
An open letter to all owners of PC Magazine's Visual Basic Programmer's Guide to the
Windows API.
version 2.0!!

Thank you.

How else can I start this letter? The Visual Basic Programmer's Guide to the Windows API
is about to go into its fourth printing - almost unheard of in a market where most books are
lucky to sell out their first. As usual, the publisher has asked that I provide them with
information on any changes or corrections that are needed so that they can be added to the
next printing.

When Visual Basic 3.0 came out, I provided them with changes and corrections to make the
book compatible with the new version of Visual Basic, and with their permission also posted
the first version of this file - making all of those changes available to those who already have
the book.

Once again, the corrections are so minor that it does not make sense for you to go out and
purchase a new copy of the book. So once again, I am pleased to be able to provide a
complete list of corrections and changes so that you can upgrade the text and files on your
own.

This file is based on the corrections as submitted to the publisher. I can't guarantee that they
will match the 4th printing exactly (they will be proofing the text for grammar and spelling),
but it should be close enough.

This file may be distributed freely - please pass it around, post it on other BBS systems, etc.

Format of this file:

The first part of this file contains the changes required to bring the 3rd printing of the book
to match the 4th printing. The complete contents of the original apibk.doc file follows. (I
realize this increases your download time somewhat - but it seemed easier than trying to
keep track of two separate versions). This latter part lists the changes from the first and
second printings to the third printing. (The first and second printing were substantially
identical). The first and second printings can be identified by the "Covers Visual Basic 2.0"
red circle on the cover. In the third and fourth printing this circle says "Covers Visual Basic
2.0 & 3.0".

All page numbers in the first part of this document refer to the 3rd printing. If the page
number is different for the second printing, the 2nd printing page number will follow in
parenthesis. All page numbers in the second part refer to the first and second printing.

Final Comments:

Thanks to those who submitted suggestions and corrections for this printing. In addition to
those mentioned earlier, I would like to recognize Brook Rimes and John Beckett (I swear,
John must have checked it cover to cover!).

And forgive me if I make a brief plug: My company, Desaware, makes what I think are
some of the finest and most unique (and generally useful) Visual Basic add-ons in the
business. I encourage you to look at the demo files for our SpyWorks-VB, Custom Control
Factory and CCF-Cursors products that are on the disk that came with the book.

In March 94 we will be shipping a new package called VersionStamper-VB which

addresses the problems of distributing VB executables: detecting incompatible and obsolete
VBX and DLL files at runtime on a system, and embedding windows standard version
resource information into your executable. We will also be shipping our new Common
Dialog Toolkit - an advanced application note for SpyWorks-VB that lets you take
advantage of all of the capability of the Windows common dialog DLL.

Please feel free to give us a call, or send some Email and we'll be glad to tell you about any
of these products and send you additional information.

And once again, thank you for your support.

Daniel Appleman

Desaware: (408) 377-4770, CIS: 70303,2252, Internet 70303.2252@compuserve.com

Page 41

(For some reason this fix was not placed in the 3rd printing even though it was requested).

The second line of code is:

If IsWindowVisible= -1 then

should be:

If IsWindowVisible(hWnd%) = -1 then

Page 102 - Entry for WS_CLIPSIBLINGS

WS_CLIPSIBLINGS 2000000 should be:

WS_CLIPSIBLINGS 4000000

Page 115 - DeferWindowPos - Change declaration (Add % symbol for 4 parameters)

Declare Function DeferWindowPos% Lib "User" (ByVal hWinPosInfo%, ByVal
hWnd%, ByVal hWndInsertAfter%, ByVal x, ByVal y, ByVal cx, ByVal cy, ByVal
wFlags%) should be:

Declare Function DeferWindowPos% Lib "User" (ByVal hWinPosInfo%, ByVal
hWnd%, ByVal hWndInsertAfter%, ByVal x%, ByVal y%, ByVal cx%, ByVal
cy%, ByVal wFlags%)

Page 137

(For some reason this fix was not placed in the 3rd printing even though it was requested).

SendMessage, SendMessageBynum and SendMessageBystring functions - VB Declarations
section

SendMessage, SendMessageBynum and SendMessageBystring all return longs. Change
the % sign at the end of each to &

SendMessageBynum and SendMessageBystring: Both should be aliased to
"SendMessage", not "PostMessage".

Page 177 - GetAsyncKeyState

VB Declarations Declare Function Lib "User" (ByVal vKey%) should be

VB Declarations Declare Function GetAsyncKeyState Lib "User" (ByVal vKey%)

Page 307 - GetObject

In the parameter section, the table entry for hObject:

hObject Integer - Handle to a pen, brush, font, bitmap or palette. should be

hObject Integer - Handle to a pen, brush, font, bitmap.

Page 313 - MoveTo

Return Value Integer - TRUE (nonzero) on success, zero otherwise. Should be:

Return Value Long - The low word of the result contains the X coordinate in
device coordinates. The high word contains the Y coordinate.

Page 485 - Table 11.1, the entry for dmSize

dmSize The Total size of the DEVMODE structure including the private data
area. should be:

dmSize The Total size of the DEVMODE structure not including the private data
area.

Page 486 - Table 11.1, the entry for dmPaperSize

The last sentence in the dmPaperSize entry is:

.... as defined in file APITYPES.TXT with the prefix DMPAPER_. should be

.... as defined in file APICONST.TXT with the prefix DMPAPER_.

Page 487, Escape function - Return Value

The first sentence under the Return Value section is:

Integer - Depends on the nEscape parameter. Unless otherwise specified in table
11.2, the return is zero on success, and a negative number on error based on the
following constants: should be:

Integer - Depends on the nEscape parameter. Unless otherwise specified in table
11.2, the return is greater than zero on success, zero if the Escape is not
implemented, and a negative number on error based on the following constants:

Page 490 - Table 11.2 GETSETPRINTORIENT

Change this entry to read as follows:

GETSETPRINTORIENT lpInData points to a 20-byte structure. The first 32 bit
LONG value contains the orientation. If lpInData is NULL,
the Escape function will return the current orientation. The
DeviceCapabilities and ExtDeviceMode functions make this
escape obsolete.

Page 491 - Table 11.2 - QUERYESCAPESUPPORT

Change QUERYESCAPESUPPORT to QUERYESCSUPPORT

Page 512

The block of code at the bottom of the page should be changed as follows:

 ' Get a copy of the DEVMODE structure for this printer

 ' First find out how big the DEVMODE structure is

 bufsize% = agExtDeviceMode%(hWnd, libhnd%, 0, devname$, devoutput$, Û
agGetAddressForObject(dm), 0, 0)

 ' Allocate a buffer of that size and get a pointer to it

 dminstring$ = String$(bufsize%, 0)

 dminaddr& = agGetAddressForVBString&(dminstring$)

 dmoutstring$ = String$(bufsize%, 0)

 dmoutaddr& = agGetAddressForVBString&(dmoutstring$)

 ' Get the output DEVMODE structure.

 di% = agExtDeviceMode(hWnd, libhnd%, dmoutaddr&, devname$, devoutput$,
dminaddr&, 0, Û
DM_OUT_BUFFER)

 ' Copy the data buffer into the DEVMODE structure

 agCopyDataBynum dmoutaddr&, agGetAddressForObject&(dm), 68

 ' Set the orientation, and set the dmField flag so that

 ' the function will know that it is valid.

Page 518, Table 11.4

Insert the following table entry after the DC_PAPERS entry

DC_PAPERSIZ
E

lpszOutput is a pointer to an array of POINTAPI structures which
are loaded with the dimensions of supported paper sizes tenths of a
millimeter. Sizes are always returned for portrait mode regardless of
the current printer configuration.

Page 521, Table 11.5. Replace corresponding table entry with the following

DM_IN_BUFFE
R

The DEVMODE structure referenced by the lpdmInput buffer will
be used to set the printer driver. Only those fields that are specified
by the dmFields field of the structure will be used. The settings
specified by the lpdmInput buffer when this flag is set will effect the
printer driver or the lpdmOutput buffer depending on the settings of
the other flags.
For example: Setting the DM_IN_BUFFER and
DM_OUT_DEFAULT flags lets you use the lpdmInput buffer to set
the configuration of the default printer.

Page 525 - StartPage function

Change the return value as follows:

Return Value Integer-TRUE (nonzero) on success, zero otherwise. should be:

Return Value Integer - Value >= zero on success, negative on error.

Page 550

The first parameter for function FindExecutable should be lpszFile$, not lpszFile%.

Page 561 - IsBadHugeReadPtr

Return Value Integer - TRUE (nonzero) if the specified memory block is valid
and readable by this application should be:

Return Value Integer - TRUE (nonzero) if the specified memory block is invalid
and not readable by this application.

Page 561 - IsBadHugeWritePtr

Return Value Integer - TRUE (nonzero) if the specified memory block is valid
and writable by this application should be:

Return Value Integer - TRUE (nonzero) if the specified memory block is invalid
and not writable by this application.

Page 561 - IsBadReadPtr

Return Value Integer - TRUE (nonzero) if the specified memory block is valid
and readable by this application should be:

Return Value Integer - TRUE (nonzero) if the specified memory block is invalid
and not readable by this application.

Page 561 - IsBadStringPtr

Return Value Integer - TRUE (nonzero) if the specified memory block is valid
and contains a valid null terminated string. should be:

Return Value Integer - TRUE (nonzero) if the specified memory block is invalid
and does not contain a valid null terminated string.

Page 561 - IsBadWritePtr

Return Value Integer - TRUE (nonzero) if the specified memory block is valid
and writable by this application should be:

Return Value Integer - TRUE (nonzero) if the specified memory block is invalid
and not writable by this application.

Page 566 - Declaration for WinExec

Declare Function WinExec% Lib "Kernel" (ByVal lpCmdLine$, nCmdShow%)
should be

Declare Function WinExec% Lib "Kernel" (ByVal lpCmdLine$, ByVal
nCmdShow%)

Page 567 - Top of page:

Return Value Integer - Greater than 32 on success..... should be

Return Value Integer - Module handle for the executed application - value > 32
on success....

Page 870

(For some reason this fix was not placed in the 3rd printing even though it was requested).

Documentation is missing for the agVBSetControlFlags function.

agVBSetControlFlags

VB Declaration:
Declare Function agVBSetControlFlags& Lib "Apiguide.dll" (ctl As Control, ByVal
mask&, ByVal value&)

Description:
This function is used to control the palette status of a control and returns the current
status of the control.

Use with VB:
Can be used to specify or determine when a control is palette, and whether or not it
currently owns a palette. In practice, this is only effective for determining status.
You can use this function to set the palette awareness of a control only if you take
over all aspects of selecting and realizing palettes. This requires a subclassing tool
capable of detecting both the windows palette messages and the internal Visual Basic
palette messages.

Parameters:

ctl - A control or form

mask - Set a bit in the mask to 1 to indicate that it should be changed according to the
value parameter.

value - Indicates the new value for the bits specified by the mask parameter.
Bit 0 is set to 1 to indicate that the control owns a palette.
Bit 1 is set to 1 to indicate that the control is palette aware.

Returns Value - Long - A value describing the current state of the control.

Page 794 - Last line in Sub UpdateDisplayLine()

LabelShowLine.Caption = linebuf$ should be

LabelShowLine.Caption = Left$(linebuf$, lc%)

Page 923 - Change declaration (add % symbol after name and for 4 parameters)

Declare Function DeferWindowPos Lib "User" (ByVal hWinPosInfo%, ByVal
hWnd%, ByVal hWndInsertAfter%, ByVal x, ByVal y, ByVal cx, ByVal cy, ByVal
wFlags%) should be:

Declare Function DeferWindowPos% Lib "User" (ByVal hWinPosInfo%, ByVal
hWnd%, ByVal hWndInsertAfter%, ByVal x%, ByVal y%, ByVal cx%, ByVal
cy%, ByVal wFlags%)

Page 926 - Declarations for Escape, EscapeBynum and EscapeByString

For all three of these declarations, the fourth parameter is currently listed as lplnData. This
should be lpInData.

Page 927

The first parameter for function FindExecutable should be lpszFile$, not lpszFile%.

Page 952

Change the reference to shellapi.dll in function ShellExecute and ShellExecuteBynum
to shell.dll.

Page 955 - Change declaration (add ByVal to last parameter)

Declare Function WinExec% Lib "Kernel" (ByVal lpCmdLine$, nCmdShow%)
should be:

Declare Function WinExec% Lib "Kernel" (ByVal lpCmdLine$, ByVal
nCmdShow%)

File Changes

Apidecs.bas and Apidecs.txt

Add the following two declarations to the file:

Declare Function FindWindowByClass% Lib "User" Alias "FindWindow" (Byval
lpClassName$, Byval lpWindowName&)

Declare Function FindWindowByWindow% Lib "User" Alias "FindWindow"
(Byval lpClassName&, Byval lpWindowName$)

Correct the declaration for DeferWindowPos as follows:

Declare Function DeferWindowPos% Lib "User" (ByVal hWinPosInfo%, ByVal
hWnd%, ByVal hWndInsertAfter%, ByVal x%, ByVal y%, ByVal cx%, ByVal
cy%, ByVal wFlags%)

Correct the declaration for the WinExec function as follows:

Declare Function WinExec% Lib "Kernel" (ByVal lpCmdLine$, ByVal
nCmdShow%)

For the three declarations for the Escape function, the fourth parameter is lplnData should
be lpInData. If you change this, be sure to check if you need to change any of your
applications that use this function.

ApiConst.Txt and ApiConst.Txt

Add the following lines to the file:

'' SendMessage Flag

Global Const HWND_BROADCAST = -1

The following is the original apibk.doc file that describes how to upgrade the first or
second printing of the Visual Basic Programmer's Guide to the Windows API to
correspond to the 3rd printing. It also discusses issues relating to compatibility with
Visual Basic 3.0

The release of Visual Basic 3.0 coincides with the release of the third printing of this book.
It won't surprise you to know that this printing has been revised for the new release of VB.
However, since the book is essentially a Windows SDK for Visual Basic programmers, the
changes for version 3.0 were quite minor (this would not be the case had we been dealing
with a major release of Windows).

In fact, the changes are so minor that it makes no sense for you to go out and buy a new
copy of the book. Instead, as a public service and for the sake of good customer relations,
this file contains a list of all of the changes and corrections that were incorporated into the
third printing.

This file is based on the corrections as submitted to the publisher. I can't guarantee that they
match the 3rd printing exactly (they will be proofing the text for grammar and spelling), but
it should be close enough. On the other hand, because of lead times in the publication
process, this document contains corrections that are not present in the 3rd printing (those
corrections will also appear in the readme.txt file on the disk that comes with the second
printing - so there is no need to pass this document on to people who have the 3rd printing).

This file may be distributed freely - please pass it around, post it on other BBS systems, etc.

Thanks to all of you who spotted errors in the book and forwarded them to me.
Unfortunately, I did not keep track of who submitted suggestions and corrections, but off the
top of my head I do remember Jonathan Zuck, Keith Pleas and Ted Young. To the others - I
apologize for my forgetfulness (feel free to drop me a note and I'll be sure to mention you in
the next set of changes).

Also, allow me to take this moment to encourage you to take a look at the SpyWorks-VB
and CCF-Cursors demo program that comes on the book's disk. SpyWorks-VB is especially
useful in conjunction with the book when it comes to taking advantage of advanced
Windows API techniques.

Thank you for your support.

Daniel Appleman

Page xxiii

Header Visual Basic Compatibility has been renamed Visual Basic Version
Compatibility

The last two paragraphs on the page have been replaced with the following text:

The original printing of this book was released for version 2.0 of Visual Basic. This
edition has been revised as needed to be compatible with both Visual Basic 2.0 and
Visual Basic 3.0. The changes were quite minor, owing to the fact that while Visual

Basic changed, the underlying Windows API has not. All of the sample files and listings
have been tested with Visual Basic 3.0, however they are still presented in version 2.0
format in order to ensure compatibility with both versions.

Some discussion of Visual Basic 1.0 has been left in this revision where appropriate.
The listing for the RectPlay example in chapter 4 discusses how to interpret listings for
version 1.0 if necessary.

Page xxiv

The following sentence is added after the first sentence in the Closing Notes section.

I never imagined that it would be as well received by the Visual Basic community as it
has been.

Page 8, 2nd paragraph from the bottom, 4th line

Change C/C++ 7.0 to Visual C++

Page 23

Table 2.3, footnote #2

Change VB 2.0 implements... to VB 2.0 and later implements...

Page 24

In Sub Command1_Click:

Change For x% = 1 to 50 to For x% = 1 to 1000

This change still makes the same point, but the difference in performance will be more
noticeable than it would be with only 50 entries.

Page 41

The second line of code is:

If IsWindowVisible= -1 then

should be:

If IsWindowVisible(hWnd%) = -1 then

Page 45

Bottom paragraph, 3rd line.

Change 376836 to 6029316

Page 46

Table 3.4 should be changed as follows:

Determining Bit Values in a Number (Example &H805C0004) should be
Determining Bit Values in a Number (Example &H05C0004).

Change line 5 as follows:

5 5 20-23 22 and 21 should be
5 5 20-23 22 and 20

Page 56

2nd paragraph from the bottom, 2nd line.

Change form of a Visual Basic 2.0 module... to form of a Visual Basic module....

Page 69

RectPlay Program Listings section, 2nd paragraph, first line, should be:

Program listings appear as saved in Visual Basic version 2.0 ASCII file format which is
also compatible with Visual Basic version 3.0.

Page 70

2nd paragraph, 1st line

Change version 2.0 of Visual Basic to version 2.0 and 3.0 of Visual Basic

Page 80

Add the following entry to table 4.5

GetUpdateRect Determines the portion of a window that needs to be
updated

Page 137

SendMessage, SendMessageBynum and SendMessageBystring functions - VB Declarations
section

SendMessage, SendMessageBynum and SendMessageBystring all return longs. Change
the % sign at the end of each to &

SendMessageBynum and SendMessageBystring: Both should be aliased to
"SendMessage", not "PostMessage".

Page 195

The correct declaration for SystemParametersInfoByval is:

Declare Function SystemParametersInfoByval% Lib "User" Alias
"SystemParametersInfo" (ByVal uAction%, ByVal uParam%, ByVal lpvParam As
Any, ByVal fuWinIni%)

Page 219

2nd paragraph from the bottom, 5th line.

Change ... of how many display pixels are in an inch is made ... to
... of how many display pixels are in a logical inch is made ...

Page 243

Add the following entry into the RASTERCAPS table entry:

RC_FLOODFILL: FloodFill API function is supported.

Page 268

In table 7.2 change GetObject to GetObjectAPI

(Note: The keyword GetObject became a reserved word in Visual Basic 3.0. In order to

prevent conflict, the book and all sample and declaration files has been modified to use
GetObjectAPI as an alias for the GetObject API function in much the way that
SetFocusAPI is an alias for the SetFocus API function.)

Page 307

Change the declaration for GetObject to:

GetObjectAPI

Declare Function GetObjectAPI% Lib "GDI" Alias "GetObject" (ByVal
hObject%, ByVal nCount%, ByVal lpObject&)

Page 320

In the "Use with VB" section for the SetROP2 function, nDrawMode parameter description,
change the reference to table 7.9 to 7.8.

Listing 8.4 (page 341)

Last line on the page - change GetObject to GetObjectAPI

List 8.9 (pages 349 through 358)

Change all references to GetObject to GetObjectAPI.

Change all references to Update to DoUpdate (Update became a reserved word in VB 2.0 -
the 1st printing disk was corrected, but it did not get into the book. This change can be
found in the 1st printing readme.txt file).

The indentation in this listing does not match the conventions used in the other sample
programs. How this happened is still somewhat of a mystery to me - but with luck it will be
fixed for this printing.

Page 367

Change all references to shellapi.dll in the ExtractIcon function declaration and description
to shell.dll.

Page 379

1st paragraph, delete the 3rd sentence and add:

You will learn how to create custom checkmarks for checked menus, and how to use any
bitmap as a menu entry in place of a string. You will also learn how to customize
floating popup menus that can appear anywhere on the screen.

Page 387

In the section Tracked Popup Menus delete the first sentence and add:

Visual Basic 3.0 provides direct support for floating popup menus to appear anywhere
on the screen using the PopupMenu command. The TrackPopupMenu API function
can also be used to create popup menus in cases where customization is required or for
use with previous versions of Visual Basic.

Page 388

Insert a new subheading as follows:

Menus, System Menus and Subclassing

Subclassing is a technique which allows you to intercept Windows messages going to a
form. This technique can be used to detect the WM_COMMAND Windows message
directly, eliminating the need to ensure compatibility with a Visual Basic menu structure
when using menu API functions. It also allows you to intercept the
WM_SYSCOMMAND message which makes it practical to customize an application's
system menu. Refer to the Message Handling section in chapter 17 for more information
on subclassing and the tools required to use this powerful technique.

Listing 9.4 (pages 397-405)

Change all references to GetObject to GetObjectAPI.

Once again, the indentation does not consistantly follow Basic standards.

Page 397, function GetFlagString$

Change the 3rd through 4th lines in the function to the following:

If (menuflags% And MF_CHECKED) <>0 Then
f$ = f$ + "Checked"

Else
f$ = f$ + "UnChecked"

Page 410, 412, 413,414

EnableMenuItem function - wIDEnableItem parameter
GetMenuState - wID parameter
GetMenuString - wIDItem parameter
HiliteMenuItem - wIDHiliteItem paramater

In each of these cases, the first line says: "Identifier of the menu entry to check or uncheck".
Modifiy this to match the description of each of these functions. This proves once and for
all that the benifits of incorporating the "cut" and "Paste" operation into word processors is
not without its drawbacks. Thanks to Ted Young for spotting this one.

Page 420

Use with VB section - add before the first sentence:

Visual Basic 3.0 provides direct support for tracked popup menus, however this function
remains useful for customized menus and use with earlier versions of Visual Basic.

Listing 10.8

Change all references to GetObject to GetObjectAPI.

Listing 11.6

Change all references to GetObject to GetObjectAPI.

Page 545

Listing 12.4 heading should be: Project Listing File EXECDEMO.MAK

Listing 12.5 heading should be: Form Description for File EXECDEMO.FRM

Listing 12.6

Correct indentation for Sub File1_Click()

Page 550

The first parameter for function FindExecutable should be lpszFile$, not lpszFile%.

The library declarations should be shell.dll not shellapi.dll.

Page 565

Change the library declaration for function ShellExecute to refer to function shell.dll instead
of shellapi.dll.

Page 609

Under the Return Value section for the OpenFile function, the final sentence should read:

Errors are listed in Table 13.9 earlier in this chapter.

Page 610

The following table entry should be added to Tabel 13.12 before the OF_WRITE entry:

OF_VERIFY Returns HFILE_ERROR if the time and date of the file specified by the
lpFileName$ parameter does not match that specified by the lpReOpenBuff
parameter.

Page 663

In table 15.1, change the second reference to CF_TEXT to CF_TIFF.

Chapter 16

Palettes seem to work the same under VB 2.0 and 3.0. The text was clarify to indicate this.
Specifically - all indications of Visual Basic 2.0 have been changed to 2.0 & 3.0 as follows:

Page 691, par 2, line 3
Page 697, par 2, line 3
Page 698, section Using Palettee Functions with Visual Basic line 1
Page 710, 2nd paragraph from the bottom, last line.
Page 731, Function RealizePalette, Use with VB section line 1
Page 733, Function SelectPalette, Use with VB section line 1
Page 735, Function SelectPalette, Use with VB section line 1

Chapter 16, Function reference section

For the following functions: DrageAcceptFiles, DragFinish, DragQueryFile &
DragQueryPoint change the declaration reference from "shellapi.dll" to "shell.dll".

Page 711

In section Dragging files, line1, change SHELLAPI.DLL to SHELL.DLL.

Page 765

Add the following Comments section to the WM_MENUSELECT command.

Comments:

When a menu is closed, wParam will be zero and the low word of lParam will be
&Hffff.

Page 801

EM_GETPASSWORDCHAR function, Use with VB section. Change reference to
Visual Basic 2.0 to be Visual Basic 2.0 & 3.0

Page 802

EM_LIMITTEXT function, Use with VB section. Change reference to Visual Basic 2.0
to be Visual Basic 2.0 & 3.0

Page 805

EM_SETPASSWORDCHAR function, Use with VB section. Change reference to
Visual Basic 2.0 to be Visual Basic 2.0 & 3.0

Page 865

Use with VB section of agGetControlHwnd function. Change reference to Visual Basic
2.0 to Visual Basic 2.0 and later.

Page 870

Documentation is missing for the agVBSetControlFlags function.

agVBSetControlFlags

VB Declaration:
Declare Function agVBSetControlFlags& Lib "Apiguide.dll" (ctl As Control, ByVal
mask&, ByVal value&)

Description:
This function is used to control the palette status of a control and returns the current
status of the control.

Use with VB:
Can be used to specify or determine when a control is palette, and whether or not it
currently owns a palette. In practice, this is only effective for determining status.
You can use this function to set the palette awareness of a control only if you take
over all aspects of selecting and realizing palettes. This requires a subclassing tool
capable of detecting both the windows palette messages and the internal Visual Basic
palette messages.

Parameters:

ctl - A control or form

mask - Set a bit in the mask to 1 to indicate that it should be chagned according to the
value parameter.

value - Indicates the new value for the bits specified by the mask parameter.
Bit 0 is set to 1 to indicate that the control owns a palette.
Bit 1 is set to 1 to indicate that the control is palette aware.

Returns Value - Long - A value describing the current state of the control.

Page 924

Change all references to shellapi.dll in functions DragAcceptFiles, DragFinish,

DragQueryFile and DragQueryPoint to shell.dll.

Page 927

The first parameter for function FindExecutable should be lpszFile$, not lpszFile%.

Change the reference to shellapi.dll in functions ExtractIcon and FindExecutable to
shell.dll.

Page 952

Change the reference to shellapi.dll in function ShellExecute and ShellExecuteBynum
to shell.dll.

Page 933

Change the declaration of GetObject to:

GetObjectAPI 7 Declare Function GetObjectAPI% Lib "GDI" Alias
"GetObject"

Page 988

Change BitBit to BitBlt

Page 1000

Change GetObject to GetObjectAPI

Page 1001

Add a reference to page 80 to function GetUpdateRect.

Page 1003

The following commands:

Istrcat, Istrcmp, Istrcmpi, Istrcpy, and Istrlen should be

lstrcat, lstrcmp, lstrcmpi, lstrcpy and lstrlen (lower case 'L' as the first character)

Page 1014

Change entry SHELLAPI.DLL to SHELL.DLL

Page 1015

Add the following references to the entry for subclassing: 388, 741-744.

Page 1020

Yep - part of the index is missing. Here are the missing entries:
WM_SYSKEYUP message, 777
WM_SYSTEMERROR message, 968
WM_TIMECHANGE message, 777-778
WM_TIMER message, 968
WM_UNDO message, 745, 778
WM_USER message, 968
WM_VKEYTOITEM message, 968
WM_VSCROLLCLIPBOARD message, 968
WM_VSCROLL message, 778-779
WM_WINDOWPOSCHANGED message, 779

WM_WINDOWPOSCHANGING message, 779-780
WM_WININICHANGE message, 780
WNDCLASS structure, 901-902
WndProc function, 862
WNetAddConnection function, 578, 617
WNetCancelConnection function, 578, 617
WNetGetConnection function, 578, 618
word breaks, 960
WriteComm function, 635, 659
WritePrivateProfileString functions, 570, 618
WriteProfileString functions, 570, 619
writing to files, 578, 602, 605, 610
WS_BORDER style bit, 102
WS_CAPTION style bit, 102
WS_CHILD style bit, 102
WS_CLIPCHILDREN style bit, 102
WS_CLIPSIBLINGS style bit, 102
WS_DISABLED style bit, 102
WS_DLGFRAME style bit, 102
WS_EX_ACCEPTFILES style bit, 103, 104
WS_EX_DLGMODALFRAME style bit, 104
WS_EX_NOPARENTNOTIFY style bit, 104
WS_EX_TOPMOST style bit, 104
WS_EX_TRANSPARENT style bit, 104
WS_GROUP style bit, 102
WS_HSCROLL style bit, 103
WS_MAXIMIZEBOX style bit, 103
WS_MAXIMIZE style bit, 103
WS_OVERLAPPED style bit, 103
WS_POPUP style bit, 103
WS_SYSMENU style bit, 103
WS_TABSTOP style bit, 103
WS_THICKFRAME style bit, 103
WS_VISIBLE style bit, 103
WS_VSCROLL style bit, 103
wvsprintf function, 715, 736-737
Xoff and Xon characters, 626
XOR bitmap, 333
Yield function, 956
zooming windows, 130
Z-order, 20

APICONST.TXT

The following constants were added:

'' SendMessage Flag

Global Const HWND_BROADCAST = -1

'' Network Connection errors

Global Const WN_NOT_CONNECTED = &H0030

Global Const WN_OPEN_FILES = &H0031

Global Const WN_BAD_NETNAME = &H0032

Global Const WN_BAD_LOCALNAME = &H0033

Global Const WN_ALREADY_CONNECTED = &H0034

Global Const WN_DEVICE_ERROR = &H0035

Global Const WN_CONNECTION_CLOSED = &H0036

Add the following after the ''SetWindowPos flags" section:

Global Const SWP_NOSENDCHANGING = &H400

Global Const SWP_DEFERERASE = &H2000

'' SetWindowPos() hwndInsertAfter values

Global Const HWND_TOP = 0

Global Const HWND_BOTTOM = 1

Global Const HWND_TOPMOST = -1

Global Const HWND_NOTOPMOST = -2

Apiguide.bas

Add the following declaration:

Declare Function agVBSetControlFlags& Lib "Apiguide.dll" (ctl As Control, ByVal
mask&, ByVal value&)

Sample Code Changes

The following code changes are listed by file and line number. You may wish to also
change the appropriate listing in the book. Other minor changes are listed in the update
instructions earlier in this document.

GetObject

Visual Basic 3.0 uses GetObject as a reserved word. In order to accomodate this, the
declaration for GetObject has been changed to GetObjectAPI which is aliased to GetObject.
The new declaration of GetObject as seen in file apidecs.txt, apidecs.bas and in Appendix E
page 933 is:

Declare Function GetObjectAPI% Lib "GDI" Alias "GetObject" (ByVal hObject%, ByVal
nCount%, ByVal lpObject&)

The command GetObject must be changed to GetObjectAPI in the following files:
Menulook.frm, lines 285, 391

Puzzle.frm, line 77
Picprint.frm, line 335
Stockbms.frm, line 128
Textdemo.frm, line 116

	If IsWindowVisible= -1 then
	should be:
	If IsWindowVisible(hWnd%) = -1 then
	WS_CLIPSIBLINGS 2000000 should be:
	WS_CLIPSIBLINGS 4000000
	Declare Function DeferWindowPos% Lib "User" (ByVal hWinPosInfo%, ByVal hWnd%, ByVal hWndInsertAfter%, ByVal x, ByVal y, ByVal cx, ByVal cy, ByVal wFlags%) should be:
	Declare Function DeferWindowPos% Lib "User" (ByVal hWinPosInfo%, ByVal hWnd%, ByVal hWndInsertAfter%, ByVal x%, ByVal y%, ByVal cx%, ByVal cy%, ByVal wFlags%)
	SendMessage, SendMessageBynum and SendMessageBystring all return longs. Change the % sign at the end of each to &
	SendMessageBynum and SendMessageBystring: Both should be aliased to "SendMessage", not "PostMessage".
	VB Declarations Declare Function Lib "User" (ByVal vKey%) should be
	VB Declarations Declare Function GetAsyncKeyState Lib "User" (ByVal vKey%)
	hObject Integer - Handle to a pen, brush, font, bitmap or palette. should be
	hObject Integer - Handle to a pen, brush, font, bitmap.
	Return Value Integer - TRUE (nonzero) on success, zero otherwise. Should be:
	Return Value Long - The low word of the result contains the X coordinate in device coordinates. The high word contains the Y coordinate.
	dmSize The Total size of the DEVMODE structure including the private data area. should be:
	dmSize The Total size of the DEVMODE structure not including the private data area.
 as defined in file APITYPES.TXT with the prefix DMPAPER_. should be
 as defined in file APICONST.TXT with the prefix DMPAPER_.
	Integer - Depends on the nEscape parameter. Unless otherwise specified in table 11.2, the return is zero on success, and a negative number on error based on the following constants: should be:
	Integer - Depends on the nEscape parameter. Unless otherwise specified in table 11.2, the return is greater than zero on success, zero if the Escape is not implemented, and a negative number on error based on the following constants:
	GETSETPRINTORIENT lpInData points to a 20-byte structure. The first 32 bit LONG value contains the orientation. If lpInData is NULL, the Escape function will return the current orientation. The DeviceCapabilities and ExtDeviceMode functions make this escape obsolete.
	Change QUERYESCAPESUPPORT to QUERYESCSUPPORT
	' Get a copy of the DEVMODE structure for this printer
	' First find out how big the DEVMODE structure is
	bufsize% = agExtDeviceMode%(hWnd, libhnd%, 0, devname$, devoutput$, Û agGetAddressForObject(dm), 0, 0)
	' Allocate a buffer of that size and get a pointer to it
	dminstring$ = String$(bufsize%, 0)
	dminaddr& = agGetAddressForVBString&(dminstring$)
	dmoutstring$ = String$(bufsize%, 0)
	dmoutaddr& = agGetAddressForVBString&(dmoutstring$)
	
	' Get the output DEVMODE structure.
	di% = agExtDeviceMode(hWnd, libhnd%, dmoutaddr&, devname$, devoutput$, dminaddr&, 0, Û DM_OUT_BUFFER)
	
	' Copy the data buffer into the DEVMODE structure
	agCopyDataBynum dmoutaddr&, agGetAddressForObject&(dm), 68
	' Set the orientation, and set the dmField flag so that
	' the function will know that it is valid.
	Return Value Integer-TRUE (nonzero) on success, zero otherwise. should be:
	Return Value Integer - Value >= zero on success, negative on error.
	Return Value Integer - TRUE (nonzero) if the specified memory block is valid and readable by this application should be:
	Return Value Integer - TRUE (nonzero) if the specified memory block is invalid and not readable by this application.
	Return Value Integer - TRUE (nonzero) if the specified memory block is valid and writable by this application should be:
	Return Value Integer - TRUE (nonzero) if the specified memory block is invalid and not writable by this application.
	Return Value Integer - TRUE (nonzero) if the specified memory block is valid and readable by this application should be:
	Return Value Integer - TRUE (nonzero) if the specified memory block is invalid and not readable by this application.
	Return Value Integer - TRUE (nonzero) if the specified memory block is valid and contains a valid null terminated string. should be:
	Return Value Integer - TRUE (nonzero) if the specified memory block is invalid and does not contain a valid null terminated string.
	Return Value Integer - TRUE (nonzero) if the specified memory block is valid and writable by this application should be:
	Return Value Integer - TRUE (nonzero) if the specified memory block is invalid and not writable by this application.
	Declare Function WinExec% Lib "Kernel" (ByVal lpCmdLine$, nCmdShow%) should be
	Declare Function WinExec% Lib "Kernel" (ByVal lpCmdLine$, ByVal nCmdShow%)
	Return Value Integer - Greater than 32 on success..... should be
	Return Value Integer - Module handle for the executed application - value > 32 on success....
	agVBSetControlFlags
	VB Declaration:
	Declare Function agVBSetControlFlags& Lib "Apiguide.dll" (ctl As Control, ByVal mask&, ByVal value&)

	Description:
	This function is used to control the palette status of a control and returns the current status of the control.

	Use with VB:
	Can be used to specify or determine when a control is palette, and whether or not it currently owns a palette. In practice, this is only effective for determining status. You can use this function to set the palette awareness of a control only if you take over all aspects of selecting and realizing palettes. This requires a subclassing tool capable of detecting both the windows palette messages and the internal Visual Basic palette messages.

	Parameters:
	ctl - A control or form
	mask - Set a bit in the mask to 1 to indicate that it should be changed according to the value parameter.
	value - Indicates the new value for the bits specified by the mask parameter.
	Bit 0 is set to 1 to indicate that the control owns a palette. Bit 1 is set to 1 to indicate that the control is palette aware.

	Returns Value - Long - A value describing the current state of the control.
	LabelShowLine.Caption = linebuf$ should be
	LabelShowLine.Caption = Left$(linebuf$, lc%)
	Declare Function DeferWindowPos Lib "User" (ByVal hWinPosInfo%, ByVal hWnd%, ByVal hWndInsertAfter%, ByVal x, ByVal y, ByVal cx, ByVal cy, ByVal wFlags%) should be:
	Declare Function DeferWindowPos% Lib "User" (ByVal hWinPosInfo%, ByVal hWnd%, ByVal hWndInsertAfter%, ByVal x%, ByVal y%, ByVal cx%, ByVal cy%, ByVal wFlags%)
	The first parameter for function FindExecutable should be lpszFile$, not lpszFile%.
	Change the reference to shellapi.dll in function ShellExecute and ShellExecuteBynum to shell.dll.
	Declare Function WinExec% Lib "Kernel" (ByVal lpCmdLine$, nCmdShow%) should be:
	Declare Function WinExec% Lib "Kernel" (ByVal lpCmdLine$, ByVal nCmdShow%)
	Declare Function FindWindowByClass% Lib "User" Alias "FindWindow" (Byval lpClassName$, Byval lpWindowName&)
	Declare Function FindWindowByWindow% Lib "User" Alias "FindWindow" (Byval lpClassName&, Byval lpWindowName$)
	Declare Function DeferWindowPos% Lib "User" (ByVal hWinPosInfo%, ByVal hWnd%, ByVal hWndInsertAfter%, ByVal x%, ByVal y%, ByVal cx%, ByVal cy%, ByVal wFlags%)
	Declare Function WinExec% Lib "Kernel" (ByVal lpCmdLine$, ByVal nCmdShow%)
	'' SendMessage Flag
	Global Const HWND_BROADCAST = -1
	Header Visual Basic Compatibility has been renamed Visual Basic Version Compatibility
	The original printing of this book was released for version 2.0 of Visual Basic. This edition has been revised as needed to be compatible with both Visual Basic 2.0 and Visual Basic 3.0. The changes were quite minor, owing to the fact that while Visual Basic changed, the underlying Windows API has not. All of the sample files and listings have been tested with Visual Basic 3.0, however they are still presented in version 2.0 format in order to ensure compatibility with both versions.
	Some discussion of Visual Basic 1.0 has been left in this revision where appropriate. The listing for the RectPlay example in chapter 4 discusses how to interpret listings for version 1.0 if necessary.
	I never imagined that it would be as well received by the Visual Basic community as it has been.
	Change C/C++ 7.0 to Visual C++
	Change For x% = 1 to 50 to For x% = 1 to 1000
	If IsWindowVisible= -1 then
	should be:
	If IsWindowVisible(hWnd%) = -1 then
	Change 376836 to 6029316
	Determining Bit Values in a Number (Example &H805C0004) should be Determining Bit Values in a Number (Example &H05C0004).
	5 5 20-23 22 and 21 should be 5 5 20-23 22 and 20
	Change form of a Visual Basic 2.0 module... to form of a Visual Basic module....
	Program listings appear as saved in Visual Basic version 2.0 ASCII file format which is also compatible with Visual Basic version 3.0.
	GetUpdateRect
	Determines the portion of a window that needs to be updated
	SendMessage, SendMessageBynum and SendMessageBystring all return longs. Change the % sign at the end of each to &
	SendMessageBynum and SendMessageBystring: Both should be aliased to "SendMessage", not "PostMessage".
	Declare Function SystemParametersInfoByval% Lib "User" Alias "SystemParametersInfo" (ByVal uAction%, ByVal uParam%, ByVal lpvParam As Any, ByVal fuWinIni%)
	Change ... of how many display pixels are in an inch is made ... to ... of how many display pixels are in a logical inch is made ...
	RC_FLOODFILL: FloodFill API function is supported.
	GetObjectAPI
	Declare Function GetObjectAPI% Lib "GDI" Alias "GetObject" (ByVal hObject%, ByVal nCount%, ByVal lpObject&)
	You will learn how to create custom checkmarks for checked menus, and how to use any bitmap as a menu entry in place of a string. You will also learn how to customize floating popup menus that can appear anywhere on the screen.
	Visual Basic 3.0 provides direct support for floating popup menus to appear anywhere on the screen using the PopupMenu command. The TrackPopupMenu API function can also be used to create popup menus in cases where customization is required or for use with previous versions of Visual Basic.
	Menus, System Menus and Subclassing
	Subclassing is a technique which allows you to intercept Windows messages going to a form. This technique can be used to detect the WM_COMMAND Windows message directly, eliminating the need to ensure compatibility with a Visual Basic menu structure when using menu API functions. It also allows you to intercept the WM_SYSCOMMAND message which makes it practical to customize an application's system menu. Refer to the Message Handling section in chapter 17 for more information on subclassing and the tools required to use this powerful technique.
	Listing 12.4 heading should be: Project Listing File EXECDEMO.MAK
	Listing 12.5 heading should be: Form Description for File EXECDEMO.FRM
	Errors are listed in Table 13.9 earlier in this chapter.
	In section Dragging files, line1, change SHELLAPI.DLL to SHELL.DLL.
	Comments:
	When a menu is closed, wParam will be zero and the low word of lParam will be &Hffff.
	EM_GETPASSWORDCHAR function, Use with VB section. Change reference to Visual Basic 2.0 to be Visual Basic 2.0 & 3.0
	EM_LIMITTEXT function, Use with VB section. Change reference to Visual Basic 2.0 to be Visual Basic 2.0 & 3.0
	EM_SETPASSWORDCHAR function, Use with VB section. Change reference to Visual Basic 2.0 to be Visual Basic 2.0 & 3.0
	Use with VB section of agGetControlHwnd function. Change reference to Visual Basic 2.0 to Visual Basic 2.0 and later.
	agVBSetControlFlags
	VB Declaration:
	Declare Function agVBSetControlFlags& Lib "Apiguide.dll" (ctl As Control, ByVal mask&, ByVal value&)

	Description:
	This function is used to control the palette status of a control and returns the current status of the control.

	Use with VB:
	Can be used to specify or determine when a control is palette, and whether or not it currently owns a palette. In practice, this is only effective for determining status. You can use this function to set the palette awareness of a control only if you take over all aspects of selecting and realizing palettes. This requires a subclassing tool capable of detecting both the windows palette messages and the internal Visual Basic palette messages.

	Parameters:
	ctl - A control or form
	mask - Set a bit in the mask to 1 to indicate that it should be chagned according to the value parameter.
	value - Indicates the new value for the bits specified by the mask parameter.
	Bit 0 is set to 1 to indicate that the control owns a palette. Bit 1 is set to 1 to indicate that the control is palette aware.

	Returns Value - Long - A value describing the current state of the control.
	Change all references to shellapi.dll in functions DragAcceptFiles, DragFinish, DragQueryFile and DragQueryPoint to shell.dll.
	The first parameter for function FindExecutable should be lpszFile$, not lpszFile%.
	Change the reference to shellapi.dll in functions ExtractIcon and FindExecutable to shell.dll.
	Change the reference to shellapi.dll in function ShellExecute and ShellExecuteBynum to shell.dll.
	Change the declaration of GetObject to:
	GetObjectAPI 7 Declare Function GetObjectAPI% Lib "GDI" Alias "GetObject"
	Change BitBit to BitBlt
	Change GetObject to GetObjectAPI
	Add a reference to page 80 to function GetUpdateRect.
	Istrcat, Istrcmp, Istrcmpi, Istrcpy, and Istrlen should be
	lstrcat, lstrcmp, lstrcmpi, lstrcpy and lstrlen (lower case 'L' as the first character)
	Change entry SHELLAPI.DLL to SHELL.DLL
	Add the following references to the entry for subclassing: 388, 741-744.
	'' SendMessage Flag
	Global Const HWND_BROADCAST = -1
	'' Network Connection errors
	Global Const WN_NOT_CONNECTED = &H0030
	Global Const WN_OPEN_FILES = &H0031
	Global Const WN_BAD_NETNAME = &H0032
	Global Const WN_BAD_LOCALNAME = &H0033
	Global Const WN_ALREADY_CONNECTED = &H0034
	Global Const WN_DEVICE_ERROR = &H0035
	Global Const WN_CONNECTION_CLOSED = &H0036
	Global Const SWP_NOSENDCHANGING = &H400
	Global Const SWP_DEFERERASE = &H2000
	'' SetWindowPos() hwndInsertAfter values
	Global Const HWND_TOP = 0
	Global Const HWND_BOTTOM = 1
	Global Const HWND_TOPMOST = -1
	Global Const HWND_NOTOPMOST = -2
	Declare Function agVBSetControlFlags& Lib "Apiguide.dll" (ctl As Control, ByVal mask&, ByVal value&)
	Menulook.frm, lines 285, 391
	Puzzle.frm, line 77
	Picprint.frm, line 335
	Stockbms.frm, line 128
	Textdemo.frm, line 116

