
K
i
f
(

1

OLE EXPERT

b

G
o

Click & Retrieve

Source

CODE!
Develop applications that take
advantage of the underlying error-
handling mechanism in VB4.

et a Handle
n OLE Errors
d
a
c
A
i
(

(struct tagEXCEPINFO FAR*)

y Keith Pleas
all the same thing. Because everything builds on what’s available
in the operating system, I’ll start there.

At one level, you can view Windows as simply a library of
functions. As you know, functions always return something. If
you reach back in your memory to when you were calling 16-bit
Windows APIs you will recall that, in general, they returned a
number that indicated the success or failure of the call. Each call
had a limited number of reasons for failing. There was virtually
no correspondence of error values among APIs, and you prob-
ably wrote a lot of Select statements based on the return value
for each call.

With the Win32 API, Microsoft changed this dramatically. A
call that failed for some reason returned zero. A complete list of
errors existed for almost all Windows APIs, and each thread had
an error value that could be retrieved using the GetLastError
function.

In VB4, because API calls are embedded in p-code instead of
natively compiled code, any number of calls might be made to
Windows between one statement and the next. When you call
GetLastError in your code after you call an API, you must
guarantee the corresponding error will return. To get around
this, Microsoft cached this value in the LastDLLError property
to the Err object. It contains the error code for the last API call
that the programmer explicitly made in his or her code, and not
calls that VB itself made. Once you retrieve this value using the
Err.LastDLLError property, you must look up that value in the
Windows header file WINERROR.H. For example, if the error
value were 1005, searching for “1005L” would yield this:

// MessageId: ERROR_UNRECOGNIZED_VOLUME
//
// MessageText:
//
// The volume does not contain a
// recognized file system.
// Please make sure that all required
// file system drivers are loaded and

n this column, I’m going to cover VB error handling, OLE
Automation error handling, and the new Win32 method
for error handling. Fortunately for me (and you), they’re
eith Pleas is an independent developer, author, and trainer. He
s the author of the forthcoming book, Visual Basic Tips & Tricks,
rom Addison-Wesley. Reach Keith on CompuServe at 71333,3014
from the Internet: 71333.3014@compuserve.com).

16 APRIL 1996 Visual Basic Programmer’s Journal ©1991
// that the volume is not corrupt.
//
#define ERROR_UNRECOGNIZED_VOLUME _1005L

Interestingly, all of these messages are stored in your Win-
ows system files. Because it’s somewhat inconvenient to open
nd search the header file, plus many of you may not have it, I
reated a little VB app that calls the FormatMessage Windows
PI to retrieve the string and display it (see Figure 1). I’ve

ncluded both the declarations and all the code for this utility
see Listing 1).

WIN32 RICH ERRORS
Although the Win32 error-handling method cleaned up the
Windows API dramatically while maintaining a high degree of
portability from Win16 to Win32, it didn’t meet the needs of the
OLE developers looking farther down the road. To address
those needs, Microsoft created an enhanced error-handling
system that used new error objects and error codes with
multiple fields. Of course, it isn’t just the low-level OLE internals
that use this mechanism. Everything from the new Windows
shell, the Microsoft Internet services, MAPI, RPC, and even—
gasp!—VB itself are all related to OLE and use this error informa-
tion system.

OLE maintains one error object per thread. An error object
is composed of an exception information structure plus a pointer
to the interface that raised the exception. The structure has this
C prototype:

typedef struct tagEXCEPINFO {
WORD wCode;
WORD wReserved;
BSTR bstrSource;
BSTR bstrDescription;
BSTR bstrHelpFile;
DWORD dwHelpContext;
void FAR * pvReserved;
HRESULT (STDAPICALLTYPE FAR* pfnDeferredFillIn)
Accessing System Error Strings. Using the Format
Error Message utility described in Listing 1, you can

retrieve error messages and display them in a window.

FIGURE 1
http://www.windx.com–1996 Fawcette Technical Publications

-

t

-
,

-

.

t

-

-

-
.
-

.

m
t
a
c
m
n
a
i

h
s
i
a
o
t
f
s
h
o
r

W
s
r
m

OLE EXPERT

API to display a description of the string in question.

,

.

CONTINUED ON PAGE 120.
SCODE scode;
}

Notice how close the structure’s C prototype corresponds to
the properties of VB4’s Err object (see Table 1).

The return value of functions that use this new error-han
dling method is an HRESULT. Confusingly, an HRESULT isn’t a
handle to a result. In fact, it isn’t a handle to anything. An
HRESULT is a 32-bit value with several fields (see Figure 2).

Because an HRESULT is a 32-bit value, VB4 represents it using
a Long. VB4 essentially dictates to you the high 16 bits. Because
VB4 is built on OLE, you must use the corresponding facility
code for OLE Automation and therefore all of your error codes
must be greater than &H80040000. Of course, that leaves the
lower 16 bits to play with—anywhere from 512 to 65535 (errors
from &H0 to &H200 are reserved for use by OLE’s Common
Object Model, or COM).

To make it a little easier for us lazy VB developers, Microsof
added a constant, vbObjectError, to VB’s type library. This
constant is mentioned throughout the VB4 documentation. You
must add it to internal error numbers in the less-than-64K range
if they’re to be passed to external applications.

The VB4 documentation recommends using error values less
than 64K and adding the vbObjectError constant whenever they
are to be passed externally. Frankly, I think it’s a poor solution
to maintain two sets of the same code, one for internal use and
one for external use. Instead, I suggest you use one set of error
codes that already includes the error constant.

In historical documentation, 16-bit OLE distinguishes be
tween an SCODE, which is an error code value, and an HRESULT
which is a function and method return type. When Microsoft
designed 32-bit OLE error codes, it decided to remove contex
tual information that would also have to be propagated through
RPC. In 32-bit OLE, an SCODE and an HRESULT are the same
thing and HRESULT is the preferred terminology, although the
Win32 documentation is still littered with references to SCODEs

WHAT ABOUT VB?
So, what does this have to do with VB? Lots. Every subroutine
you execute in your VB4 class modules actually returns an
HRESULT. What you thought your method/function returned is
actually packaged in with the parameters: VB examines the
HRESULTs before doing anything with them. While this is, for
the most part, abstracted from VB developers, it is also the same
mechanism that VB developers use for communicating error
information between objects.

VB developers should already be familiar with how VB
handles errors in forms and code modules. Since the firs
version of VB, any error in a subroutine could either be handled
or passed back up the call stack. If the error bubbles up to the
top of the call stack without being handled, VB displays an error
dialog and terminates the app—without performing any cleanup
code. Generally, this is considered suboptimal behavior. There
fore, unhandled exceptions in form and control events are
considered anathema to VB developers.

The error-handling goal in VB classes is somewhat the oppo
site of forms and code modules. Object servers pass error
information back to requesting applications by deliberately
raising untrapped errors. EXEs that act as both object compo
nents and servers must use a combination of these techniques

It’s also worth pointing out that there are other possible meth
ods for handling errors. For example, VB4’s Remote Data Objects
(RDO) uses an rdoErrors collection, in addition to VB trappable
errors, to communicate ODBC error and information messages
Jet’s Data Access Objects (DAO) uses a similar Errors collection.
http://www.windx.com ©1991–1996 Fawcette Technical Publicatio
You could also implement a system similar to that used by
ost of the old-style Windows APIs where the value returned by

he method can be an error code. In this case, the client
pplication must examine the return value in line. Also, if you
hoose this method but want to use an actual Err object, you
ust use a ByRef parameter for the return value, which would

ormally contain an actual value. In general, you’ll want to raise
n error in your object server, pass it back to the client, and
mplement an error handler in the client to trap that error.

Now that you have an understanding of the underlying error-
andling mechanism in VB4 classes, I’ll focus on developing
erver applications to take advantage of the mechanism. Assum-
ng your program is acting as an intermediate object server in an
pplication—meaning the program uses objects and acts as an
bject server to another controller—you should first consider
he types of errors you might want to trap. These include errors
rom object servers you handle yourself, errors from object
ervers you modify and pass on, internal runtime errors you
andle yourself, internal runtime errors you modify and pass
n, internal raised errors you handle yourself, and internal
aised errors you modify and pass on.

Obviously, potentially thousands of errors might be thrown.
hile it isn’t feasible to trap each of them individually, you

houldn’t let any error go untrapped. This doesn’t necessarily
equire elaborate code. You can use a default case for all but the
ost common or critical errors.
LISTING 1 Display Error Value Messages. Instead of opening
and searching the header file for error value messages,

you can use this little VB app to call the FormatMessage Windows

 Alias "FormatMessageA" (ByVal dwFlags As Long, _
 lpSource As Long, ByVal dwMessageId As Long, _
 ByVal dwLanguageId As Long, ByVal lpBuffer _
 As String, ByVal nSize As Long, _
 Arguments As Long) As Long

Public Const FORMAT_MESSAGE_FROM_SYSTEM = &H1000
Public Const FORMAT_MESSAGE_IGNORE_INSERTS = &H200
Private Sub cmdFormat_Click()
Dim sBuff As String
Dim lMsgId As Long
sBuff = String(256, " ")
lMsgId = CLng(Val(txtID))
ret& = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM Or _

FORMAT_MESSAGE_IGNORE_INSERTS, _
0&, lMsgId, 0&, sBuff, Len(sBuff), 0&)

lblMessage = sBuff
End Sub
Defining Err Object Properties. When handling errors
you must determine the cause of the error, and how to

deal with it. You must also raise errors back in controlling
applications. Begin by setting the Err object’s properties, shown in
this table, and then execute a Raise method to initiate the process

TABLE 1

Property Value

Number (Default property) Any valid error number.
Source Object server name; default for VB4 is ProjectName.
Description Description of error; default for VB4 is "OLE Automation Error."
HelpFile Fully qualified file name of the Windows Help file.
HelpContext Help context ID.
LastDLLError (Win32) Error code from the last call to a DLL.
Visual Basic Programmer’s Journal APRIL 1996 117ns

that comes with the Pro and Enterprise

11

OLE EXPERT
One caveat you may have already heard
is that error trapping has an impact on
application performance and should only
be used in select situations. To test this
idea, I experimented with classes with On
Error Resume Next, with On Error Goto
Label, and with no error handling. In a
fairly simple case with nested loops of
subroutine calls, error trapping slowed
execution only about 10 percent. Even if
you know the objects you’re using won’t
ever produce an error (yeah, right), you
should implement some form of checking
because any failure in the underlying OLE
communications layer will also trigger an
error. The VB documentation also sug-

CONTINUED FROM PAGE 117.
8 APRIL 1996 Visual Basic Programmer’s Jour
gests writing a last-resort error handler
that shuts down your application, but
that technique is inappropriate for OLE
servers. Never shut down your server:
that’s up to the controller.

The process of handling errors is all
about figuring out what caused the error,
what to do about it, and, most interesting
in this case, raising errors back in control-
ling applications. The process of raising
the error itself is pretty simple. You set
the properties of the Err object and then
execute a Raise method. If you’re not
familiar with this, you might want to re-
view the book titled, Creating OLE Servers,
found in the Professional Features manual
3

1

S: Severity - indicates success (0) / fail (1).

R: (reserved) corresponds to NT’s second severity bit.

C: (reserved) corresponds to NT’s C field.

N: (reserved) indicates a mapped NT status value.

r: (reserved) for internal use.

Facility: the facility code.

Code: the facility’s status code.

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

5

4

3

2

1

0

1

9

8

7

6

S R C N r Facility Code

An HRESULT Breakdown. The Structure of an HRESULT contains an error
code, a system-defined facility code, and several reserved flags.FIGURE 2
LISTING 2 Generic Error Handler Template. This error handler template has areas for
handling both internal and external errors, and it formats the Source property

when debugging.

Private Const errFetchOne = vbObjectError + 2001
Private Const errFetchTwo = vbObjectError + 2002
Private Const errFetchDefault = vbObjectError + 2000
Private Const errFetchExternal = vbObjectError + 2999

Public Sub Fetch()
On Error GoTo ErrHandler
'...Code goes here
Exit Sub

ErrHandler:
If Err.Source <> DefaultErrSource Then

'External error
Err.Raise Number:=errFetchExternal, Source:=DefaultErrSource _

& "[" &Err.Source & "]"
Else
Select Case Err.Number
Case errFetchOne

Err.Raise Number:=errFetchOne, Description:=LoadResString_
(errFetchOne)

'Case errFetchTwo...
Case Else

Err.Raise Number:=errFetchDefault, _
Description:=LoadResString(errFetchDefault)

End Select
End If

End Sub
nal http://www.windx.com

OLE EXPERT

class error trapping, but I expect this is
Editions of VB4. See the section called
“Generating and Handling Errors,” on page
59 in Chapter 2. The book includes a fairly
good introduction to the process, al-
though it has a few problems.

For example, VB could have never com-
piled this line of code from the section
titled, “Errors from Another OLE Server”:

Case Is > (vbObjectError + 512) And _
Is < (vbObjectError + 65536)

The first property that you have to
deal with is the Source. Although the VB
docs say that the default Source for your
error will be the ProjectName combined
with the Name of the class module, it’s
actually just the ProjectName. Also, while
it’s not mentioned anywhere, the default
Description is “OLE Automation error.”
What’s really ugly is that at run time,
there’s no way to programmatically get
at the ProjectName. It is available in the
design environment using VB’s extensi-
bility model and the Application object,
but this would require a fair amount of
additional code and is only a design-time
solution.

Fortunately, this little routine, from
Object Programming with Visual Basic 4
(by Joel Dehlin and Matt Curland, avail-
able soon from Microsoft Press), illus-
trates how to trigger an internal error and
archive off the Source property in a Static
variable:

Public Function DefaultErrSource() _
As String
Static strSource As String
If Len(strSource) Then

DefaultErrSource = strSource
Exit Function

End If

On Error GoTo ErrorTrap
Err.Raise 0

ErrorTrap:
strSource = Err.Source
DefaultErrSource = strSource

End Function

If your object server calls this code
in Sub Main, you’ll end up with an easy
way of telling whether or not an error
was generated by your application by
simply comparing DefaultErrSource to
the Err.Source property. This is impor-
tant because you need to encapsulate
errors returned from servers you’re
using because whoever’s using your
server might have no clue what objects
you’re calling. Because they know only
that they’re talking to you, it’s up to you
http://www.windx.com ©1991–1996 Fawcett
to provide your error back to them.
Also, because you didn’t generate the

Source and Description properties in er-
rors returned from servers, you have no
control over their formatting, which might
include changing information, such as
version numbers. Rely on error numbers
only, and use the text itself to display a
message to an end user. Of course, your
object server should never pop up a mes-
sage. It’s up to you to return this informa-
tion back to the controller.

Although it may break encapsulation
somewhat, consider appending the er-
ror message to the beginning of the
Source property as you pass it along.
Doing so would be appropriate mainly
for debugging purposes because a multi-
object situation could generate a long
source string. If you do try this, wrap it
with conditional compilation and use a
Debug/Release flag.

While you don’t have much control
over the events you received from ob-
jects you’re using (unless you wrote them
too, of course), you do have quite a bit of
freedom with your own objects. The most
common advice is to be consistent. I
have yet to see any coding standards for
Visual Bae Technical Publications
already a hot topic for developers imple-
menting object applications. For runtime
errors generated within your applica-
tion, I suggest you use VB’s errors and
error messages where possible. The one
exception to this is if you choose to
implement somewhat friendlier error
messages.

When debugging object servers, take
advantage of the Error Trapping option
on the Advanced tab of the Options dia-
log. The documentation is a bit cryptic.
The possible settings are: Break on All
Errors, including handled errors; Break
in Class Module (Default), which is a
Raise method or error with no error han-
dling (it’s confusing, because it might be
handled further up the chain); and Break
on Unhandled Errors (meaning never in
the OLE server).

I’ll leave you with a sample generic
error-handling template (see Listing 2).
This code has areas for handling both
internal and external errors and imple-
ments my suggestion for formatting the
Source property when debugging. Note
that setting the Err.Number is required in
the errFetchOne case even though it’s al-
ready set to that value. Number is a re-
quired argument of the Raise method.
sic Programmer’s Journal APRIL 1996 119

