
36 MAY 1996 Visual Basic Program

B E N C H M A R K S

B

Ward R. Hitt is a consultant and de
located in Washington D.C. He is the
of the book Optimizing Visual Basic
a VB programming tool
called CodeBank pub-
lished by Visual Com-
ponents, and other
apps. He’s writing a
book about VB and the
Windows API. Reach
Ward on CompuServe
at 73361,106.

T
I
s
n
s
M
c
w
P
t
t
o
r

c
a
a
a
t

Click & Retrieve

Source

CODE!
enchmark
Battle
B Y W A R D H I T T

m
w
in
t
m

m
r

c
m
a

VB3 beats VB4 at
graphics processing,
but in other tests
VB4 pulls up even
or surges ahead in
16- or 32-bit mode.

he transition from VB3 and Win-
dows 3.x to VB4 and Windows 95
or NT makes for a challenging time.

n fact, this transition can be downright
tressful. Not only do we need to master
ew technology, but we also need to
traddle two sets of tools and platforms.
any users are still running 486-based

omputers configured with 8 MB of RAM,
hile others have upgraded to loaded
entiums—this mix occurs often within
he same organization. Some corpora-
ions made the leap to Win95, while
thers are waiting for a more mature
elease.

Users are working on a range of ma-
hines and operating systems. How do you
ddress this melange? Do you develop for
ll platforms? Do you stick to just 16-bit
pplications running on both operating sys-
ems, or rewrite for 32-bit? Complicating
mer’s Journ

veloper
 author
 (Que),

d
c
m

t
is
w

a
a
3
r
c

atters is the fact that you probably
ant to take advantage of new features
 VB4, such as classes, improvements

o the editor, enhancements to the DAO
odel, and many others.

But the key question is this: if you
ove to Windows 95 or Windows NT

unning VB4 32-bit, are your apps faster?
As I discovered while

onducting bench-
ark tests for this

rticle, the answer
epends on the type of application you
reate. For graphics processing using VB
ethods, VB4 32-bit is the slowest.

Then again, for other types of opera-
ions it’s the fastest. And sometimes VB4
 about the same as VB3. VB4/16 also
ins its share of tests.

To quantify your choices, I’ve conducted
 series of benchmarks of VB3 and VB4/16
nd VB4/32, on Windows 3.1, Windows
.11, Windows 95, and Windows NT. The
esults may surprise you. Let me offer a
aveat: this suite of simple tests provides
al
a set of data points, not universal guide-
lines for all developers under all situa-
tions. These results are no substitute for
solid coding techniques and optimization
tailored for your users’ specific systems.
But they do shed insight on performance
issues.

Before I provide an analysis of my
results, let me explain how this project
evolved. Last fall I completed more than
800 benchmark tests of VB4 in 16- and 32-
bit modes on Windows 95.

I reported some results in a sidebar to
an article on optimization (see “Weighing
32-Bit Performance Trade-Offs,” VBPJ, Janu-
ary 1996). One result showed that VB4/16
is faster than VB4/32 for graphics process-
ing. Intrigued by the results, VBPJ editors
decided to expand the tests to measure
performance against VB3, VB4, and mul-

tiple operating systems. To give the
project breadth and depth, a team was
assembled to brainstorm about bench-
marks in general, design the test suites,
conduct the tests, consult, and double-
check results.
Based on discussions with VBPJ edi-

tors, along with results I observed from
the original 800 VB4 tests, we agreed that
representative tests would use:

• A 486/66 computer with 8 MB of RAM,
and a Pentium/100 computer with 16 MB
of RAM.
• VB3, VB4/16, and VB4/32.
• Windows 3.1, Windows 3.11, Windows
95, and Windows NT.
• Functionality test of graphics, form load-
ing, text display, and number crunching.

Because the majority of VBPJ readers
create custom databases, author and
CompuServe section leader Steve Jackson
agreed to perform a comprehensive series
of data-access techniques, including Jet
DAO, the ODBC API, and RDO, using all
versions of VB and multiple operating sys-
http://www.windx.com

B E N C H M A R K S

t
i
d
r
l
m
“

W
I
l
i
c
s
c
t
a
o

m
V
V
s
m

c
c
a

r
f
b

a
I
s
p
t
J
m

2
s
G

.
H ,
a
i .

-

r
p

q
c
S
p
a

i
i

t
l
o

W
B
i
W
l
v

V
o
t
f
d
i
i
t
number crunching.
ems (see the accompanying article, “Clock-
ng Data Access,” in this issue). Steve also
uplicated my tests to double-check my
esults and note hardware or software prob-
ems that might occur when testing on other

achines (see the accompanying sidebar,
Double-Checking the Benchmarks”).

HY THESE ALGORITHMS?
 have a simple reason for choosing form
oading, text display, and number crunch-
ng as functions to test. Most people use
omputers to display graphics and text, to
tore and retrieve data, and for number
runching. My consulting editors agreed
hat graphics applications are widespread,
nd a dramatic indicator of design trade-
ffs in Windows 95 and VB4.

As for form loading, almost all VB apps
ust load forms, and forms load slowly in
B3. I wanted to see if speed improved in
B4. We agreed to test displaying text in
tandard VB controls because, again, al-
ost all VB apps display text.

Lastly, we decided to test number
runching to see if VB4/32 indeed performs
alculations faster than the 16-bit versions,
s expected.

I used the same suite of eight separate
outines for all tests. All tables show results
or all routines, except where VB4/32 can’t
e run, such as with Windows 3.1.

First, I tested graphics speed of VB Point
nd PSet graphics methods using a routine
 call Shade3D, which takes a sample text
tring and applies 3-D shading to it based on
ixel-by-pixel analysis of the edge points of
he text graphic. I used this routine for the
anuary 1996 cover story I wrote on opti-
izing VB, “Tune For Blazing Speed.”

The Shade3D font size was increased to
4 points to strain the system a little. The
econd test uses the GetPixel and SetPixel
raphical Device Interface (GDI) API calls to
http://www.windx.com
USE API CALLS FOR

LIGHTNING-FAST VB4

GRAPHICS PROCESSING.

eplace VB’s graphics methods (and em-
loys other optimizations).

The third test measures the time re-
uired to load and display a form with 62
ontrols, using the simplest technique: the
how method. Fourth, I measured text-dis-
lay speed by assigning values to 60 labels
nd text boxes on the form.

The last four tests measure internal CPU
ntensive operations: floating-point division,
nteger division, dynamic-string concatena-

ion, and fixed-string concatenation. These
ast four tests were run 100,000 times in
rder to obtain more significant timings.

HO WINS?
efore analyzing tests according to operat-

ng system and hardware (beginning with
indows 3.1 on the 486 and ending with the

oaded Pentium running NT), here’s an over-
iew of results.

I found two weaknesses in the design of
B4: graphics processing using VB meth-
ds, and fixed-string concatenation. Al-
hough VB3, VB4/16, and VB4/32 swap the
irst-place position in form loading and text
isplay, VB3 wins all the graphics-process-

ng tests for VB methods, but not API graph-
cs. VB3 wins all the fixed-string concatena-
ion tests. Meanwhile, VB4/32 wins all the
Visual
I’ll elaborate on these findings, but for
now just keep in mind that VB4 was de-
signed from the ground up to use VBA and
OLE, so it’s significantly different from VB3,
and design changes can affect results.

VB3 wins all the graphics tests when
using VB methods. In the tests of the graph-
ics methods under Windows 3.1, VB3 is
about 33 percent faster than VB4/16. Under
Windows 95, VB3 is about 56 percent faster
than VB4/16, but almost three times faster
than VB4/32. VB3 wins convincingly for
Windows 3.11 and Windows NT as well.
VB4 performs poorly for graphics process-
ing because it must thunk to a 16-bit GDI.
For graphics-intensive applications using
VB methods, VB3 is a superior performer.

However, I recommend avoiding VB
graphics methods and using API graphics
calls instead. The API calls dramatically
slash graphics processing time on the 486,
and make significant improvements to pro-
cessing time on the Pentium.

VB4/16 wins all the tests using graphics
API calls except on NT, which VB4/32 wins.
So moving to API calls put VB3 out of the
running for graphics performance.

In form loading, VB4/16 is about 33 per-
cent faster than VB3 under Windows 3.11,
15 percent faster under NT, and slower on
both the 486 and the Pentium under Win-
dows 95.

VB4/32 was slower than VB4/16 to load
the test form under Windows 95, but much
quicker than either VB3 or VB4/16 under
Windows NT. VB3 was the fastest to load
under Windows 95.

I have one subjective note regarding
perceived speed: the Form2 load timing
routine is terminated in the form’s Activate
event, but there may be a meaningful differ-
ence in the way different versions of VB
handle form drawing.

Under VB3 and VB4/16, the form ap-
Windows 3.1

Action/Method VB3 VB4/16

VB Graphics 19.214 28.53

API Graphics 1.232 1.009

Form Load 1.15 1.023

Text Display 0.494 0.494

Floating-Point Division 1.013 0.936

Integer Division 1.667 1.435

Dynamic-String Concatenation 4.284 3.256

Fixed-String Concatenation 8.624 11.754

Battle of the 16-Bitters. VB3 starts out with a bang by
beating VB4/16 in graphics-methods benchmarks

owever, switching to API graphics calls puts VB4/16 in the lead
nd it never relinquishes it. Although text-display speeds are
dentical, VB4/16 pulls away for form loading and number crunching

TABLE 1
Windows 95

Action/Method VB3 VB4/16 VB4/32

VB Graphics 23.58 25.806 65.355

API Graphics 1.304 0.989 1.509

Form Load 1.580 2.691 3.185

Text Display 0.619 0.659 1.044

Floating-Point Division 0.934 0.790 0.476

Integer Division 1.535 1.017 0.715

Dynamic-String Concatenation 3.819 2.606 1.374

Fixed-String Concatenation 8.913 10.910 16.440

Battling With Win95 On a 486. Results aren’t as clear
cut running Windows 95 on the 486 with 8 MB of RAM.

VB3 performs well for graphics work again, and leads the pack for
form loading and text display. Number crunching favors VB4/32 all
the way, but VB3 wins again for fixed-string concatenation.

TABLE 2
Basic Programmer’s Journal MAY 1996 37

B E N C H M A R K S

,

-

-

pears to fully paint before the MsgBox ap-
pears. However, with VB4/32, the text boxes
and labels do not draw completely before
the beep and MsgBox. This may be an
optimization, or it may be due to 32-bit
multitasking. But whatever the cause, your
users may perceive VB4/32 from loading as
not quite as fast as the numbers indicate.

Most VB apps need to repeatedly dis-
play text in controls, so I tested using both
labels and text boxes. VB4/16 text display
38 MAY 1996 Visual Basic Programmer’s Jour

was about twice as fast than VB3 under
Windows 3.11, about equal under Windows
95, but slower under NT (displaying 16-bit
apps in NT is slowed because there is no 16-
bit code in NT). VB4/32 was about 25 per-
cent slower than the other versions under
Windows 95, but was much faster under
NT—again, because VB4/32 shines in the
32-bit environment of Windows NT.

Number-crunching speed increased
moving from VB3 to VB4/16 to VB4/32.
VB4/16 is faster than VB3 under 3.1 and NT,
and equivalent under 95. VB4/32 is signifi-
nal

n
d
b
1
y

s
t
o
u
i
t
u

n
f
b
e
u
p

,

cantly faster than VB3 and VB4/16 in all
tests except for fixed-string concatenation
which is surprisingly slow in VB4/32.

A Microsoft engineer told me that fixed
string concatenation has more “baggage”
to go through than dynamic-string concat
enation. He couldn’t elaborate, but added
that fixed-string concatenation is a target
for improvement in the next release of VB.

The VB4 routines required only minor,
nonsubstantive editing to enable them to
run under VB3. I used code that is generally
simple and to the point for these tests, in
order to avoid debates about what I’m
really testing. The purpose of these bench-
marks is to test common, widely used func-
tionality, not to spark a debate about eso-
teric coding techniques.

The number crunching is a good ex-
ample of my test routines (see Listing 1).
You can download all test code as
VBBENCH.ZIP (see “How To Reach Us” in
the Letters department for downloading
instructions). If you download and test the
code, send me an e-mail with your results
and the type of system you used (including
RAM, CPU, clock speed, and Windows ver-
sion). I may establish a knowledge base of
benchmark tests.

TESTING ON A 486
I’ll analyze results starting with the oldest
technology in both hardware and software,
then move to the loaded Pentium running
Windows 95 and NT. I conducted a suite of
benchmarks on my 486 with 8 MB of RAM
running Windows 3.1 (see Table 1). VB3
wins only the graphics methods contest.
VB4/16 quickly catches up, then takes and

ever relinquishes the lead through text
isplay, form loading, and especially num-
er crunching. If you’re going to stick with
6-bit development, VB4/16 could be best if
ou can live with APIs for graphics work.

Next, I tested Windows 95 on the 486
ystem (see Table 2). VB4/16 is more than
wice as fast as VB4/32 using graphics meth-
ds, and about 50 percent faster when
sing the API. VB3 posts the fastest graph-

cs-methods times: it’s about 9 percent faster
han VB4/16, but slower than VB4/16 when
sing API calls.

VB4/32 is slowest for all graphics tech-
iques on the 486 system. VB4/32 is always

astest for number crunching, yet it falls
ehind consistently for fixed-string concat-
nation. Form display is somewhat faster
nder VB3, while VB4 has faster calculation
erformance compared with VB3.

As I discovered during testing, VB4’s
graphics performance lags because it thunks
down to the 16-bit graphics engine for im-
age processing. Although VB4 on Windows
95 has superior performance in many cases
graphics processing is its Achilles’ heel. If
you’re developing graphics-intensive apps,
http://www.windx.com

CONTINUED ON PAGE 42.

B E N C H M A R K S

y
A

d
W
n
t
2
s
b

1
t
i
w
o

r
l
t
g
a

P
N
c
l
W

s
v
r
d

m .
U
V
o -
m
n

s
t
V

s
c

CONTINUED FROM PAGE 38.

ou may be better off with VB3 or redoing your graphics logic using
PI calls rather than VB methods.

Although running VB4-generated apps on 8 MB of RAM is
efinitely not a good idea, many users still work with 486 systems.
indows 95 requires approximately 5 MB of RAM (bare-bones

etworking setup running the Explorer) and the VB/VBA run time
akes 1 MB after initializing the OLE libraries, which can easily eat
 MB on a 32-bit system. We’re looking at a very memory-con-
trained setup here. But again, this suite of tests establishes the
oundary conditions for low-end users.

My tests indicate that VB4/32 mode is more sensitive than VB4/
6 to RAM shortages. Although Windows 95 specifications state
hat only 4 MB of RAM are required (that’s the spec on the box:
nternally, it sets a low-memory flag when running on machines
ith less than 5 MB), the amount needed for best performance is,
f course, much higher.

I used an 8 MB 486 machine because I believe the configuration
epresents the type of machine the average user will have for at
east the next year, and optimization should be performed on
ypical systems, not state-of-the-art boxes. Of course, I expect a
radual migration to Pentiums. A typical corporate upgrade will be
http://www.windx.com

 Pentium 100 with 16 MB of RAM running on a network.
s
A
V
a
W
i

P
f
s

w
w
W
f
u

i
s
d
m
t
f

VB4

p
o

L
V
g

ACING PENTIUM PERFORMANCE
ext, I measured VB3, VB4/16, and VB4/32 performance on identi-
al systems running 100 MHz Pentium CPUs, with 16 MB of RAM,
ocal-bus video, and three operating systems: Windows 3.11 for

orkgroups, Windows 95, and Windows NT 3.51.
The first thing I noticed on the Pentium is an order-of-magnitude

peed improvement for graphics processing for all versions of VB,
ersus performance on the 486 (see Table 3). Although all code
uns faster on the Pentium than the 486, graphics speed improves
ramatically.

Again, VB3 logged exceptional performance for VB graphics
ethods when running Windows 3.11 on the Pentium (see Table 3)
nder Windows for Workgroups, VB3 is almost twice as fast as
B4/16 using VB graphics methods (of course, 32-bit VB can’t run
n Windows 3.11). VB4/16 pulls ahead for graphics API perfor
ance, and continues to lead in form loading, text display, and

umber crunching, except for fixed-string concatenation.
When the operating system is upgraded to Windows 95, VB3

lows down slightly while VB4/16 speeds up slightly, indicating
hat VB4/16 is probably optimized for Windows 95 (see Table 4).
B4/32 is slower than VB4/16, but only by about 20 percent.

But this improvement is much better than the 100-percent
peed differential seen between VB4/32 and VB4/16 on the 486.
gain, a trend is apparent: VB3 is fastest for graphics methods,
B4/16 is fastest for API graphics, form loading and text display,
nd VB4/32 is fastest for number crunching on the Pentium running
indows 95 (confirming that the 32-bit capability of VB4 does

ndeed speed number-crunching performance).
Under Windows NT, VB3 is still the best performer using VB

oint and Pset methods. However, VB4/32 is about 20 percent
aster than VB4/16 (see Table 5). Windows NT has a true 32-bit GDI,
o there’s no thunking for VB4/32.

When executing the optimized API version of the graphics test,
e see significantly different results. VB4 is much faster than VB3
hen making GetPixel and SetPixel calls. Under Windows 3.11 and
indows NT, VB4/16 is 33 percent faster, while it is almost twice as

ast under Win95. VB4/32 is faster than VB4/16 on NT, but slower
nder Win95. Again, no thunking for VB4/32 on NT.

Running the test suite on Windows NT revealed some interest-
ng design decisions by NT engineers. First, graphics processing is
lower for all versions of VB running on NT compared with Win-
ows 95. VB4/32 is more than twice as slow for VB graphics
ethods on NT than it is on Windows 95. VB4/16 is almost three

imes slower under NT than under Windows 95, while VB3 is fully

ive times slower under NT than on Windows 3.11.
Private Sub Command2_Click()
BeginTime "Load 60 control form", TIME_MSGBOX
Form2.Show
End Sub
Private Sub Command3_Click()
'runs suite of mathematical & string manipulation tests
Dim foo As Long
Dim dA As Double, dB As Double, dC As Double
Dim iA As Integer, iB As Integer, iC As Integer
Dim sA As String, sB As String, sC As String
Dim sfA As String * 10, sfB As String * 10, sfC As _

String * 20
iA = 12
iB = 72
dA = 12
dB = 72
sA = "ABCDEFGHIJ"
sB = "KLMNOPQRST"
sfA = "ABCDEFGHIJ"
sfB = "KLMNOPQRST"

BeginTime "Floating Point Division", TIME_MSGBOX
For foo = 1 To 100000

dC = dB / dA
Next foo
EndTime

BeginTime "Integer Division", TIME_MSGBOX
For foo = 1 To 100000

iC = iB / iA
Next foo
EndTime

BeginTime "Concatenation", TIME_MSGBOX
For foo = 1 To 100000

sC = sB & sA
Next foo
EndTime

BeginTime "Fixed String Concatenation", TIME_MSGBOX
For foo = 1 To 100000

sfC = sfB & sfA
Next foo
EndTime
End Sub

Keep Tests Simple. The purpose of my tests was to
compare commonly used functionality, rather than to

ark debate over exotic programming techniques. For example, this
de for my number-crunching tests is simple and straightforward.

ISTING 1
Windows 3.11

Action/Method VB3 VB4/16

VB Graphics 2.197 4.170

API Graphics 0.380 0.297

Form Load 0.165 0.110

Text Display 0.110 0.055

Floating-Point Division 0.274 0.164

Integer Division 0.439 0.220

Dynamic-String Concatenation 0.933 0.549

Fixed-String Concatenation 1.922 2.637

Gauging Pentium Performance With Windows 3.11.
The pattern holds true for Windows 3.11 on a Pentium:

B3 excels in graphics methods, but VB4/16 takes the lead for API
raphics and stays there until it hits fixed-string concatenation.

TABLE 3
Visual Basic Programmer’s Journal MAY 1996 39

B E N C H M A R K S

t
p
b
i
a

a
e
a
P

.
I
n
u
G
V

3
o

VB4/32 pulls ahead except in fixed-string concatenation.
Also, VB4/32 beats VB4/16 in graphics processing for the first
time, although good old VB3 wins the race. For the first time, VB4/32
leads the pack in every other test except for that pesky fixed-string
concatenation. If you’re developing non-graphics applications for
NT, VB4/32 is clearly faster than VB3 or VB4/16, based on these
benchmarks.

As for comparing operating systems, keep in mind it’s an apples-
to-oranges comparison. I had a long talk with a Microsoft engineer
about operating systems. He explained that the products I tested
are totally different operating systems with many design differ-
ences, especially in their memory-allocation schemes, disk I/O
design, network access, and other important areas.

It’s difficult, perhaps impossible, to pinpoint why performance
varies. I can examine the results in these simple, controlled bench-
marks and use them as one set of data points.

The much-discussed plan of many corporations to skip
Windows 95 and go straight to Windows NT involves perfor-
mance trade-offs. Microsoft designed NT to be more reliable and
robust than Windows 95, yet it seems that speed is sacrificed in
the display area, although number crunching is faster on NT
40 MAY 1996 Visual Basic Programmer’s Journal

Windows 95 direct

Double-Checking t

o

han on Windows 95. Windows 95 has lower memory and
rocessor requirements than NT, and Windows 95 is not slowed
y layers of security between applications. Because GDI access

s nonreentrant in Windows 95, it must be serialized, and one
pplication crashing the GDI will bring down the entire system.

It’s clear that if your users are running non-graphics intensive
pplications on fast Pentiums with plenty of RAM, speed differ-
nces between all three versions of VB are measured in fractions of
 second. One could build a case for summarily using VB4 for
entium applications.

Personally, I strive to make applications as snappy as possible
 can say that nanoseconds usually don’t matter (such as the one-
anosecond difference in text display between VB3 and VB4/16
nder Windows 95), unless you’re in a loop and doing a lot of them.
enerally speaking, VB4 versions are about equal to or better than
B3 for Windows 95 or NT.

On the other hand, if your users are operating under Windows
.1 with 8 MB of RAM, VB3 could still be the tool to use. The best and
nly way to interpret this data, as always, is in the context of your
Windows 95

Action/Method VB3 VB4/16 VB4/32

VB Graphics 2.540 3.960 4.957

API Graphics 0.412 0.216 0.247

Form Load 0.147 0.153 0.244

Text Display 0.074 0.075 0.104

Floating-Point Division 0.261 0.191 0.134

Integer Division 0.412 0.243 0.205

Dynamic-String Concatenation 1.012 0.710 0.342

Fixed-String Concatenation 2.310 3.070 3.266

The Pentium With Windows 95. VB3 graphics are
slow under Windows 95 Windows 3.11, while VB4/16

graphics are fast. 32-bit graphics lag due to thunking. VB3 wins at
form loading and text display, but VB4/32 wins at number crunching.

TABLE 4
Windows NT

Action/Method VB3 VB4/16 VB4/32

VB Graphics 7.936 12.160 10.375

API Graphics 2.112 1.664 1.282

Form Load 0.448 0.384 0.231

Text Display 0.192 0.256 0.130

Floating-Point Division 0.192 0.192 0.141

Integer Division 0.256 0.255 0.201

Dynamic-String Concatenation 1.150 0.576 0.381

Fixed-String Concatenation 2.110 2.880 2.844

What About Windows NT? Each suite runs slower on
Windows NT than on Windows 95. VB4/32 gives a good

showing compared to other flavors of VB. After stalling in graphics,

TABLE 5
ory: they were

he Benchmarks
p
t

e
t
t
t
S
D

D
r
a
e

h
r
a
f
o
s

wn situation.
I duplicated Ward Hitt’s benchmark
tests running the same operating
systems on comparable hardware. My
results closely match Ward’s across
machines and operating systems, with
the exception of graphics processing
on the Pentium.

My graphics-method tests for all VB
versions on Windows 95 were 60
percent slower. VB3 graphics-method
test results on Windows 3.11 were 24
percent slower, and VB4/16 graphics
tests were 60 percent slower. However,
the ranking of the graphics tests
remains about the same: VB3 is
approximately twice as fast as VB4/16.
My raw results are slower.

Ward’s machine has local-bus video.
Mine doesn’t, although its CPU and
memory match Ward’s configuration.
My computer has a Super VGA card. I
believe my video card and driver are
slower than Ward’s, which accounts for
the speed difference on my machine.

I had one problem that demonstrates
how tricky it can be to benchmark code
across different machines. When I ran
the two string tests on my Pentium/100
with 16 MB of RAM running Windows
3.11, I recorded much slower VB4 speeds
than Ward recorded.

Ward’s dynamic- and fixed-string VB4
Windows 3.11 test results were 0.55 and
2.64 seconds, respectively, but my initial
results were 2.4 and 9.0 seconds.

These results were a glaring anomaly
among otherwise close comparisons.
How could my string results be three to
four times slower? Upon investigation, I
found that some of my Windows 3.11
DLLs were older than those in my
robably from a beta version of VB4 I
ested months ago.

Beta software is often compiled with
xtra debugging options that contribute
o overhead. Running the WPS program
hat accompanies VB3 revealed that
he VB4 test program was using
TORAGE.DLL and a number of OLE
LLs in addition to the VB4 run time.

I copied the newer versions of these
LLs from the VB4 installation CD,

eran the tests, and got results of 0.55
nd 2.6 seconds for the string tests—an
xact match of Ward’s results.

Clearly, software as well as
ardware components affects test
esults. If you download Ward’s code
nd duplicate the tests, I’d like to hear
rom you if your results vary because
f differences in your hardware or
oftware.—Steve Jackson
http://www.windx.com

