
VB Windows Communications

Carl Franklin, Software Engineer
Crescent Software, Inc.

(203) 438-5300 CIS: 70662,2605
Prerequisites: Familiarity with the
Visual Basic 3.0 MSCOMM control.

Demo code: FRANKLIN.ZIP

Opening the Comm Port

In QuickBASIC:
OPEN “COM2:9600,N,8,1” FOR RANDOM AS #1

In Visual Basic:
Comm1.CommPort = 2

Comm1.Settings = “9600,N,8,1”

Comm1.PortOpen = True

Sending Data Out The Port

In QuickBASIC:
PUT #1, , “HELLO WORLD”

In Visual Basic:
Comm1.Output = “HELLO WORLD”

Processing Received Data

Data is received automatically by MSCOMM
(or any other comm tool).

All received data goes into a receive buffer,
whose size is defined by the InBufferSize
property (up to 32K).

Your application must read the data from
the receive buffer. The first byte received
is the first byte read.

Reading Data from the buffer

The Input Property reads one or more
characters from the receive buffer.

The InputLen Property determines how
many characters are read with each
assigning of the Input property:

‘--- Tell MSCOMM to read 1 character

Comm1.InputLen = 1

‘--- Read One Character

Char$ = Comm1.Input

‘--- Tell MSCOMM to read all data in buffer

Comm1.InputLen = 0

‘--- Read all the data

AllData$ = Comm1.Input

When is it safe to read data?

There are two methods to determine when
data has been received.

 POLLING METHOD
 EVENT DRIVEN METHOD

Polling for Received Data

Polling requires you to monitor the status of
the receive buffer, and read data as it is
received.

This requires a loop.
With any comm tool, you must constantly

check the number of characters that have
been received.

The InBufferCount property returns the
number of characters currently waiting in
the receive buffer for you to read.

Polling for Received Data

This code continually polls the receive
buffer, reads in data, and adds it to a string
variable.

Sub Main ()

 Form1.Show

 Do While DoEvents()

 If Form1.Comm1.InBufferCount Then

 Received$ = Received$ & Comm1.Input

 End If

 Loop

End Sub

The form is displayed, and the loop occurs
whenever the system is free.

Use the WAITFOR routine

The sample code includes a routine called
WaitFor.

WaitFor waits a number of seconds to
receive a specific string over a comm port,
and returns all received data.

WaitFor is the best way to poll for data when
you know what the received data will be,
or you know the value of the last character
(footer).

Event-Driven Data Processing

You can tell MSCOMM to fire an event
whenever data is received.

You can set a window, or a number of
characters that must be received before
the event is fired.

The RThreshold property provides this
function.

Setting RThreshold to 1 tells MSCOMM to fire an event
after every character has been received, so that you
can read it from the receive buffer.

Setting RThreshold to 0 disables event-driven received
data processing.

The OnComm Event

The OnComm Event is fired whenever a
comm event or error occurs.

The CommEvent Property holds the number
of the event or error when OnComm fires.

The CommEvent Property is set to
MSCOMM_EV_RECEIVE (2) when
characters are received.

Event-Driven Received Data
Example:

Sub Comm1_OnComm ()

 Select Case Comm1.CommEvent

 Case MSCOMM_EV_RECEIVE

 ‘--- Add new data to Received$

 Received$ = Received$ & Comm1.Input

 CR = Instr(Received$, Chr$(13))

 If CR Then

 ‘--- Carriage Return was received

 LastLine$ = Left$(Received$, CR)

 Received$ = Mid$(Received$, CR + 1)

 End If

 End Select

End Sub

Common Problems with
MSCOMM.VBX

MSCOMM seems to not receive any data.
Out Of Stack Space Error.
Carrier Detect is not always accurate.
The RING event doesn’t always fire.

Causes of Data Not Being
Received

Windows 3.1 Comm Notification.
RTSEnable Property set to False.
Handshaking Property set incorrectly.
RThreshold set to 0.
TEST:

Set RThreshold to 1.

Place a Beep in the OnComm event.

Comm Notification

Windows 3.1 internal method in which the
application (MSCOMM) does not poll for
received data, but instead is notified by
Windows when data is received.

Not as stable as the Windows 3.0 polling
method.

The first MSCOMM.VBX supported ONLY the
Notification method.

The current MSCOMM.VBX supports both
Notification AND polling.

RTSEnable Property Set False

For devices that use RTS hardware
handshaking, the RTSEnable property
must be set True.

Most modems sold today use RTS
handshaking.

The original version of MSCOMM defaults to
False.

The current version of MSCOMM defaults to
True

Handshaking Set Incorrectly

Two devices that communicate via serial
port MUST use the same handshaking
method.

The Handshaking property must be set to
reflect the method of handshaking used.

RThreshold Set To 0

The RThreshold property determines the
number of characters that must be
received before MSCOMM fires the
OnComm event (with CommEvent Set To
MSCOMM_EV_RECEIVE).

Setting RThreshold to 0 disables the firing of
OnComm due to received data.

The data is still received, but if you are
counting of OnComm being fired for you
to read it, it will appear as if data is not
being received.

Out Of Stack Space Error

Caused by calling DoEvents within the
OnComm event procedure.

DoEvents allows OnComm to be fired,
pushing the code address on the stack.

Eventually, VB runs out of stack space.
Solution: Temporarily disable events by

setting RThreshold to 0 if you must call
DoEvents in OnComm. Reset to 1 after
exiting the loop.

Carrier Detect

Some modems and serial devices in
combination with Windows do not
successfully report the status of the CD
(Carrier Detect) line.

There is no 100% reliable way to know the
status of CD under Windows without
writing a new COMM.DRV communications
driver or using an existing 3rd party driver.

RING Events do not always fire.

Like Carrier Detect, the RING Indicator line is
not always reflected accurately by the
Windows COMM.DRV communications
driver.

Recommended Methods 1:

Script Procedures
A Script is a dialogue between two computers or

devices, in which data is sent, an answer is received,
and based on the received data, more data is sent or
action is taken.

Use WaitFor
The WaitFor routine in FRANKLIN.BAS is perfect for

this kind of dialogue.

An example follows:

Script Example Using WaitFor:

Here is an example script to log onto
CompuServe in pseudocode:

Send “ATDT 555-1234”

WaitFor “Host Name:”

Send “CIS”

WaitFor “User ID:”

Send “70062,2605”

WaitFor “Password:”

Send “FORGET + IT”

Recommended Methods 2 :

Reading Data from a hardware device that
sends data in fixed-length blocks:

Some devices spit out data infixed-length blocks of
data. For example, a scanner may transmit data in 4K
blocks.

Use OnComm
Use OnComm to read a block of data by setting

RThreshold to the size of the block. In the above
example, set RThreshold to 4096. Also set InputLen
to 4096. Then, every time 4K of data is received, the
OnComm event will fire (with CommEvent set to
MSCOMM_EV_RECEIVE) at which point you can read
the data into a string via the Input property.

Sample Code - FRANKLIN.BAS

WaitFor$ - Function that waits for a
particular string to be received and returns
all received data.

AddCaret and RemoveCaret - Subroutines
that convert control codes (^M) to ascii
chars within a string.

Pause - Subroutine that pauses for a number
of seconds (calls DoEvents).

FRANKLIN.MAK - VB Demo of WaitFor$.

Text #1 - VBPJ Comm Article

This recently published article contains all
the information in this slide show and
more.

Talks about Windows COMM under the
hood, as well as Modem Basics.

Text #2 - QB45 to VB Xref

QuickBasic to Visual Basic Comm Function
Cross Reference

Convert DOS Basic code to Visual Basic
Quickly Look up functions when

programming in Visual Basic

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

