
74 MAY 1996 Visual Basi

S E T U P W I Z A R D

Michiel lives in Rotterda
lands, and is co-owner
matiseringsdiensten, whe
signer and lead programm
Communications System, a
messaging system written
VB. He is a section lead
CompuServe Forum, and
Microsoft Basic Forum. F
forts, he has received a
Valuable Professional
Michiel on CompuServe a
the Internet at mdb@vbd.n

e
M
i
b
f
m
n
r
t

s
n
o

I

Click & Retrieve

Source

CODE!
Take Control of
Setup

BY MICHIEL DE BRUI JN
r
i
c
w
c

M
y
t
b
H

t
c
b
t
a
I
d
O

VB4’s SetupWizard,
combined with tips
and tricks described
here, can help you
cut distribution size
and create problem-
free setup disks.

t’s well known that the SetupWizard
for VB3 was downright difficult to use
at best, and at worst, too buggy to

ven consider. The good news is that
icrosoft took note of this problem and

mproved the SetupWizard for VB4. The
ad news is that setup is more complex

or VB4 because the new release requires
ore files to get your users up and run-

ing for even a simple application. Setup
equires additional work, such as regis-
ering OLE components.

Fortunately, the new SetupWizard is
table enough serve your basic setup
eeds. However, just running it fresh out
f the box could result in problems for
c Programmer’s Jour

m, The Nether-
 of VBD Auto-
re he is the de-
er of the Network
 Windows-based

almost entirely in
er in the VBPJ

 is active on the
or his online ef-
 Microsoft Most
award. Contact
t mdbruijn or on
l.
your users and require unnecessarily large
distribution disks.

Use the tips and insights I’ll present
here to cut memory requirements and
ensure hassle-free setup, while taking a
look “under the hood” to learn how the
new SetupWizard works.

The new SetupWizard comes in 16-
and 32-bit editions. Like most parts of
VB4, the 32-bit version contains the most
features, such as the ability to remove
installed apps later. But the 16-bit edition
of SetupWizard comes with some unique
goodies of its own.

For example, you’ll never send the
wrong system files to your users again
because the 16-bit SetupWizard comes
with a copy of the most recently shared
system files, and it writes those files to
your setup disks instead of writing to
versions in your Windows system di-
nal

t
a
r

ectory (most likely 32-bit). Before go-
ng into detailed tips and tricks for
reating customized setup systems, I’ll
alk you through the new setup pro-
ess step by step.

Like the Wizards you’re used to in
icrosoft products, SetupWizard guides

ou through a complicated process (in
his case, the process of building distri-
ution disks), in a number of easy steps.
ere’s the basic sequence.

First, SetupWizard asks about the loca-
ion of your project (MAK or VBP) file. If you
heck the “Rebuild the Project’s EXE file”
ox, and the EXE is missing or of the wrong
ype, the SetupWizard will shell out to VB
nd automatically compile the EXE for you.
t will also scan all files in the project for
ependencies on external files, such as
CXs, DLLs, or OLE servers.

Next, if the SetupWizard detects that
Adding Disk Options. You can add alternative disk sizes to the choices
offered by the SetupWizard, such as the DMF format shown here, by modifying

he [SetupWiz] or [SetupWiz-32] section of the SWDEPEND.INI file. As a bonus, you can
lso prevent the 32-bit SetupWizard from coming up with 1.2 MB disks as the default by
e-ordering some entries.

FIGURE 1
http://www.windx.com

S E T U P W I Z A R D

o
r
t
r
w
f

a
c
l

i
s
p
w
u
T
a

s
n
it
,

the MFC and C++ runtimes (required by VB and most OCXs) take up a lot of space.
you’re using Data Access features, it lets
you specify external ISAM drivers. Other-
wise it skips to step three, where you can
specify the target of your distribution
files. This can be a floppy disk or a regular
path: the latter is handy for network or
CD-ROM distributions.

During step four, the SetupWizard al-
lows you to specify OLE servers in addi-
tion to the ones it detected while scan-
ning your project files. This is necessary
because it’s possible to create indirect
references to OLE servers in your code. In
step five, you can specify other compo-
nents, such as DLLs and OCXs.

It’s also possible to remove files dur-
ing this phase if you spot a component
that you don’t want to send out or for
which you don’t have the redistribu-
tion rights.

In step six, the SetupWizard wants to
know a few details about your application:
whether it’s installed in its own directory
(as will be the case with most programs) or
should be handled as an OLE component,
in which case it’ll end up in a shared-
system directory. Also, Enterprise Edition
users need to indicate here if the distribu-
tion contains any parts to be installed as a
remote OLE server.

When these steps are completed the
SetupWizard will process all data it gath-
ered and present you with a final list of all
files you need to send out to your users.
You can view or modify the default file
placement by selecting a file from the list
and clicking on File details, but in most
cases the SetupWizard will be correct
about such details.

You can now build the disks by select-
ing Finish, though it might be a good idea
to use Save Template first if you plan on
using this set of files more than once.

Now you have complete setup disks
that are guaranteed to install all the re-
quired files on your user’s systems, as-
suming you didn’t forget application-spe-
cific data files. The only exception is when
you need to include 16-bit ODBC compo-
nents, because these have a separate, self-
contained setup disk (found on your VBCD
in the \VB\ODBC directory).

Though the VB manual states that the
16-bit Remote Procedure Call (RPC) for
OLE Remote Automation components also
has a separate setup program, these files
will in fact be added by the SetupWizard
like regular components and no additional
steps are needed.

ON TARGET
When you build your distribution disks
for the first time, you’ll probably think
that something has gone wrong. After all,
two disks with more than 20 files, just to
distribute your 16-bit “Hello World” test
program must be a mistake, right?
http://www.windx.com
Unfortunately, the SetupWizard is right
on target with these numbers. For the
benefits of component-based OLE pro-
gramming we pay a price in memory be-
cause Visual Basic 4.0 itself is entirely
OLE based, which means that you need
the OLE library DLLs for even the most
trivial VB program, whether or not it has
OLE features.

If you’re developing for Windows 3.1
using Visual Basic 4.0, you pay a price
because VB4 needs more recent versions
of the OLE libraries than those that
Microsoft ships with Windows 3.1. Keep
in mind that you’ll always need at least
two disks for Windows 3.1 applications.

And even though simple 32-bit appli-
cations designed to run on Windows 95
Visual B
r Windows NT 3.51 (both systems al-
eady contain up-to-date OLE code) ini-
ially will fit on one disk, the size of the
untime is so large that for most real-
orld applications you’ll need two disks

or these platforms.
Even a bare-bones Visual Basic 4.0

pplication that uses one or more custom
ontrols (either VBXs or OCXs) requires a
ot of files (see Table 1).

What can you do to cope with expand-
ng memory requirements, except to
witch to CD-ROM distribution? The sim-
lest action you can take, and one that
orks regardless of the setup program
sed, is to select References from VB’s
ools menu while your project is loaded,
nd check for any unneeded type-library
OLE Means Lots of Runtime Files. The size of the VB4 runtime files i
significantly larger than in previous versions. The biggest increase in size o

16-bit platforms (top) is caused by the inclusion of the OLE libraries. But even in 32-b
distributions (bottom), where OLE is guaranteed to be a part of the target system already

TABLE 1

16-Bit VB4 Runtime Files

Actual Application YOURAPP.EXE Main application executable
THREED16.OCX Custom control

Setup Application CTL13DV2.DLL 3- D library for SETUP.EXE/OCX runtime
SETUP.EXE First-stage setup program
SETUP.LST Setup configuration file
SETUP1.EXE User setup program
STKIT416.DLL Setup kit support routines

VB Runtime VB40016.DLL Main VB runtime (“VBRUN400”)
VAEN21.OLB VBA 2.1 object library

OLE Runtime COMPOBJ.DLL Component Object Model support
OC25.DLL Runtime for OLE custom controls (OCXs)
OLE2.DLL Main OLE libraries
OLE2.REG Registry information for OLE libraries
OLE2CONV.DLL Conversion for graphical OLE output
OLE2DISP.DLL Main OLE Automation support
OLE2NLS.DLL International OLE support
OLE2PROX.DLL OLE proxy support
SCP.DLL Code page translation library
STDOLE.TLB Standard OLE type library
STORAGE.DLL Support for structured storage
TYPLIB.DLL OLE Automation type library support
VSHARE.386 Sharing support (required for OLE file I/O)

32-Bit VB4 Runtime Files

Actual application YOURAPP.EXE Main application executable
THREED32.OCX Custom control

Setup application CTL3D32.DLL 3D library for SETUP.EXE
SETUP.EXE First-stage setup program
SETUP.LST Setup configuration file
SETUP132.�EXE User setup program
S�T4UNST.EXE Uninstall support program
STKIT432.DLL Setup kit support routines

VB Runtime VB40032.DLL Main VB runtime
VEN2232.OLB VBA 2.2 object library

Various MFC40.DLL Microsoft Foundation Classes runtime
MSVCRT40.DLL Microsoft Visual C++ 4.0 runtime
MSVCRT.DLL Microsoft Visual C++ 2.x runtime
OLEPRO32.DLL Extensions to OLE libraries
asic Programmer’s Journal MAY 1996 75

S E T U P W I Z A R D

n
t
e
i
f

M
W

t
l
f

o
i
s
t
S

S E T U P W I Z A R D
references. For example, if you include a
reference to the Data Access Object (DAO)
library, VB will expect that functionality
to be present at run time and you’ll have
to distribute the extra DLLs. If you don’t
need it, omitting the DAO reference will
cut disk requirements.

You can further slash disk require-
ments by using data compression that’s
superior to Microsoft’s. Though the algo-
rithm employed by the COMPRESS.EXE
program (as used by the SetupWizard) is
quite effective, other utilities may yield
much better results.

The solution Microsoft uses for their
own products, the so-called Distribution
Media Format (DMF), combines improved
data compression and an alternative disk
formatting process that allows as much
as 1.7 MB of uncompressed data on a 3.5-
inch high-density disk. Also, DMF pro-
vides protection against software piracy
because DMF disks are harder to copy.

Although Microsoft doesn’t make DMF
available to third parties, utilities for for-
matting your own DMF-style disks are
starting to become available (a program
that’s worth checking out is WinImage
2.20, available as WIMA9522.ZIP from vari-
ous places.

Because both Windows 95 and Win-
dows NT support the DMF disk format, it
should work fine for distributing 32-bit
applications.
76 MAY 1996 Visual Basic Programmer’s Jour

-

-
-

-

Un

For 16-bit platforms, you need special the Drive1 and Drive2 lines in the [SetupWiz-

76 MAY 1996 Visual Basic Programmer’s Jour
code or a TSR/device driver that loads
before Windows, in order to read the
disks, which makes DMF a lot less attrac-
tive there. Still, if you discover that DMF
significantly cuts your disk expense, it’s
worth implementing.

YOU CAN SLASH DISK

 REQUIREMENTS BY

USING DATA COMPRESSION

THAT IS SUPERIOR TO

MICROSOFT’S.

Changing the data compression algo-
rithm means saying goodbye to
SetupWizard as your one-stop setup solu-
tion. If you choose this approach, you’ll
have to build your setup disks manually
because the SetupWizard is hardwired to
use the same LZW compression code.

However, you could still use
nal

installing Applications

a
(
w
o

f
S
d
t
S
c

y
p
c
t
n
t
D
p

a
b
o
p

nal
SetupWizard to generate the initial file
listing. If you switch to DMF disks, you can
continue to use the SetupWizard, pro-
vided you make a small change to its
configuration file. If you’ve executed both
the 16- and 32-bit editions of the
SetupWizard at least once, you’ll find a
file called SWDEPEND.INI in your Win-
dows directory, that contains [SetupWiz]
and [SetupWiz-32] sections (these don’t
necessarily have to be near each other).

In these sections you’ll find a number
of Driven keys, where n is the sequence

umber in the SetupWizard drive-selec-
ion combo box. By adding one or more
ntries here (renumbering the other lines,
f required), you can easily add new disk
ormats as they become available.

For example, to add support for the 1.7
B DMF-style format as created by the
inImage utility, add:

Drive1=1.7 MB (DMF) Disk,1716224,1024

The first part of this string is the tex-
ual description of the new format, fol-
owed by the number of free bytes on a
reshly formatted disk.

The last part of the string is the number
f bytes per sector: SetupWizard needs this

nformation in order to do accurate free-
pace calculations. Even if you don’t need
o add custom disk formats, customizing
WDEPEND.INI lets you swap the values for
Uninstalling your application from a
user’s system is one of the require
ments to qualify for the “Designed for
Windows 95” logo.

This feature is in huge demand
by users because this process is
feasible only on Windows 95 (which
was designed with a solution to the
uninstall problem in mind) and Win-
dows NT, only 32-bit SetupWizard-
generated setup programs support
it. Hence, for 32-bit apps you can
create an uninstall program rather
than buy one.

To enable uninstallation, the setup
program adds a line to a file called
ST4UNST.LOG (initially stored in the
Windows directory and moved to the
application directory after a success
ful installation) for each action it per
forms, such as copying a new file
onto the system, replacing an exist-
ing file, adding or changing a Regis
try or INI key, adding or replacing a
shell link or Program Manager item,
and more.
The file is human-readable, and can
lso be used to diagnose setup problems
if the installation is aborted, SETUP1
ill ask the user whether to keep the file
r not).

The actual uninstallation is per-
ormed by a Microsoft program called
T4UNST.EXE that resides in the Win-
ows directory. This program essen-
ially reverses the actions logged in
T4UNST.EXE, which sounds simple, but
an get quite complicated in practice.

The problem is with shared files: if
our application installed a copy of a
opular file (say, THREED32.OCX), it
an’t just delete it when the user decides
o uninstall your application, because a
ew program, installed in the mean-

ime, may also rely on THREED32.OCX.
eleting the file would render that ap-
lication useless.

To prevent such problems and still
llow effective uninstallation, Microsoft
uilt support for this process into the
perating system. Any Windows 95-com-
atible setup program is supposed to
create or increase a usage counter for
the shared files it installs in a named
value under the Registry key
\HKEY_LOCAL_MACHINE\SOFT-
WARE\Microsoft\Windows\Current-
Version\SharedDLLs. The uninstall
program will decrease the usage
counter again for each file it wants to
remove, and delete it only if the
counter reaches zero.

This scheme works if all programs
follow this guideline, but in practice
it can lead to critical files being de-
leted due to non-compliant setup apps
and files required by 16-bit applica-
tions that don’t know how to access
Registry keys in the first place.

Still, ST4UNST.EXE is an easy way
to offer uninstall features to your
customers: like the rest of the VB4
Setup code and the SetupWizard it-
self, it’s a very usable solution. Even
if you’re content with your current
third-party or home-grown setup so-
lution, you might want to take a good
look at it. —M.dB.
http://www.windx.comhttp://www.windx.com

S E T U P W I Z A R D

t
n
i
p
c
a
a
c
r

e

32] section. Hence, you can make 1.44 MB
floppies the default for the 32-bit
SetupWizard instead of the pesky 1.2 MB
disks (anyone remember those?) it insists
on each time by default (see Figure 1).

GATHERING THE FILES
OK, back to the actual disk-building pro-
cess. One question you might have is,
“What does the SetupWizard know that I
don’t?” After all, it usually includes all the
files that an application requires to run.
http://www.windx.com
The key to the SetupWizard’s power is
he SWDEPEND.INI file. SWDEPEND.INI is
ot really a VB-specific configuration file:

t’s used by various tools to look up com-
onent-dependency information. A typi-
al entry in this file describes which files
 single software component (for example,
 certain DLL or VBX or a more complex
omponent, like the Jet database engine)
elies on in order to work (see Listing 1).

By resolving these references for ev-
ry file in your project (as taken from the
Visual
VBP/MAK file and any external function
declarations or OLE references in your
module, class and form files), the
SetupWizard can build an accurate and
complete file list.

However, if a certain component is not
listed in SWDEPEND.INI, and the compo-
nent depends on additional files (for ex-
ample, an OCX that needs certain DLLs to
be present), things will go wrong.

While SetupWizard includes the base
component like it should, the additional
files on which it depends will not be dis-
tributed to your users, and they’ll prob-
ably get “File not found” errors at runtime.
So adding such components to
SWDEPEND.INI is a good idea if you use
them on a regular basis.

The entries in an SWDEPEND.INI sec-
tion tell the SetupWizard things about
how the files belonging to a component
should be installed (see Listing 1).

 If you take a look at Listing 1, you’ll see
the actual SWDEPEND.INI entries for files
that make up the basic VB4 32-bit runtime.
Each section contains a number of Usesn
keys, where n is a sequence number.

Files listed this way are called the de-
pendencies of a certain component. Ac-
cording to SWDEPEND.INI (and as you’ve
seen by examining actual files generated
by the SetupWizard), the VB4/32 runtime
consists of six files that have no further
dependencies themselves.

The latter is not always the case: for
example, it’s quite common for OCX files
to rely on other files, such as Microsoft
Foundation Classes (MFC) DLLs. In such a
case, determining dependencies for a
single component becomes a recursive
process, which can yield a surprising num-
ber of files.

REGISTER OR ELSE
In addition to the Usesn entries, the Reg-
istry key can be found in a SWDEPEND.INI
section. Though its value will be rather
trivial for most files—either empty or
$(DLLSelfRegister)—the Registry key is
related to one of the most important fea-
tures a VB4 setup program should have.

VB4 and its component files (OCXs)
are based entirely on OLE. Before an OLE
server of any kind can function, it needs
to have one or more entries in the Regis-
try so the operating system and other
components can find and activate it.

Of course, such entries can be made
manually using REGEDIT, but this obvi-
ously isn’t something you would want to
ask an end user to do. To overcome this
problem, older OLE-based applications
used an REG file that was merged into the
Registry by shelling out to REGEDIT. Al-
though this works well, the solution used
by VB4 (called autoregistration) is much
more elegant because it doesn’t rely on
 Basic Programmer’s Journal MAY 1996 77

e
t
n
o
i
m

s
O
m
f
t
D
f
t
D
A
O
q
s
s
e
w

a
u
i
e
w
s
O
e
U
s
m
S

b
t
d
W
l
V

s
r
c
E
c
t
m
u

m
c
o
c
s
p
M

r
i
a
i
p

a
s
W
(
h
s
3

d
s
i
files and support operations such as

u
C

W
T
t
f
n

t
s
names in all files the SetupWizard uses

7

xternal programs or files. Autoregistra-
ion minimizes the risk of an OLE compo-
ent becoming unusable due to the lack
f a REG file—for example, if the REG file

s not copied when the component file is
oved to another system.

An autoregistration-compatible OLE
erver includes the magic word
LESelfRegister in the version infor-
ation that’s part of the executable

ile, and implements two special func-
ions: DllRegisterServer, and
llUnregisterServer.TheDllRegisterServer

unction adds the information required
o activate the control to the Registry:
llUnregisterServer removes it again.
ny program that looks for the
LESelfRegister string and subse-
uently calls the registration functions,
uch as your setup program or the
tandalone REGSVR.EXE utility, can
asily manage registration information
ithout the need for external utilities.

Executable OLE servers created by VB
lso support autoregistration, but they
se a slightly different mechanism: dur-

ng installation (or at any other time),
xecutable OLE servers can be invoked
ith the /REGSERVER command-line

witch to update the Registry with their
LE binding information. To remove these
ntries again, run the server with the /
NREGSERVER switch. Components that
upport this kind of (un)registration are
arked as $(EXESelfRegister) in

WDEPEND.INI.
Note that registration is necessary on

oth 16- and 32-bit platforms. Though
he Registry isn’t as powerful in Win-
ows 3.1 as it is in Windows 95 and
indows NT, it’s certainly there (with

imitations, such as a 64K size limit) and
B4 really does uses it.

And VB4 Enterprise Edition users
hould keep in mind that a special kind of
egistration is performed for Remote OLE
omponents created using Enterprise
dition. The actual OLE object your appli-
ation calls is probably not included in
he distribution because it runs on a re-
ote server, but the Registry needs to be

pdated to use it.
To update the Registry regarding re-

ote OLE objects you can include so-
alled VBR files in the list of OLE servers
ffered by the SetupWizard. A VBR file is
reated whenever you compile an OLE
erver and check the Remote Server Sup-
ort Files box in the Options screen of the
ake EXE option in the File menu.

The VBR file should contain the same
egistration information as the server
tself. When the final setup program polls
 VBR file, it will query the user for miss-
ng information, such as the network
rotocol used to talk to the remote server.

The program also updates the Registry,
8 MAY 1996 Visual Basic Programmer’s Journ
sing either the CLIREG16 or the
LIREG32 utility program.

HERE DID MY FILES GO?
he SetupWizard suggests a default loca-

ion on the target system for distribution
iles in addition to determining which files
eed to be included in the distribution.

Because the actual path for each loca-
ion varies across systems and operating
ystems, they’re represented by macro
al
nd creates (see Table 2). You might be
urprised to see that Windows 3.1 and
indows NT use the same directories

the only difference is that Windows NT
as a SYSTEM32 directory for 32-bit
hared system files, which is missing from
.1 for obvious reasons).

The similarity occurs because Win-
ows NT predates the new directory
cheme designed for Windows 95, which
s supposed to make it easier to maintain
http://www.windx.com

u
d
d

L
I
s
s
r
t
s
S

i
t
y
a

7

S E T U P W I Z A R D

p

a
t

ninstallations. The next version of Win-
ows NT will probably support the Win-
ows 95 conventions.

ET SETUPWIZARD DECIDE
f you use the SetupWizard and follow
tandard installation procedures, you
hould have no problem getting the
ight file into the right place because
he SetupWizard makes the right deci-
ion for you, courtesy of the
WDEPEND.INI file.

However, if you’re writing your own
nstallation program or using components
hat don’t have entries in SWDEPEND.INI,
ou could encounter confusion handling
ll the choices.

Here are the most important rules for
9 MAY 1996 Visual Basic Programmer’s Jour

latforms supported by VB4.

[
D
U
U
U
U
U
U
R
U

R
D
U

VB4

Describing Dependencies. The SW
as well as many others—it’s a syste

nd non-Microsoft tools. It allows SetupWizard
o make your program run.

LISTING 1
deciding where a file should go, accord-
ing to the new layout ruleds introduced
with Windows 95:

• Files required to start your applica-
tion go into a subdirectory under the
$(ProgramFiles) root, such as
$(ProgramFiles)\WinWidgets. Files not
directly related to program execution,
such as optional modules, data files,
and example files, should go in their
own subdirectories, such as
$(ProgramFiles)\WinWidgets\System,
$(ProgramFiles)\WinWidgets\Data, and
$(ProgramFiles)\WinWidgets\Samples.
• Files shared by multiple applications,
like a specific VBX or OCX that is used by
all applications your company produces,
nal

DEPEND.INI file lists all VB runtime files
m-wide resource used by many Microsoft

to determine exactly which files are needed

D
R
U

R
D
U

R
D
U

R
D
U

go into a subdirectory of the
$(CommonFiles) root, such as
$(CommonFiles)\AcmeCo. Convention-
ally, OLE server components are installed
in $(CommonFiles)\OLESVR.
• Only files that need to be shared on a
system-wide level, such as DLLs, VBXs,
and OCXs belonging to a well-known prod-
uct, go into the $(WinSysPath) directory.
Never install such components in another
directory—including ($WinPath)—unless
you actually like causing version prob-
lems. Installing shared components in
private directories may seem like a good
idea at first, but private directories will
cause trouble sooner or later, especially
on 16-bit systems.

So far I’ve discussed preparation for
setup, not the actual installation process.
The actions performed by the
SetupWizard prepare your application for
installation on a target system. The task
of installing files is carried out by two
separate programs, SETUP.EXE and
SETUP1.EXE.

As you may know, writing setup appli-
cations entirely in VB is impossible be-
cause you can’t run a program that needs
a runtime module to execute if the
program’s task is to install the runtime
module in the first place. The SETUP.EXE
is written in C and of course it doesn’t
need a runtime module to execute.

When SETUP.EXE is started, it reads
the [Bootstrap] section of the SETUP.LST
file (which, in spite of its LST extension is
formatted like a standard INI file) to deter-
mine which files it should install to get the
VB runtime and the actual setup program
running. Each Filen key in this section,
where n is a sequence number, contains
this information:

• The number of the disk the file is stored
on. As I explained, the 16-bit VB4 runtime
is so large it spans multiple disks; conse-
quently, the user must change disks be-
fore the main setup program even starts.
• A flag indicating if the file is split across
multiple disks: either blank or SPLIT. The
SetupWizard and the setup programs pro-
vided with VB split and concatenate files,
respectively. Because the SetupWizard
source code is not provided, and “How do
I split a file across disks?” is a frequently
asked question on the various online VB
forums, I’ve included source code for both
operations (see Listing 2).
• The compressed and uncompressed
names of the file.
• The target location of the file in the
SWDEPEND.INI macro format you should
be familiar with by now.
• The registration method for the file:
either blank (no registration required),
VB Runtime 0409-32]
est=$(WinSysPath)
ses1=VB40032.DLL
ses2=ven2232.olb
ses3=olepro32.dll
ses4=msvcrt20.dll
ses5=msvcrt40.dll
ses6=ctl3d32.dll
egister=
ses7=
[VEN2232.OLB]

egister=
est=$(WinSysPathSysFile)
ses1=
[OLEPRO32.DLL]
est=$(WinSysPath)
egister=$(DLLSelfRegister)
ses1=
[MSVCRT20.DLL]

egister=
est=$(WinSysPathSysFile)
ses1=
[MSVCRT40.DLL]

egister=
est=$(WinSysPath)
ses1=
[CTL3D32.DLL]

egister=
est=$(WinSysPathSysFile)
ses1=
Now Where Did That File Go? The SetupWizard and the configuration files
use macros to indicate file locations, because file locations differ across

systems. This table shows what these sometimes cryptic strings expand to on the various

TABLE 2

Macro String Description

$(AppPath) Application path as specified by the user. Constructs like $(AppPath)\SYSTEM also work.

$(ProgramFiles) Root path for applications. Expands to d:\Program Files\ (by default) for
Windows 95, d:\ for other versions. Never install files to this path. Always use
$(ProgramFiles)\MyApp.

$(CommonFiles) Root path for files that are shared by multiple applications. Expands to d:\Program
Files\Common Files\ (by default) for Windows 95, d:\WINDOWS for other versions. Never
install files to this path. Always use $(CommonFiles)\MyApplet.

$(CommonFilesSys) Root path for system files shared by multiple applications. Expands to $(CommonFiles)\System.
$(WinPath) The user’s d:\WINDOWS directory. Avoid installing files here (use $(CommonFiles) or

 $(WinSysPath) instead).

$(WinSysPath) The user’s d:\WINDOWS\SYSTEM directory.

$(WinSysPathSysFile) Used for 32-bit system files. Expands to d:\WINDOWS\SYSTEM32 on NT,
$(WinSysPath) on other versions.

$(MSAppPath) Root path for the common Microsoft applet directory. Expands to $(CommonFiles)\Microsoft
on Windows 95, d:\WINDOWS\MSAPPS for other versions.

$(MSDAOPath) Expands to $(MSAppPath)\DAO.
$(DLLSelfRegister), or $(EXESelfRegister).

http://www.windx.com

S E T U P W I Z A R DS E T U P W I Z A R D

c
h
p
O
t
t

g
t
u
SETUP.LST to determine what to do. line for preventing the Start menu from
• A flag indicating if the file is shared:
either blank or $(Shared). For 32-bit setup
programs, special operations are per-
formed to allow uninstallation of shared
files (see the accompanying sidebar,
“Uninstalling Applications”).
• The file date, size, and version: used to
check if existing files should be overwrit-
ten or not. While this information could
also be extracted at run time, having it in
the SETUP.LST file speeds up the installa-
tion process quite significantly.
80 MAY 1996 Visual Basic Programmer’s Jour80 MAY 1996 Visual Basic Programmer’s Jour

VB4

Splitting Files Across Disks. Thou
Study this code to learn how to do it

code in this listing also enables you to reasse

LISTING 2
The VB3 SetupWizard moved at a gla-
ial pace because setup apps it generated
ad to read version information from com-
ressed files on the distribution floppies.
nce SETUP.EXE has installed and regis-

ered the VB runtime files, SETUP1.EXE can
ake over.

SETUP1.EXE is the actual setup pro-
ram, for which you can find the source in
he \VB\SetupKit\Setup1 directory. It
ses the two remaining sections from
nalnal

ize

End Sub

gh SetupWizard will split files across disks for y
 yourself and take control of splitting files in b
mble the resulting file fragments.
The [Setup] section contains keys that
control how the setup application pre-
sents itself to the user (the application
title and default installation directory), in
addition to controlling which program
item will be created in Program Manager
or Explorer at the end of the installation.

Unlike programs created by the VB3
SetupWizard, VB4’s SETUP1.EXE creates
only one icon per application by default,
in keeping with the new Windows 95 guide-
Static Sub SplitUpFile(Fil As String)
Dim x As Integer, Root As String, Ext As String
Dim hSource As Integer, hDest As Integer
Dim SourceLen As Long, DestCount As Integer
Dim Dest As Integer, Length As Long
Dim Res As Integer
'//SplitUpFile: split up the file passed to this
'//function into fragments named
'//<basefile>.000, <basefile>.001, etc.
Const MaxSize = 1450000
'//free space on typical 1.4MB floppy
Const FirstChunk = 120000
'//remaining free space on first disk
'//(which contains setup files)
'//Open the file that is to be split
x = InStr(Right(Fil, 4), ".")
Ext = Right(Fil, 4 - x)
Root = Left(Fil, Len(Fil) - Len(Ext))
hSource = FreeFile
Open Root & Ext For Binary As #hSource

SourceLen = LOF(hSource)
'//Sanity check
If SourceLen <= FirstChunk Then

MsgBox "No need to split file!", 16
Exit Sub

End If
'//Determine # of output files
DestCount = 2 + (SourceLen - FirstChunk) \ MaxS
'//Create output files
For Dest = 1 To DestCount

hDest = FreeFile
Open Root & Right("000" & _

Trim(Str(Dest)), 3) For Binary As #hDest
If Dest = 1 Then

Length = FirstChunk
ElseIf Dest = DestCount Then

Length = (SourceLen - FirstChunk) _
Mod MaxSize

Else
Length = MaxSize

End If
Res = CopyChunk(hSource, hDest, Length)
If Res <> 0 Then

MsgBox "Error during copy: " _
& Error(Err), 16

Exit Sub
End If

Close #hDest
Next Dest

Close #hSource
End Sub
Sub AssembleFile(Root, As String, Ext As String)
Dim SourceCount As Integer, Fil As String
Dim hDest As Integer, Source As Integer
Dim hSource As Integer, Res As Integer
'//AssembleFile: re-assemble <Root>.### fragments
'//into <Root>.<Ext>
If Right(Root, 1) <> "." Then Root = Root & "."
'//Count file fragments
SourceCount = 0
Fil = Dir(Root & "0??")
While Len(Fil)

SourceCount = SourceCount + 1
Fil = Dir

Wend
'//Sanity check
If SourceCount = 0 Then

MsgBox "No pieces of " & Root & " _
found to assemble!", 16

Exit Sub
End If
'//Create output file
hDest = FreeFile
Open Root & Ext For Binary As #hDest

'//Merge fragment files into output file
For Source = 1 To SourceCount

hSource = FreeFile
Open Root & Right("000" & Trim_

(Str(Source)), 3) For Binary As #hSource
Res = CopyChunk(hSource, _

hDest, LOF(hSource))
If Res <> 0 Then

MsgBox "Error during copy: _
" & Error(Err), 16

Exit Sub
End If

Close #hSource
Next Source

Close #hDest
End Sub
Static Function CopyChunk(hSource, _

As Integer, hDest, As Integer,Length As Long)
Dim BlockSize As Integer, Buffer As String
Dim Blocks As Integer, LastBlockSize As Integer
Dim Block As Integer
'//CopyChunk: generic helper routine
'//that copies 8K blocks from one file
'//to another
On Local Error Resume Next
BlockSize = 8192
Buffer = Space(BlockSize)
Blocks = (Length \ BlockSize) + 1
LastBlockSize = Length Mod BlockSize
Err = 0
For Block = 1 To Blocks

If Block = Blocks Then _
Buffer = Space(LastBlockSize)

Get #hSource, , Buffer
Put #hDest, , Buffer

Next Block
CopyChunk = Err
End Function
Sub main()
'//Test driver for SplitUp & Assemble File
'//winword.exe -> winword.00? -> winword.ex2
SplitUpFile "c:\msoffice\winword\winword.exe"
AssembleFile "c:\msoffice\winword\winword.", "ex2"
http://www.windx.comhttp://www.windx.com

ou, no source code for doing so is provided.
oth Visual Basic 3 and Visual Basic 4. The

Visual B

S E T U P W I Z A R D

http://www.windx.com

209 Hamilton Ave., Palo Alto, CA, USA, 94301-2500.
becoming overpopulated. The [Files] sec-
tion of SETUP1.EXE describes all files the
setup apps needs to copy to the user’s
disk and register if necessary. The [Files]
format is exactly the same as the format in
the [Bootstrap] section, and the actions
carried out are also identical, except that
SETUP1 handles the $(AppPath),
$(CommonFiles), and $(ProgramFiles)
macros. Using these inside the [Bootstrap]
section is fatal.

MORE INTERESTING STUFF
Because SETUP1.EXE comes with source
code, you may want to modify it to display
an alternate background, offer optional
installation sections as described in the
manual, add a form that asks for user
registration information, and write it to
your EXE, or install multiple program icons
on installation, for example.

The code to do the latter is also inter-
esting if you’re wondering how to create
shell links (items that appear directly on
the Windows 95 Start menu instead of in a
group under the Programs item). Also,
functions inside the STKIT432.DLL might
be interesting for your own applications.

Studying the source code of
SETUP1.EXE is a great way to learn more
about how the setup process works. The
source may look a bit intimidating at first
because none of the forms contain text.

The text is loaded at runtime from a
resource file, and the actual code is full of
conditional compilation statements and
seemingly complicated function calls.
Relax, though, because you can find a lot
of useful information once you are famil-
iar with the programming style and see
the difference between the low-level log-
ging functionality required to make
uninstallation work, and the code sec-
tions where the real action is.

Of course, you can write your own
setup program from scratch. I’ve updated
my program (called VBPJstub) to work in
16- and 32-bit environments and to handle
the new OLE registration requirements.

As described in my article, “A Good
Install Is A Good Start,” in the August 1995
issue of VBPJ, VBPJstub replaces
Microsoft’s SETUP.EXE. It includes C
source code for your perusal, and the
code in this article. Download VBPJstub
from VBPJ’s online sites (see “How to
Reach Us” in the Letters to the Editor
section).

The guidelines in my previous article
still apply to Windows 95 and VB4. When
in doubt, use the source code for
SETUP1.EXE as a reference: this version
contains no known logic errors that can
cause you problems. With the VB4
SetupWizard and the tips I’ve explained
you can take control of the entire setup
process.
User Tip

DELETE A FILE TO THE WIN95
RECYCLING BIN IN VB4/32
VB4/32 apps can call the Win32 API’s SHFileOperation function to delete
a file to the Windows 95 recycling bin. Here’s how (this code also
demonstrates VB4’s new ParamArray statement):

Option Explicit
Type SHFILEOPSTRUCT

hWnd As Long
wFunc As Long
pFrom As String
pTo As String
fFlags As Integer
fAborted As Boolean
hNameMaps As Long
sProgress As String

End Type
Public Const FO_DELETE = &H3
Public Const FOF_ALLOWUNDO = &H40
Declare Function SHFileOperation Lib "shell32.dll" _

Alias "SHFileOperationA" (lpFileOp As SHFILEOPSTRUCT) As Long

Public Function ShellDelete(ParamArray vntFileName() As Variant)

Dim I As Integer
Dim sFileNames As String
Dim SHFileOp As SHFILEOPSTRUCT
For I = LBound(vntFileName) To UBound(vntFileName)
sFileNames = sFileNames & vntFileName(I) & vbNullChar
Next
sFileNames = sFileNames & vbNullChar
With SHFileOp

.wFunc = FO_DELETE

.pFrom = sFileNames

.fFlags = FOF_ALLOWUNDO
End With
ShellDelete = SHFileOperation(SHFileOp)

End Function

The SHFileOperation function’s ParamArray argument allows you to
call it in several ways:

' Delete a single file
lResult = ShellDelete(“DELETE.ME”)
' Pass file names in an array
sFileName(1) = "DELETE.ME"
sFileName(2) = "LOVE_LTR.DOC"
sFileName(3) = "COVERUP.TXT"
lResult = ShellDelete(sFileName())
' Pass file names as parameters
lResult = ShellDelete("DELETE.ME", "LOVE_LTR.DOC", "COVERUP.TXT")

—Phil Weber, VBPJ Technical Review Board

SEND YOUR TIP
If it’s cool and we publish it, we’ll pay you $25. If it includes code, limit code length
to 10 lines if possible. Be sure to include a clear explanation of what it does and why
it is useful. Send to 74774.305@compuserve.com or Fawcette Technical Publications,
asic Programmer’s Journal MAY 1996 81

