
Contents
Installation

What You Will Need:    Environment Information

Instructions:    How to Install

Files Created and Affected by Install

Application Architecture

Sample Application

OverView

Asychronous Programming

Callbacks

Capabilities

CT-Library Messages

Dynamic SQL

Error and Message Handling

Results

Types

Function Descriptions

CompileDate

vbcs_calc

vbcs_cmp

vbcs_config

vbcs_convert

vbcs_ctx_alloc

vbcs_ctx_drop

vbcs_ctx_global

vbcs_decode_message

vbcs_diag

vbcs_dt_crack

vbcs_dt_info

vbcs_get_client_msg

vbcs_get_server_msg

vbcs_loc_alloc

vbcs_loc_drop

vbcs_locale

vbcs_objects

vbcs_setnull

vbcs_strcmp

vbcs_time

vbcs_will_convert

vbct_cancel

vbct_capability

vbct_close

vbct_cmd_alloc

vbct_cmd_drop

vbct_cmd_props_num

vbct_cmd_props_str

vbct_command_num

vbct_command_str

vbct_con_alloc

vbct_con_drop

vbct_con_props_num

vbct_con_props_str

vbct_compute_info

vbct_config_num

vbct_config_str

vbct_connect

vbct_data

vbct_data_info

vbct_deinstall_callbacks

vbct_describe

vbct_diag

vbct_do_binds

vbct_dynamic

vbct_dyndesc

vbct_exit

vbct_fetch

vbct_get_data

vbct_getformat

vbct_getloginfo

vbct_init

vbct_install_callbacks

vbct_labels

vbct_options_num

vbct_options_str

vbct_param

vbct_poll

vbct_recvpassthru

vbct_remote_pwd

vbct_res_info

vbct_results

vbct_send

vbct_send_data

vbct_sendpassthru

vbct_setloginfo

vbct_wakeup

vbblk_alloc

vbblk_bind

vbblk_describe

vbblk_done

vbblk_get_data

vbblk_init

vbblk_props_num

vbblk_props_str

vbblk_set_data

vbblk_rowxfer

vbblk_textxfer

What You Will Need:    Environment Information
To use SQL-Sombrero/VBX you will need the following:

-    Microsoft Windows    release 3.1 or later.

-    80386 (20MHz) or higher processor.

-    4 megabytes of RAM.

-    2 megabytes of free disk space for softwre and enviromment.

Need to put trademarks in.

- SYBASE SQL Server System 10 or greater Open Client    software (runtime CT-Library and Net-Library)
for Windows and compatible network.

Instructions:    How to Install
SQL-Sombrero/VBX comes with one install diskette.

Insert the Install diskette and run INSTALL.EXE from within windows.

The default is a directory called C:\SQL\SQLVBXCT.    A drop-down list box facilitates choosing an
alternative destination.

FULL INSTALL
Press the Full Install button to install SQL-Sombrero/VBX completely.    The installation process begins to
unpack and copy files from the Install diskette to the chosen destination.

CUSTOM INSTALL
The Custom install procedure allows individual components of the SQL-Sombrero/VBX package to be
installed separately.

NOTE:    It is important that the latest DLLs are used in order to achieve maximum functionality.
When the installation of files is complete, the install procedure will ask you if you wish to create a Program
Manager group to access the help files and the Showmod program..

After creating the Program Manager group the install will inform you that the installation is complete and
request an acknowledgement.

Files Created and Affected by Install
If you choose the Custom installation option there are a total of four (4) different components that can be
installed.

1.    SQL-Sombrero/VBX

This component consists of the VBX file with its license file and the files containing the
declarations for the SQL-Sombrero/VBX functions and declaration of CT-Library constants and user
defined variable types.

If this component is selected the following files are installed.    The files are installed to the directory
chosen in the installation procedure as described above.

SQLVBXCT.VBX

SQLDEF.BAS

CSCONST.BAS

CSTYPES.BAS

CTCONST.BAS

SQLVBXCT.LIC

README.TXT

INSTALL.LOG (Shows files installed and their locations)

2.    SQL-Sombrero/VBX Help File

This component consists of the Help file for SQL-Sombrero/VBX as well as other files to allow the
navigator option to work with the help file.

If this component is selected the following files are installed.    The files are installed to the directories as
shown below.

SQLVBXCT.HLP - default directory

SQLVBXCT.DHN - default directory

D2HNAV.EXE - windows directory

D2HNAV.HLP - windows directory

MSOUTLIN.VBX - windows system directory

D2HLINK.DLL - windows system directory

3.    Sample Application

This is a sample application using the SQL-Sombrero/VBX for SYBASE SQL Server.    This
sample requires the PUBS2 database to be installed.

LOGON.FRM - default/sample 10 directory

MAINFORM.FRM - default/sample 10 directory

GBASS.BAS - default/sample 10 directory

SAMPLE10.MAK - default/sample 10 directory

SQLDEF.BAS - default/sample 10 directory

CSCONST.BAS - default/sample 10 directory

CSTYPES.BAS - default/sample 10 directory

CTCONST.BAS - default/sample 10 directory

4.    Show Active Modules

This is a program that will scan all modules currently running in the Windows environment and
show details of the modules.

SHOWMOD.EXE - default directory

The file SQLVBXCT.LIC is the license file.    This file must reside in the same directory as the file
SQLVBXCT.VBX.    This file is required if the SQL-Sombrero/VBX for CT-Library is to be used in
developing an application.    The SQLVBXCT.LIC file is not required for an application that is distributed as
an EXE file.

Please refer to the inside of this manual's front cover for more information regarding the LIC file.

Sample Application
Setting up and installing callbacks

Installing Message Callback Routines

Connecting to a Server

Changing databases

Sending a command to the server

Processing the results of the command

Finishing up

Setting up and installing callbacks
The CT-Library routine vbcs_ctx_alloc allocates a context structure.    A context structure is used to store
configuration parameters that describe a particular "context," or operating environment, for a set of server
connections.    On most platforms, an application can have multiple contexts, although a typical
application will need just one.

Application properties that can be defined at the context level include the name and location of the
interfaces file, the login timeout value, and the maximum number of connections allowed within the
context.

vbct_init initializes CT-Library.    An application calls vbct_init after calling vbcs_ctx_alloc and before
calling any other CT-Library routine.

Installing Message Callback Routines
vbct_install_callbacks installs a CT-Library callback routine.    Callbacks are custom routines which are
called automatically by CT-Library when a triggering event of the appropriate type occurs.    For example,
a client message callback is called automatically whenever CT-Library generates an error or informational
message.

There are several types of callbacks, but the example program installs only two:    a client message
callback, to handle CT-Library error and informational messages, and a server message callback, to
handle server error and informational messages.

If ctx_pointer = 0 Then

ret = VBCS_ctx_alloc(CS_VERSION_100, ctx_pointer)

                ret = VBCT_init(ctx_pointer, CS_VERSION_100)

                ret = VBCT_install_callbacks(ctx_pointer,CS_SERVERMSG_CB)

                ret = VBCT_install_callbacks(ctx_pointer, CS_CLIENTMSG_CB)

End If

Connecting to a Server
vbct_con_alloc allocates a connection structure.    A connection structure contains information about a
particular client/server connection.

vbct_con_props_num and vbct_con_props_str sets and retrieves the values of a connection's properties.
Connection properties include user name and password, which are used in logging into a server;
application name, which appears in SQL Server's sysprocess table, and packet size, which determines
the size of network packets that an application will send and receive.

vbct_connect opens a connection to a server, logging into the server with the connection information
specified via vbct_con_props_num and vbct_con_props_str.

The variables sbuf, pword are strings containing the userid and password obtained from a logon form.

sbuf = uid

ret = VBCT_con_alloc(ctx_pointer, con_pointer)

ret = VBCT_con_props_str(con_pointer, CS_SET, CS_USERNAME, sbuf, outlen)

If pword <> "" Then

                ret = VBCT_con_props_str(con_pointer, CS_SET, CS_PASSWORD, pword, outlen)

End If

ret = VBCT_con_props_str(con_pointer, CS_SET, CS_APPNAME, "TestCTLib", outlen)

ret = VBCT_con_props_str(con_pointer, CS_SET, CS_HOSTNAME, "TestCTLib", outlen)

ret = VBCT_connect(con_pointer, "")

Changing databases
CT-Library requires that a command be sent to change the database.    The sample application requires
data from the pubs2 database.    The following code fragment changes the database to pubs2.    It
allocates a command structure for use in changing the database.    This command structure is used to
process all commands within the sample application.

ret = VBCT_cmd_alloc(con_pointer, cmd_pointer)

ret = process_no_rows("use pubs2")

Sending a command to the server
vbct_cmd_alloc allocates a command structure.    A command structure is used to send commands to a
server and to process the results of those commands.

vbct_command initiates the process of sending a non-cursor command.    In this case, the example
program initiates a language command.

vbct_send sends a command to the server.

sql$="select 'Author Id' = au_id , 'Last Name' = au_lname , 'First Name' = au_fname    from authors"

ret = VBCT_command_str(cmd_pointer, CS_LANG_CMD, sql$, CS_UNUSED)

ret = VBCT_send(cmd_pointer)

Processing the results of the command
Almost all CT-Library programs will process results by using a loop controlled by vbct_results.    Inside the
loop, a switch takes place on the current type of result.    Different types of results require different types
of processing.

An application can call vbct_res_info to get the number of result columns.    The application will call
vbct_do_binds to bind the results to SQL-Sombrero internal program variables.    After the result items are
bound, vbct_fetch is called to fetch data rows until end-of-data.    The application will retrieve the data
from the columns using vbct_data.

result_ret = VBCT_results(cmd_pointer, restype)

res$ = ""

While result_ret = CS_SUCCEED

Select Case restype

Case CS_ROW_RESULT

ret = VBCT_res_info(cmd_pointer, CS_NUMDATA, ncols)

ret = VBCT_do_binds(cmd_pointer)

While ret = CS_SUCCEED Or ret = CS_ROW_FAIL

ret = VBCT_fetch(cmd_pointer, 0, 0, 0, rows_read)

If ret = CS_SUCCEED Then

For i = 1 To ncols

t(i) = VBCT_data(cmd_pointer, i)

Next

End If

Wend

Case CS_CMD_DONE, CS_CMD_SUCCEED, CS_CMD_FAIL

Select Case restype

Case CS_CMD_DONE

rt$ = "CS_CMD_DONE"

Case CS_CMD_SUCCEED

rt$ = "CS_CMD_SUCCEED"

Case CS_CMD_FAIL

rt$ = "CS_CMD_FAIL"

End Select

Case Else

End Select

result_ret = VBCT_results(cmd_pointer, restype)

Wend

Finishing up
vbct_cmd_drop de-allocates a command structure.

vbct_close closes a server connection.

vbct_con_drop de-allocates a connection structure.

vbct_exit terminates CT-Library.

The CT-Library routine vbcs_ctx_drop de-allocates a context structure.

ret = VBCT_cmd_drop(cmd_pointer)

ret = VBCT_close(con_pointer, CS_FORCE_CLOSE)

ret = VBCT_con_drop(con_pointer)

ret = VBCT_exit(ctx_pointer, CS_FORCE_EXIT)

ret = VBCS_ctx_drop(ctx_pointer)

Asychronous Programming
Asynchronous applications are designed to make constructive use of time that would otherwise be spent
waiting for certain types of operations to complete.    Typically, reading from and writing to a network or
external device is much slower than straightforward program execution.

When writing an asynchronous application, the application programmer must enable asynchronous CT-
Library behavior at the context or connection level by setting the CT-Library property CS_NETIO to
CS_ASYNC_IO.    When asynchronous behavior is enabled, all CT-Library routines that read from or write
to the network either:

Initiate the requested operation and return CS_PENDING immediately

Return CS_BUSY to indicate that an asynchronous operation is already pending for this connection.

Non-asynchronous routines can also return CS_BUSY if called when an asynchronous operation is
pending for a connection.

Related Topics:
Learning about Completions

Asynchronous Routines

CT-Library's Interrupt-Level Memory Requirements

Browse Mode

Implementing Browse Mode

Browse-mode Conditions

Learning about Completions
An application can learn of an asynchronous routine completion in one of two ways:

· CT-Library automatically calls the application's completion callback routine when an
asynchronous operation completes.

· On platforms that do not support interrupt-driven I/O, an application can use vbct_poll to find out if
any asynchronous operations have completed.    If it finds a completed operation, CT-Library will
call an application's completion callback routine from within vbct_poll.

Asynchronous Routines
The following CT-Library routines can behave asynchronously:

vbct_cancel

vbct_close

vbct_connect

vbct_fetch

vbct_get_data

vbct_options_num

vbct_options_str

vbct_recvpassthru

vbct_results

vbct_send

vbct_send_data

vbct_sendpassthru

Any CT-Library routine that takes a command or connection structure as a parameter can return
CS_BUSY.    CS_BUSY indicates that a routine is unable to perform because the relevant connection is
currently busy, waiting for an asynchronous operation to complete.

An application can call the following routines while an asynchronous operation is pending:

Any routine that takes a CS_CONTEXT structure as a parameter.    If the CS_CONTEXT structure is an
optional parameter, it must be non-NULL.

vbct_cancel(CS_CANCEL_ATTN)

vbct_cmd_props_num(CS_USERDATA)

vbct_cmd_props_str(CS_USERDATA)

vbct_con_props_num(CS_USERDATA)

vbct_con_props_str(CS_USERDATA)

vbct_poll

CT-Library's Interrupt-Level Memory Requirements
Ordinarily, CT-Library routines satisfy their memory requirements by calling malloc.    However, because
not all implementations of malloc are re-entrant, it is not safe for CT-Library routines that are called at the
interrupt level to use malloc.    For this reason, asynchronous applications are required to provide an
alternate way for CT-Library to satisfy its memory requirements.

CT-Library provides the following two mechanisms by which an asynchronous application can satisfy CT-
Library's memory requirements:

· The application can use the CS_MEM_POOL property to provide CT-Library with a memory pool.

· The application can use the CS_USER_ALLOC and CS_USER_FREE properties to install
memory allocation routines that CT-Library can safely call at the interrupt level.

If an asynchronous application fails to provide CT-Library with a safe way to satisfy memory requirements,
CT-Library's behavior is undefined.

CT-Library attempts to satisfy memory requirements from the following sources in the following order:

1.    Memory pool

2.    User-supplied allocation and free routines

3.    System routines

Browse Mode
NOTE:    Browse mode is included in 10.0 CT-Library in order to provide compatibility with Open Server
applications and older Open Client libraries.    Its use in new Open Client CT-Library applications is
discouraged, because cursors provide the same functionality in a more portable and flexible manner.   
Further, browse mode is SYBASE-specific and is not suited for use in a heterogeneous environment.

Browse mode provides a means for browsing through database rows and updating their values a row at a
time.    From the standpoint of an application program, the process involves several steps, because each
row must be transferred from the database into program variables before it can be browsed and updated.

Since a row being browsed is not the actual row residing in the database, but is instead a copy residing in
program variables, the program must be able to ensure that changes to the variables' values can be
reliably used to update the original database row.    In particular, in multi-user situations, the program
needs to ensure that updates made to the database by one user do not unwittingly overwrite updates
recently made by another user. This can be a problem because an application typically selects a number
of rows from a database at one time, but the application's users browse and update the database one row
at a time.    A timestamp column in browsable tables provides the information necessary to regulate this
type of multi-user updating.

Because some applications permit users to enter ad-hoc browse mode queries, CT-Library provides two
routines, ct_br_table and ct_br_column, that allow an application to retrieve information about the tables
and columns underlying a browse-mode result set.    This information is useful when an application is
constructing commands to perform browse-mode updates.

A browse-mode application requires two connections, one for selecting the data and a second for
performing the updates.

Implementing Browse Mode
Conceptually, browse mode involves the following two steps:

1.    Select rows containing columns derived from one or more database tables.

2.    Where appropriate, change values in columns of the result rows (not the actual database rows), one
row at a time, and use the new values to update the original database tables.

The following steps are implemented in a program:

1.    Set a connection's CS_HIDDEN_KEYS property to CS_TRUE.    This ensures that CT-Library returns
a table's timestamp column as part of a result set.    In browse-mode updates, the timestamp column is
used to regulate multi-user updates.

2.    Execute a select...for browse language command.    This command generates a regular row result set.
This result set contains hidden key columns (one of which is the timestamp column) in addition to
explicitly selected columns.

3.    After vbct_results indicates regular row results, call vbct_describe to get CS_DATAFMT descriptions
of the result columns:

-    To indicate the timestamp column, vbct_describe sets the CS_TIMESTAMP and CS_HIDDEN bits in
the datafmt.status field.

-    To indicate an ordinary hidden key column, vbct_describe sets the CS_HIDDEN bit in the
datafmt.status field.    If the CS_HIDDEN bit is not set, the column is an explicitly-selected column.

4.    Call vbct_do_binds to bind the result columns of interest.    An application must bind all hidden
columns because it will need the values of these columns to build a qualifier at update time.

5.    Call ct_br_table , if necessary, to retrieve information about the database tables that underlie the
result set.    Call ct_br_column, if necessary, to retrieve information about a specific result set column.   
Both of these types of information can be useful when building a language command to update the
database.

6.    Call vbct_fetch in a loop to fetch rows.    When a row is fetched that contains values that need to be
changed, update the database table(s) with the new values.    Complete the following to carry out this
procedure:

-    Construct a language command containing a Transact-SQL update statement with a where-clause
qualifier that uses the row's hidden columns (including the timestamp column).

-    Send the language command to the server and process the results of the command.

A language command containing a browse-mode update statement generates a result set of type   
CS_PARAM_RESULT.    This result set contains a single result item, the new timestamp for the row.

If the application plans to update this same row again, it must save the new timestamp for later use.

After one browse-mode row has been updated, the application can fetch and process the next row.

Browse-mode Conditions
To use browse mode, the following conditions must be true:

· The select command that generated the result set must end with the key words for browse.

· The table(s) to be updated must be "browsable" (i.e., each must have a unique index and a
timestamp column).

· The result columns to be updated cannot be the result of SQL expressions, such as
max(colname).

Callbacks
What Are Callbacks?

When Are Callbacks Called?

Types of Callbacks

Installing a Callback Routine

When a Callback Event Occurs

Defining Callback Routines

Client Message Callbacks

Client Message Callback Information

Completion Callbacks

Completion Callback Information

Notification Callbacks

Defining a Notification Callback

Server Message Callbacks

Defining a Server Message Callback

What Are Callbacks?
Callbacks are user-supplied routines that are automatically called by CT-Library whenever certain
triggering events, known as callback events, occur.

Some callback events are the result of a server response arriving for an application.    For example, a
notification callback event occurs when a registered procedure notification arrives from an Open Server.

Other callback events occur at the internal CT-Library level.    For example, a client message callback
event occurs when CT-Library generates an error message.

When Are Callbacks Called?
When CT-Library recognizes a callback event, it automatically calls the appropriate callback routine.

In order for CT-Library to recognize some callback events, it must be actively engaged in reading from the
network.    Most callback events of this type occur when CT-Library is naturally reading from the network,
and are handled automatically.

Two types of callback events, however, can occur when CT-Library is not reading from the network.   
They are as follows:

· The completion callback event, which occurs when an asynchronous CT-Library routine
completes.

· The notification callback event, which occurs when an Open Server notification arrives for an
application.

If a platform supports interrupt-driven I/O, completion and notification callbacks are called at the interrupt
level when a completion or notification callback event occurs.    If a platform does not support interrupt-
driven I/O, however, an application will need to call vbct_poll to check for these events if it is not
otherwise reading from the network.

If vbct_poll finds an asynchronous routine completion or an Open Server notification, it automatically calls
the appropriate callback routine before returning.

NOTE:    Because some types of callback routines can be executed at interrupt time, a callback routine
must take care in accessing data structures that are also used by the application's main-line code.

Types of Callbacks
The following table lists the types of callbacks, when they are called, and whether an application needs to
use vbct_poll to trigger them:

Type of Callback: When Is it Called? How Is it Called?
Client Message In response to a CT-

Library error or
informational
message.

When CT-Library generates an error or informational
message, CT-Library automatically triggers the
client message callback.

Completion When an
asynchronous CT-
Library routine
completes.

An asynchronous routine completion can occur at
any time.    On platforms that support interrupt-driven
I/O, the completion callback is called automatically,
at the interrupt level, when the completion occurs.   
On platforms that do not support interrupt-driven I/O,
an application can use vbct_poll to find out if any
routines have completed.

Notification When an Open Server
notification arrives.

An Open Server notification can arrive at any time.   
On platforms that support interrupt-driven I/O, the
notification callback is called at the interrupt level
when the completion occurs.    On platforms that do
not support interrupt-driven I/O, an application must
be actively reading from the network in order for CT-
Library to recognize a notification.    If an application
is not actively reading from the network, it can use
vbct_poll to find out if a notification has arrived.

Server Message In response to a server
error or informational
message.

Server messages occur as the result of specific
commands.    When an application processes the
results of a command, CT-Library reads any error or
informational messages related to the command,
automatically triggering the server message
callback.

Installing a Callback Routine
An application installs a callback routine by calling vbct_install_callbacks, passing a pointer to the
callback routine and indicating its type via the type parameter.

A callback of a particular type is installed at the context level.    When a connection is allocated, it picks up
default callbacks from its parent context.

When a Callback Event Occurs
For most types of callbacks, when a callback event occurs:

· If a callback of the proper type exists at the proper level, it is called.

· If a callback of the proper type does not exist at the proper level then the callback event
information is discarded.

The client message callback is an exception to this rule.    When an error or informational message is
generated for a connection that has no client message callback installed, CT-Library calls the
connection's parent context's client message callback (if any) rather than discarding the message.    If the
context has no client message callback installed, then the message is discarded.

Defining Callback Routines
All callback routines are limited as to which CT-Library routines they can call.    The following table lists
types of callback routines and the CT-Library routines that they can call:

Type of Callback Can Call Under What Circumstances?
All Callback Routines vbct_config_num,

vbct_config_str
To retrieve information only.

vbct_con_props_num

vbct_con_props_str

To retrieve information or to set the   
CS_USERDATA property only.

vbct_cmd_props_num

vbct_cmd_props_str

To retrieve information or to set the
CS_USERDATA property only.

vbct_cancel

(CS_CANCEL_ATTN)

Server Message vbct_do_binds, vbct_describe,
vbct_fetch, vbct_get_data,
vbct_res_info

The routines must be called with the
command structure returned by the
callbacks's
vbct_con_props_num(CS_EED_CMD)
call.

Notification vbct_do_binds, vbct_describe,
vbct_fetch, vbct_get_data,   
vbct_res_info(CS_NUMDATA)

The routines must be called with the   
command structure returned by the   
callbacks's vbct_con_props_num
(CS_NOTIF_CMD) call.

Completion Any CT-Library except
vbcs_objects (CS_SET),
vbct_init, vbct_exit,
vbct_setloginfo, and
vbct_getloginfo.    vbcs_objects
(CS_SET) is not asynchronous-
safe, and vbct_init, vbct_exit,
vbct_setloginfo, and   
vbct_getloginfo perform system-
level memory allocation or free.

The following sections contain information on the information return in each type of callback.

Client Message Callbacks
An application can handle CT-Library error and informational messages in-line, or through a client
message callback routine.

When a connection is allocated, it picks up a default client message callback from its parent context.    If
the parent context has no client message callback installed, then the connection is created without a
default client message callback.

After allocating a connection, an application can do the following:

· Install a different client message callback for the connection.

· Call vbct_diag to initialize in-line message handling for the connection.    Note that vbct_diag
automatically de-installs all message callbacks for the connection.

If a client message callback is not installed for a connection or its parent context and in-line message
handling is not enabled, CT-Library discards message information.

If callbacks are not implemented for a particular programming language/platform version of CT-Library, an
application must handle CT-Library messages in-line, using vbct_diag.

If a connection is handling CT-Library messages through a client message callback, then the callback is
called whenever CT-Library generates an error or informational message.

NOTE:    The exception to this rule is that CT-Library does not call the client message callback when a
message is generated from within most types of callback routines.    CT-Library does call the client
message callback when a message is generated within a completion callback.

This means if a CT-Library routine fails within a callback routine other than the completion callback, the
routine returns CS_FAIL but does not trigger the client message callback.

Client Message Callback Information
Sub SQLCTLIB1_CLIENTMESSAGE (Context As Long, Connection As Long)

Where:

Context is a pointer to the CS_CONTEXT structure for which the message occurred.

Connection is a pointer to the CS_CONNECTION structure for which the message occurred, if any.
connection can be NULL.

The callback uses the following code to obtain the message information.

Dim cmsg As CS_CLIENTMSG

Dim ret As Long

Dim layer As Long

Dim origin As Long

Dim severity    As Long

Dim number As Long

crlf$ = Chr(13) & Chr(10)

ret = VBCS_get_client_msg(cmsg)

VBCS_decode_message cmsg.msgnumber, layer, origin, severity, number

The following table lists the CT-Library routines that a client message callback can call:

A Client Message Callback Can Call: Under What Circumstances?
vbct_config_num

vbct_config_str

To retrieve information only.

vbct_con_props_num

vbct_con_props_str

To retrieve information or to set the CS_USERDATA
property only.

vbct_cmd_props_num

vbct_cmd_prop_str

To retrieve information or to set the CS_USERDATA
property only.

vbct_cancel (CS_CANCEL_ATTN) Any.

Completion Callbacks
A completion callback is called whenever an application receives notice that an asynchronous routine has
completed.

A context or a connection can be defined to be asynchronous.    If a context is asynchronous, then all
connections within that context are asynchronous, unless defined otherwise.

When a connection is asynchronous, CT-Library routines that perform network I/O do not block, but
instead return CS_PENDING immediately.    When a routine completes, CT-Library automatically calls the
completion callback.

A completion callback is typically coded to notify the main-line code of the asynchronous routine's
completion.

Completion Callback Information
A completion callback is defined as follows:

Sub SQLCTLIB1_COMPLEMESSAGE (Connection As Long, Cmnd As Long, CFunction As Long,
FStatus As Long)

where:

Connection is a pointer to the CS_CONNECTION structure representing the connection that performed
the I/O for the routine.

Cmnd is a pointer to the CS_COMMAND structure for the routine, if any. cmd can be NULL.

Cfunction indicates which routine has completed.    The following table lists the symbolic values possible
for Cfunction:
Value of Cfunction: Indicating:

BLK_ROWXFER blk_rowxfer has completed.

BLK_SENDROW blk_sendrow has completed.

BLK_SENDTEXT blk_sendtext has completed.

BLK_TEXTXFER blk_textxfer has completed

CT_CANCEL ct_cancel has completed.

CT_CLOSE ct_close has completed.

CT_CONNECT ct_connect has completed.

CT_FETCH ct_fetch has completed.

CT_GET_DAT Act_get_data has completed.

CT_OPTIONS ct_options has completed.

CT_RECVPASSTHRU ct_recvpassthru has completed.

CT_RESULTS ct_results has completed.

CT_SEND ct_send has completed.

CT_SEND_DATA ct_send_data has completed.

CT_SENDPASSTHRU ct_sendpassthru has completed.

A user-defined value.    This value must be greater
than or equal to    CT_USER_FUNC

A user-defined function has completed.

Fstatus is the return status of the completed routine.    To find out what values status can have, refer to
Results in the manual for the routine(s).

Because it is regarded as an extension of main-line code, a completion callback can call any CT-Library
routine.

Notification Callbacks
A registered procedure is a type of procedure that is defined and installed in a running Open Server.    A
CT-Library application can use a remote procedure call command to execute a registered procedure, and
can "watch" for a registered procedure to execute.

When a registered procedure executes, applications watching for it receive a notification that includes the
procedure's name and the arguments it was called with.

When CT-Library receives a notification, it calls an application's notification callback routine.

The registered procedure's name is available as the second parameter to the notification callback routine.

The arguments with which the registered procedure was called are available inside the notification
callback, as a parameter result set.    To retrieve these arguments, an application:

· Calls vbct_con_props_num (CS_NOTIF_CMD) to retrieve a pointer to the command structure
containing the parameter result set.

· Calls vbct_res_info(CS_NUMDATA), vbct_describe, vbct_do_binds, vbct_fetch, and
vbct_get_data to describe, bind, and fetch the parameters.

Defining a Notification Callback
A notification callback is defined as follows:

Sub SQLCTLIB1_NOTIFICATION (Connection As Long, ProcName As String, ProcNameLen As Long)

where:

Connection is a pointer to the CS_CONNECTION structure receiving the notification.

ProcName is the name of the registered procedure that has been executed.

ProcNameLen is the length in bytes of ProcName

The following table lists the CT-Library routines that a notification callback can call:
A Notification Callback Can Call: Under What Circumstances?

vbct_config_num

vbct_config_str

To retrieve information only.

vbct_con_props_num

vbct_con_props_str

To retrieve information or to set the
CS_USERDATA property only.

vbct_cmd_props_num

vbct_cmd_props_str

To retrieve information or to set the
CS_USERDATA property only.

vbct_cancel(CS_CANCEL_ATTN) Any

vbct_do_binds, vbct_describe, vbct_fetch,
vbct_data, vbct_res_info(CS_NUMDATA)

The routines must be called with the command
structure returned by the callbacks's
vbct_con_props_num(CS_NOTIF_CMD) call.

Server Message Callbacks
An application can handle server error and informational messages in-line, or through a server message
callback routine.

When a connection is allocated, it picks up a default server message callback from its parent context.    If
the parent context has no server message callback installed, then the connection is created without a
default server message callback.

After allocating a connection, an application can:

· Install a different server message callback for the connection.

· Call vbct_diag to initialize in-line message handling for the connection.    Note that vbct_diag
automatically de-installs all message callbacks for the connection.

If a server message callback is not installed and in-line message handling is not enabled, CT-Library
discards server message information.

If a connection is handling server messages through a server message callback, then the callback is
called whenever a server message arrives.

Defining a Server Message Callback
A server message callback is defined as follows:

Sub SQLCTLIB1_SERVERMESSAGE (Context As Long, Connection As Long)

Where:

Context is a pointer to the CS_CONTEXT structure for which the message occurred.

Connection is a pointer to the CS_CONNECTION structure for which the message occurred, if any.
connection can be NULL.

The callback uses the following code to obtain the message information.

Dim cmsg As CS_SERVERMSG

Dim ret As Long

Dim layer As Long

Dim origin As Long

Dim severity    As Long

Dim number As Long

crlf$ = Chr(13) & Chr(10)

ret = VBCS_get_server_msg(cmsg)

VBCS_decode_message cmsg.msgnumber, layer, origin, severity, number

The following table lists the CT-Library routines that a server message callback can call:

A Server Message Callback Can Call: Under What Circumstances?
vbct_config_num

vbct_config_str

To retrieve information only.

vbct_con_props_num

vbct_con_props_str

To retrieve information or to set the
CS_USERDATA property only.

vbct_cmd_props_num

vbct_cmd_props_str

To retrieve information or to set the
CS_USERDATA property only.

vbct_cancel (CS_CANCEL_ATTN) Any.

vbct_do_binds, vbct_describe, vbct_fetch,
vbct_data, vbct_res_info

The routines must be called with the command
structure returned by the callbacks's
vbct_con_props_num(CS_EED_CMD) call.

Capabilities
Capabilities describe features that a client/server connection supports.

For a list of capabilities, refer to vbct_capability.

Related Topics:
What are Capabilities Good For?

Types of Capabilities

Setting and Retrieving Capabilities

Setting and Retrieving Multiple Capabilities

What are Capabilities Good For?
An application can use capabilities to find out what features are supported by a connection's actual TDS
version.

In particular, an application can:

· Find out whether a server connection supports a particular type of request.

· Tell a server not to send a particular type of response on a connection.

Types of Capabilities
There are two types of capabilities:

· CS_CAP_REQUEST capabilities, or "request capabilities," which describe the types of client
requests that can be sent on a server connection.

· CS_CAP_RESPONSE capabilities, or "response capabilities," which describe the types of server
responses that a connection does not wish to receive.

Setting and Retrieving Capabilities
Before calling vbct_connect to open a connection, an application can:

Retrieve request or response capabilities, to determine what request and response features are normally
supported at the connection's current TDS version level.    A connection's TDS level defaults to the version
level that the application requested in its call to vbct_init.    An application can change a connection's TDS
level by calling vbct_con_props_num and vbct_con_props_str with property as CS_TDS_VERSION.

Set response capabilities, to indicate that a connection does not wish to receive particular types of
responses.    For example, an application can set a connection's TDS_RES_NOEED capability to
CS_TRUE to indicate that the connection does not wish to receive extended error data.

During the connection process, the client and server negotiate a TDS version level for the connection.   
The TDS version level determines which capabilities the connection will support.

After a connection is open, an application can:

· Retrieve request capabilities to find out what types of requests the connection will support.

· Retrieve response capabilities to find out whether the server has agreed to withhold the
previously-indicated response types from the connection.

Setting and Retrieving Multiple Capabilities
Gateway applications often need to set or retrieve all capabilities of a type category with a single call to
vbct_capability.    To do this, an application calls vbct_capability with the following:

· type as the type category of interest

· capability as    CS_ALL_CAPS

· value as a CS_CAP_TYPE structure

CT-Library provides the following macros to enable an application to set, clear, and test bits in a
CS_CAP_TYPE structure:

CS_SET_CAPMASK(mask, capability)

CS_CLR_CAPMASK(mask, capability)

CS_TST_CAPMASK(mask, capability)

where mask is a pointer to a CS_CAP_TYPE structure and capability is the capability of interest.

CT-Library Messages
CT-Library message numbers are four bytes long.    Each byte contains a separate piece of information.

Related Topics:
What the Bytes Represent

Decoding a Message Number

Message Severities

What the Bytes Represent
The first (high-order) byte represents the CT-Library layer that is reporting the message.    A typical
application will not examine this byte except to provide information for SYBASE Technical Support.

The second byte represents the message's origin.    A typical application will not examine this byte except
to provide information for SYBASE Technical support.

The third byte represents the message's severity.

The fourth (low-order) byte represents a layer-specific message number.

Decoding a Message Number
SQL Sombrero/VBX provides a vbcs_decode_message function to help an application decode a
message number:

Message Severities
The following table lists CT-Library message severities:

Severity: Explanation: User Action:
CS_SV_INFORM No error has occurred.    The   

message is informational.
No action is required.

CS_SV_CONFIG_FAIL A SYBASE configuration error has
been detected.    Configuration
errors    include missing localization
files, a missing interfaces file, and
an unknown server name in the
interfaces file.

Raise an error so that the
application's end-user can correct
the problem.

CS_SV_RETRY_FAIL An operation has failed, but    the
operation can be retried.    An
example of this type of operation is
a network read    that times out.

The return value from an
application's client message
callback determines whether or not
CT-Library retries the operation.    If
the client message callback returns
CS_SUCCEED, CT-Library retries
the operation.    If the client
message callback returns CS_FAIL,
CT-Library does not retry the
operation and marks the connection
as dead.    In this case, call
vbct_close(CS_FORCE_CLOSE) to
close the    connection and then re-
open it, if desired, by calling
vbct_connect.

CS_SV_API_FAIL A CT-Library routine generated an
error.    This error is typically caused
by a bad parameter or calling   
sequence.    The server connection
is probably salvageable.

Call
vbct_cancel(CS_CANCEL_ALL) to
clean up the connection.    If   
vbct_cancel(CS_CANCEL_ALL)
returns CS_SUCCEED, the server
connection is unharmed.    Note that
it is illegal to perform    this type of
cancel from within a client message
callback routine.

CS_SV_RESOURCE_FAI
L

A resource error has occurred.   
This error is typically caused by a
malloc failure or lack of file
descriptors.    The server connection
is probably not salvageable.

Call vbct_close
(CS_FORCE_CLOSE) to close the
server connection and then re-open
it, if desired, by calling
vbct_connect.    Note that it is illegal
to make these calls from within a
client message callback routine.

CS_SV_COMM_FAIL An unrecoverable error in the server
communication channel has
occurred.    The server connection is
not    salvageable.

Call vbct_close
(CS_FORCE_CLOSE) to close the
server connection and then re-open
it, if desired, by calling
vbct_connect.    Note that it is illegal
to make these calls from within a
client message callback routine.

CS_SV_INTERNAL_FAIL An internal CT-Library error has
occurred.

Call vbct_exit (CS_FORCE_EXIT)
to exit CT-Library, and then exit the
application.    Note    that it is illegal
to call vbct_exit from within a client
message callback routine.

CS_SV_FATAL A serious error has occurred.    All
server    connections are unusable.

Call vbct_exit (CS_FORCE_EXIT)
to exit CT-Library, and then exit the
application.    Note that it is illegal to
call vbct_exit from within a client
message callback routine.

Dynamic SQL
Dynamic SQL allows an application to execute SQL statements containing variables whose values are
determined at run-time.    It is useful for precompiler support.

An application prepares a dynamic SQL statement by associating a SQL statement containing
placeholders with an identifier and sending the statement to a server to be partially compiled and stored.
The statement is then known as a "prepared statement".

When an application is ready to execute a prepared statement, it defines values to substitute for the SQL
statement's placeholders and sends a command to execute the statement.

Related Topics:
Preparing a Statement

Getting a Description of Prepared Statement Input

Executing Statements

Executing a Prepared Statement

Executing a Literal SQL Statement

Getting a Description of Prepared Statement Output

De-allocating a Prepared Statement

Preparing a Statement
Follow these steps to prepare a statement:

1. Call vbct_dynamic with type as CS_PREPARE to initiate a command to prepare a statement.

2. Call vbct_send to send the command to the sever.

3. Call vbct_results as necessary to proces the results of the command.    A successful
CS_PREPARE command will generate a CS_CMD_SUCCEED result.

Getting a Description of Prepared Statement Input
An application typically retrieves a description of prepared statement input parameters before passing
input value to a prepared statement.

Follow these steps to get a description of prepared statement input parameters:

1 Call vbct_dynamic with type as CS_DESCRIBE_INPUT to initiate the command to get the
description.

2. Call vbct_send to send the command to the server.

3. Call vbct_results as necessary to process the results of the command.    A
CS_DESCRIBE_INPUT command generates a result set of type CS_DESCRIBE_RESULT.    This result
set contains no fetchable data but does contain descriptive information for each of the input parameters.

An application can either call vbct_describe or call vbct_dyndesc with operation as CS_GETATT to get a
description of a particular input parameter.

Executing Statements
An application can call vbct_dyamic to execute a prepared statement or a literal SQL statement.

An application typically prepares a statement if it will need to execute the statement multiple times.

An application typically executes a literal SQL statement if it will need to execute the statement only once.

Executing a Prepared Statement
Follow these steps to execute a prepared statement:

1. Call vbct_dynamic with type as CS_EXECUTE to initiate a command to execute the statement.

2. Define input parameters to the statement.    An application can define input parameters to a
prepared statement in two ways:

· The applicationh can call vbct_param once for each parameter that the prepared statement
requires.    Most applications will use this method.

· The application can call vbct_dyndesc to allocate a descriptor and describe the parameters.

3. Call vbct_send to send the command to the server.

4. Process the results of the command.    An application can process results in two ways:

· It can use vbct_results, vbct_do_binds and vbct_fetch to loop through results, bind result items
and fetch rows.

· It can use vbct_results, vbct_fetch and vbct_dyndesc to loop through results, fetch rows and get
data item descriptions and data.

Executing a Literal SQL Statement
Follow these steps to execute a literal SQL statement:

1. Call vtct_dynamic with type as CS_EXEC_IMMEDIATE to initiate a command to execute the
statement.

2. Call vbct-send to send the command to the server.

3. Call vbct_results as necessary to process the results of the command.    A
CS_EXEC_IMMEDIATE command does not generate fetchable results, but an application can examine
vbct_results result_type parameter to determine whether the command succeeded or failed.

SQL Server imposes the following restrictions on statements executed via CS_EXEC_IMMEDIATE:

· Select statements are not allowed.

· Parameters are not allowed.

Getting a Description of Prepared Statement Output
An application typically needs to get a description of prepared statement output before processing the
results of an ad hoc query.

For example, a forms-based application that processes interactive SQL queries needs to determine result
column types and lengths before displaying output.

Follow these steps to get a description of prepared statement output columns:

1. Call vbct_dynamic with type as CS_DESCRIBE_OUTPUT to initiate the command to get the
description.

2. Call vbct_send to send the command to the server.

3. Call vbct_results as necessary to process the results of the command.    A
CS_DESCRIBE_OUTPUT command generates a result set of type CS_DESCRIBE_RESULT.    This
result set contains no fetchable data but does contain descriptive information for each of the output
columns.

An application can either call vbct_describe or call vbct_dyndesc with operation as CS_GETATT to get a
description of a particular output column.

De-allocating a Prepared Statement
Follow these steps to de-allocate a prepared statement:

1. Call vbct_dynamic to initiate the command to de-allocate the statement.

2. Call vbct_send to send the command to de-allocate the statement.

3. Call vbct_results as necessary to process the results of the command.

Error and Message Handling
All CT-Library routines return success or failure indications.    It is highly recommended that applications
check these return codes.

In addition, CT-Library applications must handle two types of error and informational messages:

· CT-Library messages, also known as "client messages", are generated by CT-Library.    They
range in severity from informational messages to fatal errors.

· Server messages are generated by the server.    Server messages also range in severity from
informational messages to fatal errors.    SQL Server messages can be listed by executing the
Transact-SQL command "select from sysmessages".

NOTE:    Don't confuse CT-Library and server messages with a result set of type CS_MSG_RESULT.   
CT-Library and server messages are the means through which CT-Library and the server communicate
error and informational conditions to an application.    An application accesses CT-Library and server
messages either through message callback routines, or in-line, using vbct_diag.    A message result set,
on the other hand, is one of several types of result sets a server can return to an application.    An
application processes a result set of type CS_MSG_RESULT by calling vbct_res_info to get the
message's id.

Related Topics:
Two Methods of Handling Messages

In-Line Message Handling

CT-Library's Message Structures

Sequencing Long Messages

Message Structure Fields for Sequenced Messages

Sequenced Messages and Extended Error Data

Sequenced Messages and vbct_diag

Extended Error Data

What's Extended Error Data Good For?

How Can an Application Tell if Extended Error Data is Available?

Server Message Callbacks and Extended Error Data

In-Line Error Handling and Extended Error Data

Server Transaction States

Retrieving Transaction States in Main-Line Code

Retrieving Transaction States in a Server Message Callback

Two Methods of Handling Messages
An application can handle CT-Library and server messages by completing one of the following:

· By installing callback routines to handle messages.

· In-line, using the CT-Library routine vbct_diag.

The callback method has the following advantages:

· Centralizing message handling code.

· Providing a method to gracefully handle unexpected errors.    CT-Library automatically calls the
appropriate message callback whenever a message is generated, so an application will not fail to
trap unexpected errors.    An application using only main-line error-handling logic may not
successfully trap errors that have not been anticipated.

In-line message handling has the advantage of allowing an application to check for messages at
particular times.    For example, an application that is creating a connection might choose to wait until all
connection-related commands are issued before checking for messages.

Most applications will use the callback method to handle messages. However, an application that is
running on a platform/language combination that does not support callbacks must use the in-line method.

An application indicates which method it will use by calling vbct_install_callbacks to install message
callbacks or by calling vbct_diag to initialize in-line message handling.

An application can use different methods on different connections.    For example, an application can
install message callbacks at the context level, allocate two connections, and then call vbct_diag to
initialize in-line message handling for one of the connections.    The other connection will use the default
message callbacks that it picked up from its parent context.

An application can switch back and forth between the in-line and the callback methods:

· Installing either a client message callback or a server message callback turns off in-line message
handling.    Any saved messages are discarded.

· Likewise, calling vbct_diag to initialize in-line message handling de-installs a connection's
message callbacks.    If this occurs, the connection's first CS_GET call to vbct_diag will retrieve a
warning message to this effect.

If a callback of the proper type is not installed and in-line message handling is not enabled, CT-Library
discards message information.

Using Callbacks to Handle Messages

An application calls vbct_install_callbacks to install message callbacks.

CT-Library stores callbacks in the CS_CONNECTION and CS_CONTEXT structures.    Because of this,
when a CT-Library error occurs that makes a CS_CONNECTION or CS_CONTEXT structure unusable,
CT-Library cannot call the client message callback.    However, the routine that caused the error still
returns CS_FAIL.

For more information on using callbacks to handle CT-Library and server messages, refer to Callbacks
and refer to vbct_install_callbacks.

In-Line Message Handling
An application calls vbct_diag to initialize in-line message handling for a connection.    A typical application
calls vbct_diag immediately after calling vbct_con_alloc to allocate the connection structure.

An application cannot use vbct_diag at the context level.    This means an application cannot use
vbct_diag to retrieve messages generated by routines that take a CS_CONTEXT (and no
CS_CONNECTION) as a parameter.    These messages are unavailable to an application that is using in-
line error handling.

An application that is retrieving messages into a SQLCA, SQLCODE, or SQLSTATE should set the CT-
Library property CS_EXTRA_INF to CS_TRUE.

The CS_DIAG_TIMEOUT property controls whether CT-Library fails or retries when a CT-Library routine
generates a timeout error.

If a CT-Library error occurs that makes a CS_CONNECTION structure unusable, vbct_diag returns
CS_FAIL when called to retrieve information about the original error.

For more information on the in-line method of handling CT-Library and server messages, vbct_diag.

CT-Library's Message Structures
CT-Library uses the following structures to return message information:

· The CS_CLIENTMSG structure

· The CS_SERVERMSG structure

· The SQLCA structure

· The SQLCODE structure

· The SQLSTATE structure

· The CS_EXTRA_INF Property

The CS_EXTRA_INF property determines whether or not CT-Library returns certain kinds of informational
messages.

An application that is retrieving messages into a    SQLCA, SQLCODE , or SQLSTATE should set the CT-
Library property CS_EXTRA_INF to CS_TRUE.    This is because the SQL structures require information
that CT-Library does not customarily return.    If CS_EXTRA_INF is not set, a loss of information will occur.

An application that is not using the SQL structures can also set CS_EXTRA_INF to CS_TRUE.    In this
case, the extra information is returned as standard CT-Library messages.

The additional information returned includes the number of rows affected by the most recent command.

Sequencing Long Messages
Message callback routines and vbct_diag return CT-Library and server messages in CS_CLIENTMSG
and CS_SERVERMSG structures. In the CS_CLIENTMSG structure, the message text is stored in the
msgstring field. In the CS_SERVERMSG structure, the message text is stored in the text field.    Both
msgstring and text are CS_MAX_MSG bytes long.

If a message longer than CS_MAX_MSG - 1 bytes is generated, Client-Library's default behavior is to
truncate the message.    However, an application can use the CS_NO_TRUNCATE property to tell CT-
Library to "sequence" long messages instead of truncating them.

When CT-Library is sequencing long messages, it uses as many CS_CLIENTMSG or CS_SERVERMSG
structures as necessary to return the full text of a message.    The message's first CS_MAX_MSG bytes
are returned in one structure, its second CS_MAX_MSG bytes in a second structure, and so forth.

CT-Library null terminates only the last chunk of a message.    If a message is exactly CS_MAX_MSG
bytes long, the message is returned in two chunks; the first containing CS_MAX_MSG bytes of the
message and the second containing a null terminator.

If an application is using callback routines to handle messages, CT-Library calls the callback routine once
for each message chunk.

If an application is using vbct_diag to handle messages, it must call vbct_diag once for each message
chunk.

NOTE:    The    SQLCA,    SQLCODE, and    SQLSTATE structures do not support sequenced messages.   
An application cannot use these structures to retrieve sequenced messages.    Messages that are too
long for these structures are truncated.

NOTE:    Operating system messages, if any, are reported via the osstring field of the CS_CLIENTMSG
structure.    CT-Library does not sequence operating system messages.

Message Structure Fields for Sequenced Messages
The status field in the CS_CLIENTMSG and CS_SERVERMSG structures indicates whether the structure
contains a whole message or a chunk of a message.

The following table lists status values that are related to sequenced messages:

Symbolic Value: To Indicate:
CS_FIRST_CHUNK The message text is the first chunk of the

message.

CS_LAST_CHUNK The message text is the last chunk of the
message.

If CS_FIRST_CHUNK and CS_LAST_CHUNK are both on, then the message text in the structure is the
entire message.

If neither CS_FIRST_CHUNK nor CS_LAST_CHUNK is on, then the message text in the structure is a
middle chunk.

The msgstringlen field in the CS_CLIENTMSG structure and the textlen field in the CS_SERVERMSG
structure always reflect the length of the current message chunk.

All other fields in the CS_CLIENTMSG and CS_SERVERMSG are repeated with each message chunk.

Sequenced Messages and Extended Error Data
If a sequenced server message has extended error data associated with it, an application can retrieve the
extended error data while processing any single chunk of the sequenced message.    Once the application
has retrieved the extended error data, however, it is no longer available.

Sequenced Messages and vbct_diag
If an application is using sequenced error messages, vbct_diag acts on message chunks instead of
messages.    The following effects occur:

· A vbct_diag(CS_GET) call with index i returns the i'th message chunk, not the i'th message.

· A vbct_diag(CS_MSGLIMIT) call limits the number of chunks, not the number of messages, that
CT-Library will store.

· A vbct_diag(CS_STATUS) call returns the number of currently-stored chunks, not the number of
currently-stored messages.

Extended Error Data
Some server messages have "extended error data" associated with them. Extended error data is simply
additional information about the error.

For SQL Server messages, the additional information is most typically which column or columns provoked
the error.

CT-Library makes extended error data available to an application in the form of a parameter result set,
where each result item is a piece of extended error data.    A piece of extended error data can be named,
and can be of any datatype.

An application can retrieve extended error data but is not required to do so.

What's Extended Error Data Good For?
Applications that allow end-users to enter or edit data often need to report errors to their users at the
column level.    The standard server message mechanism, however, makes column-level information
available only within the text of the server message.    Extended error data provides a means for
applications to conveniently access column-level information.

For example, imagine an application that allows end-users to enter and edit data in the titleauthor table in
the pubs2 database. titleauthor uses a key composed of two columns, au_id and title_id.    Any attempt to
enter a row with an au_id and title_id that match an existing row will cause a "duplicate key" message to
be sent to the application.

On receiving this message, the application needs to identify the problem column or columns to the end-
user, so that the user can correct them.    This information is not available in the duplicate key message,
except in the message text.    The information is available, however, as extended error data.

How Can an Application Tell if Extended Error Data is Available?
When CT-Library returns standard server message information to an application in a CS_SERVERMSG
structure, it sets the CS_HASEED bit of the status field of the CS_SERVERMSG structure if extended
error data is available for the message.

Extended error data is returned to an application in the form of a parameter result set that is available on
a special CS_COMMAND structure that CT-Library provides.

To retrieve extended error data, an application processes the parameter result set.

Server Message Callbacks and Extended Error Data
Within a server message callback routine, an application retrieves the CS_COMMAND with the extended
error data by calling vbct_con_props_num and vbct_con_props_str with property as CS_EED_CMD:

ret = vbct_con_props(connection, CS_GET, CS_EED_CMD,eed_cmd, CS_UNUSED, outlen);

vbct_con_props_num and vbct_con_props_str sets eed_cmd to point to the CS_COMMAND on which the
extended error data is available.

Once it has the CS_COMMAND, the callback routine processes the extended error data as a normal
parameter result set, calling vbct_res_info, vbct_describe, vbct_do_binds, vbct_fetch, and vbct_get_data
to describe, bind, and fetch the parameters.    It is not necessary for the callback routine to call
vbct_results.

In-Line Error Handling and Extended Error Data
An application that is handling server messages in-line retrieves the CS_COMMAND with the extended
error data by calling vbct_diag with operation as CS_EED_CMD:

ret = vbct_diag (connection, CS_EED_CMD,CS_SERVERMSG_TYPE, index, eed_cmd);

In this call, type must be CS_SERVERMSG_TYPE and index must be the index of the message for which
extended error data is available. vbct_diag sets eed_cmd to point to the CS_COMMAND on which the
extended error data is available.

Once it has the CS_COMMAND, the application processes the extended error data as a normal
parameter result set, calling vbct_res_info, vbct_describe, vbct_do_binds, vbct_fetch, and vbct_get_data
to describe, bind, and fetch the parameters.    It is not necessary for the application to call vbct_results.

Server Transaction States
Server transaction state information is useful when an application needs to determine the outcome of a
transaction.

The following table lists the symbolic values that represent transaction states:

Symbolic Value: To Indicate:
CS_TRAN_IN_PROGRESS A transaction is in progress.

CS_TRAN_COMPLETED The most recent transaction completed
successfully.

CS_TRAN_STMT_FAIL The most-recently-executed statement in the
current transaction failed.

CS_TRAN_FAIL The most recent transaction failed.

CS_TRAN_UNDEFINED A transaction state is not currently defined.

Retrieving Transaction States in Main-Line Code
In main-line code, an application retrieves a transaction state by calling vbct_res_info with type as
CS_TRANS_STATE:

ret = vbct_res_info (cmd, CS_TRANS_STATE,trans_state, CS_UNUSED, outlen)

vbct_res_info sets trans_state to one of the symbolic values listed in Transaction states Table above.

Transaction state information is available only for CS_COMMAND structures with pending results or an
open cursor.    This means transaction state information is available if an application's last call to
vbct_results returned CS_SUCCEED.

Transaction state information is guaranteed to be correct only after vbct_results sets result_type to
CS_CMD_DONE, CS_CMD_SUCCEED, or CS_CMD_FAIL.

Retrieving Transaction States in a Server Message Callback
An application can retrieve transaction states inside a server message callback only if extended error
data is available.

Within a server message callback, CT-Library indicates that extended error data is available by setting the
CS_HASEED bit of the status field of the CS_SERVERMSG structure describing the message.

If extended error data is available, the application can retrieve the current transaction state by:

1. Retrieving the CS_COMMAND with the extended error data by calling vbct_con_props_num and
vbct_con_props_str with property as CS_EED_CMD.

2. Calling vbct_res_info with type as CS_TRANS_STATE.    vbct_res_info sets its buffer parameter
to one of the symbolic values listed in the Transaction states Table above.

Results
When a CT-Library command executes on a server, it can generate various types of results which are
returned to the application that sent the command:    The results are as follows:

· Regular row results

· Cursor row results

· Parameter results

· Stored procedure return status results

· Compute row results

· Message results

· Describe results

· Format results

Results are returned to an application in the form of "result sets."    A result set contains only a single type
of result data.    Regular row and cursor row result sets can contain multiple rows of data, but other types
of result sets contain at most a single row of data.

An application processes results by calling vbct_results, which indicates the type of result available by
setting result_type.

vbct_results sets result_type to CS_CMD_DONE to indicate that the results of a "logical command" have
been completely processed.    A logical command is generally considered to be any Open Client
command defined via vbct_command, vbct_dynamic.    Exceptions to this rule are documented in "When
are the Results of a Command Completely Processed?" reference to vbct_results (238 approx)

Some commands, i.e. a language command containing a Transact-SQL update statement, do not
generate results.    vbct_results sets result_type to CS_CMD_SUCCEED or CS_CMD_FAIL to indicate the
status of a command that does not return results.

Related Topics:
Regular Row Results

Parameter Results

Stored Procedure Return Status Results

Compute Row Results

Message Results

Describe Results

Format Results

Regular Row Results
A regular row result set is generated by the execution of a Transact-SQL select statement on a server.

A regular row result set contains zero or more rows of tabular data.

Parameter Results
A parameter result set contains a single "row" of parameters.    Several types of data can be returned as a
parameter result set, including:

· Message parameters.

· Stored procedure return parameters.

Extended error data and registered procedure notification parameters are also returned as parameter
result sets, but since an application does not call vbct_results to process these types of data, the
application never sees a result type of CS_PARAM_RESULT.    Instead, the row of parameters is simply
available to be fetched after the application retrieves the CS_COMMAND structure containing the data.

Stored Procedure Return Status Results
A status result set consists of a single row which contains a single value, a return status.

Compute Row Results
A compute row result set contains a single row of tabular data with a number of columns equal to the
number of columns listed in the compute clause that generated the compute row.

Message Results
A message result set does not actually contain any data.    Instead, a message has an "id."    To get a
message's id, an application can call vbct_res_info after vbct_results returns CS_MSG_RESULT.

If parameters are associated with a message, they are returned as a separate parameter result set,
immediately following the message result set.

Describe Results
A describe result set does not contain fetchable data, but rather indicates the existence of descriptive
information returned as the result of a dynamic SQL describe input or describe output command.

An application can retrieve this descriptive information by calling vbct_describe or vbct_dyndesc.

Format Results
There are two types of format results:

· regular row format results

· compute row format results

Format result sets do not contain fetchable data, but rather indicate the availability of format information
for the regular row and compute row result sets with which they are associated.

All format information for a command is returned before any data.    That is, the row format and compute
format result sets for a command precede the regular row and compute row result sets that the command
generates.

Format information is primarily of use in gateway applications, which need to repackage SQL Server
results before sending them on to a foreign client.

A connection receives format results only if its CS_EXPOSE_FMTS property is set to CS_TRUE.

Types
Open Client CT-Library supports a wide range of datatypes.    These datatypes are shared with Open
Client CT-Library and Open Server Server-Library.    In most cases, they correspond directly to SQL
Server datatypes.

The "Datatype Summary" chart, below, lists Open Client/Server type constants, their corresponding
typedefs, and their corresponding SQL Server or Secure SQL Server datatypes, if any.

A list of Open Client routines that are useful in manipulating datatypes follows the summary chart,
together with more detailed information on each datatype.

Related Topics:
Datatype Summary

Routines That Manipulate Datatypes

Binary Types

Bit Types

Character Types

Datetime Types

Numeric Types

Money Types

Security Types

Text and Image Types

Open Client User-Defined Datatypes

Datatype Summary
The following table lists Open Client/Server type constants, their corresponding typedefs, and their
corresponding SQL Server or Secure SQL Server datatypes, if any:

Open Client/Server
Type Constant

Description Corresponding
Open
Client/Server
Typedef

Corresponding
Server
Datatype

Binary types CS_BINARY_TYPE Binary type CS_BINARY binary, varbinary

CS_LONGBINARY_TYPE Long binary
type

CS_LONGBINARY NONE

CS_VARBINARY_TYPE Variable-length
binary type

CS_VARBINARY NONE

Bit types CS_BIT_TYPE Bit type CS_BIT boolean

Character
types

CS_CHAR_TYPE Character type CS_CHAR char, varchar

CS_LONGCHAR_TYPE Long character
type

CS_LONGCHAR NONE

CS_VARCHAR_TYPE Variable-length
character type

CS_VARCHAR NONE

Datetime
types

CS_DATETIME_TYPE 8-byte datetime
type

CS_DATETIME datetime

CS_DATETIME4_TYPE 4-byte datetime
type

CS_DATETIME4 smalldatetime

Numeric
types

CS_TINYINT_TYPE 1-byte integer
type

CS_TINYINT tinyint

CS_SMALLINT_TYPE 2-byte integer
type

CS_SMALLINT smallint

CS_INT_TYPE 4-byte integer
type

CS_INT int

CS_DECIMAL_TYPE Decimal type CS_DECIMAL decimal

CS_NUMERIC_TYPE Numeric type CS_NUMERIC numeric

CS_FLOAT_TYPE 8-byte float type CS_FLOAT float

CS_REAL_TYPE 4-byte float type CS_REAL real

Money types CS_MONEY_TYPE 8-byte money
type

CS_MONEY money

CS_MONEY4_TYPE 4-byte money
type

CS_MONEY4 smallmoney

Security types CS_BOUNDARY_TYPE Secure SQL
Server
boundary type

CS_CHAR sensitivity

boundary

CS_SENSITIVITY_TYPE Secure SQL
Server
sensitivity type

CS_CHAR sensitivity

Text and
image types

CS_TEXT_TYPE Text type CS_TEXT text

CS_IMAGE_TYPE Image type CS_IMAGE image

Routines That Manipulate Datatypes
Open Client CT-Library provides several routines that are useful for manipulating datatypes.    They are as

follows:

· vbcs_calc, that performs arithmetic operations on decimal, money, and numeric datatypes

· vbcs_cmp, that compares datetime, decimal, money, and numeric datatypes

· vbcs_convert, that converts a data value from one datatype to another

· vbcs_dt_crack, that converts a machine readable datetime value into a user-accessible format

· vbcs_dt_info, that sets or retrieves language-specific datetime information

· vbcs_strcmp, that compares two strings

These routines are documented under Function Descriptions later on in the Manual.

Binary Types
Open Client has three binary types:    CS_BINARY, CS_LONGBINARY, and CS_VARBINARY.

CS_BINARY corresponds to the SQL Server types binary and varbinary. This means CT-Library interprets
both the server binary and varbinary types as CS_BINARY.    For example, vbct_describe returns
CS_BINARY_TYPE when describing a result column that has the server datatype varbinary.

WARNING: CS_LONGBINARY and CS_VARBINARY do not correspond to any SQL Server datatypes.   
Specifically, CS_VARBINARY does not correspond to the SQL Server datatype varbinary.

CS_LONGBINARY does not correspond to any SQL Server type, but some Open Server applications
may support CS_LONGBINARY.    An application can use the CS_DATA_LBIN capability to determine
whether an Open Server connection supports CS_LONGBINARY.    If it does, then vbct_describe can
return CS_LONGBINARY when describing a result data item.

A CS_LONGBINARY value has a maximum length of 2,147,483,647 bytes.

CS_VARBINARY does not correspond to any SQL Server type.    For this reason, Open Client routines do
not return CS_VARBINARY_TYPE.    CS_VARBINARY is provided to enable non-C programming
language veneers to be written for Open Client. Typical client applications will not use CS_VARBINARY.

Although CS_VARBINARY variables are used to store variable-length values, CS_VARBINARY is
considered to be a fixed-length type.    This means that an application does not typically need to provide
CT-Library with the length of a CS_VARBINARY variable.    For example, vbct_do_binds ignores the value
of datafmt.maxlength when binding to a CS_VARBINARY variable.

Bit Types
Open Client supports a single bit type,    CS_BIT.    This type is intended to hold server bit (or boolean)
values of 0 or 1.    When converting other types to bit, all non-zero values are converted to 1:

Character Types
Open Client has three character types,    CS_CHAR,    CS_LONGCHAR, and    CS_VARCHAR:

CS_CHAR corresponds to the SQL Server types char and varchar.    This means CT-Library interprets
both the server char and varchar types as CS_CHAR.    For example, vbct_describe returns
CS_CHAR_TYPE when describing a result column that has the server datatype varchar.

Warning: CS_LONGCHAR and CS_VARCHAR do not correspond to any SQL Server datatypes.   
Specifically, CS_VARCHAR does not correspond to the SQL Server datatype varchar.

CS_LONGCHAR does not correspond to any SQL Server type, but some Open Server applications may
support CS_LONGCHAR.    An application can use the CS_DATA_LCHAR capability to determine
whether an Open Server connection supports CS_LONGCHAR.    If it does, then vbct_describe can return
CS_LONGCHAR when describing a result data item.

A CS_LONGCHAR value has a maximum length of 2,147,483,647 bytes.

CS_VARCHAR does not correspond to any SQL Server type.    For this reason, Open Client routines do
not return CS_VARCHAR_TYPE. CS_VARCHAR is provided to enable non-C programming language
veneers to be written for Open Client.    Typical client applications will not use CS_VARCHAR.

Although CS_VARCHAR variables are used to store variable-length values, CS_VARCHAR is considered
to be a fixed-length type.    This means that an application does not typically need to provide CT-Library
with the length of a CS_VARCHAR variable.    For example, vbct_do_binds ignores the value of
datafmt.maxlength when binding to a CS_VARCHAR variable.

Datetime Types
Open Client supports two datetime types,    CS_DATETIME and    CS_DATETIME4.    These datatypes are
intended to hold 8-byte and 4-byte datetime values, respectively.

An Open Client application can use the CT-Library Routine vbcs_dt_crack to extract date parts (year,
month, day, etc.) from a datetime structure.

CS_DATETIME corresponds to the SQL Server datetime datatype.    The range of legal CS_DATETIME
values is from January 1, 1753 to December 31, 9999, with a precision of 1/300th of a second (3.33
milliseconds):

CS_DATETIME4 corresponds to the SQL Server smalldatetime    datatype.    The range of legal
CS_DATETIME4 values is from January 1, 1900 to June 6, 2079, with a precision of 1 minute:

Numeric Types
Open Client supports a wide range of numeric types.

Integer types include    CS_TINYINT, a 1-byte integer;    CS_SMALLINT, a 2-byte integer, and    CS_INT, a
4-byte integer:

CS_REAL corresponds to the SQL Server datatype real.    It is implemented as a C-language float type:

CS_FLOAT corresponds to the SQL Server datatype float. It is implemented as a C-language double
type:

CS_NUMERIC and    CS_DECIMAL correspond to the SQL Server datatypes numeric and decimal.   
These types provide platform-independent support for numbers with precision and scale.

The SQL Server datatypes numeric and decimal are equivalent; and CS_DECIMAL is defined as
CS_NUMERIC:

typedef CS_NUMERIC      CS_DECIMAL;

where:

precision is the precision of the numeric value.    At the current time, legal values for precision are from 1
to 77.    The default precision is 18. CS_MIN_PREC, CS_MAX_PREC, and CS_DEF_PREC define the
minimum, maximum, and default precision values, respectively.

scale is the scale of the numeric value.    At the current time, legal values for scale are from 0 to 77.    The
default scale is 0. CS_MIN_SCALE, CS_MAX_SCALE, and CS_DEF_PREC define the minimum,
maximum, and default scale values, respectively.

scale must be less than or equal to precision.

CS_DECIMAL types use the same default values for precision and scale as CS_NUMERIC types.

Money Types
Open Client supports two money types, CS_MONEY and    CS_MONEY4.    These datatypes are intended
to hold 8-byte and 4-byte money values, respectively.

CS_MONEY corresponds to the SQL Server money datatype.    The range of legal CS_MONEY values is
between +/- $922,337,203,685,477.5807:

CS_MONEY4 corresponds to the SQL Server smallmoney datatype.    The range of legal CS_MONEY4
values is between -$214,748.3648 and +$214,748.3647:

Security Types
Open Client supports Secure SQL Server's sensitivity_boundary and sensitivity types by defining the type
constants    CS_BOUNDARY_TYPE and    CS_SENSITIVITY_TYPE.

These type constants differ from other Open Client type constants in that they do not correspond to
similarly-named typedefs.    Instead, they correspond to CS_CHAR.

This means that although Open Client routines accept and return CS_BOUNDARY_TYPE and
CS_SENSITIVITY_TYPE to describe a column or variable's datatype, any corresponding program
variable must be of type CS_CHAR.

For example, if an application calls vbct_do_binds with the datatype field of the CS_DATAFMT structure
set to CS_SENSITIVITY_TYPE, the program variable to which the data is being bound must be of type
CS_CHAR.

Text and Image Types
Open Client supports a text datatype,    CS_TEXT, and an image datatype,    CS_IMAGE.

CS_TEXT corresponds to the server datatype text, which describes a variable-length column containing
up to 2,147,483,647 bytes of printable character data. CS_TEXT is defined as unsigned character:

CS_IMAGE corresponds to the server datatype image, which describes a variable-length column
containing up to 2,147,483,647 bytes of binary data. CS_IMAGE is defined as unsigned character:

Open Client User-Defined Datatypes
An application that needs to use a datatype that is not included in the standard Open Client type set can
create a user-defined datatype.

An CT-Library application creates a user-defined type by declaring it:

NOTE:    Do not confuse Open Client user-defined types with SQL Server user-defined types.    Open
Client user-defined types are C-language types, declared within an application. SQL Server user-defined
types are database column datatypes, created using the system stored procedure sp_addtype.

CompileDate

Syntax
CompileDate.

Parameters

Results
Returns a string containing the compile date of SQL Sombrero/VBX.    This function will be used mainly by
Technical Support to determine the version of SQL Sombrero/VBX.

Remarks

See Also

vbcs_calc
Perform an arithmetic operation on two operands.

Syntax
vbcs_calc(context&, op&, datatype&, var1(Any),var2(Any), dest(Any))

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

op&

The operation to perform.    The following table lists the symbolic values that are legal for op:

Value of op: operation: dest is set to:
CS_ADD Addition var1 + var2

CS_SUB Subtraction var1 - var2

CS_MULT Multiplication var1 * var2

CS_DIV Division var1 / var2

datatype&

The datatype of var1, var2, and dest.    The following table lists the symbolic values that are legal for
datatype:

Value of datatype: To Indicate a Datatype of:
CS_DECIMAL_TYPE CS_DECIMAL

CS_MONEY_TYPE CS_MONEY

CS_MONEY4_TYPE CS_MONEY4

CS_NUMERIC_TYPE CS_NUMERIC

var1 (Any)

A variable of the type defined by datatype&.

var2 (Any)

A variable of the type defined by datatype&.

dest (Any)

A variable of the type defined by datatype&.    If vbcs_calc returns CS_FAIL, dest is not modified.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Common reasons for a vbcs_calc failure include:

· An invalid parameter.

· Attempted division by 0.

· Destination overflow.

Remarks
var1, var2, and dest must have the same datatype, as indicated by the datatype parameter.

In case of error, dest is not modified.

See Also
vbcs-convert

vbcs_cmp
Compare two data values.

Syntax
vbcs_cmp(context&, datatype&, var1(Any), var2(Any), result&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

datatype&

The datatype of var1 and var2.    The following table lists the symbolic values that are legal for datatype:

Value of datatype: Indicates a Datatype of:
CS_DATETIME_TYPE CS_DATETIME

CS_DATETIME4_TYPE CS_DATETIME4

CS_DECIMAL_TYPE CS_DECIMAL

CS_MONEY_TYPE CS_MONEY

CS_MONEY4_TYPE CS_MONEY4

CS_NUMERIC_TYPE CS_NUMERIC

var1 (Any)

A variable of the type defined by datatype&.

var2 (Any)

A variable of the type defined by datatype&.

result&

The following table lists the possible values for result:

Value of result: To Indicate:
-1 var1 is less than var2

0 var1 is equal to var2

1 var1 is greater than var2

Results
A pointer to the result of the comparison.    The following table lists the possible values for result:

Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.    If vbcs_cmp returns CS_FAIL, result is
undefined.

The most common reason for a vbcs_cmp failure is an invalid parameter.

Remarks

vbcs_cmp sets result to indicate the result of the comparison.

var1 and var2 must have the same datatype, as indicated by the datatype parameter.

To compare string values, an application can call vbcs_strcmp.

See Also
vbcs_calc , vbcs_convert, vbcs_strcmp

vbcs_config
Set or retrieve CT-Library properties.

Syntax
vbcs_config(context&, action&, property&, buffer(Any), buflen&, outlen&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

action&

One of the following symbolic values:

Value of action: vbcs_config:
CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Clears the value of the property by resetting it
to its default value.

property&

The property whose value is being set or retrieved.    The following table lists the symbolic values that are
legal for property:

Value of property: What it is: An application
can:

buffer is:

CS_EXTRA_INF Whether or not to return
the extra information
that's    required when
processing messages in-
line, using a SQLCA,
SQLCODE, or   
SQLSTATE.

Set, retrieve, or clear. CS_TRUE or CS_FALSE.
CS_FALSE is the default.

CS_LOC_PROP A CS_LOCALE structure
that defines localization
information for this
context.

Set, retrieve, or   
clear.

A CS_LOCALE    structure
previously allocated by the
application.

CS_MESSAGE_CB The CT-Library message
callback routine.

Not supported in
Sombrero.

If action is CS_SET, buffer
is the message callback
routine.    If action is
CS_GET, buffer is set to
the address of the
message callback routine
that is currently installed.   
There is no default.

CS_USERDATA User-allocated data. Set, retrieve, or clear. User-allocated data.    A
default is not applicable.

CS_VERSION The version of CT-
Library.

Retrieve only. A symbol.    Currently, the
only legal value for
CS_VERSION is
CS_VERSION_100.

buffer (Any)

If a property value is being set, buffer points to the variable used in setting the property.

If a property value is being retrieved, buffer points to the variable in which vbcs_config will place the value
of the property.

If a property value is being cleared, pass buffer as CS_UNUSED.

buflen&

Generally, buflen is the length, in bytes, of buffer.

If a property value is being set and the value in buffer is null-terminated, pass buflen as CS_NULLTERM.

If buffer is a fixed-length or symbolic value, pass buflen as CS_UNUSED.

outlen&

A pointer to an integer variable.

outlen is not used if a property value is being set.

If a property value is being retrieved, vbcs_config sets outlen to the length, in bytes, of the requested
information.

If the information is larger than buflen bytes, an application can use the value of outlen to determine how
many bytes are needed to hold the information.

If an application is setting a property value or does not care about return length information, it can pass
outlen as NULL.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

See Also
vbcs_ctx_alloc , vbct_con_props , vbcs_config, vbct_init

vbcs_convert
Convert a data value from one datatype to another.

Syntax

vbcs_convert(context&, srcfmt(CS_DATAFMT), srcdata(Any),destfmt(CS_DATAFMT), destdata(Any),
resultlen&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

srcfmt (CS_DATAFMT)

A CS_DATAFMT variable describing the source data format.    The following table lists the fields in srcfmt
that are used:

Field name: Set the field to:
datatype A type constant representing the source datatype.

(CS_CHAR_TYPE, CS_BINARY_TYPE, etc.).

maxlength The length of the data in the srcdata buffer.

locale A pointer to a VBCS_LOCALE structure
containing localization values for the source data,
or NULL to use localization values from context.

All other fields Are ignored.

srcdata (Any)

A variable containing the source data.    If srcdata is NULL, the null substitution value for the datatype
indicated by destfmt is placed in destdata.

CT-Library defines a default null substitution value for each datatype. An application can define custom
null substitution values by calling vbcs_setnull.

destfmt (CS_DATAFMT)

A CS_DATAFMT variable describing the destination data format.    The following table lists the fields in
destfmt that are used:

Field name: Set the field to:
datatype A type constant representing the desired destination datatype.   

(CS_CHAR_TYPE, CS_BINARY_TYPE, etc.).

maxlength The length of the destdata buffer.

locale A pointer to a VBCS_LOCALE structure containing localization values for
the destination data, or NULL to use localization values from context.

format A bit-mask of the following symbols:    For character and text destinations
only: CS_FMT_NULLTERM to null-terminate the data, or
CS_FMT_PADBLANK to pad to the full length of the variable with spaces.
For character, binary, text, and image destinations:    CS_FMT_PADNULL
to pad to the full length of the variable with nulls.    For any type of
destination:    CS_FMT_UNUSED if no format information is being
provided.

scale The scale to be used for the destination variable.    If the source data is
the same type as the destination, then scale can be set to
CS_SRC_VALUE to indicate that the destination should pick up its value
for scale from the source data.    scale must be less than or equal to
precision.

precision The precision to be used for the destination variable.    If the source data
is the same type as the destination, then precision can be set to
CS_SRC_VALUE to indicate that the destination should pick up its value
for precision from the source data.    precision must be greater than or
equal to scale.

All other fields Are ignored

destdata (Any)

A pointer to the destination buffer space.

resultlen&

A integer variable.    vbcs_convert sets resultlen to the length, in bytes, of the data placed in destdata.    If
the conversion fails, vbcs_convert sets resultlen to CS_UNUSED.

resultlen is an optional parameter and can be passed as NULL.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

A common reason for a vbcs_convert failure is that CT-Library does not support the requested
conversion.

Remarks
To determine whether a particular conversion is permitted, an application can call vbcs_will_convert.

In certain cases it can be useful to convert a datatype to itself.    For instance, a conversion of CS_CHAR
to CS_CHAR where srcfmt.locale and destfmt.locale define different character sets serves as a useful
way to translate strings.

About Specific Conversions

A conversion to or from binary and image datatypes is a straight byte-copy, except when the conversion
involves character or text.    When converting character or text data to binary or image,    vbcs_convert
interprets the character or text string as hexadecimal, whether or not the string contains a leading "0x".   
When converting binary or image data to character or text, vbcs_convert creates a hexadecimal string
without a leading "0x".

Converting a money, character, or text value to float can result in a loss of precision.    Converting a float
value to character or text can also result in a loss of precision.

Converting a float value to money can result in overflow, because the maximum CS_MONEY value is
$922,337,203,685,477.5807 and the maximum CS_MONEY4 value is $214,748.3648.

If overflow occurs when converting integer or float data to character or text, the first character of the
resulting value will contain an asterisk ("*") to indicate the error.

A conversion to bit has the following effect: if the value being converted is not 0, the bit value is set to 1; if

the value is 0, the bit value is set to 0.

When converting decimal or numeric data to decimal or numeric data, CS_SRC_VALUE can be used in
destfmt.scale and destfmt.precision to indicate that the destination data should have the same scale and
precision as the source.    CS_SRC_VALUE is valid only for decimal and numeric types.

See Also
vbcs_setnull , vbcs_will_convert

vbcs_ctx_alloc
Allocate a CS_CONTEXT structure.

Syntax
vbcs_ctx_alloc(version&, context&)

Parameters
version&

The version of CT-Library behavior that the application expects.    The following table lists the symbolic
values that are legal for version:

Value of version: To Indicate: Features Supported
CS_VERSION_100 10.0 behavior Initial version

context&

The parameter is primed with the context pointer.    This context pointer is a parameter used in functions
such vbcs-calc.

In case of error, vbcs_ctx_alloc sets ctx_pointer to NULL.

Results
Returns To Indicate:
CS_SUCCEED The routine completed successfully.

CS_MEM_ERROR The routine failed because it could not allocate
sufficient memory.

CS_FAIL The routine failed for other reasons.

Common reasons for a vbcs_ctx_alloc failure include:

· Insufficient memory.

· Missing localization files.

Remarks
A CS_CONTEXT    structure, also called a "context structure," contains information that describes an
application context.    For example, a context structure contains default localization information, and
defines the version of CT-Library that is in use.

Allocating a context structure is the first step in any CT-Library or Server-Library application.

After allocating a CS_CONTEXT structure , a CT-Library application typically customizes the context by
calling vbcs_config and/or vbct_config, and then sets up one or more connections within the context.

To de-allocate a context structure, an application can call vbcs_ctx_drop.

vbcs_ctx_global also allocates a context structure.    The difference between vbcs_ctx_alloc and
vbcs_ctx_global is that vbcs_ctx_alloc allocates a new context structure each time it is called, while
vbcs_ctx_global allocates a new context structure only once, the first time it is called.    On subsequent

calls, vbcs_ctx_global simply returns a pointer to the existing context structure.

See Also
vbct_con_alloc, vbct_config_num, vbct_config_str, vbcs_ctx_global , vbcs_config

vbcs_ctx_drop
De-allocate a CS_CONTEXT structure.

Syntax
vbcs_ctx_drop(context&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

vbcs_ctx_drop returns CS_FAIL if the context contains an open connection.

Remarks
A CS_CONTEXT structure describes a particular context, or operating environment, for a set of server
connections.

Once a CS_CONTEXT has been de-allocated, it cannot be re-used.    To allocate a new CS_CONTEXT,
an application can call vbcs_ctx_alloc.

A CT-Library application cannot call vbcs_ctx_drop to de-allocate a CS_CONTEXT structure until it has
called vbct_exit to clean up CT-Library space associated with the context.

See Also
vbcs_ctx_alloc , vbct_close, vbct_exit

vbcs_ctx_global
Allocate or return a CS_CONTEXT structure.

Syntax
vbcs_ctx_global(context&, version&)

Parameters

context&

The parameter is primed with the context pointer.    This context pointer is a parameter used in functions
such vbcs-calc.

version&

The version of CT-Library behavior that the application expects.    The following table lists the symbolic
values that are legal for version:

Value of version: To Indicate: Features Supported
CS_VERSION_100 10.0 behavior Initial version

If an application has already allocated a CS_CONTEXT structure, version must match the version
previously requested.

In case of error, vbcs_ctx_global sets vbctx_pointer to NULL.

Results
Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_MEM_ERROR The routine failed because it could not allocate
sufficient memory.

CS_FAIL The routine failed for other reasons.

Common reasons for a vbcs_ctx_global failure include:

· A lack of available memory.

· A version value that does not match a previously requested version.

Remarks
vbcs_ctx_alloc also allocates a context structure.    The only difference between vbcs_ctx_alloc and
vbcs_ctx_global is that vbcs_ctx_alloc allocates a new context structure each time it is called, while   
vbcs_ctx_global allocates a new context structure only once, the first time it is called.    On subsequent
calls, vbcs_ctx_global simply returns a pointer to the existing context structure.

Applications that need to access a single context structure from multiple independent modules use
vbcs_ctx_global.

See Also

vbcs_ctx_alloc , vbcs_ctx_drop , vbcs_config , vbct_con_alloc, vbct_config_num, vbct_config_str

vbcs_decode_message

Syntax
vbcs_decode_message(msgnumber&, layer&, origin&, severity&, number&)

Parameters
msgnumber&

The CT Library message number obtained from the Client Message or Server Message event callback.

layer&

The CT Library layer that is reporting the message.

origin&

Represents the message's origin.

severity&

Represents the message's severity.    For a list of possible message severities refer to CT-Library
Messages.

number&

Represents a layer-specific message number.

Results

Remarks

See Also
vbcs_get_client_msg, vbcs_get_server_msg

vbcs_diag
Manage in-line error handling.

Syntax
vbcs_diag(context&, operation&, type&, index&, buffer(Any))

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

operation&

The operation to perform.    The following table lists the symbolic values that are legal for operation.

Value of
operation:

vbcs_diag: type is: index is: buffer is:

CS_INIT Initializes in-line
error handling.

CS_UNUSED CS_UNUSED NULL

CS_MSGLIMIT Sets the maximum
number of
messages to store.

CS_CLIENTMSG_TYP
E

CS_UNUSED A pointer to an
integer value.

CS_CLEAR Clears message
information for this
context.    If buffer is
not NULL,
vbcs_diag also
clears the buffer
structure by
initializing it with
blanks and/or
NULLs, as
appropriate.

One of the legal type
values.

CS_UNUSED A pointer to a
structure whose
type is defined by
type, or NULL.

CS_GET Retrieves a specific
message.

One of the legal type
values.

The one-based
index of the
message to
retrieve.

A pointer to a
structure whose
type is defined by
type.

CS_STATUS Returns the current
number of stored
messages.

CS_CLIENTMSG_TYP
E

CS_UNUSED A pointer to an
integer value.

type&

Depending on the value of operation, type indicates either the type of structure to receive message
information, the type of message on which to operate, or both.    The following table lists the symbolic
values that are legal for type:

Value of type: To indicate:
SQLCA_TYPE A SQLCA structure.

SQLCODE_TYPE A SQLCODE structure, which is a four-byte
integer.

SQLSTATE_TYPE A SQLSTATE structure, which is an array of bytes.

CS_CLIENTMSG_TYPE A CS_CLIENTMSG structure.    Also used to

indicate CT-Library messages.

index&

The index of the message of interest.    The first message has an index of 1, the second an index of 2,
and so forth.

buffer (Any)

A pointer to data space.

Depending on the value of operation, buffer can point to a structure or a long.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_NOMSG The application attempted to retrieve a message
whose index is higher than the highest valid
index.    For example, the application attempted to
retrieve message number 3, when there are only
2 messages queued.

Common reasons for a vbcs_diag failure include:

· Invalid context.

· Inability to allocate memory.

· Invalid parameter combination.

Remarks
An application that includes calls to CT-Library can handle CT-Library messages in one of the following
two ways:

· The application can call vbcs_install_callbacks to install a CT-Library message callback, or;

· The application can handle CT-Library messages in-line, using vbcs_diag.

It is possible for an application to switch back and forth between the in-line and the callback method:

-    Installing a CT-Library message callback turns off in-line message handling.    Any saved messages are
discarded.

-    Likewise, calling vbcs_diag to initialize in-line message handling de-installs an application's message
callback.    If this occurs, the application's first CS_GET call to vbcs_diag will retrieve a warning message
to this effect.

If a callback of the proper type is not installed and in-line message handling is not enabled, CT-Library
discards message information.

vbcs_diag manages in-line message handling for a specific context.    If an application has more than one
context, it must make separate vbcs_diag calls for each context.

vbcs_diag allows an application to retrieve message information into a CS_CLIENTMSG structure or a
SQLCA, SQLCODE, or SQLSTATE structure.    When retrieving messages, vbcs_diag assumes that
buffer points to a structure of the type indicated by type.

An application that is retrieving messages into a SQLCA, SQLCODE, or SQLSTATE structure must set
the CT-Library context property CS_EXTRA_INF to CS_TRUE.    This is because the SQL structures
contain information that is not ordinarily returned by CT-Library's error handling mechanism.

An application that is not using the SQL structures can also set CS_EXTRA_INF to CS_TRUE.    In this
case, the extra information is returned as standard CT-Library messages.

If vbcs_diag does not have sufficient internal storage space in which to save a new message, it throws
away all unread messages and stops saving messages.    The next time it is called with operation as
CS_GET, it returns a special message to indicate the space problem:

After returning this message, vbcs_diag starts saving messages again.

Initializing In-Line Error Handling

To initialize in-line error handling, an application calls vbcs_diag with operation as CS_INIT.

Generally, if a context will use in-line error handling, an application should call vbcs_diag to initialize in-
line error handling for the context immediately after allocating it.

Clearing Messages

To clear message information for a context, an application calls vbcs_diag with operation as CS_CLEAR.

-    vbcs_diag assumes that buffer points to a structure of type type.

-    vbcs_diag clears the buffer variable by setting it to blanks and/or NULLs, as appropriate.

Message information is not cleared until an application explicitly calls vbcs_diag with operations as
CS_CLEAR.    Retrieving a message does not remove it from the message queue.

Retrieving Messages

To retrieve message information, an application calls vbcs_diag with operation as CS_GET, type as the
type of structure in which to retrieve the message, index as the one-based index of the message of
interest, and buffer as a variable of the appropriate type.

vbcs_diag fills in the buffer variable with the message information.

If an application attempts to retrieve a message whose index is higher than the highest valid index,
vbcs_diag returns    CS_NOMSG to indicate that no message is available.

Limiting Messages

Applications running on platforms with limited memory may want to limit the number of messages that CT-
Library saves.

To limit the number of saved messages, an application calls vbcs_diag with operation as CS_MSGLIMIT
and type as CS_CLIENTMSG_TYPE.

When a message limit is reached, CT-Library discards any new messages.

An application cannot set a message limit that is less than the number of messages currently saved.

CT-Library's default behavior is to save an unlimited number of messages.    An application can restore
this default behavior by setting a message limit of CS_NO_LIMIT.

Retrieving the Number of Messages

To retrieve the number of current messages, an application calls vbcs_diag with operation as
CS_STATUS and type as the CS_CLIENTMSG_TYPE.

See Also
vbct_install_callbacks, vbct_options_num, vbct_options_str

vbcs_dt_crack
Convert a machine-readable datetime value into a user-accessible format.

Syntax
vbcs_dt_crack(context&, datetype&, dateval(Any), daterec(CS_DATEREC))

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

datetype&

The type of the datetime value.    The following table lists the symbolic values that are legal for datetype:

Value of datetype: To Indicate:
CS_DATETIME_TYPE A CS_DATETIME dateval.

CS_DATETIME4_TYPE A CS_DATETIME4 dateval.

dateval (Any)

A pointer to the datetime value to be converted.

daterec (CS_DATEREC)

A CS_DATEREC variable.    vbcs_dt_crack fills this structure with the translated datetime value.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

The most common reason for a vbcs_dt_crack failure is an invalid parameter.

Remarks
vbcs_dt_crack converts a datetime value into its integer components and places those components into a
CS_DATEREC variable.

Datetime values are stored in an internal format.    For example, a CS_DATETIME value is stored as the
number of days since January 1, 1900 plus the number of 300th's of a second since midnight.   
vbcs_dt_crack converts a value of this type into a format that an application can more easily access.

See Also
vbcs_dt_info

vbcs_dt_info
Set or retrieve language-specific datetime information.

Syntax
vbcs_dt_info(context&, action&, locale&, type&, item&, buffer(Any), buflen&, outlen&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

action&

One of the following symbolic values:

Value of action: vbcs_dt_info:
CS_SET Sets a datetime conversion format.

CS_GET Retrieves datetime information.

locale&

A CS_LOCALE structure contains locale information, including datetime information.

When setting datetime information, locale must be supplied.

When retrieving datetime information, locale can be NULL.    If locale is NULL, vbcs_dt_info uses the
default locale information contained in context.

type&

The type of information of interest.    The following table lists the symbolic values that are legal for type.

Value of type: vbcs_dt_info: action can
be:

item can
be:

buffer is:

CS_MONTH Retrieves the month
name string.

CS_GET 0 - 11 A character string.

CS_SHORTMONTH Retrieves the short
month name string.

CS_GET 0 - 11 A character string.

CS_DAYNAME Retrieves the day name
string.

CS_GET 0 - 6 A character string.

CS_DATEORDER Retrieves the date
order string.

CS_GET CS_UNUSED A string containing
the three characters
"m", "d", and "y," to
indicate the position
of the month, day,
and year in the
national language's
datetime format.

CS_12HOUR Retrieves whether or
not the language uses
12-hour time formats.

CS_GET CS_UNUSED CS_TRUE if 12-hour
formats are used;
CS_FALSE if 24-hour
formats are used.

CS_DT_CONVFMT Sets or retrieves the
datetime conversion
format.

CS_GET or
CS_SET

CS_UNUSED A symbolic value.   
See the Results
section, below,for a

list of possible
values.

item&

When retrieving information, item is the item number of the type category to retrieve.    For example, to
retrieve the name of the first month, an application passes type as CS_MONTH and item as 0.

When setting a datetime conversion format, pass item as CS_UNUSED.

buffer (Any)

If datetime information is being retrieved, buffer is the variable into which vbcs_dt_info will place the
requested information.

If buflen indicates that buffer is not large enough to hold the requested information, vbcs_dt_info sets
outlen to the length of the requested information and returns CS_FAIL.

If a datetime conversion format is being set, buffer points to a symbolic value representing a conversion
format.

buflen&

The length, in bytes, of buffer.

If item is CS_12HOUR, pass buflen as CS_UNUSED.

outlen&

A pointer to an integer variable.

vbcs_dt_info sets outlen to the length, in bytes, of the requested information.

If the requested information is larger than buflen bytes, an application can use the value of outlen to
determine how many bytes are needed to hold the information.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

The most common reason for a vbcs_dt_info failure is an invalid parameter.

Remarks
vbcs_dt_info sets or retrieves national language-specific datetime information:

vbcs_dt_info can return national language date part names, date part ordering information, datetime
format information, and whether or not the language uses 12-hour date formats.

vbcs_dt_info can set datetime format information.

vbcs_dt_info looks for national language locale information in context. An application can set locale
information for a CS_CONTEXT by calling vbcs_config with property as CS_LOC_PROP.

If not specifically set, locale information in a CS_CONTEXT defaults to information that CT-Library picks
up from the operating system when the context is allocated.    If locale information is not available from the
operating system, CT-Library uses platform-specific localization values in the new context.

The following table lists the values that are legal for buffer when type is CS_DT_CONVFMT:

Symbolic Value: To Indicate:
CS_DATES_HMS hh:mm:ss    16:15:31

CS_DATES_SHORT monthname dd yyyy hh:mm [am|pm]    October 19 1961 04:15:31 pm

CS_DATES_LONG monthname dd yyyy hh:mm:ss:zzz [am|pm]    October 19 1961
04:15:31:665 pm

CS_DATES_MDY1 mm/dd/yy    10/19/61

CS_DATES_MYD1 mm/yy/dd    10/61/19

CS_DATES_DMY1 dd/mm/yy    19/10/61

CS_DATES_DYM1 dd/yy/mm    19/61/10

CS_DATES_YDM1 yy/dd/mm    61/19/10

CS_DATES_YMD2 yy/mm/dd    61/10/19

CS_DATES_MDY1_YYYY mm/dd/yyyy    10/19/1961

CS_DATES_DMY1_YYYY dd/mm/yyyy    19/10/1961

CS_DATES_YMD2_YYYY yyyy/mm/dd    1961/10/19

CS_DATES_DMY2 dd.mm.yy    19.10.61

CS_DATES_YMD1 yy.mm.dd    61.10.19

CS_DATES_DMY2_YYYY dd.mm.yyyy    19.10.1961

CS_DATES_YMD1_YYYY yyyy.mm.dd    1961.10.19

CS_DATES_DMY4 dd monthname yy    19 January 61

CS_DATES_DMY4_YYYY dd monthname yyyy    19 January 1961

CS_DATES_MDY2 monthname dd, yy    January 19,61

CS_DATES_MDY2_YYYY monthname dd, yyyy    January 19,1961

CS_DATES_DMY3 dd-mm-yy    19-10-61

CS_DATES_MDY3 mm-dd-yy    10-19-61

CS_DATES_DMY3_YYYY dd-mm-yyyy    19-10-1961

CS_DATES_MDY3_YYYY mm-dd-yyyy    10-19-1961

CS_DATES_YMD3 yymmdd    611019

CS_DATES_YMD3_YYYY yyyymmdd    19611019

See Also

vbcs_dt_crack

vbcs_get_client_msg

Syntax
vbcs_get_client_msg(cmsg(CS_SERVERMSG))

Parameters
cmsg(CS_CLIENTMSG)

The parameter is a CS_CLIENTMSG variable which will be filled with the CT Library Client Message
information.

See Also
vbcs_get_server_msg

vbcs_get_server_msg

Syntax
vbcs_get_server_msg(cmsg(CS_SERVERMSG))

Parameters
cmsg(CS_SERVERMSG)

The parameter is a CS_SERVERMSG variable which will be filled with the CT Library Server Message
information.

See Also
vbcs_get_client_msg

vbcs_loc_alloc
Allocate a CS_LOCALE structure.

Syntax
vbcs_loc_alloc(context&, loc_pointer&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

loc_pointer&

The parameter is primed with the locale pointer.    This locale pointer is a parameter used in functions
such as vbcs_locale.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

The most common reason for a vbcs_loc_alloc failure is a lack of adequate memory.

Remarks
An Open Client/Server application can use a CS_LOCALE structure to define custom localization values
for a context, thread, connection, or data element.    To define custom localization values, an application:

· Calls vbcs_loc_alloc to allocate a CS_LOCALE structure.

· Calls vbcs_locale(CS_SET) to load the CS_LOCALE with custom values.

· Uses the CS_LOCALE to set the CS_LOC_PROP property for a context or connection; calls
srv_thread_props to set the SRV_T_LOCALE property for a thread; uses the CS_LOCALE in a
CS_DATAFMT structure that describes a program variable; or uses the CS_LOCALE as a
parameter to an Open Client/Server routine.

· Calls vbcs_loc_drop to drop the CS_LOCALE.

Localization values define the following:

· The language and character set to use for Open Client/Server and SQL Server messages

· How to represent dates and times

· The character set to use when converting data to and from character datatypes

· The collating sequence used to define the sort order used by vbcs_strcmp

See Also

vbcs_ctx_alloc , vbcs_loc_drop , vbcs_locale

vbcs_loc_drop
De-allocate a CS_LOCALE structure.

Syntax
vbcs_loc_drop(context&, locale&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

locale&

A pointer to a CS_LOCALE structure.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Remarks
A CS_LOCALE structure contains localization information.

Once a CS_LOCALE structure has been de-allocated, it cannot be reused.    To allocate a new
CS_LOCALE structure, an application can call vbcs_loc_alloc.

An application should take care to ensure that it does not de-allocate a CS_LOCALE structure that is still
in use.    A CS_LOCALE    structure is considered to be in use if a CS_DATAFMT structure references it.

An application can de-allocate a CS_LOCALE structure after calling vbcs_config or vbct_con_props_num
and vbct_con_props_str to set the CS_LOC_PROP property for a context or connection.    This is
because vbcs_config and vbct_con_props_num and vbct_con_props_str copy information from the user-
supplied CS_LOCALE structure rather than setting up direct references to it.

See Also
vbcs_loc_alloc , vbcs_locale

vbcs_locale
Load a CS_LOCALE structure with localization values or retrieve the locale name previously used to load
a CS_LOCALE structure.

Syntax
vbcs_locale(context&, action&, locale&, type&, buffer$, outlen&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

action&

One of the following symbolic values:

Value of action: vbcs_locale:
CS_SET Loads the VBCS_LOCALE with new localization

values.

CS_GET Retrieves the locale name that was used to load
the VBCS_LOCALE.

locale&

A pointer to a CS_LOCALE structure obtained from vbcs_loc_alloc.    If action is CS_SET, vbcs_locale
modifies this structure.    If action is CS_GET, vbcs_locale examines the structure to determine the locale
name that was previously used to load it.

type&

The type of localization information of interest.    The following table lists the symbolic values that are legal
for type:

Value of type: To Indicate:
CS_LC_ALL All types of localization information.    CS_LC_ALL is "set

only"; that is, action must be CS_SET when type is
CS_LC_ALL.

CS_LC_COLLATE The collating sequence (also called "sort order").    Open
Client uses a collating sequence when sorting and
comparing character data.

CS_LC_CTYPE The character set.    Open Client uses a character set when
it converts to or from character datatypes.

CS_LC_MESSAGE The language and character set to use for Open
Client/Server and SQL Server error messages.

CS_LC_TIME The language and character set to use when converting
between datetime and character datatypes.    CS_LC_TIME
controls month names and abbreviations, datepart
ordering, and whether the "am/pm" string is used.

CS_SYB_LANG, CS_SYB_CHARSET,   
CS_SYB_SORTORDER,   
CS_SYB_LANG_CHARSET

For information on these values, see "Using Language,
Character Set, and Sort Order Names With vbcs_locale.   
Refer to vbcs_locale.

WARNING:    Open Server application programmers must set type to CS_LC_ALL when configuring the

VBCS_LOCALE structure that applies to the Open Server application as a whole.

buffer$

If action is CS_SET, buffer points to a character string that represents a locale name.

This locale name must correspond to an entry in the SYBASE locales file.

If buffer is NULL, vbcs_locale searches the operating system for a locale name to use.    If an appropriate
locale name cannot be found in the operating system environment, vbcs_locale uses a platform-
dependent default locale name.

If action is CS_GET, buffer points to the space in which vbcs_locale will place a locale name.

outlen&

A pointer to an integer variable.

outlen is not used if action is CS_SET.

NOTE:    The length is determined by the string that is passed.

If action is CS_GET and outlen is supplied, vbcs_locale sets outlen to the length, in bytes, of the locale
name.

If the name is larger than buflen bytes, an application can use the value of outlen to determine how many
bytes are needed to hold the name.

If action is CS_SET or an application or does not care about return length information, it can pass outlen
as NULL.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Common reasons for a vbcs_locale failure include:

· action is CS_SET and the buffer locale name cannot be found in the SYBASE locales file.

· action is CS_GET and buflen indicates that the buffer data space is too small.

· Missing localization files.

Remarks
vbcs_locale(CS_SET) loads a VBCS_LOCALE structure with localization values. vbcs_locale(CS_GET)
retrieves the locale name that was previously used to load the VBCS_LOCALE.

A locale name is a character string that represents a language/character set/sort order triple.    For
example, the locale name "fr" might represent the language/character set/sort order triple "French, iso_1,
binary". SYBASE pre-defines some locale names, which are listed in the locales file, but a system
administrator can define additional locale names and add them to this file.

Loading a VBCS_LOCALE structure

An application needs to load a VBCS_LOCALE before using it to define custom localization values for a
context, connection, or data element.

After loading a VBCS_LOCALE with custom values, an application can:

· Call vbcs_config with property as CS_LOC_PROP to copy the custom localization values into a
context structure.

· Call vbct_con_props_num and vbct_con_props_str with property as CS_LOC_PROP to copy the
custom localization values into a connection structure.

· Supply the VBCS_LOCALE as a parameter to a routine that accepts custom localization values
(vbcs_convert, vbcs_strcmp, vbcs_time).

Because vbcs_config copies locale information, an application can de-allocate a VBCS_LOCALE
structure after calling vbcs_config to set the CS_LOC_PROP property.    Likewise, an application can de-
allocate a VBCS_LOCALE structure after calling vbct_con_props_num and vbct_con_props_str to set the
CS_LOC_PROP property.    If a CS_DATAFMT structure uses a VBCS_LOCALE structure, however, the
application must not de-allocate the VBCS_LOCALE until the CS_DATAFMT no longer references it.

The first time a locale name is referenced, all localization information for the language, character set, and
sort order that the locale name identifies is read from the environment and cached into context.    If this
locale name is referenced again, vbcs_locale will read the information from the CS_CONTEXT instead of
the environment.

Retrieving a Locale Name

An application can retrieve the locale name that was used to load a VBCS_LOCALE by calling
vbcs_locale(CS_GET) with type as the type of localization information of interest and locale as a pointer
to the VBCS_LOCALE structure.

vbcs_locale sets buffer to a null-terminated character string representing the locale name that was used
to load the VBCS_LOCALE.

Using Language, Character Set, and Sort Order Names With vbcs_locale

It is possible for an application to use language, character set, and sort order names, instead of a locale
name, when calling vbcs_locale.

To do this, an application calls vbcs_locale with type as CS_SYB_LANG, CS_SYB_CHARSET,
CS_SYB_SORTORDER, or CS_SYB_LANG_CHARSET.

The following table summarizes vbcs_locale's parameters for these values of type:

Value of type: action is: buffer is: vbcs_locale:
CS_SYB_LANG CS_SET

CS_GET

A pointer to a language
name.

A pointer to data space.

Loads the
VBCS_LOCALE with
the specified language
information.

Places the current
language name in
buffer.

CS_SYB_CHARSET CS_SET

CS_GET

A pointer to a character
set name.

A pointer to data space.

Loads the
VBCS_LOCALE with
the specified character
set information.

Places the current
character set    name in
buffer.

CS_SYB_SORTORDER CS_SET A pointer to a sort order
name.

Loads the
VBCS_LOCALE with
the specified sort order
information.

CS_GET A pointer to data space. Places the current sort
order name in buffer.

CS_SYB_LANG_CHARSET CS_SET

CS_GET

A pointer to a string of
the form
language_name.   
character_set_name.

A pointer to data space.

Loads the
VBCS_LOCALE with
the specified language
and    character set
information.

Places a string of the
form language_name.   
character_set_name in
buffer.

The application must have previously loaded the VBCS_LOCALE structure with consistent information by
calling vbcs_locale with type as CS_LC_ALL.

If an application specifies only a language name, then vbcs_locale uses the character set and sort order
already specified in the pre-loaded VBCS_LOCALE structure.

If an application specifies only a character set name, then vbcs_locale uses the language and sort order
already specified in the pre-loaded VBCS_LOCALE structure.

If an application specifies only a sort order name, then vbcs_locale uses the language and character set
already specified in the pre-loaded VBCS_LOCALE structure.

If a language/character set/sort order combination is not valid, vbcs_locale returns CS_FAIL.

If the required localization files for the requested language or character set do not exist, vbcs_locale
returns CS_FAIL.

See Also
vbcs_loc_alloc , vbcs_loc_drop

vbcs_objects
Save, retrieve, or clear objects and data associated with them.

Syntax
vbcs_objects(context&, action&, objname(CS_OBJNAME),objdata(CS_OBJDATA))

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

action&

One of the following symbolic values:

Value of action: vbcs_objects:
CS_SET Saves an object.

CS_GET Retrieves the first matching object that it finds.

CS_CLEAR Clears all matching objects

objname (CS_OBJNAME)

A pointer to an object name structure.    objname names and describes the object of interest.

The following table describes the CS_OBJNAME fields:

Field: Description: Notes:
thinkexists Indicates whether the    application

expects this object to exist.
The value of thinkexists affects
vbcs_objects' return code.    For more
information, refer to the Results section.

object_type The type of the object. This field is the first part of a 5-part key.
Legal values are CS_CONNECTNAME
CS_STATEMENTNAME   
CS_CURRENT_CONNECTION
CS_WILDCARD (matches any value) A
user-defined value. User-defined values
must be >=100.

last_name The "last name" associated with
the object of interest, if    any.

This field is the second part of a 5-part
key.

lnlen The length, in bytes, of   
last_name.

Can be CS_NULLTERM to indicate a
null-terminated last_name.    Can be
CS_UNUSED to indicate an internal
"unused" value for last_name.    For
CS_GET and CS_CLEAR operations,
can be CS_WILDCARD to match with
any last_name value.

first_name The "first name" associated with
the object of interest, if    any.

This field is the third part of a 5-part key.

fnlen The length, in bytes, of   
first_name.

Can be CS_NULLTERM to indicate a
null-terminated    first_name.    Can be
CS_UNUSED to indicate an internal
"unused"    value for first_name.    For
CS_GET and CS_CLEAR operations,
can be    CS_WILDCARD to match with

any first_name value.

scope Data that describes the scope of
the object.

This field is the fourth part of a 5-part
key.

scopelen The length, in bytes, of scope. Can be CS_NULLTERM to indicate null-
terminated scope data.    Can be
CS_UNUSED to indicate an internal
"unused" value for scope.    For
CS_GET and CS_CLEAR operations,
can be    CS_WILDCARD to match with
any scope value.

thread Platform-specific data that is    used
to distinguish threads in    a multi-
threaded execution environment.

This field is the fifth part of a 5-part key.

threadlen The length, in bytes, of thread. Can be CS_NULLTERM to indicate null-
terminated thread data.    Can be
CS_UNUSED to indicate an internal
"unused" value for thread.    For
CS_GET and CS_CLEAR operations,
can be CS_WILDCARD to match with
any thread value.

objdata (CS_OBJDATA)

A pointer to a CS_OBJDATA variable.    objdata is the object of interest and any data associated with it.

The following table describes the CS_OBJDATA fields:

Value of action: objname is: objdata is:
CS_SET A five-part key for the object. The object to save, and any

additional data to save with it.

CS_GET A five-part key for the object. Set to the retrieved object.

CS_CLEAR A five-part key for the object. CS_UNUSED

Results
vbcs_objects

Called With

vbcs_objects
Returns

Action& objname.thinkexis
ts

No Match: Last-Name
Match:

Full Match:

CS_GET CS_TRUE CS_FAIL CS_FAIL CS_SUCCEED

CS_GET CS_FALSE CS_SUCCEED CS_SUCCEED CS_SUCCEED

CS_SET CS_TRUE CS_FAIL CS_FAIL CS_SUCCEED

CS_SET CS_FALSE CS_SUCCEED CS_SUCCEED CS_FAIL

CS_CLEAR CS_TRUE CS_FAIL CS_FAIL CS_SUCCEED

CS_CLEAR CS_FALSE CS_SUCCEED CS_SUCCEED CS_SUCCEED

Remarks
vbcs_objects is useful in precompiler applications that need to retrieve structures and data items by
name.

vbcs_objects uses a five-part key, composed of the object_type, last_name, first_name, scope, and
thread fields of objname structure.

-    On CS_SET operations, vbcs_objects uses this key to store the objdata object.

-    On CS_GET operations, vbcs_objects uses this key to retrieve an object specification into objdata.

-    On CS_CLEAR operations, vbcs_objects clears all objects that match the key.

The following table describes the rules that vbcs_objects uses to determine whether or not key fields
match:

objname Key Value: Stored Key Value:
CS_UNUSED Other Legal Value

CS_WILDCARD Match Match

CS_UNUSED Match No Match

Other Legal Value No Match Match if the values are equal
and of the same length.

vbcs_objects can achieve two types of matches:

1. "last-name matches," in which the last_name, scope, and thread parts of the key match.

2. "full matches," in which all five parts of the key match.

The type of match that vbcs_objects achieves, together with action and objname.thinkexists, determine its
return code.

On CS_GET and CS_CLEAR operations, an application can specify    CS_WILDCARD for one or more
objname key fields:

-    On a CS_GET operation, vbcs_objects sets objdata to reflect the first matching object that it finds.

-    On a CS_CLEAR operation, vbcs_objects clears all matching objects.

If an application has previously saved a CS_CURRENT_CONNECTION object, it can retrieve the current
connection by:

-    Calling vbcs_objects with objname.object_type as CS_CURRENT_CONNECTION, lnlen as
CS_UNUSED, and fnlen as CS_UNUSED. vbcs_objects ignores the last_name and first_name fields of
objname, and sets objdata.buffer to the name of the current connection and objdata.buflen to the length of
this name.

-    Calling vbcs_objects with objname.object_type as CS_CONNECTNAME and objname.last_name and
objname.lnlen as the newly-retrieved connection name and name length. vbcs_objects sets objdata to the
retrieved connection.

vbcs_objects(CS_SET) is not asynchronous-safe.    Because of this, an application cannot call
vbcs_objects(CS_SET) from within a completion callback routine.

See Also
vbcs_ctx_alloc

vbcs_setnull
Define a null substitution value to be used when binding or converting NULL data.

Syntax
vbcs_setnull(context&, datafmt(CS_DATAFMT), buffer(Any), buflen&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

datafmt (CS_DATAFMT)

A pointer to a CS_DATAFMT structure describing the datatype for which a null substitution value is being
defined.

buffer (Any)

A pointer to the null substitution value. buffer's datatype must match datafmt.type.

buflen&

The length, in bytes, of buffer.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Common reasons for a vbcs_setnull failure include:

· A memory allocation error

· An invalid parameter

Remarks
If    ANSI -style binds are in effect, CT-Library does not use null substitution values.    To activate ANSI-
style binds, an application sets the CT-Library property CS_ANSI_BINDS to CS_TRUE.

When ANSI-style binds are not in effect and source data for a conversion is NULL, CT-Library sets the
destination data to the predefined null substitution value for that destination type.    For example,
converting a NULL value of any type to a CS_CHAR destination results in an empty string.

In a CT-Library application, null substitution values are defined at the context level.    When a CT-Library
connection is allocated, it picks up null substitution values from its parent context.

When converting a NULL source value to a CS_CHAR or CS_BINARY destination variable, CT-Library
first puts 0 bytes into the destination and then uses the format field of the CS_DATAFMT structure that
describes the destination to determine whether to pad or null-terminate.

To reinstate CT-Library's original default null substitution value for a particular datatype, an application

can call vbcs_setnull with buffer as NULL.

CT-Library and CT-Library use the following default null substitution values:

Destination Type Null Substitution Value
CS_BINARY_TYPE Empty array

CS_VARBINARY_TYPE Empty array

CS_BIT_TYPE 0

CS_CHAR_TYPE Empty string

CS_VARCHAR_TYPE Empty string

CS_DATETIME_TYPE 8 bytes of zeros

CS_DATETIME4_TYPE 4 bytes of zeros

CS_TINYINT_TYPE 0

CS_SMALLINT_TYPE 0

CS_INT_TYPE 0

CS_DECIMAL_TYPE 0.0 (with default scale and precision)

CS_NUMERIC_TYPE 0.0 (with default scale and precision)

CS_FLOAT_TYPE 0.0

CS_REAL_TYPE 0.0

CS_MONEY_TYPE $0.0

CS_MONEY4_TYPE $0.0

CS_BOUNDARY_TYPE Empty string

CS_SENSITIVITY_TYPE Empty string

CS_TEXT_TYPE Empty string

CS_IMAGE_TYPE Empty array

See Also
vbcs_will_convert

vbcs_strcmp
Compare two strings using a specified sort order.

Syntax
vbcs_strcmp(context&, locale&, type& str1$, str2$, result&)

Parameters
context&

The parameter passed is the context pointer which is passed from the vbcs_ctx_alloc function.

locale&

The parameter passed is the locale pointer that is obtained from the vbcs_loc_alloc.

An application can call vbcs_locale with type as CS_LC_COLLATE or CS_SYB_SORTORDER    to
change the collating sequence in a VBCS_LOCALE structure.

locale can be NULL. If locale is NULL, vbcs_strcmp uses whatever localization information is defined in
the context CS_CONTEXT structure.    Localization information is always defined at the context level,
because a CS_CONTEXT picks up default localization information when it is allocated.

type&

The type of comparison to perform.

If type is CS_COMPARE, vbcs_strcmp performs a lexicographic comparison.

If type is CS_SORT, the values are compared as they would appear in a sorted list.    It is possible for
strings that are lexicographically equal to belong in different places in a sorted list.

str1$

A pointer to the first string for the comparison.

str2$

A pointer to the second string for the comparison.

result&

A pointer to the result of the comparison.    The following table lists the possible values for result:

Value of result: To Indicate:
<0 str1 is lexicographically less than str2, or str1

appears before str2 in a sorted list.

0 str1 is lexicographically equal to str1, or str1 is
identical to str2.

>0 str1 is lexicographically greater than str2, or str1
appears after str2 in a sorted list.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Remarks
vbcs_strcmp sets result to indicate the result of the comparison.

Some languages contain strings that are lexicographically equal according to a specific sort order, but
contain different characters.    Even though they are "equal," there is a standard order used when placing
them into a sorted list.

For example, given a case-insensitive sort order that specifies that uppercase characters appear before
lowercase characters in a sorted list, the strings "ABC" and "abc" are lexicographically equal, but do not
appear in the same place in a sorted list.

An application can use vbcs_strcmp to compare strings either lexicographically or with respect to how
they appear in a sorted list.

vbcs_strcmp determines which sort order to use by examining locale, (or context, if locale is NULL).

-    To change the sort order in a VBCS_LOCALE structure, an application calls vbcs_locale with type as
CS_LC_COLLATE or CS_SYB_SORTORDER.

-    To change the sort order in a CS_CONTEXT structure, an application must first set up a
VBCS_LOCALE structure with the desired sort order and then call vbcs_config to set the CS_LOC_PROP
property for the context.

See Also
vbcs_cmp ,vbcs_locale , vbcs_config

vbcs_time
Retrieve the current date and time.

Syntax
vbcs_time(context&, locale&, buffer$, buflen&, outlen&, daterec(CS_DATEREC))

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

locale&

A pointer to a CS_LOCALE structure.    A CS_LOCALE structure contains locale information, including
formatting information that vbcs_time uses to create a current datetime string.

locale can be NULL.    If locale is NULL, vbcs_time uses whatever localization information is defined in the
context CS_CONTEXT structure.    Localization information is always defined at the context level,
because a CS_CONTEXT picks up default localization information when it is allocated.

buffer$

A pointer to the space in which vbcs_time will place a character string representing the current date and
time.

buffer is an optional parameter and can be passed as NULL.    If buffer is NULL, daterec must be
supplied.

buflen&

The length, in bytes, of buffer.

If buffer is supplied and buflen indicates that buffer is not large enough to hold the current datetime string,
vbcs_time sets outlen to the length of the datetime string and returns CS_FAIL.

If buffer is NULL, pass buflen as CS_UNUSED.

outlen&

A pointer to an integer variable.

vbcs_time sets outlen to the length, in bytes, of the current datetime string.

If the string is larger than buflen bytes, an application can use the value of outlen to determine how many
bytes are needed to hold the string.

If buffer is NULL, pass outlen as NULL.

If an application does not care about return length information, it can pass outlen as NULL.

daterec (CS_DATEREC)

A pointer to a CS_DATEREC structure in which vbcs_time will place the current date and time.    Note that
vbcs_time does not fill in the datemsecond and datetzone fields of the CS_DATEREC structure.

For more information on the CS_DATEREC structure, refer to vbcs_dt_crack.

daterec is an optional parameter and can be passed as NULL.    If daterec is NULL, buffer must be
supplied.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Common reasons for a vbcs_time failure include:

· An invalid parameter.

· buflen indicates that the buffer data space is not large enough to hold the formatted datetime
string.

Remarks
vbcs_time returns the current date and time either in character string format or in a CS_DATEREC
structure, or both.

vbcs_time formats the date and time according to locale information contained in context.

See Also
vbcs_dt_crack , vbcs_dt_info , vbcs_locale

vbcs_will_convert
Indicate whether a specific datatype conversion is available in the CT/Server libraries.

Syntax
vbcs_will_convert(context&, srctype&, desttype&, result&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

srctype&

The datatype of the source data.

desttype&

The datatype of the destination data.

result&

A pointer to a boolean variable.vbcs_will_convert sets result to CS_TRUE if the datatype conversion is
supported and CS_FALSE if the datatype conversion is not supported.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Remarks
vbcs_will_convert allows an application to determine whether vbcs_convert is capable of performing a
specific conversion.    When vbcs_convert is asked to perform a conversion that it doesn't support, it
returns CS_FAIL and generates a CT-Library error.

See Also
vbcs_convert, vbcs_setnull

vbct_cancel
Cancel a command or the results of a command.

Syntax
vbct_cancel(connection&, cmd&, type&)

Parameters
connection&

The parameter passed is the connection pointer which is passed from the vbct_con_alloc function.

For CS_CANCEL_CURRENT cancels, connection must be NULL.

For CS_CANCEL_ATTN and CS_CANCEL_ALL cancels, one of connection or cmd must be NULL. If
connection is supplied and cmd is NULL, the cancel operation applies to all commands pending for this
connection.

cmd&

A pointer to the CS_COMMAND structure managing a client/ server operation.

For CS_CANCEL_CURRENT cancels, cmd must be supplied.    The cancel operation applies only to the
results pending for this command structure.

For CS_CANCEL_ATTN and CS_CANCEL_ALL cancels, if cmd is supplied and connection is NULL, the
cancel operation applies only to the command pending for this command structure.    If cmd is NULL and
connection is supplied, the cancel operation applies to all commands pending for this connection.

type&

The type of cancel.    The following table lists the symbolic values that are legal for type

Value of type: Behavior of vbct_cancel: Notes:
CS_CANCEL_ALL vbct_cancel sends an attention to

the server, instructing it to cancel the
current command.    CT-Library
immediately discards all results
generated by the command.

Causes this connection's cursors to
enter an undefined state.    To
determine the state of a cursor, an
application can call
vbct_cmd_props_num, and
vbct_cmd_props_str with property
as CS_CUR_STATUS.

CS_CANCEL_ATTN vbct_cancel sends an attention to
the server, instructing it to cancel the
current command.    The next time
the application reads from the
server, CT-Library discards all
results generated by the canceled
command.

Causes this connection's cursors to
enter an undefined state.    To
determine the state of a cursor, an
application can call
vbct_cmd_props_num, and
vbct_cmd_props_str with property
as CS_CUR_STATUS.

CS_CANCEL_CURREN
T

vbct_cancel discards the current
result set.

Safe to use on connections with
open cursors.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect.    Refer to
Asychronous Programming.

CS_CANCELED The cancel operation was canceled. Only a   
CS_CANCEL_CURRENT type of cancel can be
canceled.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

CS_TRYING A cancel operation is already pending for this
connection.

Remarks
Canceling a command is equivalent to sending an attention to the server, instructing it to halt execution of
the current command.    When a command is canceled, any results generated by it are no longer available
to an application.

Canceling results is equivalent to discarding a buffer's worth of results. Once results are canceled, they
are no longer available to an application. If the result set has not been completely processed, subsequent
results remain available.

Canceling a Command

To cancel the current command and all results generated by it, an application calls vbct_cancel with type
as CS_CANCEL_ATTN or CS_CANCEL_ALL.    Both of these calls tell CT-Library to do the following:

· Send an attention to the server, instructing it to halt execution of the current command.

· Discard any results already generated by the command.

Both types of cancels return CS_SUCCEED immediately, without sending an attention to the server, if no
command is in progress.

If an application has not yet called vbct_send to send an initiated command or command batch:

-    A CS_CANCEL_ALL cancel discards the initiated command or command batch without sending an
attention to the server.    A CS_CANCEL_ATTN cancel has no effect.

A connection can become unusable due to error.    If this occurs, CT-Library marks the connection as
"dead."    An application can use the CS_CON_STATUS property to determine if a connection has been
marked dead.

If a connection has been marked dead because of a results-processing error, an application can try
calling vbct_cancel(CS_CANCEL_ALL or CS_CANCEL_ATTN) to "revive" the connection.    If this fails,
the application must close the connection and drop its CS_CONNECTION structure.

The difference between CS_CANCEL_ALL and CS_CANCEL_ATTN is:

-    CS_CANCEL_ALL causes CT-Library to immediately discard the canceled command's results (if any).

-    CS_CANCEL_ATTN causes CT-Library to wait until the application attempts to read from the server
before discarding the results.

This difference is important because CT-Library must read from the result stream in order to discard
results, and it is not always safe to read from the result stream.

It is not safe to read from the result stream from within callbacks or interrupt handlers, or when an

asynchronous routine is pending.    It is safe to read from the result stream anytime an application is
running in its main-line code, except when an asynchronous operation is pending.

Use CS_CANCEL_ATTN from within callbacks or interrupt handlers, or when an asynchronous operation
is pending.

Use CS_CANCEL_ALL in main-line code, except when an asynchronous operation is pending.

CS_CANCEL_ALL leaves the command structure in a "clean" state, available for use in another
operation.    When a command is canceled with CS_CANCEL_ATTN, however, the command structure
cannot be reused until a CT-Library routine returns CS_CANCELED.

The CT-Library routines that can return CS_CANCELED are:

· vbct_cancel(CS_CANCEL_CURRENT)

· vbct_fetch

· vbct_get_data

· vbct_options_num

· vbct_options_str

· vbct_recvpassthru

· vbct_results

· vbct_send

· vbct_sendpassthru

CS_CANCEL_ATTN has two primary uses:

1. To cancel commands from within an application's interrupt handlers or callback routines.

2. In asynchronous applications, to cancel pending calls to the result-processing routines
vbct_results and vbct_fetch.

Canceling Current Results

To cancel current results, an application calls vbct_cancel with type as CS_CANCEL_CURRENT.    This
tells CT-Library to discard the current results; it is equivalent to calling vbct_fetch until it returns
CS_END_DATA.

The next buffer's worth of results, if any, remains available to the application, and the current command is
not affected.

Canceling results clears the bindings between the result items and program variables.

A CS_CANCEL_CURRENT type of cancel is legal for all types of result sets, even those that contain no
fetchable results.    If a result set contains no fetchable results, a cancel has no effect.

See Also
vbct_fetch, vbct_results

vbct_capability
Set or retrieve a client/server capability.

Syntax
vbct_capability(connection&, action&, type&, capability&, value&)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

action&

One of the following symbolic values:

Value of action: vbct_capability:
CS_SET Sets a capability.

CS_GET Retrieves a capability.

type&

The type category of the capability.    The following table lists the symbolic values that are legal for type:

Value of type: What it means:
CS_CAP_REQUEST Request capabilities.    These capabilities describe

the types of requests that a connection can
support.    Request capabilities are retrieve-only.

CS_CAP_RESPONSE Response capabilities.    These capabilities
describe the types of responses that a server can
send to a connection.    An application can set
response capabilities before a connection is open
and can retrieve response capabilities at any time.

capability&

The capability of interest.    The following two tables list the symbolic values that are legal for capability:

NOTE:    In addition to the values listed in the tables, capability can have the special value
CS_ALL_CAPS, to indicate that an application is setting or retrieving all response or request capabilities
simultaneously.    CS_ALL_CAPS is primarily of use in gateway applications.    A typical CT-Library
application will only need to set or retrieve a small number of capabilities.

CS_CAP_REQUEST Capabilities Table

CS_CAP_REQUEST
Capability:

Meaning: Capability relates to:

CS_CON_INBAND In-band (non-expedited) attentions. Connections

CS_CON_OOB Out-of-band (expedited) attentions. Connections

CS_CSR_ABS Fetch of specified absolute cursor
row.

Cursors

CS_CSR_FIRST Fetch of first cursor row. Cursors

CS_CSR_LAST Fetch of last cursor row. Cursors

CS_CSR_MULTI Multi-row cursor fetch. Cursors

CS_CSR_PREV Fetch previous cursor row. Cursors

CS_CSR_REL Fetch specified relative cursor row. Cursors

CS_DATA_BIN Binary datatype. Datatypes

CS_DATA_VBIN Variable-length binary type. Datatypes

CS_DATA_LBIN Long binary datatype. Datatypes

CS_DATA_BIT Bit datatype. Datatypes

CS_DATA_BITN Nullable bit values. Datatypes

CS_DATA_BOUNDARY Secure Server boundary datatypes. Datatypes

CS_DATA_CHAR Character datatype. Datatypes

CS_DATA_VCHAR Variable-length character datatype. Datatypes

CS_DATA_LCHAR Long character datatype. Datatypes

CS_DATA_DATE4 Short datetime datatype. Datatypes

CS_DATA_DATE8 Datetime datatype. Datatypes

CS_DATA_DATETIMEN NULL datetime values. Datatypes

CS_DATA_DEC Decimal datatype. Datatypes

CS_DATA_FLT4 4-byte float datatype. Datatypes

CS_DATA_FLT8 8-byte float datatype. Datatypes

CS_DATA_FLTN Nullable float values. Datatypes

CS_DATA_IMAGE Image datatype. Datatypes

CS_DATA_INT1 Tiny integer datatype. Datatypes

CS_DATA_INT2 Small integer datatype. Datatypes

CS_DATA_INT4 Integer datatype. Datatypes

CS_DATA_INTN NULL integers. Datatypes

CS_DATA_MNY4 Short money datatype. Datatypes

CS_DATA_MNY8 Money datatype. Datatypes

CS_DATA_MONEYN NULL money values. Datatypes

CS_DATA_NUM Numeric datatype. Datatypes

CS_DATA_SENSITIVITY Secure Server sensitivity datatypes. Datatypes

CS_DATA_TEXT Text datatype. Datatypes

CS_OPTION_GET Whether the client can get current
option values from the server.

Options

CS_PROTO_BULK Tokenized bulk copy. Bulk copy

CS_PROTO_DYNAMIC Descriptions for prepared statements
come back at prepare time.

Dynamic SQL

CS_PROTO_DYNPROC CT-Library prepends SQL to a
Dynamic SQL prepare statement.

Dynamic SQL

CS_REQ_BCP Bulk copy requests. Commands

CS_REQ_CURSOR Cursor requests. Commands

CS_REQ_DYN Dynamic SQL requests. Commands

CS_REQ_LANG Language requests. Commands

CS_REQ_MSG Message commands. Commands

CS_REQ_MSTMT Multiple server commands per CT-
Library language command.

Commands

CS_REQ_NOTIF Registered procedure notifications. Commands

CS_REQ_PARAM Use PARAM/PARAMFMT TDS   
streams for requests.

Commands

CS_REQ_URGNOTIF Send notifications with the "urgent" bit
set in the TDS packet header.

Registered procedures

CS_REQ_RPC Remote procedure requests. Commands

CS_CAP_RESPONSE Capabilities Table

CS_CAP_RESPONSE
Capability:

Meaning: Capability relates to:

CS_CON_NOINBAND No in-band (non-expedited)
attentions.

Connections

CS_CON_NOOOB No out-of-band (expedited) attentions. Connections

CS_DATA_NOBIN No binary datatype. Datatypes

CS_DATA_NOVBIN No variable-length binary type. Datatypes

CS_DATA_NOLBIN No long binary datatype. Datatypes

CS_DATA_NOBIT No bit datatype. Datatypes

CS_DATA_NOBOUNDARY No Secure Server boundary
datatypes.

Datatypes

CS_DATA_NOCHAR No character datatype. Datatypes

CS_DATA_NOVCHAR No variable-length character
datatype.

Datatypes

CS_DATA_NOLCHAR No long character datatype. Datatypes

CS_DATA_NODATE4 No short datetime datatype. Datatypes

CS_DATA_NODATE8 No datetime datatype. Datatypes

CS_DATA_NODATETIMEN No NULL datetime values. Datatypes

CS_DATA_NODEC No decimal datatype. Datatypes

CS_DATA_NOFLT4 No 4-byte float datatype. Datatypes

CS_DATA_NOFLT8 No 8-byte float datatype. Datatypes

CS_DATA_NOIMAGE No image datatype. Datatypes

CS_DATA_NOINT1 No tiny integer datatype. Datatypes

CS_DATA_NOINT2 No small integer datatype. Datatypes

CS_DATA_NOINT4 No integer datatype. Datatypes

CS_DATA_NOINT8 No 8-byte integer datatype. Datatypes

CS_DATA_NOINTN No NULL integers. Datatypes

CS_DATA_NOMNY4 No short money datatype. Datatypes

CS_DATA_NOMNY8 No money datatype. Datatypes

CS_DATA_NOMONEYN No NULL money values. Datatypes

CS_DATA_NONUM No numeric datatype. Datatypes

CS_DATA_NOSENSITIVITY No Secure Server sensitivity
datatypes.

Datatypes

CS_DATA_NOTEXT No text datatype. Datatypes

CS_RES_NOEED No extended error results. Results

CS_RES_NOMSG No message results. Results

CS_RES_NOPARAM Don't use PARAM/PARAMFMT TDS
streams for RPC results.

Results

CS_RES_NOSTRIPBLANKS The server shouldn't strip blanks
when    returning data from nullable
fixed- length character columns.

Results

CS_RES_NOTDSDEBUG No TDS debug token in response to   
certain dbcc commands.

Results

value&

If a capability is being set, value points to a CS_BOOL variable that has the value CS_TRUE or

CS_FALSE.

If a capability is being retrieved, value points to a CS_BOOL-sized variable which vbct_capability sets to
CS_TRUE or CS_FALSE.

CS_TRUE indicates that a capability is enabled.    For example, if the CS_RES_NOEED capability is set
to CS_TRUE, no extended error data will be returned on the connection.

NOTE:    If capability is CS_ALL_CAPS, value must point to a CS_CAP_TYPE structure.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
Capabilities describe client/server features that a connection supports.

There are two types of capabilities:    CS_CAP_RESPONSE capabilities, also called "response
capabilities," and CS_CAP_REQUEST capabilities, also called "request capabilities."

-    An application uses request capabilities to determine what kinds of requests a server connection
supports.    For example, an application can retrieve the CS_REQ_CURSOR capability to find out whether
a connection supports cursor requests.

-    An application uses response capabilities to prevent the server from sending a type of response that
the application cannot process.    For example, an application can prevent a server from sending NULL
money values by setting the CS_DATA_NOMONEYN response capability to CS_TRUE.

An application can do the following before a connection is open:

· Retrieve request or response capabilities, to determine what request and response features are
normally supported at the application's current TDS (Tabular Data Stream) version level.    An
application's TDS level defaults to a value based on the CS_VERSION level that the application
requested in its call to vbct_init.

· Set response capabilities, to indicate that a connection does not wish to receive particular types
of server responses.    Note that an application cannot set request capabilities, which are retrieve-
only.

An application can do the following after a connection is open:

· Retrieve request capabilities to find out what types of requests the connection will support.

· Retrieve response capabilities to find out whether the server has agreed to withhold the
previously-indicated response types from the connection.

Capabilities are determined by a connection's TDS version level.    Not all TDS versions support the same
capabilities.    For example, 4.0 TDS does not support registered procedure notifications or cursor
requests. 4.0 TDS does, however, support bulk copy requests, remote procedure call requests, row
results, and compute row results.    A connection's TDS version level is negotiated during the connection

process.

If an application sets the CS_TDS_VERSION property, CT-Library overwrites existing capability values
with default capability values corresponding to the new TDS version.    For this reason, an application
should set CS_TDS_VERSION before setting any capabilities for a connection.

Because CS_TDS_VERSION is a negotiated login property, the server can change its value at
connection time.    If this occurs, CT-Library will overwrite existing capability values with default capability
values corresponding to the new TDS version.

Because capability values can change at connection time, an application must call vbct_capability after a
connection is open in order to determine what capability values are in effect for the connection.

When a connection is closed, CT-Library resets its capability values to values corresponding to the
application's default TDS version.

Setting and Retrieving Multiple Capabilities

Gateway applications often need to set or retrieve all capabilities of a type category with a single call to
vbct_capability.    To do this, an application calls vbct_capability with:

· type as the type category of interest

· capability as CS_ALL_CAPS

· value as a CS_CAP_TYPE structure

CT-Library provides the following macros to enable an application to set, clear, and test bits in a
CS_CAP_TYPE structure:

-    CS_SET_CAPMASK(mask, capability)

-    CS_CLR_CAPMASK(mask, capability)

-    CS_TST_CAPMASK(mask, capability)

where mask is a pointer to a CS_CAP_TYPE structure and capability is the capability of interest.

See Also
 vbct_con_props_num, vbct_con_props_str, vbct_connect , vbct_options_num,    vbct_options_str.

vbct_close
Close a server connection.

Syntax
vbct_close(connection&, option&)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

option&

The option, if any, to use for the close.    The following table lists the symbolic values that are legal for
option:

Value of option: What it means:
CS_UNUSED(10.0+ servers only) Default behavior.    vbct_close sends a logout message to

the server and reads the response to this message before
closing the connection.    If the connection has results
pending, vbct_close returns CS_FAIL.

CS_FORCE_CLOSE The connection is closed whether or not results are
pending, and without notifying the server.    This option is
primarily for use when an application is hung waiting for a
server response.    It is also useful if vbct_results,
vbct_fetch, or vbct_cancel returns CS_FAIL

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect.    Refer to
Asychronous Programming.    If asynchronous network I/O
is in effect and vbct_close is called with option as
CS_FORCE_CLOSE, it returns CS_SUCCEED or
CS_FAIL immediately to indicate the network response.   
In this case, no completion    callback event occurs.

CS_BUSY An asynchronous operation is already pending for this   
connection.    Refer to Asychronous Programming.    Note
that vbct_close does not return CS_BUSY when called
with option as CS_FORCE_CLOSE.

The most common reason for a vbct_close(CS_UNUSED) failure is pending results on the connection.

Remarks
To de-allocate a CS_CONNECTION, an application can call vbct_con_drop after the connection has been
successfully closed.

A connection can become unusable due to error.    If this occurs, CT-Library marks the connection as
"dead".    An application can use the CS_CON_STATUS property to determine if a connection has been

marked dead.

If a connection has been marked dead, an application must call vbct_close(CS_FORCE_CLOSE) to
close the connection and vbct_con_drop to drop its CS_CONNECTION structure.

An exception to this rule occurs for certain types of results-processing errors.    If a connection is marked
dead while processing results, the application can try calling vbct_cancel(CS_CANCEL_ALL or
CS_CANCEL_ATTN) to "revive" the connection.    If this fails, the application must close the connection
and drop its CS_CONNECTION structure.

If the connection is using asynchronous network I/O, vbct_close returns CS_PENDING.    When the
server response arrives, CT-Library closes the connection and then calls the completion callback installed
for the connection, if any.

The behavior of vbct_close depends on the value of option, which determines the type of close.    Each
section below contains information on a type of close.

Default Close Behavior

When connected to a 10.0+ server, vbct_close sends a logout message to the server and reads the
response to this message before terminating the connection.    The contents of this message do not affect
vbct_close's behavior.

An application cannot call vbct_close(CS_UNUSED) when an asynchronous operation is pending.

CS_FORCE_CLOSE Behavior

The connection is closed whether or not it has an open cursor or pending results.

vbct_close does not behave asynchronously when called with the CS_FORCE_CLOSE option.    When
vbct_close(CS_FORCE_CLOSE) is called to close an asynchronous connection, it returns
CS_SUCCEED or CS_FAIL immediately, to indicate the network response.    In this case, no completion
callback event occurs.

CS_FORCE_CLOSE is useful when:

· A connection has been marked as dead.

· An application is hung, waiting for a server response.

· An application cannot call vbct_close(CS_UNUSED) because results are pending.

Because no logout message is sent to the server, the server cannot tell whether the close is intentional or
whether it is the result of a lost connection or crashed client.

An application can call vbct_close(CS_FORCE_CLOSE) when an asynchronous operation is pending.

See Also
vbct_install_callbacks, vbct_con_drop, vbct_connect, vbct_con_props_num, vbct_con_props_str

vbct_cmd_alloc
Allocate a CS_COMMAND structure.

Syntax
vbct_cmd_alloc(connection&, command&)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

command&

The parameter is primed with the command pointer.    This command pointer is a parameter used in
functions such as vbct_send.

In case of error, vbct_cmd_alloc sets command to NULL.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    For more information, refer to
Asychronous Programming.

The most common reason for a vbct_cmd_alloc failure is a lack of adequate memory.

Remarks
A CS_COMMAND structure, also called a "command structure," is a control structure that a CT-Library
application uses to send commands to a server and process the results of those commands.

An application must call vbct_con_alloc to allocate a connection structure before calling vbct_cmd_alloc
to allocate command structures for the connection.

However, it is not necessary that the connection structure represent an open connection.    (An application
opens a connection by calling vbct_connect to connect to a server.)

See Also
vbct_command_num, vbct_command_str, vbct_cmd_drop, vbct_cmd_props_num, vbct_cmd_props_str,
vbct_con_alloc

vbct_cmd_drop
De-allocate a CS_COMMAND structure.

Syntax
vbct_cmd_drop(command&)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

vbct_cmd_drop returns CS_FAIL if one of the following occurs:

· command has an active command.    A command that has been initialized but not yet sent is
considered to be active.

· command has pending results.

Remarks
A CS_COMMAND structure is a control structure that a CT-Library application uses to send commands to
a server and process the results of those commands.

Once a command structure has been de-allocated, it cannot be re-used. To allocate a new
CS_COMMAND structure, an application can call vbct_cmd_alloc.

Before de-allocating a command structure, an application should cancel any active commands, process
or cancel any pending results.

See Also
vbct_command_num, vbct_command_str, vbct_cmd_alloc

vbct_cmd_props_num
Set or retrieve command structure properties.

Syntax
vbct_cmd_props_num(command&, action&, property&, buffer&, outlen&)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

action&

One of the following symbolic values:

Value of action: vbct_cmd_props_num:
CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Clears the value of the property by resetting it to
its CT-Library default value.

property&

The symbolic name of the property whose value is being set or retrieved.

buffer&

If a property value is being set, buffer points to the value to use in setting the property.

If a property value is being retrieved, buffer points to the variable in which vbct_cmd_props_num will
place the requested information.

outlen&

A long variable.

outlen is not used if a property value is being set and should be passed as NULL.

If a property value is being retrieved and outlen is supplied, vbct_cmd_props_num sets outlen to the
length, in bytes, of the requested information.

If the information is larger than buflen bytes, an application can use the value of outlen to determine how
many bytes are needed to hold the information.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this    connection.    Refer to Asychronous
Programming

Remarks
Command structure properties affect the behavior of an application at the command structure level.

All command structures allocated for a connection pick up default property values from the parent
connection.    An application can override these default values by calling vbct_cmd_props_num and
vbct_cmd_props_str.

If an application changes connection property values after allocating command structures for the
connection, the existing command structures will not pick up the new property values.    New command
structures allocated for the connection will use the new property values as defaults.

An application can use vbct_cmd_props_num to set or retrieve the following properties:

Property name: What it is: buffer is: CT-Library
can set or
retrieve at
what level?

Notes

CS_CUR_ID The cursor's
identification
number.

Set to an
integer    value.

Command. Retrieve only, after
CS_CUR_STATUS
indicates an existing
cursor.

CS_CUR_ROWCOUNT The current value
of cursor rows.
Cursor rows is
the number of
rows returned to
CT-Library per   
internal fetch   
request.

Set to an
integer value.

Command. Retrieve only, after
CS_CUR_STATUS
indicates an existing
cursor.

CS_CUR_STATUS The cursor's
status.

Set to a
CS_INT- sized
bit-mask.

Command. Retrieve only.

CS_HIDDEN_KEYS Whether or not to
expose hidden
keys.

CS_TRUE or   
CS_FALSE.   
The default is   
CS_FALSE.

Context,
connection,
command.

Cannot be set at the
command level if
results are pending
or a cursor is open.

CS_PARENT_HANDLE The address of
the command
structure's parent
connection.

Set to an
address.

Connection,
command.

Retrieve only.

CS_USERDATA User-allocated
data.

User-allocated
data.

Connection,
command.    To
set   
CS_USERDATA
at the context   
level, call
vbcs_config.

None

See Also
vbct_config_num, vbct_config._str, vbct_cmd_alloc, vbct_con_props_num, vbct_con_props_str,
vbct_res_info

vbct_cmd_props_str
Set or retrieve command structure properties.

Syntax
vbct_cmd_props_str(command&, action&, property&, buffer$, outlen&)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

action&

One of the following symbolic values:

Value of action: vbct_cmd_props_str:
CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Clears the value of the property by resetting it to
its CT-Library default value.

property&

The symbolic name of the property whose value is being set or retrieved.

buffer$

If a property value is being set, buffer points to the value to use in setting the property.

If a property value is being retrieved, buffer points to the variable in which vbct_cmd_props_str will place
the requested information.

outlen&

A long variable.

outlen is not used if a property value is being set and should be passed as NULL.

If a property value is being retrieved and outlen is supplied, vbct_cmd_props_str sets outlen to the length,
in bytes, of the requested information.

If the information is larger than buflen bytes, an application can use the value of outlen to determine how
many bytes are needed to hold the information.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
Command structure properties affect the behavior of an application at the command structure level.

All command structures allocated for a connection pick up default property values from the parent
connection.    An application can override these default values by calling vbct_cmd_props_num and
vbct_cmd_props_str.

If an application changes connection property values after allocating command structures for the
connection, the existing command structures will not pick up the new property values.    New command
structures allocated for the connection will use the new property values as defaults.

An application can use vbct_cmd_props_str to set or retrieve the following properties:

Property name: What it is: buffer is: CT-Library
can set or
retrieve at
what level?

Notes

CS_CUR_NAME The cursor's
name,    as
defined in an   
application's
ct_cursor(CS_

CURSOR_

DECLARE) call.

Set to a null-
terminated
character string.

Command. Retrieve only, after
ct_cursor
CS_CUR_STATUS
returns
CS_SUCCEED.

CS_USERDATA User-allocated
data.

User-allocated
data.

Connection,
command.    To
set   
CS_USERDATA
at the context   
level, call
vbcs_config.

None

See Also
vbct_config_num, vbct_config_str, vbct_cmd_alloc, vbct_con_props_num, vbct_con_props_str,
vbct_res_info

vbct_command_num

Function
Initiate a language, package, RPC, message, or send-data command.

Syntax
vbct_command_num(command&, type&, buffer&, option&)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

type&

The type of command to initiate.    The table in the Summary of Parameters table below lists the symbolic
values that are legal for type.

buffer&

A pointer to data space.

option&

The option associated with this command, if any.

Currently, RPC (remote procedure call), send-data, and send-bulk-data commands take options.    For all
other types of commands, pass option as CS_UNUSED.

The following table lists the symbolic values that are legal for option:

type is: Value of option: Meaning:
CS_RPC_CMD CS_RECOMPILE Recompile the stored procedure

before executing it.

CS_NORECOMPILE Do not recompile the stored
procedure before executing it.

CS_UNUSED Equivalent to S_NORECOMPILE.

CS_SEND_DATA_CMD CS_COLUMN_DATA The data will be used for a text or
image column update.

CS_BULK_DATA For internal Sybase use only.    The
data will be used for a bulk copy
operation.

CS_SEND_BULK_ CMD CS_BULK_INIT For internal Sybase use only.   
Initialize a bulk copy operation.

CS_BULK_CONT For internal Sybase use only.   
Continue a bulk copy operation.

Summary of Parameters Table

Value of type: vbct_command_num
initiates:

buffer is: buflen is:

CS_MSG_CMD A message command. A pointer to a   
CS_SMALLINT

CS_UNUSED

representing the
message id.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
Initiating a command is the first step in sending it to a server.

Follow these steps to send a command to a server:

· Initiate the command by calling vbct_command_num.    This routine sets up internal structures
that are used in building a command stream to send to the server.

· Pass parameters for the command (if required) by calling vbct_param once for each parameter
that the command requires.

Not all commands require parameters.    For example, a remote procedure call command may or may not
require parameters, depending on the stored procedure being called.

· Send the command to the server by calling vbct_send.

· Verify the success of the command by calling vbct_results.

This last step does not imply that an application need only call vbct_results once.    An application needs
to continue calling vbct_results until it no longer returns CS_SUCCEED.

An application can call vbct_cancel with type as CS_CANCEL_ALL to clear a command that has been
initiated but not yet sent.

Within a single connection, the following rules apply to the use of vbct_command_num:

· After calling vbct_command_num to initiate a command, an application must either send the
initiated command or clear it before calling vbct_command_num a second time.

· After sending a command initiated via vbct_command_num, an application must completely
process or cancel all results generated by the command before calling vbct_command_num to
initiate another command.

Each section below contains information on one of the types of commands that vbct_command_num can
initiate.

Message Commands

Message commands and results provide a way for clients and servers to communicate specialized
information to one another.

A message has an "id", which an application provides via vbct_command_num's buffer parameter.

Ids for user-defined messages must be greater than or equal to CS_USER_MSGID and less than or
equal to CS_USER_MAX_MSGID.

If a message requires parameters, the application can call vbct_param once for each parameter that the
message requires.

Send-Data Commands

An application uses a send-data command to write large amounts of text or image data to a server.

An application typically calls:

· vbct_command_num to initiate the send-data command.

· vbct_data_info to set the I/O descriptor for the operation.

· vbct_send_data to write the value, in chunks, to the data stream.

· vbct_send to send the command to the server.

See Also
vbct_cmd_alloc, vbct_dynamic, vbct_param, vbct_send

vbct_command_str
Initiate a language, package, RPC, message, or send-data command.

Syntax
vbct_command_str(command&, type&, buffer$, option&)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

type&

The type of command to initiate.    The table in the Summary of Parameters section below lists the
symbolic values that are legal for type.

buffer$

A pointer to data space.

option&

The option associated with this command, if any.

Currently, RPC (remote procedure call), send-data, and send-bulk-data commands take options.    For all
other types of commands, pass option as CS_UNUSED.

The following table lists the symbolic values that are legal for option:

type is: Value of option: Meaning:
CS_RPC_CMD CS_RECOMPILE Recompile the stored procedure

before    executing it.

CS_NORECOMPILE Do not recompile the stored
procedure before executing it.

CS_UNUSED Equivalent to CS_NORECOMPILE.

CS_SEND_DATA_CMD CS_COLUMN_DATA The data will be used for a text or
image column update.

CS_BULK_DATA For internal Sybase use only.    The
data will be used for a bulk copy
operation.

CS_SEND_BULK_CMD CS_BULK_INIT For internal Sybase use only.   
Initialize a bulk copy operation.

CS_BULK_CONT For internal Sybase use only.   
Continue a bulk copy operation.

Summary of Parameters Table

Value of type: vbct_command_str
initiates:

buffer is: buflen is:

CS_LANG_CMD A language command. A pointer to the text of   
the language command.

The length of the buffer
data or
CS_NULLTERM.

CS_PACKAGE_CMD A package command. A pointer to the name of
the package.

The length of the buffer
data or

CS_NULLTERM.

CS_RPC_CMD A remote procedure call
command.

A pointer to the name of
the remote procedure.

The length of the buffer
data or
CS_NULLTERM.

CS_SEND_BULK_CMD A SYBASE internal
send-bulk-data   
command.

A pointer to the
database table name.

The length of the buffer
data or
CS_NULLTERM.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
Initiating a command is the first step in sending it to a server.

Follow these steps to send a command to a server:

· Initiate the command by calling vbct_command_str.    This routine sets up internal structures that
are used in building a command stream to send to the server.

· Pass parameters for the command (if required) by calling vbct_param once for each parameter
that the command requires.

Not all commands require parameters.    For example, a remote procedure call command may or may not
require parameters, depending on the stored procedure being called.

· Send the command to the server by calling vbct_send.

· Verify the success of the command by calling vbct_results.

This last step does not imply that an application need only call vbct_results once.    An application needs
to continue calling vbct_results until it no longer returns CS_SUCCEED.

An application can call vbct_cancel with type as CS_CANCEL_ALL to clear a command that has been
initiated but not yet sent.

Within a single connection, the following rules apply to the use of vbct_command_str:

· After calling vbct_command_str to initiate a command, an application must either send the
initiated command or clear it before calling vbct_command_str a second time.

· After sending a command initiated via vbct_command_str, an application must completely
process or cancel all results generated by the command before calling vbct_command_str to
initiate another command.

Each section below contains information on one of the types of commands that vbct_command_str can
initiate.

Language Commands

Language commands contain a character string that represents one or more commands in a server's own
language.

A language command can be in any language, so long as the server to which it is directed can
understand it. SQL Server understands Transact-SQL, but an Open Server application constructed with
SYBASE Server-Library can be written to understand any language.

If the language command string contains host variables, an application can pass values for these variable
by calling vbct_param once for each variable that the language string contains.

Transact-SQL command variables must begin with a colon (:).

Package Commands

A package command instructs an IBM DB/2 database server to execute a package.    A package is similar
to a remote procedure.    It contains precompiled SQL statements that are executed as a unit when the
package is invoked.

If the package requires parameters, the application can call vbct_param once for each parameter that the
package requires.

RPC (remote procedure call) Commands

An RPC (remote procedure call) command instructs a server to execute a stored procedure either on this
server or a remote server.

An application initiates an RPC command by calling vbct_command_str with buffer as the name of the
stored procedure to execute.

If an application is using an RPC command to execute a stored procedure that requires parameters, the
application can call vbct_param once for each parameter the stored procedure requires.

After sending an RPC command with vbct_send , an application can process the stored procedure's
results with vbct_results and vbct_fetch. vbct_results and vbct_fetch are used to process both the result
rows generated by the stored procedure and the return parameters and status from the procedure, if any.

An alternative way to call a stored procedure is by executing a language command containing a Transact-
SQL execute statement.

Send-Bulk-Data Commands

Internally, SYBASE uses send-bulk-data commands as part of its implementation of CT-Library's bulk
copy routines

See Also
vbct_cmd_alloc, vbct_dynamic, vbct_param, vbct_send

vbct_con_alloc
Allocate a CS_CONNECTION structure.

Syntax
vbct_con_alloc(context&, connection&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbct_ctx_alloc function.

connection&

The parameter is primed with the connection pointer.    This connection pointer is a parameter used in
functions such as vbct_con_connect.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

The most common reason for a vbct_con_alloc failure is a lack of adequate memory.

Remarks
A CS_CONNECTION structure, also called a "connection structure," contains information about a
particular client/server connection.

Before calling vbct_con_alloc, an application must allocate a context structure by calling the CT-Library
routine vbcs_ctx_alloc, and must initialize CT-Library by calling vbct_init.

Follow these steps to connect to a server:

· Calls vbct_con_alloc to allocate a CS_CONNECTION structure.

· Calls vbct_con_props_num and vbct_con_props_str to set the values of connection-specific
properties.

· Calls vbct_connect to create the connection and log in to the server.

An application can have multiple open connections to one or more servers at the same time.

For example, an application can simultaneously have two connections to the server ALPHA, one
connection to BETA, and one connection to SIGMA.    The context property CS_MAX_CONNECT, set by
vbct_config, determines the maximum number of open connections allowed per context.

Each server connection requires a separate CS_CONNECTION structure.

In order to send commands to a server, one or more command structures must be allocated for a
connection.    vbct_cmd_alloc allocates a command structure.

See Also
vbcs_ctx_alloc, vbct_cmd_alloc, vbct_close, vbct_connect, vbct_con_props_num, vbct_con_props_str.

vbct_con_drop
De-allocate a CS_CONNECTION structure.

Syntax
vbct_con_drop(connection&)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

The most common reason for a vbct_con_drop failure is that the connection is still open.

Remarks
When a CS_CONNECTION structure is de-allocated, all CS_COMMAND structures associated with it are
de-allocated.

A CS_CONNECTION structure contains information about a particular client/server connection.

Once a CS_CONNECTION has been de-allocated, it cannot be reused. To allocate a new
CS_CONNECTION, an application can call vbct_con_alloc.

An application cannot de-allocate a CS_CONNECTION structure until the connection it represents is
closed.    To close a connection, an application can call vbct_close.

A connection can become unusable due to error.    If this occurs, CT-Library marks the connection as
"dead".    An application can use the CS_CON_STATUS property to determine if a connection has been
marked dead.

If a connection has been marked dead, an application must call vbct_close(CS_FORCE_CLOSE) to close
the connection and vbct_con_drop to drop its CS_CONNECTION structure.

An exception to this rule occurs for certain types of results-processing errors.    If a connection is marked
dead while processing results, the application can try calling vbct_cancel(CS_CANCEL_ALL or
CS_CANCEL_ATTN) to "revive" the connection.    If this fails, the application must close the connection
and drop its CS_CONNECTION structure.

See Also
vbct_con_alloc, vbct_close, vbct_connect, vbct_con_props_num, vbct_con_props_str.

vbct_con_props_num
Set or retrieve connection structure properties.

Syntax
vbct_con_props_num(connection&, action&, property&, buffer&, outlen&)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

action&

One of the following symbolic values:

Value of action: vbct_con_props_num
CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Clears the value of the property by resetting it to
its CT-Library default value.

property&

The symbolic name of the property whose value is being set or retrieved.

buffer&

If a property value is being set, buffer contains the value to use in setting the property.

If buffer is a fixed-length or symbolic value, pass buflen as CS_UNUSED.

outlen&

A pointer to an integer variable.

outlen is not used if a property value is being set and should be passed as NULL.

If a property value is being retrieved and outlen is supplied, vbct_con_props_num sets outlen to the
length, in bytes, of the requested information.

If the information is larger than buflen bytes, an application can use the value of outlen to determine how
many bytes are needed to hold the information.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks

Connection properties define aspects of CT-Library behavior at the connection level.

All connections created within a context pick up default property values from the parent context.    An
application can override these default values by calling vbct_con_props_num and vbct_con_props_str.

If an application changes context property values after allocating connections for the context, existing
connections will not pick up the new property values.    New connections allocated within the context will
use the new property values as defaults.

All command structures allocated for a connection pick up default property values from the parent
connection.    An application can override these default values by calling vbct_cmd_props_num and
vbct_cmd_props_str to set property values at the command structure level.

If an application changes connection property values after allocating command structures for the
connection, the existing command structures will not pick up the new property values.    New command
structures allocated for the connection will use the new property values as defaults.

Some connection properties only take effect if they are set before an application calls vbct_connect to
establish the connection.    See the "Notes" column in the CT-Library connection properties Table below.

An application can use vbct_con_props_num to set or retrieve the following properties:

Property name: What it is: buffer is: CT-Library
can set or
retrieve at
what level?

Notes

CS_ANSI_BINDS Whether or not to use
ANSI-style binds.

CS_TRUE or
CS_FALSE.

Context,

connection.

CS_ASYNC_NOTIFS Whether a connection
will receive registered
procedure notifications
asynchronously.

CS_TRUE or   
CS_FALSE.

Connection. Login
property.
Cannot be
set    after
connection is
established.

CS_BULK_LOGIN Whether or not a
connection is enabled
to    perform bulk copy
"in"    operations.

CS_TRUE or   
CS_FALSE.

Connection.

CS_CHARSETCNV Whether or not
character set
conversion is taking
place.

CS_TRUE or   
CS_FALSE.

Connection. Retrieve only,
after
connection is
established.

CS_COMMBLOCK A pointer to a   
communication
sessions block.    This
property is specific to
IBM-370 systems and
is ignored by all other
platforms.

A pointer    value. Connection. Cannot be
set    after
connection is
established.

CS_CON_STATUS The connection's
status.

A CS_INT-sized   
bit-mask.

Connection. Retrieve only.

CS_DIAG_TIMEOUT When in-line error
handling is in effect,   
whether CT-Library
should fail or retry on   
timeout errors.

CS_TRUE or   
CS_FALSE.

Connection.

CS_DISABLE_POLL Whether or not to
disable polling.    If

CS_TRUE or   
CS_FALSE.

Context, Useful in   
layered   

polling is disabled,
vbct_poll does not
report asynchronous   
operation completions.

connection. asynchronou
s   
applications.

CS_EED_CMD A pointer to a
command    structure
containing    extended
error data.

A pointer value. Connection. Retrieve only.

CS_ENDPOINT The file descriptor for a
connection.

An integer value, or
-1 if the platform   
does not support   
CS_END POINT.

Connection. Retrieve only,
after
connection is
established.

CS_EXPOSE_FMTS Whether or not to
expose    results of
type   
CS_ROWFMT_RESUL
T and   
CS_COMPUTEFMT_R
E SULT.

CS_TRUE or   
CS_FALSE.

Context,

connection.

Cannot be
set    after
connection is
established.

CS_EXTRA_INF Whether or not to
return    the extra
information    that's
required when   
processing CT-Library
messages in-line using
a SQLCA,   
SQLCODE,
SQLSTATE.

CS_TRUE or   
CS_FALSE.

Context,

connection.

CS_HIDDEN_KEYS Whether or not to
expose    hidden keys.

CS_TRUE or
CS_FALSE.

Context,

connection,
command.

CS_LOC_PROP A CS_LOCALE
structure that defines
localization
information.

A CS_LOCALE   
structure previously
allocated by the
application.

Connection. Login
property.
Cannot be
set    after
connection   
is
established.

CS_LOGIN_STATUS Whether or not the
connection is open.

CS_TRUE or   
CS_FALSE.

Connection. Retrieve only.

CS_NETIO Whether network I/O is
synchronous or   
asynchronous.

CS_SYNC_IO,   
CS_ASYNC_IO.

Context,

connection.

Asynchronou
s   
connections
are either
fully or   
deferred   
asynchronou
s    to match
their    parent
context.

CS_NOTIF_CMD A pointer to a
command    structure
containing    registered
procedure    notification
parameters.

A pointer value. Connection. Retrieve only.

CS_PACKETSIZE The TDS packet size. An integer    value. Connection. Negotiated   
login
property.

Cannot be
set    after
connection is
established.

CS_PARENT_HANDLE The address of the
connection structure's
parent context.

Set to an address. Connection,
command.

Retrieve only.

CS_SEC_APPDEFINE
D

Whether or not the
connection will use   
application-defined   
challenge/response
security handshaking.

CS_TRUE or   
CS_FALSE.

Connection. Cannot be
set    after
connection is
established.

CS_SEC_CHALLENGE Whether or not the
connection will use   
Sybase-defined   
challenge/response
security handshaking.

CS_TRUE or   
CS_FALSE.

Connection. Cannot be
set    after
connection is
established.

CS_SEC_ENCRYPTIO
N

Whether or not the
connection will use   
encrypted password   
security handshaking.

CS_TRUE or   
CS_FALSE.

Connection. Cannot be
set after
connection is
established.

CS_SEC_ NEGOTIATE Whether or not the
connection will use   
trusted-user security   
handshaking.

CS_TRUE or   
CS_FALSE.

Connection. Cannot be
set after
connection is
established.

CS_TDS_VERSION The version of the TDS
protocol that the
connection is using.

A symbolic version
level.

Connection. Negotiated
login
property.   
Cannot be
set    after
connection is
established.

CS_TEXTLIMIT The largest text or
image    value to be
returned on    this
connection.

An integer    alue. Context,

connection.

CS_USERDATA User-allocated data. User-allocated
data.

Connection,
command.

CS_USERNAME The name used to log
into the server.

A character    string. Connection. Login
property.   
Cannot be
set after
connection is
established.

See Also
vbct_capability, vbct_cmd_props_num, vbct_cmd_props_str, vbct_connect, vbct_config_num,
vbct_config_str, vbct_init.

vbct_con_props_str
Set or retrieve connection structure properties.

Syntax
vbct_con_props_str(connection&, action&, property&, buffer$, outlen&)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

action&

One of the following symbolic values:

Value of action: vbct_con_props_str
CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Clears the value of the property by resetting it to
its CT-Library default value.

property&

The symbolic name of the property whose value is being set or retrieved.

buffer$

If a property value is being set, buffer points to the value to use in setting the property.

If a property value is being set and the value in buffer is null-terminated, pass buflen as CS_NULLTERM.

If buffer is a fixed-length or symbolic value, pass buflen as CS_UNUSED.

outlen&

A pointer to an integer variable.

outlen is not used if a property value is being set and should be passed as NULL.

If a property value is being retrieved and outlen is supplied, vbct_con_props_str sets outlen to the length,
in bytes, of the requested information.

If the information is larger than buflen bytes, an application can use the value of outlen to determine how
many bytes are needed to hold the information.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
Connection properties define aspects of CT-Library behavior at the connection level.

All connections created within a context pick up default property values from the parent context.    An
application can override these default values by calling vbct_con_props_num and vbct_con_props_str.

If an application changes context property values after allocating connections for the context, existing
connections will not pick up the new property values.    New connections allocated within the context will
use the new property values as defaults.

All command structures allocated for a connection pick up default property values from the parent
connection.    An application can override these default values by calling vbct_cmd_props_num and
vbct_cmd_props_str to set property values at the command structure level.

If an application changes connection property values after allocating command structures for the
connection, the existing command structures will not pick up the new property values.    New command
structures allocated for the connection will use the new property values as defaults.

Some connection properties only take effect if they are set before an application calls vbct_connect to
establish the connection.    See the "Notes" column in CT-Library connection properties Table below.

An application can use vbct_con_props_str to set or retrieve the following properties:

Property name: What it is: buffer is: CT-Library
can set or
retrieve at
what level?

Notes

CS_APPNAME The application name
used when logging into
the server.

A character
string

Connection Login property.
Cannot be set
after connection
is established.

CS_HOSTNAME The host machine
name.

A character
string.

Connection. Login property.
Cannot be set   
after connection
is established.

CS_PASSWORD The password used to
log into the server.

A character
string.

Connection. Login property.

CS_SERVERNAME The name of the
server to which this
connection is
connected.

A string value. Connection. Retrieve only
after connection
is established.

CS_TRANSACTION_
NAME

A transaction name. A string value. Connection.

See Also
vbct_capability, vbct_cmd_props_num, vbct_cmd_props_str, vbct_connect, vbct_config_num,
vbct_config_str, vbct_init

vbct_compute_info
Retrieve compute result information.

Syntax
vbct_compute_info(command&, type&, column&, buffer(Any), buflen&, outlen&)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

type&

The type of information to return.

column&

The number of the compute column of interest, as it appears in the compute row result set.    Compute
columns appear in the order in which they are listed in the compute clause of a select statement.    The
first column is number 1, the second number 2, and so on.

buffer(Any)

A pointer to the space in which vbct_compute_info will place the requested information.

If buflen indicates that buffer is not large enough to hold the requested information, vbct_compute_info
returns CS_FAIL.

buflen&

The length, in bytes, of the buffer data space or CS_UNUSED if buffer represents a fixed-length or
symbolic value.

outlen&

A pointer to an integer variable.

vbct_compute_info sets outlen to the length, in bytes, of the requested information.

Summary of Parameters Table

Value of type: Value of   
colnum:

vbct_compute_
info returns:

buffer is set to: outlen is set
to:

CS_BYLIST_LEN CS_UNUSED The number of
elements in the
bylist    array.

An integer value. sizeof(CS_INT)

CS_COMP_BYLIST CS_UNUSED An array containing
the bylist that
produced    this
compute row.

An array of   
CS_SMALLINT
values.

The length of the
array, in bytes.

CS_COMP_COLID The column
number of the
compute    column.

The select-list
column id of the
column from which
the compute
column derives.

An integer value. sizeof(CS_INT)

CS_COMP_ID CS_UNUSED The compute id for An integer value. sizeof(CS_INT)

the current
compute row.

CS_COMP_OP The column   
number of the   
compute column.

The aggregate
operator    type for
the compute
column.

A symbolic value,
one of:   
CS_OP_SUM   
CS_OP_AVG   
CS_OP_COUNT   
CS_OP_MIN   
CS_OP_MAX

sizeof(CS_INT)

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    For more information, refer to
Asychronous Programming.

Remarks
Compute rows result from the compute clause of a select statement.    A compute clause generates a
compute row every time the value of its by column-list changes.    A compute row will contain one column
for each aggregate operator in the compute clause.    If a select statement contains multiple compute
clauses, separate compute rows are generated by each clause.

Each compute row returned by the server is considered to be a distinct result set.    This means each
result set of type CS_COMPUTE_RESULT will contain exactly one row.

It is only legal to call vbct_compute_info when compute information is available; that is, after vbct_results
returns CS_COMPUTE_RESULT or CS_COMPUTEFMT.

Each section below contains information about a particular type of compute result information.

The Bylist for a Compute Row

A select statement's compute clause may contain the keyword by, followed by a list of columns.    This list,
called the "bylist," divides the results into subgroups, based on changing values in the specified columns.
The compute clause's aggregate operators are applied to each subgroup, generating a compute row for
each subgroup.

The Select-List Column ID for a Compute Column

The select-list column id for a compute column is the select-list id of the column from which the compute
column derives.

The Compute ID for this Compute Row

A SQL select statement can have multiple compute clauses, each of which returns a separate compute
row.    The compute id corresponding to the first compute clause in a select statement is 1.

The Aggregate Operator for a Particular Compute Row Column

When called with type as CS_COMP_OP, vbct_compute_info sets buffer to one of the following
aggregate operator types:

buffer set to: To indicate:
CS_OP_AVG Average aggregate operator.

CS_OP_COUNT Count aggregate operator.

CS_OP_MAX Maximum aggregate operator.

CS_OP_MIN Minimum aggregate operator.

CS_OP_SUM Sum aggregate operator.

See Also
vbct_describe, vbct_res_info, vbct_results

vbct_config_num
Set or retrieve context properties.

Syntax
vbct_config_num(connection&, action&, property&, buffer(Any), outlen&)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

action&

One of the following symbolic values:

Value of action: vbct_config_num:
CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Clears the value of the property by resetting it to
its CT-Library default value.

property&

The symbolic name of the property whose value is being set or retrieved.

buffer(Any)

If a property value is being set, buffer points to the value to use in setting the property.

If a property value is being retrieved, buffer points to the space in which vbct_config_num will place the
requested information.

outlen&

A pointer to an integer variable.

outlen is not used if a property value is being set and should be passed as NULL.

If a property value is being retrieved and outlen is supplied, vbct_config_num sets outlen to the length, in
bytes, of the requested information.

If the information is larger than buflen bytes, an application can use the value of outlen to determine how
many bytes are needed to hold the information.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Remarks
Context properties define aspects of CT-Library behavior at the context level.

All connections created within a context pick up default property values from the parent context.    An
application can override these default values by calling vbct_con_props_num and vbct_con_props_str to
set property values at the connection level.

If an application changes context property values after allocating connections for the context, existing
connections will not pick up the new property values.    New connections allocated within the context will
use the new property values as defaults.

There are three kinds of context properties:

1. Context properties specific to CT-Library.

2. Context properties specific to CT-Library.

3. Context properties specific to Server-Library.

vbcs_config_num sets and retrieves the values of CT-Library-specific context properties.

vbct_config_num sets and retrieves the values of CT-Library-specific context properties.

An application can use vbct_config_num to set or retrieve the following properties:

Property name: What it is: buffer is: CT-
Library
can set
or   
retrieve
at what
level?

Notes

CS_ANSI_BINDS Whether or not to
use    ANSI-style
binds.

CS_TRUE or CS_FALSE. Context

connection
.

CS_DISABLE_POLL Whether or not to   
disable polling. If   
polling is disabled,
vbct_poll does not
report asynchronous
operation
completions.

CS_TRUE or CS_FALSE. Context,

connection

Useful in
layered
asynchronou
s
applications.

CS_EXPOSE_FMTS Whether or not to
expose results of
type CS_ROWFMT_
RESULT and   
CS_COMPUTEFMT
_RESULT.

CS_TRUE or CS_FALSE. Context,

connection

Takes effect
only if set   
before   
connection is
established.

CS_EXTRA_INF Whether or not to
return the extra
information that's
required when   
processing CT-
Library messages in-
line using a SQLCA,
SQLCODE, or
SQLSTATE.

CS_TRUE or CS_FALSE. Context,

connection

CS_HIDDEN_KEYS Whether or not to
expose hidden keys.

CS_TRUE or CS_FALSE. Context,

connection
command.

CS_LOGIN_TIMEOUT The login timeout
value.

An integer value. Context.

CS_MAX_CONNECT The maximum
number of
connections for this
context.

An integer value. Context.

CS_NETIO Whether network I/O
is synchronous, fully
asynchronous, or
deferred
asynchronous.

CS_SYNC_IO,   
CS_ASYNC_IO, or   
CS_DEFER_IO.

Context,

connection
.

Cannot be
set for a
context with
open   
connections.

CS_NO_TRUNCATE Whether CT-Library
should truncate or   
sequence messages
that are longer than
CS_MAX_MSG.

CS_TRUE or CS_FALSE. Context.

CS_NOINTERRUPT Whether or not the   
application can be   
interrupted.

CS_TRUE or CS_FALSE. Context.

CS_TEXTLIMIT The largest text or   
image value to be   
returned on this   
connection.

An integer value. Context,

connection
.

CS_TIMEOUT The timeout value. An integer value. Context.

CS_VERSION The version of CT-
Library in use by this
context.

A symbolic version level.
Currently, the only
possible    value is   
CS_VERSION_100

Context. Retrieve only.

See Also
vbct_cmd_props_num, vbct_cmd_props_str, vbct_capability, vbct_con_props_num, vbct_con_props_str,
vbct_connect, vbct_init.

vbct_config_str
Set or retrieve context properties.

Syntax
vbct_config_str(connection&, action&, property&, buffer$, outlen&)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

action&

One of the following symbolic values:

Value of action: vbct_config_str:
CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Clears the value of the property by resetting it to
its CT-Library default value.

property&

The symbolic name of the property whose value is being set or retrieved.

buffer$

If a property value is being set, buffer points to the value to use in setting the property.

If a property value is being retrieved, buffer points to the space in which vbct_config_str will place the
requested information.

outlen&

A pointer to an integer variable.

outlen is not used if a property value is being set and should be passed as NULL.

If a property value is being retrieved and outlen is supplied, vbct_config_str sets outlen to the length, in
bytes, of the requested information.

If the information is larger than buflen bytes, an application can use the value of outlen to determine how
many bytes are needed to hold the information.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Remarks
Context properties define aspects of CT-Library behavior at the context level.

All connections created within a context pick up default property values from the parent context. An
application can override these default values by calling vbct_con_props_num and vbct_con_props_str to
set property values at the connection level.

If an application changes context property values after allocating connections for the context, existing
connections will not pick up the new property values.    New connections allocated within the context will
use the new property values as defaults.

There are three kinds of context properties:

1. Context properties specific to CT-Library.

2. Context properties specific to CT-Library.

3. Context properties specific to Server-Library.

vbcs_config_str sets and retrieves the values of CT-Library-specific context properties.

vbct_config_str sets and retrieves the values of CT-Library-specific context properties.

An application can use vbct_config_str to set or retrieve the following properties:

Property name: What it is: buffer is: CT-Library can
set or retrieve
at what level?

Notes

CS_IFILE The path and
name of the
interfaces file.

A character string. Context.

CS_VER_STRING CT-Library's true
version string.

A character string. Context. Retrieve only.

See Also
vbct_cmd_props_num, vbct_cmd_props_str, vbct_capability, vbct_con_props_num, vbct_con_props_str,
vbct_connect, vbct_init

vbct_connect
Connect to a server.

Syntax
vbct_connect(connection&, server_name$)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

Use vbct_con_alloc to allocate a CS_CONNECTION structure, and vbct_con_props_num and
vbct_con_props_str to initialize this structure with login parameters.

server_name$

A pointer to the name of the server to connect to. server_name is the name given to the server in the
interfaces file on the application's host machine. vbct_connect looks up server_name in the interfaces file
to determine how to connect to this server.

If server_name is NULL, vbct_connect looks up the interfaces entry that corresponds to the value of the
DSQUERY environment variable or logical name.    If DSQUERY has not been explicitly set, it has a value
of "SYBASE".

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect.    For more
information, refer to Asychronous Programming.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Common reason for a vbct_connect failure include:

· Unable to allocate sufficient memory.

· The maximum number of connections is already established. vbct_config_num and
vbct_config_str are used to set the maximum number of connections allowed per context.

· Unable to open socket.

· Server name not found in interfaces file.

· Unknown host machine name.

· SQL Server is unavailable or does not exist.

· Login incorrect.

· Could not open interfaces file.

When vbct_connect returns CS_FAIL, it generates a CT-Library error number that indicates the error.

Remarks
Information about the connection is stored in a CS_CONNECTION structure, which uniquely identifies the
connection.    In the process of establishing a connection, vbct_connect sets up communication with the
network, logs into the server, and communicates any connection-specific property information to the
server.

Because creating a connection involves logging into a server, an application must define login parameters
(such as a server user name and password) before calling vbct_connect.    An application can call
vbct_con_props_num and vbct_con_props_str to define login parameters.

A connection can be either synchronous or asynchronous.    The CT-Library property CS_NETIO
determines whether a connection will be synchronous or asynchronous.

For more information on asynchronous connections, refer to Asychronous Programming.

The maximum number of open connections per context is determined by the CS_MAX_CONNECT
property (set by vbct_config).    If not explicitly set, the maximum number of connections defaults to a
platform-specific value.

When a connection attempt is made between a client and a server, there are two ways in which the
process can fail (assuming that the system is correctly configured):

1. The machine that the server is supposed to be on is running correctly and the network is running
correctly.

In this case, if there is no server listening on the specified port, the machine that the server is supposed to
be on will signal the client, via a network error, that the connection cannot be formed.    Regardless of the
login timeout value, the connection will fail.

2. The machine that the server is on is down.

In this case, the machine that the server is supposed to be on will not respond.    Because "no response"
is not considered to be an error, the network will not signal the client that an error has occurred.   
However, if a login timeout period has been set, a timeout error will occur when the client fails to receive a
response within the set period.

To close a connection, an application calls vbct_close.

See Also
vbct_close, vbct_con_alloc, vbct_con_drop, vbct_con_props_num, vbct_con_props_str,
vbct_remote_pwd

vbct_data
This function is used to retrieve the data from a column for the current row within the results set.    This
function is unique to SQL-Sombrero/VBX.

Syntax
vbct_data(command&, column&)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

column&

The column number within a row of data returned.

Results
vbct_data returns a string representation of the data in the requested column for the last row retrieved by
using the vbct_fetch function.

Remarks

See Also

vbct_do_binds, vbct_fetch

vbct_data_info
Define or retrieve a data I/O descriptor structure.

Syntax
vbct_data_info(command&, action&, colnum&, iodesc&)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

action&

One of the following symbolic values:

Value of action: vbct_data_info:
CS_SET Defines an I/O descriptor.

CS_GET Retrieves an I/O descriptor.

colnum&

The number of the text or image column whose I/O descriptor is being retrieved.

If action is CS_SET, pass colnum as CS_UNUSED.

If action is CS_GET, colnum refers to the select-list id of the text or image column.    The first column in a
select statement's select-list is column number 1, the second number 2, and so forth.    An application
must select a text or image column before it can update the column.

colnum must represent a text or image column.

iodesc&

A pointer to a CS_IODESC variable.    A CS_IODESC variable contains information describing text or
image data.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
vbct_data_info defines or retrieves a CS_IODESC, also called an "I/O descriptor structure" for a text or
image column.

An application calls vbct_data_info to retrieve an I/O descriptor after calling vbct_get_data to retrieve a
text or image column value that it plans to update at a later time.    This I/O descriptor contains the text

pointer and text timestamp that the server uses to manage updates to text or image columns.

After retrieving an I/O descriptor, a typical application changes only the values of the locale, total_txtlen,
and log_on_update fields before using the I/O descriptor in an update operation:

-    The total_txtlen field of the CS_IODESC represents the total length, in bytes, of the new text or image
value.

-    The log_on_update field in the CS_IODESC to indicate whether or not the server should log the
update.

-    The locale field of the CS_IODESC points to a CS_LOCALE structure containing localization
information for the value, if any.

An application calls vbct_data_info to define an I/O descriptor before calling vbct_send_data to send a
chunk or image data to the server.    Both of these calls occur during a text or image update operation.

A successful text or image update generates a parameter result set that contains the new text timestamp
for the text or image value.    If an application plans to update the text or image value a second time, it
must save this new text timestamp and copy it into the CS_IODESC for the value before calling
vbct_data_info to define the CS_IODESC for the update operation.

It is illegal to call vbct_data_info to retrieve the I/O descriptor for a column before calling vbct_get_data for
the column.

However, this vbct_get_data call does not have to actually retrieve any data.    This means an application
can call vbct_get_data with a buflen of 0, and then call vbct_data_info to retrieve the descriptor.    This
technique is useful when an application needs to determine the length of a text or image value before
retrieving it

See Also
vbct_get_data, vbct_send_data

vbct_deinstall_callbacks
De-installs a CT-Library callback routine.

Syntax
vbct_deinstall_callbacks(context&, type&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

type&

The type of callback routine of interest.    The following table lists the symbolic values that are legal for
type.

Value of type: vbct_deinstall_callback installs:
CS_CLIENTMSG_CB A client message callback.

CS_COMPLETION_CB A completion callback.

CS_ENCRYPT_CB An encryption callback.

CS_MESSAGE_CB A message callback.

CS_CHALLENGE_CB A negotiation callback.

CS_SERVERMSG_CB A server message callback.

CS_NOTIF_CB A registered procedure notification callback.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection    Refer to Asychronous
Programming.

Remarks
To de-install an existing callback routine, an application can call vbct_deinstall_callback with func as
NULL.    An application can also install a new callback routine at any time.    The new callback will
automatically replace any existing callback.

See Also
vbct_install_callbacks

vbct_describe
Return a description of result data.

Syntax
vbct_describe(command&, item&, datafmt(CS_DATAFMT))

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

item&

An integer representing the result item of interest.

When retrieving a column description, item is the column's column number.    The first column in a select
statement's select-list is column number 1, the second number 2, and so forth.

When retrieving a compute column description, item is the column number of the compute column.   
Compute columns are returned in the order in which they are listed in the compute clause.    The first
column returned is number 1.

When retrieving a return parameter description, item is the parameter number of the parameter.    The first
parameter returned by a stored procedure is number 1.    Stored procedure return parameters are
returned in the same order as the parameters were originally specified in the stored procedure's create
procedure statement.    This is not necessarily the same order as specified in the RPC command that
invoked the stored procedure.    In determining what number to pass as item do not count non-return
parameters.    For example, if the second parameter in a stored procedure is the only return parameter,
pass item as 1.

When retrieving a stored procedure return status description, item must be 1, as there can be only a
single status in a return status result set.

When retrieving format information, item takes a column or compute column number.

NOTE:    An application cannot call vbct_describe after vbct_results indicates a result set of type
CS_MSG_RESULT.    This is because a result type of CS_MSG_RESULT has no data items associated
with it.    Parameters associated with a message are returned as a CS_PARAM_RESULT result set.

Likewise, an application cannot call vbct_describe after vbct_results sets its result_type parameter to
CS_CMD_DONE, CS_CMD_SUCCEED, or CS_CMD_FAIL to indicate command status information.

datafmt(CS_DATAFMT)

A pointer to a CS_DATAFMT structure. vbct_describe fills datafmt with a description of the result data item
referenced by item.

vbct_describe fills in the following fields in the CS_DATAFMT:

Field
name:

For which types of result items? vbct_describe sets the field to:

name Regular columns, column formats, and
return parameters.

The null-terminated name of the data item,
if    any.    A NULL name is indicated by a

namelen of 0.

namelen Regular columns, column formats, and
return parameters.

The actual length of the name, not
including the null terminator.    0 to indicate
a NULL name.

datatype Regular columns, column formats,    return
parameters, return status, compute
columns, and compute column formats.

A type constant (CS_xxx_TYPE)
representing    the datatype of the item.
Refer to Types.    All type constants listed
on the Types topics    page are valid, with
the exceptions of    CS_VARCHAR_TYPE
and    CS_VARBINARY_TYPE.    A return
status has a datatype of CS_INT_TYPE.   
A compute column's datatype depends on
the    type of the underlying column and the
aggregate operator that created the
column.

format Not used.

maxlength Regular columns, column formats, and
return parameters.

The maximum possible length of the data
for    the column or parameter.

scale Regular columns, column formats, return
parameters, compute columns, or compute
column formats of type numeric or
decimal.

The scale of the result data item.

precision Regular columns, column formats, return
parameters, compute columns, or compute
column formats of type numeric or
decimal.

The precision of the result data item.

status Regular columns and column formats. A bitmask of the following symbols, or-ed
together:    CS_CANBENULL to indicate
that the column can contain NULL values.
CS_HIDDEN to indicate that the column is
a "hidden" column that has been exposed.
CS_IDENTITY to indicate that the column
is an identity column.    CS_KEY to indicate
the column is part of the key    for a table.
CS_VERSION_KEY to indicate the column
is    part of the version key for the row.   
CS_TIMESTAMP to indicate the column is
a    timestamp column.    CS_UPDATABLE
to indicate that the column is an updatable
cursor column.

count Regular columns, column formats, return
parameters, return status, compute
columns, and compute column formats.

count represents the number of rows
copied to    program variables per
vbct_fetch call.vbct_describe sets count to
1 to provide a default value in case an
application uses vbct_describe's return
CS_DATAFMT as    vbct_do_bind's input
CS_DATAFMT.

usertype Regular columns, column formats, and
return parameters.

The SQL Server user-defined datatype of
the    column or parameter, if any.   
usertype is set in    addition to (not instead
of) datatype.

locale Regular columns, column formats, return
parameters, return status, compute
columns, and compute column formats.

A pointer to a CS_LOCALE structure that
contains locale information for the data.   
This pointer can be NULL.

Results
Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.    vbct_describe returns
CS_FAIL if item does not represent a valid result
data item.

CS_BUSY An asynchronous operation is already pending for
this    connection.    Refer Asychronous
Programming.

Remarks
An application can use vbct_describe to retrieve a description of a regular result column, a return
parameter, a stored procedure return status number, or a compute column.

An application can also use vbct_describe to retrieve format information. CT-Library indicates that format
information is available by setting vbct_results' result_type to CS_ROWFMT_RESULT or
CS_COMPUTEFMT_RESULT.

An application cannot call vbct_describe after vbct_results sets its result_type parameter to
CS_MSG_RESULT, CS_CMD_SUCCEED, CS_CMD_DONE, or CS_CMD_FAIL because there are no
result items to describe.

An application can call vbct_res_info to find out how many result items are present in the current result
set.

An application generally needs to call vbct_describe to describe a result data item before it binds the
result item to a program variable using    vbct_do_binds.

See Also
vbct_fetch, vbct_res_info, vbct_results

vbct_diag
Manage in-line error handling.

Syntax
vbct_diag(connection&, operation&, type&, index&, buffer(Any))

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

operation&

The operation to perform.    The table in the Summary of Parameters    below lists the symbolic values that
are legal for operation.

type&

Depending on the value of operation, type indicates either the type of structure to receive message
information, the type of message on which to operate, or both.    The following table lists the symbolic
values that are legal for type:

Value of type: To indicate:
SQLCA_TYPE A SQLCA structure.

SQLCODE_TYPE A SQLCODE structure, which is a long integer.

SQLSTATE_TYPE A SQLSTATE structure, which is an array of bytes.

CS_CLIENTMSG_TYPE A CS_CLIENTMSG structure.    Also used to
indicate CT-Library    messages.

CS_SERVERMSG_TYPE A CS_SERVERMSG structure.    Also used to
indicate server messages.

CS_ALLMSG_TYPE CT-Library and server messages.

index&

The index of the message of interest.    The first message has an index of 1, the second an index of 2,
and so forth.

If type is CS_CLIENTMSG_TYPE, then index refers to CT-Library messages only.    If type is
CS_SERVERMSG_TYPE, then index refers to server messages only.    If type is CS_ALLMSG_TYPE,
then index refers to CT-Library and server messages combined.

buffer(Any)

A pointer to data space.

Depending on the value of operation, buffer can point to a structure or a CS_INT.

Summary of Parameters Table

Value of
operation:

vbct_diag: type is: index is: buffer is:

CS_INIT Initializes in-line   
error handling.

CS_UNUSED CS_UNUSED NULL

CS_MSGLIMIT Sets the maximum CS_CLIENTMSG_TYP CS_UNUSED A pointer to    an

number of
messages    to
store.

E to limit CT-Library
messages only.   
CS_SERVERMSG_
TYPE to limit server
messages only.   
CS_ALLMSG_TYPE to
limit the total number of
CT-Library and server
messages combined.

integer value.

CS_CLEAR Clears message
information for this
connection.    If
buffer is not NULL
and type is not
CS_ALLMSG_
TYPE, vbct_diag
also clears the
buffer structure by
initializing it with
blanks and/or   
NULLs, as   
appropriate.

One of the legal type
values:    If type is   
CS_CLIENTMSG_TYP
E vbct_diag clears CT-
Library messages only.
If type is
CS_SERVERMSG_
TYPE, vbct_diag clears
server messages only.
If type has any other
legal    value, vbct_diag
clears both CT-Library
and server messages.

CS_UNUSED A pointer to    a
structure whose
type is defined by
type, or NULL.

CS_GET Retrieves a specific
message.

Any legal type value
except
CS_ALLMSG_TYPE.   
If type is
CS_CLIENTMSG_TYP
E a CT-Library message
is retrieved into a
CS_CLIENTMSG
structure.    If type is   
CS_SERVERMSG_
TYPE, a server
message is retrieved
into a
CS_SERVERMSG
structure.    If type has
any other legal value,
then either a CT-Library
or server message is
retrieved.

The one- based
index of the
message to   
retrieve.

A pointer to    a
structure whose
type is defined by
type.

CS_STATUS Returns the current
number of stored   
messages.

CS_CLIENTMSG_TYP
E to retrieve the number
of    CT-Library
messages.   
CS_SERVERMSG_
TYPE to retrieve the
number of server
messages.   
CS_ALLMSG_TYPE to
retrieve the total
number of CT-Library
and server messages
combined.

CS_UNUSED A pointer to an
integer variable.

CS_EED_CMD Sets buffer to the
address of the   
CS_COMMAND
structure containing
extended error
data.

CS_SERVERMSG_
TYPE

The one- based
index of the   
message for
which extended
error data is
available.

A pointer to    a
pointer variable.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.    vbct_diag returns CS_FAIL if
the original error has made the connection
unusable.

CS_NOMSG The application attempted to retrieve a message
whose index is higher than the highest valid
index.    For    example, the application attempted
to retrieve    message number 3, when there are
only 2 messages queued.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Common reasons for a vbct_diag failure include:

· Invalid connection.

· Inability to allocate memory.

· Invalid parameter combination.

Remarks
A CT-Library application can handle CT-Library and server messages in the following two ways:

· The application can call vbct_install_callbacks to install client message and server message
callbacks to handle CT-Library and server messages.

· The application can handle CT-Library and server messages in-line, using vbct_diag.

It is possible for an application to switch back and forth between the two methods.    Refer to Error and
Message Handling.

vbct_diag manages in-line message handling for a specific connection.    If an application has more than
one connection, it must make separate vbct_diag calls for each connection.

An application cannot use vbct_diag at the context level.    This means an application cannot use
vbct_diag to retrieve messages generated by routines that take a CS_CONTEXT (and no
CS_CONNECTION) as a parameter.    These messages are unavailable to an application that is using in-
line error handling.

An application can perform operations on either CT-Library messages, server messages, or both.

For example, an application can clear CT-Library messages without affecting server messages:

vbct_diag(connection, CS_CLEAR, CS_CLIENTMSG,

                CS_UNUSED, NULL);

vbct_diag allows an application to retrieve message information into standard CT-Library structures
(CS_CLIENTMSG and CS_SERVERMSG) or a SQLCA, SQLCODE, or SQLSTATE.    When retrieving
messages, vbct_diag assumes that buffer points to a structure of the type indicated by type.

An application that is retrieving messages into a SQLCA, SQLCODE, or SQLSTATE must set the CT-
Library property CS_EXTRA_INF to CS_TRUE.    This is because the SQL structures require information
that is not ordinarily returned by CT-Library's error handling mechanism.

An application that is not using the SQL structures can also set CS_EXTRA_INF to CS_TRUE.    In this
case, the extra information is returned as standard CT-Library messages.

If vbct_diag does not have sufficient internal storage space in which to save a new message, it throws
away all unread messages and stops saving messages.    The next time it is called with operation as
CS_GET, it returns a special message to indicate the space problem.

After returning this message, vbct_diag starts saving messages again.

Initializing In-Line Error Handling

To initialize in-line error handling, an application calls vbct_diag with operation as CS_INIT.

Generally, if a connection will use in-line error handling, an application should call vbct_diag to initialize in-
line error handling for a connection immediately after allocating it.

Clearing Messages

To clear message information for a connection, an application calls vbct_diag with operation as
CS_CLEAR.

To clear CT-Library messages only, an application passes type as CS_CLIENTMSG_TYPE.

To clear server messages only, an application passes type as CS_SERVERMSG.

To clear both CT-Library and server messages, pass type as SQLCA, SQLCODE, or
CS_ALLMSG_TYPE.

If type is not CS_ALLMSG_TYPE:

vbct_diag assumes that buffer points to a structure of type type.

vbct_diag clears the buffer structure by setting it to blanks and/or NULLs, as appropriate.

Message information is not cleared until an application explicitly calls vbct_diag with operations
as CS_CLEAR.    Retrieving a message does not remove it from the message queue.

Retrieving Messages

To retrieve message information, an application calls vbct_diag with operation as CS_GET, type as the
type of structure in which to retrieve the message, index as the one-based index of the message of
interest, and buffer as a structure of the appropriate type.

If type is CS_CLIENTMSG_TYPE, then index refers only to CT-Library messages.    If type is
CS_SERVERMSG_TYPE, index refers only to server messages.    If type has any other value, index
refers to the collective "queue" of both types of messages combined.

vbct_diag fills in the buffer structure with the message information.

If an application attempts to retrieve a message whose index is higher than the highest valid index,
vbct_diag returns CS_NOMSG to indicate that no message is available.

See the SQLCA, SQLCODE, CS_CLIENTMSG and CS_SERVERMSG topics pages for information on
these structures.

Limiting Messages

Applications running on platforms with limited memory may want to limit the number of messages that CT-
Library saves.

An application can limit the number of saved CT-Library messages, the number of saved server
messages, and the total number of saved messages.

To limit the number of saved messages, an application calls vbct_diag with operation as CS_MSGLIMIT
and type as CS_CLIENTMSG_TYPE, CS_SERVERMSG_TYPE, or CS_ALLMSG_TYPE:

If type is CS_CLIENTMSG_TYPE, then the number of CT-Library messages is limited.

If type is CS_SERVERMSG_TYPE, then the number of server messages is limited.

If type is CS_ALLMSG_TYPE, then the total number of CT-Library and server messages combined is
limited.

When a specific message limit is reached, CT-Library discards any new messages of that type.    When a
combined message limit is reached, CT-Library discards any new messages.    If CT-Library discards
messages, it saves a message to this effect.

An application cannot set a message limit that is less than the number of messages currently saved.

CT-Library's default behavior is to save an unlimited number of messages.    An application can restore
this default behavior by setting a message limit of CS_NO_LIMIT.

Retrieving the Number of Messages

To retrieve the number of current messages, an application calls vbct_diag with operation as CS_STATUS
and type as the type of message of interest.

Getting the CS_COMMAND for Extended Error Data

To retrieve a pointer to the CS_COMMAND structure containing extended error data (if any), call
vbct_diag with operation as CS_EED_CMD and type as CS_SERVERMSG_TYPE. vbct_diag sets buffer
to the address of the CS_COMMAND structure containing the extended error data.

When an application retrieves a server message into a CS_SERVERMSG structure, CT-Library indicates
that extended error data is available for the message by setting the CS_HASEED bit in the status field in
the CS_SERVERMSG structure.

It is an error to call vbct_diag with operation as CS_EED_CMD when extended error data is not available.

Sequenced Messages and vbct_diag

If an application is using sequenced error messages, vbct_diag acts on message chunks instead of
messages.    This has the following effects:

· A vbct_diag(CS_GET) call with index i returns the i'th message chunk, not the i'th message.

· A vbct_diag(CS_MSGLIMIT) call limits the number of chunks, not the number of messages, that
CT-Library will store.

· A vbct_diag(CS_STATUS) call returns the number of currently-stored chunks, not the number of
currently-stored messages.

See Also
Error and Message Handling, vbct_install_callbacks, vbct_options_num, vbct_options_str

vbct_do_binds
Binds server results to internal SQL-Sombrero/VBX internal program variables.

Syntax
vbct_do_binds(command&)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Remarks
vbct_do_binds is the equivalent of performing a ct_bind for each column in a result set.    Each column is
bound to an internal variable.    The information is made available through a call to the vbct_data function.

vbct_do_binds should only be called after function vbct_results returns a CS_SUCCEED.

Subsequent calls to vbct_fetch will result in the data from each row being placed in the internal variables.

Binding remains in effect until vbct_results returns CS_CMD_DONE.

See Also
vbct_data, vbct_fetch, vbct_results

vbct_dynamic
Initiate a prepared dynamic SQL-statement command.

Syntax
vbct_dynamic(command&, type&, id$, buffer$)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

type&

The type of dynamic SQL command to initiate.

Value of type: vbct_dynamic: id is: buffer is:
CS_CURSOR_DECLARE Declares a cursor on a

previously-prepared SQL
statement.

The prepared   
statement    identifier.

The cursor
name.

CS_DEALLOC De-allocates a prepared SQL
statement.

The prepared
statement    identifier.

NULL

CS_DESCRIBE_INPUT Retrieves input parameter
information.    An application
can    access this information
via vbct_describe or via
vbct_dyndesc.

The prepared
statement identifier.

NULL

CS_DESCRIBE_OUTPUT Retrieves column list
information.    An application
can access this    information
via vbct_describe or via   
vbct_dyndesc.

The prepared
statement identifier.

NULL

CS_EXECUTE Executes a prepared SQL
statement that requires zero
or more parameters.

The prepared
statement    identifier.

NULL

CS_EXEC_IMMEDIATE Execute a literal SQL
statement.

NULL. The SQL
statement to
execute.

CS_PREPARE Prepares a SQL statement. The prepared
statement    identifier.

The SQL
statement to
prepare.

id$

A pointer to the statement identifier.    This identifier is defined by the application and must conform to
server standards.

buffer$

A pointer to data space.

Results
Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
Initiating a command is the first step in sending it to a server.

Follow these steps to send a command to a server:

· Initiate the command by calling vbct_dynamic.    This routine sets up internal structures that are
used in building a command stream to send to the server.

· Pass parameters for the command, if required.    Most applications will pass parameters by calling
vbct_param once for each parameter that the command requires, but it is also possible to pass
parameters for a command by using vbct_dyndesc.

· Send the command to the server by calling vbct_send.

· Verify the success of the command by calling vbct_results.

This last step does not imply that an application need only call vbct_results once.    If the value of
vbct_results' result_type parameter indicates that there are fetchable results, the application will most
likely process the results using a loop controlled by vbct_results.    See the Open Client Client-Library/C
Programmer's Guide for a discussion of processing results.

About Prepared Statements

A prepared SQL statement is a SQL statement which is compiled and stored by a server.    Each prepared
statement is associated with a unique identifier.

An application can prepare an unlimited number of statements, but identifiers for prepared statements
must be unique within a connection.

Although the command structure used to prepare a statement can be different from the one used to
execute it, both of the command structures must belong to the same connection.

If a prepared statement is a Transact-SQL command containing host variables, each variable must begin
with a colon (:).

If a prepared statement requires parameters, they are passed using vbct_param or vbct_dyndesc at
execute time.

Once a statement is successfully prepared, it can be executed repeatedly until it is de-allocated.

Preparing a Statement

To initiate a command to prepare a statement, an application calls vbct_dynamic with type as
CS_PREPARE.

Getting a Description of Prepared Statement Input

To initiate a command to get a description of prepared statement input parameters, an application calls
vbct_dynamic with type as CS_DESCRIBE_INPUT.

An application typically retrieves a description of prepared statement input parameters before passing
input values to a prepared statement.

Getting a Description of Prepared Statement Output

To initiate a command to get a description of prepared statement output columns, an application calls
vbct_dynamic with type as CS_DESCRIBE_OUTPUT.

Executing a Prepared Statement

To initiate a command to execute a prepared statement, an application calls vbct_dynamic with type as
CS_EXECUTE.

Executing a Literal Statement

To initiate a command to execute a literal SQL statement, an application calls vbct_dynamic with type as
CS_EXEC_IMMEDIATE.

De-allocating a Prepared Statement

To initiate a command to de-allocate a prepared statement, an application calls vbct_dynamic with type as
CS_DEALLOC.

See Also
vbct_dyndesc, vbct_param, vbct_send

vbct_dyndesc
Perform operations on a dynamic SQL descriptor area.

Syntax
vbct_dyndesc(command&, descriptor$, operation&, index&, datafmt(DATAFMT), buffer(Any), buflen&,
copied&, indicator%)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

descriptor$

A pointer to the name of the descriptor.    Descriptor names must be unique within a connection.

operation&

The descriptor operation to initiate.    The following table lists the values that are legal for operation:

Value of operation: vbct_dyndesc:
CS_ALLOC Allocates a descriptor.

CS_DEALLOC De-allocates a descriptor.

CS_GETATTR Retrieves a parameter or result item's attributes.

CS_GETCNT Retrieves the number of parameters or columns.

CS_SETATTR Sets a parameter's attributes.

CS_SETCNT Sets the number of parameters or columns.

CS_USE_DESC Associates a descriptor with a statement or a
command structure

index&

When used, an integer variable.

Depending on the value of operation, index can be either the zero-based index of a descriptor item or the
number of items associated with a descriptor.

datafmt(DATAFMT)

When used, a pointer to a CS_DATAFMT structure.

buffer(Any)

When used, a pointer to data space.

buflen&

When used, buflen is the length, in bytes, of the buffer data.

copied&

When used, a pointer to an integer variable.    vbct_dyndesc sets copied to the length, in bytes, of the
data placed in buffer.

indicator%

When used, a pointer to an indicator variable.

The following table lists the possible values of indicator:

Value of operation: Value of    indicator: To Indicate:
CS_GETATTR -1 Truncation of a server value by   

CT-Library.

0 No truncation.

integer value Truncation of an application
value    by the server.

CS_SETATTR -1 The parameter has a null value.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_ROW_FAIL A recoverable error occurred. Recoverable errors
include conversion errors that occur while copying
values to program variables as well as memory
allocation failures.

CS_CANCELED The dynamic SQL operation was canceled.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
A dynamic SQL descriptor area contains information about the input parameters to a dynamic SQL
statement or the result data items generated by the execution of a dynamic SQL statement.

Although vbct_dyndesc takes a CS_COMMAND structure as a parameter, the scope of a dynamic SQL
descriptor area is a CT-Library context.    For example:

· Descriptor names must be unique within a context.

· An application can use any command structure within a context to reference the context's
descriptor areas.    For example, a descriptor area allocated through one command structure can
be de-allocated by another command structure within the same context.

Allocating a Descriptor

To allocate a descriptor, an application calls vbct_dyndesc with operation as CS_ALLOC.

The following table lists parameter values for CS_ALLOC operations:

descriptor,
desclen:

index: datafmt: buffer,
buflen:

copied: indicator :

The name of the
descriptor to
allocate,    the
length of the name
or   
CS_NULLTERM.

The maximum
number of items
that the des-
criptor will   
accom-modate.

NULL NULL,   
CS_UNUSED

NULL NULL

De-allocating a Descriptor

To de-allocate a descriptor, an application calls vbct_dyndesc with operation as CS_DEALLOC.

The following table lists parameter values for CS_DEALLOC operations:

descriptor,
desclen:

index: datafmt: buffer,
buflen:

copied: indicator :

The name of the
descriptor to de-
allocate, the length
of the name or   
CS_NULLTERM.

CS_UNUSED NULL NULL,
CS_UNUSE
D

NULL NULL

Retrieving a Parameter or Result Item's Attributes

To retrieve a parameter's or a result data item's attributes, an application calls vbct_dyndesc with
operation as CS_GETATTR.

The following table lists parameter values for CS_GETATTR operations:

descriptor,
desclen:

index: datafmt: buffer, buflen: copied: indicator:

The name of the
descriptor of   
interest, the
length of the
name or   
CS_NULLTERM.

The number of
the item whose
description is
being
requested.

As an input
parameter,   
datafmt   
describes     
buffer.   
vbct_dyndes
c   
overwrites   
datafmt with
a description
of the item.

If supplied, buffer
is set to the
value of    the
item.    If buffer is
NULL, only a
description of the
item is re-turned.
buflen must be
CS_UNUSED.   
datafmt.maxlengt
h    describes
buffer's    length.

If supplied,   
copied is set to
the number of
bytes placed in
buffer.    Can
be    NULL.

If supplied,
indicator is set
to the value of
the item's
indicator.    Can
be NULL.

An application needs to set the datafmt fields for a CS_GETATTR operation exactly as they would be set
for a ct_bind call.    The following table lists the fields that are used:

Field name: Set the field to:
datatype The datatype of the buffer variable.

format A bit-mask of format symbols.

maxlength The length of the buffer data space.

scale The scale of a numeric or decimal buffer; ignored for all other
datatypes.

precision The precision of a numeric or decimal buffer; ignored for all other
datatypes.

count 0 or 1

locale A pointer to a valid CS_LOCALE structure or NULL.

All other fields Are ignored.

vbct_dyndesc(CS_GETATTR) sets the datafmt fields exactly as vbct_describe would set them.    The
following table lists the fields in datafmt that vbct_dyndesc sets:

Field name: vbct_dyndesc sets the field to:
name The null-terminated name of the data item, if any.    A NULL name is indicated by

a namelen of 0.

namelen The actual length of the name, not including the null terminator.    0 to indicate a
NULL name.

datatype The datatype of the item.    All datatypes listed on the types topics page are valid,
with the exceptions of CS_VARCHAR and CS_VARBINARY.    Refer to Types.

maxlength The maximum possible length of the data for the column or parameter.

scale The scale of the result data item.

precision The precision of the result data item.

status A bitmask of the following symbols, or-ed together:    CS_CANBENULL to
indicate that the column can contain NULL values.    CS_HIDDEN to indicate that
the column is a "hidden" column that has been exposed.    CS_IDENTITY to
indicate that the column is an identity column.    CS_KEY to indicate the column
is part of the key for a table.    CS_VERSION_KEY to indicate the column is part
of the version key for the row.    CS_TIMESTAMP to indicate the column is a
timestamp column.    CS_UPDATABLE to indicate that the column is an
updatable cursor column.

count count represents the number of rows copied to program variables per vbct_fetch
call.vbct_dyndesc sets count to 1 to provide a default value in case an
application uses vbct_dyndesc's return CS_DATAFMT as ct_do_binds' input
CS_DATAFMT.

usertype The SQL Server user-defined datatype of the column or parameter, if any.
usertype is set in addition to (not instead of) datatype.

locale A pointer to a CS_LOCALE structure that contains locale information for the
data.    This pointer can be NULL.

Retrieving the Number of Parameters or Columns

To retrieve the number of parameters or result items a descriptor can describe, an application calls
vbct_dyndesc with operation as CS_GETCNT.

vbct_dyndesc sets buffer to the number of dynamic parameter specifications or the number of columns in
the dynamic SQL statement's select list, depending on whether input parameters or output columns are
being described.

The following table lists parameter values for CS_GETCNT operations:

descriptor,
desclen:

index: datafmt: buffer,
buflen:

copied: indicator:

The name of the
descriptor of interest,
the length of the name
or    CS_NULLTERM.

CS_UNUSED NULL A pointer to a
CS_INT,   
CS_UNUSE
D

If supplied,   
copied is set
to the
number of   
bytes placed
in buffer.   
Can be
NULL.

NULL

Setting a Parameter's Attributes

To set a parameter's attributes, an application calls vbct_dyndesc with operation as CS_SETATTR.

The following table lists parameter values for CS_SETATTR operations:

descriptor,
desclen:

index: datafmt: buffer, buflen: copied: indicator:

The name of the
descriptor of   
interest, the length
of the name or   
CS_NULLTERM.

The number of
the item whose
description is
being    set.

datafmt
contains a
description of
the item.

A pointer to the value
of the item, the length
of the value.    Pass
buflen as
CS_UNUSED if buffer
points to a fixed-length
type.

NULL If supplied,
indicator is
the value of
the item's
indicator.   
If indicator
is -1 then
buffer is
ignored
and the
value of the
item is set
to NULL.   

indicator
can be
NULL

An application needs to set the datafmt fields for a CS_SETATTR operation exactly as they would be set
for a vbct_param call.    The following table lists the fields that are used:

Field name: Set the field to:
name The name of the parameter.

namelen The length of the name or CS_NULLTERM.

datatype The datatype of the item being set.

maxlength For variable-length return parameters, maxlength is the maximum
number of bytes to be returned for this parameter.maxlength is ignored
if status is CS_INPUTVALUE or if    datatype represents a fixed-length
type.

status CS_INPUTVALUE, CS_UPDATECOL, or CS_RETURN.
CS_UPDATECOL indicates an update column for a cursor declare
command.CS_RETURN indicates a return parameter.

locale A pointer to a valid CS_LOCALE structure or NULL.

All other fields Are ignored.

Setting the Number of Parameters or Columns

To set the number of parameters or columns a descriptor can describe, an application calls vbct_dyndesc
with operation as CS_SETCNT.

The following table lists parameter values for CS_SETCNT operations:

descriptor,
desclen:

index: datafmt: buffer, buflen: copied: indicator :

The name of the
descriptor to
allocate, the length
of the name or   
CS_NULLTERM.

The new descriptor
count.

NULL NULL,
CS_UNUSED

NULL NULL

Associating a Descriptor with a Statement or Command Structure

To associate a descriptor with a prepared statement or command structure, an application calls
vbct_dyndesc with operation as CS_USE_DESC.

The following table lists parameter values for CS_USE_DESC operations:

descriptor,
desclen:

index: datafmt: buffer,
buflen:

copied: indicat
or:

The name of the
descriptor to
allocate, the length
of the name or   
CS_NULLTERM.

CS_UNUSED NULL NULL,
CS_UNUSED

NULL NULL

See Also
vbct_dynamic, vbct_fetch

vbct_exit
Exit CT-Library.

Syntax
vbct_exit(context&, option&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

option&

vbct_exit can behave in different ways, depending on the value specified for option.    The following table
lists the symbolic values that are legal for option:

Value of option: Behavior of vbct_exit:
CS_UNUSED vbct_exit closes all open connections for which no

results are pending and terminates CT-Library for
this    context.    If results are pending on one or
more connections, vbct_exit returns CS_FAIL and
does not    terminate CT-Library.

CS_FORCE_EXIT vbct_exit closes all open connections for this
context, whether or not any results are pending,
and terminates    CT-Library for this context.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Remarks
vbct_exit terminates CT-Library for a specific context.    It closes all open connections, de-allocates
internal data space and cleans up any platform-specific initialization.

vbct_exit must be the last CT-Library routine called within an CT-Library context.

If an application finds it needs to call CT-Library routines after it has called vbct_exit , it can re-initialize
CT-Library by calling vbct_init again.

If results are pending on any of the context's connections and option is not passed as CS_FORCE_EXIT,
vbct_exit returns CS_FAIL.    This means that CT-Library is not correctly terminated and that the
application must call vbct_exit again after handling the connections' pending results.

vbct_exit always completes synchronously, even if asynchronous network I/O has been specified for any
of the context's connections.

An application can call vbct_close to close a single connection.

If vbct_init is called for a context, it is an error to de-allocate the context before calling vbct_exit

See Also
vbct_close , vbct_init

vbct_fetch
Fetch result data.

Syntax
vbct_fetch(command&, type&, offset&, option&, rows_read&)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

type&

This parameter is currently unused and must be passed as CS_UNUSED in order to ensure compatibility
with future versions of CT-Library.

offset&

This parameter is currently unused and must be passed as CS_UNUSED in order to ensure compatibility
with future versions of CT-Library.

option&

This parameter is currently unused and must be passed as CS_UNUSED in order to ensure compatibility
with future versions of CT-Library.

rows_read&

A pointer to an integer variable.    vbct_fetch sets rows_read to the number of rows read by the vbct_fetch
call.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully vbct_fetch places the

number of rows read in rows_read.    The application must
continue to call vbct_fetch, as the result data is not yet
completely fetched.

CS_END_DATA All rows of the current result set have been fetched.    The
application should call vbct_results to get the next result set.

CS_ROW_FAIL A recoverable error occurred while fetching a row.   
Recoverable errors include memory allocation failures    and
conversion errors that occur while copying row values to
program variables.    An application can continue calling
vbct_fetch to keep    retrieving rows, or can call vbct_cancel to
cancel the remaining results.    vbct_fetch places the number of
rows fetched in rows_read.    This number includes the row on
which the error occurred.    The application must continue to call
vbct_fetch, as the result data is not yet completely fetched.

CS_FAIL The routine failed.    vbct_fetch places the number of rows
fetched in    rows_read.    This number includes the failed row.   
Unless the routine failed due to application error (for example,
bad parameters), additional result rows are not available.    If

vbct_fetch returns CS_FAIL, an application must call
vbct_cancel with type as CS_CANCEL_ALL before using the
affected command structure to send another command.    If
vbct_cancel returns CS_FAIL, the application must call
vbcs_close(CS_FORCE_CLOSE) to force the connection
closed.

CS_CANCELED The current result set and any additional result sets have been
canceled.    Data is no longer available.    vbct_fetch places the
number of rows fetched before the cancel occurred in
rows_read.

CS_PENDING Asynchronous network I/O is in effect.    For more information,
refer to Asychronous Programming.

CS_BUSY An asynchronous operation is already pending for this   
connection.    Refer Asychronous Programming.

"Result data" is an umbrella term for all the types of data that a server can return to an application.   
These types of data include:

· Regular rows.

· Cursor rows.

· Return parameters.    Types of data that are returned as parameters include message
parameters, stored procedure return parameters, extended error data, and registered procedure
notification parameters.

· Stored procedure status numbers.

· Compute rows.

vbct_fetch is used to fetch all of these types of data.

Conceptually, result data is returned to an application in the form of one or more rows that make up a
"result set".

Regular row and cursor row result sets can contain more than one row. For example, a regular row result
set might contain a hundred rows.

If array binding has been specified for the data items in a regular row or cursor row result set, then
multiple rows can be fetched with a single call to vbct_fetch.

Return parameter, status number, and compute row result sets, however, only contain a single "row."    For
this reason, even if array binding is specified, only a single row of data is fetched.

vbct_results sets result_type to indicate the type of result available. vbct_results must indicate a result
type of CS_ROW_RESULT, CS_CURSOR_RESULT, CS_PARAM_RESULT, CS_STATUS_RESULT, or
CS_COMPUTE_RESULT before an application calls vbct_fetch.

After calling vbct_results, an application can:

· Process the result set by binding the result items and fetching the data. (A typical application will
call vbct_describe to get data descriptions, vbct_do_binds to bind result items, vbct_fetch to fetch
result rows, and vbct_data, if the result set contains large text or image values.    However, an
application can also use vbct_fetch and vbct_dyndesc to process a result set.)

· Discard the result set, using vbct_cancel.

If an application does not cancel a result set, it must completely process the result set by calling
vbct_fetch as long as vbct_fetch continues to indicate that rows are available.

The simplest way to do this is in a loop that terminates when vbct_fetch fails to return either
CS_SUCCEED or CS_ROW_FAIL.    After the loop terminates, an application can use a switch-type
statement against vbct_fetch's final return code to find out what caused the termination.

If a result set contains zero rows, an application's first vbct_fetch call will return CS_END_DATA.

NOTE:    An application must call vbct_fetch in a loop even if a result set contains only a single row.    An
application must call vbct_fetch until it fails to return either CS_SUCCEED or CS_ROW_FAIL.

If a conversion error occurs when retrieving a result item, the rest of the items in the row are retrieved.

vbct_fetch returns CS_ROW_FAIL if a conversion or truncation error occurs.

Fetching Regular Rows

Regular rows can be fetched one row at a time, or several rows at once.

Fetching Return Parameters

Several types of data can be returned to an application as a parameter result set, including the following:

· Stored procedure return parameters

· Message parameters

Extended error data and registered procedure notification parameters are also returned as parameter
result sets, but since an application does not call vbct_results to process these types of data, the
application never sees a result type of CS_PARAM_RESULT.    Instead, the row of parameters is simply
available to be fetched after the application retrieves the CS_COMMAND structure containing the data.

A return parameter result set consists of a single row with a number of columns equal to the number of
return parameters.

Fetching a Return Status

A stored procedure return status result set consists of a single row with a single column, the status
number.

Fetching Compute Rows

Compute rows result from the compute clause of a select statement.

A compute row result set consists of a single row with a number of columns equal to the number of
aggregate operators in the compute clause that generated the row.

Each compute row is considered to be a distinct result set.

See Also
vbct_describe, vbct_get_data, vbct_results.

vbct_get_data
Read a chunk of data from the server.

Syntax
vbct_get_data(command&, item&, buffer(Any), buflen&, outlen&)

Parameters
command&

The parameter passed is the command pointer which is passed from the vbct_cmd_alloc function.

item&

An integer representing the data item of interest.    When using vbct_get_data to retrieve data for more
than one item in a result set, item can be incremented only.    This means an application cannot retrieve
data for item number 3 after it has retrieved data for item number 4.

When retrieving a column, item is the column's column number.    The first column in a select statement's
select-list is column number 1, the second number 2, and so forth.

When retrieving a compute column, item is the column number of the compute column.    Compute
columns are returned in the order in which they are listed in the compute clause.    The first column
returned is number 1.

When retrieving a return parameter, item is the parameter number of the parameter.    The first parameter
returned by a stored procedure is number 1.    Stored procedure return parameters are returned in the
same order as the parameters were originally specified in the stored procedure's create procedure
statement.    This is not necessarily the same order as specified in the RPC command that invoked the
stored procedure.    In determining what number to pass as item do not count non-return parameters.   
For example, if the second parameter in a stored procedure is the only return parameter, pass item as 1.

When retrieving a stored procedure return status, item must be 1, as there can be only a single status in a
return status result set.

buffer(Any)

A pointer to data space. vbct_get_data fills buffer with a buflen-sized chunk of the column's value.

buffer cannot be NULL.

buflen&

The length, in bytes, of buffer.

If buflen is 0, vbct_get_data updates the I/O descriptor for the item without retrieving any data.

buflen is required even for fixed-length buffers, and cannot be CS_UNUSED.

outlen&

A poiner to an integer variable.

If outlen is supplied, vbct_get_data sets outlen to the number of bytes placed in buffer.

Results
Returns: To Indicate:
CS_SUCCEED vbct_get_data successfully retrieved a chunk of data that is

not the last chunk of data for this column.

CS_FAIL The routine failed.    Unless the routine failed due to
application error(for example, bad parameters), additional
result data is not available.

CS_END_ITEM vbct_get_data successfully retrieved the last chunk of data
for this column.    This is not the last column in the row.

CS_END_DATA vbct_get_data successfully retrieved the last chunk of data
for this column.    This is the last column in the row.

CS_CANCELED The operation was canceled.    Data for this result set is no
longer available.

CS_PENDING Asynchronous network I/O is in effect.    Refer to
Asychronous Programmingfor more information.

Remarks
An application typically calls vbct_get_data in a loop to retrieve large text or image values, although it can
be used on columns of any datatype. Each call to vbct_get_data retrieves a buflen-sized chunk of data.

vbct_get_data retrieves data exactly as it is sent by the server.    No conversion is performed.    For this
reason, care must be taken when interpreting data contained in buffer.    In particular, CS_CHAR data may
not be null-terminated and multi-byte character strings may be broken within a byte sequence defining a
single character.

Only those columns following the last bound column are available to vbct_get_data.    Data in unbound
columns that precede bound columns is discarded.    For example, if an application selects columns
number 1 through 4 and binds columns number 1 and 3, the application cannot use vbct_get_data to
retrieve the data for column 2, but can use vbct_get_data to retrieve the data for column 4.

Once data has been retrieved for a column, it is no longer available.

If an application reads a text or image column that it will need to update at a later time, it needs to retrieve
an I/O descriptor for the column.    To do this, an application can call vbct_data_info after calling
vbct_get_data for the column.

NOTE:    An application cannot retrieve an I/O descriptor for a column before it has called vbct_get_data
for the column.    However, this vbct_get_data call does not have to actually retrieve any data.    An
application can call vbct_get_data with a buflen of 0, and then call vbct_data_info to retrieve the
descriptor.    This technique is useful when an application needs to determine the length of a text or image
value before retrieving it.

See Also
vbct_data_info, vbct_fetch, vbct_send_data

vbct_getformat
Return the server user-defined format string associated with a result column.

Syntax
vbct_getformat (command&, colnum&, buffer$, outlen&)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

colnum&

The number of the column whose user-defined format is desired.    The first column in a select statement's
select-list is column number 1, the second number 2, and so forth.

buffer$

A pointer to the space in which vbct_getformat will place a null-terminated format string.

outlen&

A pointer to an integer variable.

If outlen is supplied, vbct_getformat sets outlen to the length, in bytes, of the format string.    This length
includes the null terminator.

If the format string is larger than buflen bytes, an application can use the value of outlen to determine how
many bytes are needed to hold the string.

If no format string is associated with the column identified by colnum, vbct_getformat sets outlen to 1 (for
the null terminator).

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
An application can call vbct_getformat after vbct_results indicates results of type CS_ROW_RESULT.

If no format string is associated with the column identified by colnum, vbct_getformat sets outlen to 1.

Typical applications will not use vbct_getformat, which is provided primarily for gateway applications
support.

See Also

vbct_describe

vbct_getloginfo
Transfer TDS login response information from a CS_CONNECTION structure to a newly-allocated
CS_LOGINFO structure.

Syntax
vbct_getloginfo (connection&, logptr&)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

logptr&

A pointer to a program variable which vbct_getloginfo sets to the address of a newly-allocated
CS_LOGINFO structure.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this    connection.    Refer to Asychronous
Programming.

Remarks
TDS (Tabular Data Stream) is a communications protocol used for the transfer of requests and request
results between clients and servers.

There are two reasons an application might call vbct_getloginfo:

· If it is an Open Server gateway application using TDS pass-through.

· In order to copy login properties from an open connection to a newly-allocated connection
structure.

NOTE:    Do not call vbct_getloginfo from within a completion callback routine.    vbct_getloginfo calls
system-level memory functions which may not be re-entrant.

TDS Pass-Through

When a client connects directly to a server, the two programs negotiate the TDS format they will use to
send and receive data.    When a gateway application uses TDS pass-through, the gateway forwards TDS
packets between the client and a remote server without examining or processing them.    This means the
remote server and the client must agree on a TDS format to use.

vbct_getloginfo is the third of four calls, two of them Server Library calls, that allow a client and a remote
server to negotiate a TDS format.    The calls, that can only be made in an Open Server SRV_CONNECT
event handler, are as follows:

· srv_getloginfo to allocate a CS_LOGINFO structure and fill it with TDS information from a client
login request.

· vbct_setloginfo to transfer the TDS information retrieved in step 1 from the CS_LOGINFO
structure to a CT-Library CS_CONNECTION structure.    The gateway uses this
CS_CONNECTION structure in the vbct_connect call which establishes its connection with the
remote server.

· vbct_getloginfo to transfer the remote server's response to the client's TDS information from the
CS_CONNECTION structure into a newly-allocated CS_LOGINFO structure.

· srv_setloginfo to send the remote server's response, retrieved in step 3, to the client.

See Also
vbct_recvpassthru, vbct_sendpassthru, vbct_setloginfo

vbct_init
Initialize CT-Library for an application context.

Syntax
vbct_init(context&, version&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

version&

The version of CT-Library behavior that the application expects.    The following table lists the symbolic
values that are legal for version:

Value of version: To Indicate: Features Supported:
CS_VERSION_100 10.0 behavior. Cursors, registered procedures,

remote procedure calls.    This is
the initial version of CT-Library.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_MEM_ERROR The routine failed due to a memory allocation
error.

CS_FAIL The routine failed for other reasons.    vbct_init
returns CS_FAIL if CT-Library cannot provide
version-level behavior.

A vbct_init failure does not typically make context unusable.    Instead of dropping the context structure,
an application can try calling vbct_init again with the same context pointer.

Remarks
vbct_init sets up internal control structures and defines the version of CT-Library behavior that the
application expects.

vbct_init must be the first CT-Library routine called in a CT-Library application context.    Other CT-Library
routines will fail if they are called before vbct_init.

NOTE:    A CT-Library application can call CT-Library routines before calling vbct_init (but must call the
CT-Library routine vbcs_ctx_alloc before calling vbct_init).

If vbct_init returns CS_SUCCEED, CT-Library will provide the requested behavior, regardless of the
actual version of CT-Library in use.    If CT-Library cannot provide the requested behavior, vbct_init returns
CS_FAIL.    Generally speaking, higher-level versions of CT-Library can provide lower-level behavior, but
lower versions cannot provide higher-level behavior.

Because an application calls vbct_init before it sets up error handling, an application must check

vbct_init's return code in order to detect failure.

It is not an error for an application to call vbct_init multiple times for the same context.    If this occurs, only
the first call has any effect.    CT-Library provides this functionality because some applications cannot
guarantee which of several modules will execute first.    If this happens, each module needs to contain a
call to vbct_init.

version is the version of CT-Library behavior that the application expects.    version determines the value
of the context's CS_VERSION property.    Connections allocated within a context use default
CS_TDS_VERSION values based on their parent context's CS_VERSION level.

See Also
vbcs_ctx_alloc, vbct_exit

vbct_install_callbacks
Installs a CT-Library callack routine.

Syntax
vbct_install_callbacks(context&, type&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

type&

The type of callback routine of interest.    The folloing table lists the symbolic values that are legal for type.

Value of type: vbct_install_callbacks installs:
CS_CLIENTMSG_CB A client message callback.

CS_COMPLETION_CB A completion callback.

CS_ENCRYPT_CB An encryption callback.

CS_MESSAGE_CB A message callback.

CS_CHALLENGE_CB A negotiation callback.

CS_SERVERMSG_CB A server message callback.

CS_NOTIF_CB A registered procedure notification callback.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
A typical application will use vbct_install_callbacks only to install callback routines.

(Lloyd look at this ex)

To install a callback routine, an application calls vbct_install_callbacks with type set to CS_SET and func
as the address of the callback to install.

When a context is allocated, it has no callback routines installed.    An application must specifically install
any callbacks that are required.

When a connection is allocated, it picks up default callback routines from its parent context.

A connection picks up its parent context's callback routines only once, when it is allocated.    This has two
important implications:

· Existing connections are not affected by changes to their parent context's callback routines.

· If a callback routine of a particular type is de-installed for a connection, the connection does not
pick up its parent context's callback routine.    Instead, the connection is considered to have no
callback routine of this type installed.

An application can use the CS_USERDATA property to transfer information between a callback routine
and the program code that triggered it.    The CS_USERDATA property allows an application to save user
data in internal CT-Library space and retrieve it later.

See Also
vbct_deinstall_callbacks

vbct_labels
Define a security label or clear security labels for a connection.

Syntax
vbct_labels(connection&, action&, labelname$, labelvalue$, outlen&)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

connection must represent a closed connection.

action&

One of the following symbolic values:

Value of action: vbct_labels:
CS_SET Sets a security label.

CS_CLEAR Clears all security labels previously specified for
this connection.

labelname$

If action is CS_SET, labelname points to the name of the security label being set.

If action is CS_CLEAR, labelname must be NULL.

Security label names must be at least one byte long and no more than CS_MAX_NAME bytes long.

If action is CS_CLEAR, pass namelen as CS_UNUSED.

labelvalue$

If action is CS_SET, labelvalue points to the value of the security label being set.

If action is CS_CLEAR, labelvalue must be NULL.

Security label values must be at least one byte long.

If action is CS_CLEAR, pass valuelen as CS_UNUSED.

outlen&

This parameter is currently unused and must be passed as NULL.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    For more information, refer to
Asychronous Programming.

Remarks
An application needs to define security labels if it will be connecting to a server that uses trusted-user
security handshakes.

Secure SQL Server uses trusted-user security handshakes.    On Secure SQL Server, security labels are
known as "sensitivity labels."

There are two ways for an application to define security labels.    An application can use either, or both, of
these methods:

· The application can call vbct_labels one time for each label it wants to define.

· The application can call vbct_install_callbacks to install a user-supplied negotiation callback to
generate security labels.    At connection time, CT-Library automatically triggers the callback in
response to a request for security labels.

If an application uses both methods, the labels defined via vbct_labels and the labels generated by the
negotiation callback are sent to the server at the same time.

A connection that will be participating in trusted-user security handshakes must set the
CS_SEC_NEGOTIATE property to CS_TRUE.

There is no limit on the number of security labels that can be defined for a connection.

vbct_labels does not perform any type of checking on security labels, but simply passes the label
name/label value combinations on to the server.

For example, vbct_labels does not raise an error if an application supplies two label values for the same
label name.

See Also
vbct_install_callbacks, vbct_con_props_num, vbct_con_props_str, vbct_connect

vbct_options_num
Set, retrieve, or clear the values of server query-processing options.

Syntax
vbct_options_num(connection&, action&, option&, param$,outlen&)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

connection is the server connection for which the option is set, retrieved, or cleared.

action&

One of the following symbolic values:

Value of action: vbct_options_num:
CS_SET Sets the option.

CS_GET Retrieves the option.    An application can use
vbct_options_num to retrieve options from 10.0+
SQL Servers only.

CS_CLEAR Clears the option by resetting it to its default
value.    Default values are determined by the
server to which an application is connected.

option&

The server option of interest.

param&

All options take parameters.

When setting an option, param can point to a symbolic value, a boolean value, an integer value, or a
character string.

When retrieving an option, param points to the space in which vbct_options_num places the value of the
option.

If paramlen indicates that param is not large enough to hold the option's value, vbct_param sets outlen to
the length of the value and returns CS_FAIL.

When clearing an option, param must be NULL.

outlen&

A pointer to an integer variable.

If an option is being set or cleared, outlen is not used and must be passed as NULL.

If an option is being retrieved, vbct_options_num sets outlen to the length, in bytes, of the option's value.
This length includes a null terminator, if applicable.

If the option's value is larger than paramlen bytes, an application can use the value of outlen to determine
how many bytes are needed to hold the information.

Value of option: param is: Legal values for
param:

Defaults to:

CS_OPT_ANSINULL A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_ANSIPERM A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_ARITHABORT A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_ARITHIGNORE A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_CHAINXACTS A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_CURCLOSEON
XACT

A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_DATEFIRST A symbolic value
representing the day
to use as the first day
of the week.

CS_OPT_SUNDAY
CS_OPT_MONDAYCS_
OPT_TUESDAY
CS_OPT_WEDNESDAY,
CS_OPT_THURSDAY,
CS_OPT_FRIDAY,
CS_OPT_SATURDAY

For us_english, the
default is   
CS_OPT_SUNDAY.

CS_OPT_DATEFORMAT A symbolic value   
representing the
order of year, month,
and day to be used in
datetime values.

CS_OPT_FMTMDY,CS_O
PT_FMTDMY,CS_OPT_FM
TYMD,CS_OPT_FMTYDM
,CS_OPT_FMTMYD,CS_
OPT_ FMTDYM"

For us_english, the
default is CS_OPT_
FMTMDY.

CS_OPT_FIPSFLAG A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_FORCEPLAN A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_FORMATONLY A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_GETDATA A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_ISOLATION A symbolic value
representing the
isolation level.

CS_OPT_LEVEL1,
CS_OPT_LEVEL3

CS_OPT_LEVEL1

CS_OPT_NOCOUNT A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_NOEXEC A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_PARSEONLY A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_QUOTED_IDEN
T

A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_RESTREES A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_ROWCOUNT The maximum
number of regular
rows to return.

An integer value.    0 means
all rows are returned.

0, meaning all rows
are returned.

CS_OPT_SHOWPLAN A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_STATS_IO A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_STATS_TIME A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_STR_RTRUNC A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_TEXTSIZE The length, in bytes,
of    the longest text
or    image value the
server should return.

An integer value. 32,768 bytes.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.    If vbct_options_num returns
CS_FAIL, param remains untouched.

CS_CANCELED The operation was canceled.

CS_PENDING Asynchronous network I/O is in effect.    Refer to
Asychronous Programmingfor more information.

CS_BUSY An asynchronous operation is already pending for
this connection.    For more information, refer to
Asychronous Programming.

Remarks
Although query-processing options can be set and cleared through the Transact-SQL set command, it is
recommended that CT-Library applications use vbct_options_num instead.    This is because
vbct_options_num allows an application to check the status of an option, that cannot be done through the
set command.

An application can use vbct_options_num to change server options only for a single connection at a time.
The connection must be open and must have no active commands or pending results, but can have an
open cursor.

See Also
vbct_capability, vbct_con_props_num, vbct_con_props_str

vbct_options_str
Set, retrieve, or clear the values of server query-processing options.

Syntax
vbct_options_str(connection&, action&, option&, param$,outlen&)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

connection is the server connection for which the option is set, retrieved, or cleared.

action&

One of the following symbolic values:

Value of action: vbct_options:
CS_SET Sets the option.

CS_GET Retrieves the option.    An application can use
vbct_options_str to retrieve options from 10.0+
SQL Servers only.

CS_CLEAR Clears the option by resetting it to its default
value.    Default values are determined by the
server to which an application is connected.

option&

The server option of interest.

param$

All options take parameters.

When setting an option, param can point to a symbolic value, a boolean value, an integer value, or a
character string.

When retrieving an option, param points to the space in which vbct_options_str places the value of the
option.

If paramlen indicates that param is not large enough to hold the option's value, vbct_param sets outlen to
the length of the value and returns CS_FAIL.

When clearing an option, param must be NULL.

outlen&

A pointer to an integer variable.

If an option is being set or cleared, outlen is not used and must be passed as NULL.

If an option is being retrieved, vbct_options_str sets outlen to the length, in bytes, of the option's value.   
This length includes a null terminator, if applicable.

If the option's value is larger than paramlen bytes, an application can use the value of outlen to determine
how many bytes are needed to hold the information.

Value of option: param is: Legal values for
param:

Defaults to:

CS_OPT_AUTHOFF A string value   
representing an
authority level.

A string value.    Possible
values include "sa", "sso",
and "oper".

Not applicable

CS_OPT_AUTHON A string value   
representing an
authority level.

A string value.    Possible
values include "sa", "sso",
and "oper".

Not applicable

CS_OPT_CURREAD A string value   
representing a read
level label.

A string value. NULL

CS_OPT_CURWRITE A string value   
representing a write
level label.

A string value. NULL

CS_OPT_IDENTITYOF
F

A string value   
representing a table   
name.

A string value. NULL

CS_OPT_IDENTITYON A string value   
representing a table   
name.

A string value. NULL

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.    If vbct_options_str returns
CS_FAIL, param remains untouched.

CS_CANCELED The operation was canceled.

CS_PENDING Asynchronous network I/O is in effect.    Refer to
Asychronous Programming for more information.

CS_BUSY An asynchronous operation is already pending for
this connection.    For more information, refer to
Asychronous Programming.

Remarks
Although query-processing options can be set and cleared through the Transact-SQL set command, it is
recommended that CT-Library applications use vbct_options_str instead.    This is because
vbct_options_str allows an application to check the status of an option, which cannot be done through the
set command.

An application can use vbct_options_str to change server options only for a single connection at a time.   
The connection must be open and must have no active commands or pending results, but can have an
open cursor.

See Also
vbct_capability, vbct_con_props_num, vbct_con_props_str

vbct_param
Define a command parameter.

Syntax
vbct_param(command&, datafmt(CS_DATAFMT), data(Any), datalen& indicator%)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

datafmt(CS_DATAFMT)

A pointer to a CS_DATAFMT structure that describes the parameter.

data(Any)

The address of the parameter data.

There are two ways to indicate a parameter with a null value:

· Pass indicator as -1. Data and datalen are ignored in this case.

· Pass data as NULL and datalen as 0 or CS_UNUSED.

datalen&

The length, in bytes, of the parameter data.

If datafmt.datatype indicates that the parameter is a fixed-length type, datalen is ignored.
CS_VARBINARY and CS_VARCHAR are considered to be fixed-length types.

indicator%

An integer variable used to indicate a parameter with a null value.    To indicate a parameter with a null
value, pass indicator as -1.    If indicator is -1, data and datalen are ignored.

Type of command: vbct_param called
for what purpose?

datafmt.status is: data, datalen are:

Dynamic SQL execute To pass input parameter
values.

CS_INPUTVALUE The parameter value
and    length.

Language To pass input parameter
values.

CS_INPUTVALUE The parameter value
and    length.

Message To pass input parameter
values.

CS_INPUTVALUE The parameter value
and    length.

RPC To pass input or return
parameter values.

CS_RETURN to pass a
return parameter;   
CS_INPUTVALUE to
pass a non-return   
parameter.

The parameter value
and    length.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
An application may need to call vbct_param:

· To identify update columns for a cursor declare command.

· To define host variable formats for a cursor declare command.

· To pass input parameter values for a cursor open, cursor update, dynamic SQL execute,
language, message, or RPC command.

An application calls vbct_command to initiate a language, RPC or message command, and calls
vbct_dynamic to initiate a Dynamic SQL execute command

In some cases an application may need to pass a parameter that has a value of NULL.    For example, an
application might pass parameters with null values to a stored procedure that assigns default values to
NULL input parameters.

There are two ways to indicate a parameter with a null value:

· Pass indicator as -1.    Data and datalen are ignored in this case.

· Pass data as NULL and datalen as 0 or CS_UNUSED.

CT-Library does not perform any conversion on parameters before passing them to the server.    If
parameter conversion is required, it is the server's responsibility.

Passing Input Parameter Values

An application may need to pass input parameter values for:

· CT-Library cursor open commands

· Dynamic SQL execute commands

· Language commands

· Message commands

· RPC commands

When passing input parameter values, parameters can either be named or unnamed.    If one parameter
is named, all parameters must be named.    If parameters are not named, they are interpreted positionally.

Dynamic SQL execute commands require input parameter values when the prepared statement being
executed contains dynamic parameter markers.

Language commands require input parameter values when the text of the language command contains
host variables.

Message commands require input parameters values when the message takes parameters.

RPC commands require input parameter values when the stored procedure being executed takes
parameters.

The following table lists the fields in datafmt that are used when passing input parameter values:

Field name: Set the field to:

name The name of the host variable.

namelen The length, in bytes, of name, or 0 to indicate an
unnamed parameter.

datatype The datatype of the host variable.    All standard CT-
Library types are valid except for CS_TEXT_TYPE,
CS_IMAGE_TYPE, and CT-Library user-defined types.    If
datatype is CS_VARCHAR_TYPE or   
CS_VARBINARY_TYPE then data must point to a   
CS_VARCHAR or CS_VARBINARY structure.

status CS_INPUTVALUE

All other fields Are ignored.

See Also
vbct_command_num, vbct_command_str, vbct_dynamic, vbct_send

vbct_poll
Poll connections for asynchronous operation completions and registered procedure notifications.

Syntax
vbct_poll(context&, connection&, milliseconds&, compid&, compstatus&)

Parameters
context&

The parameter passed is the context pointer that is obtained from the vbcs_ctx_alloc function.

connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

miliseconds&

The length of time, in miliseconds, to wait for pending operations to complete.

compid&

The address of an integer variable.    vbct_poll sets compid to one of the following symbolic vlaues to
indicate what has completed:

Value of compid: Indicating:
BLK_ROWXFER vbblk_rowxfer has completed.

BLK_SENDROW blk_sendrow has completed.

BLK_SENDTEXT blk_sendtext has completed.

BLK_TEXTXFER vbblk_textxfer has completed

CT_CANCEL vbct_cancel has completed.

CT_CLOSE vbct_close has completed.

CT_CONNECT vbct_connect has completed.

CT_FETCH vbct_fetch has completed.

CT_GET_DATA vbct_get_data has completed.

CT_NOTIFICATION A notification has been received.

CT_OPTIONS_NUM vbct_options_num has completed.

CT_OPTIONS_STR vbct_options_str has completed.

CT_RECVPASSTHRU vbct_recvpassthru has completed.

CT_RESULTS vbct_results has completed.

CT_SEND vbct_send has completed.

CT_SEND_DATA vbct_send_data has completed.

CT_SENDPASSTHRU vbct_sendpassthru has completed.

A user-defined value.    This value must be    greater than or equal to    CT_USER_FUNC.    A user-defined
function has completed.

comstatus&

A pointer to a variable type of CS_RETCODE.    vbct_poll sets compstatus to indicate the final return code
of the completed operation.    This can be any of the return codes listed for the routine, with the exception

of CS_PENDING.

context: connection: compconn: vbct_poll:
NULL Must have a value. Must be NULL. Checks the single

connection specified by
connection.

Has a value Must be NULL. Must have a value. Checks all connections
within this context.   
Sets compconn to point
to the connection
owning the first
completed operation it
finds.

tablename$

A pointer to the name of the table of interest.    Any legal server table name is acceptable.

Results
Returns: To Indicate:
CS_SUCCEED An operation has completed.

CS_FAIL An error occurred.

CS_TIMED_OUT The timeout value specified by milliseconds elapsed    before
any operation completed.    Asynchronous operations may be in
progress.

CS_QUIET vbct_poll was called with milliseconds as 0 (to indicate that it
should return immediately).    No asynchronous operations are
in progress, and no completed operations were found.

CS_INTERRUPT A system interrupt has occurred.

Remarks

See Also
 vbct_wakeup

vbct_recvpassthru
Receive a TDS (Tabular Data Stream) packet from a server.

Syntax
vbct_recvpassthru (command&, recvptr&)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

recvptr&

The address of a pointer variable.    vbct_recvpassthru sets the variable to the address of a buffer
containing the most-recently-received TDS packet.    The application is not responsible for allocating this
buffer.

Results
Returns: To Indicate:
CS_PASSTHRU_MORE Packet received successfully; more packets are available.

CS_PASSTHRU_EOM Packet received successfully; no more packets are
available.

CS_FAIL The routine failed.

CS_CANCELED The pass-through operation was canceled.

CS_PENDI NG Asynchronous network I/O is in effect.    Refer to
Asychronous Programming.

CS_BUSY An asynchronous operation is already pending for this
connection.    For more information, refer to Asychronous
Programming.

Remarks
TDS is a communications protocol used for the transfer of requests and request results between clients
and servers.    Under ordinary circumstances, non-gateway applications do not usually have to deal with
TDS, because CT-Library manages the data stream.

vbct_recvpassthru and vbct_sendpassthru are useful in gateway applications.    When an application
serves as the intermediary between two parties (such as a client and a remote server, or two servers), it
can use these routines to pass the TDS stream from one server to the other, eliminating the process of
interpreting the information and re-encoding it.

vbct_recvpassthru reads a packet of bytes from a server connection and sets recvptr to point to the buffer
containing the bytes.

Default packet sizes vary by platform.    On most platforms, a packet has a default size of 512 bytes.    A
connection can change its packet size via vbct_con_props_num and vbct_con_props_str.

vbct_recvpassthru returns CS_PASSTHRU_EOM if the TDS packet has been marked by the server as

EOM (End Of Message).    If the TDS packet is not marked EOM, vbct_recvpassthru returns
CS_PASSTHRU_MORE.

A connection which is being used for a pass-through operation cannot be used for any other CT-Library
function until CS_PASSTHRU_EOM has been received.

See Also
vbct_getloginfo, vbct_sendpassthru, vbct_setloginfo

vbct_remote_pwd
Define or clear passwords to be used for server-to-server connections.

Syntax
vbct_remote_pwd(connection&, action&, server_name$, password$)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

It is illegal to define remote passwords for a connection that is open.

action&

One of the following symbolic values:

Value of action: vbct_remote_pwd:
CS_SET Sets the remote password

CS_CLEAR Clears all remote passwords specified for this
connection by setting them to NULL

server_name$

A pointer to the name of the server for which the password is being defined.    server_name is the name
given to the server in an interfaces file.

If server_name is NULL, the specified password will be considered a "universal" password that can be
used with any server that does not have a password explicitly specified for it.

If action is CS_CLEAR, server_name must be NULL.

password$

A pointer to the password being installed for remote logins to the server_name server.

If action is CS_CLEAR, password must be NULL.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
vbct_remote_pwd defines the password that a server will use when logging into another server.

A Transact-SQL language command or stored procedure running on one server can call a stored
procedure located on another server.    To accomplish this server-to-server communication, the first server

to which an application has connected via vbct_connect , actually logs into the second, remote server,
performing a server-to-server remote procedure call.

vbct_remote_pwd allows an application to specify the password to be used when the first server logs into
the remote server.

Multiple passwords can be specified; one for each server that a server might need to log into.    Each
password must be defined with a separate call to vbct_remote_pwd.

If an application does not specify a remote password for a particular server, the password defaults to the
password set for this connection via vbct_con_props_num and vbct_con_props_str, if any.    If a password
has not been defined, the password defaults to NULL.    If an application user generally has the same
password on different servers, this default behavior may be acceptable.

Remote passwords are stored in an internal buffer which is only 255 bytes long.    Each password's entry
in the buffer consists of the password itself, the associated server name, and two extra bytes.    If the
addition of a password to this buffer causes overflow, vbct_remote_pwd returns CS_FAIL and generates a
CT-Library error message that indicates the problem.

It is an error to call vbct_remote_pwd to define a remote password for a connection that is already open.
Define remote passwords before calling vbct_connect to create an active connection.

An application can call vbct_remote_pwd to clear remote passwords for a connection at any time.

See Also
vbct_con_props_num, vbct_con_props_str, vbct_connect

vbct_res_info
Retrieve current result set or command information.

Syntax
vbct_res_info(command&, type&, info&)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

type&

The type of information to return.

info&

A pointer to the space in which vbct_res_info will place the requested information.

ummary of Parameters Table

Value of type: vbct_res_info
returns:

The information is
available after
vbct_results sets its
result_type parameter
to:

buffer is set to:

CS_BROWSE_INFO CS_TRUE if browse-
mode information is
available; CS_FALSE if
browse-mode
information is not
available.

CS_ROW_RESULT CS_TRUE or   
CS_FALSE.

CS_CMD_NUMBER The number of the
command that
generated the current
result set.

Any value. An integer value.

CS_MSGTYPE An integer representing
the id of the message
that makes up the
current result set.

CS_MSG_RESULT A small integer.

CS_NUM_COMPUTES The number of compute
clauses in the current
command.

CS_COMPUTE_RESULT An integer    value.

CS_NUMDATA The number of items in
the current result set.

CS_COMPUTE_RESULT,
CS_COMPUTEFMT_RESUL
T, CS_CURSOR_RESULT,
CS_DESCRIBE_RESULT,
CS_PARAM_RESULT,
CS_ROW_RESULT,
CS_ROWFMT_RESULT,
CS_STATUS_RESULT

An integer value.

CS_NUMORDER
COLS

The number of columns
specified in the order-by
clause of the current

CS_ROW_RESULT An integer value.

command.

CS_ORDERBY_COLS The select list id
numbers of columns
specified in a the order
by clause of the   
current command.

CS_ROW_RESULT An array of
integers.

CS_ROW_COUNT The number of rows
affected by the current
command.

CS_CMD_DONE,
CS_CMD_FAIL   
CS_CMD_SUCCEED

An integer value.

CS_TRANS_STATE The current server   
transaction state.

Any value. A symbolic value.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.    vbct_res_info returns
CS_FAIL if the requested information is larger
than buflen bytes, or if there is no current result
set.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer Asychronous
Programming.

Remarks
vbct_res_info returns information about the current result set or the current command.    The current
command is defined as the command that generated the current result set.

A result set is a collection of a single type of result data.    Result sets are generated by commands.

Most typically, an application calls vbct_res_info with type as CS_NUMDATA, to determine the number of
items in a result set.

Determining Whether Browse Mode Information is Available

To determine whether browse-mode information is available, call vbct_res_info with type as
CS_BROWSE_INFO.

If browse-mode information is available, an application can call ct_br_column and ct_br_table to retrieve
the information.    If browse-mode information is not available, calling ct_br_column or ct_br_table will
result in a CT-Library error.

Retrieving the Command Number for Current Results

To determine the number of the command that generated the current results, call vbct_res_info with type
as CS_CMD_NUMBER.

CT-Library keeps track of the command number by counting the number of times vbct_results returns
CS_CMD_DONE.

An application's first call to vbct_results following a vbct_send call sets the command number to 1.    After
this, it is incremented each time vbct_results is called after returning CS_CMD_DONE.

CS_CMD_NUMBER is useful in the following cases:

· To find out which Transact-SQL command within a language command generated the current
result set.

· To find out which cursor command, in a batch of cursor commands, generated the current result
set.

· To find out which select command in a stored procedure generated the current result set.

A language command contains a string of Transact-SQL text.    This text represents one or more Transact-
SQL commands.    When used against a language command, "command number" refers to the number of
the Transact-SQL command in the language command.

For example, the string:

          select * from authors

          select * from titles

          insert newauthors

          select *

          from authors

          where city = "San Francisco"

represents three Transact-SQL commands, two of which can generate result sets.    In this case, the
command number that vbct_res_info returns can be from 1 to 3, depending on when vbct_res_info is
called.

Inside stored procedures, only select statements cause the command number to be incremented.    If a
stored procedure contains seven Transact-SQL commands, three of which are selects, the command
number that vbct_res_info returns can be any integer from 1 to 3, depending on which select generated
the current result set.

The command number that vbct_res_info returns can be 1, 2, or 3, depending on which cursor command
generated the current result type.

Retrieving a Message ID

To retrieve a message id, call vbct_res_info with type as CS_MSGTYPE.

Servers can send messages to client applications.    Messages are received in the form of "message
result sets."    Message result sets contain no fetchable data, but rather have an id number.

Messages can also have parameters.    Message parameters are returned to an application as a
parameter result set, immediately following the message result set.

Retrieving the Number of Compute Clauses

To determine the number of compute clauses in the command that generated the current result set, call
vbct_res_info with type as CS_NUM_COMPUTES.

A Transact-SQL select statement can contain compute clauses that generate compute result sets.

Retrieving the Number of Result Data Items

To determine the number of result data items in the current result set, call vbct_res_info with type as
CS_NUMDATA..

Results sets contain result data items.    Row, cursor, and compute result sets contain columns, a
parameter result set contains parameters, and a status result set contains a status.    The columns,
parameters, and status are known as "result data items".

A message result set does not contain any data items.

Retrieving the Number of Columns in an Order-By Clause

To determine the number of columns in a Transact-SQL select statement's order by clause, call
vbct_res_info with type as CS_NUMORDERCOLS.

A Transact-SQL select statement can contain an order by clause, which determines how the rows
resulting from the select are ordered on presentation.

Retrieving the Column ID's of Order-By Columns

To get the select list column id's of order-by columns, call vbct_res_info with type as
CS_ORDERBY_COLS.

Columns named in an order by clause must also be named in the select list of the select statement.   
Columns in a select list have a "select list id," which is the number in which they appear in the list.    For
example, in the following query, au_lname and au_fname have select list id's of 1 and 2 respectively:

          select au_lname, au_fname from authors

                    order by au_fname, au_lname

Given the preceding query, the call:

          vbct_res_info(cmd, CS_ORDERBY_COLS, myspace, 8,

      outlength)

sets myspace to an array of two CS_INTs containing the integers 2 and 1.

Retrieving the Number of Rows for the Current Command

To determine the number of rows affected by the current command, call vbct_res_info with type as
CS_ROW_COUNT.

An application can retrieve a row count after vbct_results sets its result_type parameter to
CS_CMD_SUCCEED, CS_CMD_DONE, or CS_CMD_FAIL.    A row count is guaranteed to be accurate if
vbct_results has just set result_type to CS_CMD_DONE.

If the command is one that executes a stored procedure, for example a Transact-SQL exec language
command or a remote procedure call command, vbct_res_info sets buffer to the number of rows affected
by the last statement in the stored procedure that affects rows.

vbct_res_info sets buffer to CS_NO_COUNT if any of the following are true:

· The Transact-SQL command fails for any reason, such as a syntax error.

· The command is one that never affects rows, such as a Transact-SQL print command.

· The command executes a stored procedure that does not affect any rows.

· The CS_OPT_NOCOUNT option is on.

Retrieving the Current Server Transaction State

To determine the current server transaction state, call vbct_res_info with type as CS_TRANS_STATE.

See Also
vbct_cmd_props_num, vbct_cmd_props_str, vbct_con_props_num, vbct_con_props_str, vbct_results

vbct_results
Set up result data to be processed.

Syntax
vbct_results(command&, result_type&)

Parameters
command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

result_type&

A pointer to an integer variable which vbct_results sets to indicate the current type of result.

The following table lists the possible values of result_type:

Value of result_type: What it indicates: Result set contains:
CS_CMD_DONE The results of a logical

command have been completely
processed.

Not applicable.

CS_CMD_FAIL The server    encountered an
error while executing a   
command.

No results.

CS_CMD_SUCCEED The success of a    command
that returns no data, such as a
language command containing a
Transact-SQL insert statement.

No results.

CS_COMPUTE_RESULT Compute row results. A single row of compute results.

CS_CURSOR_RESULT Cursor row results. Zero or more rows of tabular
data.

CS_PARAM_RESULT Return parameter results. A single row of return
parameters.

CS_ROW_RESULT Regular row results. Zero or more rows of tabular
data.

CS_STATUS_RESULT Stored procedure return status
results.

A single row containing a single
status.

CS_COMPUTEFMT_RESULT Compute format information. No fetchable results.    An
application can call
vbct_describe, vbct_res_info,
and vbct_compute_info to
retrieve compute format
information.

CS_ROWFMT_RESULT Row format information. No fetchable results.    An
application can call
vbct_describe and vbct_res_info
to retrieve row format
information.

CS_MSG_RESULT Message arrival. No fetchable results.    An
application can call
vbct_res_info to get the
message's id.    Parameters

associated with the message, if
any, are returned as a separate
parameter result set.

CS_DESCRIBE_RESULT Dynamic SQL descriptive   
information.

No fetchable results.    An
application can call
vbct_describe or vbct_dyndesc
to retrieve the information

Results
Returns: To Indicate:
CS_SUCCEED A result set is available for

processing.

CS_END_RESULTS All results have been completely
processed.

CS_FAIL The routine failed; any remaining
results are no longer available.    If
vbct_results returns CS_FAIL, an
application must call vbct_cancel
with type as CS_CANCEL_ALL
before using the affected command
structure to send another
command.    If vbct_cancel returns
CS_FAIL, the application must call
vbcs_close(CS_FORCE_CLOSE)
to force the connection closed.

CS_CANCELED Results have been canceled.

CS_PENDING Asynchronous network I/O is in
effect.    For more information, refer
to Asychronous Programming.

CS_BUSY An asynchronous operation is
already pending for this
connection.    For more information,
refer to Asychronous
Programming.

Remarks
An application calls vbct_results after sending a command to the server via vbct_send, and before
reading the results of that command (if any) via vbct_fetch.

"Result data" is an umbrella term for all the types of data that a server can return to an application.   
These types of data include:

· Regular rows

· Cursor rows

· Return parameters

· Stored procedure return status numbers

· Compute rows

· Dynamic SQL descriptive information

· Regular row and compute row format information

· Messages

vbct_results is used to set up all of these types of results for processing.

NOTE:    Don't confuse message results with server error and informational messages.    Refer to Error
and Message Handling for a discussion of error and informational messages.

Result data is returned to an application in the form of a "result set".    A result set includes only a single
type of result data.    For example, a regular row result set contains only regular rows, and a return
parameter result set contains only return parameters.

The vbct_results Loop

Because a command can generate a result set that spans multiple buffers, an application must call
vbct_results as long as it continues to return CS_SUCCEED, indicating that results are available.    The
simplest way to do this is in a loop that terminates when vbct_results fails to return CS_SUCCEED.    After
the loop, an application can use a case-type statement to test vbct_results' final return code to determine
why the loop terminated.

Results are returned to an application in the order in which they are produced.    However, this order is not
always easy to predict.    For example, when an application calls a stored procedure that in turn calls
another stored procedure, the application might receive a number of regular row and compute row result
sets, as well as a return parameter and a return status result set.    The order in which these results are
returned depends on how the stored procedures are written.

For this reason, it is recommended that an application's vbct_results loop be coded so that control drops
into a case-type statement that handles all types of results that can be received.    The return parameter
result_type indicates symbolically what type of result data the result set contains.

When are the Results of a Command Completely Processed?

vbct_results sets result_type to CS_CMD_DONE to indicate that the results of a "logical command" have
been completely processed.

A logical command is defined as any command defined via vbct_command, or vbct_dynamic with the
following exceptions:

· Each Transact-SQL select statement inside a stored procedure is a logical command.    Other
Transact-SQL statements inside stored procedures do not count as logical commands.

· Each Transact-SQL statement executed by a dynamic SQL command is a distinct logical
command.

· Each Transact-SQL statement in a language command is a logical command.

A result_type of CS_CMD_SUCCEED or CS_CMD_FAIL is immediately followed by a result_type of
CS_CMD_DONE.

A connection has pending results if it has not processed all of the results generated by a CT-Library
command.    Usually, an application cannot send a new command on a connection with pending results.

Canceling Results

To cancel all remaining results from a command (and eliminate the need to continue calling vbct_results
until it fails to return CS_SUCCEED), call vbct_cancel with type as CS_CANCEL_ALL.

To cancel only the current results, call vbct_cancel with type as CS_CANCEL_CURRENT.

Special Kinds of Result Sets

A message result set contains no actual result data, rather, a message has an "id". An application can call

vbct_res_info to get a message's id.    In addition to an id, messages can have parameters.    Message
parameters are returned to an application as a parameter result set, immediately following the message
result set.

Row format and compute format result sets contains no actual result data.    Instead, format result sets
contain formatting information for the regular row or compute row result sets with which they are
associated.

This type of format information is of use primarily in gateway applications, which need to repackage SQL
Server format information before sending it to a foreign client.    After vbct_results indicates format results,
a gateway application can retrieve format information by calling vbct_describe, vbct_res_info, and
vbct_compute_info.

All format information for a command is returned before any data.    For example, the row format and
compute format result sets for a command precede the regular row and compute row result sets
generated by the command.

An application will not receive format results unless the CT-Library CS_EXPOSE_FMTS property is set to
CS_TRUE.

A describe result set contains no actual result data.    Instead, a describe result set contains descriptive
information generated by a dynamic SQL describe input or describe output command.    After vbct_results
indicates describe results, an application can retrieve information by calling vbct_describe and
vbct_dyndesc.

vbct_results and Stored Procedures

A run-time error on a language command containing an execute statement will generate a result_type of
CS_CMD_FAIL.    For example, this occurs if the procedure named in the execute statement cannot be
found.

A run-time error on a statement inside a stored procedure will not generate a CS_CMD_FAIL.    For
example, if the stored procedure contains an insert statement and the user does not have insert
permission on the database table, the insert statement will fail, but vbct_results will still return
CS_SUCCEED.    To check for run-time errors inside stored procedures, examine the procedure's return
status number, which is returned as a return status result set immediately following the row and
parameter results, if any, from the stored procedure.    If the error generates a server message, it is also
available to the application.

See Also
vbct_command_num, vbct_command_str, vbct_describe, vbct_dynamic, vbct_fetch, vbct_send

vbct_send
Send a command to the server.

Syntax
vbct_send(command&)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the the vbct_con_alloc function.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.    For less serious failures, the
application can call
vbct_cancel(CS_CANCEL_ALL) to clean up the
command structure.    For more serious failures,
the application must call vbcs_close
(CS_FORCE_CLOSE) to force the connection
closed.

CS_CANCELED The routine was canceled.

CS_PENDING Asynchronous network I/O is in effect.    For more
information, refer to Asychronous Programming.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
Sending a command to a server is a four step process.    To send a command to a server, an application
must:

· Initiate the command by calling vbct_command_num, vbct_command_str, or vbct_dynamic.   
These routines set up internal structures that are used in building a command stream to send to
the server.

· Pass parameters for the command (if required) by calling vbct_param once for each parameter
that the command requires.

Not all commands require parameters.    For example, a remote procedure call command may or may not
require parameters, depending on the stored procedure being called.

-    Send the command to the server by calling vbct_send.

-    Verify the success of the command by calling vbct_results.

This last step does not imply that an application need only call vbct_results once.    An application needs
to continue calling vbct_results until it no longer returns CS_SUCCEED.

An application can call vbct_cancel(CS_CANCEL_ALL) to cancel a command that has been initiated but
not yet sent.

Once an application has sent a command, it must call vbct_results before calling vbct_cancel to cancel
the command.

vbct_send uses an asynchronous write and not does wait for a response from the server.    An application
must call vbct_results to verify the success of the command and to set up the command results for
processing

See Also
vbct_command_num, vbct_command_str, vbct_dynamic, vbct_fetch, vbct_param , vbct_results

vbct_send_data
Send a chunk of text or image data to the server.

Syntax
vbct_send_data(command& buffer(Any), buflen&)

Parameters
command&

The parameter passed is the command pointer which is passed from the vbct_cmd_alloc.

A pointer to the value to write to the server.

buffer(Any)

A pointer to the value to write to the server.

buflen&

The length, in bytes, of buffer.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_CANCELED The send data operation was canceled.

CS_PENDING Asynchronous network I/O is in effect.    For more
information, refer to Asychronous Programming.

CS_BUSY An asynchronous operation is already pending for
this connection.    For more information, refer to
Asychronous Programming.

Remarks
An application can use vbct_send_data to write a text or image value to a database column.    This writing
operation is actually an update; the column must have a value when vbct_send_data is called to write a
new value.

This is because vbct_send_data uses text timestamp information when writing to the column, and a
column does not have a valid text timestamp until it contains a value.    The value contained in the text or
image column can be NULL, but the NULL must be entered explicitly with the SQL update statement.

In order to perform a send-data operation, an application must have a current I/O descriptor, or
CS_IODESC structure, describing the column value that will be updated:

-    The textptr field of the CS_IODESC identifies the target column.

-    The timestamp field of the CS_IODESC is the text timestamp of the column value.    If timestamp does
not match the current database text timestamp for the value, the update operation will fail.

-    The total_txtlen field of the CS_IODESC indicates the total length, in bytes, of the column's new value.

An application must call vbct_send_data in a loop to write exactly this number of bytes before calling
vbct_send to indicate the end of the text or image update operation.

-    The log_on_update of the CS_IODESC tells the server whether or not to log the update operation.

-    The locale field of the CS_IODESC points to a CS_LOCALE structure that contains localization
information for the new value, if any.

A typical application will change only the values of the locale, total_txtlen, and log_on_update fields
before using an I/O descriptor in an update operation, but an application that is updating the same column
value multiple times will need to change the value of the timestamp field as well.

A successful text or image update generates a parameter result set that contains the new text timestamp
for the text or image value.    If an application plans to update the text or image value a second time, it
must save this new text timestamp and copy it into the CS_IODESC for the value before calling
vbct_data_info to define the CS_IODESC for the update operation.

A text or image update operation is equivalent to a language command containing a Transact-SQL update
statement.

The command space identified by cmd must be idle before a text or image update operation is initiated.   
A command space is idle if there are no active commands, pending results, or open cursors in the space.

See Also
vbct_data_info, vbct_get_data

vbct_sendpassthru
Send a TDS (Tabular Data Stream) packet to a server.

Syntax
vbct_sendpassthru (command&, sendptr&)

Parameters
command&

The parameter passed is the command pointer which is passed from the vbct_cmd_alloc function.

sendptr&

A pointer to a buffer containing the TDS packet to be sent to the server.

Results
Returns: To Indicate:
CS_PASSTHRU_MORE Packet sent successfully; more packets are

available.

CS_PASSTHRU_EOM Packet sent successfully; no more packets are
available.

CS_FAIL The routine failed.

CS_CANCELLED The routine was cancelled.

CS_PENDING Asynchronous network I/O is in effect.    Refer to
Asychronous Programming.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
TDS is a communications protocol used for the transfer of requests and request results between clients
and servers.    Under ordinary circumstances, non-gateway applications do not usually have to deal with
TDS, because CT-Library manages the data stream.

vbct_recvpassthru and vbct_sendpassthru are useful in gateway applications.    When an application
serves as the intermediary between two parties (such as a client and a remote server, or two servers), it
can use these routines to pass the TDS stream from one server to the other, eliminating the process of
interpreting the information and re-encoding it.

vbct_sendpassthru sends a packet of bytes from the sendptr buffer.    Most commonly, sendptr will be
recvptr as returned by srv_recvpassthru. sendptr can also be the address of a user-allocated buffer
containing the packet to send.

Default packet sizes vary by platform.    On most platforms, a packet has a default size of 512 bytes.    A
connection can change its packet size via vbct_con_props_num and vbct_con_props_str.

vbct_sendpassthru returns CS_PASSTHRU_EOM if the TDS packet in the buffer is marked EOM (End Of
Message).    If the TDS packet is not marked EOM, vbct_sendpassthru returns CS_PASSTHRU_MORE.

A connection which is being used for a pass-through operation cannot be used for any other CT-Library
function until CS_PASSTHRU_EOM has been received.

See Also
vbct_getloginfo, vbct_recvpassthru, vbct_setloginfo

vbct_setloginfo
Transfer TDS login response information from a CS_LOGINFO structure to a CS_CONNECTION
structure.

Syntax
vbct_setloginfo (connection&, loginfo&)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

loginfo&

A pointer to a CS_LOGINFO structure.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
TDS (Tabular Data Stream) is a communications protocol used for the transfer of requests and request
results between clients and servers.

Because vbct_setloginfo frees the CS_LOGINFO structure after transferring the TDS information, an
application cannot re-use the CS_LOGINFO.    An application can get a new CS_LOGINFO by calling
vbct_getloginfo.

There are two reasons an application might call vbct_setloginfo:

· If it is an Open Server gateway application using TDS pass-through.

· In order to copy login properties from an open connection to a newly-allocated connection
structure.

NOTE:    Do not call vbct_setloginfo from within a completion callback routine. vbct_setloginfo calls
system-level memory functions which may not be re-entrant.

TDS Pass-Through

When a client connects directly to a server, the two programs negotiate the TDS format they will use to
send and receive data.    When a gateway application uses TDS pass-through, the gateway forwards TDS
packets between the client and a remote server without examining or processing them.    For this reason,
the remote server and the client must agree on a TDS format to use.

See Also
vbct_getloginfo, vbct_recvpassthru, vbct_sendpassthru

vbct_wakeup
Call a connection's completion callback.

Syntax
vbct_wakeup(connection&, cmd&, function&, status&)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

Either connection or cmd must be non-NULL.

If connection is supplied, it is passed as the connection parameter to the completion callback.    If
connection is NULL, cmd's parent connection is passed as the connection parameter to the completion
callback.

command&

The parameter passed is the command pointer that is obtained from the vbct_cmd_alloc function.

Either connection or cmd must be non-NULL.

If connection is NULL, cmd's parent connection's completion callback is called.

cmd is passed as the command parameter to the completion callback.    If cmd is NULL then NULL is
passed for the command parameter.

function&

A symbolic value indicating which routine has completed. function can be a user-defined value.    function
is passed as the function parameter to the completion callback.    The following table lists the symbolic
values that are legal for function:

Value of function: To indicate:
BLK_ROWXFER vbblk_rowxfer has completed.

BLK_SENDROW vbblk_sendrow has completed.

BLK_SENDTEXT vbblk_sendtext has completed.

BLK_TEXTXFER vbblk_textxfer has completed

CT_CANCEL vbct_cancel has completed.

CT_CLOSE vbct_close has completed.

CT_CONNECT vbct_connect has completed.

CT_FETCH vbct_fetch has completed.

CT_GET_DATA vbct_get_data has completed.

CT_OPTIONS vbct_options has completed.

CT_RECVPASSTHRU vbct_recvpassthru has completed.

CT_RESULTS vbct_results has completed.

CT_SEND vbct_send has completed.

CT_SEND_DATA vbct_send_data has completed.

CT_SENDPASSTHRU vbct_sendpassthru has completed.

A user-defined value.    This value must be greater
than or equal to CT_USER_FUNC.

A user-defined function has completed.

status&

The return status of the completed routine.    This value is passed as the status parameter to the
completion callback.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection.    Refer to Asychronous
Programming.

Remarks
vbct_wakeup is intended for use in applications that create an asynchronous layer on top of CT-Library.

An application cannot call vbct_wakeup if the CS_DISABLE_POLL property is set to CS_TRUE.

Refer to Callbacks.

Refer to Asychronous Programming for more information on using vbct_wakeup in asynchronous CT-
Library applications.

See Also
vbct_install_callbacks

vbblk_alloc
Allocate a CS_BLKDESC structure.

Syntax
vbblk_alloc(connection& version&, blk_desc&r)

Parameters
connection&

The parameter passed is the connection pointer that is obtained from the vbct_con_alloc function.

This connection must not have any pending results.

version&

The version of bulk copy behavior that the application expects.    During bulk copy initialization, version's
value is checked for compatibility with CT-Library's version level.

Currently, BLK_VERSION_100 is the only value that is legal for version.

blkdesc&

The parameter is primed with the bulk copy description pointer.    This bulk copy description pointer is a
parameter used in functions such as vbblk_bind.

In case of error, vbblk_alloc sets blk_pointer to NULL.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

The most common reason for a vbblk_alloc failure is a lack of adequate memory.

Remarks
A CS_BLKDESC structure, also called a "bulk descriptor structure" contains information about a particular
bulk copy operation.

Before calling vbblk_alloc, an application must call the CT-Library routines vbct_con_alloc and
vbct_connect to allocate a CS_CONNECTION structure and open the connection.

vbblk_alloc must be the first routine called in a bulk copy operation.

To de-allocate a CS_BLKDESC structure, an application can call vbblk_drop.

See Also
vbblk_init, vbct_con_alloc, vbct_connect

vbblk_bind
Bind a program variable and a database column.

Syntax
vbblk_bind(blkdesc&, column&, datafmt(DATAFMT))

Parameters
blkdesc&

The parameter is primed with the bulk copy description pointer.    This bulk copy description pointer is a
parameter used in functions such as vbblk_bind.

column&

The number of the column to bind to the program variable.

The first column in a table is column number 1, the second number 2, and so forth.

datafmt(DATAFMT)

A pointer to the CS_DATAFMT structure that describes the program variable to bind to the column.

The chart below lists the fields in datafmt that are used by blk_bind, and contains general information
about the fields.    vbblk_bind ignores fields that it does not use:

Field name: When is the field used? Set the field to:
name Not used. Not applicable.

namelen Not used. Not applicable.

datatype Always. A type constant (CS_xxx_TYPE)
representing the datatype of the program
variable.    All type constants listed on the
Types topics page in the Open Client CT-
Library Reference Manual are valid.    Open
Client user-defined types are not valid.   
vbblk_bind supports a wide range of type
conversions, so datatype    can be different
from the column's type.    For instance, by
specifying a variable type of
CS_FLOAT_TYPE, a money column can be
bound to a CS_FLOAT program variable.   
The appropriate data conversion happens
automatically.    For a list of the data
conversions provided by CT-Library, see the
manual page for vbcs_will_convert.    If
datatype is CS_BOUNDARY_TYPE or
CS_SENSITIVITY_TYPE, the buffer
program variable must be of type
CS_CHAR.

format When binding to character- or binary-
type destination variables on copies
out from the database; otherwise   
CS_FMT_UNUSED.

A bit-mask of the following symbols:    For
character and text destinations only:
CS_FMT_NULLTERM to null-terminate the
data, or CS_FMT_PADBLANK to pad to the
full length of the variable with spaces.    For
character, binary, text, and image
destinations: CS_FMT_PADNULL to pad to

the full length of the variable with nulls.    For
any type of destination: CS_FMT_UNUSED
if no format information is being provided.

maxlength When binding non- fixed-length
variables for copies out from the
database.    When binding fixed-
length variables, maxlength is
ignored.

The maximum length of the buffer program
variable.    When binding character or binary
variables, maxlength must describe the total
maximum length of the program variable,   
including any space required for special
terminating bytes, such as a null terminator.
For a bulk copy into the database,
maxlength is the maximum length of the
data that will be copied from the buffer
program variable.    For a bulk copy out from
the database, maxlength is the length of   
the buffer program variable.

scale Only when binding to numeric or
decimal variables.

The scale of the program variable.    If the
source data is the same type as the
destination, then scale can be set to
CS_SRC_VALUE to indicate that the
destination should pick up its value for scale
from the source data.    scale must be less
than or equal to precision.

precision Only when binding numeric or
decimal    destinations.

The precision of the program variable.    If
the source data is the same type as the
destination, then precision can be set to
CS_SRC_VALUE to indicate that the
destination should pick up its value for
precision from the source data.    precision
must be greater than or equal to scale.

status Not used. Not applicable.

count Always. count is the number of rows to transfer per
vbblk_rowxfer call.    If count is greater than
1, array binding is considered to be in effect.
On copies out from the database, if count is
larger than the number of available rows,
only the available rows are copied.    count
must have the same value for all columns
being transferred, with one exception:    an
application can intermix counts of 0 and 1.   
This is because when count is 0, 1 row is
transferred.

usertype Not used. Not applicable.

locale If supplied, locale is used.   
Otherwise, default localization
applies.

A pointer to a CS_LOCALE structure
containing locale information for the buffer
program variable.

Copies Into the Database

When calling vbblk_bind
to:

buffer is: datalen is:

Bind a normal value. A pointer to a    program variable. The length of the data in buffer.

Indicate that a column value will
be    transferred using
vbblk_textxfer.

NULL The total length of the data that
will    be sent using
vbblk_textxfer.    In this case,
datafmt.maxlength is ignored.

Instruct bulk copy to use the
column's default value.    If no
default value is available for the
column, NULL values are

Ignored 0

inserted.

Set up array binding. A pointer to an array of program
variables.

A pointer to an array containing
the lengths of the data in the
buffer    variables.

Copies Out From the Database

When calling vbblk_bind
to:

buffer is: datalen is:

Bind a normal value. Non-null The length of the buffer data
space.

Indicate that a column value will
be transferred using
vbblk_textxfer.

NULL Ignored.    In this case,
datafmt.maxlength represents
the length of the buffer data
space

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.    vbblk_bind returns CS_FAIL if
the application has not called vbblk_init to
initialize the bulk copy operation.

Remarks
vbblk_bind is a CT-Library bulk copy routine.

When copying into a database, an application must call vbblk_bind once for each column in the database
table.    When copying out, an application does not need to call vbblk_bind for columns in which it has no
interest.

To indicate that a column value will be transferred via vbblk_textfer, an application calls vbblk_bind with
buffer as NULL.    A typical application will only use vbblk_textxfer to transfer large text or image values.

An application can call vbblk_bind in between calls to vbblk_rowxfer to reflect changes, if any, in a
variable's address or length.    If an application calls vbblk_bind multiple times for a single column or
variable, only the last binding takes effect.

An application can call vbblk_describe to get a CS_DATAFMT description of a particular column.

Bulk Copies Into the Database

When copying in, an application can instruct bulk copy to use a column's default value by setting datalen
to 0.    If no default value is defined for the column, NULL values are inserted.

Clearing Bindings

To clear a binding, call vbblk_bind with buffer, datafmt, datalen, and indicator as NULL.    Otherwise,
bindings remain in effect until an application calls vbblk_done with type as CS_BLK_ALL to indicate that
the bulk copy operation is complete.

To clear all bindings, pass colnum as CS_UNUSED, with buffer, datafmt, datalen, and indicator as NULL.
An application typically clears all bindings when it needs to change the count that is being used for array
binding.

Array Binding

Array binding is the process of binding a column to an array of program variables.    At row transfer time,
multiple rows' worth of the column are transferred either to or from the array of variables with a single
vbblk_rowxfer call.    An application indicates array binding by setting datafm.count to a value greater than
1.

If array binding is in effect, then each of buffer, datalen, and indicator must point to arrays.    Each length
and indicator variable describes the corresponding data in the buffer array.

When array binding, all vbblk_bind calls must use the same value for    datafmt. count.    For example,
when binding three columns to arrays, it is an error to use a count of five in your first two vbblk_bind calls
and a count of three in the last.

However, an application can intermix counts of 0 and 1. counts of 0 and 1 are considered to be equivalent
because they both cause vbblk_rowxfer to transfer a single row.

If array binding is in effect, an application cannot use vbblk_textxfer to transfer data.

See Also
vbblk_describe, vbblk_init

vbblk_describe
Retrieve a description of a database column.

Syntax
vbblk_describe(blkdesc&, column&, datafmt(DATAFMT), prlength&)

Parameters
blkdesc&

The parameter is primed with the bulk copy description pointer.    This bulk copy description pointer is a
parameter used in functions such as vbblk_bind.

column&

The number of the column of interest.    The first column in a table is column number 1, the second is
number 2, and so forth.

datafmt(DATAFMT)

A pointer to a CS_DATAFMT structure. vbblk_describe fills datafmt with a description of the database
column referenced by colnum.

For a bulk copy into the database, vbblk_describe fills in the following fields in the CS_DATAFMT:

Field name: vbblk_describe sets the field to:
name The null-terminated name of the column, if any.    A NULL name is

indicated by a namelen of 0.

namelen The actual length of the name, not including the null terminator.    0
to indicate a NULL name.

datatype A type constant representing the datatype of the column.    All type
constants listed on the Types topics page are valid, with the
exceptions of CS_VARCHAR_TYPE and CS_VARBINARY_TYPE.

maxlength The maximum possible length of the data for the column.

scale The scale of the column.

precision The precision of the column.

For a bulk copy out from the database, vbblk_describe fills in the following fields in the CS_DATAFMT:

Field name: vbblk_describe sets the field to:
name The null-terminated name of the column, if any.    A NULL name is

indicated by a namelen of 0.

namelen The actual length of the name, not including the null terminator.    0
to indicate a NULL name.

datatype The datatype of the column.    All datatypes listed on the types topics
page are valid.

maxlength The maximum possible length of the data for the column.

scale The scale of the column.

precision The precision of the column.

status A bitmask of the following symbols, or-ed together:   
CS_CANBENULL to indicate that the column can contain NULL
values.    CS_HIDDEN to indicate that this column is a "hidden"
column that has been exposed.    CS_KEY to indicate the column is

part of the key for a table.    CS_VERSION_KEY to indicate the
column is part of the version key for the row.

usertype The SQL Server user-defined datatype of the column, if any.   
usertype is set in addition to (not instead of) datatype.

locale A pointer to a CS_LOCALE structure that contains locale
information for the data

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.    vbblk_describe returns
CS_FAIL if colnum does not represent a valid
result column.

Remarks
vbblk_describe is a CT-Library bulk copy routine.

An application typically uses a column description in order to help determine compatible program variable
types and sizes.

See Also
vbblk_init

vbblk_done
Mark a complete bulk copy operation or a complete bulk copy batch.

Syntax
vbblk_done(blkdesc&, type&, outrow&)

Parameters
blkdesc&

The parameter is primed with the bulk copy description pointer.    This bulk copy description pointer is a
parameter used in functions such as vbblk_bind.

type&

The type of operation.    The following table lists the symbolic values that are legal for type:

Value of type: vbblk_done:
CS_BLK_ALL Marks a complete bulk copy in or bulk copy out operation.

CS_BLK_BATCH Marks a complete "batch" in a batched bulk copy in operation.

CS_BLK_CANCEL Cancels a bulk copy batch or bulk copy operation.

outrow&

A pointer to an integer variable. vbblk_done sets outrow to the number of rows bulk copied to SQL Server
since the application's last vbblk_done call.

Results
Returns To Indicate
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.    Common reasons for failure
include an invalid blkdesc pointer or an illegal
value for type

CS_PENDING Asynchronous network I/O is in effect.    For more
information, refer to Asychronous Programming.

Remarks
vbblk_done is both a CT-Library and Server-Library bulk copy routine.

Calling vbblk_done with type as CS_BLK_ALL marks the end of a bulk copy operation.    Once an
application marks the end of a bulk copy operation, it cannot call any bulk copy routines (except for
vbblk_drop and vbblk_alloc) until it initializes a new bulk copy operation by calling vbblk_init.

Calling vbblk_done with type as CS_BLK_BATCH marks a complete batch in a bulk copy in operation.   
CS_BLK_BATCH is legal only for bulk copy in operations.

Calling vbblk_done with type as CS_BLK_CANCEL cancels the current bulk copy operation.    Rows
transferred since an application's last vbblk_done(CS_BLK_BATCH) call are not saved in the database.   
Once an application cancels a bulk copy operation, it cannot call any bulk copy routines (except for
vbblk_drop and vbblk_alloc) until it initializes a new bulk copy operation by calling vbblk_init.

Bulk Copies Into the Database

When an application bulk copies data into a database, the rows are permanently saved only when the
application calls vbblk_done.    If an application has large amounts of data to transfer, it can be convenient
to "batch" the data into smaller units of recoverability.

An application can batch rows by calling vbblk_done with type as CS_BLK_BATCH once every n rows or
when there is a lull between periods of data, as in a telemetry application.    This causes all rows
transferred since the application's last vbblk_done call to be permanently saved.

After saving a batch of rows, an application's first call to vbblk_rowxfer implicitly starts the next batch.

An application must call vbblk_done with type as CS_BLK_ALL to send its final batch of rows.    This call
permanently saves the rows, marks the end of the bulk copy operation, and cleans up internal bulk copy
data structures.

Bulk Copies Out From the Database

After transferring the last row in a bulk copy out operation, an application must call vbblk_done with type
as CS_BLK_ALL to mark the end of the bulk copy operation and clean up internal bulk copy data
structures.

See Also
vbblk_init, vbblk_rowxfer

vbblk_get_data
Retrieve data from a bulk copy row.

Syntax
vbblk_get_data(column&)

Parameters
column&

The column number indicates the column from which the data is to be retrieved.

Results
A string representation of the data for the requested columns.

Remarks

See Also

vbblk_init
Initiate a bulk copy operation.

Syntax
vbblk_init(blkdesc&, direction&, tablename$)

Parameters
blkdesc&

The parameter is primed with the bulk copy description pointer.    This bulk copy description pointer is a
parameter used in functions such as vbblk_bind.

direction&

The direction of the bulk copy.    The following table lists the symbolic values that are legal for direction:

Value of direction: vbblk_init:
CS_BLK_IN Initializes a bulk copy operation into the database.

CS_BLK_OUT Initializes a bulk copy operation out from the database.

tablename$

A pointer to the name of the table of interest.    Any legal server table name is acceptable.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.    A common cause of failure is
specifying a non-existent table.

CS_PENDING Asynchronous network I/O is in effect.    For more
information, refer to Asychronous Programming.

Remarks
vbblk_init is both a CT-Library and Server-Library bulk copy routine.

When a bulk copy operation is complete, an application must call    vbblk_done with type as CS_BLK_ALL
in order to mark the end of the bulk copy operation and clean up internal bulk copy data structures.

See Also
vbblk_bind, vbblk_done, vbblk_rowxfer

vbblk_props_num
Set or retrieve bulk descriptor structure properties.

Syntax
vbblk_props_num(blkdesc&, action&, property& buffer&, outlen&)

Parameters
blkdesc&

The parameter is primed with the bulk copy description pointer.    This bulk copy description pointer is a
parameter used in functions such as vbblk_bind.

action&

One of the following symbolic values:

Value of action: vbblk_props_num:
CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Clears the value of the property by resetting it to
its default value.

property&

The symbolic name of the property whose value is being set or retrieved.

buffer&

If a property value is being set, buffer points to the value to use in setting the property.

If a property value is being retrieved, buffer points to the space in which vbblk_props_num will place the
requested information.

outlen&

A pointer to an integer variable.

outlen is not used if a property value is being set and should be passed as NULL.

If a property value is being retrieved and outlen is supplied, vbblk_props_num sets outlen to the length, in
bytes, of the requested information.

If the information is larger than buflen bytes, an application can use the value of outlen to determine how
many bytes are needed to hold the information.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed

Remarks

Bulk descriptor properties define aspects of a specific bulk copy operation.

An application must set bulk copy properties after calling vbblk_alloc to allocate a bulk descriptor
structure and before calling vbblk_init to initiate a specific bulk copy operation.

An application can use vbblk_props_num to set or retrieve the following properties:

Property name: What it is: buffer is: Applicable
to?

Notes

BLK_IDENTITY Whether a table's
identity column is
included in the bulk
copy operation.

CS_TRUE or
CS_FALSE.    The
default is CS_FALSE.

IN copies only

BLK_SENSITIVITY_LBL Whether a table's
sensitivity column is
included in the bulk
copy operation.

CS_TRUE or
CS_FALSE.    The
default is CS_FALSE.

Both IN and
OUT copies

Secure
SQL
Server
only

About the Properties

BLK_IDENTITY

-    BLK_IDENTITY determines whether a table's identity column is included in a bulk copy in operation.

-    BLK_IDENTITY does not affect bulk copy out operations.

-    If BLK_IDENTITY is CS_TRUE, the application must supply data for the identity column.

If BLK_IDENTITY is CS_FALSE, the application does not need to supply data for the identity column.    In
this case, the server supplies a default value for the column.

-    BLK_IDENTITY works by setting identity_insert on for the database table of interest.    This allows
values to be inserted into the identity column.    When the bulk copy operation is finished, the
identity_insert option for the table is reset to off.

BLK_SENSITIVITY_LBL

-    BLK_SENSITIVITY_LBL determines whether or not data for the sensitivity column is included in a bulk
copy operation.    By default, sensitivity column data is not included.

-    BLK_SENSITIVITY_LBL affects both bulk copy in and bulk copy out operations.

-    If BLK_SENSITIVITY_LBL is CS_TRUE, the application must supply data for the sensitivity column on
bulk copy in operations andwill receive data from the sensitivity column on bulk copy out operations.

If BLK_SENSITIVITY_LBL is CS_FALSE, the application does not need to supply data for the sensitivity
column on bulk copy in operations and will not receive data from the sensitivity column on bulk copy out
operations.

-    BLK_SENSITIVITY_LBL is applicable to Secure SQL Server copies only.    vbblk_init fails if
BLK_SENSITIVITY_LBL is CS_TRUE and a bulk copy operation is attempted against a standard SQL
Server.

-    Users copying into the sensitivity column must have the    bcpin_labels_role role activated on Secure
SQL Server.    vbblk_init fails if the user does not have the bcpin_labels_role.

See Also
vbblk_alloc, vbblk_init

vbblk_props_str
Set or retrieve bulk descriptor structure properties.

Syntax
vbblk_props_str(blkdesc&, action&, property& buffer$, outlen&)

Parameters
blkdesc&

The parameter is primed with the bulk copy description pointer.    This bulk copy description pointer is a
parameter used in functions such as vbblk_bind.

action&

One of the following symbolic values:

Value of action: vbblk_props_str:
CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Clears the value of the property by resetting it to
its default value.

property&

The symbolic name of the property whose value is being set or retrieved.

buffer$

If a property value is being set, buffer points to the value to use in setting the property.

If a property value is being retrieved, buffer points to the space in which vbblk_props_str will place the
requested information.

outlen&

A pointer to an integer variable.

outlen is not used if a property value is being set and should be passed as NULL.

If a property value is being retrieved and outlen is supplied, vbblk_props_str sets outlen to the length, in
bytes, of the requested information.

If the information is larger than buflen bytes, an application can use the value of outlen to determine how
many bytes are needed to hold the information.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed

Remarks

Bulk descriptor properties define aspects of a specific bulk copy operation.

An application must set bulk copy properties after calling vbblk_alloc to allocate a bulk descriptor
structure and before calling vbblk_init to initiate a specific bulk copy operation.

An application can use vbblk_props_str to set or retrieve the following properties:

Property name: What it is: buffer is: Applicable
to?

Notes

BLK_IDENTITY Whether a table's
identity column is
included in the bulk
copy operation.

CS_TRUE or
CS_FALSE.    The
default is
CS_FALSE.

IN copies only

BLK_SENSITIVITY_LBL Whether a table's
sensitivity column is
included in the bulk
copy operation.

CS_TRUE or
CS_FALSE.    The
default is
CS_FALSE.

Both IN and
OUT copies

Secure
SQL
Server
only

About the Properties

BLK_IDENTITY

-    BLK_IDENTITY determines whether a table's identity column is included in a bulk copy in operation.

-    BLK_IDENTITY does not affect bulk copy out operations.

-    If BLK_IDENTITY is CS_TRUE, the application must supply data for the identity column.

If BLK_IDENTITY is CS_FALSE, the application does not need to supply data for the identity column.    In
this case, the server supplies a default value for the column.

-    BLK_IDENTITY works by setting identity_insert on for the database table of interest.    This allows
values to be inserted into the identity column.    When the bulk copy operation is finished, the
identity_insert option for the table is reset to off.

BLK_SENSITIVITY_LBL

-    BLK_SENSITIVITY_LBL determines whether or not data for the sensitivity column is included in a bulk
copy operation.    By default, sensitivity column data is not included.

-    BLK_SENSITIVITY_LBL affects both bulk copy in and bulk copy out    operations.

-    If BLK_SENSITIVITY_LBL is CS_TRUE, the application must supply data for the sensitivity column on
bulk copy in operations andwill receive data from the sensitivity column on bulk copy out operations.

If BLK_SENSITIVITY_LBL is CS_FALSE, the application does not need to supply data for the sensitivity
column on bulk copy in operations and will not receive data from the sensitivity column on bulk copy out
operations.

-    BLK_SENSITIVITY_LBL is applicable to Secure SQL Server copies only. vbblk_init fails if
BLK_SENSITIVITY_LBL is CS_TRUE and a bulk copy operation is attempted against a standard SQL
Server.

-    Users copying into the sensitivity column must have the    bcpin_labels_role role activated on Secure
SQL Server. vbblk_init fails if the user does not have the bcpin_labels_role.

See Also
 vbblk_alloc, vbblk_init

vbblk_set_data
Sets data into a column for a bulk copy row.

Syntax
vbblk_set_data(dat$, column&)

Parameters
dat$

A string representation of the data to be placed in a column.

column&

The column number indicates the column from which the data is to be stored.

Results

Remarks

See Also

vbblk_rowxfer
Transfer one or more rows during a bulk copy operation.

Syntax
vbblk_rowxfer(blkdesc&)

Parameters
blkdesc&

The parameter is primed with the bulk copy description pointer.    This bulk copy description pointer is a
parameter used in functions such as vbblk_bind.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect.    For more
information, refer to Asychronous Programming.

CS_BLK_HAS_TEXT The row contains one or more columns which
have been marked for transfer via vbblk_textxfer.
The application must call vbblk_textxfer to transfer
data for these columns row before calling
vbblk_rowxfer to    transfer the next row.

CS_END_DATA When copying data out from a database,
vbblk_rowxfer returns CS_END_DATA to indicate
that all rows have been transferred.    When
copying data into a database, vbblk_rowxfer does
not return CS_END_DATA.

A common reason for a vbblk_rowxfer failure is conversion error.

Remarks
vbblk_rowxfer is a CT-Library bulk copy routine.

The number of rows transferred per vbblk_rowxfer call is determined by the value of datafmt.count in an
application's vbblk_bind calls for the operation.    If datafmt.count is greater than 1, array binding is
considered to be in effect and multiple rows are transferred per vbblk_rowxfer call.

An application calls vbblk_rowxfer to do the following:

· Transfer rows into the database, during a bulk copy in operation.

· Transfer rows out from the database, during a bulk copy out operation.

If array binding is not in effect, an application can use vbblk_textxfer in conjunction with vbblk_rowxfer    to
transfer rows containing large text or image values.

When transferring rows that contain large text or image columns, it is often convenient for an application
to transfer the text or image data in fixed-size chunks, rather than all at once.    Complete the following to

accomplish this:

· The application passes buffer as NULL in its vbblk_bind call for the column.    This tells CT-Library
that data for this column will be transferred using vbblk_textxfer.

· When the application calls vbblk_rowxfer to transfer the row, vbblk_rowxfer returns
CS_BLK_HAS_TEXT, indicating that CT-Library expects further data for this row to be transferred
with vbblk_textxfer.

· Then, for each column requiring transfer, the application calls    vbblk_textxfer in a loop that
terminates when vbblk_textxfer returns CS_END_DATA, indicating that all of the data for this
column has been transferred.

A bulk copy operation is not automatically terminated if vbblk_rowxfer returns CS_FAIL.    An application
can continue to call vbblk_rowxfer after correcting (copy in operations only) or discarding the problem
row.

See Also
vbblk_bind, vbblk_textxfer

vbblk_textxfer
Transfer a column's data in chunks during a bulk copy operation.

Syntax
vbblk_textxfer(blkdesc&, buffer$, outlen&)

Parameters
blkdesc&

The parameter is primed with the bulk copy description pointer.    This bulk copy description pointer is a
parameter used in functions such as vbblk_bind.

buffer$

A pointer to the space from which vbblk_textxfer picks up the chunk of text, image, sensitivity, or boundary
data.

outlen&

A pointer to an integer variable.

outlen is not used for a bulk copy in operation and should be passed as NULL.

For a bulk copy out operation, outlen represents the length, in bytes, of the data copied to buffer.

Results
Returns: To Indicate:
CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_END_DATA When copying data out from a database,
vbblk_textxfer returns CS_END_DATA to indicate
that a complete column value has been sent.   
When copying data into a database,
vbblk_textxfer returns    CS_END_DATA when an
amount of data equal to vbblk_bind's datalen has
been sent.

CS_PENDING Asynchronous network I/O is in effect.    Refer to
Asychronous Programming.

Remarks
vbblk_textxfer is a CT-Library bulk copy routine.

Although vbblk_textxfer is primarily useful for transferring large text or image values, it can be used to
transfer data of any datatype.    However, vbblk_textxfer does not perform any data conversion, but simply
transfers data.

There are two ways for an application to transfer text and image values during a bulk copy operation:

· The application can treat text or image data like ordinary data:    For example, it can bind columns
to program variables and transfer rows using vbblk_rowxfer.    Usually, this method is convenient

for small text and image values but not larger ones because it requires an application to allocate
program variables large enough to hold entire columns.

· The application can transfer text or image data in chunks, using vbblk_textxfer.

An application marks a column for transfer via vbblk_textxfer by calling vbblk_bind for the column with a
NULL buffer parameter.

Bulk Copies Into a Database

An application's vbblk_bind calls do not have to be in column order, but data for vbblk_textxfer columns
must be transferred in column order.

For example, an application can bind columns 3 and 4, and then mark columns 2 and 1 for transfer via
blk_textxfer.    After calling vbblk_rowxfer to copy data for columns 3 and 4, the application needs to call
vbblk_textxfer to transfer data for column 1 before calling it for column 2.

When copying data into a database, once a text, image, boundary, or sensitivity column is marked for
transfer via vbblk_textxfer, all subsequent columns of these types must also be marked for transfer via
vbblk_textxfer.

This means an application cannot mark the first text column in a row for transfer via vbblk_textxfer and
then bind a subsequent text column to a program variable.

When copying data into a database, an application is responsible for calling vbblk_textxfer the correct
number of times to transfer the complete text or image value.

Bulk Copies From a Database

When using vbblk_textxfer to copy data out of a database, only columns that follow bound columns are
available for transfer via vbblk_textxfer.

This means an application cannot bind the first two columns in a row to program variables, mark the third
for transfer via vbblk_textxfer, and bind the fourth.    Another way to think of it is that columns being
transferred via vbblk_textxfer must reside at the end of row.

When copying data out from a database, vbblk_textxfer returns CS_END_DATA to indicate that a
complete column value has been copied.

See Also
vbblk_bind, vbblk_rowxfer

