
Creating OLE 2.0 Object Containers, Object Servers and Automation Servers with Visual C++ 
and MFC

by

Richard Hale Shaw

Richard Hale Shaw is a Contributing Editor to PC Magazine, Windows Tech Journal, MFC Journal, Visual Basic Programmer’s Journal and Microsoft Systems Journal. He’s also the editor of NT 

Developer Journal and writing    Visual Programming++ for Addison-Wesley. He can be reached at MCIMAIL 399-8368 or CompuServe 

72241,155.

Course Outline

u Goals for this class

u A Review of Visual C++ and MFC

u An Overview of OLE

u The MFC OLE Classes

u Building OLE Object Containers

u Building OLE Object Servers

u The Big Payoff: Building OLE Automation Servers

u The Future of OLE: Chicago and Cairo

u General Q&A

Goals for this Class

u Introduce the essential concepts of OLE

u Avoid overdosing your with the esoteric aspects of each

u Expose you to the core technologies provided by VC++ / MFC

u Show you the resources that are available

u Leave you ready to start building OLE applications of your own

Goals for this Class (2)



u Have Fun!

Visual C++ and MFC: A Review

u Programming Paradigm:

u Use AppWizard to generate application

u Use AppStudio to modify/add resources

u Use ClassWizard to modify application

u Write a little code

u Using On-Line Help

u Examining the Generated Code

u Documents-Views

u Etc.

An Overview of OLE 2.0

u Benefits

u Terminology

u Features

u Object Functionality

u Compatibility with OLE 1.0

u Multiplatform Support

u OLE Opportunities

OLE Benefits

u Document-centric approach to computing



u Rich documents which provide more information

u Compound documents for organizing information

u Easier applications integration

OLE Terminology (1)

u Compound Documents (container documents)

u documents that contain data created by multiple applications

u OLE Objects (OLE items, data items)

u text, graphics, spreadsheets, sound, etc. that are linked/embedded in a compound document

OLE Terminology (2)

u Container (container application, client application)

u creates/manages a compound document

u Server (server application)

u creates data items linked/embedded in compound document

u Container-Server

u container to some, server to others

OLE Terminology (3)

u Full server

u can be run as a standalone application and store its own documents as disk files

u Mini-server

u cannot be run standalone

u can only be run via a container



u cannot store its own files

u only useful with embedded items

u Basis for a control

OLE Terminology (4)

u Object Linking

u relates data item to compound document via a linkage

u data item is stored by server

u Object Embedding

u relates data item to compound document via storage

u data item is stored by container

OLE Terminology (5)

u Open editing

u OLE 1.0 method for invoking server to edit OLE object

u uses separate window

u In-place Activation

u state of    OLE object activated in a container application’s compound document

u Visual Editing

u OLE 2.0 method for invoking server to edit OLE object

u uses same window

u only available for embedded items

OLE Terminology (6)

u OLE automation



u lets one application (server) expose objects to be manipulated

u lets another application (client) manipulate those objects

u exposed objects consist of sets of properties (data members) and methods (member functions)

u basis for custom controls

u Automation Server

u application that exposes objects for manipulation

u Automation Client

u application that manipulates exposed objects

OLE Features (1)

u Visual Editing

u directly activate objects in place within documents without switching to a different window

u Nested Objects

u a contained object can contain other objects

u Drag-Drop

u drag objects from one application window to another

u Cut-Paste

u move/copy objects via the clipboard

OLE Features (2)

u Component Object Model

u simplifies linking/embedding, better support for container-servers

u Version Management

u objects can contain versioning information

u Object Conversion



u objects can be converted for use by different applications

u Adaptable Links

u maintains links when object is moved/copied

OLE Features (3)

u Storage-Independent links

u embedded objects can update one another’s data regardless of file-system

u Automation

u run commands/functions in one application from another

OLE 1.0 - 2.0 Compatibility

u OLE 1.0 and OLE 2.0 applications may coexist on same system

u You may mix-match 1.0/2.0 containers/servers

u OLE 2.0 apps default to OLE 1.0 behavior when dealing with OLE 1.0 app

OLE Multiplatform Support

u Win16

u Win32

u Windows NT Daytona 2Q-3Q ‘94 (OLE 2.1)

u Apple Macintosh System 7

u Complete compatibility for compound documents to/from Win16/Win32

u Uses AppleEvents protocol

u RISC

u MIPS

u Alpha



OLE Opportunities with VC++ (1)

u Turn your application into OLE container

u Lets users link/embed server objects in your app’s documents

u Lets users use visual editing to access embedded server objects

u Open editing still available for OLE 1.0 or linked objects

OLE Opportunities with VC++ (2)

u Turn your application into an OLE server

u Lets users store your application’s data in container documents

u Lets app integrators combine your app with others

OLE Opportunities with VC++ (3)

u Turn your application into a container-server

u Get the benefits of both

OLE Opportunities with VC++ (4) 

u Turn your VC++ application into an Automation Server

u Automation clients can drive your application for services

u VB is a built-in Automation Client

MFC’s OLE Support

u Containers

u Servers

u Full Servers

u Mini-Servers

u Automation Servers



u Based on Document-View architecture

u COleDocument

u CDocItem

u COleClientItem

u COleServerItem

u View class will have CDocItem-derived class pointer

MFC’s OLE 2.0 Support: The Good News

u Container and visual editing support

u Server and visual editing support

u OLE Automation support

u Drag-drop, Cut-Paste

MFC’s OLE 2.0 Support: The Bad News

u No support for Imoniker

u IUnknown interface implemented but not exposed

u IMarshall not implemented, but used internally

u Partial Compound file support

The MFC OLE Classes

Building OLE Applications

u Building OLE Containers

u Building OLE Servers

u Building OLE Automation Servers



Building OLE Containers

u The Contain application

u Invoke AppWizard

u Use OLE Options dialog to select “Container” option

u Use Classes dialog to override generated class names, set document type and extension

u Generate the application

u Try out the container

Ideas for extending the Container application

u Additional Visual Editing support

u Drag-drop support

u Embedded links

Building OLE Servers

u The OText application

u Invoking AppWizard

u Using the OLE dialog to select Server

u Using Classes dialog to derive view from CEditView

u Generate the application

u Add code to serialize the contents of the view

u Add code to turn on word-wrap

u Build OText

Building OLE Automation Servers

u What is Automation?



u Benefits of Automation

u History of Automation

u Automation is like making an API Call

u Automation is not like making an API Call

u How Automation works under-the-hood

u OLE’s IDispatch Interface

u OLE Automation the Easy Way

u Building an Automation Server with VC++: 4 Easy Steps

u Building an Automation Client with VB: 3 Easy Steps

What is Automation?

u Solution to cross-application language support for systems and application programming 

u Lets applications expose functions that can be called by other applications

u Exposed functions are 'wrappers' for variables and functions in your application

u Exposed application variables are called properties

u Exposed application functions are called methods

u Application exposing automation functions is an automation server (VC++, Excel, etc.)

u Application accessing exposed automation functions is an automation client (VB, Excel, etc.)

u Automation clients extend their own functionality by automating the functionality of the server

Benefits of Automation

u End-users can use a single macro language (VBA)

u End-users can use the same interface in disparate applications

u Developers can use their own tools

u (provided the language/tool supports Automation)

u One application can drive another 



u You can automate tasks that use multiple applications

u Anyone can write a new macro language and, as long as it supports automation, use the new language to drive automation 
servers

u Object-oriented: reusable code, easy integration, encapsulation

The History of Automation

u Users want a common macro language

u Microsoft originally planned to define a language and a programming environment

u BAD IDEA!

u You'd be restricted to one choice of language

u You'd be restricted to one choice of tool

u Automation lets you define the commands

u GOOD IDEA!

u Each server exposes its functionality

u Any client can invoke exposed functions

u End users get their choice of tool/language (VBA, others)

Automation Is Like Making An API Call:

u Client just makes a function call

u Similar to calling an exported function

u Don't statically link to automation methods, but dynamically link to them at runtime

Automation Is Not Like Making An API Call:

u DLLs / APIs don't provide direct access to owner's properties or variables

u Application calling DLL must know names of DLL functions in advance

u Automation client can dynamically query server to discover methods / properties, data types 
and parameters



Automation Under-the-Hood

u Automation Server exposes end-user level functions through OLE interface known as 
IDispatch

u IDispatch can be implemented on any OLE object

u IDispatch is, for the most part, independent of the rest of OLE

u Automation Client uses IDispatch to:

u Learn names of functions

u Retrieve and check function parameters

u Invoke functions

u IDispatch assumes each function has a unique ID

OLE's IDispatch Interface

u GetTypeInfoCount

u Retrieves number of functions and parameters

u GetTypeInfo

u Retrieves function and parameter names

u GetIDsOfNames

u Maps function names to function IDs

u Invoke

u Invokes function with a given ID

OLE Automation the Easy Way

u Create Automation Servers with Visual C++

u Why VC++?

u VC++ is a built-in OLE automation server



u VC++ can expose the variables/functions of any CCmdTarget-derived class

u Create Automation Clients with Visual Basic (or VBA-based application)

u Why VB?

u VB is a built-in OLE automation client

u VB requires only 3 lines of code to initialize, create and invoke an object

Building an Automation Server with VC++: 4 Easy Steps

u Select "Automation Support" in AppWizard when you create your application

u Adds OLE automation derivation and dispatch table to document class

u Build your application

u Use ClassWizard to expose any variables (properties) and functions (methods)

u Run the application once 

u Registers the exposed object(s) with Windows

Building an Automation Client with VB: 3 Easy Steps

u Add an object variable to your application

u Initialize the object via a call to CreateObject

u Pass CreateObject the object name

u Call functions exposed by the object (go wild!)

Building an OLE Automation Server

u The AutoServ Application

u Generate the initial application

u Invoke AppWizard

u Use OLE Options dialog to check “Automation support”



u Use Classes dialog to override class names and set file extension

u Generate the application

Building an OLE Automation Server (2)

u Add a dialog to prompt for an initial string, position

u Use AppStudio to create the new dialog

u Use ClassWizard to add a new dialog class

u Add code to create the new dialog when the document class is initialized

u Use ClassWizard to add a WM_INITDIALOG handler and set the focus to a control

u Add a new dialog for editing the string

u Use AppStudio to create new dialog

u Use ClassWizard to add a new dialog class

Building OLE an Automation Server (3)

u Add a menu item to invoke the editing dialog

u Use AppStudio to add the menu item

u Use ClassWizard to tie menu item to a message handler and invoke the new dialog

u Add data members for the string and position to the document class

u Modify the Serialize function in the document class to serialize the data

u Modify the view class’ OnDraw function to display the string

Building an OLE Automation Server (4)

u Trap left mouse button messages

u Use ClassWizard to trap the WM_LBUTTONDOWN message for the view

u Add a Refresh function to the document class

u Run AutoServ



Building an OLE Automation Server (5)

u Expose the position variables as properties

u Expose the string variable as a property

u Expose the Refresh function as a method

u Create/Expose a ShowWindow function, if needed by the client

Build the OLE Automation Client in VB

u Add the object variable

u Initialize the object variable

u Call the exposed functions

u Run the VB Automation Client 

The Future of Windows: Chicago and Cairo

u No Program Manager or File Manager: Explorer

u Document-centric, query-based approach

u No program groups, files or directories

u Instead: program icons, documents, folders

The Future of OLE: Cairo

u OLE-aware from the ground-up

u Every folder, document, pane, control is an OLE object

u Globally available, built-in OLE objects

u Every OLE object has exposed properties / methods

u Heavy use of OLE and OLE Automation



u OLE forms instead of dialogs

u OLE distributed object support via DCE RPC

Pointers to Sources: OLE

u Visual Basic Programmer’s Journal, March-April Issue

u OLE 2.0 SDK - Microsoft

u MS VC++ 1.5 “Books On-Line”

u OLE JumpStart CD - Microsoft

u ”Inside OLE 2.0” by Kraig Brockschmidt - MS Press

u Win32 Professional Developer’s Conference

General Q&A


