
VBA Internals and Technology

Ilan Caron
Software Design Engineer

VBA Development
Microsoft

Topics

Design Goals
Implementation
VBA and OLE2
VBA Overview and Architecture
VBA Compiler
VBA Engine

Design Goals

VB language compatibility
Efficiency: compile-time and run-time
Application hostability
High Productivity
Development Environment
Portability
Localizable
Standard
Cross-application Programmability

Implementation

C++ for OO features and portability
Assembler as appropriate: engine parts

VBA and VB3 performance comparable.

Modular Engine
Complete redesign/“Written from scratch”
Scalable technology

Seamless OLE2 interaction

OLE Automation

Ole Automation (OA) is a set of standard
interfaces supporting programmable
objects.

IDispatch: supports run-time binding and
run-time invocation.

IDispatch::GetIDsOfNames: run-time binding

IDispatch::Invoke: run-time invocation

needed for untyped variables: Object/Variant

ITypeLib: provides compile-time
descriptions of set of programmable
objects

ITypeLib contains set of ITypeInfos

ITypeInfo describes object: methods, properties,
variables.

Supports compile-time binding

VBA and OLE2

VBA uses Ole Automation
uses ITypeLib/ITypeInfo as well unlike VB3.

VBA can control any application that exposes
programmable objects via IDispatch

VBA is more efficient if application provides a
type library as well for its programmable
objects

Also provides compile-time type checking

And object browsing

VBA uses OA String, Variant, Array package to
implement run-time

Exceptions: numerical conversions

VBA and OLE2

VBA uses OLE2 to implement cross-process
object invocation (function call/property
access)

Extensible to cross-machine/net calls!

VBA uses OLE2 standard interfaces for
memory management and file storage

Host-customizable: VBA program can be stored
anywhere, e.g. in a spreadsheet.

Big Market for OA components
Language independent

THE Microsoft programmability solution

Programmability Architecture

Win 3.1 Win NT 3.1 Macintosh

VBA

Host App

OA

IDispatch ITypeLib

OLE2

Host App Host App

VBA and Host Integration

VBA works and appears identically in all
host applications.

VBA interacts with host-supplied objects in
similar ways across multiple applications.

Since host applications implement similar Object
Models (by convention)

VBA Components

Incremental Compiler
syntax and semantic analysis

code generation

inter-module dependency analysis

User Interface
code editor

object browser

debugger

immediate window

watch expressions

Engine
Run-time

implemented as a library

Project Model

Project is a collection of Modules
Project is an implementation of ITypeLib

Module is an implementation of ITypeInfo
Project has list of referenced Projects

cycles disallowed

m

m2

m3

m4

MyProject AnotherProject

YetAnotherProject

m4 m5

m MyProj2

Name Scoping

Structured
Procedure-level

Module-level: public and private

Explicit qualification
Call MyProj2.M2.S2

Referenced projects
Names in directly referenced projects available without

qualification.

Names in indirectly referenced projects available require
qualification

Private modules
Application objects

Set myWorksheet = Worksheets.Add

Namespace Example

MyProject

Module1 VBA

Excel

Math

Application

Public x
Dim y
Sub S1
 Dim x
 Module2.S1
End Sub

Module2

Sub S1
 Print x, y, Sin(1)
End Sub

float sin(float);

float sin(float);

Beware of Implicit Variables
Look, no Declares!

Binding

“The Earlier the Better”
Three kinds of binding

Early (static) binding

VBA to VBA binding

VBA to DLL binding

Early (late id) binding

VBA to ITypeLib object method/property

Late (name) binding

VBA to OA object method/property

Run-time binding with OA
GetIDsOfNames/Invoke

Binding Example

Dim w2 as Worksheet
Dim c as Object
Dim w as Object
Sub S2()
 S1
End Sub
Sub S1
 Set w = Workbooks.Add
 Application.Visible = true
 Set w2 = Worksheets(“sheet1”)
 Set c = ActiveCell
 c = w2.Name
 Cells(1, 2).Activate
 Set c2 = ActiveCell
 c2.Value= w.Name
End Sub

Early Static
Early (late id)
Late (name)

Compiler Overview

Dual p-code representation
opcodes: produced by parser

excodes: produced by code-generator

Opcodes: postfix representation of source
retains sufficient information to recreate original

source text

Excodes: small and optimized
all references are bound

unnecessary “decoration” is discarded: e.g. comments

code generator performs both semantic analysis and
codegen

Both opcodes and/or excodes can be saved
and reloaded.

Compiler Flow

Code Editor Text File Loader

ParserLister Text

Opcodes

Excodes

Execution

Engine

Code Generator

Compilation States

VBA implements “just-in-time” (demand)
compilation and decompilation.

Optimized for high productivity/rapid development
turnaround

Fundamental compilation unit is module.
Multiple-states:

undeclared (parsed)

declared (laid out: shape known)

compiled (generated code)

runnable (functions can be called)

Inter-module dependency tracking
mechanism determines when and which
modules are compiled and decompiled.

Dependency Example

Sub S1
 Dim x As Pt
 Module3.S2
End Sub

Type Pt
 x As Integer
 y As Integer
End Type

Public p As Pt
Sub S2
End Sub

Module3

Module2
Module1

Edits to Module1 never affect state of the other modules.
Calling Module3.S2 only requires Module2 and Module3 to be compiled

Module1 need not be compiled.
However, calling Module1 requires all three to be compiled.

Engine

Code generator produces code for virtual
machine

Virtual Machine language is excodes

Excodes are postfix representation of program

Stack machine
Single register

Frame pointer

Stack pointer

Engine executes excodes
Single segment (for efficiency)

VBA to VBA Function Call

Sub S1()
 Call S2
End Sub

REM Perhaps in another module or even project
Sub S2()
End Sub

EX_Call <func handle> // excode for simple Call

imported address table

pthunk

entry point table

push <type info>
push <func info>
jmp VirtualEngine

VBA to DLL Function Call

Declare Sub S2 Lib “MyLib” ()
Sub S1()
 Call S2
End Sub

EX_Call <func handle> // excode for dll Call

imported address table

pthunk
entry point table

Func=DllLoadFunc(hlibrary, ordinal)
Call Func

Same excode as VBA to VBA case
Thunk modified at run-time

becomes

Call Func

Cross-process activation

Example of VBA macro executed in Excel5
in-process

Excel5 objects packaged in type library
Example of same macro executed by sample

host application manipulating Excel5
cross-process

OA provides communications layer

Server application activated implicitly. No need for
explicit CreateObject

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

