





Design Goals

VB language compatibility

Efficiency: compile-time and run-time
Application hostability

High Productivity

Development Environment
Portability

Localizable

Standard

Cross-application Programmability



Implementation

C++ for OO features and portability

Assembler as appropriate: engine parts
VBA and VB3 performance comparable.

Modular Engine
Complete redesign/“Written from scratch”

Scalable technology
Seamless OLE2 interaction



OLE Automation

Ole Automation (OA) is a set of standard
Interfaces supporting programmable
objects.

IDispatch: supports run-time binding and
run-time invocation.
IDispatch::GetIDsOfNames: run-time binding
IDispatch::Invoke: run-time invocation
needed for untyped variables: Object/Variant
ITypeLib: provides compile-time
descriptions of set of programmable
objects
ITypeLib contains set of ITypelnfos

ITypelnfo describes object: methods, properties,
variables.

Supports compile-time binding



VBA and OLE2

VBA uses Ole Automation
uses ITypeLib/ITypelnfo as well unlike VB3.

VBA can control any application that exposes
programmable objects via IDispatch

VBA is more efficient if application provides a
type library as well for its programmable
objects

Also provides compile-time type checking
And object browsing

VBA uses OA String, Variant, Array package to
Implement run-time

Exceptions: numerical conversions



VBA and OLE2

VBA uses OLE2 to implement cross-process
object invocation (function call/property
access)

Extensible to cross-machine/net calls!
VBA uses OLE2 standard interfaces for
memory management and file storage

Host-customizable: VBA program can be stored
anywhere, e.g. in a spreadsheet.

Big Market for OA components
Language independent
THE Microsoft programmability solution






VBA and Host Integration

VBA works and appears identically in all
host applications.

VBA interacts with host-supplied objects in
similar ways across multiple applications.

Since host applications implement similar Object
Models (by convention)



Incremental Compiler

Engine







Name Scoping

Structured
Procedure-level
Module-level: public and private

Explicit qualification
Call MyProj2.M2.S2

Referenced projects

Names in directly referenced projects available without
qualification.

Names in indirectly referenced projects available require
qualification

Private modules

Application objects
Set myWorksheet = Worksheets.Add









Worksheet
Object
Object

S1

w2
c w2

c2
c2

Early Static




Compiler Overview

Dual p-code representation

opcodes: produced by parser
excodes: produced by code-generator

Opcodes: postfix representation of source

retains sufficient information to recreate original
source text

Excodes: small and optimized
all references are bound
unnecessary “decoration” is discarded: e.g. comments

code generator performs both semantic analysis and
codegen

Both opcodes and/or excodes can be saved
and reloaded.



Code Editor Text File Loader

Lister Parser

Code Generator

Engine




Compilation States

VBA implements “just-in-time” (demand)
compilation and decompilation.

Optimized for high productivity/rapid development
turnaround

Fundamental compilation unit is module.

Multiple-states:
undeclared (parsed)
declared (laid out: shape known)
compiled (generated code)
runnable (functions can be called)

Inter-module dependency tracking
mechanism determines when and which
modules are compiled and decompiled.












VBA to DLL Function Call

Declare Sub S2 Lib “MyLib” ()
Sub S1()

Call S2

End Sub

.

imported address table

pthunk

C

Same excode as VBA to VBA case
Thunk modified at run-time

EX_Call <func handle>

/I excode for dll Call

entry point table

inc=DlIlILoadFunc(hlibrary, ordinal)

all Func

becomes

Y

call Func




Cross-process activation

Example of VBA macro executed in Excel5
In-process

Excel5 objects packaged in type library

Example of same macro executed by sample
host application manipulating Excel5
Cross-process
OA provides communications layer

Server application activated implicitly. No need for
explicit CreateObject






	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

