/a

VB4/16 25.21 9.26 0.26 10.89 0.39 n/a

VB4/32 15.71 7.61 1.20 8.42 0.23 0.29

Two-table join

VB3 5.50 3.14 0.51 3.78 0.06 n/a

VB4/16 5.36 3.05 0.58 3.44 0.07 n/a

VB4/32 3.63 2.75 0.18 3.19 0.13 0.19

TOTAL TIME

VB3 81.22 35.97 21.36 40.13 3.39 n/a

VB4/16 83.14 36.72 20.68 41.34 3.51 n/a

VB4/32 55.10 25.92 12.87 29.48 2.46 5.41

Evaluating NT Pentium Performance. Test results for a Pentium/100 with
24 MB of RAM running Windows NT Workstation 3.51 favor 32-bit apps. The big

uprise here was the wide difference between 16-bit and 32-bit tests, with 16-bit results as
uch as 50 percent slower than 32-bit. Windows NT has to convert 16-bit operations to 32

it, slowing down the 16-bit code.

TABLE 3
al http://www.windx.com

3
N
r
r
a
p

a
i
d
m
n
f
t

a
t
f
r
s
n

w
O
o
o r
than any other technique on the Pentium, including RDO.

66
ps

3 er
t n
programming techniques was similar to that of other platforms.

C

D B B E N C H M A R K SD B B E N C H M A R K S
programming technique has a greater effect on performance than
the version of VB used.

The results for a Pentium/100 running on Windows 3.1 show
that VB3 programs run faster on Win95 (54.3 seconds) than
Windows 3.1 (57.2 seconds), and VB4 programs run slightly
faster on Windows 95 (see Table 2).

The pattern between the different programming techniques
shows ODBC API results 24 times faster than the Jet/DAO. Tests
run on Windows NT show a big difference between 16-bit and 32-
bit programs, with 32-bit results roughly comparable to Win-
dows 95, but 16-bit results as much as 50 percent slower (see
Table 3). There’s no 16-bit code in NT, so 32-bit programs have
a clear advantage.

I ran tests on a 486/66 using the same operating systems.
Again, the ODBC API on Windows 95 is the clear winner, with
total test times of 2.9 seconds (VB3) and 3.1 seconds (VB4/16),
which are 30 times faster than the Jet/DAO times of 86.9 and 94.7
on the same machine (see Table 4).

Like the Pentium results, the programs ran somewhat slower

on Windows 3.1 (see Table 5). Running NT tests on the 486, the d

22 MAY 1996 Visual Basic Programmer’s Journal
2-bit tests proved superior to the 16-bit tests (see Table 6).
otably, ODBC runs faster on the 486 than other techniques

unning on the Pentium, with the fastest 16-bit 486/66 ODBC API
esults of 2.9 seconds faster than RDO running on a Pentium/100
t 5.5 seconds. There were a few anomalies in the SQL
assthrough and NT results I’ll explore in detail later.

I reran and rechecked the ODBC API results several times,
nd performed separate database queries to ensure it was
ndeed running correctly, and that the inserts, updates, and
eletes were truly taking place. As I stated earlier, these results
ay not match your experience exactly, because the server and

etwork were under light usage, and the SQL operations were
airly simple. However, I drew a number of conclusions that I
hink are valid, based on the data.

The easiest way to improve DAO performance is to use an
ttached MDB: attach an Access database with no data in it to
he ODBC data source so that only tables are attached. This is
airly common knowledge among database developers, and my
esults confirm it. When connected directly to an ODBC data
ource using the OpenDatabase statement with an ODBC con-
ect string, Jet makes many additional calls to the remote
atabase to gather information about the tables, rows, and
Working with Windows 95 on a 486. A 486/66 with
8 MB of RAM running Windows 95 showed an even

ider perforamnce range between programming techniques. The
DBC API was 30 times faster than Jet/DAO. Due to the extra
verhead required, Jet suffered from the slower processor and lack
f RAM. Note that the ODBC API total time of 2.9 seconds was faste

TABLE 4

Jet Jet DAO Jet ODBC
DAO Attached SQL MDB API

MDB Passthru Query

Select rows by indexed key 20 times

VB3 19.11 7.84 0.92 9.11 0.50

VB4/16 25.81 6.29 1.16 5.58 0.61

Select all rows small table

VB3 1.06 0.68 0.71 0.71 0.21

VB4/16 1.12 0.90 0.77 0.84 0.18

Search on nonindexed value

VB3 1.12 0.58 0.10 0.90 0.03

VB4/16 1.35 0.54 0.13 0.72 0.04

Select and update 20 rows

VB3 26.01 9.42 2.21 11.95 0.79

VB4/16 25.21 10.18 2.04 10.01 0.91

Insert 20 rows

VB3 2.6 2.99 0.58 6.23 0.50

VB4/16 2.0 2.12 1.52 7.50 0.52

Delete 20 rows

VB3 27.34 12.78 0.49 12.64 0.32

VB4/16 29.59 14.66 1.19 13.01 0.45

Two-table join

VB3 5.0 4.0 0.81 1.23 0.21

VB4/16 6.3 4.8 0.91 0.78 0.26

TOTAL TIME

VB3 86.9 34.3 5.3 43.5 2.9

VB4/16 94.7 35.5 7.3 40.6 3.1
How About 3.11 on the 486? Test results on a 486/
with 8 MB of RAM running Windows for Workgrou

.11 were close to those for Windows 95 on the 486. VB4 was slow
han VB3 in most tests. The pattern of differences betwee

TABLE 5

Jet Jet DAO Jet ODB
DAO Attached SQL MDB API

MDB Passthru Query

Select rows by indexed key 20 times

VB3 19.94 8.13 1.21 9.67 0.61

VB4/16 26.03 6.76 1.76 6.54 0.60

Select all rows small table

VB3 1.26 0.77 0.71 0.82 0.27

VB4/16 1.43 0.93 0.77 0.99 0.17

Search on nonindexed value

VB3 1.32 0.71 0.11 0.99 0.05

VB4/16 1.48 0.66 0.16 0.77 0.06

Select and update 20 rows

VB3 26.25 9.72 2.47 13.57 1.21

VB4/16 25.82 10.49 2.25 10.55 1.15

Insert 20 rows

VB3 2.80 3.02 0.55 7.63 0.55

VB4/16 2.2 2.25 1.21 8.51 0.55

Delete 20 rows

VB3 27.74 13.01 0.49 13.46 0.38

VB4/16 29.77 14.46 1.21 13.89 0.55

Two-table join

VB3 5.1 4.2 0.81 1.46 0.26

VB4/16 6.3 5.1 1.12 0.90 0.28

TOTAL TIME

VB3 87.3 35.4 5.5 46.1 3.0

VB4/16 95.1 35.6 7.4 41.2 3.0
http://www.windx.com

c
W
d
o
a
g
n
f

c
o

D
D
D
D
S
'
'
s

S

S
t
t
d
d

p
d
t
s
s
C
t

p
t
h
s
t
s
I
S
o

p
m
P
A
V
o
o
t
c
m

s
h
r
p
a
i

i
S
t
Q
f
p
p
U
p
t
Q

B
T
b

hardware differences can have on your application’s performance.
olumns with which you are working.
hen the tables are attached to a Jet MDB

atabase, Jet retrieves this information
nce and keeps it in the MDB where Jet
ccesses it at run time. For 32-bit pro-
rams, the attached MDB must be in the
ew Jet 3.0 format used by 32-bit Access

or Windows 95.
Using this simple code, I was able to

reate a 32-bit attached MDB even with-
ut a copy of 32-bit Access:

im ws As Workspace
im db As Database
im td As TableDef
im sConn As String
et ws = DBEngine.Workspaces(0)
Insert your own valid data source
name and user information below
Conn = _
"ODBC;DSN=SqlServer32;_
UID=sjackson;PWD=****;"

et db = _
ws.CreateDatabase("DBTEST32.MDB",_
dbLangGeneral)

et td = db.CreateTableDef("Customer")
d.Connect = sConn
d.SourceTableName = "Customer"
b.TableDefs.Append td
b.Close

SQL passthrough significantly im-
roved performance against a remote
atabase server, but required more work
o code. To create dynasets and snap-
hots this way, I created a SQL SELECT
tatement dynamically, and called
reateDynaset or CreateSnapshot with

he SQL passthrough option.
This technique bypasses the Jet SQL

arser and sends the command directly
o the back-end server, reducing Jet over-
ead. However, you must create long SQL
tatement strings with the exact SQL syn-
ax required by your particular database
erver. For inserts, updates, and deletes,
 created dynamic SQL and executed the
QL statement with the Execute method
f the database object.

Some anomalies occurred in the SQL
assthrough test. The tests actually ran
uch faster on the 486/66 than on the
entium/100, using all versions of VB.
lso, there was a large difference between
B3 and VB4 in the insert and delete tests
n the Pentium. Because the other tests
n the Pentium ran much faster than on
he 486, I looked for any differences that
ould affect SQL passthrough perfor-
ance, but found none.

I sent the SQL passthrough code to
ome Microsoft gurus, but they did not
ave a solution and did not make any
ecommendations. Because this affected
erformance using only SQL passthrough
nd not the other techniques, I am assum-

ng it is not due to the network, and that it A

http://www.windx.com
s unique to this client computer. Notably,
QL passthrough and DAO with attached
ables performed better than Access
ueryDefs. QueryDefs may improve per-

ormance for Access databases with com-
lex SQL statements because Access
recompiles and optimizes each query.
sing a remote database server improves
erformance because the server optimizes
he queries and updates and skips the
ueryDef overhead.

LAZING-FAST ODBC API
he ODBC results are worth a closer look
ecause they won so handily. The ODBC
PI blew the doors off all other data access
Visual
techniques—touching hundreds of differ-
ent rows in 2.3 seconds on the Pentium
client. These tests show conclusively that
the ODBC API is lightning quick. To put
ODBC results in perspective, consider that
the total VB3 ODBC API results of 2.9 sec-
onds on a 486/66 with 8 MB of RAM under
Windows 95 were faster than any other
test (excluding ODBC) running on a
Pentium/100—including 32-bit RDO. Does
this mean you should convert your projects
to the ODBC API? You need to weigh the
pros and cons to make that decision.

Blazing speed comes at a price (can
you spell GPF?). The speed of the ODBC
API is due in part to bypassing Jet and DAO
Jet Jet DAO Jet ODBC RDO
DAO Attached SQL MDB API 32-Bit

MDB Passthru Query Only

Select rows by indexed key 20 times

VB3 13.76 5.44 7.55 10.62 0.45 n/a

VB4/16 13.44 5.27 7.89 10.20 0.43 n/a

VB4/32 7.2 2.96 2.64 3.02 0.51 1.30

Select all rows small table

VB3 1.02 0.51 0.70 0.64 0.13 n/a

VB4/16 0.93 0.49 0.81 0.73 0.12 n/a

VB4/32 0.76 0.53 0.44 0.48 0.21 0.43

Search on nonindexed value

VB3 1.02 0.57 0.32 0.77 0.01 n/a

VB4/16 1.12 0.51 0.40 0.73 0.01 n/a

VB4/32 0.50 0.24 0.14 0.21 0.03 0.19

Select and update 20 rows

VB3 16.77 9.15 8.38 10.62 0.77 n/a

VB4/16 16.25 8.99 8.41 10.05 0.73 n/a

VB4/32 8.54 4.27 2.92 4.2 0.95 1.78

Insert 20 rows

VB3 2.62 2.69 0.32 6.53 0.38 n/a

VB4/16 2.11 2.54 0.38 6.29 0.36 n/a

VB4/32 0.87 1.16 0.34 3.2 0.34 0.43

Delete 20 rows

VB3 19.71 9.98 0.26 10.24 0.44 n/a

VB4/16 19.37 10.02 0.26 9.89 0.42 n/a

VB4/32 8.96 5.29 0.32 6.43 0.28 0.37

TOTAL TIME

VB3 64.6 35.3 21.3 46.7 3.3 n/a

VB4/16 66.1 34.7 21.9 48.2 4.1 n/a

VB4/32 33.2 18.5 8.6 23.7 3.9 6.4

Tuning a 486 for NT. These tests used a 486/66 with 16 MB of RAM running
Windows NT 3.51. Unlike under Windows 95, 16-bit code was much slower than

32-bit code, sometimes more than twice as slow. This machine was highly tuned and
optimized—it clocked some tests faster than the Pentium—which shows the effect that

TABLE 6
Basic Programmer’s Journal MAY 1996 23

b

o
A -
o t
w -
p
S -
n -
s

completely (gaining about 2 MB of memory
used by Jet and DAO). Moving to the ODBC
API means you give up ease of program-
ming and maintainability offered by DAO.
The API is more difficult to code and less
maintainable than DAO code.

I created ODBC test code for getting a
row, adding 1 to the order count, and
updating the row (see Listing 1). It has
hard-coded column widths and column
positions. Changes to these aspects of the
table require changes to the code or addi-
tional ODBC API calls to get this informa-
tion, which would diminish the perfor-
mance advantage. Any Windows API call
requires care with memory locations and
error checking to avoid crashing the appli-
cation, and perhaps the entire computer.

THE CASE FOR RDO
However, you can get close to ODBC API
speed without the pain and loss of fea-
tures. RDO shows promise as a compro-
Duplica

perform quite as well as Steve’s, but it

24 MAY 1996 Visual Basic Programmer’s Jour
mise between the ODBC API and Jet tech-
niques for client/server database access
(for background on RDO, see “A Walking
Tour of RDO,” VBPJ March 1996). RDO
was much faster than Jet and DAO, and
easier to code than the ODBC API.

Unlike the ODBC API, RDO supports
data-bound controls. Essentially a wrap-
per around the ODBC API, RDO exposes
certain ODBC statement and environment
handles that allow a programmer to com-
ting Data Access Benchm

p
r
t
f
b

e
t
m
M
c
i
t
P
z
q
f
a
e
t

d
l
s
c
w
n

f
a
t
e
A
t
W
P

t
but the bottom line is that the degree of

o
e
a

m
t
z
N
r

f
a
m
p

b
a
i
u
i

a
i
m
t
p
t
t
g
a
O
a
c
J
P

7
y
r

nal
ine ODBC API calls with RDO.
To add and change data with RDO, you

pen a result set on the table and use
ddNew, Edit, Update, and Delete meth
ds; create dynamic SQL and execute i
ith the Execute method; or use pre
ared statements. My tests used dynamic
QL and RDO prepared-statement tech
iques, both of which are faster than re
ult-set methods (see Listing 2).

Prepared statements are extremely
Jet Jet DAO Jet ODBC RDO
DAO Attached SQL MDB API 32-Bit

MDB Passthru Query Only

VB3 227.7 32.1 14.5 37.1 12.2 n/a

VB4/16 240.6 30.4 13.7 37.9 12.7 n/a

Oracle Data Access. Test results using a Pentium/100 client and an Oracle 7
back end server running Unix reveals performance similar to the overall test

trends—ODBC API wins. These results don’t directly compare to SQL Server.

TABLE 7
arks
To duplicate Steve Jackson’s data ac-
cess bench marks, I created a lab envi-
ronment to provide objective valida-
tion of his results. Knowing that Steve
performed the tests on a production
network during off-peak hours, I was
concerned that the results may not be
accurate due to minimal variable net-
work traffic.

I set up a standalone network to guar-
antee that the results weren’t skewed. I
used similar machines with the same
network protocol (TCP/IP) and operat-
ing systems as the original tests. The
only known difference between his test
environment and mine was the slower
processor speed of my Pentium/90, com-
pared to his Pentium/100. I had to go
with the 90-MHz machine because I
didn’t have access to a 100-MHz system.

The results of my tests were consis-
tent across the board with Steve’s. There
were no serious discrepancies in my
findings. After running the battery of
tests three times and comparing them
to the original numbers in a spread-
sheet, I found the accuracy of the re-
sults to be plus or minus 4 percent
overall compared with Steve’s findings.

Each battery of tests executed test
code that logged results three times for
each of the specified procedures. In
other words, I tested each operation a
total of nine times and found very little
variance. The exception was the perfor-
mance of the 486/66 with 16 MB of RAM
running NT.

The machine I used did not seem to
roduced results with consistent ratios
elative to the various programming
echniques. I think the performance dif-
erence may have to do with Steve’s 486
eing tuned for his LAN.
The great unsolved mystery of this

ntire project remains the disparity be-
ween DAO SQL Passthrough perfor-
ance on the 486 versus the Pentium.
y DAO SQL passthrough tests dupli-

ated Steve’s within 4 percent, confirm-
ng that this technique is five to six
imes faster on the 486 than on the
entium. Developers at several organi-
ations, including Microsoft, studied this
uirk and found no reason for the dif-

erence. A VBPJ editor contacted Intel
bout it, but as of press time had no
xplanation. I’ll continue researching
his anomaly.

A few days after I ran these tests, I was
iscussing my benchmarks with a col-

eague, who mentioned a remarkably
imilar set of tests he ran last month. He
reated a test app to hit a SQL database
ith ODBC API, RDO, and DAO tech-
iques.
He too found the ODBC API to be the

astest, but he pointed out that once the
dditional development time required
o make API calls was considered, RDO
merges as the favorite for 32-bit work.
s our discussion continued, he boasted

hat with detailed optimization, a 486
indows 95 system could outperform a

entium NT.
This raised several issues in my mind

hat I don’t have space to discuss here,
perating system optimization has an
ffect on the performance of a database
pplication.
We concluded that all environments
entioned here were typical installa-

ions, and that operating-system optimi-
ation was not key to the general issues.
onetheless my awareness was raised
egarding another variable.

ODBC API calls obviously log the
astest times. But with its ease of use
nd bound controls, RDO offers perfor-
ance that’s almost as fast with less

ain and risk for 32-bit development.
As for the performance differences

etween VB3 and VB4, take a close look
t the numbers. They indicate that there
s little difference between the prod-
cts for data access, unless you plan to

mplement 32-bit RDOs.
Hardware is always near and dear to

 developer’s heart. After all, if the code
s running a little slow, you can cover a
ultitude of mistakes by suggesting that

he user community needs more horse-
ower. If this has been your strategy in
he past, be careful. The results show
hat better hardware isn’t necessarily
oing to help. For example, take a look
t the speed of the 486/66 using the
DBC API versus the Pentium using
ny of the other techniques. ODBC API
alls on the 486 win hands down over
et, DAO, or RDO approaches on the
entium.
Contact me on CompuServe at

4437,77 or at ericb@quickstart.com if
ou have any questions about my test
esults.—Eric Busby
http://www.windx.com

,

a c
S s
r

t
i
s
V

o
s
t
m
c
t

P
s
o
a
p
t

t
h
w
f
w
h
f

C
C
m
t
a
f
w
m

o
c
e
k
t
d
p
m

1
p
b
p
g
o
u
p
c
m
I
p

a
R
p
R

b
d
o
o

D B B E N C H M A R K S
useful for operations that will be repeated.
A prepared statement sends the SQL string
to the server only once when it is initially
created. The server parses the SQL and
compiles an execution plan once.

Then when a result set is built from the
prepared statement, only parameters are
passed to the server, and the server can
execute the compiled SQL plan without
the extra overhead of parsing, optimiz-
ing, and compiling the SQL statement.

Using prepared statements dropped
the total RDO test time from 9.3 seconds
to 5.3 seconds in my tests on the Pentium.
This technique is a wrapper around the
equivalent ODBC API calls that create and
execute prepared statements.

In my ODBC API tests, I used only the
dynamic SQL option, which was still faster
than RDO prepared statements. A truer
comparison would also use ODBC API
prepared statements, but this requires
complex VB code to bind parameters to
fixed-string addresses in memory, and
was beyond the scope of this project.

OTHER LESSONS LEARNED
Identical 16-bit test programs generally
ran slightly faster in Windows 95 than in
Windows for Workgroups 3.11. This could
be the result of improved Windows 95
internals and memory management, a
faster TCP/IP stack, or both.

Generally, Win16 apps run faster on
Windows 95 due to improved caching,
more efficient code, and protected-mode
drivers. The improvement is about 10 per-
cent, which is beneficial, but won’t speed
a sluggish app.

In Windows 95 tests, the 32-bit test
program ran slightly slower than the 16-bit
version, but the real shocker was the test
on Windows NT (see Tables 3 and 6).
Unlike Windows 95, the 32-bit test pro-
25 MAY 1996 Visual Basic Programmer’s Jour
gram ran much faster on Windows NT than
the 16-bit programs. The difference was
pronounced for techniques with large over-
head and many DLLs, such as Jet DAO, and
less pronounced for lower overhead tech-
niques, such as the ODBC API.

Due to availability limitations, the Win-
dows NT tests were run on different ma-
chines than the Windows 95 and Windows
3.11 tests: a 486/66 with 16 MB of RAM, and
a Pentium/90 with 24 MB of RAM. The 32-
bit performance of the Pentium/100 run-
ning NT was similar to the 32-bit perfor-
mance on a Pentium/100 running Windows
95 and Windows 3.11, but 16-bit perfor-
mance was slower on NT.

Windows NT runs 16-bit programs as a
separate task called Windows on Windows
(WOW), which may account for some of
the differences. Because WOW converts
all 16-bit function calls to 32-bit opera-
tions, it’s slower than Windows 95 or Win-
dows 3.11, which executes the 16-bit calls
directly. There’s no 16-bit code in NT, so
the 32-bit code enjoys a clear advantage.

The tests on the 486/66 running NT
were faster than those run on the Pentium/
100. The 486/66 was heavily tuned by our
network performance staff, while NT on
the Pentium was installed with little or no
tuning.

I was unable to determine the exact
cause for the difference in performance in
time for this article deadline, but I sus-
pect it could also be due to network inter-
face differences as well as operating-sys-
tem tuning.

I did not find VB4 to be significantly
faster than VB3 for a given database tech-
nique. Most of the cycles in these tests
occur in the back end rather than in the
VB code, so the VB code is not the gating
factor for data access. Jet 2.5/3.0 may be
improved for Access MDB usage, but the
nal
ests did not show significant performance
mprovement for SQL Server. However,
erious consideration should be given to
B4/32 to gain the benefits of RDO.

Upgrading hardware isn’t always the
nly approach to improving data-access
peed. The platform results show that
hrowing hardware at the problem app
ay not solve the problem as much as

hanging code. A slow database applica-
ion may still be sluggish on fast hardware.

I also ran the 16-bit test programs on a
entium client using an Oracle 7 database
erver running on Unix (see Table 7). I ran
nly the 16-bit tests because I did not have
 32-bit version of the Oracle ODBC com-
onent, called SQL*Net, at the time the
ests were run.

The results should not be compared to
he SQL Server results because the server
ardware, networking, and machine load
ere different, but the ratios between dif-

erent database-programming techniques
ere similar. Like the other tests, results
ave a wide range: the ratios between

astest and slowest are about 24 to 1.

AUGHT IN A TRAP
ode tuning is another important perfor-
ance aspect not shown in the results. In

he early coding phase of the test, I fell into
 number of common traps: using dynasets
or all the queries, using test tables that
ere too small, and using the FindFirst
ethod to locate a row in a table.

I was able to improve the performance
f the code that read a 200-row table by
hanging it from a dynaset to a snapshot,
liminating the Jet overhead of building a
ey set. In my initial testing, the customer
able contained only 200 rows. For up-
ates and deletes, I opened a dynaset,
ositioned on the row with a FindFirst
ethod, and updated or deleted the row.

When I loaded the customer table with
00,000 rows, the program performed
oorly because it was taking more time
uilding the dynaset key set. An ODBC spy
rogram showed thousands of ODBC calls
oing across the network. I changed it to
pen a dynaset on the desired row and
pdate/delete it, and performance im-
roved significantly. FindFirst is not in-
luded as an RDO method, which means it
ay work fine for Access and files-based

SAM databases, but FindFirst isn’t appro-
riate for SQL remote database servers.

Switching from Jet DAO, Jet MDB, Jet
ttached MDB, DAO SQL passthrough,
DO, and ODBC calls dramatically affects
erformance step by step. For 32-bit apps,
DO is a strong contender.

The choice of technique is up to you. I’d
e happy to hear of your results if you
ownload the test programs from VBPJ
nline sites and duplicate tests in your
wn environment.
RDO: Speed and Ease. This 32-bit RDO code retrieves a row into a resultset
changes the data and updates it. RDO is a wrapper around the ODBC API, and

lmost as fast, but much easier to code. This example shows an update with dynami
QL—it does more than the ODBC API example, with less code. RDO Prepared Statement
equire a little more coding than this, but run faster for repeated SQL operations.

LISTING 2

Function RdoUpdateRow(sKey As String) As Long
Dim iTimesOrderPlaced As Integer, sSQL as string
sSQL = "Select LastOrderDate, TimesOrderPlaced from Customer"
sSQL = sSQL & “ where CustID = " & SQ & sKey & SQ
' assume the RDO connection has already been made
Set rdoRes = rdoConn.OpenResultset(sSQL, rdOpenKeyset, rdConcurRowver)
If rdoRes.EOF Then

rdoRes.Close
RdoUpdateRow = 0

End If
iTimesOrderPlaced = rdoRes("TimesOrderPlaced") + 1
rdoRes.Edit
rdoRes("TimesOrderPlaced") = iTimesOrderPlaced
rdoRes.Update
rdoRes.Close
RdoUpdateRow = 1

End Function
http://www.windx.com

