
Optimizing Visual Basic

Presented by: Scott Swanson

Product Manager

Microsoft Corporation

Optimization Philosophy
Optimization is not a single set of tricks or techniques. It's not a simple
process you can tack on at the end of your development cycle: "There, it
works. Now I'll speed it up and make it smaller." To create a truly optimized
application you must be optimizing it all the time while it is being developed.
You choose your algorithms carefully, weighing speed against size and other
constraints; you form hypotheses about what parts of your application will be
fast or slow, large or compact, and you test those hypotheses as you go.

And you remember that optimization is not always completely beneficial.
Sometimes the changes you make to speed up or trim down your application
result in code that is hard to maintain or debug. And some optimization
techniques fly in the face of structured coding practice, which may cause
problems when you try to expand it in the future or incorporate it into other
programs (not to mention aggravating fellow programmers if you're working
as part of a team).

Understand the Real Problems

You can waste a lot of time optimizing the wrong things. This is
particularly true in Visual Basic because so much goes on "behind the
scenes" and there isn't a true profiler available that would enable you
to find the proverbial 10% of your code that takes 90% of the time or
uses 90% of the space.

Nevertheless, you can learn an awful lot by simply stepping through
your code and thinking carefully about what's actually happening. It
sounds obvious, but I've discovered things in my own code that
"seemed like a good idea" when I coded them, but turned out to be
amazing memory or CPU hogs in practice. You often forget that
setting properties causes events to occur, and if there is a lot of code
in those event procedures an innocuous line of code can cause a
tremendous delay in your program.

Know When to Stop

Sometimes things aren't worth optimizing. For example, writing an
elaborate but fast sorting routine is pointless if you're only sorting a
dozen items. In fact, I've seen programs that sort things by adding
them to a sorted list box and then reading them back out in order. In
absolute terms this is horribly inefficient, but if there aren't a lot of items
it is just as quick as any other method, and the code is admirably
simple (if a bit obscure).

2 · Optimizing Visual Basic VBITS ‘ 94

There are other cases where optimization is wasted effort. If your
application is ultimately bound by the speed of your disk or network,
there is little you can do in your code to speed things up.

Optimization
You can optimize your program for many different characteristics:

· Real speed (how fast your application actually calculates or
performs other operations).

· Display speed (how fast your application paints the screen).

· Apparent speed (how fast your application appears to run; this
is often related to display speed but not always to real speed).

· Size in memory.

· Size of graphics (this directly affects size in memory, but often
has additional ramifications when working in Microsoft
Windows).

Rarely, however, can you optimize for multiple characteristics.
Typically, an approach that optimizes size compromises on speed;
likewise an application that is optimized for speed is often larger than
its slower cousin.

Optimizing Actual Speed

Unless you're doing things like generating fractals, your applications
are unlikely to be limited by actual processing speed. Typically other
factors, such as video speed, network delays, or disk activities are the
limiting factor in your applications. However, you may find points in
your program where the speed of your code is the gating factor. When
that's the case, there are techniques you can use to increase the real
speed of your applications:

· Use Integer variables and integer math.

· Cache properties in variables.

Use Integer and Long integer variables whenever you can, particularly
in loops. It's surprising how much of your programs you can write using
only Integer variables. And you can often tweak things so that you can
use integers when a floating point value would otherwise be required.
For example, if you always set the Scalemode of all your forms and
Picture controls to either Twips or Pixels you can use integers for all
the size and position values for controls and graphics methods. In a
similar vein, it's often possible to modify calculations so that they can
be performed entirely with integers. As an example, Microsoft

Microsoft Tech·Ed '93 VB307: Optimizing Visual Basic · 3

QuickBasic included a sample program that generated the Mandelbrot
set entirely using integer math.

Never get the value of any given property more than once in a
procedure unless you know the value has changed. Instead, you
should assign the value of the property to a variable and use the
variable. Variables are generally 10 to 20 times faster than properties.
For example, code like this is very slow:

For i = 0 To 10

picIcon(i).Left = picPallete.Left

Next i

Rewritten, this code is much faster:

picLeft = picPallete.Left

For i = 0 To 10

picIcon(i).Left = picLeft

Next i

Likewise, code like this:

Do Until EOF(F)

Line Input #F, nextLine

Text1.Text = Text1.Text + nextLine

Loop

...is much slower than this:

Do Until EOF(F)

Line Input #F, nextLine

bufferVar = bufferVar + nextLine

Loop

Text1.Text = bufferVar

However, this code does the equivalent job and is even faster:

Text1.Text = Input(F, LOF(F))

Yet another example of a better algorithm being the best optimization.

Optimizing Display Speed

Because of the graphical nature of Microsoft Windows, the speed of
graphics and other display operations contributes greatly to the
perception of the speed of your application. In many cases, you can
make your application seem faster simply by making your forms
repaint faster -- even if the actual speed of your application hasn't
changed at all. There are several techniques you can use to speed up
the apparent speed of your application:

· Turn off ClipControls.

· Use AutoRedraw appropriately.

4 · Optimizing Visual Basic VBITS ‘ 94

· Use Image instead of Picture box.

· Use Line instead of PSet.

· Hide controls when setting properties to avoid multiple repaints.

Unless you are using graphics methods (Line, PSet, Circle, and Print)
you should set ClipControls to False for the form and for all Frame and
Picture box controls. When ClipControls is False, Visual Basic does
not do the extra work required to avoid overpainting controls with the
background before repainting the controls themselves. On forms that
contain a lot of controls, the resulting speed improvements are
significant.

The right setting for the AutoRedraw property varies, depending on
what is being displayed. If you can quickly redraw the contents of the
form or picture control using graphics methods, you should set
AutoRedraw to False and perform the graphics in the Paint event. If
you have a complicated display that doesn't change very often, you
should set AutoRedraw to True and allow Visual Basic to do the
redrawing for you. Note, however, that when AutoRedraw is True
Visual Basic maintains a bitmap it uses to redraw the picture, and this
bitmap can take up a considerable amount of memory.

Image controls always paint faster than Picture controls. Unless you
need some of the capabilities unique to Picture controls (such as DDE
and graphics methods) you should use Image controls exclusively.

Speaking of graphics methods, a little experimentation will
demonstrate that the Line method is much faster than a series of PSet
methods. Avoid using the PSet method, and batch up the points into a
single Line method.

Every repaint is expensive. The fewer repaints Visual Basic must
perform, the faster your application will appear. One way to reduce the
number of repaints is to make controls invisible while you are
manipulating them. For example, suppose you want to resize several
List boxes in the Resize event for the form:

Sub Form_Resize ()

Dim i As Integer, sHeight As Integer

sHeight = ScaleHeight / 4

For i = 0 To 3

lstDisplay(i).Move 0, i * sHeight, ScaleWidth, sHeight

Next

End Sub

This creates four separate repaints, one for each List box. You can
reduce the number of repaints by placing all the List boxes within a
Picture box, and hiding the Picture box before you move and size the
List boxes. Then, when you make the Picture box visible again, all of
the List boxes are painted in a single pass:

Microsoft Tech·Ed '93 VB307: Optimizing Visual Basic · 5

Sub Form_Resize ()

Dim i As Integer, sHeight As Integer

picContainer.Visible = False

picContainer.Move 0, 0, ScaleWidth, ScaleHeight

sHeight = ScaleHeight / 4

For i = 0 To 3

lstDisplay(i).Move 0, i * sHeight, ScaleWidth, sHeight

Next

picContainer.Visible = True

End Sub

Optimizing Apparent Speed

Often the subjective speed of your application has little to do with how
quickly it actually gets through the meat of its task. To the user, an
application that starts up rapidly, repaints quickly, and provides
continuous feedback feels "snappier" than an application that just
"hangs up" while it churns through its work. You can use a variety of
techniques to give your application that "snap":

· Keep forms hidden but loaded.

· Use progress indicators.

· Pre-load data you expect to need.

· Use timers to work in the background.

Hiding forms instead of unloading them is a trick that has been around
since the early days of Visual Basic 1.0, but it is still effective. Version
2 improved form load speed, but it still isn't as fast as simply making a
previously-loaded form visible. The obvious downside to this
technique is the amount of memory the loaded forms consume, but it
can't be beat if you can afford the memory cost and making forms
appear quickly is of the highest importance.

Progress indicators are turning up in almost every significant
application, and with good reason: when a process takes a long time,
you need to give the user some indication that your application hasn't
simply hung. There are a variety of custom controls that can be used
as progress indicators, but a simple and effective one can be created
using just overlapped label and shape controls. To see it in action,
examine the system resources display in the CallDLLs sample
application included in Visual Basic 2.0

You can also improve the apparent speed of your application by pre-
fetching data. For example, if you need to go to disk to load the first of
several files, why not load as many of them as you can? Unless the
files are extremely small, the user is going to see a delay anyway. The
incremental time spent loading the additional files will probably go
unnoticed, and you won't have to delay the user again.

6 · Optimizing Visual Basic VBITS ‘ 94

In some applications you can do considerable work while you are
waiting for the user. The best way to accomplish this is through a timer
control. Use static (or module-level) variables to keep track of your
progress, and do a very small piece of work each time the timer goes
off. If you keep the amount of work done in each timer event very
small, users won't see any effect on the responsiveness of the
application and you can pre-fetch data or do other things that further
speed up your application

First Impressions

Apparent speed is most important when your application starts. Users'
first impression of the speed of an application is measured by how
quickly they see something after double-clicking on the EXE in File
Manager. While some delay is unavoidable with any significant
application, there are some things you can do to give a response to the
user as quickly as possible:

· Use Show in Form_Load event.

· Simplify your Startup form.

· Don’t load modules you don’t need.

When a form is first loaded, all of the code in the Form_Load event
occurs before the form is displayed. You can alter this behavior by
using the Show method in the Form_Load code, giving the user
something to look at while the rest of the code in the event executes:

Sub Form_Load()

Show ' Display startup form.

Load MainForm ' Load main application fom.

Unload Me ' Unload startup form.

MainForm.Show ' Display main form.

End Sub

The more complicated a form is, the longer it takes to load. From this
observation comes a rule: keep your startup form simple. Most
applications for Microsoft Windows display a simple copyright screen
at startup: your application can do the same. The fewer controls on
the startup form, and the less code it contains, the quicker it will load
and appear. Even if it immediately loads another, more complicated
form, it gives the user immediate feedback that the application has
started.

Visual Basic loads code modules on demand, rather than all at once at
startup. This means that if you never call a procedure in a module,
that module will never be loaded. Conversely, if your startup form calls
procedures in several modules then all of those modules will be loaded
as your application starts up, which slows things down. For this

Microsoft Tech·Ed '93 VB307: Optimizing Visual Basic · 7

reason, you should avoid calling procedures in other modules from
your startup form.

Keeping It Small

You can reduce the size of your application in memory by:

· Reclaiming space used by strings, arrays, and object variables.

· Avoiding Variant variables.

· Avoiding fixed-length String variables.

· Removing dead code.

The space used by (non-Static) local string and array variables is
reclaimed automatically when the procedure ends. However, global
and module-level string and array variables remain in existence for as
long as your program is running. If you are trying to keep your
application as small as possible, you should reclaim the space used by
these variables as soon as you can. You reclaim string space by
assigning the zero-length string to it:

SomeStringVar = "" ' Reclaim space

You reclaim the space used by a dynamic array with the Erase
statement:

Erase LargeArray

The Erase statement completely eliminates an array; if you want to
make an array smaller without losing all of its contents, you can use
the ReDim Preserve statement:

ReDim Preserve LargeArray(10, smallernum)

Similarly, you can reclaim some (but not all) of the space used by an
object variable by setting it to Nothing. For example:

Global F As New StatusForm

...

F.Show 1 ' Form is loaded and shown modally.

X = F.Text1.Text

Set F = Nothing ' Reclaim space.

Even if you don't use explicit form variables, you should take care to
Unload (rather than simply hiding) forms you are no longer using.

Variant variables are another size hog: each Variant takes 16 bytes,
compared to two for an Integer or eight for a Double. Variable-length
String variables use four bytes plus one per character in the string, but
each Variant containing a string takes 16 plus one per character in the
string. Because they are so large, Variant variables are particularly
troublesome when used as local variables or arguments to procedures,
because they quickly consume stack space.

8 · Optimizing Visual Basic VBITS ‘ 94

Local fixed-length string variables are another culprit in stack space
exhaustion. Unlike variable-length strings, which only use four bytes on
the stack (the string itself is allocated out of another segment), the
entire contents of a fixed-length string variable is allocated off the
stack. For this reason you should avoid local fixed-length string
variables in your code.

Finally, if your applications are anything like mine, by the time they are
close to being finished they've been redesigned several times. In the
process you've probably left behind variables that you're no longer
using, and sometimes even whole procedures that aren't being called
from anywhere. Unfortunately, Visual Basic does not detect and
remove this "dead code" so you have to look for and remove it
yourself.

Cutting Back on Graphics

In many Visual Basic applications, the space used by graphics dwarfs
the memory used by everything else combined. However, there are
also opportunities to accomplish significant savings using some simple
techniques:

· Reclaim graphics memory with LoadPicture() and Cls.

· Replace Picture box with Image controls.

· Load Pictures only when needed, and share pictures and icons.

· Use RLE bitmaps or metafiles.

Reclaim memory with LoadPicture() and Cls. If you aren't going to use
a Picture or Image control again, don't just hide it: remove the bitmap it
contains:

Image1.Picture = LoadPicture()

Another technique reclaims the memory used by the AutoRedraw
bitmap in forms and picture controls (the AutoRedraw bitmap is the
bitmap that Visual Basic uses if you set AutoRedraw to True, or if you
reference the Image property of forms or picture controls). You can
reclaim this memory using code like this:

mypic.AutoRedraw = True ' Turn on AutoRedraw bitmap.

myPic.Cls ' Clear it.

myPic.AutoRedraw = False ' Turn off bitmap.

The Picture controls in many Visual Basic applications exist merely to
be clicked, or to be dragged and dropped. If this is all you're doing with
a Picture control, you are wasting a lot of Windows resources. For
these purposes, Image controls are superior to Picture controls. Each
Picture control is an actual window, and uses significant system
resources. The Image control is a "lightweight" control rather than a

Microsoft Tech·Ed '93 VB307: Optimizing Visual Basic · 9

window, and doesn't use nearly as much resources. In fact, you can
typically use five to 10 times as many Image controls as Picture
controls. Moreover, Image controls repaint faster than Picture controls.
Only use a Picture controls when you need a feature only it provides,
such as DDE, graphics methods, or the ability to contain other controls.

Obviously you use less memory if you only load pictures as you need
them at run time, rather than storing them in your application at design
time. What may be less obvious is that you can share the same picture
between multiple Picture controls, Image controls, and forms. If you
use code like this you only maintain one copy of the picture:

Picture = LoadPicture("C:\Windows\Chess.BMP")

Image1.Picture = Picture ' Use the same picture

Picture1.Picture = Picture ' Use the same picture

Contrast that with this code, which causes three copies of the bitmap
to be loaded, taking more memory and time:

Picture = LoadPicture("C:\Windows\Chess.BMP")

Image1.Picture = LoadPicture("C:\Windows\Chess.BMP")

Picture1.Picture = LoadPicture("C:\Windows\Chess.BMP")

Finally, try to use smaller picture data. Run Length Encoded (RLE)
bitmaps can be several times smaller than their uncompressed
counterparts, and aren't appreciably slower to load or display. The
savings found by using metafiles can be even more significant -- ten
times or more in some cases. The "Introduction to Visual Basic"
application that ships with Visual Basic 2.0 uses metafiles for this
reason.

When All Else Fails...
...be creative. There are a variety of extreme measures you can take
when nothing else will work. Most of these are too complicated to
relate here, but I can give a couple examples that should give you
some ideas.

Multi-Apps

While Visual Basic 2.0 greatly increased the capacity limits over what
version 1.0 provided, I've occasionally seen applications that have
outgrown even the capabilities of 2.0. Rather than cutting back on the
application, the developers of these applications have resorted to
creating several applications that appear to all be part of one larger
application. These can run and quit independently, allowing for
extensive control over the size of the application at any one time. The
various parts of this "multi-app" communicate with each other using
DDE or -- when the amount of data is large and speed is not as critical

10 · Optimizing Visual Basic VBITS ‘ 94

-- through shared files. While the amount of work involved is anything
but trivial, and adds considerable complexity to the application, it
makes truly enormous applications possible.

Lurking Apps

A variation on the above technique can be used when quick response
is required and memory space is not at a premium. Instead of actually
quitting, an application can just hide (or unload) all visible forms. The
application then "lurks" until it is needed again (signaled via DDE, a
timer, or by periodically checking for specific conditions), whereupon it
seems to start up instantly by showing a form once again.

Use DLLs

Finally, you can go outside Visual Basic completely. By isolating the
portion of your application that is slowest or uses the most memory,
and rewriting that portion in another language and compiling it as a
DLL, you can take advantage of some of the optimization techniques
offered by other languages without giving up the productivity of Visual
Basic. In fact, a quick look through the huge number of third-party
products may turn up a DLL or custom control that does exactly what
you need.

OLE Automation

Using CreateObject()

Opening an instance of an OLE aware application, always start it by
using CreateObject(). ByUse this instead of ‘Shell’ or DDE. The
reason for this can best be seen in the case of Microsoft Excel 5.0.
Starting an instance of Excel using CreateObject() does not force
Excel to load all of its add-ins. However, starting Excel using ‘Shell’ or
DDE will result in Excel loading all of it’s add-ins. This can significantly
increase the load time of Excel as well as causing a delay in program
responsiveness that might be noticed by the end user.

Microsoft Tech·Ed '93 VB307: Optimizing Visual Basic · 11

	Optimizing Visual Basic
	Optimization Philosophy
	Understand the Real Problems
	Know When to Stop

	Optimization
	Optimizing Actual Speed
	Optimizing Display Speed
	Optimizing Apparent Speed
	First Impressions
	Keeping It Small
	Cutting Back on Graphics

	When All Else Fails...
	Multi-Apps
	Lurking Apps
	Use DLLs

	OLE Automation
	Using CreateObject()

