
Contents
Overview

About SQL-Sombrero/VBX for DB-Library

Installation

What You Will Need: Environment Information

Instructions: How to Install

Files Created and Affected by Install

Application Architecture

Guidelines for your Application

Handling Errors and Messages

Initializing the SQL-Sombrero/VBX Library

Establishing a SQL Server Connection

Communicate Transact-SQL statements to the SQL Server

Obtain and Process Results

Close Connections to the SQL Server

Function Descriptions

CompileDate

SombreroVersion

SqlAData

SqlADLen

SqlAltColId

SqlAltLen

SqlAltOp

SqlAltType

SqlAltUType

SqlBCPBatchPC

SqlBCPColfmt

SqlBCPColumnFormat

SqlBCPColumns

SqlBCPColumnsPC

SqlBCPControl

SqlBCPDonePC

SqlBCPExec

SqlBCPInit

SqlBCPInitPC

SqlBCPReadFmt

SqlBCPSendRowPC

SqlBCPSetDataPC

SqlBCPSetL

SqlBCPWriteFmt

SqlByList

SqlCancel

SqlCanQuery

SqlChange

SqlClose

SqlClrBuf

SqlClrOpt

SqlCmd

SqlCmdRow

SqlColBrowse

SqlColLen

SqlColName

SqlColSource

SqlColType

SqlColUType

SqlCount

SqlCurCmd

SqlCurRow

SqlData

SqlDataReady

SqlDateCrack

SqlDatLen

SqlDead

SqlExec

SqlExit

SqlFirstRow

SqlFreeBuf

SqlFreeLogin

SqlGetChar

SqlGetOff

SqlGetRow

SqlGetTime

SqlHasRetStat

SqlInit

SqlIsAvail

SqlIsCount

SqlIsOpt

SqlLastRow

SqlLogin

SqlMoreCmds

SqlMoreText

SqlName

SqlNextRow

SqlNumAlts

SqlNumCols

SqlNumCompute

SqlNumOrders

SqlNumRets

SqlOk

SqlOpen

SqlOpenConnection

SqlOrderCol

SqlPrType

SqlQual

SqlResults

SqlRetData

SqlRetLen

SqlRetName

SqlRetStatus

SqlRetType

SqlRows

SqlRowType

SqlRpcInit

SqlRpcParam

SqlRpcSend

SqlRPwClr

SqlRPwSet

SqlSend

SqlSendCmd

SqlServerEnum

SqlSetAvail

SqlSetLApp

SqlSetLHost

SqlSetLNatLang

SqlSetLoginTime

SqlSetLPwd

SqlSetLUser

SqlSetMaxProcs

SqlSetOpt

SqlSetTime

SqlStrCpy

SqlStrLen

SqlTabBrowse

SqlTabCount

SqlTabName

SqlTabSource

SqlTsNewLen

SqlTsNewVal

SqlTsPut

SqlTsUpdate

SqlTxPtr

SqlTxTimeStamp

SqlTxTsNewVal

SqlTxTsPut

SqlUse

SqlWinExit

SqlWriteText

About SQL-Sombrero/VBX for DB-Library
The SQL-Sombrero/VBX is a library of functions for use with Sybase and Microsoft SQL Server products.
The functions are used to build SQL Server front-end applications for the Windows operating
environment.    The SQL-Sombrero/VBX is an interface to DB-Library, a SQL Server Client-Library API for
C programmers.

SQL-Sombrero/VBX allows Visual Basic to interact directly with SQL Server.    The functions allow a
developer to easily make connections with SQL Server databases, send Transact-SQL statements, and
process their results.

What You Will Need: Environment Information
To Use SQL-Sombrero/VBX you will need the following:

-    Microsoft Windows release 3.1 or later.

-    80386 (20MHz) or higher processor.

-    4 megabytes of RAM.

-    2 megabytes of free disk space for software and environment.

-    Microsoft or SYBASE SQL Server Open Client software (runtime DB-Library and Net-Library) for
Windows and compatible network.

Instructions: How to Install
SQL-Sombrero/VBX comes with one install diskette.

Insert the Install diskette and run INSTALL.EXE from within windows.

The default is a directory called C:\SQL\SQLVBXDB.    A drop down list box facilitates choosing an
alternative destination.

Full Install
Press the Full Install button to install SQL-Sombrero/VBX completely.    The installation process begins to
unpack and copy files from the Install diskette to the chosen destination.

Custom
The Custom Install procedure allows individual components of the SQL-Sombrero/VBX package to be
installed separately.

Note: it is important that the latest DLLs are used in order to achieve maximum functionality.

When the installation of files is complete,    the install procedure will ask you if you wish to create a
Program Manager group to access the help files and the Showmod program.

After creating the Program Manager group the install will inform you that the installation is complete and
request an acknowledgement.

Files Created and Affected by Install
If you choose the Custom installation option there are a total of five (5) different components that can be
installed.

1. SQL-Sombrero/VBX

- this component consists of the VBX file with its license file and the file of declarations for the
SQL-Sombrero/VBX functions.

If this component is selected then the following files are installed.    The files are installed into the directory
choosen in the installation procedure as described above.

SQLVBXDB.VBX

SQLNDEF.BAS

SQLVBXDB.LIC

README.TXT

INSTALL.LOG (Shows files installed and their locations)

2. SQL-Sombrero/VBX Help File

- this component consists of the Help file for SQL-Sombrero/VBX as well as other files to allow
the navigator option to work with the help file.

If this component is selected then the following files are installed.    The files are installed into the
directories as shown below.

SQLVBXDB.HLP - default directory

SQLVBXDB.DHN - default directory

D2HNAV.EXE - windows directory

D2HNAV.HLP - windows directory

MSOUTLIN.VBX - windows system directory

D2HLINK.DLL - windows system directory

3. Sample Application 4.2x

- this is a sample application using the SQL-Sombrero/VBX for SQL Servers 4.2x.    This sample
requires the PUBS database to be installed.

LOGON.FRM - default/sample42 directory

MAINFORM.FRM - default/sample42 directory

GBASS.BAS - default/sample42 directory

SAMPLE42.MAK - default/sample42 directory

GLOBAL.BAS - default/sample42 directory

4. Sample Application System 10

- this is a sample application using the SQL-Sombrero/VBX for SYBASE SQL Server System 10.

This sample requires the PUBS2 database to be installed.

LOGON.FRM - default/sample10 directory

MAINFORM.FRM - default/sample10 directory

GBASS.BAS - default/sample10 directory

SAMPLE10.MAK - default/sample10 directory

GLOBAL.BAS - default/sample10 directory

5. Show Active Modules

- this is a program which will scan all module currently running in the Windows environment and
show details of those modules.

SHOWMOD.EXE - default directory

The file SQLVBXDB.LIC is the licence file.    This file must reside in the same directory as the file
SQLVBXDB.VBX.    This file is required if the SQL-Sombrero/VBX for DB-Library is to be used in
developing an application.    The SQLVBXDB.LIC file is not required for an application that is distributed
as an EXE file.    Sample42 is for the Pubs database and Sample10 is for the Pubs2 database.

Please refer to the inside of    this manual's front cover for more information regarding the LIC file.

Guidelines for your Application
The following is intended as a set of guidlelines for constructing an application based on SQL-
Sombrero/VBX.

1. Construct the error and message handlers

2. Initialize the SQL-Sombero/VBX control.

3. Establish a connection with the SQL Server.

4. Communicate Transact-SQL statements to the SQL Server.

5. Obtain and process results.

6. Close connections to the SQL Server and terminate the application.

This section will elaborate on each of these architectural guidelines.    Excerpts from the sample
application provided with the installation have been included to help with the explanation.

Handling Errors and Messages
Errors detected by the SQL-Sombrero/VBX trigger the error handler and the message handler.    The error
handler and the message handler must be coded to take appropriate action when errors occur and
messages are returned.

To incorporate the error and message handling procedures in your application perform the following.

· Choose add file from the File menu, to add the file SQLVBXDB.VBX to your project.    Visual
Basic will add a custom control, shown as a SQL box, to the bottom of the Toolbox.

· Select the custom control and place it on your main form.    Only one copy should be within your
application.    The main form should now include the object SQLVBXDB1 which includes procedure
templates for the event handlers: SQLVBXDB1_Error and SQLVBXDB1_Message.

The following sample application excerpt shows a simple example of using the error handler.
Sub SQLVBXDB1_ERROR (Sqlconn As Integer, Severity As Integer, ErrorNum
As Integer, OsError As Integer, errorstr As String, OsErrorStr As
String, RetCode As Integer)
' This is a SQL Server callback routine
'
' When the server needs to inform the user of a error this callback is
called.For
' example if the user tries to logon to a server which does not exist
then the error
' message string (errorstr) will contain text indicating that a
connection with the
' server cannot be made. This routine is also called when syntax errors
are discovered
'in SQL commands submitted for execution.
 MsgBox errorstr
End Sub
SQLVBXDB1_MESSAGE is the built in message handler which must be coded to
handle messages from SQL Server. The Message handler is triggered
automatically when the server sends a message back to the front end.
Sub SQLVBXDB1_MESSAGE (Sqlconn As Integer, message As Long, State As
Integer, Severity As Integer, msgstr As String, ServerName As String,
ProcName As String, LineNum As Integer)
'This is a SQL Server callback routine
'
'When the server needs to inform the user of a status change this
callback is used.
' For example when the user changes databases using the SqlUse function
this event
' procedure will be called and the message string (msgstr) will contain
text
' indicating the new database name. The variable severity can be used to
filter the

' messages so that only messages which need to be seen can be displayed
to the user
 MsgBox msgstr
End Sub

Initializing the SQL-Sombrero/VBX Library
In order to avoid conflicts with other applications, your application must register itself with the SQL-
Sombrero/VBX Library.    This is done through a call to SqlInit.    Before calling any other SQL-
Sombrero/VBX function a call must be made to SqlInit.

The following sample application excerpt shows using SqlInit in a Logon button.    Please refer to
Logon.Frm provided with this installation.

Sub logonbut_Click ()
 dblib = SqlInit()

Establishing a SQL Server Connection
After initializing the application, one or more SQL Server connections may be opened.    Your application
will use a connection to communicate with the SQL Server.

To open a connection and login to the SQL Server use the SQLOpenConnection function.    The sample
application shows the following example of how to open a connection.

' Once the information needed to open a connection is
' obtained from the user open a connection with the server
' using the SqlOpenConnection function. This function
' returns a connection pointer if the connection is made.
' if no connection is made then the connection pointer will
' be zero (NULL)
 dbconn = SqlOpenConnection(sid, usid, pword, "", "SombreroApp1")
' If the connection is made the next thing we need to do
' is point to the correct database which has the data
' required for the application. In this case the data is
' in the authors table found in the pubs database for SQL
' Server 4.2 or in the pubs2 database for SYBASE System 10
 If dbconn <> 0 Then
 ret = SqlUse(dbconn, datbase)
 If ret <> 1 Then
 SqlClose (dbconn)
 dbconn = 0
 End If
 Else
 Exit Sub
 End If

Above the connection is tested, if it's non-zero the function SQLUse is used to change the current
database.

Communicate Transact-SQL statements to the SQL
Server
The functions SQLCmd and SQLExec are used to send Transact-SQL statements to the SQL Server.

The SQLCmd function places command in the command buffer, and SQLExec causes them to be
executed.    The following sample application code fragment illustrates their usage.

' Once the user has logged on to the server the list box will be
' populated with a list of the Author Id, Last Name, and First Name
'
' The first function is to place the SQL Statement required to get
' this information from the server into the command buffer using
' the SqlCmd function
 ret = SqlCmd(dbconn, "select 'Author Id' = au_id , 'Last Name' =
au_lname , 'First Name' = au_fname from authors")
 If ret = 1 Then
' The SqlExec function is then used to send the SQL Statement to the
' server for execution. It is at this point that syntax checking is
' performed

ret = SqlExec(dbconn)
If ret = 1 Then

A return of 1 indicates success, the program is now ready to process results.

Obtain and Process Results
Many functions exist to process results.    Here the functions SQLResults, SQLNumCols, SQLColName,
SQLNextRow and SQLData are highlighted to show a typical example.

' If the SqlCmd function had been passed more than one SQL command then
you must
' perform a SqlResults for each result set being sent back. The end of
result sets
' will be indicated by a NOMORERESULTS(2) return from SqlResults

 ret = SqlResults(dbconn)
 If ret = 1 Then

' Once the SqlResults returns with the indication that a result set is
available we
' can get the number of columns in the result set. In this application
this function
' is not required since we know how many columns were requested. If the
application
' allowed for AdHoc SQL requests then this function is used to indicate
the number of
' columns of data available.

cols% = SqlNumCols(dbconn)
' To get the column headings we use the SqlColName function. This
function will return
' either the column name based on the internal column name or if the
syntax 'Column
' Name' = colname is used to override the internal column name. In our
example we
' have chosen to override the column name

For c% = 1 To cols%
 colnam$ = SqlColName(dbconn, c%)
Next

' Once the result set is available for processing each row needs to be
retrieved.
' This is accomplished by calling SqlNextRow until the function returns
NOMOREROWS
' (-2)

ret = SqlNextRow(dbconn)
While ret <> NOMOREROWS

' For each column in the result set we call the function SqlData to get
the data
' returned for the column. The data returned is a string representation
of the data
' in the result column. The data is right trimmed when returned. The
data when
' return is being concatonated with tabs (chr(9)) between each item to

populate the
' drop down list box with three columns

 For c% = 1 To cols%
t(c%) = SqlData(dbconn, c%)

 Next
 aitem$ = t(1) & Space(15 - Len(t(1))) & Left(t(2) &

 Space(41 - Len(t(2))), 20)
& t(3)

 author_list.AddItem aitem$
 ret = SqlNextRow(dbconn)
Wend

 End If
End If

 End If
 If ret <> NOMOREROWS Then

Exit Sub
 End If

Close Connections to the SQL Server
To close a specific connection use SQLClose.    To close all connections use SQLExit.

The following fragment, extracted from the sample application provided, shows an example of exit button
code.

Sub exitbut_Click ()
 If dbconn <> 0 Then

SqlClose (dbconn)
 End If
 sqlwinexit
 sqlexit
 End
End Sub

CompileDate
Returns the compile date of SQL-Sombrero/VBX into a string

Syntax
cdate$=CompileDate()

Remarks
This function can be called at any time.

SombreroVersion
Returns the version of SQL-Sombrero into a string

Syntax
ver$=SombreroVersion()

Remarks
This function can be called at any time.

SqlAData
Retrieves a string representation of the column data for a compute clause column.

Syntax
SqlAData (connectid%, computeid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

computeid%

The COMPUTE clause.    A SELECT statement can have multiple COMPUTE clauses, which can have
varying numbers of aggregate operators and aggregate targets.    The computeid% is returned by
SqlNextRow.

column%

The column number.    The first column number returned is 1.

Results
The return value is a string containing the data for a particular compute column.

Example
'Place commands into the command buffer.
cmd$ = "SELECT cust_name(custid), custid, amount FROM cust_amount"
cmd$ = cmd$ + " ORDER BY custid"
cmd$ = cmd$ + " COMPUTE SUM(amount) BY custid"
i_ret% = SqlCmd(connectid%, cmd$)
'Send commands to the SQL Server and execute.
i_ret% = SqlExec(connectid%)
i_ret% = SqlResults(connectid%)
'Check out the COMPUTE clause results.
IF i_ret% = SUCCEED THEN
 DO UNTIL i_ret% = NOMOREROWS
 i_ret% = SqlNextRow%(connectid%)
 IF i_ret% = NOMOREROWS THEN Exit DO
 IF i_ret% = REGROW THEN
 PRINT "regular row was returned."
 PRINT
 ELSE
 'This row is a COMPUTE clause result
 'and i_ret% is the computeid% of this
 'COMPUTE clause

 amt$ = SqlAData(connectid%, i_ret%, 1)
 PRINT "cust amt = " + amt$
 PRINT
 END IF
 LOOP

Remarks
If the value in the column is NULL then the string "NULL" is returned.

After each call to SqlNextRow that returns a value greater than 0, use SqlAData to obtain the data in a
particular COMPUTE clause column.    The data is not null-terminated.

See Also
SqlADLen, SqlAltLen, SqlAltType, SqlNextRow, SqlNumAlts

SqlADLen
Returns the actual length of the data for a compute column in bytes.

Syntax
SqlADLen (connectid%, computeid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

computeid%

The id representing the COMPUTE clause.    A SELECT statement can have multiple COMPUTE clauses,
which can have varying numbers of aggregate operators and aggregate targets.    This is obtained from
the SqlNextRow function.

column%

The column number.    The first column is number 1.

Results
The length, in number of bytes, of the data in a COMPUTE clause column. -1 is returned when no such
column or COMPUTE clause exists. 0 is returned when the data has a null value.    You can get the data
for the column using SqlAData.

Example
'Place the command into the command buffer.
cmd$ = "SELECT cust_name FROM customer"
cmd$ = cmd$ + " ORDER BY cust_name"
cmd$ = cmd$ + " COMPUTE MAX(cust_name)"
'Send the command to SQL Server and execute.
i_ret% = SqlCmd(connectid%, cmd$)
i_ret% = SqlExec(connectid%)
'Process the results of each statement.
 DO UNTIL i_ret% = NOMOREROWS
 i_ret% = SqlNextRow(connectid%)
 IF i_ret% = NOMOREROWS THEN Exit DO
 ELSE IF Result = REGROW THEN
 PRINT "a regular row was returned."
 PRINT
 ELSE
 'This row is a COMPUTE clause result.
 Length& = SqlADLen(connectid%, computeid%, 1)
 MyData$ = SqlAData(connectid%, computeid%, 1)

 PRINT MyData$+ " is " + Length& + " bytes long."
 END IF LOOP

Remarks
SqlADLen returns the string length of the data for a column in a COMPUTE clause.    The format lengths
returned for data of other datatypes are as follows:

Datatype Length in bytes

bit 3

tinyint 3

smallint 6

timestamp 8

int 11

float 21

money 26

datetime 27

binary 255

varbinary 255

char Length of the column (up to 255)

varchar Length of the column (up to 255)

image 4096

text 4096

See Also
SqlAData, SqlAltLen,    SqlNextRow, SqlNumAlts

SqlAltColId
Retuns the operand column ID for a compute column.    The first column ID is 1.

Syntax
SqlAltColId (connectid%, computeid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

computeid%

The id representing the COMPUTE clause.    A SELECT statement can have multiple COMPUTE clauses,
which can have varying numbers of aggregate operators and aggregate targets.    This is obtained from
the SqlNextRow function.

column%

The column number.    The first column number returned is 1.

Results
When either computeid% or column% is invalid a -1 is returned.    Normally it returns the id to which the
aggregate operator in the compute clause pertains.

Example
computeid% = SqlNextRow(connectid%)
numops% = SqlNumOps(connectid%, computeid%)
For I = 1 to numops%

colid% = SqlAltColId(connectid%, computeid%, I)
Next

Remarks
Calling SqlAltColId on the following would return 2 since the aggregate applies to the second column in
the select clause.

select state, cust_name from customer
order by state, cust_name
compute count (cust_name) by state

SqlAltLen
Returns the maximum length of the data for a compute column in bytes.    For the actual length of a
column use the SqlADLen function.

Syntax
SqlAltLen (connectid%, computeid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

computeid%

Is returned by the SqlNextRow function.

The id representing the COMPUTE clause.    A SELECT statement can have multiple COMPUTE clauses,
which can have varying numbers of aggregate operators and aggregate targets.

column%

The column number.    The first column number returned is 1.

Results
The maximum integer number of bytes the compute clause result column can be.    When the
computeid% or the column% is invalid -1 is returned.

Example
computeid%=SqlNextRow(connectid)
numalts%=SqlNumAlts(connectid%, computeid%)
For I = 1 to numalts%
altlen%=SqlAltLen(connectid%, computeid%,I)
Next

Remarks
This applies particularly to variabe length data.    Rather than the actual length, the maximum length is
returned.    SqlADLen should be used to obtain the actual length.    The maximum length for each data
type is as follows:

Datatype Length in bytes

bit 3

tinyint 3

smallint 6

timestamp 8

int 11

float 20

money 26

datetime 27

binary 255

varbinary 255

char Length of the column (up to 255)

varchar Length of the column (up to 255)

image 4096

text 4096

SqlAltOp
Returns the type of aggregate function for a compute column.

Syntax
SqlAltOp (connectid%, computeid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

computeid%

Is returned by SqlNextRow.

The id representing the COMPUTE clause.    A SELECT statement can have multiple COMPUTE clauses,
which can have varying numbers of aggregate operators and aggregate targets.

column%

The column number.    The first column number returned is 1.

Results
The type of aggregate function operated on a particular column in a compute cluase.    When computeid%
or column% are invalid, -1 is returned.

Example
computeid%=SqlNextRow(connectid%)
numalts%=SqlNumAlts(connectid%, computeid%)
For I = 1 to numalts%
altop%=SqlAltOp(connectid%, computeid%,I)
Next

Remarks
These are the available aggregate functions types:

Aggregate function type Aggregate operator

SQLAOPSUM SUM

SQLAOPAVG AVG

SQLAOPCNT COUNT

SQLAOPMIN MIN

SQLAOPMAX MAX

To convert the integer type into a readable string use the function SqlPrType.

SqlAltType
Returns the datatype for compute column.

Syntax
SqlAltType (connectid%, computeid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

computeid%

is returned by SqlNextRow.

The id representing the COMPUTE clause.    A SELECT statement can have multiple COMPUTE clauses,
which can have varying numbers of aggregate operators and aggregate targets.

column%

The column number.    The first column number returned is 1.

Results
The value returned is the token value for a SQL Server datatype.    If computeid% or column% is invalid,
-1 is returned.

Example
computeid%=SqlNextRow(connectid%)
numalts%=SqlNumAlts(connectid%, computeid%)
For I = 1 to numalts%

alttype%=SqlAltType(connectid%, computeid%,I)
Next

Remarks
select status, cust_name from customer
order by status, cust_name
compute count (cust_name) by status

SqlAltType would return SqlInit as the type of a count column.    To convert the integer type to a
meaningful string use the function SqlPrType.

SqlAltUType
Returns the user-defined datatype for a compute column.

Syntax
SqlAltUType (connectid%, computeid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

computeid%

The id representing the COMPUTE clause.    A SELECT statement can have multiple COMPUTE clauses,
which can have varying numbers of aggregate operators and aggregate targets.    This is returned by the
SqlNextRow function.

column%

The column number.    The first column number returned is 1.

Results
A token integer value for the user-defined datatype.    -1 if either the computeid% or column% is invalid.

Example
computeid%=SqlNextRow (connectid%)
numalts%=SqlNumAlts(connectid%, computeid%)
For I = 1 to numalts%

altutype%=SqlAltUType(connectid%, computeid%,I)
Next

Remarks
For a description of how to add user defined datatypes to the SQL Server database see either the
Microsoft Transact-SQL Reference or Sybase Transact-Sql User's Guide.

SqlBCPBatchPC
Commits all rows sent via the SqlBCPSendRowPC to the destination table.

Syntax
bcp% = SqlBCPBatchPC ()

Parameters
none

Results
SUCCEED (1) or FAIL (0)

Remarks
If this function is not used and an error occurs during processing, all the rows sent with the
SqlBCPSendRowPC are not stored in the destination table.

All SqlBCP functions with a PC suffix are used for bulk-copying program data to SQL-Server.    All
the BCP functions without the PC suffix are used for bulk-copying files.

See Also
SqlBCPColumnsPC, SqlBCPDonePC,    SqlBCPInitPC, SqlBCPSendRowPC, SqlBCPSetDataPC

SqlBCPColfmt
Specifies format information of a file in a bulk-copy operation.

Syntax
SqlBCPColfmt (connectid%, fcolumn%, ftype%, fplen%, fclen&, fterm$, ftlen%, tcol%)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

fcolumn%

The column in the file for which the format is being specified.    The first column is number 1.

ftype%

The datatype of the column in the file.    If the datatype is different from the datatype of the parallel column
in the database table (tcol%), the datatype is automatically converted.

To indicate the same datatype as in the corresponding column of the database table (tcol%) , equate this
parameter to 0.

fplen%

The length prefix for the column in the file.    Length prefixes may be 1, 2, and 4 bytes.    To indicate no
prefix, equate this parameter to 0.    To indicate that the bcp utility should determine whether to use a
length prefix, equate this parameter to -1.    Bcp will    use the necessary length prefix if the database
column length is variable.

fclen&

The maximum length of this column's data in the file Do not include the length of any length prefix and/or
terminator.    Making fclen& equal to 0 indicates the data is NULL.    Making fclen& equal to -1 instructs the
system to ignore this parameter, IE    no default maximum length.

For fixed-length datatypes, fclen& should be -1 except when the data is NULL, in which case fclen&
should be 0.

For character, text, binary, and image data, fclen& can be -1, 0, or any value greater than 0.

fterm$

The terminator character sequence to be used for this column.    To not use a terminator, equate this
parameter to NULL (chr$(0)).    To identify the tab character as    the terminator, equate it to chr$(9).

ftlen%

The length, in bytes, of the terminator character sequence to be used for this column.    When a terminator
is not being used set this to -1.

tcol%

The corresponding column in the database table.    If this value is 0, this column is not copied.    The first
column is column 1.

Returns
SUCCEED (1) or FAIL (0).

Remarks
Each call to SqlBCPColfmt describes the format for one column in the file.

SqlBCPColumns must be called before SqlBCPColfmt.

SqlBCPColfmt must be called for every column in the file.

See Also
SqlBCPColumnFormat,SqlBCPColumns, SqlBCPControl, SqlBCPExec, SqlBCPInit

SqlBCPColumnFormat
Specifies the column format information for the input file in a bulk-copy operation.    This function
combines SqlBCPColumns and SqlBCPColfmt in one step.

Syntax
SqlBCPColumnFormat(connectid%, col(), numcols%)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

col()

An array of a user-defined datatype (structure) defined in the .BI include file, as BCPColData, that
contains the following elements:

ftype%

The datatype of the column in the file.    If the datatype is different from the datatype of the parallel column
in the database table (tcol%), the datatype is automatically converted.

To indicate the same datatype as in the corresponding column of the database table (tcol%), equate this
parameter to 0.

fplen%

The length prefix for the column in the file.    Length prefixes may be 1, 2, and 4 bytes.    To indicate no
prefix, equate this parameter to 0.    To indicate that the bcp utility should determine whether to use a
length prefix, equate this parameter to -1.    Bcp will    use the necessary length prefix if the database
column length is variable.

fclen&

The maximum length of this column's data in the file.    Do not include the length of any length prefix
and/or terminator.    Making fclen& equal to 0 indicates the data is NULL.    Making fclen& equal to -1
instructs the system to ignore this parameter, IE no default maximum length.

For fixed-length datatypes, fclen& should be -1 except when the data is NULL, in which case fclen&
should be 0.

For character, text, binary, and image data, fclen& can be -1, 0, or any value greater than 0.

fterm$

The terminator character sequence to be used for this column.    To not use a terminator, equate this
parameter to NULL (chr$(0)).    To identify the tab character as the terminator, equate it to chr$(9).

ftlen%

The length, in bytes, of the terminator character sequence to be used for this column.    When a terminator
is not being used set this to -1.

tcol%

The corresponding column in the database table.    If this value is 0, this column is not copied.    The first
column is column 1.

numcols%

The total number of columns to be copied.

Returns
SUCCEED (1) or FAIL (0).

Remarks
SqlBCPColumnFormat is the same as to calling SqlBCPColumns and repeated calls to SqlBCPColfmt.

The size of the col array is equal to the number of columns (numcols%).    To access an element of col(),
you must use dot notation.    eg:

Col.ftype%

See Also
SqlBCPColfmt, SqlBCPColumns

SqlBCPColumns
Sets the total number of columns in the operating-system file for a bulk-copy operation.

Syntax
SqlBCPColumns%(connectid%, colcount%)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

colcount%

The total number of columns in the file.

Returns
SUCCEED (1) or FAIL (0).

Remarks
SqlBCPColumns can be called only after you call SqlBCPInit with a valid filename.

This function is for use only when you intend to use a format for an file that differs from the default format.
For a description of the default format for an operating-system file, see SqlBCPInit.

See Also
SqlBCPColfmt, SqlBCPColumnFormat, SqlBCPInit

SqlBCPColumnsPC
Sets the number of columns to be sent to the server through the Bulk Copy facility.    This function will bind
numcol% variables to the columns in the destination database.

Syntax
ret% = SqlBCPColumnsPC(numcol%)

Parameters
numcol%

The number of columns in the destination table

Results
SUCCEED (1) or FAIL (0)

Example
ret% = SqlBCPColumnsPC (14)

Remarks
 If this number is less than the number of columns in the destination table then an error will occur.    The
indication of an error will be returned in the ret% field.

All SqlBCP functions with a PC suffix are used for bulk-copying program data to SQL-Server.    All
the BCP functions without the PC suffix are used for bulk-copying files.

See Also
SqlBCPDonePC,    SqlBCPInitPC, SqlBCPSendRowPC, SqlBCPSetDataPC, SqlBCPBatchPC

SqlBCPControl
Changes the default settings for various control parameters for bulk-copy operations.

Syntax
SqlBCPControl(connectid%, param%, value&)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

param%
Constant Description
BCPMAXERRS% The number of errors allowed before terminating.    The default is 10.    Assigning a

value of    less than 1 to this field resets it to its default value.

BCPFIRST% The first row to copy.    The default is 1.    Assigning a value of less than 1 to this
field resets it to its default value.

BCPLAST% The last row to copy.    The default is to copy all rows.    Assigning a value of less
than 1 to this field resets it to its default value.

BCPBATCH% The number of rows per batch.    The default is 0.    Assigning a value of less than
1 to this field resets it to its default value.

value&

The value for the specified param%.

Returns
SUCCEED (1) or FAIL (0).

Remarks
SqlBCPControl sets the control parameters for bulk-copies, such as the number of errors allowed before
abandoning an operation.

See Also
SqlBCPColfmt,SqlBCPColumns, SqlBCPExec, SqlBCPInit

SqlBCPDonePC
Terminates the connection with the SQL server.

Syntax
ret% = SqlBCPDonePC()

Parameters
none

Results
SUCCEED (1) or FAIL (0)

Remarks
 All rows that have been sent to the server are now processed.    The BCP process will be destroyed so do
not attempt to use it again after this function has been used.

All SqlBCP functions with a PC suffix are used for bulk-copying program data to SQL-Server.    All
the BCP functions without the PC suffix are used for bulk-copying files.

See Also
SqlBCPColumnsPC,    SqlBCPInitPC, SqlBCPSendRowPC, SqlBCPSetDataPC, SqlBCPBatchPC

SqlBCPExec
Executes a bulk-copy of data between a database table and an operating-system file.

Syntax
SqlBCPExec (connectid%, rowscopied&)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

rowscopied&

The number of rows successfully copied.

Returns
SUCCEED (1) or FAIL (0).

SqlBCPExec returns SUCCEED only when all rows are copied.

Remarks
SqlBCPExec copies data from an operating-system file to a database table or the other way around,
depending on the value of the direction% parameter in SqlBCPInit.

You must call SqlBCPInit before calling SqlBCPExec.

See Also
SqlBCPColfmt, SqlBCPColumns, SqlBCPControl,SqlBCPInit

SqlBCPInit
Initializes a bulk-copy operation.

Syntax
SqlBCPInit(connectid%, tblname$, hfile$, errfile$, direction%)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

tblname$

The name of the database table to copy.

hfile$

The name of the file to copy.

errfile$

The name of the error file to be used.

If NULL    no error file is used.

direction%

The direction of the copy.    This parameter must be one of two values: DBIN% or DBOUT%.    DBIN%
indicates a copy into the database table; DBOUT% indicates a copy from a database table.

Returns
SUCCEED (1) or FAIL (0).

Remarks
SqlBCPInit sets the default data formats for the file and examines the structure of the database table.

The default data formats are as follows:

· The order, type, length, and number of the columns in the file are identical to the order, type,
length, and number of the columns in the database table.

· If the data in a given database column is of fixed length, then the data column in the file is also of
fixed length.

· If the data in a given database column is of variable length or can contain NULL values, the data
column in the file is prefixed by a 4-byte length value for SQLTEXT and SQLIMAGE datatypes
and a 1-byte length value for all other types.

· There are no terminators between columns in the file.

See Also

SqlBCPColfmt, SqlBCPColumns, SqlBCPControl, SqlBCPExec, SqlBCPSetL

SqlBCPInitPC
Opens a Bulk Copy connection to the SQLserver.

Syntax
bcp% = SqlBCPInitPC(server$,userid$, password$, workstation$, application$, tablename$, errfile$)

Parameters
server$

The server identification

userid$

The userid for the connection.

password$

The password for the connection.

workstation$

The workstation id of the user (not required - can be "")

application$

The application name

tablename$

The destination tablename for the Bulk Copy.

errfile$

The DOS file name of the file to receive any errors which occur during the Bulk Copy.

Results
SUCCEED (1) or FAIL (0)

Example
bcp% = SqlBCPInitPC ("42NT","sa", "", "MyStation", "LoadPubs", "titles",
"C:\error.fil)

Remarks
The Userid and Password variables must be initialized prior to executing this command.

All SqlBCP functions with a PC suffix are used for bulk-copying program data to SQL-Server.    All
the BCP functions without the PC suffix are used for bulk-copying files.

See Also

SqlBCPColumnsPC, SqlBCPDonePC, SqlBCPSendRowPC, SqlBCPSetDataPC, SqlBCPBatchPC

SqlBCPReadFmt
Use this function to read a datafile format definition from a host file for use in Bulk Copy operations.

Syntax
ret% = SqlBCPReadFmt(connectid%, fname$)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

fname$

The filename of the file containing the format information.

Results
SUCCEED (1) or FAIL (0)

Remarks
After the function SqlBCPReadFmt is completed successfully DB-Library makes calls to bcp_columns and
bcp_colfmt to automate the bulk copy of multiple files that share a common data format.

SqlBCPSendRowPC
Sends a row of data to the destination table through the Bulk Copy facility.

Syntax
ret% = SqlBCPSendRowPC()

Parameters
none

Results
SUCCEED (1) or FAIL (0)

Remarks
The rows have not been committed.    Stop sending on an error.

All SqlBCP functions with a PC suffix are used for bulk-copying program data to SQL-Server.    All
the BCP functions without the PC suffix are used for bulk-copying files.

See Also
SqlBCPColumnsPC, SqlBCPDonePC,    SqlBCPInitPC, SqlBCPSetDataPC, SqlBCPBatchPC

SqlBCPSetDataPC
Sets the data values to be sent    in string format.

Syntax
ret% = SqlBCPSetDataPC(col% ,datavalue$)

Parameters
col%

The column number.

datavalue$

The string representation of the data value    to be sent.

Results
SUCCEED (1) or FAIL (0)

Remarks
This function is typically called for each row, each column.    If a column value does not change it only has
to be called once for that column.    The datavalue is reset by a subsequent call.

All SqlBCP functions with a PC suffix are used for bulk-copying program data to SQL-Server.    All
the BCP functions without the PC suffix are used for bulk-copying files.

See Also
SqlBCPColumnsPC, SqlBCPDonePC,    SqlBCPInitPC, SqlBCPSendRowPC, SqlBCPBatchPC

SqlBCPSetL
Sets the connection to allow or disallow bulk-copy operations.

Syntax
SqlBCPSetL(connectid%, enable%)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

enable%

A Boolean value, TRUE (1) or FALSE (0), that specifies whether or not to enable bulk-copy operations for
the    SQL Server connection.    By default, SQL Server connections are not enabled for bulk-copy
operations.

Returns
SUCCEED (1) or FAIL (0).

Remarks
To keep users from initiating a bulk-copy sequence with SQL statements, avoid using this function in
applications that permit ad hoc queries.    Once a bulk-copy sequence begins, it cannot be stopped with
an ordinary SQL statement.

See Also
SqlBCPInit

SqlBCPWriteFmt

Use this function to write a datafile format definition to a host file for use in Bulk Copy operations.

Syntax
ret% = SqlBCPWriteFmt(connectid%, fname$)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

fname$

The filename of the file to contain the format information.

Results
SUCCEED (1) or FAIL (0)

Remarks
The file created by this function can later be used in the function SqlBCPReadFmt.

SqlByList
Returns the binary string representing the column positions for the bylist in a compute clause.

Syntax
SqlByList (connectid%, computeid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

computeid%

is returned by SqlNextRow.

The id representing the COMPUTE clause.    A SELECT statement can have multiple COMPUTE clauses,
which can have varying numbers of aggregate operators and aggregate targets.

column%

The column number.    The first column number returned is 1.

Results
The resulting string contains one character per column position in the bylist.

Example
bylist$=SqlByList(connectid%, computeid%, column%)

Remarks
The number of bylist entries can be determined by getting the length of the result string.    To get the
column postition of the first column in the bylist    Only call SqlByList when results exist.

i% = ASC (MID$ (bylist$, 1, 1))

SqlCancel
Stops the execution of the statements which have been passed through the command buffer to the SQL
Server.

Syntax
SqlCancel (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
SUCCEED (1) or FAIL (0)

Example
ret_code% = SqlCancel(connectid%)
if ret_code% <> 1 then

...process errors
end if

Remarks
When you call SqlCancel, SQL Server terminates execution of all the statements associated with the
connectid%.    All results pending are read and discarded.    SqlCancel would normally be called after
statements like SqlExec, SqlOk, SqlSend, SqlResults, or SqlNextRow.      In order to cancel only one
statement out of several other statements in the command buffer, use SqlCanQuery.

See Also
SqlCanQuery, SqlExec, SqlNextRow, SqlOk, SqlResults, SqlSend

SqlCanQuery
Stops the execution of the currently executing statement which has been passed through the command
buffer to the SQL Server.

Syntax
SqlCanQuery (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
SUCCEED (1) or FAIL (0)

Example
ret_code% = SqlCanQuery(connectid%)
if ret_code% <> 1 then

... process errors
end if

Remarks
All pending results for the statement in execution are read and discarded.    Using this function will
achieve the same results as calling SqlNextRow until such a time as NOMOREROWS is returned.

See Also
SqlCancel, SqlNextRow, SqlResults, SqlSend

SqlChange
Returns the database name currently in use on the server if the database was changed during execution
of a Transact-SQL batch.

Syntax
SqlChange (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
It returns the current database name as a string unless the database was not changed, where in that
case an empty string will be returned.

Example
dbnamechange$=SqlChange(connectid%)

Remarks
SqlChange informs the application of a change from one database to another by detecting any occurence
of the Transact-SQL USE statement.

Database changes made by a USE statement are in effect only at the end of the batch.

The simplest way to keep track of database switches is to call    SqlChange when NOMORERESULTS is
returned at the end of a command batch.

You can get the name of the current database by calling SqlName.

See Also
SqlExec, SqlName, SqlSend.

SqlClose
Closes the connection made with SqlOpenConnection.

Syntax
SqlClose (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
There is no value returned.

Example
SqlClose(connectid%)

Remarks
SqlClose terminates the activity of a SQL Server connection.    It closes the connection and frees
allocated memory.    To close all open connections use SqlExit.

See Also
SqlExit, SqlOpenConnection

SqlClrBuf
Drops the specified number of rows from the row buffer.

Syntax
SqlClrBuf (connectid%, rows&)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

rows&

The number of rows to drop.

If rows& < 1 the call is ignored

If rows& > the number of rows in the buffer all but the newest is cleared.

Results
Nothing is returned    from this function.

Example
SqlClrBuf(connectid%, 100)

Here, 100 signifies the number of    rows you want cleared.    All others are kept.

Remarks
In the case where the row buffer becomes full, SqlClrBuf can drop unwanted rows, beging with the oldest
rows first.    Rows are cleared on a first in/first out basis.

SqlClrOpt
Clears an option set by SqlSetOpt.

Syntax
SqlClrOpt (connectid%, option%, optparam$)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

option%

The option to be cleared.

The following is a list of options which may be set.

SQLARITHABORT

Aborts a query when an overflow or divide-by-zero error occurs during query execution.    If
SQLARITHABORT is not set, SQL Server substitutes null values and returns a warning message after the
query has been executed.    The default setting is off.

SQLARITHIGNORE

Substitutes null values when an overflow or divide-by-zero error occurs during a query.    No warning
message is returned.    If SQLARITHIGNORE is not set, SQL Server substitutes null values and returns a
warning message after the query has been executed.    The default setting is off.

SQLBUFFER

Buffers result rows.    SQLBUFFER is required when you use SqlGetRow.    When you set SQLBUFFER,
supply a parameter for the number of rows you want buffered.    The default setting is 0 (no row buffering).

Parameter Description

Less than 0 Buffer set to 100 rows.

0 No result rows buffered.

1 Not allowed.

2 - 32,767 The number of rows to buffer.

SQLNOAUTOFREE

Causes the command buffer to clear only with a call to SqlFreeBuf.    When SQLNOAUTOFREE is not
set, the first call to SqlCmd after a call to SqlExec or SqlSend, automatically clears the command buffer
before new text is entered.    The default setting is off.

SQLNOCOUNT

Stops returning information about the number of rows affected by each Transact-SQL statement.    The
default setting is off.

SQLNOEXEC

Processes a query through the compile step but does not execute it.    You can use this option with
SQLSHOWPLAN.    Once SQLNOEXEC is set, no subsequent statements are executed until
SQLNOEXEC is turned off.    The default setting is off.

SQLOFFSET

Indicates whether SQL Server should return offsets to certain constructs in the query.    This option takes
a parameter that specifies the particular construct.    Valid values of this parameter include:

select

from

table

order

compute

statement

procedure

execute

param      (refers to parameter of a stored procedure)

Offsets are returned only if the batch contains no syntax errors.

SQLPARSEONLY

Checks the syntax of a query and returns appropriate error messages.    The default setting is off.

SQLROWCOUNT

Specifies a maximum number of regular rows to be returned for SELECT statements.    SQLROWCOUNT
does not limit the number of compute rows returned.

When you set SQLROWCOUNT, supply a parameter for the number of rows you want returned.    The
default setting is 0, which returns all rows determined by SELECT statements.

Parameter Description

0 Returns all rows generated by a SELECT statement.

1 - 2,147,483,647    The maximum # of regular rows to be returned for SELECT statements.

SQLSHOWPLAN

Generates a description of the processing plan.    The default setting is off.

SQLSTAT

Returns performance statistics (CPU time, elapsed time, I/O) to the workstation after each query.    The
front end receives these statistics in the form of informational messages, and applications access them
through a user-defined message handler.    When you set SQLSTAT, supply a parameter for the type of
performance statistics you want.    The default setting is off.

Parameter Description

IO Returns statistics about SQL Server's internal I/O.

TIME Returns information on parsing, compilation, and execution times
(in millisecs)

SQLSTORPROCID

Sends the stored procedure ID to the workstation before sending rows generated by the stored
procedure.

SQLTEXTLIMIT

When setting this option, supply a parameter that is the length, in bytes, of the longest text or image value
your application can handle.    To keep SQL Server from sending extra text, use the SQLTEXTSIZE
option.    The default setting is 4096.

Parameter Description

0 -    32,768 Size, in bytes, of the longest text or image value your application can handle.

SQLTEXTSIZE

Limits the size of text or image values SQL Server returns.    When setting this option, supply a parameter
that is the length, in bytes, of the longest text or image value that SQL Server returns.    The default
setting is 4096.

Parameter Description

0 - 32,768 Size, in bytes, of the longest text or image value SQL Server returns.

optparam$

A parameter for an option.    Not all options have parameters.    You must include optparam$ for all
options, whether they take parameters or not.    Any value for optparam$ can be supplied when using an
option other than SQLSTAT.    With the SQLSTAT option, you must include a valid parameter (either io or
time).

Results
SUCCEED (1) or FAIL (0).

Remarks
SqlClrOpt turns off options that have been set with SqlSetOpt.    Options are cleared when you send the
statements in the command buffer to SQL Server by invoking SqlExec.    The results of the command
generated by SqlClrOpt are not returned until the command is transferred to SQL Server.    If an invalid
parameter is specified, it is not detected until the command is sent to SQL Server and the results for that
command are returned using SqlResults.

See Also
SqlSetOpt, SqlNextRow, SqlGetRow

SqlCmd
Adds Transact-SQL statements to the command buffer for processing.

Syntax
SqlCmd (connectid%, cmd$)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

cmd$

A character string to be placed into the command buffer.

Results
SUCCEED (1) or FAIL (0)

Example
RetCode% = SqlCmd(connectid%, "SELECT name FROM sysobjects")
RetCode% = SqlCmd(connectid%, " WHERE id = 5")
RetCode% = SqlCmd(connectid%, " AND type = 'S'")

Remarks
SqlCmd% appends text to the existing command buffer.    The appended text does not overwrite the
current contents until the contents of the buffer are sent to SQL Server.    After a call to SqlExec% or
SqlSend%, the first call to SqlCmd% automatically clears the command buffer before the new text is
entered.    You can call SqlCmd% repeatedly.    Sequential calls are appended, so ensure that you add the
necessary blanks at the end of one line or    the beginning of the next.

SqlCmdRow
Determines whether the current command can return rows.

Syntax
SqlCmdRow (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
SUCCEED (1) or FAIL (0)

Example
ret_code%=SqlCmdRow(connectid%)
if ret_code% = 1 then
...process as if rows being returned

Remarks
If the current Transact-SQL statement in the command buffer is a SELECT statement or EXECUTE
statement on a stored procedure containing a SELECT statement the variable ret_code will be set to 1
otherwise ret_code will be set to 0.

See Also
SqlNextRow, SqlResults, SqlRows

SqlColBrowse
Indicates whether the source of a result column can be updated using SQL Server browse-mode facilities.

Syntax

SqlColBrowse(connectid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

column%

The number of the result column.    The first column is number 1.

Results
SUCCEED (1) or FAIL (0)

Remarks

You can call SqlColBrowse any time after you call SqlResults.

The SqlColBrowse function determines wheter the database column that is the source of the current
result column can be updated using the SQL-Server browse-mode facilities.    Only a column from a table
that has a unique index and a timestamp column can be updated.

SqlColLen
Returns the maximum length in bytes of the data for a specific column.

Syntax
SqlColLen (connectid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

column%

The column number.    The first column number returned is 1.

Results
The value returned is the maximum number of bytes that the data for a particular column can hold.   
SqlColLen will return -1 if the column number is not within range.

Example
collen%=SqlColLen(connectid%)

Remarks
SqlColLen will return the maximum length that the data can be for that particular column, not the length of
the data itself in the column.    If you    wish to know the actual data length in a column, SqlDatLen should
be used.

The following table shows the maximum length of the data in a column for each datatype:

Datatype Length in bytes

bit 3

tinyint 3

smallint 6

timestamp 8

int 11

float 21

money 26

datetime 27

binary 255

varbinary 255

char Length of the column (up to 255)

varchar Length of the column (up to 255)

image 4096

text 4096

See Also
SqlColName, SqlColType, SqlData, SqlDatLen.

SqlColName
Returns the column name for a specific column.

Syntax
SqlColName (connectid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

column%

The column number.    The first column number returned is 1.

Results
A string containing the column name for a particular column.    An empty string will be returned if the
number of the column requested is out of the scope.

Example
colname$=SqlColName(connectid%,1)
The following uses SqlColName to return the name from the sysobjects
table:
'initialize the command buffer.
Cmd$ = "SELECT name, type FROM sysobjects"
'Send the statement to the SQL Server and begin execution.
SqlExec(connectid%)
'Process the statement results.
ret_code% = SqlResults(connectid%)
if ret_code% <> 1 then
 ... process errors
end if
'Print the column names.
For colnum% = 1 to 2
 column$ = SqlColName(connectid%, connum%)
 PRINT "Column";colnum%;" name returned is "; Column$
Next colnum%
Output:
Column 1 name returned is name
Column 2 name returned is type

See Also
SqlColLen, SqlColType, SqlData, SqlDatLen.

SqlColSource
Returns the name of the database column to which the result column pertains.

Syntax
SqlColSource (connectid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

column%

The column number.    The first column number returned is 1.

Results
The value returned is the source name for a particular column or an empty string if the column if the
column is the result of a Transact-SQL expression such as SUM(colname), or column% is out of range.

Example
colsource$=SqlColSource(connectid%, 1)

Remarks
You can call SqlColSource any time after a call to SqlResults

NOTE: SqlColSource returns the underlying column name not the optional column header you can
specify with a select statement.

SqlColType
Returns the data type for a specific column.

Syntax
SqlColType (connectid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

column%

The column number.    The first column number returned is 1.

Results
The value returned is the column type for a particular column.    If the number of the column is not in the
specified range, -1 will be returned.

Example
coltype%=SqlColType(connectid%, 1)

Remarks
The integer value representing the column type is returned.

See Also
SqlColLen, SqlColName, SqlData.

SqlColUType
Returns the user defined data type for a specific column.

Syntax
SqlColUType (connectid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

column%

The column number.    The first column number returned is 1.

Results
The value returned is the user defined column type for a particular column.    If the number of the column
is not in the specified range, -1 will be returned.

Example
colutype%=SqlColUType(connectid%, 1)

Remarks
The integer value representing the user defined column type is returned.

See Also
SqlColLen, SqlColName, SqlData.

SqlCount
Returns the number of rows affected by the current statement.

Syntax
SqlCount(connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
The number of rows affected by the most recent statement.

Example
count%=SqlCount(connectid%)

Remarks
This function should only be called after the results of a transact-SQL statement are processed.

SqlCurCmd
Returns the number of the current statement in the command buffer.

Syntax
SqlCurCmd (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
Returns the number of the statement currently in the command buffer.    The first statement is always 1.

Example
curcmd%=SqlCurCmd(connectid%)

Remarks
The first statement in a group of statements is 1.    It increases every time a SUCCEED or FAIL is returned
by SqlResults.    A call to SqlExec or SqlSend will reset the count.

See Also
SqlCmdRow, SqlExec, SqlResults, SqlRows, SqlSend

SqlCurRow
Returns the number of the row most recently read.

Syntax
SqlCurRow (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
The number of the current row.

Example
currow%=SqlCurRow(connectid%)

Remarks
The row number changes with every call to SqlNextRow.    A call to SqlResults will reset the row number
to 0.

SqlData
Retrieves a string representation of the column data for the last row retrieved.

Syntax
SqlData (connectid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

column%

The column number.    The first column number returned is 1.

Results
The return value is a string containing the data for a particular column.

When the column% is out of range on empty string is returned.    When the data is NULL the string
"NULL" is returned.

Example
dat$ = SqlData(connectid%, column%, 1)

Remarks
Use SqlDatLen to obtain the length of the data for variable length data types.    Use SqlColType to obtain
the datatype of a particular column.

SqlDataReady
Indicates if    SQL Server is completed processing a command.

Syntax
SqlDataReady (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
SUCCEED (1) or FAIL (0)

Remarks
SqlDataReady is a way to determine when statement processing is complete.    Call SqlDataReady
continuously until it returns a non-zero value, at which point you may call SqlOk.    It should be noted that
it is possible in conflicting lock situations, SQLDataReady will return FAIL every time.

See Also
SqlOk, SqlResults, SqlSend

SqlDateCrack
Converts a string of date and time values into a format more usable to the user.

Syntax
SqlDateCrack%(connectid%, dateinfovar, datetime$)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

dateinfovar (a dateinfo variable)

Identifies a structure containing the components of the datetime$ string. The dateinfo structure is a user
defined type found in the SQLDEF.BAS file.    The structure contains the following fields:

Field Description
year% A number of a year in the range 1753 through 9999.

quarter% A number of a quarter of a year in the range 1 though 4.

month% A number of a month in the range 1 through 12.

dayofyear% A number of a day of a year in the range 1 through 366.
Leap years are counted.

day% A number of a day of a month in the range 1 through 31.

week% A number of a week of a year in the range 1 through 54.
Leap years are counted.

weekday% A number of the day of a week in the range 1 through 7
(Monday though Sunday).

hour% A number of an hour in the range 0 through 23.

minute% A number of a minute in the range 0 through 59.

second% A number of a second in the range 0 through 59.

millisecond% A number of a millisecond in the range 0 through 999.

datetime$

A string containing the date and time.

Results
SUCCEED (1) or FAIL (0).

Example
'Put the statement into the command buffer.
Result% = SqlCmd%(Sqlconn%, "SELECT name, crdate FROM
master..sysdatabases")
'Send the statement to SQL Server and start execution.
Result% = SqlExec%(Sqlconn%)
'Process the statement results.
Result% = SqlResults%(Sqlconn%)

'Retrieve and print the database name and its date info.
DO UNTIL SqlNextRow%(Sqlconn%) = NOMOREROWS
 PRINT "Database Name is "
 PRINT SqlData$(Sqlconn%, 1)
 PRINT
 PRINT "Creation date string info is "
 PRINT SqlData$(Sqlconn%, 2)
 PRINT
 'Break up the creation date into its constituent parts.
 Datetime$ = SqlData$(Sqlconn%, 2)
 SqlDateCrack(Sqlconn%, Dateinfo(), Datetime$)
 'Print the parts of the creation date.
 PRINT
 PRINT "Year = "; Dateinfo.year
 PRINT "Month = "; Dateinfo.month
 PRINT "Day of month = "; Dateinfo.day
 PRINT "Day of year = "; Dateinfo.dayofyear
 PRINT "Day of week = "; Dateinfo.weekday
 PRINT "Hour = "; Dateinfo.hour
 PRINT "Minute = "; Dateinfo.minute
 PRINT "Second = "; Dateinfo.second
 PRINT "Millisecond = "; Dateinfo.millisecond
LOOP

Remarks
SqlDateCrack converts a SQL Server DATETIME string into its integer components and puts them into a
dateinfo structure.

Date and time values are maintained in an internal format that is not readily usable. For example, a time
value is stored as the number of 300ths of a second since midnight, and a date value is stored as the
number of days since January 1, 1900. The SqlDateCrack function is used to convert the internal value to
something easily usable by an application.

See Also
SqlData

SqlDatLen
Returns the actual length in bytes of the data for a specific column.

Syntax
SqlDatLen (connectid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

column%

The column number.    The first column number returned is 1.

Results
The value returned is the actual column length for a particular column.    If the value is NULL, 0 is
returned.    If the column does not exist -1 is returned.

Example
datalen%=SqlDatLen(connectid%, column%)

Remarks
SqlDatLen will return the maximum printable width for numeric datatypes such as small int and float.   
Use the Visual Basic Len function to determine the actual length.

The following table shows the length of the datatypes:

Datatype Length in bytes

bit 3

tinyint 3

smallint 6

timestamp 8

int 11

float 21

money 26

datetime 27

binary 255

varbinary 255

char Length of the column (up to 255)

varchar Length of the column (up to 255)

image 4096

text 4096

To obtain the maximum length use SqlColLen.    Use SqlData to return the data.

See Also
SqlColLen, SqlColName, SqlColType, SqlData.

SqlDead
Indicates if a SQL Server connection is inactive.

Syntax
SqlDead(connectid%)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

Results
SUCCEED (1) or FAIL (0).

Remarks
SqlDead is useful in user supplied error handlers.    If the SQL Server connection is dead, almost every
procedure that receives that connection id as a parameter immediately fails.

SqlExec
Sends the SQL command(s) in the command buffer to the server and waits for the server to respond.

Syntax
SqlExec (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
SUCCEED (1) or FAIL (0)

FAIL will be returned if

· - the command buffer contains a syntax error

· - permission violation in the command

· - previous results pending

· - the command buffer is empty

Example
ret_code% = SqlExec(connectid%)
if ret_code% <>1 then

...process errors
end if
ret_code% = SqlResults(connectid%)

Remarks
SqlExec causes the Transact-SQL statements in the command buffer to be sent to SQL Server.    Use
SqlCmd to add statements to the buffer.    Use SqlResults to process results from SqlExec.

See Also
SqlResults

SqlExit
Terminates all SQL Server connections.

Syntax
SqlExit

Parameters
none

Results
There is no value returned.

Example
SqlExit

See Also
SqlClose

SqlFirstRow
Returns the number of the first row in the row buffer.

Syntax
SqlFirstRow (connectid%)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

Results
The number of the first row in the row buffer.    The first row returned is number 1.

Remarks
If row buffering is not turned on, SqlFirstRow, SqlCurRow, and SqlLastRow always return the same value:
the number of the current row.    If you turn on row buffering using SqlSetOpt with the SQLBUFFER option
SqlFirstRow returns the number of the lowest    row of results in the buffer.    SqlLastRow returns the
number of the result row stored in the highest (newest) buffer location.

See Also
SqlClrBuf, SqlCurRow, SqlGetRow, SqlLastRow, SqlNextRow, SqlSetOpt

SqlFreeBuf
Clears the command buffer.

Syntax
SqlFreeBuf (connectid%)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

Results
The command buffer is cleared.

Remarks
Statements are added to the command buffer with SqlCmd.    After a call to SqlExec or SqlSend, the first
call to SqlCmd automatically calls SqlFreeBuf to clear the command buffer before the new text is entered.
If you don't want the buffer automatically cleared, set the SQLNOAUTOFREE option using SqlSetOpt.   
When SQLNOAUTOFREE is set, the command buffer is cleared only by a call to SqlFreeBuf.

See Also
SqlCmd, SqlExec, SqlSend, SqlStrCpy,    SqlStrLen

SqlFreeLogin
Frees the memory allocated by SqlLogin for a login record.

Syntax
SqlFreeLogin(loginrec%)

Parameters
loginrec%

A login record. The value of loginrec% is returned by SqlLogin.

Remarks
You can call SqlFreeLogin immediately after you call SqlOpen or you can use the same login record for
multiple calls to SqlOpen.    Call SqlFreeLogin when you are completely finished with a login record.

SqlGetChar
Returns the value of a character in the command buffer.

Syntax
SqlGetChar (connectid%, charnum%)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

charnum%

The character to find in the command buffer.    The first character is at position 0.    IE charnum% = 0.

Results
The character at position charnum% in the command buffer.    If charnum% is not in range, an empty
string is returned.

Remarks
Use SqlGetChar to get a particular character in the command buffer.

See Also
SqlCmd, SqlFreeBuf, SqlStrCpy, SqlStrLen

SqlGetOff
Used to check for the existence of Transact-SQL statements in the command buffer.

Syntax
SqlGetOff (connectid%, offset%, startpos%)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

offset%

The type of offset you want to find.    The choices are OFF_SELECT, OFF_FROM, OFF_ORDER,
OFF_COMPUTE, OFF_TABLE, OFF_PROCEDURE, OFF_STATEMENT, OFF_PARAM, and
OFF_EXEC.

startpos%

The point in the buffer from which begin searching.    The command buffer begins at position 0.

Results
The beginning character position in the command buffer where a specified offset is found.    If the offset is
not found, -1 is returned.

Remarks
If the SQLOFFSET option has been set using SqlSetOpt,    SqlGetOff can check for the location of certain
Transact-SQL statements in the command buffer.    SqlGetOff does not recognize SELECT statements in
a subquery.

See Also
SqlCmd, SqlGetChar, SqlSetOpt, SqlStrCpy, SqlStrLen

SqlGetRow
Sets the current row in the row buffer to a specific row number and reads it.

Syntax
SqlGetRow(connectid%, row&)

connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

row&

The number of the row to read.    The first row returned is number 1.

Returns
One of four types of values depending on certain conditions.

· For a regular row, REGROW (-1) is returned.

· For a compute row, the ID of the COMPUTE clause is returned.

· If unsuccessful, FAIL (0) is returned..

· If the row does not exist, NOMOREROWS (-2) is returned..

Remarks
After calling SqlGetRow, make calls to SqlNextRow to return rows in order following the row accessed by
SqlGetRow.

See Also
SqlClrBuf, SqlNextRow

SqlGetTime
Returns the number of seconds that the SQL-Sombrero/VBX will wait for SQL Server to respond to a
Transact-SQL statement.

Syntax
SqlGetTime (connectid%)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

Results
The number of seconds that the front end waits for a SQL Server response to a Transact-SQL statement.
0 (the default) indicates an infinite time-out period.

Remarks
The time-out value can be changed by calling SqlSetTime.

See Also
SqlSetTime

SqlHasRetStat
Determines if    a return status number was generated by the current Transact-SQL command or remote
stored procedure.

Syntax
SqlHasRetStat (connectid%)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

Results
SUCCEED (1) or FAIL (0).

Remarks
Status numbers are a feature of stored procedures.    Only a remote stored procedure or an EXECUTE
statement can generate a status number.    SqlRetStatus actually returns the status number.    Stored
procedures that complete normally return a status number equal to 0.    When executing a stored
procedure, the server returns the status number immediately after returning all other results.    Therefore,
the application can only call SqlHasRetStat after making the appropriate calls to SqlResults and
SqlNextRow.

See Also
SqlNextRow, SqlResults, SqlRetData, SqlRetStatus

SqlInit
Initializes the SQL-Sombrero/VBX library.

Syntax
SqlInit()

Parameters
none

Returns
A string containing the version number of the DB-Library being used.    If unsuccessful, SqlInit returns an
empty string.

Example
dblib$ = SqlInit ()

Remarks
SqlInit must be called before calling any other SQL-Sombrero/VBX functions.

See Also
SqlWinExit

SqlIsAvail
Determines whether a    connection is available for use.

Syntax
SqlIsAvail (connectid%)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

Results
SUCCEED (1) if the connectid% is available for general use; otherwise, FAIL (0).

Remarks
SqlIsAvail indicates whether the specified connection is available for use.

SqlIsCount
Indicates whether or not the count returned by SqlCount is real.

Syntax
SqlIsCount (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
SUCCEED (1) or FAIL (0)

Example
iscount=SqlIsCount(connectid%)

Remarks
CASE 1Some commands can affect rows and don't.

CASE 2Some commands cannot affect rows and still don't.

SqlCount would return 0 in both cases.    SqlIsCount would return 1 for CASE 1 and 0 (FAIL) for CASE 2.

 SqlIsOpt
Checks the status of an option set by SqlSetOpt.

Syntax
SqlIsOpt (connectid%, option%, optparam$)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

option%

The option to be checked.

optparam$

Sets the parameter of an option.    See SqlClrOpt for more information on parameters.

Returns
SUCCEED (1) or FAIL (0).

Remarks
Although you can set and clear SQL Server query options directly through Transact-SQL, make sure your
application uses SqlSetOpt and SqlClrOpt.    With these functions, your application can make use of
SqlIsOpt to determine the status of an option.

See Also
SqlClrOpt, SqlSetOpt

SqlLastRow
Returns the number of the last row in the row buffer.

Syntax
SqlLastRow (connectid%)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

Results
The number of the last row in the row buffer.    The first row returned from SQL Server is number 1.

Remarks
If    row buffering is not turned on, SqlFirstRow, SqlCurRow, and SqlLastRow always return the number of
the current row.    If you turn on row buffering with SqlSetOpt using the SQLBUFFER option, SqlLastRow
returns the number of the highest (newest) row of results in the buffer.

See Also
SqlClrBuf, SqlCurRow, SqlFirstRow, SqlGetRow, SqlNextRow, SqlSetOpt

SqlLogin
Allocates a login record for use with SqlOpen.

Syntax
SqlLogin ()

Parameters
none

Results
An integer identifier of a login record.    If the login record cannot be allocated, 0 is returned.

Remarks
The following functions are used to supply the components of a login record:

· SqlSetLUser    -    the login ID (required).

· SqlSetLPwd      -    the user's password. (required only if the user has a password on Sql Server)

· SqlSetLHost    -    the workstation name (optional).

· SqlSetLApp      -    the application name (optional).

See Also
SqlOpen, SqlSetLApp, SqlSetLHost, SqlSetLPwd, SqlSetLUser

SqlMoreCmds
The SqlMoreCmds function indicates whether there are more statements in the command buffer that have
yet to be processed.

Syntax
SqlMoreCmds%(connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
SUCCEED (1) or FAIL (0). SUCCEED indicates there are more results in the command buffer to be
processed.

Remarks
You can call the SqlMoreCmds function after the SqlNextRow function returns NOMOREROWS.    You
can also get the same information by calling the SqlResults function until it returns NOMORERESULTS.

See Also
SqlCmdRow, SqlResults, SqlRows, SqlRowType

SqlMoreText
Sends a portion of a large text or image value to SQL Server.

Syntax
SqlMoreText%(connectid%, datsize&, data$)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

datsize&

The size, in bytes, of the text or image value being sent to SQL Server. You cannot send more text or
image bytes to SQL Server than are specified in the call to SqlWriteText. The datsize& parameter cannot
contain more than 32K characters of data.

data$

A string variable containing the text or image portion to be written to the SQL Server.

Results
SUCCEED (1) or FAIL (0).

Remarks
SqlMoreText is used in conjunction with the SqlWriteText function to send a large text or image value to
SQL Server in the form of a number of smaller chunks. You can only use SqlMoreText and SqlWriteText to
perform updates to data on SQL Servers.

See Also

SqlName
Returns the database name currently in use on the server.

Syntax
SqlName (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
The function returns current database name as a string.

Example
dbname$=SqlName(connectid%)

Remarks
    SqlChange can keep you informed of all database changes.

See Also
SqlChange

SqlNextRow
Retrieves the next row of data from the server.

Syntax
SqlNextRow (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
· -1 or REGROW when a regular row is returned.

· 0 indicates a FAIL

· -2 or NOMOREROWS when there are no more rows to be read.

If the current    row is a COMPUTE row the identification number of the COMPUTE clause is returned.

Example
ret_code% = SqlNextRow(connectid%)

Remarks
This function should be called to retrieve each row until the function returns -2 (NOMOREROWS).

Before making any calls to SqlNextRow, SqlResults must be called and it must return SUCCEED (1).

SqlNumAlts
Returns the number of columns in a compute row.

Syntax
SqlNumAlts (connectid%, computeid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

computeid%

The id representing the COMPUTE clause.    A SELECT statement can have multiple COMPUTE clauses,
which can have varying numbers of aggregate operators and aggregate targets.    This is returned by the
SqlNextRow function.

Results
The computeid is a value returned from the SqlNextRow function.

Example
computeid%=SqlNextRow(connectid%)
numalts%=SqlNumAlts(connectid%, computeid%)

Remarks
SqlResults should be called successfully prior to calling SqlNumAlts.

See Also
SqlResults, SqlNextRow

SqlNumCols
Returns the number of columns in the current set of results.

Syntax
SqlNumCols (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
The number of columns in the current results set.    0 is returned if no columns exist.

Example
'Put 2 statements in the command buffer.
cmd$ = "SELECT name, type FROM sysobjects"
cmd$ = cmd$ + " SELECT name FROM sysobjects"
retcode% = SqlCmd(connectid%, cmd$)
'Send the statements and execute them.
retcode% = SqlExec(connectid%)
'Process the results of both statements.
DO UNTIL SqlResults(connectid%) = NOMORERESULTS
 PRINT SqlNumCols(connectid%);
 PRINT "columns."
 DO UNTIL SqlNextRow(connectid%)=NOMOREROWS
 'Code to process the data your way
 LOOP
LOOP
Outputis :2 columns.1 columns.

Remarks
SqlNumCols refers to the number of output columns.

See Also
SqlColLen, SqlColName

SqlNumCompute
Returns the number of COMPUTE clauses in the current set of results.

Syntax
SqlNumCompute% (connectid%)

Parameter
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
The number of COMPUTE clauses present in the current results set.

Example
numcompute%=SqlNumCompute(connectid%)
If the select statement was

select status, cust_name from customer
order by status, cust_name
compute count(cust_name) by status
compute count(cust_name)

numcompute% above would equal 2.

Remarks
Ensure that the SqlResults function is called before attempting the SqlNumCompute function.

See Also
SqlNumAlts, SqlResults

SqlNumOrders
Returns the number columns specified in the ORDER BY clause in the current set of results.

Syntax
SqlNumOrder (connectid%)

Parameter
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
The number of columns is the ORDER BY clause.

Example
numorder%=SqlNumOrder(connectid%)

Remarks
SqlResults must be called before SqlNumOrder and it must return SUCCEED.

See Also
SqlOrderCol, SqlResults

SqlNumRets
Returns the number of returned parameter values generated by a stored procedure.

Syntax
SqlNumRets(connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
The number of parameters returned by the most recently executed stored procedure.

Example
numrets%=SqlNumRets(connectid%)

Remarks
Sql Server returns stored procedure parameter values immediately after all other results.    This means if
the stored procedure executes a select, the results of the select are returned before the parameter value
results.    Therefore, SqlResults and SqlNextRow must be called as many times as necessary prior to the
call to SqlNumRets.

See Also
SqlNextRow, SqlResults, SqlRetData, SqlRetLen, SqlRetName, SqlRetType

SqlOk
Verifies if the SQL command(s) in the command buffer are correct.

Syntax
SqlOk (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
SUCCEED (1) or FAIL (0)

A FAIL is most commonly received due to syntax errors.

Example
ret_code% = SqlOk(connectid%)
if ret_code% <> 1 then

...process errors
end if

Remarks
The combination of SqlSend and SqlOk is the equivalent of the SqlExec function.    After a SUCCEED
status from SqlSend, SqlOk must be called.    When a SUCCEED is returned, the results can be
processed by calling SqlResults.

See Also
SqlSend, SqlExec, SqlResults, SqlNextRow

SqlOpen
Allocate and initialize a SQL Server connection.

Syntax
SqlOpen(loginrec%, server$)

Parameters
loginrec%

A login record.    The value of loginrec% is returned by SqlLogin.

server$

The name of the SQL Server you want to connect to.

Results
The identifier of A SQL Server connection.    SqlOpen returns 0 if a SQL Server connection cannot be
created or initialized, or if your login to SQL Server fails.    When 0 is returned, the Error Handler is called
to indicate the error.

Remarks
SqlOpen allocates a data structure for    the connection, initiates communication with the network, logs in
to SQL Server, and sets any default options.    SqlOpen returns an id that is used by almost every
function.    A program can open multiple connections with SQL Server.    The same login record can be
used for multiple calls to SqlOpen.

SqlOpen returns 0 when it encounters any of the errors in the following:

Error Description
SQLECONN Server is unavailable or does not exist.

SQLEPWD Login is incorrect.

SQLESQLPS Maximum number of connections already allocated.

See Also
SqlClose, SqlExit, SqlLogin, SqlSetLoginTime

SqlOpenConnection
Opens the connection to the SQL server.

Syntax
SqlOpenConnection(server$, loginid$, pwd$, workstation$, app$)

Parameters
server$

The name of the SQL Server you want to connect to.

loginid$

The login id.

pwd$

The password.

workstation$

The workstation name up to 30 characters. (may be " ")

app$

The application name up to 30 characters.

Results
Returns a Connection object if the connection to the server was made. 0 is returned if no connection can
be made.

Example
connectid% = SqlOpenConnection (server$, loginid$, pwd$, workstation$,
app$)

Remarks
SqlOpenConnection performs the actions required to    establish a connection to the server.

You should not modify the identifier returned by SqlOpenConnection.    Modifying the identifier can cause
unexpected results.

SqlOpenConnection allocates a data structure for    the connection, initiates communication with the
network, logs in to SQL Server, and sets any default options.    SqlOpen returns an id that is used by
almost every function.    A program can open multiple connections with SQL Server.    The same login
record can be used for multiple calls to SqlOpen.

SqlOpen returns 0 when it encounters any of the errors in the following:

Error Description
SQLECONN Server is unavailable or does not exist.

SQLEPWD Login is incorrect.

SQLESQLPS Maximum number of connections already allocated.

SqlOrderCol
Returns the ID of a column appearing in the most recently executed query's ORDER BY clause.

Syntax
SqlOrderCol (connectid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

column%

The column number.    The first column number returned is 1.

Results
The column number (based on position in select list) for a column in the ORDER BY clause.

Example
num% = SqlNumOrder(connectid%)
For I=1 to num%
ordercol%=SqlOrderCol(connectid%, I)
...
Next

Remarks
Select cust_name, cust_id, status from customer

order by status, cust_name

A call to SqlOrderCol with a parameter of 1 will return 3 because status is first in the order by clause and
3rd in the select list.

SqlPrType
Returns the printable data type for a specific column type.

Syntax
SqlPrType (connectid%, coltype%)

Parameter
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

coltype%

The parameter passed is the column type to get the printable type for.

Results
The value returned is the column type in a printable (string) format for a particular column type.

Example
coltype% = SqlColType(connectid%, column%)

prtype$ = SqlPrType(connectid%, coltype%)

Remarks
SqlColType returns a Sql Server token value for a column type.    SqlPrType returns a more humanly
readable form of the token value.

Token value Datatype
SQLINT1 tinyint

SQLINT2 smallint

SQLINT4 int

SQLMONEY money

SQLMONEY4 smallmoney

SLQFLT4 real

SLQFLT8 float

SQLDATETIME datetime

SQLDATETIM4 smalldatetime

SQLBIT bit

SQLCHAR char

SQLVARCHAR varchar

SQLTEXT text

SQLBINARY binary

SQLVARBINARY varbinary

SQLIMAGE image

SQLINTN integer-null

SQLDATETIMN datetime-null

SQLMONEYN money-null

SQLFLTN float-null

SQLAOPSUM sum

SQLAOPAVG avg

SQLAOPCNT count

SQLAOPMIN min

SQLAOPMAX max

See Also
SqlAltType, SqlColType

SqlQual
Returns a string representing the WHERE clause for the current row in a specified table.

Syntax
SqlQual (connectid%, tabnum%, tabname$)

Parameters
connectid%

The parameter passed is the connection id returned from the SqlOpenConnection function.

tabnum%

Specifies an integer representing the number of the table.    Tables are numbered in the order they are
listed in the FROM clause.    Table numbers start at 1.    If tabnum% is -1, tabname$ is used to identify the
table.

tabname$

A string containing the name of a table specified in the FROM clause.    If tabname$ is an empty string,
tabnum% is used to identify the table.

Results
A string containing the WHERE clause for the current row in a specified table.    If the specified table
cannot be browsed, SqlQual returns an empty string.    A browseable table has a unique index and a
timestamp column.

Remarks
SqlQual provides a WHERE clause that can be used to update a single row in a browseable table.   
Columns from this row must have been previously retrieved through a browse-mode SELECT query.   
The WHERE clause produced by SqlQual begins with the keyword WHERE and contains references to
the row's unique index and timestamp column.    You can simply append the WHERE clause to an
UPDATE or DELETE statement; there is no need to examine it or manipulate it in any way.

The timestamp column indicates the time that a particular row was last updated.    An update on a
browseable table fails if the timestamp column in the WHERE clause that SqlQual generates is different
from the timestamp column in the table.    Such a condition, which generates SQL Server error message
532, indicates that another user updated the row since it was selected for browsing.    Design your
application to include the logic for handling an update failure.

SqlQual can construct WHERE clauses only for browseable tables.    You can use SqlTabBrowse to
determine whether a table can be browse.    SqlQual is usually called after SqlNextRow.

See Also
SqlColSource

SqlResults
Tells the Sql Server to execute the next staement in the SQL command buffer sent by the SqlExec
function.

Syntax
SqlResults (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
SUCCEED (1), FAIL (0) or NOMORERESULTS (2).

Example
ret_code% = SqlResults(connectid%)

Remarks
This function should be called as many times as there are statements to be executed in the command
buffer.    (The example in this package is set up for only one SQL statement).    It is called after a
SUCCEED status of SqlExec or SqlOk.    It will always return a status of SUCCEED or
NOMORERESULTS the first time it is called    if a SUCCEED was returned from SQLExec or SqlOk.    To
process result rows after    SqlResult returns a SUCCEED status, SqlNextRow would be used.

Regardless if the statement returns rows or not, you must call SqlResults for every statement found in the
command buffer.

See Also
SqlExec, SqlOk, SqlRows, SqlNextRow

SqlRetData
Retrieves a string representation of a value returned from a Stored Procedure.

Syntax
SqlRetData(connectid%, retnum%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

retnum%

The number corresponding to a return parameter of a stored procedure in the order specified by the
create procedure.    Non return parameters are not counted.    If a stored procedure has two parameters
and only the second is a return parameter, retnum% would be 1.    (For remote stored procedures, the
order is not necessarily the same as the Create Procedure.)

Results
A string containing the data for a specified retnum%.    An empty string will be returned if the parameter is
not in the scope specified.    The string "NULL" will be returned for NULL results.

Example
dat$=SqlRetData(connectid%,2)

Remarks
The number of returns available can be determined by using the function SqlNumRets.    To function as a
return parameter, a parameter must be declared as OUTPUT in both the Create Procedure statement and
the EXECUTE statement.    If a stored procedure is invoked with an EXECUTE statement, the return
parameter values are only available if the command batch containing the EXECUTE statement uses
variables rather than constants, for the return parameters.

See Also
SqlNextRow, SqlNumRets, SqlResults, SqlRetLen, SqlRetName, SqlRetType

SqlRetLen
Returns the length in bytes of a return parameter value generated by the execution of a stored procedure.

Syntax
SqlRetLen (connectid%, retnum%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

retnum%

The number corresponding to a return parameter of a stored procedure in the order specified by the
create procedure.    Non return parameters are not counted.    If a stored procedure has two parameters
and only the second is a return parameter, retnum% would be 1.    (For remote stored procedures, the
order is not necessarily the same as the Create Procedure.)

Results
The length of the specified retnum%.    If retnum% is out of range, -1 is returned.    If the value is NULL, 0
is returned.

Example
numrets% = SqlNumRets(connectid%)
For I = 1 to numrets%
 retlen%=SqlRetLen(connectid%,I)
 ...
Next I

Remarks
The number of returns available can be determined by using the function SqlNumRets.

To function as a return parameter, a parameter must be declared as OUTPUT in both the Create
Procedure statement and the EXECUTE statement.

If a stored procedure is invoked with an EXECUTE statement, the return parameter values are only
available if the command batch containing the EXECUTE statement uses variables rather than constants,
for the return parameters.

See Also
SqlNextRow, SqlNumRets, SqlResults, SqlRetData, SqlRetName, SqlRetType

SqlRetName
Returns the name of a stored procedure return parameter .

Syntax
SqlRetName (connectid%, retnum%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

retnum%

The number corresponding to a return parameter of a stored procedure in the order specified by the
create procedure.    Non return parameters are not counted.    If a stored procedure has two parameters
and only the second is a return parameter, retnum% would be 1.    (For remote stored procedures, the
order is not necessarily the same as the Create Procedure.)

Results
The name of the parameter specified by retnum%.    An empty string is returned if retnum% is out of
range.

Example
numrets% = SqlNumRets(connectid%)
For I = 1 to numrets%
 retname$=SqlRetName(connectid%,I)
 ...
Next I

Remarks
The number of returns available can be determined by using the function SqlNumRets.

To function as a return parameter, a parameter must be declared as OUTPUT in both the Create
Procedure statement and the EXECUTE statement.

If a stored procedure is invoked with an EXECUTE statement, the return parameter values are only
available if the command batch containing the EXECUTE statement uses variables rather than constants,
for the return parameters.

See Also
SqlNextRow, SqlNumRets, SqlResults, SqlRetData, SqlRetLen, SqlRetType

SqlRetStatus
Returns a status number for the current stored procedure or remote stored procedure.

Syntax
SqlRetStatus(connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
A normal completion of a stored procedure returns 0.

Example
retstatus& = SqlRetStatus(connectid%)

Remarks
The following table lists the other possible values and their meanings:

Value Meaning
-1 Missing object.

-2 Datatype error.

-3 Process was chosen as deadlock victim.

-4 Permission error.

-5 Syntax error.

-6 Miscellaneous user error.

-7 Resource error, such as out of space.

-8 Nonfatal internal problem.

-9 System limit was reached.

-10 Fatal internal inconsistency.

-11 Fatal internal inconsistency.

-12 Table or index corrupt.

-13 Database corrupt.

-14 Hardware error.

Status numbers are a feature of stored procedures, therefore only an EXECUTE statement can generate
a status number.

The server returns a status number immediately after returning all other results.    A stored procedure can
generate several results sets ie. one for each SELECT statement it contains, therefore, an application
must call SqlResults% and SqlNextRow% as many times as required to process all the results before it
can call any functions that process returned parameters.

The order in which the application processes the status number and any returned parameter values is

unimportant.

See Also
SqlNextRow, SqlNumRets, SqlResults, SqlRetData, SqlRetLen, SqlRetType, SqlRetName

SqlRetType
Returns the datatype of a return parameter generated by a stored procedure execution.

Syntax
SqlRetType (connectid%, retnum%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

retnum%

The number corresponding to a return parameter of a stored procedure in the order specified by the
create procedure.    Non return parameters are not counted.    If a stored procedure has two parameters
and only the second is a return parameter, retnum% would be 1.    (For remote stored procedures, the
order is not necessarily the same as the Create Procedure.)

Results
The returned value is the token value for the datatype.

The token value may not correspond directly to the column's SQL Server datatype.    See the following:

Column Returns
SQLVARCHAR SQLCHAR

SQLVARBINARY SQLBINARY

SQLDATETIMN SQLDATETIME or SQLDATETIM4

SQLMONEYN SQLMONEY or SQLMONEY4

SQLFLTN SQLFLT8 or SQLFLT4

SQLINTN SQLINT1, SQLINT2, or SQLINT4

Example
numrets% = SqlNumRets(connectid%)
For I = 1 to numrets%
 rettype%=SqlRetType(connectid%,I)
 ...
Next I

Remarks
The number of returns available can be determined by using the function SqlNumRets.

To function as a return parameter, a parameter must be declared as OUTPUT in both the Create
Procedure statement and the EXECUTE statement.

If a stored procedure is invoked with an EXECUTE statement, the return parameter values are only
available if the command batch containing the EXECUTE statement uses variables rather than constants,

for the return parameters.

See Also
SqlNextRow, SqlNumRets, SqlResults, SqlRetData, SqlRetLen, SqlRetName

SqlRows
This function indicates whether or not the last statement executed returned rows.

Syntax
SqlRows (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
SUCCEED (1) or FAIL (0)

Example
ret_code% = SqlRows(connectid%)
if ret_code% = 1 then
...

Remarks
This should be executed after the call to SqlResults and prior to calling SqlNextRow.

See Also
SqlCmdRow, SqlNextRow, SqlResults

SqlRowType
This function indicates the type of row which has been returned.    The row type returned is either a result
row or a compute row.

Syntax
SqlRowType(connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
· - REGROW(-1) if a regular row has been returned.

· - for a COMPUTE row the ID of the COMPUTE clause

· - FAIL(0) if function call was unsuccessful

· - NOMOREROWS(-2) if no rows have be read

Remarks
Since the function SqlNextRow returns the row type there is usually no reason to call this function.

See Also
SqlNextRow

SqlRpcInit
This function is used to initialize a remote stored procedure.

Syntax
SqlRpcInit(connectid%,rprocname$,optmask%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

rprocname$

This parameter is a string containing the name of the stored procedure to be initialized.

optmask%

This is a type byte variable containing a bitmask of options to be used in the initialization of the stored
procedure.    There is at present only one option available.    The option name is SQLRPCRECOMPILE.

Results
SUCCEED (1) or FAIL (0)

Remarks
SQLRPCRECOMPILE - causes the stored procedure to be recompiled prior to execution.

There are two methods of calling a stored procedure from within an application.    The first method is to
execute a command buffer which contains an EXECUTE Transact-SQL statement.

There is a second method which involves using the SQL-Sombrero/VBX functions: SqlRpcInit,
SqlRpcParam and SqlRpcSend.    To call a remote stored procedure:

- Use the SqlRpcInit function to indicate which stored procedure to be invoked.

- Use the SqlRpcParam function to supply the parameters required to execute the stored procedure if
necessary.

- Use the SqlRpcSend to first indicate that no further parameters are to be sent and also to inform the
SQL Server to begin the execution of the stored procedure.

Results are retrieved from the SQL Server using the same functions as regular result rows.    Use of the
functions SqlRetData and SqlRetStatus is required at the end of the processing of the stored procedure's
results.

Note that commands executed using remote stored procedures cannot be rolled back.

See Also
SqlNextRow, SqlResults, SqlRetData, SqlRetStatus, SqlRpcParam, SqlRpcSend, SqlOk

SqlRpcParam
This function is used to pass parameters to remote stored procedures.

Syntax
SqlRpcParam(connectid%,paramname$,optmask%,datatype%,maxparamlenght&,actualparamlenght&,pa
ramvalue$)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

paramname$

This parameter is a string containing the name of the parameter that is being invoked for the stored
procedure named in the last SqlRpcInit function.

optmask%

This parameter is a one byte variable containing parameter options for the stored procedure.    At present
the only option available is SQLRPCRETURN.

datatype%

This parameter contains the type of the parameter.    The values are the same as returned by
SqlColType.

maxparamlength&

This parameter contains the maximum length of data that can be passed back for a parameter passed
back from a stored procedure.    This parameter is only required for datatypes whose length can change
such as text or image.

This parameter should be set to (-1) in the following cases:

· for fixed length datatypes

· if restricting the length would make no difference

· if the parameter is not a return parameter

actualparamlength&

This parameter contains the actual length of a paramter sent to the stored procedure.    This does no
include a null terminator.

This parameter should be set to (-1) in the following cases:

· for fixed length datatypes

· for return parameters

This parameter should be set to 0 if the parameter is an empty string.

paramvalue$

This parameter contains the actual data being sent as a parameter.    If the actualparamlength& is 0 this

field is ignored.    SQL-Sombrero/VBX will convert the string to its native datatype.

Results
SUCCEED (1) or FAIL (0)

Remarks
SQLRPCRETURN - this parameter is a return value from the stored procedure.

See SqlRpcInit for a discussion on the sequence of events to execute a remote stored procedure.

See Also
SqlNextRow, SqlResults, SqlRetData, SqlRetStatus, SqlRpcInit, SqlRpcSend, SqlOk

SqlRpcSend
This function indicates that there are no more parameters being sent and that the SQL Server should start
executing the stored procedure.

Syntax
SqlRpcSend(connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
SUCCEED (1) or FAIL (0)

Remarks
See SqlRpcInit for a discussion on the sequence of events to execute a remote stored procedure.

See Also
SqlNextRow, SqlResults, SqlRetData, SqlRetStatus, SqlRpcInit, SqlRpcParam, SqlOk

SqlRPwClr
This function clears all remote passwords from the specified login rec.

Syntax
SqlRPwClr(loginrec%)

Parameters
loginrec%

The parameter passed is the loginrec id returned from the SqlLogin function.

Results
None

Remarks
The function SqlRPwSet will set a password needed to execute a stored procedure on another SQL
Server.    The user may specify more than one password using the SqlRPwSet function.    There would be
one password for each SQL Server which is called.    This function will clear all passwords.

See Also
SqlLogin, SqlOpen, SqlRPwSet, SqlSetLApp, SqlSetLHost, SqlSetLPwd, SqlSetLUser

SqlRPwSet
This function adds a remote password to the login rec.

Syntax
SqlRPwSet(loginrec%,servername$,password$)

Parameters
loginrec%

The parameter passed is the loginrec id returned from the SqlLogin function.

servername$

This parameter contains the name of the SQL Server which this password pertains to.

password$

This parameter contains the password used to connect to the SQL Server with the name passed in the
servername$ field.

Results
SUCCEED (1) or FAIL (0)

Remarks
SQL Servers can execute stored procedures resident on other SQL Servers.    To perform this action the
first SQL Server logs on to the SQL Server on which the stored procedure is resident.

To allow the connection the SqlRPwSet function allows the user to specify the password to be used when
opening a connection on the second SQL Server.    Applications can specity a unique password for every
remote SQL Server that will be logged on to.

See Also
SqlLogin, SqlOpen, SqlRPwClr, SqlSetLApp, SqlSetLHost, SqlSetLPwd, SqlSetLUser

SqlSend
Sends the SQL command(s) in the command buffer to the server and does not wait for the server to
respond.

Syntax
SqlSend (connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
SUCCEED (1) or FAIL (0)

Example
ret_code% = SqlSend(connectid%)
if ret_code% <>1 then
...process errors
end if

Remarks
SqlSend will send Transact-SQL statements to the SQL Server that are stored in the command buffer.    If
you wish to add statements to the command buffer, you may also use SqlCmd.    Once a    SUCCEED
status is returned, SqlOk is needed to confirm the correctness of statements found in the command
buffer.    Once that has been achieved, SqlResults must be called in to manipulate the results.

See Also
SqlOk, SqlResults, SqlExec, SqlNextRow

SqlSendCmd
Sends Transact-SQL text from the command buffer and sets up the statement for processing. This utility
combines several functions into a single call.

Syntax
SqlSendCmd(connectid%, command$)

connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

commandd$

A character string to be copied into the command buffer.

Results
SUCCEED (1) or FAIL (0).

Remarks
SqlSendCmd performs several actions that process the Transact-SQL statements in the command buffer.
SqlSendCmd is equivalent to calling SqlCmd, SqlExec, and SqlResults. SqlSendCmd prepares the
command for processing the first set of results but does not retrieve the first data row.

Example
'Put commands into the command buffer.
cmd$ = "SELECT db_name(dbid), dbid, size FROM sysusages"
cmd$ = cmd$ + " ORDER BY dbid"
'Send commands to SQL Server and start execution.
Result% = SqlSendCmd%(SqlConn%,Cmd$)

See Also
SqlCmd, SqlExec, SqlResults

SqlServerEnum
Lists the names of local SQL Servers, network SQL Servers, or both.

Syntax
SqlServerEnum(searchmode%, servernames$, numsrventries%)

Parameters
searchmode%

An integer value which is used to determine whether SqlServerEnum checks for server names locally, on
the network, or both. The constants which can be used for this parameter are LOCSEARCH and
NETSEARCH.

CONSTANT DESCRIPTION Val
LOCSEARCH searches for the server names listed in the

WIN.INI file.
1

NETSEARCH searches for server names on the network type
that is defined by the default Net-Library..

2

LOCSEARCH
+ NETSEARCH

 searches for server names using both
methods,

3

servernames$

The buffer that stores the server names that SqlServerEnum returns. You must preallocate this buffer
using an appropriate Visual Basic function such as Space$.    Each server name is followed by a CHR(0).

numsrventries%

An output parameter that will contain the number of server names that were copied to the buffer by the
SqlServerEnum function.

Results
One or more of the following status codes:

Status Value
 ENUMSUCCESS% 0

 MOREDATA% 1

 NETNOTAVAIL% 2

 OUTOFMEMORY% 3

 NOTSUPPORTED% 4

Remarks
The SqlServerEnum function returns a list of server names to the servername$ buffer in the order in
which it finds them. Only complete server names are copied to the buffer. Each server name is separated
by a null character (chr$(0)).

See Also

SqlOpen and SqlOpenConnection

SqlSetAvail
Marks a SQL Server connection as being available for general use.

Syntax
SqlSetAvail(connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
None.

Remarks
Any subsequent call to SqlIsAvail returns SUCCEED until some use is made of the connectid%
connection. SqlSetAvail is not normally required in an application.

See Also
SqlIsAvail

SqlSetLApp
Sets the application name in the SQL Server login record.

Syntax
SqlSetLApp(loginrec%,application$)

Parameters
loginrec%

The parameter passed is the loginrec id returned from the SqlLogin function.

application$

This a string of up to 30 characters to be sent to the SQL Server indicating the application name
associated with a connection.

Returns
SUCCEED(1) or FALSE(0)

Remarks
This function must be called prior to calling the SqlOpen function using the login rec id.    If this function is
not used    the application name is an empty string.

This string is used to identify your application.

See Also
SqlLogin, SqlOpen, SqlSetLApp, SqlSetLPwd, SqlSetLUser

SqlSetLHost
Sets the workstation name in the SQL Server login record.

Syntax
SqlSetLHost(loginrec%,host$)

Parameters
loginrec%

The parameter passed is the loginrec id returned from the SqlLogin function.

host$

This a string of up to 30 characters to be sent to the SQL Server indicating a host name for the
connection.

Returns
SUCCEED(1) or FALSE(0)

Remarks
This function must be called prior to calling the SqlOpen function using the login rec id.    If this function is
not used    the workstation name is    an empty string.

This string is used to identify your workstation.

See Also
SqlLogin, SqlOpen, SqlSetLHost, SqlSetLPwd, SqlSetLUser

SqlSetLNatLang
Sets the national language in the SQL Server login record.

Syntax
SqlSetLNatLang(loginrec%,langname$)

Parameters
loginrec%

The parameter passed is the loginrec id returned from the SqlLogin function.

langname$

This a string of up to 30 characters to be sent to the SQL Server indicating the name of the national
language to use for the connection.

Returns
SUCCEED(1) or FALSE(0)

Remarks
This function must be called prior to calling the SqlOpen function using the login rec id.    If this function is
not used the language used is the SQL Server default language.

This string is used to set your choice of a language other than the SQL Server default language.    Setting
this parameter will cause error messages to be passed back in the language chosen.

See Also
SqlLogin, SqlOpen

SqlSetLoginTime
Sets the amount of time that you wish to wait while the VBX issues a SqlOpen.    The time is given in
seconds.

Syntax
SqlSetLoginTime(seconds%)

Parameters
seconds%

The parameter passed is the number of seconds to wait before the server will pass back a timeout
notification.

Returns
SUCCEED(1) or FALSE(0)

Remarks
To indicate to the server that you will wait an infinite amount of time the seconds% parameter should be
set to 0.    Sixty (60) seconds is the default value for this parameter.

See Also
SqlSetTime

SqlSetLPwd
Sets the users password in the SQL Server login record.

Syntax
SqlSetLPwd(loginrec%,password$)

Parameters
loginrec%

The parameter passed is the loginrec id returned from the SqlLogin function.

password$

This a string of up to 30 characters to be sent to the SQL Server indicating the password to be used for
the connection.

Returns
SUCCEED(1) or FALSE(0)

Remarks
This function must be called prior to calling the SqlOpen function using the login rec id.    If this function is
not used    the password used is an empty string.

This string is used to set the password for the userid.    The passwords are kept in the syslogins table in
the master database.    The system administrator maintains the passwords for the SQL Server.

See Also
SqlLogin, SqlOpen, SqlSetLHost, SqlSetLApp, SqlSetLUser

SqlSetLUser
Sets the user id in the SQL Server login record.

Syntax
SqlSetLUser(loginrec%,userid$)

Parameters
loginrec%

The parameter passed is the loginrec id returned from the SqlLogin function.

userid$

This a string of up to 30 characters to be sent to the SQL Server indicating the user id to be used for the
connection.

Returns
SUCCEED(1) or FALSE(0)

Remarks
This function must be called prior to calling the SqlOpen function using the login rec id.

This string is used to set the user id for a connection.    You must provide a user id in order to establish a
connection to the SQL Server.    You must also use the SqlSetLPwd to provide the password asscociated
with this user id.

See Also
SqlLogin, SqlOpen, SqlSetLHost, SqlSetLPwd, SqlSetLApp

SqlSetMaxProcs
Sets the maximum number of connections to the SQL Server that can be open at one time.

Syntax
SqlSetMaxProcs(maxnumprocs%)

Parameters
maxnumprocs%

The parameter passed is the new limit to the number of open connections to the SQL Server.

Returns
SUCCEED(1) or FALSE(0)

Remarks
The maximum open connections that the Visual Basic application can support is 45.    The default number
before using this function is 25 open connections.

See Also
SqlOpen

SqlSetOpt
Sets a SQL Server option.

Syntax
SqlSetOpt(connectid%,option%,parameter$)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

option%

This is the option to be set.    The list of possible values appears below.

parameter$

This is the parameter for the option being set.    Some of the options being set can use a parameter.    If
the option being set does not require a parameter this field can be ignored and can be either an empty
string "" or any other string value.

Returns
SUCCEED(1) or FALSE(0)

Remarks
If the parameter required is a string representation of a numerical value this parameter cannot have a
leading space.    This leading space will occur if the Str$ Visual Basic function is used to obtain this string.
Use the Visual Basic Ltrim function to remove the leading space.

Some of the options can be set or cleared using Transact-SQL.    It is recommended to use the Visual
Basic method of setting and clearing options.    Three of the following options are unique to the Visual
Basic application: SQLBUFFER, SQLTEXTLIMIT and SQLNOAUTOFREE.

If the option being set is equivalent to a Transact-SQL SET statement SQL-Sombrero/VBX places the
corresponding SET statement into the command buffer.    The commands in the buffer must be executed
prior to the option taking effect.    If the parameter being sent is no valid for the chosen option it will not be
determined until the statement is sent to the SQL Server for execution.

The following is the list of options that can be set using this function.

SQLARITHABORT

This option if set will abort a query if a divide by zero error occurs or if an overflow ocurs.

If this option is not set NULL values are substitued and a warning message is sent after execution
of the query.

There are no parameters for this option.

The default for this option is OFF.

SQLARITHIGNORE

This option if set will supress the issuing of warning messages when divide by zero or overflows
occur.

There are no parameters for this option.

The default for this option is OFF.

SQLBUFFER

This option will set the number of rows which are allowed for buffering This is an option which can
only be set using this function as there is no Transact_SQL equivalent.

The following parameters are valid for this option.

Parameter Description
Less than 0 Buffer is set to 100 rows

0 No rows are buffered

1 Invalid value

2-32,767 Number of buffered
rows

SQLNOAUTOFREE

This option is used to tell SQL-Sombrero/VBX that the command buffer will be cleared only by
using the function SqlFreeBuf.

There are no parameters for this option.

The default for this option is OFF.

SQLNOCOUNT

This option will stop SQL Server from reporting the number of rows affected by each Transact-
SQL statement.

There are no parameters for this option.

The default for this option is OFF.

SQLNOEXEC

Setting this option will cause the query to be compiled but not executed This option is in effect
until being reset using the SqlClrOpt function.

There are no parameters for this option.

The default for this option is OFF.

SQLOFFSET

Set this option to indicate to SQL Server where to return offsets to certain constructs in the query.

The following is the list of valid values for the parameter to this option:

OFF_SELECT OFF_FROM

OFF_TABLE OFF_ORDER

OFF_COMPUTE OFF_STATEMENT

OFF_PROCEDURE OFF_EXEC

OFF_PARAM

Offsets are only returned if no syntax errors are present in the batch.

SQLPARSEONLY

Set this option to perform a syntax check only and return any error messages to the workstation.

There are no parameters for this option.

The default for this option is OFF.

SQLROWCOUNT

Setting this option will restrict the number of rows returned for all SELECT statements

If you use 0 then all rows will be returned.    A number from 1 - 2,147,483,647 will restrict the
number of rows returned to that value.

The default setting is 0 to allow all rows to be returned.

You can also set the parameter to 0 by using the SqlClrOpt function.

SQLSHOWPLAN

Set this option to have the SQL Server return the processing plan prior to executing the query.

There are no parameters for this option.

The default for this option is OFF.

SQLSTAT

Set this option to have the SQL Server return inormation about the execution of the query.    This
information is returned as SQL Server messages.

There are two parameter to be used with this option:

IO Returns statistics about the SQL Server internal I/O.    Also returned are the number of
table scans, the number of logical/physical reads and the number of pages written for each statement.

TIME Returns the amount of time taken to perform the parsing, compilation, and the actual
execution time.    The time returned indicates the number of milliseconds taken.

The default for this option is OFF.

SQLSTORPROCID

Setting this will cause the SQL Server to send the stored procedure ID to the workstation prior to
sending rows back to the workstation.

There are no parameters for this option.

The default for this option is OFF.

SQLTEXTLIMIT

Set this option to limit the amount of text or image data which is sent to the application.    SQL-
Sombrero/VBX will read all text or image data but will ignore any part of that data which exceeds the limit
set by this option.

The parameter sent is the largest number of bytes that the application can handle.    Valid values
are from 0 to 32,768.

The default value is 4096.

SQLTEXTSIZE

Set this option to limit the amount of text or image data which is sent to the workstation.    SQL
Server will send only the amount of data which is specified in the parameter.

The parameter sent is the largest number of bytes that the application can handle.    Valid values
are from 0 to 32,768.

The default value is 4096.

See Also
SqlClrOpt, SqlIsOpt

SqlSetTime
Sets the amount of time that you wish to wait while the VBX issues a SqlExec or SqlOk.    The time is
given in seconds.

Syntax
SqlSetTime(seconds%)

Parameters
seconds%

The parameter passed is the number of seconds to wait before the server will pass back a timeout
notification.

Returns
SUCCEED(1) or FALSE(0)

Remarks
To indicate to the server that you will wait an infinite amount of time the seconds% parameter should be
set to 0. 0 seconds (infinity) is the default value for this parameter.

See Also
SqlExec, SqlGetTime, SqlOk, SqlSend, SqlSetLoginTime

SqlStrCpy
Copies data from the command buffer into a program variable.

Syntax
SqlStrCpy (connectid%, start%, numbytes%, mybuff$)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

start%

The starting byte position to begin copying from

numbytes%

The number of bytes to copy.

mybuff$

A string variable in which to store the result.

Results
SUCCEED (1) or FAIL (0) FAIL is returned if start% is < 0

Example
ret_code% = SqlStrCopy(connectid%,1,100,mybuff$)
if ret_code% <>1 then
...process errors
end if

This example copys the first 100 bytes from the command buffer into mybuff$.

Remarks
Internally the command buffer is a linked list of text strings.

See Also
SqlStrLen

SqlStrLen
Returns the number of bytes of data available in the command buffer.

Syntax
SqlStrLen(connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
The number of bytes in the command buffer.

The return value can be used in the SqlStrCpy function.

Example
strlen%=SqlStrLen(connectid%)

Remarks
Internally the command buffer is a linked list of text strings.

See Also
SqlStrCpy

SqlTabBrowse
Indicates whether a specified table can be updated with the SQL-Sombrero/VBX browse-mode
procedures.

Syntax
SqlTabBrowse(connectid%, tablenumber%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

tablenumber%

Indicates the number of the table as specified in the SELECT statement's FROM clause. Table numbers
start at 1.

Results
SUCCEED (1) or FAIL (0). If you drop a table's unique index while browsing, SqlTabBrowse continues to
return SUCCEED.

Remarks
SqlTabBrowse is a SQL Server browse-mode function. SqlTabBrowse provides a way to identify
browseable tables. A browseable table requires both a unique index and a timestamp column.
SqlColBrowse is useful when examining ad hoc queries prior to performing browse-mode updates based
on them. When a query is hard-coded into the application, the SqlTabBrowse function is unnecessary.

You can call SqlTabBrowse any time after you call SqlResults.

See Also
SqlColBrowse, SqlColSource, SqlQual, SqlTabCount, SqlTabName, SqlTabSource

SqlTabCount
Returns the number of tables included in the current SELECT statement.

Syntax
SqlTabCount%(connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
The number of tables, including SQL Server work tables, included in the current SELECT statement.    If
an invalid connectid% value is sent to SqlTabCount%, a value of --1 will be returned.

Remarks
SqlTabCount is a SQL Server browse-mode function. A SELECT statement can generate a set of result
rows whose columns are derived from several database tables. To perform browse-mode updates of the
columns in a statement's select list, your application must know how many tables are involved in the
query, because each table requires a separate UPDATE statement. SqlTabCount can provide this
information for ad hoc queries. When a query is hard-coded into the application, SqlTabCount is
unnecessary.

You can call SqlTabCount any time after you call SqlResults.

See Also
SqlColBrowse, SqlColSource, SqlQual, SqlTabCount, SqlTabName, SqlTabSource

SqlTabName
Returns the name of a table based on its number.

Syntax
SqlTabName$(connectid%, tabnum%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

tabnum%

The number of a table. Table numbers start with 1.

Returns
A string containing the name of a specified table.    This string is empty if the table number is out of range
or if the specified table is a SQL-Server work table.

SqlTabSource
Returns the name and number of the table from which a result column

derives.

Syntax
SqlTabSource$(connectid%, column%, tabnum%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

column%

The number of the result column. Column numbers start at 1.

tabnum%

An integer variable to receive the table number.    Many Visual Basic for SQL-Server functions that
operate in browse mode accept either a table name or a table number.    If SqlTabSource$ returns an
empty string, tabnum% is set to    -1.

Results
A string containing the name of the table from which a result column

derives.    If an empty string is returned, it means one of the following:

· The SQL-Server connection is inactive. This is an error that invokes an application's error
handler.

· The SELECT statement does not contain the FOR BROWSE clause.

· The column number is not in range.

SqlTsNewLen
Returns the length of the new value of a timestamp column after a browse-mode update.

Syntax
SqlTsNewLen(connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
The length, in bytes, of the updated row's new timestamp value.    SqlTsNewLen returns --1 if no
timestamp is returned to the application because the update was unsuccessful or because the UPDATE
statement did not contain a WHERE clause returned by SqlQual.

Remarks
SqlTsNewLen is a Visual Basic for SQL Server browse-mode function.    SqlTsNewLen provides
information about the timestamp column.    The WHERE clause returned by SqlQual contains references
to the row's unique index and timestamp column.    When you use such a WHERE clause in an UPDATE
statement, a new value is placed in the updated row's timestamp column and a new timestamp value is
returned to the application (if the update is successful). With SqlTsNewLen, the application saves the
length of the new timestamp value, possibly for use with SqlTsPut.

See Also
SqlColBrowse, SqlColSource, SqlQual, SqlTabBrowse, SqlTabCount, SqlTabName, SqlTabSource,
SqlTsNewVal, SqlTsPut

SqlTsNewVal
Return the identifier of the new value of a timestamp column after a browse-mode update.

Syntax
SqlTsNewVal(connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
The identifier of the updated row's new timestamp value.    The identifier is an empty string if no
timestamp is returned to the application because the update was unsuccessful or because the UPDATE
statement did not contain a WHERE clause returned by SqlQual.    Important:    Do not modify the
identifier in any way.    Modifying the identifier can cause unpredictable results.

Remarks
SqlTsNewVal and SqlTsNewVal are Visual Basic for SQL Server browse-mode functions.    SqlTsNewVal
provides information about the timestamp column.    When used in an UPDATE statement, the WHERE
clause returned by SqlQual places a new value in the updated row's timestamp column and returns the
new timestamp value to the application (if the update is successful).    With SqlTsNewVal, the application
saves the new timestamp value, possibly for use with SqlTsPut.

See Also
SqlColBrowse, SqlColSource, SqlQual, SqlTabBrowse, SqlTabCount, SqlTabName, SqlTabSource,
SqlTsNewLen, SqlTsPut

SqlTsPut
Puts the new value of the timestamp column into a specified table's current row in the row buffer.

Syntax
SqlTsPut(connectid%, newts$, newtslen%, tabnum%, tabname$)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

newts$

The new timestamp value. The new timestamp value is returned by SqlTsNewVal.

newtslen%

The length of the new timestamp value. The length of the new timestamp value is returned by
SqlTsNewLen.

tabnum%

The number of the table to receive the new timestamp. Table numbers start at 1. The tabnum% parameter
must refer to a browseable table. Use SqlTabBrowse to determine whether the table you specify can be
browsed. If the table is browseable, tabname$ is used to identify the table.

tabname$

A string containing the table name. The tabname$ parameter must refer to a browseable table. If the
string is empty, tabnum$ is used to identify the table. The value of tabname$ is returned by
SqlTabSource.

Results
SUCCEED (1) or FAIL (0). The following conditions cause SqlTsPut to return FAIL:

· The application tries to update the timestamp of a nonexistent row.

· The application tries to update the timestamp using an empty string as the new timestamp
identifier (newts$ or    newts&).

· The specified table cannot be browsed.

Remarks
SqlTsPut is a Visual Basic for SQL Server browse-mode function.    SqlTsPut% manipulates the timestamp
column.    When used in an UPDATE statement, the WHERE clause returned by SqlQual places a new
value in the updated row's timestamp column and returns the new timestamp value to the application (if
the update is successful).    If the same row is updated a second time, the UPDATE statement's WHERE
clause must use the latest timestamp value.    SqlTsPut updates the timestamp in the row currently being
browsed.    Then, if the application has to update the row a second time, it calls SqlQual to formulate a

new WHERE clause that uses the new timestamp. With SqlTsNewVal, the application saves a new
timestamp value, possibly for use with SqlTsPut.

See Also
SqlColBrowse, SqlColSource, SqlQual, SqlTabBrowse, SqlTabCount, SqlTabName, SqlTabSource,
SqlTsNewLen, SqlTsNewVal

SqlTsUpdate
Updates the value of a timestamp column in a specified table.

Syntax
SqlTsUpdate(connectid%, tabnum%, tabname$)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

tabnum%

The number of the table to receive the new timestamp.    Table numbers start at 1.    The tabnum%
parameter must refer to a browseable table.    Use SqlTabBrowse to determine whether the table can be
browsed.    If this value is 1, the tabname$ parameter is used to identify the table.

tabname$

A string containing the table name.    The tabname$ parameter must refer to a browseable table.    If the
string is empty, tabnum% is used to identify the table.    The value of tabname$ is returned by
SqlTabSource$.

Results
SUCCEED (1) or FAIL (0).

Remarks
SqlTsUpdate is equivalent to calling SqlTsNewVal and SqlTsPut. Like those functions, it is designed for
use in browse mode. SqlTsUpdate can update the timestamp column if either tabnum% or tabname$ is
provided. If neither is provided, SqlTsUpdate causes an error.The connectid% connection must be clear--
that is, it cannot have any rows pending. After completing all the updates to the timestamp column,
immediately close the connectid% connection.

See Also
SqlTabBrowse, SqlTabSource, SqlTsNewVal, SqlTsPut

SqlTxPtr
Return the identifier for a text or image column in the current row.

Syntax
SqlTxPtr(connectid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

column%

The number of the column. The first column in a table is number 1.

Results
The identifier for a text or image column in the current row. In the case of a null text or image value, the
identifier value is an empty string.    Important:    Do not modify this identifier in any way. Modifying the
identifier can cause unpredictable results.

Remarks
Every text or image column has an associated identifier that uniquely identifies the text or image value.   
This identifier is useful in conjunction with SqlWriteText.    The identifier returned by SqlTxPtr supplies the
value for the textptr$ parameter of SqlWriteText.

See Also
SqlTxTimeStamp, SqlWriteText

SqlTxTimeStamp
Return the identifier for the text timestamp for a column in the current row.

Syntax
SqlTxTimeStamp(connectid%, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

column%

The number of the column. The first column in a table is number 1.

Results
A string containing the identifier of the text timestamp for the column.    This identifier can be an empty
string.Important:    Do not modify this identifier in any way.    Modifying the identifier can cause
unpredictable results.

Remarks
Every text or image column has an associated text timestamp that marks the time of the column's last
modification.    The text timestamp is useful in conjunction with SqlWriteText% to ensure that two
competing users do not inadvertently wipe out each other's modifications in the database.

See Also
SqlTxPtr, SqlWriteText

SqlTxTsNewVal
Return the identifier for the new value for a text timestamp after a call to SqlWriteText.

Syntax
SqlTxTsNewVal(connectid%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

Results
A string containing the identifier for the timestamp value for the text or image value modified by a
SqlWriteText operation.    This identifier can be an empty string.    Important:    Do not modify this identifier
in any way.    Modifying the identifier can cause unpredictable results.

Remarks
Every text or image column has an associated text timestamp that is updated whenever the column's
value is changed.    The new text timestamp identifier, returned by SqlTxTsNewVal can be used in
conjunction with SqlWriteText to ensure that two competing users do not inadvertently wipe out each
other's modifications in the database. After each successful SqlWriteText operation (which can include a
number of calls to SqlMoreText), SQL Server sends the updated value of timestamp$ back to SQL-
Sombrero/VBX. The application can then get the new value of timestamp$ with SqlTxTsNewVal and then
use SqlTxTsPut to put that new value into the row buffer for future access through SqlTxTimeStamp.   
This capability is particularly useful when the application does not need the new timestamp immediately
because row buffering is turned on.

See Also
SqlMoreText, SqlTxTimeStamp, SqlTxTsPut, SqlWriteText

SqlTxTsPut
Places the identifier for the new value for a text timestamp into a column of the current row in the row
buffer.

Syntax
SqlTxTsPut(connectid%, newtxts$, column%)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

newtxts$

The new text timestamp value returned by SqlTxTsNewVal.

column%

The number of the column to receive the new text timestamp.    Column numbers start at 1.

Results
SUCCEED (1) or FAIL (0).

Remarks
Every text or image column has an associated text timestamp that is updated whenever the column's
value is changed.    The text timestamp is useful in conjunction with SqlWriteText to ensure that two
competing users do not inadvertently wipe out each other's modifications in the database. After each
successful SqlWriteText operation (which can include a number of calls to SqlMoreText), SQL Server
sends the updated text timestamp value back to SQL-Sombrero/VBX.    SqlTxTsNewVal enables the
application to get this new timestamp value.    The application can then use SqlTxTsPut to place the new
timestamp value in the row buffer for future access through SqlTxTimeStamp.    This is particularly useful
when the application does not need the new timestamp immediately because row buffering is turned on.

See Also
SqlMoreText, SqlTxTimeStamp, SqlTxTsNewVal, SqlWriteText

SqlUse
Sets the current database for a particular SQL Server connection.

Syntax
SqlUse(connectid%, dbname$)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

dbname$

A string containing the database name.

Returns
SUCCEED (1) or FAIL (0).

Example
ret%=SqlUse(connectid%, dbname$)

Remarks
SqlUse emulates the    Transact-SQL USE statement.    If the USE statement fails because the requested
database was still in a recovery process,    SqlUse continues to send USE commands at 1-second
intervals until it succeeds or until it encounters another type of error.    If you call SqlCmd to place
statements into the command buffer, execute these statements before calling SqlUse.

See Also
SqlExec, SqlResults

SqlWinExit
This functon is required to free memory allocated for SQL-Sombrero/VBX.

Syntax
SqlWinExit

Parameters
none

Results
There is no value returned.

Example
SqlWinExit

Remarks
This should be part of all exit routines.

SqlWriteText
Sends a text or image value to SQL Server.

Syntax
SqlWriteText(connectid%, objname$, textptr$, textptrlen%, timestamp$, log%, size&, text$)

Parameters
connectid%

The parameter passed is the connection id passed from the SqlOpenConnection function.

objname$

The database table and column name. The table name and the column name are separated by a period.

textptr$

The text or image value to be modified. This identifier can be obtained by calling SqlTxPtr.

textptrlen%

This parameter is the length of the text pointer and is included for future compatibility.    At present its
value must be the constant SQLTXPLEN which has a value of 16.

timestamp$

The text timestamp for the text or image value to be modified.    This identifier can be obtained by calling
SqlTxTimestamp.    The value changes whenever the text or image value itself is changed.

log%

A Boolean value that specifies whether this SqlWriteText operation should be recorded in the transaction
log.    Valid values are TRUE or FALSE.

size&

The total size, in bytes, of the text or image value to be written.

text$

A string containing the text or image to be written. If this string is empty, the SQL-Sombrero/VBX expects
the application to call SqlMoreText one or more times until all size& bytes of data have been sent to SQL
Server. No single data block can be larger than 64K.

Results
SUCCEED (1) or FAIL (0).

Remarks
SqlWriteText is used to update text and image values, allowing an application to send long values to
SQL Server without having to copy them into a Transact-SQL UPDATE statement. In addition,
SqlWriteText gives an application access to the text timestamp mechanism, which can be used to ensure

that two competing users do not inadvertently wipe out each other's modifications in the database.

SqlWriteText succeeds only if its timestamp$ parameter matches the text column's timestamp in the
database. If a match occurs, SqlWriteText updates the text column and at the same time updates the
column's timestamp. This has the effect of governing updates by competing applications--an application's
SqlWriteText call will fail if a second application has updated the text column between the time the first
application retrieved the column and the time it made its SqlWriteText call.    SqlWriteText is similar to a
Transact-SQL WRITETEXT statement. However, calling SqlWriteText is usually more efficient than
sending a WRITETEXT statement through the command buffer. (For information about WRITETEXT, see
the Microsoft SQL Server Transact-SQL Reference.)SqlWriteText can be invoked with or without logging
in, according to the value of the log% parameter. To use SqlWriteText with logging turned off, the SQL
Server option select into / bulkcopy must be set to TRUE by executing the following system procedure:

sp_dboption 'mbsql', 'select into/bulkcopy', 'true'

SqlWriteText, used in conjunction with SqlMoreText, also enables an application to send a large text or
image value to SQL Server in the form of a number of smaller chunks. This is particularly useful with
operating systems that are unable to allocate extremely long data buffers.When SqlWriteText is used with
SqlMoreText, it locks the specified database text column, and the lock is not released until the final
SqlMoreText has sent its data. This ensures that a second application does not read or update the text
column in the middle of the first application's update.

If the text$ string is not an empty string, SqlWriteText executes the data transfer from start to finish,
including any necessary calls to SqlOk and SqlResults. To send a text or image value in chunks rather
than sending the whole value at once, set the text$ parameter to an empty string. SqlWriteText returns
control to the application immediately after notifying SQL Server that a text transfer is about to begin. The
actual text is sent to SQL Server with SqlMoreText, which can be called multiple times, once for each
chunk.

See Also

SqlMoreText, SqlTxPtr, SqlTxTimeStamp, SqlTxTsNewVal, SqlTxTsPut

