
Tutorial 2 - Database lookup
This tutorial will show you how to add a voice system to an existing or new
database. We will use the same database used by the Visual Basic sample
program BIBLIO.MDB, which is a database of authors, book titles and ISBN
numbers, with some additional information added to link to the voice files
describing the books. This example is found in your VBV directory.

Specifications
This system will provide a voice interface to allow callers to search for books by
ISBN number, and by author name. When searching for an ISBN, we will search
the ISBN matching the number supplied. When searching by author, we must
translate the supplied digits into letters before searching.

Databases
First step is to plan the databases.
We will need three databases, one which allows us to search for an author from
a list of authors, another that can access the book names by a selected author,
and one which indexes into a list of ISBN codes, and can retrieve the name of
the corresponding book.

Voice Menus
Next step is to plan the voice menus.
The main menu should say:
“Good morning (afternoon, evening). Press 1 to search by ISBN or 2 to list books
by author or 8 to exit”
The voice system should then wait for a digit.

If it receives a 1, it must request an ISBN.
“Please enter the ISBN code, and press # when finished”.
We should use # to allow the caller to terminate digit collection immediately.
Then it should search the ISBN list for ISBN’s that match the entered number. If it
finds one, it should say the full ISBN of the book.
“The ISBN of this book is <number>. The author is <author>. Press 1 if this is
correct or 2 to search by another ISBN”.
If the caller enters 1, the system says:
“The title is <title>.”
Entering 2, returns the user to the ISBN prompt.

If the caller enters 2 at the main menu, the system says:
“Please enter the name of the author, and press # when finished”
The system should then search for authors starting with the digits specified.
“Author <author name>. If this is correct, press 1, otherwise press 2. Press 8 to
exit”
If the caller presses 1, the system should allow the caller to query which books
have been written by this author.

Creating the databases
Next we need to create the databases. In this case, we will be using the
databases provided in the VBVoice directory called biblio.mdb.

Creating voice phrases
We will need to create voice phrases containing the author’s names and book
titles, and find a way of finding the right phrase to play. There are several ways of
doing this:
1. Create a new VOX file for each book title and author, and then add a new

field to each database table containing the filename for each author/book
title. The VBVoice controls can then extract the filenames out of the database
using a DataGet control and play them using the System Phrase FileSpec<>.

2. An easier but less efficient way to do this is to create two phrase files, one for

author names and one for book titles, and set the name of each phrase to be
equal to the book title or author. We can then use the database contents
(book title, author name) directly to find the phrase in the phrase file using
the System Phrase Phrase by Name<>. One disadvantage of this method is
that if the database is updated, for instance the spelling of an author’s name
is corrected, the phrase name in the voice file will become invalid and will
have to be updated. This method may also be slightly less efficient since
VBVoice has to read the file index and search for the script in the phrase file
for each phrase - unless the file is pre-opened at startup. (See Setup Menu -
Startup Files page I-22).

3. The best way is to use the AU_ID field to identify the author. Each author can
have a voice file with their name recorded, in the form AUTHn.VOX, where n
is the AU_ID.

Adding the controls

1. Create a new project and call it BOOKS. Add the VBVOICE.VBX file (in your
Windows System directory), and add a new form. To have VBVOICE.VBX
added to your default new project, open AUTOLOAD.MAK in your VB
directory and add VBVOICE.VBX to it.

2. Add a Phone control on the left hand side. Every system starts with one or
more Phone controls. You may add as many phone controls as lines you
have operating (and for which you are licensed).

3. Click on the setup button (upper right corner of phone control) to view the
dialog. The VoiceLine text box should be set to 1 by default. The Allocate
Line and Answer Call options should be checked since we want this system
to answer the phone automatically.

4. Add a Greeting control to play the initial greeting. Greeting controls are used
if you want to play a prompt without getting any digits from the caller. Set the
name of this control to Hello by double-clicking on the name and typing in the
new name.

5. To add a greeting that automatically says, "Good Morning, Good Afternoon,
or Good Evening," click on the greeting button (left side of Greeting control)
to get the Create Greeting dialog. Then click the Add System Phrase button.
In the System Phrase dialog, scroll down the Phase Types list to find the
phrase "Initial Greeting" and then select it. Press OK to return to the greeting
dialog, and press OK to save your selection. This will be the only phrase we
need in this greeting.

6. Now, add a GetDigits control to play the main menu. Callers will re-enter here
when they complete a search. Name this control MainMenu by double-
clicking on the name and entering the new name. At this point, choose Save
Project from the File menu to save your work.

7. In the GetDigits dialog (MainMenu), we need to add the greeting:
"Press 1 to search by ISBN, 2 to list books by author or 8 to exit."

8. First we need to create a file to hold our phrases. We must load Announce to
initially create our phrase file. Minimize the Visual Basic window and load
Announce by clicking the Announce Icon in the Windows Program Manager.

9. Choose New from the File menu. From the New dialog, choose New List to
create a new phrase file.

10. From the File menu, choose Save As... and save the current file as
BIBLIO.VAP in the VBV directory. From the File menu, choose New again.
Now, you should be in the New dialog with the New Phrase highlighted. Type
in the entire script above (at step #7) and click New Phrase. From the File
menu, choose Save to save your work.

11. Minimize Announce and return to the Visual Basic window. Click the Setup

button (upper right corner) on the MainMenu control. We will now enter our 3
exit conditions using 1,2 and 8. The GetDigits control comes with several
conditions predefined. We are not using the first option, digit '0', so we can
remove that by selecting it and pressing Delete. The next two conditions are
valid, but let's change the names to something more descriptive. Double-click
on condition '1' to show the Digit Match Condition setup dialog, type in a new
Condition Name "ISBN - 1", and press OK. For the condition '2', use the
name "AUTH - 2". Change the next condition '3' to the name "Exit - 8" and
the DigitMask to "8". The remaining "#" condition can be deleted. Choose OK
to exit the GetDigits setup dialog.

12. We now have an initial greeting and a main menu. We need to connect these
controls together to make the system do something. Click in the Ring output
of the Phone1 control and drag to the speaker icon in the Hello control (the
cursor should change to a square when it is in position), and release. You
should see a line connecting the 2 points. Repeat this for the Played output
of the Hello control and the speaker icon of the MainMenu control.

13. Your design should now look something like this:

1. To gain some confidence before continuing the design, let's record the
greeting and test the system so far. Click the greeting dialog from the
MainMenu control. In the Create Greeting dialog, click Add VAP Phrase.
From the Add VAP Phrase dialog, click the selector arrow under VAP File and
select the phrase file that was created earlier, BIBLIO.VAP. From the Add
VAP Phrase dialog, click Edit Phrase. Announce! should now start up in the
phrase file BIBLIO.VAP. Close the initial box (labeled Press 1...) that appears
so that only the box labeled biblio.vap is present, and then press the Record
button to get to the Record dialog.

2. Announce! will show you the script you must record. Press Record to begin
your recording.

3. When you are finished, choose OK and click the Play button to hear your
prompt. If you don't like it, record it again.

4. When you are finished, close Announce! You will be prompted to save your
file and you will then return to Visual Basic. Choose OK from the Add VAP
Phrase dialog and then OK from the Create Greeting dialog. You are now
ready to test the system, such as it is.

5. Choose Test from the VBVoice Status menu to get the Test dialog. If the
Phone1 control is not highlighted, click on it to make it the active control.
(This tells it where to start the test.)

6. Choose Start. The Ring or Call dialog will appear. Choose Ring. If all goes

well, you should now hear the greeting "Good morning" (or afternoon /
evening depending on what time it is). Next, the system should play your
newly recorded prompt. Press the digit 1 - either on the Test dialog or on the
phone depending upon your setup. The system will attempt to exit via the
output "ISBN -1". At this point, the system will stop since we haven't
connected that output to anything yet. If necessary, close the Test Log dialog
so you can see your controls. The ISBN output should be highlighted.

7. Re-test the system again, but this time let's skip the Phone1 and Hello
controls (we know they work) by making MainMenu the active control. This
time, press 2 to test the "AUTH -2" output, and then re-test again to check
the error handling by pressing an incorrect digit, and then by pressing no
digits at all. (Remember, close the Test Log dialog to see your controls after
each test is completed).

8. Save the project up to this point.

Checking for errors
Use the Check Control, Check Form and Check System to check your system.
Even if you have only one form in your system, Check System performs some
extra checks over Check Form. If you get errors, double-click on the error
message to highlight the control in error. To get help on the error, select the error
line in the list box and press the F1 key (or select help from the test log menu).

Adding controls for ISBN access
1. Now we will add the subsystem that gets the ISBN number and finds the

book of that number. Start by adding another form (form2).
2. Add another GetDigits control, call it GetISBN. Add a new phrase to the

greeting with a script of ‘Please enter the ISBN. Press # when finished’. To
do this, choose the greeting button and from the Create Greeting dialog,
press Add VAP Phrase. Choose BIBLIO.VAP file from the pull-down list and
press EditPhrase. Announce! will again be loaded with the first phrase you
recorded. Close this window and choose New from the File menu. Type the
phrase above into the New Phrase text box and press New Phrase. Using
the same procedure as the first phrase, record this phrase and return to
Visual Basic. From Add VAP Phrase dialog, press the down-arrow selector
under VAP File to re-load and update the BIBLIO.VAP file. Both phrases will
now be listed in the selection box. Double-click on the new phrase to return
to the Create Greeting dialog and press OK.

3. Set up the GetISBN control to have one condition only,which is a wild
character $. This will allow the control to collect all the digits. Set the
‘Terminate on ..’ digit to # to allow the caller to terminate digit collection
without waiting for a timeout. Press OK.

4. Now add a VB data control and call it dbISBN. To change the name of
standard controls, you must use the Properties window and select the Name
property. Set the Caption to the same name also. Then set the
DatabaseName property to the C:\VBV\BIBLIO.MDB file and set the
RecordSource to ‘Titles’. The Titles table contains a list of book titles and
their ISBN codes, and the Author Id number for each book. Since the data
control is not graphically connected, it can be tucked away in a corner, out of
the way.
Note: To view the contents of the database, and view names and ID
numbers, use the DataMgr program provided with Visual Basic and open c:
\vbv\biblio.mdb

5. Add a DataFind control (call it FindISBN) to reference the dbISBN data
control. Use the setup dialog to set the Search in data control property to
dbISBN. To do this, check the ‘Records containing:’ button, and set to
%GetISBN%. Click the Find Control button at the bottom of the dialog to get

a list of available controls. You can cut and paste into the text box. Set the
‘Search in field’ to ISBN.

6. Set the Match Fields to ‘Exactly’, and the Match On to ‘All Characters’. This
will make the DataFind control search for the entry that matches with the
digits supplied.

7. This control will read the full ISBN number from the database. We then have
to say the full ISBN number back to the caller for verification.

8. Add a DataGet control and call it GetAuthID. This control will read the
author's id number from the database. We can use this author id to select the
file to play for the author's name. Set the ‘Get data from field’ to AU_ID. We
do not need any data matching conditions since we are only retrieving data
and not testing it, so we can delete all of the Test Conditions.

9. Now add a GetDigits control and call it PlayAuth1. This will say the ISBN,
Authors ID number and name, and ask the caller if this is correct to continue
the search for a title. We need to add 3 phrases to the greeting. Two will be
VAP phrases in BIBLIO.VAP that you must record; example: "The author is",
plus "Press one to select this Author, or two to search by another ISBN". The
other is a System Phrase. that will say the author ID number. Click Add
System Phrase from the Create Greeting dialog. In the Phrase Types scroll
box, scroll down to Number<>. In the Number to say box, type
%GetAuthID%. Click OK to save the information in the System Phrase
dialog.

10. If you wish to add the author's name as well, you will have to record an
individual file for each author containing the spoken name of the author. Each
file should be named AUTHn.VOX (ie. c:\vbv\auth21.vox), where n is the
authors ID number as assigned in the database. To play these files, use
another System Phrase, of type FileSpec<>, with FilePath set to
AUTH%GetAuth%.VOX.

11. When the phrases are complete, click OK again to exit the Create Greeting
dialog.

12. Now we need to set the GetDigits control to look for the digits 1 and 2, in the
same way as before. The '2' output should connect back to the GetISBN
input to start a new search by ISBN. Reminder: To view the contents of the
database, and view names and ID numbers, use the DataMgr program
provided with Visual Basic and open c:\vbv\biblio.mdb.

13. To complete this section of the system, connect the ‘Done’ output of the
‘GetAuthID’ control to the input of PlayAuth1. Depending on how you have
laid out the controls, you may want to use a named connection for clarity
rather than a line connection.

14. In order to continue, and list the book titles, you will need another DataFind
control. Call this one FindTitle. Set the ‘Search in data control’ to dbISBN, the
‘Records containing:’ to %GetISBN%, and the ‘in field’ to ISBN. Match fields
‘exactly’ on ‘all characters’. You can now connect the 1 output of PlayAuth to
the input of FindTitle.

15. Add another DataGet and call it GetTitle. Set the ‘Get data from field’ to Title.
Compare data exactly, and match on all characters. Delete all test conditions.

16. You will now need to record your Titles. This is done the same way you
created your Biblio.vap file list. (1) open announce, (2) click new list, (3) click
new phrase, (4) type in the title of the book exactly as it appears in the
datamanager (matching case and spaces - even a trailing space could cause
the application to fail to recognize the title by exact match), (4) click record,
and record your voice phrase, (5) repeat steps 3 and 4 until all titles are
recorded, (6) save as c:\vbv\Titles.vap

17. Add a greeting control, and click the left greeting icon on the control. Chose
Add system phrase. Select ‘VAP Phrase by Name’, enter ‘VAP File’
Titles.vap, ‘Phrase script’ %GetTitle%.

18. Finish this form by adding an OnHook control and connecting each control in
the same sequence they were presented to you. You should also connect the
Not found output of FindTitle to the Err output of GetISBN.

19. You will need to connect MainMenu to GetISBN. Add an OutConnector (will
show up as OutConn1) to form 1, and connect it to ISBN-1. Change the
name to something meaningful. Add an InConn to Form2 and input to
GetISBN. Again change the name to something meaningful and unique from
all other controls. Click and drag from the OutConn to white space to set the
specifics.
Your design should now look like this:

1. To make the databases available to VBVoice, Visual Basic must be started
using the Run / Start command. You can now start Test mode once again,
and test your database access. You should be able to enter a valid ISBN
number and have the system play the author's ID, Name, and book title.

2. Another situation you may want to handle is when there are no records found
at all, and play a message, “there were no records found”. To do this,
connect the ‘None Found’ output to a greeting control to play the message.
After playing the message, take the caller back to the main menu.

Adding the search by Author-name
1. Add a New Form (form3). This part of the design is similar to the ISBN

search, except that: the GetDigits control (call it SearchByAuthor) must say:
“Please enter the first few letters of the Author's last name, using the letters
on the keypad. Use the digit 1 for Q and Z.. Press # when finished"

2. A new data control (call it dbAuthors) must have the RecordSource set to
Authors. Remember: this is set in the properties window.

3. A DataFind control (call it FindAuthor) must search in the ‘Author’ field, for
records containing %SearchByAuthor% and reference your dbAuthors data
control. The Use Digit Translation box should be set, so that the digits are
translated into the keyboard equivalents before matching (i.e. 2 is A, B, or C,
3 is D, E or F etc.).

4. The DataGet control (let's call it GetThisAuth) should access the AU_ID field,

so the system can retrieve the author's name file.
5. The GetDigits (call it PlayAuth2) control should reference the GetThisAuth

control to select which Author file and number to play.
6. Add another Datafind control (call it FindTitles), this one referencing the data

control dbISBN (copy it over from form2), set ‘Records containing’ to
%GetThisAuth%, and ‘In Field’ to AU_ID. This will retrieve the authors ID
number to locate your earlier recorded AUTHn.VOX files.

7. Connect the Found port of FindTitles to A DataGet (call it GetTitles), have it
“Get data from field’ Titles. Again, delete all test conditions. Connect your
GetTitles to a new Greeting control (call it PlayTitles), and ‘Add System
Phrase’, select ‘VAP Phrase by Name<>’, in ‘Vap file’ Titles.vap, for ‘Phrase
Script’ %GetTitles%. Connect the ‘Played’ port back to the ‘Next’ port of
FindTitles. This will allow the search to continue listing books by that author.

8. Now connect the ‘Not Found’ output of FindTitles to a new GetDigits (call it
ThatsAll). Record a phrase to say “That is all the titles by the selected author.
Chose 1 to select another Author or 8 to exit”. Connect the 1 port back to
SearchByAuthor. Connect the 8 port to a new OnHook control.

9. Note: Both data controls are required on this form (dbISBN and dbAuthors).
Form3 should look like something like this:

To Run The Program.
1. Double click on the white space in Form1 and Type:

form1.show
form2.show
form3.show

2. Close the window and save.
3. Add two Visual Basic button controls to form 1. Change the Caption and

Name (in properties window) of one to START and the other to STOP.
4. Double click the START button and type in the code window for the Click

event:
Dim i As Integer i = vbv_start_system()

5. Double click on the STOP button and type:

Dim i As Integer i = vbv_stop_system
6. Select Add file... from the file menu and select VBVOICE.BAS from your VBV

directory. This adds the declarations for the VBVoice DLL functions.
7. Save your project, then chose Run, Test, Start.

Your complete Form1 should look something like this

Placing an order.
We have now designed two systems to allow a caller to choose a book,
either by ISBN number or by Author selection. We now want to add a section
which will allow the caller to order the book. We will assume the caller has an
account number for billing purposes.
All we have to do is ask for the number, validate it, and add the entry into a
database.

1. First we will need 2 new database tables, Accounts and Orders. The
Accounts table contain a list of valid account numbers. In a real system, this
table would also contain billing information. The Orders table will contain 2
fields, Account and ISBN. Each record corresponds to an order taken.

2. Add 2 data controls, one to reference each table in the database.
3. Use a GetDigits control to request the number. Since we know that account

numbers are all 7 digits, use the digit mask nnnnnnn.
4. Use a DataFind control to search in the account database to verify the

account number.
5. Use a DataNew control to add a new record to the Orders database
6. Use a DataChg control to add the data to the new record. A DataChg control

contains a list of database fields to update, and the new data for each field.
We will want to set the Account field to the account number received from the
caller, and the ISBN field to the ISBN of the book selected by the caller. (See
note below)

Note that there are two ways that we could have obtained the ISBN - either
from the ISBN selection path or the path that does look-up by Author. We
would like to use common code to take the order, regardless of how the book
was selected. However the ISBN will reside in a different location depending
on how the book selection was made. One way to do this is to pick just one
of the GetDigits controls to reference the ISBN number. If the book is
selected via another path which does not use this GetDigits, then it's value
can be set by code to the ISBN value, using the Digits property

