
Visual Basic Programmer’s
Journal

and Microsoft Corporation
present VBITS 1994

Optimizing Visual Basic Code

Scott Swanson
Product Manager

Applications Programmability
Microsoft Corporation

Scottsw@microsoft.com

vboptimz.zip

Optimization Philosophy

Understand the real problems.
Finding a good algorithm is better than

tweaking a bad one.
Consider all the dimensions:

Speed

Size

Maintainability

Knowing What to Optimize

Walk your code
Where is time being spent?

Where is memory consumed?

Don’t over-optimize
Example: sorting

Example: disk access

Kinds of Optimization

Real speed.
Display speed.
Apparent speed.
Size in memory.
Size of graphics.

Optimizing Actual Speed

Variables are 10 to 20 times faster than
properties.

Use Integers and integer math.
Swap tune:

Put related code in the same module.

Reduce the number of inter-module calls.

Keep modules small.

More Speed Optimizing

File I/O: Binary much faster than
Text/Random.

Use the value of the control.
Avoid copying strings.

Optimizing Data Access

Use Transactions for Bulk Operations:
BeginTrans & CommitTrans

Limit the number of records that you “Visit”
Keys [& data for Snapshots] are kept in memory

MoveLast touches every record.

Attach external databases to Access db’s so
that Table structure is cached.

Append a new TableDef to the Database with the
correct SourceTableName and Connect

Optimize [ISAM] settings in VB.INI. See
PERFORM.TXT.

Optimizing Display Speed

Turn off ClipControls.
Use AutoRedraw appropriately.
Use Image instead of Picture box.
Use Line instead of PSet.
Hide controls when setting many properties

to avoid multiple repaints.

Optimizing Apparent Speed

Keep forms hidden but loaded.
Use progress indicators.
Pre-load data you expect to need.
Use timers to work in the background.

First Impressions

Use Show in Form_Load event.
Simplify your Startup form.
Don’t load modules you don’t need.

Keeping It Small

Don’t use Variants or fixed strings.
Reclaim string and object variables.
Use Dynamic arrays, and reclaim memory

when you’re done.

Keeping It Small, continued.

Put related code in the same module.
Unload forms.
Remove dead code.
Use string constants instead of literals.

Cutting Back on Graphics

Reclaim memory with LoadPicture() and Cls.
Use Image instead of Picture Box.
Load pictures only as needed, and share

pictures and icons at run-time.
Use RLE bitmaps (good) or metafiles

(better).
Get rid of icons you don’t use.

Optimizing OLE 2 Operations

Activating applications
Use CreateObject()

Don’t Use DDE or Shell

In-place Editing
Is application visible?
OLE Automation

When All Else Fails...

Tricks:
“Lurking apps” that never unload.

Multiple apps that act like a single application (using
DDE or files).

Write some DLLs:
Put strings in a DLL and load on demand.

Put graphics in a DLL and load on demand.

Include the most time-critical code.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

