
GETTING STARTED
WITH VBA

Click & Retrieve

Source

CODE!
Add a Splitter class to your
application to give it a Windows 95
Explorer-style splitter bar.

Split Your Windows
P
s

by Chris Barlow

look and feel. If you’re like me, you’ve gradually made the switch
to using the Windows 95 environment, put away the File Man-
ager, and begun to enjoy using the Windows Explorer.

One of the features I enjoy about the Windows Explorer, and
many other Windows 95 applications, is the ability to use the
splitter bar to change the width of the left and right windows. I
always seem to drag the splitter bar to the right so I can see more
of the left windows as I get into some long folder names, then drag
it back to the left so I can see the document data in the right window.

When I first sat down with Visual Basic 4.0, I searched for a
“splitter” control that would let me add this functionality to my
applications—but no luck! Unfortunately there is no such con-
trol. You have to write code to resize each of the controls in the
left and right windows. I’ve gotten so used to letting Visual Basic
handle my user interface that I guess I’ve gotten lazy. It seemed
like this functionality would take a lot of code in resize and
mouse move events.

Then I began thinking that this functionality would fit nicely
into a class. This way, I would only have to write the code once
and I could easily reuse it in other projects. In this month’s
column I’ll take you through the steps to design and create a
class that lets you add a Windows 95-style window splitter to
your VB4 applications.

CREATING THE SAMPLE APP
You need to create a sample application to test my class.
Because this is Visual Basic, why not just sit down and start
creating a form to experiment with? Start a new project and
experiment with an application to display folders in the left
window and documents in the right window (or, directories and
files to readers still using pre-Windows 95 terminology).

Draw a CommandButton control on the form, make it tall and

n the last few columns I’ve looked at the RichTextBox,
CommonDialog, ToolBar, and StatusBar controls that
you can use to give your application that Windows 95
Chris Barlow is president and CEO of SunOpTech, a developer of
manufacturing decision-support applications including the
ObjectBank and the ObjectJob Systems, where he and Ken
Henderson hold a software patent related to decentralized distrib-
uted asynchronous object-oriented systems. Chris holds degrees
from Harvard Business School and Dartmouth College where he
worked with Drs. Kemeny and Kurtz on the BASIC language. Reach
Chris on the Internet at ChrisB@SunOpTech.com or through
SunOpTech’s World Wide Web server at www.SunOpTech.com.

t

l

86 MAY 1996 Visual Basic Programmer’s Journal
skinny with no caption, and name it “butSplit.” This will be the
splitter bar. To the left of the splitter bar draw a DriveListBox,
under that draw a DirListBox. Finally, put a Label at the bottom
and size these controls to fill up the left side of the form. On the
right side of the splitter bar draw a Label control, add a FileListBox
under it, add another label below the FileListBox, and size these
controls to fill up the right side of the form.

If you’ve used the DriveListBox, DirListBox, and FileListBox,
you remember that you need to add a few lines of code to link
these controls together. In the DriveListBox Change event, set
the DirListBox Path property to the Drive property:

Private Sub Drive1_Change()
Dir1.Path = Drive1.Drive
End Sub

Then, in the DirListBox Change event, set the FileListBox
ath property. Using this code, put the path in the Label control
o that the full path is displayed:

Private Sub Dir1_Change()
File1.Path = Dir1.Path
lbLeft = Dir1.Path
End Sub

In the FileListBox PathChange event, select the first file (if
here is one):

Private Sub File1_PathChange()
If File1.ListCount Then File1.ListIndex = 0
End Sub

Finally, in the Click event, put the number of files in the top
abel control and the size of the selected file in the bottom label:

Private Sub File1_Click()
A Split Personality. You can use your CSplitter class
any time you need to divide a form into two windows.FIGURE 1
http://www.windx.com

p
C
t

p
k
t
“
i
a
s

b

GETTING STARTED
WITH VBA
lbList = File1.ListCount & " Files"
lbRight = "Size: " & FileLen(Dir1.Path & "\" & File1)
End Sub

When you run this application, you’ll see a form that lets you
select and display the documents in different folders and drives
(see Figure 1).

DESIGNING THE CLASS
Now that you’ve got your form in place, it’s time to design the
CSplitter class. First you need to think about what you want to
happen as you move the splitter bar.

Moving the bar 144 twips to the right adds 144 to the Width
LISTING 1 The CSplitter Class. I’ve added the additional ChangeW
on the VBCD, in the Magazine Library (#3) of the VBPJ Foru

Web site, or the VBPJ site on The Microsoft Network.

http://www.windx.com
roperty of all the controls on the left side of the splitter bar.
ontrols on the right of the splitter bar should have 144 added to

heir Left property and 144 subtracted from their Width property.
Your class should have a Split method that changes these

roperties for all the affected controls. But how does the class
now how far the splitter bar has moved? One way to convey
his information is to create a Register method in the class that
registers” the splitter control with the class and saves certain
nformation. This way, when the Split method was called by the
pplication, you can easily get the current location of this
plitter control.

Finally, you need a way to know what controls were affected
y the Split method and whether they were on the left or right
l

Option Explicit
Private CurrentSplit As Integer
Private Splitter As Control
Private Splittees As New Collection
Private LStretch As String
'ID of stretchable control
Private RStretch As String
Private ContainerLeft As Integer
Private ContainerWidth As Integer
Private ContainerTop As Integer
Private ContainerHeight As Integer

Public Sub Split()
'splits to new left
Dim Diff%
Dim SC As CSplittee
Diff = (Splitter.Left + Splitter.Width \ 2) -
CurrentSplit
For Each SC In Splittees
If SC.IsLeft Then

SC.Ctrl.Width = SC.Ctrl.Width + Diff
Else

SC.Ctrl.Left = SC.Ctrl.Left + Diff
SC.Ctrl.Width = SC.Ctrl.Width - Diff

End If
Next
CurrentSplit = CurrentSplit + Diff
Set SC = Nothing
End Sub

Public Sub ChangeWidth(NewWidth As Integer)
'changes the width
Dim Diff%
Dim SC As CSplittee
Diff = ContainerWidth - NewWidth
For Each SC In Splittees
If Not SC.IsLeft And SC.Ctrl.Width > Diff Then

'only change Right controls
SC.Ctrl.Width = SC.Ctrl.Width - Diff

End If
Next
ContainerWidth = NewWidth
Set SC = Nothing
End Sub

Public Sub ChangeHeight(NewHeight As Integer)
'changes the height
Dim Diff%
Dim SCL As CSplittee
Dim SCR As CSplittee
Dim SC As CSplittee
Diff = ContainerHeight - NewHeight
Splitter.Height = Splitter.Height - Diff
Set SCL = Splittees(LStretch)
id
m

If SCL.Ctrl.Height > Diff Then
' change left stretch control

SCL.Ctrl.Height = SCL.Ctrl.Height - Diff
End If
Set SCR = Splittees(RStretch)
If SCR.Ctrl.Height > Diff Then
' change Right stretch controls

SCR.Ctrl.Height = SCR.Ctrl.Height - Diff
End If
'now fix top of other controls
For Each SC In Splittees
If SC.IsLeft Then

If SC.Ctrl.Top > SCL.Ctrl.Top Then 'if below
SC.Ctrl.Top = SC.Ctrl.Top - Diff

End If
Else

If SC.Ctrl.Top > SCR.Ctrl.Top Then 'if below
SC.Ctrl.Top = SC.Ctrl.Top - Diff

End If
End If

Next
ContainerHeight = NewHeight
Set SC = Nothing
Set SCL = Nothing
Set SCR = Nothing
End Sub

Public Sub Register(SplitControl As Control)
'register the control that acts as splitter
'saves the initial container dimensions
ContainerLeft = SplitControl.Parent.Left
ContainerTop = SplitControl.Parent.Top
ContainerWidth = SplitControl.Parent.ScaleWidth
ContainerHeight = SplitControl.Parent.ScaleHeight
SplitControl.Top = 0
SplitControl.Height = ContainerHeight
CurrentSplit = SplitControl.Left + _
SplitControl.Width \ 2

Set Splitter = SplitControl
End Sub

Public Sub Add(ByVal Ctrl As Control, IsLeft As
Boolean, IsStretch As Boolean)
'adds a control object and save if the stretch contro
Dim MySplittee As New CSplittee
MySplittee.IsLeft = IsLeft
Set MySplittee.Ctrl = Ctrl
Splittees.Add MySplittee, Ctrl.Name
If IsStretch Then
If IsLeft Then

LStretch = Ctrl.Name
Else

RStretch = Ctrl.Name
End If

End If
Set MySplittee = Nothing
End Sub
Visual Basic Programmer’s Journal MAY 1996 87

th and ChangeHeight methods to this listing. It’s also available
 on CompuServe, the VBPJ Development Exchange World Wide

8

GETTING STARTED
WITH VBA
side of the splitter control. Let’s call these controls “splittees.”
Because you will probably want to save additional information
about these controls, create a simple CSplittee class to hold the
controls and their added properties. Also, you can create an
Add method for the CSplitter class that will create new instances
of the CSplittee class and save them in a collection.

Start with the CSplittee class by inserting a class module into
your project and adding this code:

Option Explicit
'contains info about a single control
Public IsLeft As Boolean
Public Ctrl As Control

Then right-click on the class module or press F4 to view the
properties and change the name to CSplittee.

Now insert another class module, name it CSplitter, and add
these properties:

Option Explicit
Private CurrentSplit As Integer
Private Splitter As Control
Private Splittees As New Collection
Private ContainerLeft As Integer
Private ContainerWidth As Integer
Private ContainerTop As Integer
Private ContainerHeight As Integer

The CurrentSplit property keeps the splitter control’s cur-
rent location that is saved in the Splitter property. The Splittees
collection contains all instances of the CSplittee objects. You
can make all these properties private because they’ll only be
accessed internally by the Split method. The ContainerLeft,
ContainerWidth, ContainerTop, and ContainerHeight proper-
ties store the dimensional information about the form.

The Register method will have a single argument to pass the
control used by the application as the splitter control—in this
l
r

8

XDesign Your Own Pointer. Use VB’s ImageEdit too
to design a custom pointer that replaces the regula

pointer when the user moves the mouse over the splitter bar. The
ImageEdit application comes on the Visual Basic CD-ROM in the
Tools folder—don’t forget to copy it to your hard drive.

FIGURE 2
 MAY 1996 VBPJ http://www.windx.com

GETTING STARTED
WITH VBA
case, a CommandButton control set to a very narrow width. In
the Register method you will want to set the Splitter property of
your class to the control that will be used as the splitter control.
This is also a good place to save the initial dimensions of the
form and to size the splitter control to the full form height:

Public Sub Register(SplitControl As Control)
'register the control that acts as
'splitter
'saves the initial container dimensions
ContainerLeft = SplitControl.Parent.Left
ContainerTop = SplitControl.Parent.Top
ContainerWidth = _

SplitControl.Parent.ScaleWidth
ContainerHeight = _

SplitControl.Parent.ScaleHeight
SplitControl.Top = 0
SplitControl.Height = ContainerHeight
CurrentSplit = SplitControl.Left + _

SplitControl.Width \ 2
Set Splitter = SplitControl
End Sub

Note that the CurrentSplit property adds half the width of the
splitter control to its left property to store the middle of the
splitter control. Also note that the ScaleWidth and ScaleHeight
properties of the form are used because these return the inte-
rior dimensions of the form.

One thing I’ve learned when creating classes is to test the
code as you write it. Now go back to the Form_Load event and
add the code to call this Register method. You also need to
create an instance of the CSplitter class, called MySplitter, for
your form:

Option Explicit
Dim MySplitter As New CSplitter

Private Sub Form_Load()
MySplitter.Register butSplit
End Sub

Now single-step through this code and make sure your
Register method works. Stop the program before it returns from
the Register method and use the Debug Window to look at the
properties of the Splitter object. Try typing “Print Splitter.Left”
in the Debug Window and you should see the value of the Left
property of the butSplit control.

KEEPING TRACK OF CONTROLS
Now create the Add method of the CSplitter class that will create
new instances of the CSplittee class and store them in the
Splittees collection. You’ll want to pass two arguments with the
Add method—the control to be added and a Boolean value, IsLeft,
to indicate whether this control is on the left or right of the splitter
bar. Note that, for simplicity, you can use the control name as the
unique index for the collection. But if you want to split control
arrays, you’ll need to expand this to add the control’s Index
property. Note that the last line of code sets the MySplittee object
back to Nothing—always do your housekeeping!

Public Sub Add(ByVal Ctrl As Control, IsLeft As Boolean)
Dim MySplittee As New CSplittee
MySplittee.IsLeft = IsLeft
Set MySplittee.Ctrl = Ctrl
Splittees.Add MySplittee, Ctrl.Name
VBPJ MAY 1996 88http://www.windx.com

GETTING STARTED
WITH VBA
Set MySplittee = Nothing
End Sub

Time for more testing. Add code to the Form_Load event to
call the Add method of the CSplitter class to add each of the
form’s controls to the CSplitter class:

MySplitter.Add Drive1, True
90 MAY 1996 Visual Basic Programmer’s Journal

r
n

the e
VB J
sit

L

MySplitter.Add lbList, False
MySplitter.Add Dir1, True
MySplitter.Add File1, False
MySplitter.Add lbLeft, True
MySplitter.Add lbRight, False

Now set a breakpoint on the last line and single-step through
your Add method. When you get to the end of the procedure,
before exiting the routines, go to the Debug Window and prove
to yourself that these controls have really been saved within
your class by typing these “print” lines and you will see the
count property of the splittees collection and the name prop-
erty of the third splittee control:

print splittees.count
 6
print splittees(3).ctrl.name
Dir1

DO THE SPLIT!
You’re ready to write the Split method. First calculate how much
the splitter control has moved by comparing the Left property
to the CurrentSplit property you saved. You’ll want to step
through the Splittees collection of CSplittee objects and check
the IsLeft property. If the IsLeft property is True, the control is
on the left of the form and you need to adjust the width of the
control. If the control is on the right, then you’ll need to adjust
both the Left and the Width properties of the control.

Notice how you can use the new For Each construct to step
through the collection of CSplittee objects. Simply define a
variable, SC, as a CSplitee object. Each iteration through the
loop assigns the next CSplittee object to the SC variable. Then
you can change the Width property of the Ctrl object within the
SC object by referring to SC.Ctrl.Width:

Public Sub Split()
Dim Diff%
Dim SC As CSplittee
Diff = (Splitter.Left + Splitter.Width \ 2) - CurrentSplit
For Each SC In Splittees

If SC.IsLeft Then
SC.Ctrl.Width = SC.Ctrl.Width + Diff

Else
SC.Ctrl.Left = SC.Ctrl.Left + Diff
SC.Ctrl.Width = SC.Ctrl.Width - Diff

End If
Next
CurrentSplit = CurrentSplit + Diff
Set SC = Nothing
End Sub

To use the Split method, you have to add a little code to the
form to track the mouse events over the splitter control. Add a
private Boolean variable, called Splitting, to flag when the user
is dragging the splitter control. Then, in the MouseDown event
of the splitter control, set the Splitting variable to True when the
user presses the mouse over the butSplit control:

Private Splitting As Boolean

Private Sub butSplit_MouseDown(Button _
As Integer, Shift As Integer, X _
As Single, Y As Single)

'start capturing for move

Splitting = True
The Splitter Application. Use this code to test you
new CSplitter class. It’s also available on the VBCD, i

 Magazine Library (#3) of the VBPJ Forum on CompuServe, th
PJ Development Exchange World Wide Web site, or the VBP

e on The Microsoft Network.

Option Explicit
Dim MySplitter As New CSplitter
Private Splitting As Boolean

Private Sub butSplit_MouseDown(Button As Integer, _
Shift As Integer, X As Single, Y As Single)

'start capturing for move
Splitting = True
End Sub

Private Sub butSplit_MouseMove(Button As Integer, _
Shift As Integer, X As Single, Y As Single)

'move and resize all
If Splitting Then butSplit.Left = X + _
butSplit.Left - (butSplit.Width \ 2)

End Sub

Private Sub butSplit_MouseUp(Button As Integer, _
Shift As Integer, X As Single, Y As Single)

'release resize
MySplitter.Split
Splitting = False
End Sub

Private Sub Dir1_Change()
File1.Path = Dir1.Path
lbLeft = Dir1.Path
End Sub

Private Sub Drive1_Change()
Dir1.Path = Drive1.Drive
End Sub

Private Sub File1_Click()
lbList = File1.ListCount & " Files"
lbRight = "Size: " & FileLen(Dir1.Path & "\" & _
File1)

End Sub

Private Sub File1_PathChange()
If File1.ListCount Then File1.ListIndex = 0
End Sub

Private Sub Form_Load()
'setup splitter
MySplitter.Register butSplit
MySplitter.Add Drive1, True, False
MySplitter.Add lbList, False, False
MySplitter.Add Dir1, True, True
MySplitter.Add File1, False, True
MySplitter.Add lbLeft, True, False
MySplitter.Add lbRight, False, False

End Sub

Private Sub Form_Resize()
MySplitter.ChangeWidth ScaleWidth
MySplitter.ChangeHeight ScaleHeight
End Sub

ISTING 2
http://www.windx.com

GETTING STARTED
WITH VBA

sites as well as on the VBCD.
End Sub

In the MouseUp event, call the Split
method of the MySplitter object and set
the Splitting variable to False:

Private Sub butSplit_MouseUp(Button _
As Integer, Shift As Integer, _
X As Single, Y As Single)

'release resize
MySplitter.Split
Splitting = False
End Sub

Finally, add some code under the
MouseMove event to move the butSplit
control as the user moves the mouse:

Private Sub _
butSplit_MouseMove(Button _
As Integer, Shift As Integer, _
X As Single, Y As Single)

'move and resize all
If Splitting Then butSplit.Left _

= X + butSplit.Left - _
(butSplit.Width \ 2)

End Sub

When you run your application and
drag the splitter control, you should see
each window resize. Neat! But notice right
away that the default mouse pointer does
not give the user any visual feedback that
they can use this control to “split” the
window. You can use the MousePointer
property of the butSplit control to choose
a different mouse pointer, but none of the
standard mouse pointers match the mouse
pointer normally used in the Windows Ex-
plorer and other applications. Not a prob-
lem, though—you can set the MousePointer
property to “Custom” and load any icon
into the MouseIcon property. I loaded Vi-
sual Basic’s ImageEdit program (you’ll find
it in the Tools folder on the Visual Basic CD-
ROM) and quickly created my own icon to
imitate the standard splitter mouse pointer
(see Figure 2).

To make a more complete class, you
would probably want to add a few more
methods. For example, if the form is resized
so that the Width changes, then the width
of all the controls on the right side of the
form need to be adjusted. You could eas-
ily handle this by adding a ChangeWidth
method to your CSplitter class. I included
this method in the code listing and sample
code file (see Listing 1).

Resizing the height of the form is a little
more complex because you probably do
not want the height of all the controls to
change proportionally. Typically, only one
of the controls on each side of the splitter
control “stretches” to fit the changed form
height and the other controls maintain
http://www.windx.com
their relative positions. You’ll need to let
the application developer who will be us-
ing this class specify which control can
“stretch” on each side of the form in the
Add method of the CSplitter class. Then
the ChangeHeight method can adjust the
height of these controls and relocate the
other controls to fit. I’ve included the addi-
tional properties and methods in the code
listing, and I’ve also included the test appli-
Visual
cation (see Listing 2).
You can see that it is not difficult to

create your own reusable class. Now
you won’t have to write this code again.
When you need the splitter functional-
ity, just include the CSplitter class and
you’re all set. The code discussed in
this column, contained in a file called
CSPLIT.ZIP, is available on FTP’s online
 Basic Programmer’s Journal MAY 1996 91

