
Visual Basic for Windows
Debugging Tips and
Tricks

Overview
Bugs have always been part of software development, and probably always will be. This
session outlines strategies for avoiding bugs, for correcting them once they manifest, and for
dealing with the problems that crop up in the real world.

Avoiding Bugs
To paraphrase a cliché, a few minutes spent avoiding bugs is worth hours of debugger time.
In general, the best plan is to document well and be consistent.

Coding Style

Comments Everywhere

Memorize the phrase "I never met a comment I didn't like." Repeat it as you shower. Repeat
it as you drive to work. Repeat it five times before writing any code.

Many developers (myself included) have a tendency to write code as fast as possible, while
promising themselves that they'll go back and comment later. After all, you wrote the code;
you know it. Comments help others who may later modify your code, right? Wrong.
Comments serve the following purposes:

1. Critical when working in teams

2. Critical for projects that can't be finished in one sitting

3. Critical for forcing you to note undone or partially done functionality

4. Critical when splitting time between several code areas (you'll forget what Function
Foo does after spending a week with Function Bar)

You should establish guidelines for code commentary, especially when working in teams.
For example, you might decide that all functions carefully document input and output values
at the top of the function.

Modularity

Most of us work on one project at any given time. So we tend to put all routines required for
that application in a few tightly woven modules. This tends to create a reliance on other code
and global variables. It also makes it hard to find, let alone extract, a given routine for use in
another application. For example, how many times have you written a generic "Center a
form," "Min/Max," or "Center a line to text" procedure? If you're like most people, you end
up re-inventing the wheel several times for small tasks because it takes too long to find a
module that has the code you need, grab the code (which can't always be loaded into the
current application because of procedure name conflicts), and munge it as necessary for the
new application.

Rather, create one or more general-purpose libraries that you use in several applications.
This file (or files) contains your Min, Max, FormCenter, and similar routines. If one or

Visual Basic for Windows Debugging Tips and Tricks 2

more of these "externally called" routines requires "internal only" routines, be sure to add the
new Private keyword to the internal procedures to avoid name-space conflicts with other

applications.

Global.BAS

With the advent of Microsoft Visual Basic 2.0, it's no longer necessary to put all global
declarations in one module. Nonetheless, it's still a good idea to do so unless you have a
compelling reason to do otherwise. There are at least two reasons for this:

1. It's easier to find global variables if you always know where to look.

2. The Microsoft Visual Basic editor allows one code window per module, although
that window can be split. Many developers find it convenient to have a global
declarations window open at all times. That is only possible if your globals and
your "real code" are in different modules.

Likewise, you might consider not adding any procedures to the Global.bas, not even simple
initialization routines. That's because initialization routines frequently assign values to
global variables—something that's easier to do if the variable definitions are visible while
writing code that refers to them.

Always Use Option Explicit

Since its inception, Microsoft Basic had always implicitly declared variables if you referred
to them. While conducive to quick coding, it created subtle bugs in code and drove large
development teams crazy ("Was the variable called InterestRate or IntRate or
RateOfInterest."). Now you can add Option Explicit to the top of all code and form modules.
Option Explicit tells Microsoft Visual Basic to reject all variables that are used without first
being declared. As a side benefit, you'll notice that the Microsoft Visual Basic parser accepts
lines with undefined variables but doesn't expand and colorize them the way it handles most
code, giving you immediate feedback.

Option Explicit is done on a module-by-module basis so you can mix Option Explicit
modules with legacy code written before Option Explicit. Nonetheless, you should add
Option Explicit to old code if that code is being used again, so any modifications to that code
can take advantage of Option Explicit.

Avoid the Variant Data Type

Microsoft Visual Basic 2.0 introduced the concept of a chameleon-like data type called
variant. Unless otherwise declared, all variables are variants. The variant is extremely
useful for working with data that needs to deal with both strings and numbers (such as
database work), but can introduce subtle bugs when misused. For example:

Dim MyName, MyAge As Variant

MyName = "Steve"

MyAge = 25

Call NameAndAge (MyName, MyAge)

Visual Basic for Windows Debugging Tips and Tricks 3

Sub NameAndAge (Age, Person)

Print Person; " is"; Age; " years old today."

End Sub

The output would be:

25 isSteve years old today.

This particular code fragment violates several other rules (below), but it gives a good reason
not to use variants. In this case, MyName was passed where NameAndAge was expecting a
number, and MyAge where it expected a string. Of course, since both the Age and Person
parameters were not defined, Microsoft Visual Basic assumed them to be variants. In this
case, that allowed the routine to function apparently, yet give the wrong result.

Here are three suggestions:

1. Add Option Explicit everywhere (Select Environment from the Options menu to tell
Microsoft Visual Basic to add that to all modules/forms for you automatically).

2. Add DefInt A-Z to the top of all modules and forms. That way, any Dim

without an explicit type character or "As" clause defaults to an integer, which is
more likely to be correct.

3. Always explicitly type variables instead of using default type or type symbols.
Even using a more common default data type, such as integer, can be a problem if
you ever cut and paste code, because the default data type in one module could be
different than in another. Many people also find As clauses easier to read than type
symbols ($, %, and so on.), especially those not steeped in Basic history, who may
forget that # means Double and @ means Currency.

Avoid Multivariable Dim Statements

The preceding code fragment violated another rule: Two variables were declared with one
Dim statement (Dim MyName, MyAge As Variant). Many programmers, especially
ones inexperienced with Microsoft Basic, assume that the As Variant applies to both
MyName and MyAge. It does not. Microsoft Visual Basic applied the As Variant just to

MyAge and left MyName as the default data type. In this case, the default data type, since
not stated, happened to be a Variant, so no apparent harm was done. But it's easy to think of
examples where this type of code could wreak havoc.

Use the Tightest Scoping Possible

It's common to share variables between procedures. All too often, most of us add module-
level or global variables to do this. While that might be the fastest solution to the particular
problem at hand, it's a poor habit to get into because reliance on non-local variables makes it
difficult to "genericize" code.

1. Use local Const statements. For example, you may have several routines that scan for
commas. It's tempting to add a Global Const COMMA = "," somewhere and forget

about it. But then your routine relies on that global constant, so it can't be used in other
projects. Instead, add Const COMMA = "," to the procedures that need it. Or if that

seems wasteful to you, add Const COMMA = "," to the module level of your code, instead of
using Global Const.

Visual Basic for Windows Debugging Tips and Tricks 4

2. Pass Parameters. If you need to share data between code in two different code modules,
you have to choose between a global variable and passing parameters. In general, it's better
to pass the data as a parameter to avoid cluttering up the global name space. It also makes
the code easier to read, because you can see the definitions of all variables referenced,
instead of trying to hunt down apparently magic variables. Unfortunately, there is no easy
way to pass data to a form module because all variables and procedures are local to the form
module. You can use a form's Tag property to share data, but that doesn't work if the data
needs to be used during a form load event. For example:

'Form 1. Form1 is the startup form

Sub Form_Click ()

Form2.Tag = "Steve"

Form2.Show

End Sub

'Form2

Sub Form_Load ()

Print Tag

End Sub

Remember that the Form2.Tag = "Steve" line causes form2 to load itself. During
Form2's load event, the Tag property is still null. Therefore, the Print Tag code in

form2's load event always prints a null string.

Declarations at the Top of Procedures
Now that Option Explicit is with us, we see many more Dim statements in Microsoft Basic
code. Technically speaking, you can put the Dim anywhere, before the variable is first used.
But you might find that life is just slightly easier if you put all Dim statements at the top of
the procedures. For example, one could argue that the Dim statements should come after the
first If statement in the code below because there is no reason to declare the variable if it is

not needed. Still, much like using one Global.Bas, you do less "Dim hunting" if you always
know where the variables are defined.

Sub SetCombo (CurControl As Control, Text As String)

Dim i As Integer

Dim MaxItems As Integer

If CurControl.ListCount > 0 Then

MaxItems = CurControl.ListCount

i = 0

Do Until CurControl.List(i) = Text Or i = MaxItems
i = i + 1

Visual Basic for Windows Debugging Tips and Tricks 5

Loop

If i < MaxItems Then

CurControl.ListIndex = i

End If

End If

End Sub

Use Lots of White Space

All code in this session demonstrates a liberal use of white space. Blank lines, for example,
are used as logical separators (leave a blank line after a block of Dim statements or after

functionally related groups). Likewise, simple If/Then statements that can work as single
code lines (e.g. If X <> 0 and Y <> 0 Then SetControlPosition X, Y,
Z, True) are usually expressed in multiple lines, such as follows:

If X <> 0 and Y <> 0 Then

SetControlPosition X, Y, Z, True

End If

This style helps avoid scrolling horizontally because the code fits into less horizontal space.
It also mentally reinforces that you should consider the Else part of the If statement.

Similarly, comments are usually placed just above the code described, rather than to the
right.

Indenting is another key way to use white space. Most people indent loops and If

statements, but you can consider using indents where you want to remember to restore states.
This is most useful for file I/O, error handling, and setting flags. For example:

Visual Basic for Windows Debugging Tips and Tricks 6

Open FileName For Input As 1

Input #1, NumAccounts

Close 1

On Error Goto FileNotFound

Open FileName For Input As 1

On Error Goto 0

GlobalFlag = TRUE

Call FillListBox

GlobalFlag = FALSE

Keep Procedures Short

Frequently, a once simple routine grows to a remarkable length over time. This is especially
easy to do in the age of Cut-Copy-Paste. Perhaps replicating a few lines is the most efficient
solution to a quick problem, but it quickly degenerates into a maintenance problem when
those few lines, replicated several times, need to be changed globally. Therefore, it's a good
idea to keep an eye on the absolute procedure length and start chopping once it exceeds a
screen or two. Reducing repetitive code also reduces code size, of course.

Naming Conventions
Other than the eternal "What language is best" debate, few topics draw so much attention as
the merits of different naming conventions. These religious wars are beyond the scope of
this session but I will attempt to summarize a few simple thoughts. The general rule, of
course, is simply to be consistent, regardless of the chosen method.

Control Naming

Microsoft Visual Basic requires that controls have unique names (except control arrays).
Therefore, Microsoft Visual Basic dynamically invents new names as new controls are
created. Unchecked, forms end up with ten text boxes, conveniently named Text1 through
Text10. While this might be fine for very small projects, it gets difficult to remember exactly
which control does what. Therefore, the Microsoft Visual Basic on-line Help system
suggests a simple naming convention in which all control names begin with a three-letter
prefix signifying the control type (txt for a Text Box, cmb for Combo, cmd for Command
Button, frm for Form, and so on) and includes a simple description. For example,
txtAccountName is much more self-evident than Text5. Even better, attempt to keep control
names and captions identical. For example, a label captioned "Account Name" should be
named lblAccountName not lblAcctName. Nested controls, most notably menus, are also
easier to remember if child names reference their parent name. For example, mnuEditDelete
is more descriptive than mnuDelete, especially if you have a Delete item listed under several
top-level menus.

Visual Basic for Windows Debugging Tips and Tricks 7

Procedure Prefixes

Microsoft Visual Basic encourages you to write modular code because all forms, by
definition, are self-contained. But, unless you use the new Private keyword, procedures

and functions in all Microsoft Basic modules are global to the project. That isn't normally a
problem, but name conflicts occasionally surface. Or given several Microsoft Basic
modules, it isn't always clear where a given procedure lives. Therefore, some developers
prefix procedure names with information about which module it lives in. For example, a
module that manipulates bitmaps might have all public procedures prefixed with BMP, so
BMPGetSize doesn't conflict with FileGetSize.

Consistent Procedure Conventions

Commonly, you have several procedures that take similar or identical arguments. Life
becomes more sane if you always list parameters in the same order, preferably with the same
name. For example:

Sub Foo (CurID As Integer, CurControl As Control)

Sub Bar (CurID As Integer, CurControl As Control)

is easier to work with than:

Sub Foo (CurID As Integer, CurControl As Control)

Sub Bar (CurControl As Control, CurID As Integer)

and certainly better than:

Sub Foo (CurID As Integer, CurControl As Control)

Sub Bar (Ctrl As Control, IDNum As Integer)

Use Case Effectively

Microsoft Basic, unlike Microsoft C, and some other languages, does not differentiate
between case, but that doesn't mean that you can't use case to convey information. For
example, it's common practice to use all upper-case letters and underscores to signify
constants, such as WHITE or DARK_GREEN. On the other hand, variables might mix
upper and lower case instead of using underscores (DarkGreen). But you'll have to be careful
to keep case consistent, because Microsoft Visual Basic seems to have a tendency to change
variable case. In reality, that's just a side-effect of the threaded p-code compiler technology
under the hood. (As each line is typed, Microsoft Visual Basic incrementally compiles it into
p-code. Microsoft Visual Basic interprets that p-code back into ASCII and lists the ASCII
back to the screen. To save memory, Microsoft Visual Basic just stores the p-code
representation rather than both the p-code and the ASCII text. So entering FooBar as
"foobar" causes all references to FooBar to suddenly change case.)

Hungarian Notation

It's not uncommon to see the letter "g" prefixed to global variables or "i" prefixed to integers.
The global prefix is generally useful but the data type prefix is most valuable with compilers
that take some time to discover mismatched data types. Luckily, Microsoft Visual Basic has
a fast compiler that flags passing incorrect data types to procedures almost instantly. Still,

Visual Basic for Windows Debugging Tips and Tricks 8

Hungarian notation is an excellent way to make code even more self-documenting. The
literature on Hungarian notation is both exhaustive and well beyond the scope of this session,
however.

Correcting Bugs
Unfortunately, even the best planned, most consistent code always leaves a few bugs to swat.
Perhaps the best general advice is to know your debugger inside and out. That said, there are
a few simple tactics to consider.

Breakpoints and Stepping

It's easy to get into the habit leaving one hand permanently glued to F8 while debugging.
But there are some common ways to accelerate the process a bit.

Single Stepping vs. Procedure Stepping

Procedure Step (Shift+F8 or the double steps icon in the toolbar) is a great way to step over a
procedure instead of meandering through the entire call. For example, learn to press Shift-F8
to avoid executing every line in a function when you're reasonably sure that the problem is
outside of the function. Also note that pressing Shift+F8 acts precisely like F8, if there is no
procedure to jump around.

Use Break and Step Together

Almost inevitably, you learn to put breakpoints as close to the potentially incorrect code as
possible to avoid unnecessary single steps. But you might find yourself walking through
dozens of lines of code if you have no idea where things go awry. In that case, you might
consider using a series of breakpoints, equidistantly placed, to help you zoom in on bugs.
For example, instead of single stepping through 100 lines of code, place five breakpoints 20
lines apart and test at each breakpoint. If the error occurs, you have it nailed down to a 20-
line region that can be subdivided again.

Watch Expressions and Watchpoints

Of course, single stepping is most expedient when you have a simple way to detect when
things go bad. In Microsoft Visual Basic, you can use watch expressions to get the current
value of variables just by pressing Shift-F9 (or clicking the eye glass icon), while the cursor
is over a variable. You can even evaluate complete expressions, such as "ScaleWidth -
cmdOK.Left," with that same simple keystroke. Additionally, you can manually enter any
valid Microsoft Basic expression and see the results. Logical expressions evaluate to True or
False. Therefore "X > 500" produces either 0 (FALSE) or -1 (TRUE) in the debug (watch)
window.

Watchpoints are even more powerful because they effectively use Microsoft Visual Basic to
do the "set a breakpoint, set watch expressions, single step until the expression changes"
sequence for you. For example, you can tell Microsoft Visual Basic to monitor a given
expression continually until the expression changes to True. When the expression is true,

Visual Basic for Windows Debugging Tips and Tricks 9

Microsoft Visual Basic halts execution and brings you to the line of code that triggered the
change.

Microsoft Visual Basic lets you set the scope of the evaluation. This is handy for several
reasons. The simplest is that watching variables slows Microsoft Visual Basic down, so a
global watch can affect performance significantly. More important, however, is the problem
with the same local variable name being used in several procedures. In that case, Microsoft
Visual Basic needs to know which procedure to monitor.

Use F9 and F5 to Move by Chunks

Frequently, you hit a breakpoint, single step a few times, then become convinced that the
problem is further down the code path. You can either hit F8 many times or use an F9
(break)-F5 (Continue) combination. For example, to skip down to the bottom of a procedure
do the following steps:

1. Set a break at the bottom of the procedure.

2. Press F5 to execute to that point.

3. Press F9 again to toggle off the breakpoint.

Use the Call Stack to Jump Out of Procedures

Similarly, many developers inadvertently step into a procedure and want to jump back out
quickly. Try this trick:

1. Hit Ctrl-L to show the call stack. Jump to the procedure that you just left. The
cursor is now on the line that made the call.

2. Move the cursor down one line and press F9 to set a breakpoint.

3. Press F5 to continue execution to that new breakpoint.

4. Press F9 again to toggle off the breakpoint.

Shift+F2 and F2 to Navigate Procedures

You can effectively hypertext through code by pressing Shift+F2 while the cursor is over the
name of a procedure. But there is no "go back to where I was" key, so remember to make
mental notes before hitting Shift+F2.

Using the F2 key to show a list of all procedures is new to Microsoft Visual Basic for
Windows, but long time Microsoft Basic users will instantly recognize the resurrection of the
View Subs shortcut from QuickBasic. F2 pops up a dialog box that shows all of the forms
and modules in the project and then, in a lower list box, all of the procedures in the selected
module. This is especially useful when you aren't sure which controls have events handled,
so scrolling through the dual drop downs on a code window is time consuming.

Consider Using Debug Flags

On large projects, it's common to skip entire regions of code while debugging. Or perhaps
you want to programatically set some variables instead of continually typing the same values

Visual Basic for Windows Debugging Tips and Tricks 10

into dialog boxes. Either way, you can use a global DebugMode flag to control temporary
jumps through code. For example:

Global DebugMode As Integer

DebugMode = TRUE

If DebugMode Then

FileName = "Test.txt"

Else

FileName = GetFileName (CurDrive)

End If

Of course, you want to document these jumps carefully and possibly remove them from
shipping code to save space. You can even write a code preprocessor to remove such code
automatically before making retail builds.

Dealing with the Real World
Developers generally demand computer hardware in excess of what their customers use.
While that makes sense in terms of minimizing development time, it makes it less common
for developers to hit runtime errors like Disk Full, Out of Memory, and so on. Clearly, a
solid project has to accommodate runtime errors, unlikely though they may seem to be.

Error Handling

Do It Early

Many programmers have a habit of treating error handling and comments the same way—
saving it until last. The problem with saving these tasks until last is obvious: There is a fair
chance that they will never be done.

All I/O, All Memory Allocation

Clearly, you want to encase Open, Print#, and Put# statements within On Error. By habit,
many of us put these simple I/O statements in-line. But, in many cases, the code actually can
be generalized into a standard file I/O procedure that has all of the error handling bells and
whistles. For example, instead of:

Visual Basic for Windows Debugging Tips and Tricks 11

FileNum = FreeFile()

Open "Steve.INI" For Input As FileNum

use something more like:

FileNum = stdSeqFileOpen ("Steve.INI")

Function stdSeqFileOpen (FileName as string) As Integer

Dim FileNum As Integer

On Error GoTo stdSeqFileOpenNoHandles

FileNum = FreeFile ()

On Error GoTo stdSeqFileOpenNotFound

Open FileName For Input As FileNum

On Error GoTo 0

stdSeqFileOpen = FileNum

Exit Function

stdSeqFileOpenNoHandles:

If Err = 67 Then

'Too many files

MsgBox "Please close a file before continuing."

Else

'Something else

MsgBox "Assert: stdSeqFileOpen "+Str$(Err)+Error$

End If

Exit Function

stdSeqFileOpenNotFound:

If Err = 53 Then

'File not found

MsgBox "File not found. Ensure correct disk in drive."

Else

'Something else

MsgBox "Assert: stdSeqFileOpen "+Str$(Err)+Error$

End If

Close FileNum

End Function

Visual Basic for Windows Debugging Tips and Tricks 12

Indent To Show Trap Areas Clearly

The example above also demonstrated liberal indenting. It's easy to forget to turn error off
handling and even easier to forget to redirect it to different places depending on the code.
Indenting is simply one mechanism that some people use make it easier to see what is
trapped and what isn't.

Only Use Where Necessary

Error handling is very powerful—sometimes too powerful. Unless care is taken, it's possible
to inadvertently ignore a valid error. On Error Resume Next is especially dangerous because
it tells Microsoft Visual Basic to continue on any trappable error. Your code can easily be
generating a legitimate divide-by-0 error that you never see. On Error Resume Next is really
best used when you are very sure about what errors a small area of code can generate. For
example, if you mean to ignore a divide-by-0 error, it's valid to place one line of code
between On Error Resume Next and On Error Goto 0.

Check Error Code Before Resume

The error-handling example also checked the error code (Err), instead of assuming what the
error is. It's easy, when opening a file, for example, to assume that the only possible error is
File Not Found and simply offer the user a chance to abort, retry, or ignore. Of course, there
are several other possibilities—albeit unlikely. Therefore, you should check the error, do
anything special for a small number of errors that you're prepared for, and create a generic
error message for anything else.

Use Case Else

While not directly related to error handling, the Select Case statement offers another chance
for error detection. Instead of assuming that you know all possible cases, always add a Case
Else to catch the unexpected. For example:

Function GetClassName (Device As String) As String

Select Case Device

Case "Video"

GetClassName = "AVIVideo"

Case "Audio"

GetClassName = "WaveAudio"

Case "Bitmap"

GetClassName = "Pbrush"

Case Else

MsgBox "Assert: GetClassName Device=" + Device End
Select

End Function

Visual Basic for Windows Debugging Tips and Tricks 13

Use MsgBox to Display Information

The examples above used the MsgBox to display unexpected errors. These messages should
be explicit, not only to help you during debugging, but also to help you find errors that might
occur after an .EXE is shipped to customers. You'll save considerable time if a customer
who hits an unexpected error can give you very precise information. For example, you can
put the module name, the procedure name, a possible explanation, and applicable data into
the message.

Miscellaneous Tips

The following tips are random tidbits of debugging lore that might be helpful to you. No
logical grouping is offered.

Mark and Date-Undone Sections

Create a standardized convention for marking undone code, such that you can use Search to
quickly scan code later. At the same time, you should add any information to the comment
that you might need later when finishing the code. For example:

'NYI 1/24/93. Add handlers for CD-ROM / other removable media.

Window Positioning

Even in the age of the SuperVGA, there is never enough screen real estate to display
everything you want to see at the same time. Here are a few suggestions:

1. Close the Tool box while writing code.

2. Keep the Project Window open (perhaps on the far right) and sized at all times so
that all forms and modules are visible without scrolling. Custom controls can be
below the current scroll, however, because you never need to double-click on a
custom control to edit it.

3. Keep a GLOBAL.BAS window open all the time, but keep it somewhere off the
screen.

4. When debugging a form, don't double click on the form's name in the Project
window. This shows only the form itself, generating unnecessary screen clutter.
Select the file name and hit the View Code button instead; or use F2 to jump
between procedures.

5. Keep the Property window from overlapping forms so that clicking on either the
form or the Property window doesn't obscure the other.

6. By default, all code windows pop into the same screen location at the same size.
Stagger multiple, open-code windows slightly so you can jump modules by clicking
on a window.

Use Multiple Modules to See Multiple Procedures Simultaneously

Microsoft Visual Basic for Windows shows one code window per module, although that
window can be split. It might make sense to put commonly used procedures in different
modules, simply so you can view several of them in their own windows at the same time.

Visual Basic for Windows Debugging Tips and Tricks 14

Don’t Maximize Forms

You might want access to the Microsoft Visual Basic tool bar while debugging (hit Pause,
Watch, Stop). If so, avoid maximizing forms at runtime because your form will obscure the
tool bar.

Multiple .MAK Files

There is no rule that says that any one application can have only one .MAK file. In fact, you
might have one or two modules of debugging information that you want to exclude from
finished builds. Therefore, consider using a RETAIL.MAK and DEBUG.MAK, or use
similar files.

Save Frequently in ASCII

It goes without saying that you should save your code fairly often in case the unexpected
happens. Missing .DLLs or Windows API calls can make your computer especially queasy.
You should also use ASCII file saves exclusively for several of the following reasons:

1. It's possible to reconstruct corrupted files .

2. Saving allows a source library manager, such as Microsoft Delta, to keep track of
code changes.

3. Saving lets you use more advanced text editors to make global code changes.

Write Tests Before Writing Code

Before writing code, consider how you will test it. If possible, construct test suites before or
during application development instead of waiting until the end. Even better, use different
teams of programmers to develop and test code simultaneously since the developer
frequently makes subtle assumptions that other people (especially those trained in testing
methodology) won't make.

Be Careful with Replace

Replace is very powerful, but has a tendency to trounce on innocent code if you don't restrict
the range well enough. In general, avoid global replace without at least using the Verify
option. The Match Whole Words Only option is also useful when looking for short,
relatively common phrases.

Multiple Level Undo is Your Friend

Just a quick reminder that Microsoft Visual Basic 2.0 added unlimited levels to the old Undo
command. Of course, being reasonably sure that code works before you save it (and
overwriting a working version of the same file doesn't hurt either). Serious development
teams should also carefully consider using source library management tools such as the new
Microsoft Delta.

OLE Automation

Visual Basic 3.0 supports OLE Automation of other OLE 2 applications, as well as In-place
editing of objects through use of the OLE 2 control. The single most important thing to

Visual Basic for Windows Debugging Tips and Tricks 15

understand when using OLE Automation is the object model of the applications you are
communicating with. Many errors that occur in OLE Automation code happen because you
called and object and it didn’t respond in the way you anticipated. When using CreateObject,
keep in mind that you might be starting multiple instances of applications. This can quickly
result in out of memory or out of resources errors. Instead, load multiple documents in the
same instance of a particular application. Variable Scoping is key to working with OLE
objects. If a variable looses it scope, the OLE object reference will also be lost. This doesn’t
mean that all OLE Objects should be declared as Global. But, if an object variable has been
defined at the form level, when that form closes, the object reference closes also. One of the
most common bugs is a Visual Basic application is to get an invalid object reference error
because the object variable has gone out of scope.

Conclusion
Few people consider debugging to be enjoyable, so time spent avoiding bugs
almost certainly pays dividends. Code style, although subject to stylistic
interpretation, should at least be consistent to you—preferably consistent
between others on your development team as well. Adding robust error
handling is critical because customers and reviewers often see it as the
difference between a well-developed product and a product seemingly
assembled by one person in his basement. But the actual process of
debugging is still more an art than it is a science. The best advice is simply to
know your editor and debugger as thoroughly as possible and always be open
to expanding your tools with additional debugging aids. In any event, it may
comfort you to think of debugging skills as your job security.

Visual Basic for Windows Debugging Tips and Tricks 16

	Visual Basic for Windows Debugging Tips and Tricks
	Overview
	Avoiding Bugs
	Coding Style
	Comments Everywhere
	Modularity
	Global.BAS
	Always Use Option Explicit
	Avoid the Variant Data Type
	Avoid Multivariable Dim Statements
	Use the Tightest Scoping Possible
	Declarations at the Top of Procedures
	Use Lots of White Space
	Keep Procedures Short

	Naming Conventions
	Control Naming
	Procedure Prefixes
	Consistent Procedure Conventions
	Use Case Effectively
	Hungarian Notation

	Correcting Bugs
	Breakpoints and Stepping
	Single Stepping vs. Procedure Stepping
	Use Break and Step Together
	Watch Expressions and Watchpoints
	Use F9 and F5 to Move by Chunks
	Use the Call Stack to Jump Out of Procedures
	Shift+F2 and F2 to Navigate Procedures
	Consider Using Debug Flags

	Dealing with the Real World
	Error Handling
	Do It Early
	All I/O, All Memory Allocation
	Indent To Show Trap Areas Clearly
	Only Use Where Necessary
	Check Error Code Before Resume
	Use Case Else
	Use MsgBox to Display Information

	Miscellaneous Tips
	Mark and Date-Undone Sections
	Window Positioning
	Use Multiple Modules to See Multiple Procedures Simultaneously
	Don’t Maximize Forms
	Multiple .MAK Files
	Save Frequently in ASCII
	Write Tests Before Writing Code
	Be Careful with Replace
	Multiple Level Undo is Your Friend
	OLE Automation

	Conclusion

