
VISUAL
PROGRAMMING

Click & Retrieve

Source

CODE!
Combine the attributes of string
handling with the functionality of
a Windows edit box.

by Richard Hale Shaw

a royal pain. After all, as easy as it is to build applications and
components with VC++ and MFC, there are times when you wish
you could write something as easily as you can with VB.

In this column, I’ll describe some of the syntactic as well
as structural differences of visual programming with Visual
C++ and Visual Basic, and offer solutions that will let you
write C++ code that looks and works like VB. In subsequent
columns, I’ll show you how to integrate these into an OLE
control.

So how do Visual Basic and VC++ differ? Take edit con-
trols, for instance. In both VC++ and in VB, you just drop them
onto a form. VB immediately names each control (Text1,
Text2, and so forth), and you can reference the code by name
with code such as:

Text2.text = "This text goes into a VB _
edit control."

Or to append a string to an edit control, how about:

Text2.text = Text2.text + " And this _
text goes in there, too."

Of course, VB doesn’t have cool operators like C++’s +=
operator. Using the MFC CString class, which encapsulates
string handling in almost every possible way, you can stuff some
text into a string object:

CString myStr = "This text goes into an
MFC CString object.";

And then append to the string with:

myStr += " And this text goes into it, too.";

ll right, I’ll admit it: sometimes programming in C++,
especially when using a C++ application framework
such as the Microsoft Foundation Classes, can seem like

Make C++
More “VB-Like”
Richard Hale Shaw is a contributing editor to Visual Basic
Programmer’s Journal and PC Magazine. He’s currently complet-
ing Visual Programming++, a book about Visual C++. He lives in
Ann Arbor, Michigan, and can be reached on CompuServe at
72241,155, or the Internet at 3998368@mcimail.com.

There are several reasons for this kind of approach. First, C++

http://www.windx.com
and C have a rich set of operators such as +=, which lets you
combine the addition and assignment operators in such a way
that, given that ‘a’ and ‘b’ are ints:

a = a + b;

and

a += b;

are equivalent.
Second, C++ is fully extensible and lets you create and add

new data types to the language. You can create your own data
types, customize them to make it easier to solve particular kinds
of programming problems, and then derive even more special-
ized data types from the ones you already have.

Third, you can not only build collections of useful classes,
but an integrated object hierarchy that’s specifically geared
toward solving the problems of Windows programming: that’s
what MFC is all about. And while MFC offers more than 150 data
types or classes for Windows programming, it also includes
useful helper classes such as CString. CString uses C++’s facility
to overload or redefine the meaning of an operator in a given
context, so that with CString, the += operator lets you append
one string to another.

Of course, there’s still the kind of problem that rears its head
with Windows edit controls, especially when you use them in an
environment like VC++. Let me explain.

VC++ AND EDIT CONTROLS
VC++ has its roots in traditional Windows programming,
when virtually the only Windows programming language was
C. In those days, a Windows program was carefully con-
structed from a plethora of different components: C source
and header files, module definition (DEF) files, a make (MAK)
file, a resource script (RC), a resource file (RES), and more. To
add a button to a dialog, you had to run a standalone dialog
editor to put a button on a dialog, and assign an ID—a unique
integer value—to the button. The editor would modify a
dialog resource (DLG) file, which would either have to be
#included or integrated into the resource script.

The editor didn’t assign the value for you: you had to
choose a value and ensure that it didn’t conflict with those in
use by other controls in the same dialog. If you preferred to
refer to the control through a macro or label (which is much
cooler than using the number directly), you had to define the
macro yourself and add it to a header file, where it’d be used
by both the resource compiler (which compiled the RC into
an RES), and by the C compiler (while compiling the C file).
And that was how we did it in the old days.

Unfortunately, VC++ still suffers from this legacy. For ex-
ample, when you drop an edit control onto a dialog template,
VC++ assigns a not-so-useful label to the new control, like
IDC_EDIT1, IDC_EDIT2, and so forth. These are the same kinds
Visual Basic Programmer’s Journal MAY 1996 113

VISUAL
PROGRAMMING

VISUAL
PROGRAMMING

final value after the dialog closes.

you intercept its message-flow and manage that in the control class.
of labels we had in the old days, only now, VC++ generates them
and assigns the integer value to them for you. This would be a
nice feature—if it were 1990. But in 1996, with both VB and
Delphi able to generate a variable that’s associated with the
control versus just a label, this is not exactly state of the art.

You can go a little further, of course. You can use the VC++
ClassWizard to create a dialog class data member and associ-
ate it with the control. For controls such as buttons, ClassWizard
will create a new data member of type CButton, the MFC class
that encapsulates the Windows BUTTON type. But for controls
that have content, such as EDIT boxes, VC++ doesn’t have a
single approach to let you use an edit control interchangeably
with an int, a string, or some other data type that has content.

For example, when you put an edit box into a dialog in an
MFC application, VC++ gives you the option of creating not one,
but two different kinds of class data members that can be
mapped to the control. The one kind are “value” data mem-
bers. These are data members such as int, long, float, or the
MFC string type, CString; in other words, data members that
have content (see Figure 1). The other kind are “control” data
members. In the case of an edit control, the default choice is
CEdit, the MFC class that subclasses a Windows edit control
(see Figure 2). (You may recall that subclassing involves
replacing the window procedure address of a window—or a
control—with the address of another winproc that you pro-
vide. The purpose is to divert the window’s message flow and
intercept messages before the window can.)

First, the MFC developer has to decide how the control will
be used. If you want to simply stuff some data into an edit
control before the dialog box opens and then get the results
out once it closes, you can use a value data member. This will
allow you to initialize it before you open the dialog box (with
CDialog::DoModal) and then get the resulting value out after
the dialog closes. If you want to manipulate the control pro-
grammatically while the dialog is open, you can create a
control data member: this is the best approach if you want to
move data into and out of the control while the dialog box is
open. But what if you want to do both?

You can still use a value data member when you plan to
move data into and out of the control while the dialog is open.
To do this, you can call the dialog’s UpdateData member
function (inherited by CDialog from CWnd). But
CWnd::UpdateData will call the dialog’s override of
CWnd::DoDataExchange, which will exchange data between all
of the dialog’s controls and their associated value data mem-
bers. That’s fine if you want to update the controls or the data
members en masse. For more granular control, however, it’s
the wrong approach.

You can also use control data members to move data into
or out of a particular control. For example:

CEdit myEditBox;
…
myEditBox.SetWindowText("This goes into

the edit box…");

will use the string to replace the contents of the edit box
subclassed by myEditBox. And:

CString myContents;
…
myEditBox.GetWindowText(myContents);

will retrieve the contents of the edit box into the CString object,
myContents. This is the MFC equivalent of what you could
114 MAY 1996 Visual Basic Programmer’s Journal
accomplish in VB with:

myEditBox.text = "This goes into the edit box…"

or

dim myContents as string
myContents = myEditBox.text
In both cases, MFC or VB is sending WM_SETTEXT or
WM_GETTEXT messages to set or get the text stored in the
control. It’s just that VB offers the more elegant syntax.

The MFC approach of using a data type that subclasses the
control will work just fine while the dialog is open. But once you
close the dialog box (after DoModal returns), the relationship
between the CEdit data member and the control it subclasses is
finished. You can’t use CEdit to retrieve the resulting text—the
content of the edit box—after the dialog closes, because the edit
box no longer exists.

The opposite is true as well. Until you open the dialog,
the control doesn’t exist for CEdit to subclass, so you can’t
stuff anything into the data member before the dialog is
A Valuable “Value.” ClassWizard lets you create a
“value” data member: a data member used to initialize

the control before the dialog is opened, and to contain the control’s

FIGURE 1
A Classy “Control.” ClassWizard also lets you create
“control” data members that subclass the control, lettingFIGURE 2
http://www.windx.com

VISUAL
PROGRAMMING
opened. (To be precise, the subclassing only takes
place during the dialog’s OnInitDialog override.
CDialog::OnInitDialog calls CWnd::UpdateData, which calls
the dialog’s override of CWnd::DoDataExchange. This is
where the subclassing takes place.)

The only thing that’s even close to a built-in solution is to use
both a string object as well as an edit control object. In other
words, create two data members: one of type CString and one of
type CEdit (meaning you use ClassWizard to create both a value
data member and a control data member). Then you can use the

CString data member to initialize the con-
trol before the dialog opens, and to re-
trieve the final value from the control after
the dialog closes. And the CEdit data mem-
ber will subclass the control, so you can
use CWnd::GetWindowText and
CWnd::SetWindowText—both inherited by
CEdit, a CWnd derivative—to get and set
the contents of the control while the dialog
is open.

With Visual Basic, there’s no distinc-
tion between a control and its content per
se. You simply reference the control
variable’s Text property to get or set the
data in the control.

To overcome MFC’s lack of elegance
and ease of use, I created a set of classes
that lets you do with MFC what you can do
with Visual Basic. I’ve presented one of
these classes below, which shows you how
to make C++ more “VB-like.” In a future
column, I’ll show you a different solution,
and how you can also use these when
building an OLE control.

INTRODUCING THE CBETTEREDIT CLASS
You have a handful of fundamental prob-
lems to solve before creating a solution
that combines the attributes of string han-
dling with the attributes of a Windows edit
box. First, I decided to produce an imple-
mentation that was a new data type. Creat-
ing a new C++ class provides a more effi-
cient, flexible, maintainable, and exten-
sible solution in the long run. For example,
the new class could be extended to include
new features in the future, as well as
adapted to fit into environments that could
really use it, such as OLE controls. So, I
began with the idea of creating a new C++
class or data type.

Next, I had to figure out the best way to
combine an edit control and string data
handling into a single new class. MFC of-
fers the CString as well as the CEdit classes,
which both offered the features I was look-
ing for and could produce the right result
if combined properly. But what consti-
tuted “combining them properly”? My im-
mediate reaction was, “Aha! A case for
multiple inheritance.” Let me explain.

If you’re only familiar with VB 4.0’s class
facility, then you really don’t know what
object-oriented programming is all about.
True, a single-level class like VB4’s can let
http://www.windx.com
you combine relevant code and data into useful, reusable units.
But the fact is, without inheritance you’re missing out on the
ability to easily extend a class for use in another context or
situation. In C++, you can derive a new class from an existing one,
where the new derived class inherits (with some minor restric-
tions and caveats) the features of the existing base class. You can
even derive a new class from more than one base class: that’s
multiple inheritance.

C++ aficionados generally frown on MI (that’s the cool acro-
nym for multiple inheritance) because you can easily end up
Visual Basic Programmer’s Journal MAY 1996 115

VISUAL
PROGRAMMING

C
C
w
t
a
o
m
a
m

i
c
f
c
o
t

t
t

i

{

}

v
{

}

with a class that’s far too complex to debug, maintain, or extend.
It’s an even bigger problem when one or more of the base classes
are derived from a common base class. It’s gotten to be such a
hot topic that Bjarne Stroustrup, the inventor of C++, has noted
that if he knew today what he knew about MI, he would never
have added it to the language. And as my friend Zack Urlocker,
Borland’s Delphi product manager has said, “MI is the GoTo of
the 90s.”

So at first, I backed off of an MI solution, which would
combine both CEdit and CString, even though these two didn’t
share any common base classes. (I later returned and
reimplemented the solution using MI, but I’ll discuss that in
another column.) Instead, I tried to solve the problem using
containment, the technique of having one type “contain” a data
member of another type. This isn’t as elegant and can take far
more work if the contained item needs to get messages from
Windows, but with this programming problem those weren’t
concerns. I created a new class, CBetterEdit, by deriving a class
from CEdit and containing a CString data member (see Listing 1).

This approach involves using a CString to parallel and dupli-
cate what Windows stores in the edit box’s own data buffer. But
note that I considered using a third approach: instead of con-
taining a CString to duplicate the content of the control, I
considered trying to play some games accessing the data buffer
of the control itself. That data buffer can be obtained using
Windows messages (EM_GETHANDLE, EM_SETHANDLE), and
would require either containing a CString whose own data buffer
pointed to the one in the control, or performing CString-like
operations on the control’s data buffer. With this approach, the
big question was how Windows manages the data buffer of the
control—something that’s virtually undocumented in any ver-
sion of Windows. Rather than monkey around with a potentially
dangerous, nonportable solution, I decided that duplication
wouldn’t be bad for a starter: I could always re-engineer
CBetterEdit to use that approach at a later date.

CBetterEdit gets its edit field capabilities from CEdit, from
116 MAY 1996 Visual Basic Programmer’s Journal

which it’s derived. Its string-handling features come from the

LISTING 1 Source Code for the CBetterEdit Class Definition. Der
member that always contains the contents of the edit cont

// Attributes
String data member, m_strContents. The key to making
BetterEdit work was to create a few simple rules for myself:
hen you create the associated edit control, update it to contain

he contents of m_strContents; when you destroy the associ-
ted edit control, update m_strContents to contain the contents
f the control; when the user program makes changes to
_strContents, make sure they are reflected in the edit control;

nd, lastly, when the user makes changes to the edit control,
ake sure they are reflected in m_strContents.

These rules implied two explicit design goals: I’d have to
ntercept the WM_CREATE and WM_DESTROY messages when
reating or destroying the associated edit control and follow the
irst two rules. Because CEdit subclasses its associated edit
ontrol, I simply created message-mapped member functions to
verride WM_CREATE and WM_DESTROY handling. These func-
ions would ensure that I would meet my design goals.

You need to call the two message-mapped member func-
ions, OnCreate and OnDestroy, right after you create or destroy
he associated edit control:

nt CBetterEdit::OnCreate(LPCREATESTRUCT
lpCreateStruct)

if (CEdit::OnCreate(lpCreateStruct)
== -1)
return -1;

if(m_strContents.GetLength())
SetWindowText(m_strContents);

return 0;

oid CBetterEdit::OnDestroy()

GetWindowText(m_strContents);
CEdit::OnDestroy();
p

/
p

/

/
p

p

p

class CBetterEdit : public CEdit
{
void SyncContentsWithEditBox();
void SyncEditBoxWithContents();

// Construction
public:
CString Mid(int nFirst) ;
CString Mid(int nFirst, int nCount) ;
CString Right(int nCount) ;
CString Left(int nCount) ;
int GetNum();
BOOL IsDigit();
operator[](int nIndex) ;
const CString& operator+=(LPCTSTR lpsz);
const CString& operator=(char ch);
const CString& operator+=(TCHAR ch);
const CString& operator+=(const CString& string);
int GetLength() ;
operator LPCTSTR() ;
const CString& operator=(LPCTSTR newContent);
const CString& operator=(const CString&

newContent);
LPCTSTR GetContents(void);
void SetContents(char* newContents);
CBetterEdit();
i
ro

}

ublic:

/ Operations
ublic:

/ Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CBetterEdit)
protected:
virtual void PreSubclassWindow();
virtual void PostNcDestroy();
//}}AFX_VIRTUAL

/ Implementation
ublic:
virtual ~CBetterEdit();

// Generated message map functions
rotected:
//{{AFX_MSG(CBetterEdit)
afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
afx_msg void OnDestroy();
afx_msg void OnNcDestroy();
//}}AFX_MSG

DECLARE_MESSAGE_MAP()
rivate:
CString m_strContents;
;

http://www.windx.com

ved from MFC’s CEdit class, CBetterEdit contains a CString data
l associated with the class.

VISUAL
PROGRAMMING

you think!
OnCreate uses CWnd::SetWindowText (inherited from CWnd
through CEdit) to update the edit control with the contents of
m_strContents (provided there’s anything in the latter).
OnDestroy grabs whatever is in the control and stuffs it into
m_strContents in the event that the user has changed the
control’s content just before closing the parent window or
dialog (and the control is then destroyed).

Following my last two rules required more work.

SYNCHRONIZING THE CONTROL’S CONTENTS
I created two helper functions, SyncContentsWithEditBox and
SyncEditBoxWithContents. These were both private member
functions, to be called only from other member functions of this
class (at a later date, I may make them protected so derived
classes can use them). Both are implemented as inline func-
tions, which tells the compiler to generate them as inline code.
While this will result in slightly larger output code (because
each call to these functions will be replaced by the function’s
code), it should result in code that will execute faster than if the
function were actually called.

IF YOU’RE ONLY FAMILIAR WITH VB 4.0’S

CLASS FACILITY, THEN YOU REALLY DON’T

KNOW WHAT OBJECT-ORIENTED

PROGRAMMING IS ALL ABOUT.

SyncContentsWithEditBox simply looks to see if there’s an
edit box associated with the class object and, if so, calls
GetWindowText to get the edit box contents into
m_strContents:

void SyncContentsWithEditBox()
{
if(m_hWnd)

GetWindowText((CString&)m_strContents);
}

SyncEditBoxWithContents does the opposite. It looks to see
if there’s a control associated with the object and, if so, stuffs
the content of m_strContent into the edit box:

void SyncEditBoxWithContents()
{
if(m_hWnd)

{
CWnd *pWnd = (CWnd*)this;
pWnd->SetWindowText((CString&)m_strContents);
}

}

By default, CString objects point to a NULL string ("") when
you first create them or later empty them, so this is a safe way
to empty an edit box when m_strContents has nothing in it.
Using these two functions, I was able to implement functional-
http://www.windx.com
ity to let a user program employ this class to perform Basic-like
string handling (through Mid, Left, and Right member func-
tions); CString-like string handling (through +=, = and [] opera-
tor functions); and get or set the contents of the control
through member functions (GetContents, SetContents mem-
ber functions).

I even added a couple of new twists of my own: IsDigit to
determine if the control contained an integer value, and GetNum
to retrieve the control’s content as an integer.

Using CBetterEdit, you can write code that smacks of the
most elegant that MFC or VB has to offer such that:

CBetterEdit myEdit;
…
myEdit = "This goes into the edit

control";

will let you assign a string that’s stored by the myEdit object,
and additionally stuffed into the control once the control is
created (or, if the control already exists, it is immediately
stuffed into the control). You can use CString-like += opera-
tions as well. And you can use the assignment operator to
update the control while it’s displayed (without calling
SetWindowText), ensure that the control will have an initial
value once the dialog is opened, and easily get the final control
value out after the dialog closes.

Check out the implementation of CBetterEdit and see what
Visual Basic Programmer’s Journal MAY 1996 117

