
VB Object Framework
Version 1.0a

An Framework for Enhanced Object-Oriented Application Development
for users of Microsoft Visual Basic™ version 4.0 and above.

VB Object Framework User’s Guide 2

© Copyright 1996 Ken Fitzpatrick
All Rights Reserved
Can be freely distributed, but only in the entirety of the packaging in which it was received.
Cannot be sold without permission.
As a condition for use of this product, the user assumes full responsibility for the use of this product,

as stated in the section “Intended Use”.
VB Object Framework is Shareware, it is not Freeware. If it provides some benefit to the recipient, it

is expected that the Registration Fee will be paid to the author. Thank you for supporting
Shareware.

Microsoft and Visual Basic are registered trademarks of the Microsoft Corporation.
Sheridan Software and ClassAssist are registered trademarks of Sheridan Software, Inc.
Apex Software and DBGrid are a registered trademarks of Apex Software, Inc.

Table of Contents

Chapter 1: Introduction to the VB Object Framework..
Overview..
VBOF Services List..
VBOF Components, Overview...
VBOF Components, Details..
What’s Not Included..
Intended Use..

Chapter 2: VBOF Services..
Starting VBOF Services..
Implementing Contained Objects..
Populating Collections...
Managing Collections within Class Modules...
Initializing Objects...
VB Control Wrappers...
Wrapping the Data Object...

Form Methods..
Form-Level Declarations...
Form_Load Event Procedure, Preparing for Data Control Processing..
Data_Reposition Event Procedure, Tracking the Selected Object...

Wrapping DBGrids..
Class Module Methods..

ObjectDBGridUnboundAddData Method, Adding and Updating Objects...
ObjectDBGridUnboundReadData Method, Populating the DBGrid...

Form Methods..
Form-Level Declarations...
Form_Load Event Procedure, Preparing for DBGrid Processing..
DBGrid1_RowColChange Event Procedure, Following the User...
DBGrid1_UnboundAddData Event Procedure, Adding Objects...
DBGrid1_UnboundDeleteRow Event Procedure, Deleting Objects...
DBGrid1_UnboundWriteData Event Procedure, Updating Objects..
DBGrid1_UnboundReadData Event Procedure, Providing Property Values...

Wrapping List Boxes and Combo Boxes..
Class Module Methods..

ObjectListBoxValue, Providing a Representative String for the ListBox...
Form Methods..

Form-Level Declarations...
Form_Load Event Procedure, Preparing for ListBox Processing..
ListBox_Click Event Procedure, Tracking the Selected Object..

Wrapping the RecordSet Object...
Form Methods..

Form-Level Declarations...
Form_Load Event Procedure, Preparing for RecordSet Processing..

Using VB Object Framework in Conjunction with the Visual Basic Object Browser...........................

Chapter 3: Application Requirements and Recommendations..........................
Visual Basic Project...
Class Modules...
Class Modules and Forms...
Forms..
Data Sources..

Chapter 4: Object-Oriented Development Strategies...
Developing the Non-Visual BOM First...

Using Events in Conjunction with OO Programming...
Using VB Object Framework in Collection-Emulation mode..
Introducing a Database into the Non-Visual BOM..
Introducing a GUI over a Non-Visual BOM...
Performance Discussions..

Maximizing Performance by Eliminating the DataControl..
Performance Impacts of Conventional Programming Techniques Compared to VBOF...........................

Chapter 5: Conditional Compilation Options...
Using “NoEventMgr” to Suppress Event Management..
Using “NoDebugMode” to Suppress Generation of Debugging Code..

Appendix A: Converting from the DataAwareCollection.....................................

Appendix B.1: Public Methods of the Class Module VBOFObjectManager.....
AutoDeleteOrphans (Property)..
Database (Property)...
DebugMode (Property)..
Form_UnloadQuery (Method)...
InitializeObject (Method)..
ManageCollection (Method)...
NewObject (Method)...
NewVBOFCollection (Method)..
NewVBOFDataWrapper (Method)...
NewVBOFDBGridWrapper (Method)...
NewVBOFListBoxWrapper (Method)...
NewVBOFRecordSetWrapper (Method)...
RegisterForCollectionEvent (Method)...
RegisterForObjectEvent (Method)...
RemoveCollection (Method)...
TerminateForm (Method)...
TerminateObject (Method)...
TriggerObjectEvent (Method)...
Verbose (Property)...
Workspace (Property)...

Appendix B.2: Events Triggered by the Class Module VBOFObjectManager..
Instantiated..

Appendix C.1: Public Methods of the Class Module VBOFCollection...............
Add (Method)..
AutoDeleteOrphans (Property)..
Collection (Method)...
CollectionIndex (Method)...
Count (Method)..
Database (Property)...
MostRecentlyAddedObject (Property)...
MostRecentlyAddedObjectIndex (Property)..
OrderByClause (Property)...
Parent (Property)...
PopulateCollection (Method)...
RecordSet (Method)...
Refresh (Method)..
Remove (Method)...
Replace (Method)...
WhereClause (Property)...

Appendix C.2: Events Triggered by the Class Module VBOFCollection...........
AddedItem (Collection Event)..

PopulatedFromDatabase (Collection Event)...
PopulatedFromRecordSet (Collection Event)...
Refreshed (Collection Event)..
RemovedItem (Collection Event)...
RemovedItem (Object Event)...
ReplacedItem (Collection Event)...

Appendix D: Public Methods of the Class Module VBOFDataWrapper.............
AbsolutePosition (Property)...
AbsolutePositionObject (Property)...
BOF (Method)...
Clone (Method)...
CloseRecordSet (Method)...
EOF (Method)...
FindFirst (Method)...
FindLast (Method)...
FindNext (Method)...
FindPrevious (Method)..
MoveFirst (Method)...
MoveLast (Method)..
MoveNext (Method)...
MoveToObject (Method)..
MoveToRecordNumber (Method)...
Rebind (Method)..
RecordCount (Method)...
RecordSet (Method)...
Refresh (Method)..
Unbind (Method)..

Appendix E: Public Methods of the Class Module VBOFDBGridWrapper........
Bookmark (Property)..
BookmarkObject (Property)..
Rebind (Method)..
Refresh (Method)..
Unbind (Method)..
UnboundAddData (Method)..
UnboundDeleteRow (Method)...
UnboundReadData (Method)...
UnboundWriteData (Method)..

Appendix F: Public Methods of the Class Module VBOFListBoxWrapper.......
AddItems (Method)..
ListCount (Method)...
ListIndex (Property)..
ListIndexObject (Property)..
Rebind (Method)..
Refresh (Method)..
RemoveItem (Method)...
RemoveObject (Method)...
SelectObject (Property)...
SelectObjects (Property)...
TopIndex (Property)..
TopObject (Property)..
Unbind (Method)..

Appendix G: Public Methods of the Class Module VBOFRecordSetWrapper..
AbsolutePosition (Property)...
AbsolutePositionObject (Property)...

BOF (Method)...
Clone (Method)...
CloseRecordSet (Method)...
EOF (Method)...
FindFirst (Method)...
FindLast (Method)...
FindNext (Method)...
FindPrevious (Method)..
MoveFirst (Method)...
MoveLast (Method)..
MoveNext (Method)...
MoveToObject (Method)..
MoveToRecordNumber (Method)...
Rebind (Method)..
RecordCount (Method)...
RecordSet (Method)...
Refresh (Method)..
Unbind (Method)..

Chapter 1: Introduction to the VB Object Framework
The VB Object Framework (“VBOF”) is intended to be used by Visual Basic programmers seeking to
further exploit the object-oriented capabilities beyond that provided in the Microsoft Visual Basic 4.0
(“VB4”) base product. VBOF provides a Framework to facilitate the integration of the VB4 Class Module
with VB’s powerful GUI and Database facilities. VBOF provides a full complement of object-related
services to greatly increase VB4’s object-oriented capabilities, including the following:

· automatic implementation of the object containment hierarchy

· implementation of an object-to-database mapping scheme

· automatic object instantiation from database data

· automatic storing of data in the database

· automatic maintenance of object containment links

· automatic implementation of object persistence through the VB or ODBC-connected database

· complete encapsulation of all SQL functions

· automatic avoidance of redundant object instantiation

· object event management for event communication across independent processes and for linking the
non-visual BOM to the GUI

· object-oriented approaches to managing several VB controls

In this Chapter, the section “Overview” describes the general nature of VBOF; section “VBOF Services
List” describes the services of the VBOF in a general nature; and section “VBOF Components Overview”
outlines the specific VBOF Components and relates them to their respective VBOF services. Also take
note of the sections “Intended Use” and “What’s not Included” in this Chapter.

Overview
The VB Object Framework is a packaging of several integrated Visual Basic Class Modules in source
code form. VB Object Framework includes an Object Manager (“VBOFObjectManager”), an Event
Manager (“VBOFEventManager”), a database-aware Collection object (“VBOFCollection”), several
Control Wrappers (“VBOF…Wrapper”) and this User’s Guide. This User’s Guide contains descriptions
of the required and recommended contents of application Class Modules, Forms and Databases in order to
receive the benefits of VB Object Framework.

The VBOF supports the object-oriented design approach of developing and completing the non-visual
Business Object Model (“BOM”), then applying the database and user interface aspects of the application,
as appropriate. See “Object-Oriented Development Strategies” for additional information.

If desired, the VBOF supports conventional Visual Basic programming techniques, such as GUI-centric
and Database-centric approaches which are focused on Visual Basic’s GUI DataControl and database
facilities. However, its strength is in its support of highly object-oriented application design and
development approaches where Visual Basic data-centric components, including the DataControl, are not
required. Through VB Object Framework’s wrappers, VB’s GUI components are fully supported in an
object-oriented manner. For example, the Visual Basic ListBox, ComboBox and DBGrid can be
processed as visual containers for the presentation of a collection of objects. All interaction with these
GUI controls can be conducted through an object-oriented layer. This includes setting or retrieving the
contained objects of these GUI controls, and setting or retrieving the selected object(s) or other control
properties.

The VBOF is an enhancement beyond the previously released “DataAwareCollection” Shareware product.
Regrettably, and unfortunately to those many faithful users of the DataAwareCollection, there is no means
of providing the features of the VBOF and also provide 100% backward compatibility with

Chapter 1: Introduction to the VB Object Framework

DataAwareCollection. Thus, “Appendix A” describes in detail the coding enhancements required for
compatibility with the VBOF.

VBOF Services List
The following is a summary of the services of the VB Object Framework:

Object Instantiation and Termination Supervision
The VBOFObjectManager supervises the instantiation and termination of all application objects
including VBOFCollections , objects instantiated from data sources and contained within
VBOFCollections, singular contained objects and VBOF Wrappers.

Object Single-Instance Ensuring
As the VBOFObjectManager monitors the instantiation of all objects, it ensures the uniqueness of
each object. When an attempt is made to instantiate an object that has already been instantiated,
the VBOFObjectManager cancels the process and directs the user to the instantiated object. This
negates the need for the application to develop code to deal with redundant instances of a given
object.

Automatic Implementation of the BOM Object Containment Hierarchy
The VBOFCollection automatically implements the object containment hierarchy of the BOM.

 For example, if a “Person” Class Module contains collections of “Address” and “Phone” objects,
VBOFCollection automatically retrieves the applicable rows of the respective data sources for the
Address and Phone objects, instantiates the applicable objects, populates them with data from the
respective data source rows and returns them to the application. See below for additional
information regarding these functions.

Automatic Database Access
The VBOFCollection automatically generates and executes all of the necessary SQL code for
implementation of the BOM object containment hierarchy. Except for an occasional “Order By”
or “Where” clause, the application never needs to code any SQL. The rows returned from the
data source equate to the objects contained within the appropriate container object.

The VBOFCollection automatically implements object persistence by managing all necessary
SQL activity for adding, updating or deleting contained objects from their container object. In
addition, the VBOFCollection automatically maintains an independent data source for storing
object containment information.

Automatic Conversion of Data Source Rows to Objects
The VBOFCollection cooperates with the Class Module to map the fields of its associated data
source with its properties. For each applicable row of the data source, the VBOFCollection
instantiates a new object and passes the row information to it to allow the Class Module to map
its properties to the data source.

To receive these services, the application need only identify the name of the appropriate data
source for the Class Module, provide a “Sample Object” of the contained Class Module type,
provide a method to map the fields of a data source row to the properties of the Class Module,
and provide a method to map the properties of the Class Module to the fields of a data source
row.

Object-Oriented Wrappers for VB GUI and Database Objects
The VBOF provides wrapper-style Class Modules which support object-oriented management of
the application’s GUI and Database objects. These present an opportunity for increased object-
oriented exploitation by the application. As GUI and Database layers are applied to the BOM,

Chapter 1: Introduction to the VB Object Framework

there is no compromise of object-oriented achievements due to having to develop Database-
oriented or GUI-oriented code.

For example, the VBOFCollection provides methods which support managing the VB RecordSet
like a Collection object. Likewise, the VB Object Framework provides wrapper Class Modules
for object-oriented management of the VB ListBox, ComboBox and DBGrid. Additional
wrappers will continue to be developed as dictated by customer demands.

When the database and GUI are applied over the BOM, use of these wrappers should be a natural
extension of the principles of the BOM.

Object Event Management
The VBOFObjectManager, in conjunction with the VBOFEventManager, provide object-level
event management functions. Object events are required for the successful implementation of
robust object-oriented applications. For example, events can be used to mark certain state
transitions throughout the application, such as objects being instantiated, updated, deleted, etc.

Within an application, the independence between application components achieved through event
processing yields increased system life span and reduced system maintenance. This is because
there is no need for the triggering component to be sensitive to the requirements of any of the
recipients of those events, and all components are free to evolve independently over time. In
addition, there can be any number of registered recipients for any given object event, allowing for
growth and enhancement of the application, independent of the triggering object.

Object events can also be utilized when applying a GUI over the BOM without compromising the
purity of the BOM. To implement this aspect of object event management, the GUI Forms
register as interested recipients of events generated by the appropriate BOM objects and respond
accordingly. For example, a given Form might be an editor for a given Class Module. When
executing over a given instance of the Class Module, the object is known as the Form’s Domain
Object and certain events triggered by the Domain Object would be of interest to the Form. Thus,
the Form would register to receive notification of certain events triggered by the object.

Interested Forms and Class Modules can register with VBOFObjectManager to receive
notification of certain events as they are triggered by the appropriate Class Module or particular
Domain Object.

Object events can also provide independence between application components, since events can
be used as catalysts to cause certain functions to occur without there being any direct link or
association between the triggering object and the notified objects. This allows background
processing to occur without the triggering object necessarily having any knowledge or direct
involvement with those background functions. For example, a product cross-selling application
could be running in the background. Its input consists solely of events being triggered by the
foreground application. In the event that the cross-selling application finds a need to recommend
a product for the Sales Rep to present to the customer, it can display such a message in a special
window. Through this implementation, the foreground application never has to know that the
background application even exists, and it certainly does not need to integrate the needs of the
background application into its own code.

VBOF Components, Overview
VB Object Framework consists of the following Visual Basic Classes Modules1:

1 It is possible to develop additional “Wrapper” Class Modules for object-oriented implementation of
certain VB controls that are not already provided in this increment of the VB Object Framework. Please
contact the author for support.

Chapter 1: Introduction to the VB Object Framework

File Name Class Name

VBOFOMgr.cls VBOFObjectManager

VBOFColl.cls VBOFCollection (formerly "DataAwareCollection")

VBOFEMgr.cls VBOFEventManager

VBOFEvnt.cls VBOFEventObject

VBOFData.cls VBOFDataWrapper

VBOFDBGr.cls VBOFDBGridWrapper

VBOFLBox.cls VBOFListBoxWrapper

VBOFRSet.cls VBOFRecordSetWrapper

The following section describes these VBOF Class Modules is greater detail.

VBOF Components, Details
The following is a general description of these Class Modules. For specific information regarding the
methods and parameters thereof, refer to the appropriate Appendix.

VBOFObjectManager
VBOFObjectManager coordinates all object-level activity, ensuring that no given object is
instantiated more than once. It coordinates the object clean-up process at the end of the
application, manages the instantiations of all VBOFCollections and manages communications
between them. It also coordinates with VBOFEventManager to handle triggered events and
deliver the necessary notifications to registered objects.

The application program instantiates the VBOFObjectManager. Refer to Chapter 2, section
“Starting VBOF Services”.

Upon its instantiation, VBOFObjectManager automatically creates an instance of the
VBOFEventManager class. For processing without the assistance of VBOFEventManager, refer
to section “NoEventMgr” in the Chapter “Conditional Compilation Options.”

As the application needs VBOFCollection instances, it requests them from its instance of
VBOFObjectManager (see method NewVBOFCollection). This way, the
VBOFObjectManager can appropriately control and populate the VBOFCollection and guarantee
that any object appearing in any VBOFCollection is unique across the environment.

As the application needs singly contained objects, it requests them from its instance of
VBOFObjectManager (see method NewObject). This way, VBOFObjectManager can
appropriately instantiate the desired object from the database, or return a reference to the object,
if it is found to already exist.

As the application needs to introduce an object that it created into the realm of
VBOFObjectManager support, it requests that VBOFObjectManager properly initialize the object
for (see method InitializeObject). This way, VBOFObjectManager can appropriately
manage the object as it does any other object.

For additional information regarding the methods and their parameters for the
VBOFObjectManager Class Module, refer to Appendix B.1.

Chapter 1: Introduction to the VB Object Framework

VBOFCollection (a version was formerly released as "DataAwareCollection")
VBOFCollection coordinates with VBOFObjectManager to present a database-aware replacement
to the Visual Basic Collection object. Since VBOFCollection contains the basic methods of the
Collection object, Add, Item and Remove, it can functionally replace the Collection object
without changing the base application. It also adds database awareness and other object-oriented
properties to the role of the collection object.

VBOFCollection can automatically implement the object containment hierarchy of the
application’s Business Object Model (“BOM”) by tracking object containment. It encapsulates
all of the SQL necessary to retrieve the appropriate table rows, then automatically converts those
rows into instantiated and populated objects of the appropriate contained Class type, and returns
them in a collection form.

As objects within the VBOFCollection are added, changed or deleted, VBOF automatically
synchronizes the changes with the underlying database.

VBOFCollection also provides the basis for encapsulation of several Visual Basic GUI controls
through “wrappers” to provide an object-oriented manner of manipulating those controls. For
example, VBOFCollection provides an object-oriented interface to the Visual Basic DBGrid,
ListBox and ComboBox controls, such that the application can deal with the objects and
VBOFCollection and not with the GUI controls. These features can be used to create non-visual
BOMs long before the GUI is ever designed or developed. The BOM can feature object-level
and collection-level manipulations, as necessary, then, as the GUI is developed, these GUI
controls can controlled by the BOM without change.

For additional information regarding the methods and parameters thereof for the VBOFCollection
Class Module, refer to Appendix C.1.

VBOFEventManager
VBOFEventManager coordinates with VBOFObjectManager to present an application-oriented
event management system. Since VBOFEventManager is fully encapsulated by
VBOFObjectManager, the application program communicates with VBOFEventManager only
through methods in VBOFObjectManager.

Any application component can trigger any event at any time (see method “TriggerObjectEvent”
in Class Module “VBOFObjectManager”). Any application Class Module or Form can register
as an event notification recipient (see method RegisterForObjectEvent in Class Module
“VBOFObjectManager”). When an event is triggered, VBOFEventManager and
VBOFObjectManager jointly process the trigger and send notifications to all registered objects
through each object’s ObjectEventCallback method.

For processing without triggers, refer to section “NoEventMgr” of chapter “Conditional
Compilation Options”

VBOFEventObject
VBOFEventObject is a container Class Module for tracking the reference to each registered event
recipient. Since VBOFEventObject is fully encapsulated by VBOFObjectManager and
VBOFEventManager, and is applicable only to their internal processing of events, there is no
direct communication between VBOFEventObject and the application.

For processing without triggers, refer to section “NoEventMgr” of chapter “Conditional
Compilation Options”

VBOFComboBoxWrapper

Chapter 1: Introduction to the VB Object Framework

VBOFDataWrapper
The VBOFDataWrapper is a wrapper Class Module for managing the VB DataControl in an
object-oriented manner in conjunction with a VBOFCollection and its underlying RecordSet
object. Through the VBOFObjectManager, the application receives a new instance of a
VBOFDataWrapper (see method NewVBOFDataWrapper of VBOFObjectManager) which is
essentially bound to a given VBOFCollection and a DataControl. The application then
communicates simultaneously with the DataControl, the VBOFCollection and its underlying
RecordSet through the VBOFDataWrapper in an object-oriented manner while the
VBOFDataWrapper maintains consistency between the contents of the DataControl and the
VBOFCollection. In addition, the VBOFDataWrapper provides a single interface for two
separate sets of methods supported by the DataControl and VBOFCollection, respectively.

VB applications typically manage the DataControl as a set of records from a data source in a
conventional, row-oriented manner. The VBOFDataWrapper allows the DataControl to be
managed as a collection of objects in an object-oriented manner. For example, the
VBOFDataWrapper polymorphically implements the RecordSet’s “Find” and “Move” methods
(e.g., FindFirst, FindNext, . . . , MoveLast, etc.) but instead of simply positioning the
RecordSet to the appropriate row, the VBOFDataWrapper continues with actually returning the
object which equates to the row in the RecordSet.

Any other Controls on the Form which are bound to the DataControl (e.g., Text fields, Labels,
CheckBoxes, etc.) also benefit from the features of the VBOFDataWrapper, since Visual Basic’s
automatic binding features are not inhibited in any way.

VBOFDBGridWrapper
The VBOFDBGridWrapper is a wrapper Class Module for managing the VB DBGrid in an
object-oriented manner. Through the VBOFObjectManager, the application receives an instance
of VBOFDBGridWrapper (see method NewVBOFDBGridWrapper) which is essentially bound
to the associated VBOFCollection, its collection of contained objects and the DBGrid control.
The application then communicates with the VBOFCollection and DBGrid through the
VBOFListBoxWrapper in an object-oriented manner.

For example, VB applications typically manage the DBGrid in its Bound mode with an
accompanying DataControl. However, this does not represent good object-oriented technique
because of the procedural manner in which these are managed. Through the
VBOFDBGridWrapper the application can manage the DBGrid in an objected-oriented manner.
In addition, the application typically benefits from increased performance because VBOF
eliminates unnecessary reliance on the DataControl, and the VBOFCollection and its contained
objects typically can be referenced more quickly than through a DataControl.

The VBOFDBGridWrapper allows the application to treat the DBGrid as a display and update
mechanism for the objects in the associated VBOFCollection. The application simply places
small code segments at the event procedures of the DBGrid object within the Form module and
VBOF assumes control over a great portion of the necessary management duties.

VBOFListBoxWrapper
The VBOFListBoxWrapper is a wrapper Class Module for managing the VB ListBox in an
object-oriented manner. Through the VBOFObjectManager, the application receives an instance
of VBOFListBoxWrapper (see method NewVBOFListBoxWrapper) which is essentially
bound to the associated VBOFCollection, its collection of contained objects and the ListBox
control. The application then communicates with the VBOFCollection and ListBox through the
VBOFListBoxWrapper in an object-oriented manner.

For example, VB applications typically manage the ListBox as a display mechanism for a
collection of strings which are representative of the underlying data. Even though the application
utilizes the ListBox properties such as its ListIndex, ListCount and Selected to a great extent, the

Chapter 1: Introduction to the VB Object Framework

application is actually dealing with strings and numbers which represent and are loosely affiliated
with the underlying data -- the application is not dealing with the data itself. The application
typically implements a translation scheme to map the underlying data to the representative strings
and numbers.

The VBOFListBoxWrapper allows the application to treat the ListBox as a display mechanism
for the objects in the associated VBOFCollection. The application deals directly with the objects
without the need for a translation scheme. All of the ListBox methods and properties are
managed through the VBOFListBoxWrapper. For example, to populate the ListBox, the
application executes the AddItems method of the VBOFListBoxWrapper, and to manage selected
objects, the application executes the SelectedObject or SelectedObjects Get and Set Property
methods. Other methods are provided to support robust object-oriented management of the
ListBox.

What’s Not Included
The current release of VB Object Framework does not contain the following features:

· Heterogeneous collections (i.e., collections containing objects of varying Class Modules);

· Support for automatic database synchronization, object persistence or automatic implementation of
the object containment hierarchy for those objects which are recipients of the
VBOFObjectManager “InitializeObject” method;

· Synchronous Commits of deferred database updates;

· Dynamic, variable, sorting of the order of objects contained in the VBOFCollection;

· Anything not explicitly stated in this document or found to be available in a Public Method of any
of the VBOF Class Modules.

Availability of these features and others depends on customer demand and continued customer acceptance
and support of VBOF in the future.

Intended Use
VB Object Framework is Shareware that can be distributed freely and without charge as long as it is
distributed as a complete package in its entirety. It is intended to be widely distributed throughout the
Visual Basic programming community to achieve and enjoy a higher level of object-oriented programming
than that inherent in the OEM edition.

VBOF is intended to enhance the level of object-oriented programming capable under the Microsoft
Visual Basic Programming System. By the very nature of the intention of this product, which is to
manipulate, data through objects, including adding, updating and deleting data, the following disclaimer
must be made to protect the author from use or misuse of the VBOF product:

Even though it has been thoroughly tested, is believed to be defect-free and earnest in its
intent, design and implementation , this product is provided to the user on an as-is, use-
at-your-own-risk basis. By using this product in any way, the user indemnifies the
authors of any responsibilities or liabilities associated with the product, its use or the
results of the user’s implementation thereof. The author cannot, and will not, assume
any responsibility for the misuse of, the manipulation of nor the loss of data as a result of
the use of this product.

Under no circumstances should any application program invoke any method of any VBOF Class Module
whose method name begins with the letters “pvt”. These methods are considered private, and are typically
given the Private attribute. However, in many cases where communication is required between VBOF
Class Modules, those methods have had to have been given the Public attribute. Nonetheless, there is no
support for these methods being invoked by any non-VBOF Class Module.

Chapter 1: Introduction to the VB Object Framework

If this product brings some benefit to the VB application programmer or corporation, it is expected that the
registration fee will be paid, as described in the accompanying file, “ORDER.TXT.” Registered users will
receive for free all intermediate upgrades of VB Object Framework until its next major release.

Chapter 1: Introduction to the VB Object Framework

VB Object Framework User’s Guide 13

Chapter 2: VBOF Services
This section outlines the object-oriented services offered by VBOF.

Starting VBOF Services
Applications must declare a global-level instance of the VBOFObjectManager Class, using the following
technique:

Public MyObjectManager as New VBOFObjectManager

Applications must instantiate the VBOFObjectManager object at the beginning of the application, using
the following technique, to include specification of the Database and Workspace:

Public Sub CreateObjectManager()
' instantiate the VBOFObjectManager

 Set MyObjectManager = _
 New VBOFObjectManager

 Set MyObjectManager.Database = _
 MyApplicationDatabase

 Set MyObjectManager.Workspace = _
 Workspaces(0)
End Sub

There are numerous VBOFObjectManager properties and method parameters which are available, some of
which are ideal to set at this time, such as AutoDeleteOrphans, ANSISQL, ODBCPassThrough,
etc. Refer to Appendix B.1 for details.

Implementing Contained Objects
VBOF fully supports the containment of singly-occurring objects within other objects (versus being part of
a collection of objects which are contained within another object), such as the Manager object contained
within each Employee object, or the State object contained within each Address object.

VBOF provides the NewObject method which returns the contained object in a fully instantiated form.
This method is typically to be used in the ObjectInitializeFromRecordSet method of those
Class Modules which contain such singly-occurring objects. For examples, refer to Class Modules
“Person” (note the assignment of the Mother and Father properties) and “Address” (note the assignment of
the state object) of the VBOF Demonstration Package.

Use of this method requires that the application provide a sample object of the desired Class Module
within the containing Class Module (refer to those same examples). VBOF uses this information to
retrieve the correct row from the specified data source (as indicated within the object referenced by the
Sample:= parameter). The sample object is not significant to VBOF after the NewObject method has
completed.

The recommended database design in support of this type of object containment is to place the ObjectID
property of any contained objects in the Data Source of the containing object. For example, the data
source for the Person Class Module would have columns named “MotherObjectID” and “FatherObjectID”.
The containing Person Class Module can then utilize these columns in its
ObjectInitializeFromRecordSet method to instantiate those contained objects using the VBOF
NewObject method

Chapter 2: VBOF Services

VB Object Framework User’s Guide 14

Because of this service, the application can closely align its Class Modules with their respective data
sources. This relieves the application of the need to provide database queries which include JOINs across
data sources. Also, it should be noted that providing a JOINed query, as such, can jeopardize the
“Updatable” status of the data source and can distort the contents of the RecordSet with respect to the
Class Module. For example, a query which JOINs an Address data source to a StateCode data source in
order to retrieve the correct StateCode property for the Address would actually distort the contents of the
Address Class Module since it would then be containing only the StateCode instead of the full State
object. It would be more object-oriented to have the VBOF contain the entire State object within the
Address object through the NewObject method.

If such singularly-occurring contained objects are present, the Class Module’s Public Function
ObjectInitializeFromRecordSet might be the ideal location to instantiate those objects.

The following code segment example implements the containment of a Manager object within the
Employee object, where the Manager’s ObjectID is defined as column “ManagerObjectID” in the
Employee data source:

Public Function ObjectInitializeFromRecordSet(Optional RecordSet
As Variant) As Person

 Dim NewEmployee as New Employee
 . . .
' copy values from the RecordSet (not important for this example)
 . . .
' pick-up the contained Manager object
 If Not IsNull(RecordSet("ManagerObjectID")) Then
 Set pvtManager = _
 ObjectManager.NewObject(_
 Sample:=NewEmployee, _
 ObjectID:=CStr(RecordSet("ManagerObjectID")))
 End If

Populating Collections
Within every object which contains VBOFCollections, the application must declare each of those
VBOFCollection objects similar to the following example:

Private pvtAddresses As VBOFCollection

Note that the attribute lacks the “New” keyword for the VBOFCollection. This is necessary because the
VBOF needs to detect and respond appropriately the first time there is any activity for each
VBOFCollection.

VBOFCollection initialization within Forms should occur within the Form_Load event procedure (a
recommendation.) The VBOFCollection objects should be registered and initialized by the
VBOFObjectManager, similar to the following example:

Set pvtAddresses = _
 ObjectManager.NewVBOFCollection

Note that Class Modules have a different and completely automatic mechanism for
instantiating and initializing their VBOFCollection objects. Refer to the following
section for details.

Chapter 2: VBOF Services

VB Object Framework User’s Guide 15

Managing Collections within Class Modules
Within every Class Module which contains VBOFCollections, the application must provide a wrapper
method for either retrieving the VBOFCollection or an Item within it. VBOFObjectManager completely
assumes responsibility for the detailed implementation, including instantiating and initializing the
VBOFCollection. Nevertheless, the application must provide a basic code segment to invoke the
necessary VBOFObjectManager method.

Note: In order for the success of the scheme of automatically instantiating and initializing the
VBOFCollection, the application program must declare the VBOFCollection without the New keyword, as
in the following example:

Private pvtAddresses As VBOFCollection

In the following code segment example, which would be found in a Person Class Module, the contained
Addresses collection or an object within it is returned:

Public Function Addresses(Optional ObjectID As Variant) As
Variant
' Returns a VBOFCollection of Address objects which are
' contained by this Person object,
' or
' Returns an Address object whose ObjectID matches the
' ObjectID parameter.

 Dim tempNewAddress As New Address

 Set Addresses = _
 ObjectManager. _
 ManageCollection(_
 ObjectID:=ObjectID, _
 Collection:=pvtAddressesCollection, _
 Parent:=Me, _
 Sample:=tempNewAddress)
End Function

As demonstrated in the example above, the Class Module must pass the ObjectID parameter, the
VBOFCollection to be searched (pvtAddressesCollection), the reference to the object itself (Me)
as the Parent and a Sample object (tempNewAddress) for use by The VBOFObjectManager. The
VBOFObjectManager can then fully manage the referenced collection on behalf of the application.

There are numerous properties and method parameters which are available through the
ManageCollection method, some of which are ideal to set at this time, such as WhereClause,
OrderByClause, ANSISQL, ODBCPassThrough, etc. Refer to Appendix C.1 for details.

Initializing Objects
Some applications need to instantiate their own single-occurring objects, yet still have those objects
benefit from the services of VBOF. In order to support these objects, VBOFObjectManager must be
informed of these objects by the application, as in the following example code segment:

Dim MyObject As MyClassModule
 . . .
ObjectManager.InitializeObject _
 Object:=MyObject

Chapter 2: VBOF Services

VB Object Framework User’s Guide 16

All objects which are initialized in this manner participate in the VBOFObjectManager’s system-wide
searches designed to prevent duplicate object instantiation. However, since the VBOFObjectManager did
not participate in the retrieval of data from any database for this object, there is no mechanism for
automatically posting to a database any changes made to the object or its properties.

Thus, objects having been initialized in this manner are not supported by the full complement of VBOF
features, such as automatic database synchronization, automatic implementation of object persistence and
the automatic implementation of the object containment hierarchy (through the level occupied by such
objects).

VB Control Wrappers
In order to enable the application to achieve a high level of object-oriented programming, the VBOF
provides several Wrapper Class Modules for enabling object-oriented management of certain VB
controls2.

All instances of VBOF Wrappers must be declared, but should not use the New keyword, as in the
following example:

Dim MyListBoxWrapper As VBOFListBoxWrapper

All instances of VBOF Wrappers must be initialized and registered through the application’s instance of
VBOFObjectManager, as in the following example:

Set MyListBoxWrapper = _
 ObjectManager.NewVBOFListBoxWrapper _
 Collection:=pvtPersons, _
 . . .

Each VBOF Wrapper Class Module has a different set of named parameters which can be specified for the
appropriate NewVBOF. . .Wrapper method3. In general, there is a named parameter using the name
of the VB control (e.g., ListBox:= for the NewVBOFListBoxWrapper method, DBGrid:= for the
NewVBOFDBGridWrapper method, etc.).

 If necessary, the Collection:= named parameter can be set to Nothing (for example, if the exact
VBOFCollection or its contents are not known at the time that the Wrapper instance is initialized), as in
the following code segment example:

' the exact VBOFCollection isn't known yet
Set MyListBoxWrapper = _
 ObjectManager.NewVBOFListBoxWrapper _
 Collection:=Nothing, _
 . . .

provided the Wrapper is rebound using its Rebind method and specifying a valid VBOFCollection object
prior to its general use, as in the following example:

' the VBOFCollection is now known, so Rebind
MyListBoxWrapper.Rebind _
 Collection:=pvtPersons

2 Refer to the ReadMe.txt for a list of the currently available Wrapper Class Modules. If a given VB
control does not have a Wrapper, please contact the VBOF author or the VB control vendor to make
arrangements.
3 Refer to the appropriate Appendix to determine the appropriate named parameters for any given VBOF
Wrapper Class Module.

Chapter 2: VBOF Services

VB Object Framework User’s Guide 17

' the Wrapper can now be used in full
Set MyListBoxWrapper.TopObject = MyObject

Wrapping the Data Object
The VB Object Framework provides object-oriented support to the Visual Basic Data control through the
VBOFDataWrapper Class Module. Through the VBOFDataWrapper, the application can manage the Data
control as a collection of objects in an object-oriented manner, thus relieving the application of the
conventional means of Record-oriented data management.

Note: Some of the other the VBOF Wrappers, such as the VBOFDBGridWrapper and
VBOFListBoxWrapper, offer higher levels of object-oriented programming than that of the
VBOFDataWrapper. Those Wrappers are supported in Unbound mode, and therefore do not need an
associated Data control. It is only through the Unbound mode can a higher level of object-oriented
programming be achieved. It is highly recommended that these techniques be examined prior to
implementing a design based on the VBOFDataWrapper.

Form modules which contain Data controls which are to receive object-oriented services from the
VBOFDataWrapper need to perform the following:

· must have at least one Data control drawn on the Form;

· must have an associated instance of VBOFCollection whose underlying RecordSet object is
to be used to initialize the Data control’s RecordSet property;

· must have an instance of VBOFDataWrapper for each Data control;

· must request that VBOFObjectManager bind each instance of VBOFDataWrapper with the
associated VBOFCollection;

· if desired, can have defined <DataControlName>_Reposition event procedures.

For a complete list of the public methods supported by the VBOFDataWrapper and each method’s
parameters, refer to Appendix D.

Form Methods
This section outlines the methods and procedures which must be coded within the Form in order to receive
the services of the VBOFDataWrapper.

Form-Level Declarations
The following is an example of the Form Declarations which would be necessary to receive the services of
the VBOFDataWrapper:

Public ObjectManager as VBOFObjectManager
Private pvtPersons as VBOFCollection
Private pvtPersonsDataWrapper as VBOFDataWrapper
Private pvtAddresses as VBOFCollection
Private pvtAddressesDataWrapper as VBOFDataWrapper

Note: ObjectManager is always present, whether or not any VBOFDataWrappers are present. The
above example prepares an environment where the respective underlying RecordSets of the pvtPersons
and pvtAddresses objects can be managed in an object-oriented manner. For more information,
refer to the VBOF Demonstration package.

Chapter 2: VBOF Services

VB Object Framework User’s Guide 18

Form_Load Event Procedure, Preparing for Data Control Processing
In the Form_Load event procedure the application should request a new VBOFDataWrapper for the Data
controls on the Form and bind them to VBOFCollections. If the exact VBOFCollection is not known for
any given Data control, the application can specify Collection:=Nothing. However, before any
significant service is requested of the VBOFDataWrapper the VBOFDataWrapper must be rebound
through the Rebind method with the Collection:= parameter referencing a valid VBOFCollection.
The following code segment meets this objective:

Private Sub Form_Load()
 Set pvtPersonsDataWrapper = _
 ObjectManager. _
 NewVBOFDataWrapper(_
 Collection:=publicCompany.Persons, _
 DataControl:=Data1)

' only initialize the pvtAddressesDataWrapper at this time
' since the exact Address collection can't be determined
' because the exact Person isn't known yet
 Set pvtAddressesDataWrapper = _
 ObjectManager. _
 NewVBOFDataWrapper(_
 Collection:=Nothing, _
 DataControl:=Data2)

Data_Reposition Event Procedure, Tracking the Selected Object
In the Data_Reposition event procedure the application should reset its internal variables and
properties to follow the user’s selections through the Data control. The following code segment is an
example that meets all of these objectives:

Private Sub Data1_Reposition()

' set variables according to the object in the VBOFCollection
' which equates to the new position of the DataControl
 Set pvtCurrentPerson = _
 pvtPersonsDataWrapper. _
 AbsolutePositionObject

 If pvtCurrentPerson Is Nothing Then
 Data2.Enabled = False
 Exit Sub
 End If

 RefreshPersonFields

 Data2.Enabled = True

' rebind the Wrapper for the contained Addresses collection
 pvtAddressesDataWrapper.Rebind _
 Collection:=pvtCurrentPerson.Addresses

' display details of the first Address
 pvtAddressesDataWrapper.MoveFirst

Chapter 2: VBOF Services

VB Object Framework User’s Guide 19

Wrapping DBGrids
The VB Object Framework provides object-oriented support to the Visual Basic DBGrid control through
the VBOFDBGridWrapper Class Module. There are two separate steps to be taken for this support:

1. The Class Module of the objects to be presented through the DBGrid must have coded at least the
method ObjectDBGridUnboundReadData. This method is executed by the
VBOFDBGridWrapper when the DBGrid needs to populate itself. In addition, the Class Module
can have coded the method ObjectDBGridUnboundAddData. This method is used when
the user has created a new row in the DBGrid or when the user has changed the contents of one of
the displayed rows. Note that VBOF reuses the capabilities of the
ObjectDBGridUnboundAddData method to implement the equivalent of what would have
been yet a third method, ObjectDBGridUnboundWriteData.

2. The Form modules which contain DBGrid controls which are to receive object-oriented services
from the VBOFDBGridWrapper need to perform the following:

· must have at least one DBGrid drawn on the Form, and it must be set to “Unbound” mode;

· must have an associated instance of VBOFCollection whose contained objects are to be
displayed on the DBGrid;

· must have an instance of VBOFDBGridWrapper for each DBGrid;

· must request that VBOFObjectManager populate the VBOFDBGridWrapper and bind it to
the associated VBOFCollection;

· must have at least the <DBGridName>_UnboundReadData method defined;

· if desired, can also have defined the <DBGridName>_UnboundAddData,
<DBGridName>_UnboundDeleteData, and
<DBGridName>_UnboundWriteData event procedures. In general, these event
procedures are considered optional, but in order to support the full range of capabilities
they must be coded.

Note: Throughout this section, the example code illustrates the use of two DBGrids, “DBGrid1” and
“DBGrid2”, which are intended to display data for collections of “Person” objects and “Address” objects,
respectively. Each Person object has an independent collection of Addresses. The application’s exact
DBGrids, VBOFDBGridWrappers, VBOFCollections and data fields will likely differ from those
presented herein.

For a complete list of the public methods supported by the VBOFDBGridWrapper and each method’s
parameters, refer to Appendix D.

Class Module Methods
In order to support the VBOFDBGridWrapper, the Class Modules of those objects which are to be
displayed through the DBGrid must have coded the ObjectDBGridUnboundReadData method, and
can also have coded the optional method ObjectDBGridUnboundAddData.

Note: There is no need to code a separate method such as ObjectDBGridUnboundWriteData
because the method ObjectDBGridUnboundAddData is reused by the VBOFDBGridWrapper to
satisfy the requirements of that function.

Chapter 2: VBOF Services

VB Object Framework User’s Guide 20

ObjectDBGridUnboundAddData Method, Adding and Updating Objects
The objectives of the ObjectDBGridUnboundAddData method is receive the data values provided
by the user and copy them into the object’s properties. The method is invoked by the
VBOFDBGridWrapper when the user modifies the contents of any given row or adds a new row to the
DBGrid. In the event that the user has added a new row, the VBOFDBGridWrapper would have already
instantiated a new object (which is, in fact, the recipient of this message).

Note: according to DBGrid documentation obtained directly from Apex Software, the programmer should
be cautioned that only selected values are presented to this method. Therefore, the programmer should
first check the RowBuf field for Null before attempting to use it. The following is an example of this
method:

Public Function ObjectDBGridUnboundAddData(Optional DBGrid As
Variant, Optional RowBuf As Variant, Optional NewRowBookmark As
Variant) As Boolean
' Populate the object variables with the values
' provided by the user in the new row of the
' DBGrid
' (in support of VBOFCollection)
'
' Parameter Description:
' DBGrid:= the DBGrid which is being
' populated
' RowBuf:= the current DBGrid RowBuf object
' NewRowBookmark:= the row number being processed

 Dim I As Long

 For I = 0 To RowBuf.ColumnCount - 1
 If Not IsNull(RowBuf.Value(0, I)) Then
 Select Case RowBuf.ColumnName(I)
 Case "CustomerNumber"
 CustomerNumber = RowBuf.Value(0, I)
 Case "FirstName"
 FirstName = RowBuf.Value(0, I)
 Case "LastName"
 LastName = RowBuf.Value(0, I)
 Case "SSN"
 SSN = RowBuf.Value(0, I)
 Case "Sex"
 Sex = RowBuf.Value(0, I)
 Case "DateOfBirth"
 DateOfBirth = RowBuf.Value(0, I)
 Case "MaritalStatus"
 MaritalStatus = RowBuf.Value(0, I)

' Note: Do not initialize the ObjectID.

 End Select
 End If
 Next I

' return "OK" status
 ObjectDBGridUnboundAddData = True
End Function

Chapter 2: VBOF Services

VB Object Framework User’s Guide 21

Note that the ObjectID property must not be programmatically altered -- VBOF reserves this function for
its own purposes.

ObjectDBGridUnboundReadData Method, Populating the DBGrid
The objective of the ObjectDBGridUnboundReadData method is to populate the DBGrid RowBuf
object with the contents of the object’s properties. Note how the code RowBuf.ColumnName(I) is
referenced to determine the Column Name coded on the DBGrid and is then used to determine the
appropriate property value to provide , as shown in the following code segment:

Public Function ObjectDBGridUnboundReadData(Optional DBGrid As
Variant, Optional RowBuf As Variant, Optional RowNumber As
Variant) As Boolean
' Populate the DBGrid RowBuf with values from
' variables within this object
' (in support of VBOFCollection)
' Parameter Description:
' DBGrid:= the DBGrid which is being
' populated
' RowBuf:= the current DBGrid RowBuf object
' RowNumber:= the row number being processed

 Dim I As Long

 For I = 0 To RowBuf.ColumnCount - 1
 Select Case RowBuf.ColumnName(I)
 Case "CustomerNumber"
 RowBuf.Value(RowNumber, I) = CustomerNumber
 Case "FirstName"
 RowBuf.Value(RowNumber, I) = FirstName
 Case "LastName"
 RowBuf.Value(RowNumber, I) = LastName
 Case "SSN"
 RowBuf.Value(RowNumber, I) = SSN
 Case "Sex"
 RowBuf.Value(RowNumber, I) = Sex
 Case "DateOfBirth"
 RowBuf.Value(RowNumber, I) = DateOfBirth
 Case "MaritalStatus"
 RowBuf.Value(RowNumber, I) = MaritalStatus
 Case "ObjectID"
 RowBuf.Value(RowNumber, I) = ObjectID
 End Select
 Next I
End Function

This example copies its property values into the current row of the RowBuf object for each of its columns.

Note: under certain conditions, this method might be invoked repeatedly with the identical information
being provided at each iteration. According to documentation retrieved directly from Apex Software, this
is considered normal and the programmer should not to be concerned.

Form Methods
This section outlines the methods and procedures which must be coded within the Form in order to receive
the services of the VBOFDBGridWrapper.

Chapter 2: VBOF Services

VB Object Framework User’s Guide 22

Form-Level Declarations
The following is an example of the Form Declarations which would be necessary to receive the services of
the VBOFDBGridWrapper:

Public ObjectManager as VBOFObjectManager
Private pvtPersons as VBOFCollection
Private pvtPersonsDBGridWrapper as VBOFDBGridWrapper
Private pvtAddresses as VBOFCollection
Private pvtAddressesDBGridWrapper as VBOFDBGridWrapper

Note: ObjectManager is always present, whether or not any VBOFDBGridWrappers are present. The
above example prepares an environment where Persons can be displayed in one DBGrid, while the
Addresses of the selected Person can be displayed in another. For more information, refer to the VBOF
Demonstration package.

Form_Load Event Procedure, Preparing for DBGrid Processing
In the Form_Load event procedure the application should request a new VBOFDBGridWrapper for each
of the DBGrids on the Form and bind them to VBOFCollections. If the exact VBOFCollection is not
known for any given DBGrid, the application can specify Collection:=Nothing. However, before
any significant service is requested of the VBOFDBGridWrapper the VBOFDBGridWrapper must be
rebound through the Rebind method with the Collection:= parameter referencing a valid
VBOFCollection. The following code segment meets all of these objectives:

Private Sub Form_Load()
' set pvtPersons to the public collection of Persons
 Set pvtPersons = _
 pubPersons

' initialize pvtAddresses as a new VBOFCollection
 Set pvtAddresses = _
 ObjectManager.NewVBOFCollection

' bind the Collection, DBGrid and DBGridWrapper
 Set pvtPersonsDBGridWrapper = _
 ObjectManager.NewVBOFDBGridWrapper(_
 Collection:=pvtPersons, _
 DBGrid:=DBGrid1)

' bind the Collection, DBGrid and DBGridWrapper
 Set pvtAddressesDBGridWrapper = _
 ObjectManager.NewVBOFDBGridWrapper(_
 Collection:=pvtAddresses, _
 DBGrid:=DBGrid2)

In the above code VBOFObjectManager instantiates instances of VBOFDBGridWrapper and returns them
to the application. The VBOFDBGridWrapper is automatically bound to the VBOFCollection identified
in the Collection:= parameter and the DBGrid identified in the DBGrid:= parameter.

DBGrid1_RowColChange Event Procedure, Following the User
In order to respond to the users moving from row to row within the DBGrid, it is recommended that the
DBGrid’s RowColChange event procedure be coded. The VBOFDBGridWrapper provides an object-
oriented means of implementing this event, as follows:

Chapter 2: VBOF Services

VB Object Framework User’s Guide 23

Private Sub DBGrid1_RowColChange(LastRow As Variant, ByVal
LastCol As Integer)

 Dim tempBookmark As Variant

 ' get the Bookmark of the current row
 tempBookmark = _
 pvtPersonsDBGridWrapper.Bookmark

' display the current Person
 If Not IsNull(tempBookmark) Then

 Set pvtCurrentPerson = _
 pvtPersonsDBGridWrapper. _
 BookmarkObject

' set the Addresses collection according to the Person
' (must rebind the wrapper)
 Set pvtAddresses = _
 pvtCurrentPerson.Addresses
 pvtAddressesDBGridWrapper.Rebind _
 Collection:=pvtAddresses
 End If
End Sub

This routine uses the VBOFDBGridWrapper to retrieve the current Bookmark of the DBGrid, then
translates that into the corresponding object and stores it in the variable pvtCurrentPerson. The
example continues with resetting the contents of its VBOFCollection pvtAddresses, since that
collection represents contained objects relative to the pvtCurrentPerson object. The
pvtAddressesDBGridWrapper is then rebound so the associated VBOFDBGridWrapper can
perform any necessary adjustments.

Code such as this should appear any time such drastic changes (such as reassignment) occur to either the
bound VBOFCollection or the DBGrid.

DBGrid1_UnboundAddData Event Procedure, Adding Objects
In order to support the AllowAdd property of the DBGrid, the following code must appear in the
UnboundAddData event procedure for the DBGrid within the Form:

Private Sub DBGrid1_UnboundAddData(ByVal RowBuf As RowBuffer,
NewRowBookmark As Variant)

 Dim tempPerson As New Person

 pvtPersonsDBGridWrapper. _
 UnboundAddData _
 RowBuf:=RowBuf, _
 NewRowBookmark:=NewRowBookmark, _
 Sample:=tempPerson
End Sub

The code is very simple, in that it simply passes its parameters to the VBOFDBGridWrapper. VBOF
completely coordinates and synchronizes all updates with the underlying VBOFCollection and objects.

Chapter 2: VBOF Services

VB Object Framework User’s Guide 24

After the user has entered values into the “new row” line at the bottom of the DBGrid, Visual Basic
executes the DBGrid’s UnboundAddData event procedure. The application simply transfers control to
the UnboundAddData method of the associated VBOFDBGridWrapper. The VBOFDBGridWrapper
completely manages the process of:

· instantiating a new object

· populating the object with the data from the new row

· adding the object to the underlying VBOFCollection

· logging the object containment information from the appropriate container object to the new object

· writing the object data to the appropriate Data Source

· refreshing the display of the DBGrid

Note: In order to support adding new rows to the DBGrid, the AllowAdd property of the DBGrid must
be set to True.

In order to provide a more intuitive interface, it might be desirable to position to the most recently added
object. To do so, the following code segment can be integrated into the above, immediately after the
execution of the UnboundAddData method:

 Set pvtCurrentPerson = _
 pvtPersons.MostRecentlyAddedObject

 Set pvtPersonsDBGridWrapper.BookmarkObject = _
 pvtCurrentPerson

DBGrid1_UnboundDeleteRow Event Procedure, Deleting Objects
In order to support the AllowDelete property of the DBGrid, the following code must appear in the
UnboundDeleteRow event procedure for the DBGrid within the Form:

Private Sub DBGrid1_UnboundDeleteRow(Bookmark As Variant)

 pvtPersonsDBGridWrapper. _
 UnboundDeleteRow _
 Bookmark:=Bookmark
End Sub

The code is very simple, in that it simply passes its parameters to the VBOFDBGridWrapper. VBOF
completely coordinates and synchronizes all updates with the underlying VBOFCollection and objects.

In order to provide a more intuitive interface, it might be desirable to position the display to the first object
of the VBOFCollection after having deleted the previous object. To do so, the following code segment
can be integrated into the above, immediately after the execution of the UnboundDeleteRow method:

 If pvtPersons.Count > 0 Then
 Set pvtCurrentPerson = _
 pvtPersons.Item(1)

 Set pvtPersonsDBGridWrapper.BookmarkObject = _
 pvtCurrentPerson

Chapter 2: VBOF Services

VB Object Framework User’s Guide 25

DBGrid1_UnboundWriteData Event Procedure, Updating Objects
In order to support the AllowUpdate property of the DBGrid, the following code must appear in the
UnboundWriteData event procedure for the DBGrid within the Form:

Private Sub DBGrid1_UnboundWriteData(ByVal RowBuf As RowBuffer,
WriteLocation As Variant)

 pvtPersonsDBGridWrapper. _
 UnboundWriteData _
 RowBuf:=RowBuf, _
 WriteLocation:=WriteLocation

The code is very simple, in that it simply passes its parameters to the VBOFDBGridWrapper. VBOF
completely coordinates and synchronizes all updates with the underlying VBOFCollection and objects.

DBGrid1_UnboundReadData Event Procedure, Providing Property Values
In order to populate the DBGrid with data from the objects appearing in the VBOFCollection, the
following code must appear in the UnboundReadData event procedure for the DBGrid within the
Form:

Private Sub DBGrid1_UnboundReadData(ByVal RowBuf As RowBuffer,
StartLocation As Variant, ByVal ReadPriorRows As Boolean)

 pvtPersonsDBGridWrapper. _
 UnboundReadData _
 RowBuf:=RowBuf, _
 StartLocation:=StartLocation, _
 ReadPriorRows:=ReadPriorRows
End Sub

The code is very simple, in that simply passes its parameters to the VBOFDBGridWrapper which assumes
all details for populating values into the DBGrid.

Wrapping List Boxes and Combo Boxes
The VB Object Framework provides object-oriented support to the Visual Basic ListBox and ComboBox
controls through the VBOFListBoxWrapper Class Module. For example, the VBOFListBoxWrapper
supports populating the ListBox from the objects contained within a given VBOFCollection. As the user
selects one or more objects, the VBOFListBoxWrapper returns those selected objects to the application.
Through the VBOFListBoxWrapper, the application can manage the ListBox as a collection of objects in
an object-oriented manner, thus relieving the application of the conventional means of ListBox
management through indirect mechanisms such as indexes and representative text strings.

Throughout the “Wrapping List Boxes and Combo Boxes” section of text, support is extended equally to
the ListBox and ComboBox. Therefore textual passages referring to the ListBox also apply to the
ComboBox unless otherwise specifically stated.

There are two separate steps to be taken for this support:

1. The Class Module of the objects to be presented through a ListBox must have coded at least the
method ObjectListBoxValue. This method is executed by the VBOFListBoxWrapper
when the ListBox needs to populated.

2. The Form modules which contain ListBox controls which are to receive object-oriented services
from the VBOFListBoxWrapper need to perform the following:

Chapter 2: VBOF Services

VB Object Framework User’s Guide 26

· must have at least one ListBox drawn on the Form, and it must be set to Unbound mode;

· must have an associated instance of VBOFCollection whose contained objects are to be
displayed in the ListBox;

· must have an instance of VBOFListBoxWrapper for each ListBox;

· must request that VBOFObjectManager populate the VBOFListBoxWrapper and bind it to
the associated VBOFCollection;

· if desired, can have defined <ListBoxName>_Clicked event procedures.

Note: Throughout this section, the example code illustrates the use of a ListBox, “ListBox1”, which is
intended to display data for the collection of “Person” objects. Your exact ListBox,
VBOFListBoxWrappers, VBOFCollections and data fields will likely differ from those presented herein.

For a complete list of the public methods supported by the VBOFDBGridWrapper and each method’s
parameters, refer to Appendix E.

Class Module Methods
In order to support the VBOFListBoxWrapper, the Class Modules of those objects which are to be
displayed through the ListBox must have coded the ObjectListBoxValue method.

ObjectListBoxValue, Providing a Representative String for the ListBox
The objective of the ObjectListBoxValue method is to provide a string value to represent the object
in a ListBox.

In the following example, the object uses its FormattedName method to formulate a representative
string value for itself:

Public Function ObjectListBoxValue() As String
' Return a String that will represent this object
' in a ListBox

 ObjectListBoxValue = _
 Me.FormattedName
End Function

The Class Module is responsible for determining the appropriate textual string value to represent the object
in the ListBox.

Form Methods
This section outlines the methods and procedures which must be coded within the Form in order to receive
the services of the VBOFListBoxWrapper.

Form-Level Declarations
The following is an example of the Form Declarations which would be necessary to receive the services of
the VBOFListBoxWrapper:

Public ObjectManager as VBOFObjectManager
Private pvtPersons as VBOFCollection
Private pvtPersonsListBoxWrapper as VBOFListBoxWrapper
Private pvtAddresses as VBOFCollection
Private pvtAddressesListBoxWrapper as VBOFListBoxWrapper

Chapter 2: VBOF Services

VB Object Framework User’s Guide 27

Note: ObjectManager is always present, whether or not any VBOFListBoxWrappers are present. The
above example prepares an environment where “Persons” can be displayed in the ListBox. For more
information, refer to the VBOF Demonstration package.

Form_Load Event Procedure, Preparing for ListBox Processing
In the Form_Load event procedure, the application should request a new VBOFListBoxWrapper for each
of the ListBoxes on the Form and bind them to VBOFCollections. If the exact VBOFCollection is not
known for any given ListBox, the application can specify Collection:=Nothing. However, before
any significant service is requested of the VBOFListBoxWrapper the VBOFListBoxWrapper must be
rebound through the Rebind method with the Collection:= parameter referencing a valid
VBOFCollection. The following code segment meets all of these objectives:

Private Sub Form_Load()
' initialize pvtPersons as a new VBOFCollection
 Set pvtPersons = _
 ObjectManager.NewVBOFCollection

' bind the Collection, ListBox and ListBoxWrapper
 Set pvtPersonsListBoxWrapper = _
 ObjectManager.NewVBOFListBoxWrapper(_
 Collection:=pvtPersons, _
 ListBox:=ListBox1)

' only initialize the pvtAddressesListBoxWrapper at this time
' since the exact Person isn't known yet
 Set pvtAddressesListBoxWrapper = _
 ObjectManager.NewVBOFListBoxWrapper(_
 Collection:=Nothing, _
 ListBox:=ListBox2)

ListBox_Click Event Procedure, Tracking the Selected Object
In the ListBox_Click event procedure the application should reset its internal variables and properties
to follow the user’s selections through the ListBox. The following code segment is an example that meets
all of these objectives:

Private Sub ListBox_Click()
 Dim tempObjectID As Long

 On Local Error Resume Next

 Set pvtCurrentPerson = _
 pvtPersonsListBoxWrapper.ListIndexObject

' display the person's detail information
 efCustomerNumber = _
 pvtCurrentPerson.CustomerNumber
 efFirstName = _
 pvtCurrentPerson.FirstName
 efLastName = _
 pvtCurrentPerson.LastName
 efSSN = _
 pvtCurrentPerson.SSN
 efDateOfBirth = _
 Format$(pvtCurrentPerson.DateOfBirth, "mm/dd/yyyy")

Chapter 2: VBOF Services

VB Object Framework User’s Guide 28

 lbxMaritalStatusCodes = _
 pvtCurrentPerson.MaritalStatus
 lbxGenderCodes = _
 pvtCurrentPerson.Sex
 efFormattedName = _
 pvtCurrentPerson.FormattedName
 efAge = _
 pvtCurrentPerson.Age
End Sub

Wrapping the RecordSet Object
The VB Object Framework provides object-oriented support to the Visual Basic RecordSet control
through the VBOFRecordSetWrapper Class Module. Through the VBOFRecordSetWrapper, the
application can manage the RecordSet control as a collection of objects in an object-oriented manner, thus
relieving the application of the conventional means of Record-oriented data management.

Note: Some of the other the VBOF Wrappers, such as the VBOFDBGridWrapper and
VBOFListBoxWrapper, offer higher levels of object-oriented programming than that of the
VBOFRecordSetWrapper. Those Wrappers are supported in Unbound mode, and therefore do not need an
associated RecordSet or Data control. It is only through the Unbound mode can a higher level of object-
oriented programming be achieved. It is highly recommended that these techniques be examined prior to
implementing a design based on the VBOFRecordSetWrapper.

Class Modules and Forms which are to receive object-oriented services from the VBOFRecordSetWrapper
need to perform the following:

· must have an associated instance of the VBOFCollection Class Module whose underlying
RecordSet object is to be bound to the VBOFRecordSetWrapper;

· must request that VBOFObjectManager bind each instance of VBOFRecordSetWrapper
with the associated VBOFCollection.

For a complete list of the public methods supported by the VBOFRecordSetWrapper and each method’s
parameters, refer to Appendix G.

Form Methods
This section outlines the methods and procedures which must be coded within the Form in order to receive
the services of the VBOFDataWrapper.

Form-Level Declarations
The following is an example of the Form Declarations which would be necessary to receive the services of
the VBOFDataWrapper:

Public ObjectManager as VBOFObjectManager
Private pvtPersons as VBOFCollection
Private pvtPersonsRecordSetWrapper as VBOFRecordSetWrapper
Private pvtAddresses as VBOFCollection
Private pvtAddressesRecordSetWrapper as VBOFRecordSetWrapper

Note: ObjectManager is always present, whether or not any VBOFRecordSetWrappers are present.
The above example prepares an environment where the underlying RecordSet of the pvtPersons
object can be managed in an object-oriented manner. For more information, refer to the VBOF
Demonstration package.

Chapter 2: VBOF Services

VB Object Framework User’s Guide 29

Form_Load Event Procedure, Preparing for RecordSet Processing
In the Form_Load event procedure the application should request new VBOFRecordSetWrappers. The
following code segment meets this objective:

Private Sub Form_Load()
 Set pvtPersonsRecordSetWrapper = _
 ObjectManager. _
 NewVBOFRecordSetWrapper(_
 Collection:=publicCompany.Persons)

' only initialize the pvtAddressesRecordSetWrapper at this time
' since the exact Address collection can't be determined
' because the exact Person isn't known yet
 Set pvtAddressesRecordSetWrapper = _
 ObjectManager. _
 NewVBOFRecordSetWrapper(_
 Collection:=Nothing)

Using VB Object Framework in Conjunction with the Visual Basic Object
Browser
Once the VBOF Class Modules have been added to the Visual Basic Project, the VB Object Browser can
be used to paste templates of the VBOF methods and properties into the application code. Displayed
within the Object Browser is a brief description of each method.

Do not paste any VBOF method whose name begins with “pvt”. These methods are
intended only for internal VBOF use. These methods are not published, and are
therefore, not guaranteed to be retained or migrated in future releases of VBOF.

Refer to Chapter 7, section “Pasting Code Fragments” in the Microsoft Visual Basic Programmer’s Guide
for additional information

Chapter 2: VBOF Services

Chapter 3: Application Requirements and Recommendations
For support by the VB Object Framework, there are several required and optional features for the VB
Project, Class Modules and Forms. This section outlines these. Not included in this section are the
required and optional features pertaining to the various VBOF Wrapper Class Modules.

Visual Basic Project
This section outlines the Project-level application components which are required or recommended for
support by VB Object Framework.

1. (Required) The following VB Object Framework Class Modules must be added to the VB
Project:

VBOFOMgr.cls VBOFObjectManager
VBOFColl.cls VBOFCollection

2. (Optional) The following Class Modules can be included, if VB Object Framework Event
Management is desired:

VBOFEMgr.cls VBOFEventManager
VBOFEvnt.cls VBOFEventObject

3. (Optional) Any of the following Class Modules can be included, if GUI wrappers are desired:

VBOFData.cls VBOFDataWrapper
VBOFDBGr.cls VBOFDBGridWrapper
VBOFLBox.cls VBOFListBoxWrapper
VBOFRSet.cls VBOFRecordSetWrapper

4. (Required) Applications must declare a single, global-level instance of the VBOFObjectManager
Class, using the following technique:

Public MyObjectManager as New VBOFObjectManager

Applications must instantiate the VBOFObjectManager object at the beginning of the application,
using the following technique:

Public Sub CreateObjectManager()
' instantiate the VBOFObjectManager

 Set MyObjectManager = _
 New VBOFObjectManager

 Set MyObjectManager.Database = _
 MyApplicationDatabase

 Set MyObjectManager.Workspace = _
 Workspaces(0)
End Sub

This is also an ideal location to specify some of the VBOFObjectManager’s run-time properties,
such as Verbose, DebugMode, ANSISQL, AutoDeleteOrphans, etc., as shown in
the following code segment:

Chapter 3: Application Requirements and Recommendations

 With MyObjectManager
 .Verbose = True
 .DebugMode = True
 .ANSISQL = True
 End With

Refer to Appendix B.1 for a complete reference to the VBOFObjectManager public methods.

Class Modules
This section outlines the application components which are required or recommended for support by VB
Object Framework that pertain to the Class Module.

1. (Required) All Class Modules must have the following General Declarations4:

Public ObjectID As Long
Public ObjectChanged As Long
Public ObjectAdded As Long
Public ObjectDeleted As Long
Public ObjectParentCount As Long
Public ObjectManager As VBOFObjectManager

Note that the VB Object Framework assumes the responsibility of controlling each of the above
properties, including propagating the single instance of VBOFObjectManager across all objects in
the application, into each object’s respective ObjectManager property. Therefore, there is no
need for the application to perform any maintenance upon these variables. If needed, the
application can specifically request the initialization of an object it has instantiated through the
VBOFObjectManager’s InitializeObject method.

2. (Recommended) All Class Modules should code a Class_Terminate method to release any
links it may hold to other objects, as follows:

Private Sub Class_Terminate()
' Terminate Me
 ObjectManager.TerminateObject _
 Me

Note that each instance of any VBOF Wrapper must be identified to the TerminateObject
method.

3. (Required) Within every object which contains VBOFCollections, the application must provide a
wrapper method for retrieving either the VBOFCollection or an Item within it. While
VBOFObjectManager completely assumes responsibility for the detailed implementation, the
application must provide the following code segment to invoke the necessary
VBOFObjectManager method. In the following example, which would be found in a Person
Class Module, the Addresses collection which is contained within the Person object is returned or
an object within it is returned:

Public Function Addresses(Optional ObjectID As Variant) As
Variant
' Returns a VBOFCollection of Address objects which are
' contained by this Person object,

4 If available, these requirements can be eased through the use of a VB Add-In inheritance tool to simplify
the requirements upon the Class Module. For example, Sheridan Software, Inc. offers ClassAssist product
which supports inheritance.

Chapter 3: Application Requirements and Recommendations

' or
' Returns an Address object whose ObjectID matches the
' ObjectID parameter.

 Dim tempNewAddress As New Address

 Set Addresses = _
 ObjectManager. _
 ManageCollection(_
 ObjectID:=ObjectID, _
 Collection:=pvtAddressesCollection, _
 Parent:=Me, _
 Sample:=tempNewAddress)
End Function

As demonstrated in the example above, the Class Module must pass-along the ObjectID
parameter, while adding a reference to the VBOFCollection to be searched, the reference to itself
as the Parent, and a Sample object for use by VBOFObjectManager.

4. (Required) Within every object which contains VBOFCollections, the application must provide a
wrapper method for adding Items to the Collection. In the following example, which would be
found in a Person Class Module, an Address object is added to the contained collection of
Addresses:

Public Function AddAddress(Optional Item As Variant,
Optional Parent As Variant) As VBOFCollection
' Add an Address to my pvtAddressesCollection

 Set AddAddress = Me.Addresses.Add(_
 Item:=Item, _
 Parent:=Me)

' (Optional) trigger the “Changed” event
 ObjectHasChanged
End Function

5. (Required) Each Class Module must define a Public method to instantiate a new copy of itself,
as follows:

Public Function ObjectNewInstanceOfMyClass() As Person
' Return a new instance of this class
 Set ObjectNewInstanceOfMyClass = New Person
End Function

6. (Required) Each Class Module must define a Public method to return a string which names the
Data Source to be used to retrieve the appropriate data rows for populating instances of the Class
Module, as follows:

Public Function ObjectDataSource() As String
' Return the Data Source with which this Class is
associated
 ObjectDataSource = "Persons"
End Function

Chapter 3: Application Requirements and Recommendations

7. (Required) Each Class Module must define a Public method to copy the contents of a row of a
RecordSet object to the object’s Properties, as in the following example:

Public Function ObjectInitializeFromRecordSet(Optional
RecordSet As Variant) As Person
' Populate my variables from the RecordSet

 On Local Error Resume Next

 CustomerNumber = RecordSet("CustomerNumber")
 FirstName = RecordSet("FirstName")
 LastName = RecordSet("LastName")
 SSN = RecordSet("SSN")
 Sex = RecordSet("Sex")
 DateOfBirth = RecordSet("DateOfBirth")
 MaritalStatus = RecordSet("MaritalStatus")
 ObjectID = RecordSet("ObjectID")
 Set ObjectInitializeFromRecordSet = Me
End Function

If singularly-occurring contained objects are present (such as the pvtManager property of an
Employee object where pvtManager is declared as a Person object), this might be the ideal
location to instantiate those objects, as in the following code segment:

 Dim NewPerson as New Person

' pick-up the Manager object
 If Not IsNull(RecordSet("ManagerObjectID")) Then
 Set pvtManager = _
 ObjectManager.NewObject(_
 Sample:=NewPerson, _

ObjectID:=CStr(RecordSet("ManagerObjectID")))
 End If

8. (Required) Each Class Module must define a Public method to copy its Properties to the
current row of a RecordSet object (the opposite of the above requirement), as in the following
example:

Public Function ObjectInitializeRecordSet(Optional
RecordSet As Variant) As Long
' Populate the RecordSet with my variables.
' Return any error code encountered.
' Note: Do not initialize the ObjectID column.

 On Local Error GoTo InitializeRecordSet_SetError
 Err = 0

 RecordSet("CustomerNumber") = CustomerNumber
 RecordSet("FirstName") = FirstName
 RecordSet("LastName") = LastName
 RecordSet("SSN") = SSN
 RecordSet("Sex") = Sex
 RecordSet("DateOfBirth") = DateOfBirth
 RecordSet("MaritalStatus") = MaritalStatus

Chapter 3: Application Requirements and Recommendations

 GoTo InitializeRecordSet_SetError

InitializeRecordSet_SetError:
 ObjectInitializeRecordSet = Err
 Exit Function
End Function

If singularly-occurring contained objects are present (such as the pvtManager property of an
Employee object where pvtManager is declared as a Person object), this might be the ideal
location to set any appropriate foreign key values, as in the following code segment:

' set the Manager object
 If Not pvtManager Is Nothing Then
 RecordSet("ManagerObjectID") = _
 pvtManager.ObjectID
 Else
 RecordSet("ManagerObjectID") = Null
 End If

Class Modules and Forms
This section outlines the application components which are required or recommended for support by
VBOF pertaining to the Class Module or the Form.

1. (Optional) Each Class Module or Form can specify the ObjectEventCallBack method to
respond to events which have occurred elsewhere within the application. This method is invoked
by the VBOFEventManager to notify the object of the triggering of an event for which the object
is a registered recipient. The following example is from a Form module:

Public Function ObjectEventCallBack(Optional Event As
Variant, Optional Object As Variant) As Long
' Receive the Trigger notification and process accordingly

 Dim tempObjectType As String

 On Local Error Resume Next

' determine the type of object triggering the event
 tempObjectType = TypeName(Object)

' process events triggered by the Person object
 If tempObjectType = "Person" Then
 If UCase$(Event) = "REMOVEDITEM" _
 Or UCase$(Event) = "CHANGED" _
 Then
 RefreshCustomerList

' if it was my Domain Object, refresh my displays
 If Object.ObjectID = pvtCurrentPerson.ObjectID
_
 Then
 RefreshPersonFields
 End If
 End If
 End If
End Function

Chapter 3: Application Requirements and Recommendations

Note that the conditional compilation parameter #If NoEventMgr = False must be set for
the VBOFEventManager to be in effect.

2. (Optional) Each Class Module or Form can define a Private method to trigger the “Changed”
event. The triggering of events is a commonly used technique in object-oriented
implementations. It allows a given object to inform any number of other anonymous other
objects and Forms (those which are so registered as being interested) in its changed state.
Triggering any event causes the VBOFObjectManager to propagate the event throughout the
remainder of the application to all such registered recipient objects. Those registered objects are
notified through their respective ObjectEventCallBack methods (see above).

The following example from a Class Module is designed to be invoked from elsewhere within the
Class Module as its properties are changed. This causes the VBOFObjectManager to trigger the
“Changed” event:

Private Sub ObjectHasChanged()
' Mark this object as "Changed" and trigger the "Changed"
' event

 ObjectChanged = True

#If NoEventMgr = False Then
' Trigger the "Changed" event
 If Not ObjectManager Is Nothing Then
 ObjectManager.TriggerObjectEvent _
 Event:="Changed", _
 Object:=Me
 End If
#End If

Note that the conditional compilation parameters #If and #End If are present. This is in
support of enabling or disabling the services of the VBOFEventManager through conditional
compilation.

Forms
This section outlines the requirements and recommendations for Forms.

1. (Recommended) Each Form should have a Form_QueryUnload method which invokes the
TerminateForm or the Form_QueryUnload method5 (both are equivalent) of the
application’s instance of the VBOFObjectManager, as in the following code segment:

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode
As Integer)

' Terminate Me and all my Wrappers
 ObjectManager.TerminateForm _
 Me, _
 pvtPersonsListBoxWrapper, _
 pvtAddressesListBoxWrapper, _

5 These two equivalent methods are provided by the VBOFObjectManager because the TerminateForm
method is roughly polymorphic with the TerminateObject method used to terminate object instances
of Class Modules, while the Form_QueryUnload method is provided because it is easy to remember,
given that it belongs in the Form_QueryUnload method of the Form.

Chapter 3: Application Requirements and Recommendations

 . . .

2. (Optional) Each Form can register as a recipient of events, particularly those triggered by the
objects being displayed on the form and their supporting VBOFCollections, as in the following
code segment:

Private Sub RegisterForEvents()

#If NoEventMgr = False Then
 ObjectManager.RegisterForObjectEvent _
 TriggerObjectType:="Person", _
 RegisterObject:=Me

 ObjectManager.RegisterForCollectionEvent _
 Collection:=pvtPersons, _
 RegisterObject:=Me, _
 TriggerEvent:="AddedItem"

 ObjectManager.RegisterForCollectionEvent _
 Collection:=pvtPersons, _
 RegisterObject:=Me, _
 TriggerEvent:="RemovedItem"
#End If

This code segment registers the Form as a recipient of notification upon the triggering of any
event by any of the Person objects, and the triggering of either the “AddedItem” or
“RemovedItem” events triggered by the pvtPersons VBOFCollection object.

In order to receive notification of event triggers, the form must provide an appropriate
ObjectEventCallBack method.

By registering for events, as such, the Form and the Class Module can remain fully independent
for an effective separation of the BOM and GUI, yet can work together through events, when
appropriate.

Data Sources
This section outlines the application components which are required or recommended for support by VB
Object Framework that pertain to the Database and Tables which serve as Data Sources for Class Modules.

1. (Required) Each Class Module’s referenced Data Source must be updatable.

2. (Required) Each Data Source must be either a Visual Basic (a.k.a. MS Access) Database or must
be ODBC-accessible.

3. (Required) Each Data Source must have a Column with the following attributes:

Name: ObjectID
Type: Numeric (Long)
Attributes: Counter

Since, by default, VBOF can access all data rows via their ObjectID column, it can be argued that
the ObjectID column should be the Primary Key column. However, if the Data Source will be
processed by facilities other than VBOF, this may not necessarily deliver optimum performance.
In this case, the ObjectID should be placed in an Index with the Unique attribute on the Data
Source.

Chapter 3: Application Requirements and Recommendations

4. (Required) The Database must have a Table with the following attributes:

TableName: VBObjectFrameworkObjectLinks

Column: FromObjectType, Character(64)
Column: FromObjectID, Number (Long)
Column: ToObjectType, Character(64)
Column: ToObjectID, Number (Long)

PrimaryKey: (FromObjectType, FromObjectID,
ToObjectType, ToObjectID)

Chapter 3: Application Requirements and Recommendations

Chapter 4: Object-Oriented Development Strategies
This section outlines some object-oriented techniques and how they apply to using the VBOF.

Developing the Non-Visual BOM First
One of the most interesting opportunities presented by object-oriented technology is that it allows for the
development of a non-visual BOM (“Business Object Model”) before applying any GUI or database
aspects to the application. Similar to the construction of homes and buildings where the foundation is laid
and verified before the walls go up, object-oriented design methodologies typically dictate that a non-
visual BOM should be developed, tested and fully working before the user interface and databases are
finalized.

The BOM-first approach allows frequent, even drastic, changes to be modeled without having to perform
simultaneous maintenance to corresponding GUI and database components. In fact, the longer the design
and finalization of the user interface and databases can be deferred, the better, since this extends this early
period of high-flexibility. This technique supports wide-open creativity because it encourages the pursuit
of numerous, varying and unconventional design approaches which can be modeled and evaluated cheaply
and quickly. This would not be considered an option under conventional, GUI-centric design techniques
because of the time and costs associated with taking such ventures.

Rather than following the conventional “waterfall” methodologies to application design and development,
this approach supports cyclical development, such that each subsequent iteration of the BOM typically
offers more than the previous and is closer to being “correct”. Nearly all first-time OO development
projects go through several “false-start” scenarios, but the very nature of OO prevents any of these from
actually being considered a loss or a failure. Rather, each subsequent iteration is typically an improvement
upon the previous, and each contributes something to the ultimate solution.

Another advantage of the non-visual BOM is that it can be deployed in many forms, not just under a GUI.
For example, Class Modules which have no user interface are ideal for deployment as OLE components to
support reports, spreadsheets and other OLE Automation purposes. By comparison, if the class modules
contain user interface code or if the business rules are interlaced throughout the GUI, as is the case with
conventional VB development approaches, it might be very difficult to provide such a multifaceted degree
of support.

The VBOF integrates very well with the BOM-first approach, since its capabilities would include
effortlessly bringing object and RecordSet management capabilities to the role of the Collection. This
allows the BOM to be designed and developed as usual before any database is available or even defined.

Then, when the database becomes available, the features of the VBOF can be exploited without any
changes to the BOM. This allows the BOM to be developed with focus being placed on meeting the
business requirements, rather than having to be concerned about making allowances for future object and
RecordSet processing. As the GUI layer is added, the VBOF Wrapper classes can be exploited.

Using Events in Conjunction with OO Programming
Event Management is an important part of object-oriented programming because it enhances class
independence and encapsulation. In this capacity, this means that each class needs to be concerned
primarily with itself -- it has the option to become intimate with selected other classes, but only where
appropriate. This environment of high levels of independence between classes allows each class to evolve
independently of any other towards an overall higher quality BOM.

For example, suppose a customer-oriented application is successfully deployed. Previously unknown
business requirements are stated which demand an integrated product cross-selling mechanism to be
integrated with the customer-oriented functions and suggest qualifying products to the sales representative
during the course of the conversation with the customer. At this point there is usually a temptation by the

Chapter 4: Object-Oriented Development Strategies

development team to integrate the product cross-selling functions directly into the customer-oriented
application, but that effectively makes the customer-oriented application very sensitive to changes to either
set of functions. Unfortunately, it is this very type of application evolution which erodes the flexibility
and life span of applications over time – trying to do too much about too many requirements and functions,
and having to be too sensitive to too many sources of change. The better option is to develop the product
cross-selling application as a separate application which responds to events triggered by the customer-
oriented application. As changes are posted within the customer-oriented application it would trigger
events. As those events are received by the product cross-selling application, the underlying objects can
be evaluated for the need to display any necessary suggestions to the sales representative. This allows
both application to exist and evolve separately without eroding the flexibility of either application. This
should also increase the life span of the applications.

There are certain restrictions which should be observed, such as a BOM object should never communicate
directly with a GUI object, since this forces the reliance of the BOM upon that GUI object. Thus, in order
to keep the BOM independent of the GUI, the GUI should register as an interested party for any events
triggered by the BOM.

If desired, the BOM can also register as an interested party of events triggered by the GUI in a scheme
known as collaboration. Collaboration, when used very carefully, can be an excellent communication
mechanism. For example, the BOM and GUI must be cooperatively designed for collaboration, since the
GUI would need to execute special BOM methods to let the BOM know about the GUI. Likewise, the
GUI needs to be respectful that there might be many such parties registered as interested in a given BOM
object, and that it’s not necessarily the BOM’s responsibility to track all of them.

As the BOM and GUI are developed, as issues are raised regarding responsibility, collaboration,
independence and communication, the following general guidelines should be followed:

· At no point should any class within the BOM find itself doing something that
would be better performed by some other class.

· Each BOM class should communicate with a minimum number of other classes.

It should be noted that the VBOF communicates across its objects through events. For example, as
VBOFCollections change their state (e.g., by adding, changing or deleting objects, populating from the
database, etc.) they trigger events which other VBOFCollections receive and process. This is how the
VBOF Demonstration package is able to immediately reflect changes to a given object across multiple
windows – even though the object was changed on only one of those windows.

Refer to Appendix B.2 and C.2 for a listing of events triggered by VBOF objects.

Using VB Object Framework in Collection-Emulation mode
Most object-oriented leaders recommended that neither a Database nor a GUI should be defined or even be
a concern to the object designers until a significant portion of the non-visual Business Object Model
(“BOM”) has been completed. However, in order to support the implementation of the object containment
hierarchy, the Collection object must be available. When designing for VBOF services, the
VBOFCollection should be used in lieu of the VB Collection (note that the services of the
VBOFObjectManager are required for support of the VBOFCollection.) When the database and GUI
layers are introduced into the design, the advanced features of the VBOFCollection can be easily invoked
without change to the BOM.

In order to implement VBOF’s collection-emulation mode, the application Class Modules simply return a
null string value from their ObjectDataSource() method or remove their ObjectDataSource()
methods altogether.

Chapter 4: Object-Oriented Development Strategies

Introducing a Database into the Non-Visual BOM
Prior to the implementation of a database, the VBOFCollections can be used in “Collection-Emulation”
mode. Later, when the database is available, the VBOFCollections can begin using the database without
any changes to the application. During any interim period, the application’s Class Modules can
independently migrate to database mode.

To begin operating in full database support mode, the application Class Modules provide legitimate values
from their respective ObjectDataSource() methods.

Introducing a GUI over a Non-Visual BOM
When the time has come to begin developing a GUI over the application’s BOM, it is important to avoid
making compromises to the higher level of OO programming achieved through the VBOF. Since the GUI
becomes the focus of the development effort at this point, it may be tempting for long-time VB
programmers to immediately begin applying conventional VB GUI-centric programming tactics. The
VBOF can help retain the achieved level of OO programming through its Wrapper classes and Event
Management facilities.

The VBOF Wrapper classes provide an object-oriented interface for managing several of VB’s GUI
controls, such as the ListBox, ComboBox, DBGrid, etc. For more information, refer to Chapter 2, section
“VB Control Wrappers”.

The VBOF Event Management facilities can also be used to avoid any dependence of the BOM upon the
GUI. Event Management offers the ability to communicate between tasks without necessarily either party
knowing exactly the party. There is risk to the quality of the BOM if the BOM is “aware” of the GUI,
since the GUI could change unexpectedly which might disrupt the BOM if it has an intimate relationship
with the GUI. Also, if the BOM is, in fact, intimate with a GUI, it likely has a reduced potential to be
deployed in any other capacity, such as an OLE Server.

If the GUI and BOM are designed to communicate only through events then the BOM can be shielded
from these risks. To achieve this, the GUI registers as an interested party for any events triggered by the
respective BOM Domain Objects. For example, a GUI which manages information about a specific
Person object would register with the VBOFObjectManager as an interested party in the events triggered
by that Person object. If the GUI manages a collection of Person objects then it would register as an
interested party in the events triggered by the VBOFCollection which contains those Person objects. In
addition, there might be situations where a GUI would need to register as an interested party in the events
triggered by any Person object, not necessarily any given object or collection of objects.

In order to receive notification of a triggered event, the Form must provide an ObjectEventCallBack
method, as described in Chapter 3, section “Class Modules and Forms”.

Performance Discussions
Few, if any, promotional information sources list “improved application performance” as a feature of
object-oriented. This is because the trade-off of the benefits of object-oriented programming typically
include reduced application performance. While this largely holds true for applications developed under
the VBOF, there are some welcome exceptions to this as outlined in the following discussions.

Maximizing Performance by Eliminating the DataControl
One of the best techniques for significantly improving application performance is to eliminate the Data
control and the RecordSet. In their places, the application should be designed to use
VBOFListBoxWrappers and VBOFDBGridWrappers and their underlying VBOFCollections.

This action essentially allows all processing to be based on the objects which had been instantiated by
either the VBOFObjectManager or an instance of VBOFCollection. After being instantiated these objects

Chapter 4: Object-Oriented Development Strategies

remain in memory and are quickly located and returned to the application even though the underlying
RecordSets may since have been redirected to retrieve other rows. By comparison, conventional
programming techniques would require that the database be referenced each time a given row is needed,
even though some of those rows had been previously retrieved.

For an example of these performance benefits, execute the VBOF Demonstration Package. Open and
navigate through the example which is based on the Data control and notice the achieved performance
levels. In particular, notice the performance of the application as different Person objects are clicked,
while the application must gather the contained Addresses and Phone numbers for the clicked Person
object. Then, try exactly the same operations using either the DBGrid- or ListBox-based examples and
notice how quickly the Addresses and Phones collections are displayed. Even if the order of this
experiment is reversed (run the object-oriented examples first and the Data control example last) the result
is the same.

Performance Impacts of Conventional Programming Techniques Compared to
VBOF
The performance gain, as discussed in the previous section, is not necessarily because of any performance
issues with the RecordSet or Data control. It has more to do with the nature of conventional programming
techniques versus having the ability to take advantage of the nature of object-oriented programming
techniques.

For example, under conventional VB programming techniques, the application’s RecordSet objects
frequently follow a given cycle where the RecordSet is created, processed, then closed, or altered entirely
to contain a different set of rows. In the event that a given row is retrieved more than once across several
iterations of such RecordSet reassignments, it is repeatedly searched and retrieved each time from the
database, optionally transmitted to the client, assembled into a RecordSet then presented to the application.

While this is actually true even under the VBOF, it is only true the first time any given row is retrieved. It
is also true that additional processing occurs as VBOF instantiates objects from the returned rows and
populates them the first time the RecordSet is processed. However, during subsequent operations, the
VBOFObjectManager immediately locates the already existing object in memory and incurs no delays
attributable to database searching, transmitting or assembling into RecordSets.

Chapter 4: Object-Oriented Development Strategies

Chapter 5: Conditional Compilation Options
The following conditional compilation options are available for VB Object Framework code compilation
(which can be set in the "Conditional Compilation" field of the VB Project's Options Sheet.)

Using “NoEventMgr” to Suppress Event Management
Event management is an advanced object-oriented concept that does not necessarily bring immediate
benefit to all VB application development projects, particularly those which are quite small. In addition, it
is typical for most first-time object-oriented programmers to fail to grasp the significance of event
management. For these reasons, the VBOF Event Management support services have been designed to be
easily removed or avoided, as the case may be.

The VBOFEventManager and VBOFEventObject can be safely excluded from the application project after
specifying "NoEventMgr = True" in the "Conditional Compilation" field of the VB Project's Options
Sheet. The VB Project can then remove the files “VBOFEMgr.cls” and “VBOFEvnt.cls”.

Using “NoDebugMode” to Suppress Generation of Debugging Code
Interlaced throughout the VBOF Class Modules are instances of debug-oriented code. This can be of
significant benefit while developing and testing application Class Modules, since the state of the VBOF
Class Modules can be easily detailed.

While testing , the debug tracing can be enabled or disabled by setting the DebugMode property of the
application’s instance of the VBOFObjectManager to either True or False. However, note that the code
necessary to determine DebugMode whether is in effect remains within the Class Modules and is being
constantly executed. It may be advisable to remove the generation of all debug-related code -- even that
which tests for DebugMode being in effect -- at an advanced phase of development or immediately prior
to releasing the application.

To eliminate all debug-related code, thus generating for faster running code, specify "NoDebugMode = -1"
in the "Conditional Compilation" field of the VB Project's Options Sheet.

Chapter 5: Conditional Compilation Options

Appendix A: Converting from the DataAwareCollection
This section is meaningful to those many users of the DataAwareCollection (which preceded the VB
Object Framework), who wish to convert to the VB Object Framework for its additional object-oriented
capabilities. While backward compatibility with the DataAwareCollection was a design objective of the
VBOF, there have been so many significant changes that this objective could not be met. The author
regrets any inconvenience this may have caused.

Due to the many additional features available only in the VB Object Framework, there are several changes
to the Class Modules which had been developed to exploit the DataAwareCollection. These are:

1. Applications should change all “DataAwareCollection” references to “VBOFCollection”;

2. Applications must instantiate an object of the VBOFObjectManager Class at the beginning of the
application, using the following technique:

Dim MyObjectManager as New VBOFObjectManager

If necessary, the VBOFObjectManager variable should be declared as Public. For an example
of instantiating VBOFObjectManager, refer to the Sub CreateObjectManager() of the
VB Object Framework demonstration package.

3. Except for the VBOFObjectManager object, applications must never instantiate their own copies
of VB Object Framework objects, as described above, since VBOFObjectManager is responsible
for creating all instances of all other VBOF objects. New instances of VBOFCollections should
only be requested by the application in Form modules – Class Modules should wrap the
VBOFCollection in an appropriately named method, such as “Persons”, “Addresses”, etc. (refer
to Chapter 2, section “Managing Collections within Class Modules” for additional information).

In order to create a new instance of an VBOFCollection object in a Form module, the applications
should specify:

Dim MyCollection as VBOFCollection
. . .
Set MyCollection = _
 MyObjectManager.NewVBOFCollection

rather than:

Dim MyCollection As New VBOFCollection

For an example of instantiating VBOFCollection, refer to Sub
CreatePersonsCollection() of the VB Object Framework demonstration package.

4. Collection-controlling methods need to be modified slightly. Collection-controlling methods are
used to assist in the implementation of the object containment hierarchy. For example, refer to
section “Managing Collections” in this User’s Guide.

5. Orphans are no longer automatically deleted from the database when removed from a
VBOFCollection.

Under the DataAwareCollection implementation, objects which were removed from the
collection via the Remove method had the corresponding containment information been
simultaneously deleted from the database. If there then remained no containing objects for the

Appendix A: Converting from the DataAwareCollection

object being removed, DataAwareCollection then deemed the object to be an orphan and
automatically removed it from the database.

VB Object Framework handles this differently since there is a clear separation of responsibilities
between VBOFObjectManager and VBOFCollection. VBOFObjectManager oversees the
instantiation and termination of all objects, while VBOFCollection oversees the contents of the
collection. Thus, when the Remove method of VBOFCollection is invoked, the specified object
is removed from the collection and the corresponding containment information is simultaneously
deleted from the database. However, there is no automatic deletion of the object from the
database, even if it is, in fact, an orphan.

To thoroughly delete an object, the application must invoke the VBOFObjectManager’s
RemoveObject method.

As an alternative, the original behavior of DataAwareCollection regarding the automatic deletion
of orphans can be reinstated by setting the VBOFObjectManager property
AutoDeleteOrphans to True, for example:

MyObjectManager.AutoDeleteOrphans = True

6. The behavior of the WhereClause:= parameter to the VBOFCollection differs from its
implementation under DataAwareCollection.

DataAwareCollection had used the specified WhereClause:= as the only component of the
Where Clause of the generated SQL statement. This left to the application the burden of
including within the Where Clause any parameters which would implement the object hierarchy
rules.

VBOFCollection relieves the application of any such responsibility by first generating that
portion of the Where Clause which implements the object containment hierarchy, then appending
any application-provided Where Clause parameters.

7. Applications no longer need to provide:

Public Function ObjectType() As String

in each Class Module.

8. All methods of the form:

Public Function TableName() As String

must be renamed to:

Public Function ObjectDataSource() As String

9. All Class Modules must have the following General Declarations:

Public ObjectID As Long
Public ObjectChanged As Long
Public ObjectAdded As Long
Public ObjectDeleted As Long
Public ObjectParentCount As Long
Public ObjectManager As VBOFObjectManager

Appendix A: Converting from the DataAwareCollection

Note that VB Object Framework assumes the responsibility of controlling each of the above
variables, including propagating the single instance of VBOFObjectManager across all objects in
the application. Therefore, there is no need for the application to perform any maintenance upon
these variables.

10. Applications no longer need to include the Class Module “DataAwareObjectLink”.

11. All named parameters ParentObject:= have been renamed to Parent:=, and all named
parameters SampleObject:= have been renamed to Sample:=.

Appendix A: Converting from the DataAwareCollection

Appendix B.1: Public Methods of the Class Module
VBOFObjectManager
This reference section lists the Public methods of the VBOFObjectManager in alphabetical order and the
parameters for each. For contextual about using these methods, refer to “Chapter 2: VBOF Services”.

AutoDeleteOrphans (Property)
The AutoDeleteOrphans Get and Let Property methods control the AutoDeleteOrphans property of
the VBOF. This property is necessary because the DataAwareCollection product, which was released
prior to the VBOF, operated in a mode where “orphaned” data rows were automatically deleted from the
database. Under the VBOF, this is not always desirable and the default is not to automatically remove
orphans. This property is provided for backward compatibility with the DataAwareCollection.

Get AutoDeleteOrphans example:
MyBoolean = MyObjectManager.AutoDeleteOrphans

Let AutoDeleteOrphans example:
MyObjectManager.AutoDeleteOrphans = True

Database (Property)
The Database Get and Set Property methods control the Database property of the
VBOFObjectManager. The Database property must be set to a valid VB-accessible database by the
application before any database-oriented functions can be performed by the VBOF.

For usage information, refer to Chapter 2, “Starting VBOF Services”.

Usage example:
The application program must set the Database property prior to receiving any database-related
support functions

Get Database example:
Set MyDatabase = MyObjectManager.Database

Set Database example:
Set MyObjectManager.Database = MyDatabase

DebugMode (Property)
The Debug Get and Set Property methods control whether or not debug (“trace”) information is generated
by the VBOF objects as they perform their functions.

By default, this feature is disabled. To enable the generation of the debug code, the application must
specify "NoDebugMode = 0" in the "Conditional Compilation" field of the VB Project's Options Sheet.
That alone does not actually enable the debug trace – it just enables the generation of the code to actually
generate the code. At run-time, the application must also set the VBOFObjectManager’s DebugMode
Property to True.

For more information about this feature, refer to Chapter 5, “Using “NoDebugMode” to Suppress
Generation of Debugging Code”

Get DebugMode example:
MyBoolean = MyObjectManager.DebugMode

Appendix B.1: Public Methods of the Class Module VBOFObjectManager

Set DebugMode example:
MyObjectManager.DebugMode = MyBoolean

Form_UnloadQuery (Method)
The Form_UnloadQuery method is provided as a single service point for any VBOF-supported Form
which is about to close. In this method, the VBOFObjectManager closes all VBOF Wrappers instances
and severs any Event Notifications currently registered to the Form or its Wrappers.

It is designed to be the only VBOF-related statement in the Form’s Form_UnloadQuery event
procedure (although other non-VBOF statements can also be there, if needed.)

For additional information about the Form_UnloadQuery method, refer to Chapter 3, section “Forms”.

Returns:
Nothing.

Parameters:
Form

(Required, Type is Form, as a positional parameter, not as a Named Parameter) Identifies the
Form which is about to be closed.

Wrappers
(Optional, Types are VBOF Wrappers, as positional parameters, not as Named Parameters)
Identifies the Wrappers which are defined to the Form. There can be any number of specified
Wrappers.

Form_QueryUnload example:
Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As
Integer)
 ObjectManager.Form_QueryUnload _
 Me, _
 pvtPersonsListBoxWrapper, _
 pvtAddressesListBoxWrapper, _

 . . .

InitializeObject (Method)
The InitializeObject method is provided to allow the application to introduce into VBOF services
an object of its own origination. However note that some VBOF services are not fully available to such
objects because VBOF did not instantiate them from any data source.

For additional information about the InitializeObject method and restrictions upon objects
introduced in this manner, refer to Chapter 2, section “Initializing Objects”.

Returns:
A boolean, indicating whether or not the InitializeObject method was executed
successfully.

Parameters:
Object:=

(Required, Variant) Identifies the object which is to be initialized for VBOF services.

InitializeObject example:
Dim MyObject As MyClassModule
 . . .

Appendix B.1: Public Methods of the Class Module VBOFObjectManager

ObjectManager.InitializeObject _
 Object:=MyObject

ManageCollection (Method)
The ManageCollection method completely manages a VBOFCollection on behalf of the application
and returns either the entire VBOFCollection or a specific object, depending on whether or not the
ObjectID:= parameter has been specified (refer to the Visual Basic Programmer’s Guide, Chapter 7,
section “Using Visual Basic Collection Objects” for details about this behavior).

For additional information about the ManageCollection method, refer to Chapter 2, section
“Populating Collections” and “Managing Collections within Class Modules”.

Returns:
A populated instance of the class VBOFCollection (if the ObjectID:= parameter has not been
specified);

or,
An instantiated object of the same class as the Class Module provided in the Sample:=
parameter, initialized with the contents of the row retrieved from the appropriate data source, as
indicated by the ObjectID:= parameter.

Parameters:
Collection:=

(Required, VBOFCollection) Identifies the VBOFCollection to be managed.

Parent:=
(Required (*), Variant) Identifies the containing object. The simplest technique is to specify
Parent:=Me.

(*) If the Parent:= parameter had been specifically provided in the NewVBOFCollection
method, it is not necessary to specify it in this method.

Sample:=
(Required, Variant) Identifies a temporary instance of the Class Module of the same type to be
instantiated by VBOF.

ANSISQL:=
(Optional, Boolean) Indicates whether or not VBOF should use ANSI-compliant SQL when
generating the SQL statement which is used by VBOF to retrieve the appropriate row from the
data source. The default for this is True.

Database:=
(Optional, Database) Identifies the Database in which the data source is located.

If the VBOFObjectManager’s Database property had been specified before the
NewVBOFCollection method had been executed for this VBOFCollection, and if the
VBOFCollection’s Database property should be the same as the VBOFObjectManager’s
Database property at that time, then this parameter can be eliminated.

Also, if the Database:= parameter had been specifically provided in the
NewVBOFCollection method, it is not necessary to specify it in this method.

ObjectID:=

Appendix B.1: Public Methods of the Class Module VBOFObjectManager

(Optional, Long) Identifies the ObjectID property of the desired object. If provided, the
ManageCollection method returns only the requested object. If this parameter is not
provided, the entire VBOFCollection is returned.

ODBCPassThrough:=
(Optional, Boolean) Indicates whether or not VBOF should use the ODBCPassThrough option
when executing the SQL statement which is used by VBOF to retrieve the appropriate row from
the data source. The default for this is False.

OrderByClause:=
(Optional, String) Identifies an SQL Order By Clause which is to be applied to the SQL statement
which is used by VBOF to retrieve the appropriate row from the data source. This can be used
when the application needs to have the objects appear in a specific order.

SQL:=
(Optional, String) Identifies an SQL statement which is to be used by VBOF to retrieve the
appropriate row from the data source. Because of VBOF’s implementation, such a value is
typically not needed.

WhereClause:=
(Optional, String) Identifies an SQL Where Clause which is to be applied to the SQL statement
which is used by VBOF to retrieve the appropriate row from the data source. Because of VBOF’s
implementation, such a value is typically not needed.

ManageCollection example:
Public Function Persons(Optional ObjectID As Variant) As Variant
 Dim tempNewPerson As New Person
 Set Persons = _
 ObjectManager. _
 ManageCollection(_
 Collection:=myPersonsCollection,
 Parent:=Me,
 ObjectID:=ObjectID,
 Sample:=tempNewPerson,
 Database:=MyDatabase,
 OrderByClause:="LastName ASC, FirstName ASC"

NewObject (Method)
The NewObject method returns an instantiated new Object which is singly contained within another
object (versus being part of a collection of objects which are contained within another object). This is
typical for contained objects such as an employee’s manager (e.g., the Employee.Manager property), or
the state object within an address object (e.g., the Address.State property), etc.

For additional information about the NewObject method, refer to Chapter 2, section “Implementing
Contained Objects”.

Returns:
An instantiated object of the same Class as the Class Module provided in the Sample:=
parameter, initialized with the contents of the row retrieved from the appropriate data source, as
indicated by the ObjectID:= parameter.

Parameters:
Sample:=

Appendix B.1: Public Methods of the Class Module VBOFObjectManager

(Required, Variant) Identifies a temporary instance of the Class Module of the same type to be
instantiated by VBOF.

ObjectID:=
(Required, Long) Identifies the ObjectID property of the desired object. This value is used by
VBOF to retrieve the correct row from the data source.

ANSISQL:=
(Optional, Boolean) Indicates whether or not VBOF should use ANSI-compliant SQL when
generating the SQL statement which is used by VBOF to retrieve the appropriate row from the
data source. The default for this is True.

Database:=
(Optional, Database) Identifies the Database in which the data source is located. If some other
mechanism has already been used to establish this property within the VBOFObjectManager
(such as setting the VBOFObjectManager’s Database property), this parameter can be
eliminated.

ODBCPassThrough:=
(Optional, Boolean) Indicates whether or not VBOF should use the ODBCPassThrough option
when executing the SQL statement which is used by VBOF to retrieve the appropriate row from
the data source. The default for this is False.

SQL:=
(Optional, String) Identifies an SQL statement which is to be used by VBOF to retrieve the
appropriate row from the data source. Because of VBOF’s implementation, such a value is
typically not needed.

WhereClause:=
(Optional, String) Identifies an SQL Where Clause which is to be applied to the SQL statement
which is used by VBOF to retrieve the appropriate row from the data source. Because of VBOF’s
implementation, such a value is typically not needed.

NewObject example 1 (using ObjectID:=):
Public Function ObjectInitializeFromRecordSet(Optional RecordSet
As Variant) As Person

 Dim NewPerson as New Person
 . . .
' copy values from the RecordSet (not important for this example)
 . . .
' pick-up the contained Manager object
 If Not IsNull(RecordSet("ManagerObjectID")) Then
 Set pvtManager = _
 ObjectManager.NewObject(_
 Sample:=NewPerson, _
 ObjectID:=CStr(RecordSet("ManagerObjectID")))
 End If

NewObject example 2 (using WhereClause:=):
Public Function ObjectInitializeFromRecordSet(Optional RecordSet
As Variant) As Address

 Dim NewState as New State
 . . .

Appendix B.1: Public Methods of the Class Module VBOFObjectManager

 pvtStateCode = RecordSet("StateCode")
 . . .
' pick-up the contained State object
 If Not IsNull(RecordSet("StateCode")) Then
 Set pvtState = _
 ObjectManager.NewObject(_
 Sample:=NewState, _
 WhereClause:="StateCode = '" & pvtStateCode &
"'")
 End If

NewVBOFCollection (Method)
The NewVBOFCollection method returns a new, properly instantiated VBOFCollection object.

For additional information about the NewVBOFCollection method, refer to Chapter 2, section
“Populating Collections”.

Returns:
A VBOFCollection.

Parameters:
Parent:=

(Optional, Variant) Identifies the object which contains the VBOFCollection. If the Parent:=
parameter is not provided in this method, then it must be provided in the ManageCollection
method, as it is used.

Database:=
(Optional, Database) Identifies the Database in which the data source is located. If some other
mechanism has already been used to establish this property within the VBOFObjectManager
(such as setting the VBOFObjectManager’s Database property), this parameter can be
eliminated.

NewVBOFCollection example:
Private pvtPersons As VBOFCollection
. . .
' Example 1: not specifying optional parameters
Set pvtPersons = _
 ObjectManager.NewVBOFCollection

' Example 2: specifying optional parameters
Set pvtPersons = _
 ObjectManager.NewVBOFCollection (_
 Parent:=Me, _
 Database:=MyDatabase)

NewVBOFDataWrapper (Method)
The NewVBOFDataWrapper method returns a new, properly instantiated VBOFDataWrapper object,
bound to the specified VBOFCollection and VB Data control.

For additional information about the NewVBOFDataWrapper method, refer to Chapter 2, section
“Wrapping the Data Object” and Appendix D.

Returns:
A VBOFDataWrapper.

Appendix B.1: Public Methods of the Class Module VBOFObjectManager

Parameters:
Collection:=

(Required, VBOFCollection) Identifies the VBOFCollection which is to be bound to the
VBOFDataWrapper.

DataControl:=
(Required, VB Data) Identifies the VB Data object which is to be bound to the
VBOFDataWrapper

NewVBOFDataWrapper example:
Private Sub Form_Load()
 Set pvtPersonsDataWrapper = _
 ObjectManager.NewVBOFDataWrapper(_
 Collection:=publicCompany.Persons, _
 DataControl:=Data1)

NewVBOFDBGridWrapper (Method)
The NewVBOFDBGridWrapper method returns a new, properly instantiated VBOFDBGridWrapper
object, bound to the specified VBOFCollection and VB DBGrid control.

For additional information about the NewVBOFDBGridWrapper method, refer to Chapter 2, section
“Wrapping DBGrids” and Appendix E.

Returns:
A VBOFDBGridWrapper.

Parameters:
Collection:=

(Required, VBOFCollection) Identifies the VBOFCollection which is to be bound to the
VBOFDBGridWrapper.

DBGrid:=
(Required, VB Data) Identifies the VB DBGrid object which is to be bound to the
VBOFDBGridWrapper

NewVBOFDBGridWrapper example:
Private Sub Form_Load()
 Set pvtPersonsDBGridWrapper = _
 ObjectManager.NewVBOFDBGridWrapper(_
 Collection:=pvtPersons, _
 DBGrid:=DBGrid1)

NewVBOFListBoxWrapper (Method)
The NewVBOFListBoxWrapper method returns a new, properly instantiated VBOFListBoxWrapper
object, bound to the specified VBOFCollection and VB ListBox or ComboBox control.

For additional information about the NewVBOFListBoxWrapper method, refer to Chapter 2, section
“Wrapping List Boxes and Combo Boxes” and Appendix F.

Returns:
A VBOFListBoxWrapper.

Parameters:

Appendix B.1: Public Methods of the Class Module VBOFObjectManager

Collection:=
(Required, VBOFCollection) Identifies the VBOFCollection which is to be bound to the
VBOFListBoxWrapper.

ListBox:=
(Required, VB Data) Identifies the VB ListBox or ComboBox object which is to be bound to the
VBOFListBoxWrapper

NewVBOFListBoxWrapper example:
Private Sub Form_Load()
 Set pvtPersonsListBoxWrapper = _
 ObjectManager.NewVBOFListBoxWrapper(_
 Collection:=pvtPersons, _
 ListBox:=ListBox1)

NewVBOFRecordSetWrapper (Method)
The NewVBOFRecordSetWrapper method returns a new, properly instantiated
VBOFRecordSetWrapper object, bound to the specified.

For additional information about the NewVBOFRecordSetWrapper method, refer to Chapter 2,
section “Wrapping the RecordSet Object” and Appendix G.

Returns:
A VBOFRecordSetWrapper.

Parameters:
Collection:=

(Required, VBOFCollection) Identifies the VBOFCollection which is to be bound to the
VBOFRecordSetWrapper.

NewVBOFRecordSetWrapper example:
Private Sub Form_Load()
 Set pvtPersonsRecordSetWrapper = _
 ObjectManager.NewVBOFRecordSetWrapper(_
 Collection:=publicCompany.Persons)

RegisterForCollectionEvent (Method)
The RegisterForCollectionEvent method registers the specified RegisterObject as a target of
notification when the specified VBOFCollection triggers an event. In addition, the application can
minimize the scope of the notifications to only the event named in TriggerEvent:= parameter.

For additional information about the RegisterForCollectionEvent method, refer to Chapter 4,
section “Using Events in Conjunction with OO Programming”.

Returns:
A Boolean, indicating whether or not the registration occurred correctly.

Parameters:
Collection:=

(Required, VBOFCollection) Identifies the VBOFCollection whose triggered events are to be
monitored.

RegisterObject:=

Appendix B.1: Public Methods of the Class Module VBOFObjectManager

(Required, Variant) Identifies the object which is to receive notification whenever a qualifying
event is triggered by the VBOFCollection specified in the Collection:= parameter.

TriggerEvent:=
(Optional, String) Identifies the specific event, as triggered by the VBOFCollection, in which the
RegisterObject has an interest.

RegisterForCollectionEvent example:
Private Sub Form_Load()
 ObjectManager.RegisterForCollectionEvent(_
 Collection:=pvtPersons, _
 RegisterObject:=Me)

RegisterForObjectEvent (Method)
The RegisterForObjectEvent method registers the specified RegisterObject as a target of
notification when an event is triggered by the specified TriggerObject (if specified), or any object of a
given TriggerObjectType (if specified). In addition, the application can minimize the scope of the
notifications to only the event named in TriggerEvent:= parameter.

For additional information about the RegisterForObjectEvent method, refer to Chapter 4, section
“Using Events in Conjunction with OO Programming”.

Returns:
A Boolean, indicating whether or not the registration occurred correctly.

Parameters:
RegisterObject:=

(Required, Variant) Identifies the object which is to receive notification whenever a qualifying
event is triggered by the TriggerObject, TriggerObjectType, as specified.

TriggerObject:=
(Optional, Variant) Identifies the object whose triggered events are to be monitored.

TriggerObjectType:=
(Optional, String) Identifies the name of the Class Module whose object instances are to be
monitored for triggered events.

TriggerEvent:=
(Optional, String) Identifies the specific event, as triggered by the TriggerObject or
TriggerObjectType, in which the RegisterObject has an interest.

RegisterForObjectEvent example:
Private Sub Form_Load()
 ObjectManager.RegisterForObjectEvent(_
 Collection:=pvtPersons, _
 RegisterObject:=Me, _
 TriggerObjectType:=”Person”, _
 TriggerEvent:=”Changed)

RemoveCollection (Method)
The RemoveCollection method empties and removes the specified VBOFCollection object and all of
its contained objects. By default, any VBOF-maintained object containment links are severed by this
operation between the contained object and the containing object in which the VBOFCollection is defined.
Refer to the NoDelete:= parameter to control this behavior.

Appendix B.1: Public Methods of the Class Module VBOFObjectManager

Returns:
A Boolean, indicating whether or not the RemoveCollection function was executed successfully.

Parameters:
Collection:=

(Required, VBOFCollection) Identifies the VBOFCollection to be emptied

NoDelete:=
(Optional, Boolean) Specifies whether or not the whether or not the VBOF-maintained object
containment links are to be severed by this operation between the contained object and the
containing object in which the VBOFCollection is defined.

RemoveCollection example:
MyObjectManager.RemoveCollection _
 pvtPersons

TerminateForm (Method)
The TerminateForm method performs the same service as the Form_QueryUnload method. The
only difference is the polymorphic benefit this name has when associated with the TerminateObject
method.

Refer to the description of the Form_QueryUnload method for details regarding this method.

TerminateObject (Method)
The TerminateObject method provides a mechanism for removing objects from VBOF services.

Returns:
A Boolean, indicating whether or not the object termination occurred correctly.

Parameters:
Object:=

(Required, Variant) Identifies the object which is to be terminated.

TerminateObject example:
Private Sub Form_Load()
 ObjectManager.TerminateObject(_
 Object:=pvtPerson)

TriggerObjectEvent (Method)
The TriggerObjectEvent method causes the specified triggered event to be broadcast across the
VBOF service are to all registered recipient objects.

For additional information about the TriggerObjectEvent method, refer to Chapter 4, section
“Using Events in Conjunction with OO Programming”.

Returns:
A Boolean, indicating whether or not the registration occurred correctly.

Parameters:
Event:=

(Required, String) Identifies the event which is being triggered.

Appendix B.1: Public Methods of the Class Module VBOFObjectManager

Object:=
(Optional, Variant) Identifies the object which is triggering the event.

TriggerObjectEvent example:
Public Function ObjectHasChanged()
' Mark this object as "Changed" and trigger the
' "Changed" event

 ObjectChanged = True

 If Not ObjectManager Is Nothing Then
 ObjectManager.TriggerObjectEvent _
 Event:="Changed", _
 Object:=Me
 End If
End Function

Verbose (Property)
The Verbose property control whether or not certain warning messages are displayed in MessageBoxes
or are ignored.

Get Verbose example:
MyBoolean = MyObjectManager.Verbose

Let Verbose example:
MyObjectManager.Verbose = True

Workspace (Property)
The Workspace Get and Set Property methods control the Workspace property of the
VBOFObjectManager. The Workspace property must be set to a valid VB-accessible Workspace by the
application before any database-oriented functions can be performed by the VBOF.

For usage information, refer to Chapter 2, “Starting VBOF Services”.

Get Database example:
Set MyWorkspace = MyObjectManager.Workspace

Set Database example:
Set MyObjectManager.Workspace = Workspaces(0)

Appendix B.1: Public Methods of the Class Module VBOFObjectManager

Appendix B.2: Events Triggered by the Class Module
VBOFObjectManager

Instantiated
The “Instantiated” event is triggered when the VBOFObjectManager determines that a given object is, in
fact, unique across the environment, and has allowed the instantiation to proceed.

The “Instantiated” event is delivered only to the instantiated object.

Appendix B.2: Events Triggered by the Class Module VBOFObjectManager

Appendix C.1: Public Methods of the Class Module
VBOFCollection
This section outlines the public methods of the VBOFCollection and the parameters for each.

Add (Method)
The Add method allows the application to add an object to the VBOFCollection. VBOF automatically
stores object containment information in its private data store. If the VBOFObjectManager finds the
object to be unique across the application, the object is automatically inserted into its data store.

Returns:
A Variant, which is the object which was actually added to the VBOFCollection.

Note: The returned object is not necessarily the same object which is provided by the application
in the Item:= parameter. This is because the VBOFObjectManager may have found that the
provided object is actually a duplicate of another instance of the same object. Under this
condition, the original object would have been added to the VBOFCollection and the application-
provided object would have been discarded. It is important that the application receive the
returned object and begin using that object from that point forward. There is no guarantee that
the originally provided object continues to exist after having invoked this method.

Parameters:
Item:=

(Required, Variant) Identifies the object to be added to the VBOFCollection.

Key:=
(Optional, Long) Identifies the key of the object to be added to the VBOFCollection. If not
provided, VBOF uses the object’s ObjectID property.

Add example:
Set MyObject = _
 MyVBOFCollection.Add _
 (Item:=MyObject)

AutoDeleteOrphans (Property)
The AutoDeleteOrphans Get and Let Property methods control the AutoDeleteOrphans
property of the VBOFCollection. This property is necessary because the DataAwareCollection product,
which was released prior to the VBOF, operated in a mode where “orphaned” data rows were
automatically deleted from the database. Under the VBOF, this is not always desirable and the default is
not to automatically remove orphans. This property is provided for backward compatibility with the
DataAwareCollection.

Note: The VBOFObjectManager also has the AutoDeleteOrphans Property. The VBOFCollection‘s
AutoDeleteOrphans Property is initialized to value of the VBOFObjectManager’s
AutoDeleteOrphans Property at the time that the VBOFCollection is instantiated (through the
VBOFObjectManager’s NewVBOFCollection method).

Get AutoDeleteOrphans example:
MyBoolean = MyVBOFCollection.AutoDeleteOrphans

Let AutoDeleteOrphans example:
MyVBOFCollection.AutoDeleteOrphans = True

Appendix C.1: Public Methods of the Class Module VBOFCollection

Collection (Method)
The Collection method returns VB Collection object used by VBOFCollection to actually contain the
objects.

Returns:
A VB Collection.

Parameters:
None.

Collection example:
Dim MyCollection As Collection
. . .
Set MyCollection = _
 MyVBOFCollection.Collection

CollectionIndex (Method)
The CollectionIndex method returns the index of the specified object within the VBOFCollection.

Returns:
A Long, which is index of the specified object within the VBOFCollection.

Parameters:
Item:=

(Optional, Variant) Identifies the object whose the index within the VBOFCollection is to be
returned.

Key:=
(Optional, Variant) Identifies the Collection Key value of the object whose the index within the
VBOFCollection is to be returned.

WhereClause:=
(Optional, String) Identifies an SQL Where Clause whose resolution identifies the object whose
the index within the VBOFCollection is to be returned.

FindFirst:=
(Optional, Boolean) Indicates whether or not VBOF should execute the SQL Where Clause
identified in the WhereClause:= after having executed the FindFirst method over the
underlying RecordSet.

Note: The WhereClause:= parameter is also required for this parameter to be valid.

FindLast:=
(Optional, Boolean) Indicates whether or not VBOF should execute the SQL Where Clause
identified in the WhereClause:= after having executed the FindLast method over the
underlying RecordSet.

Note: The WhereClause:= parameter is also required for this parameter to be valid.

FindNext:=
(Optional, Boolean) Indicates whether VBOF should apply the SQL Where Clause identified in
the WhereClause:= to the RecordSet’s FindNext method.

Note: The WhereClause:= parameter is also required for this parameter to be valid.

Appendix C.1: Public Methods of the Class Module VBOFCollection

FindPrevious:=
(Optional, Boolean) Indicates whether VBOF should apply the SQL Where Clause identified in
the WhereClause:= to the RecordSet’s FindPrevious method.

Note: The WhereClause:= parameter is also required for this parameter to be valid.

CollectionIndex examples:
Dim MyCollection as VBOFCollection

MyIndex = _
 MyCollection.CollectionIndex _
 (Item:=MyObject)

MyIndex = _
 MyCollection.CollectionIndex _
 (Key:=MyKey)

MyIndex = _
 MyCollection.CollectionIndex _
 (WhereClause:="LastName = 'Jones'")

MyIndex = _
 MyCollection.CollectionIndex _
 (WhereClause:="LastName = 'Jones'", _
 FindFirst:=True)

Count (Method)
The Count method returns number of objects currently contained in the VBOFCollection.

Returns:
A Long.

Parameters:
None.

Count example:
Dim MyLong As Long
. . .
MyLong = MyVBOFCollection.Count

Database (Property)
The Database Get and Set Property methods control the Database property of the VBOFCollection.
The Database property must be set to a valid VB-accessible database by the application before any
database-oriented functions can be performed by the VBOFCollection.

Note: The VBOFObjectManager also has the Database Property. The VBOFCollection‘s Database
Property is initialized to value of the VBOFObjectManager’s Database Property at the time that the
VBOFCollection is instantiated (through the VBOFObjectManager’s NewVBOFCollection method).

Get Database example:
Set MyDatabase = MyVBOFCollection.Database

Set Database example:

Appendix C.1: Public Methods of the Class Module VBOFCollection

Set MyVBOFCollection.Database = MyDatabase

MostRecentlyAddedObject (Property)
The MostRecentlyAddedObject Property method allows the application to retrieve the object most
recently added to the VBOFCollection.

Returns:
A Variant

Parameters:
None.

MostRecentlyAddedObject example:
Set MyObject= _
 MyVBOFCollection.MostRecentlyAddedObject

MostRecentlyAddedObjectIndex (Property)
The MostRecentlyAddedObjectIndex Property method allows the application to retrieve the index
within the VBOFCollection of the object most recently added to the VBOFCollection.

Returns:
A Long.

Parameters:
None.

MostRecentlyAddedObjectIndex example:
Set MyLong = _
 MyVBOFCollection.MostRecentlyAddedObjectIndex

OrderByClause (Property)
The OrderByClause Get and Set Property methods control the OrderByClause property of the
VBOFCollection. Through this method, the application can set the desired SQL Order By clause to be
applied anytime the VBOFCollection retrieves data from the data source. By default, VBOF does not
apply an Order By clause to the SQL statements in internally generates.

Note: The PopulateCollection and ManageCollection methods have the OrderByClause
parameter, which can be used, as well as this technique of setting the OrderByClause property.

Get OrderByClause example:
MyString = MyVBOFCollection.OrderByClause

Set OrderByClause example:
MyVBOFCollection.OrderByClause = MyString

Parent (Property)
The Parent Get and Set Property methods control the Parent property of the VBOFCollection.
Through this method, the application can set the appropriate Parent object for the VBOFCollection.

Note: The PopulateCollection and ManageCollection methods have the Parent parameter,
which can be used, as well as this technique of setting the Parent property.

Get Parent example:

Appendix C.1: Public Methods of the Class Module VBOFCollection

Set MyObject = MyVBOFCollection.Parent

Set Parent example:
Set MyVBOFCollection.Parent = MyObject

PopulateCollection (Method)
The PopulateCollection method returns an VBOFCollection which has been populated with the
appropriate instantiated objects.

Note: It is recommended that either the Database:= or RecordSet:= parameter be specifically
provided. If neither is provided, any previously established Database:= value is automatically
substituted and the VBOFCollection proceeds as if the Database:= parameter had been provided.

For additional information about the PopulateCollection method, refer to Chapter 2, section
“Populating Collections”.

Returns:
A VBOFCollection

Parameters:
Sample:=

(Required, Variant) Identifies a temporary instance of the Class Module of the same type to be
instantiated by VBOFCollection and placed into the collection.

Parent:=
(Required (*), Variant) Identifies the containing object. The simplest technique is to specify
Parent:=Me.

(*) If the Parent:= parameter had been specifically provided in the NewVBOFCollection
method, it is not necessary to specify it in this method.

ANSISQL:=
(Optional, Boolean) Indicates whether or not VBOF should use ANSI-compliant SQL when
generating the SQL statement which is used by VBOF to retrieve the appropriate row from the
data source. The default for this is True.

Database:=
(Optional, Database) Identifies the Database in which the data source is located.

If the VBOFObjectManager’s Database property had been specified before the
NewVBOFCollection method had been executed for this VBOFCollection, and if the
VBOFCollection’s Database property should be the same as the VBOFObjectManager’s
Database property at that time, then this parameter can be eliminated.

Also, if the Database:= parameter had been specifically provided in the
NewVBOFCollection method, it is not necessary to specify it in this method.

ODBCPassThrough:=
(Optional, Boolean) Indicates whether or not VBOF should use the ODBCPassThrough option
when executing the SQL statement which is used by VBOF to retrieve the appropriate row from
the data source. The default for this is False.

OrderByClause:=

Appendix C.1: Public Methods of the Class Module VBOFCollection

(Optional, String) Identifies an SQL Order By Clause which is to be applied to the SQL statement
which is used by VBOF to retrieve the appropriate row from the data source. This can be used
when the application needs to have the objects appear in a specific order.

RecordSet:=
(Optional, RecordSet) Identifies the application-provided RecordSet object already containing
the data rows which are to be converted to objects and placed into the VBOFCollection.

SQL:=
(Optional, String) Identifies an SQL statement which is to be used by VBOF to retrieve the
appropriate row from the data source. Because of VBOF’s implementation, such a value is
typically not needed.

WhereClause:=
(Optional, String) Identifies an SQL Where Clause which is to be applied to the SQL statement
which is used by VBOF to retrieve the appropriate row from the data source. Because of VBOF’s
implementation, such a value is typically not needed.

PopulateCollection example:
Dim pubPersons as VBOFCollection
Dim tempNewPerson as Person
. . .
Set pubPersons = _
 ObjectManager.NewVBOFCollection
. . .
pubPersons.PopulateCollection _
 Sample:=tempNewPerson, _
 Parent:=MyCompany

RecordSet (Method)
The RecordSet method returns the underlying RecordSet object in use by the VBOFCollection.

Returns:
A RecordSet object

Parameters:
None.

RecordSet example (setting a local RecordSet object):
Dim MyRecordSet As RecordSet
. . .
Set MyRecordSet = _
 MyVBOFCollection.RecordSet

RecordSet example (setting a DataControl object’s RecordSet property):
Set MyDataControl.RecordSet = _
 MyVBOFCollection.RecordSet

Refresh (Method)
The Refresh method causes the VBOFCollection to refresh its entire content of contained objects. The
VBOFCollection begins its Refresh processing based on the state of its properties at that time, such as it
Database, Parent, Sample, OrderByClause and WhereClause

Returns:

Appendix C.1: Public Methods of the Class Module VBOFCollection

A VBOFCollection

Parameters:
None.

Refresh example:
Dim pvtPersons As VBOFCollection
. . .
pvtPersons.Refresh

Remove (Method)
The Remove method causes the VBOFCollection to remove the object specified by the Item:= or
Key:= parameter.

It also severs the VBOF-maintained object containment information it internally maintains. If this action
results in the object becoming an orphan (i.e., there are no more know parent objects of the object) then
the VBOFCollection refers to its AutoDeleteOrphans property for direction as to whether or not the
object’s associated data row should be deleted from its data source.

Returns:
A VBOFCollection after having removed the specified Item:= object.

Parameters:
Item:=

(Optional, Variant) Identifies the object to be removed from the VBOFCollection.

Either the Item:= or Key:= must be provided.

Key:=
(Optional, Long) Identifies the key of the object to be removed from the VBOFCollection.

Either the Item:= or Key:= must be provided.

NoDelete:=
(Optional, Boolean) Controls whether or not the object’s associated data row should be deleted
from its data source is the object is found to be an orphan. If this parameter is not provided and
the object is found to have become an orphan, the VBOFCollection takes action based on its
AutoDeleteOrphans property.

Remove example:
Dim pvtPersons As VBOFCollection
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 pvtPersons(1)
. . .
pvtPersons.Remove _
 Item:=pvtPerson

Replace (Method)
The Replace method causes the VBOFCollection to replace the object specified by the Item:=
parameter with the object specified by the ReplaceWith:= parameter.

The associated data row in the underlying data source is also replaced, as such.

Appendix C.1: Public Methods of the Class Module VBOFCollection

Returns:
A VBOFCollection after having replaced the specified Item:= object with the specified
ReplaceWith:= object.

Parameters:
Item:=

(Required, Variant) Identifies the object to be replaced within the VBOFCollection.

ReplaceWith:=
(Required, Variant) Identifies the object to replace the object specified by the Item:= parameter
within the VBOFCollection.

Replace example (updating an object in-place):
Dim pvtPersons As VBOFCollection
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 pvtPersons(1)
. . .
pvtPerson.LastName = “Jones”
. . .
pvtPersons.Replace _
 Item:=pvtPerson, _
 ReplaceWith:=pvtPerson

Replace example (replacing with a different object):
Dim pvtPersons As VBOFCollection
Dim pvtPerson as Person
Dim pvtDifferentPerson as Person
. . .
Set pvtPerson = _
 pvtPersons(1)
. . .
pvtDifferentPerson.LastName = “Jones”
pvtDifferentPerson.FirstName = “Bob”
. . .
pvtPersons.Replace _
 Item:=pvtPerson, _
 ReplaceWith:=pvtDifferentPerson

WhereClause (Property)
The WhereClause Get and Set Property methods control the WhereClause property of the
VBOFCollection. Through this method, the application can set the desired SQL Where clause addendum
to be applied anytime the VBOFCollection retrieves data from the data source. By default, VBOF does
not apply an addendum to the Where clause to the SQL statements in internally generates.

Note: The PopulateCollection and ManageCollection methods have the WhereClause
parameter, which can be used, as well as this technique of setting the WhereClause property.

Get WhereClause example:
MyString = MyVBOFCollection.WhereClause

Set WhereClause example:
MyVBOFCollection.WhereClause = “LastName Like 'Jone*'”

Appendix C.1: Public Methods of the Class Module VBOFCollection

Appendix C.2: Events Triggered by the Class Module
VBOFCollection

AddedItem (Collection Event)
The “Added” Collection event is publicly triggered by the VBOFCollection Add method when the
VBOFCollection has successfully added an object to the collection

PopulatedFromDatabase (Collection Event)
The “PopulatedFromDatabase” Collection event is publicly triggered by the VBOFCollection
PopulateCollection method when the VBOFCollection has been successfully populated from the
database.

PopulatedFromRecordSet (Collection Event)
The “PopulatedFromRecordSet” Collection event is publicly triggered by the VBOFCollection
PopulateCollection method when the VBOFCollection has been successfully populated from the
user-specified RecordSet object.

Refreshed (Collection Event)
The “Refreshed” Collection event is publicly triggered by the VBOFCollection Refresh method when
the VBOFCollection has been successfully refreshed.

RemovedItem (Collection Event)
The “RemovedItem” Collection event is publicly triggered by the VBOFCollection Remove method when
an object has been successfully removed from the VBOFCollection.

RemovedItem (Object Event)
The “RemovedItem” Object event is publicly triggered by the VBOFCollection Remove method when an
object has been successfully removed from the underlying data source.

ReplacedItem (Collection Event)
The “ReplacedItem” Object event is publicly triggered by the VBOFCollection Replace method when
an object has been successfully replaced with another in the VBOFCollection.

Appendix C.2: Events Triggered by the Class Module VBOFCollection

Appendix D: Public Methods of the Class Module
VBOFDataWrapper

AbsolutePosition (Property)
The AbsolutePosition Property Get and Set methods control the AbsolutePosition property of
the underlying RecordSet object within the VBOFCollection to which the VBOFDataWrapper is bound.

Get AbsolutePosition example:
Dim MyDataWrapper as VBOFDataWrapper
Dim MyLong As Long
. . .
MyLong = MyDataWrapper.AbsolutePosition

Set AbsolutePosition example:
Dim MyDataWrapper as VBOFDataWrapper
Dim MyLong As Long
. . .
MyDataWrapper.AbsolutePosition = MyLong

Refer to the AbsolutePositionObject method for a more object-oriented technique than the
numeric-oriented AbsolutePosition method.

AbsolutePositionObject (Property)
The AbsolutePositionObject Property Get and Set methods interface with the
AbsolutePosition property of the underlying RecordSet object within the VBOFCollection to which
the VBOFDataWrapper is bound according to the desired object.

Get AbsolutePositionObject example:
Dim MyDataWrapper as VBOFDataWrapper
Dim MyPerson As Person
. . .
Set MyPerson = MyDataWrapper.AbsolutePositionObject

Set AbsolutePositionObject example:
Dim MyDataWrapper as VBOFDataWrapper
Dim MyPerson As Person
. . .
Set MyDataWrapper.AbsolutePositionObject = MyPerson

BOF (Method)
The BOF method returns the BOF property of the underlying RecordSet object within the VBOFCollection
to which the VBOFDataWrapper is bound.

Returns:
A Boolean.

Parameters:
None

BOF example:
Dim MyDataWrapper as VBOFDataWrapper
Dim MyBoolean as Boolean

Appendix D: Public Methods of the Class Module VBOFDataWrapper

. . .
MyBoolean = MyDataWrapper.BOF

Clone (Method)
The Clone method returns a RecordSet which has been cloned from the underlying RecordSet object
within the VBOFCollection to which the VBOFDataWrapper is bound.

Returns:
A RecordSet object.

Parameters:
None

Clone example:
Dim MyDataWrapper as VBOFDataWrapper
Dim MyRecordSet as RecordSet
. . .
Set MyRecordSet = MyDataWrapper.Clone

CloseRecordSet (Method)
The CloseRecordSet method closes the underlying RecordSet object within the VBOFCollection to
which the VBOFDataWrapper is bound.

Returns:
A Long, containing the value of the VB Err object reflecting the state of the Close method of
the underlying RecordSet object.

Parameters:
None

CloseRecordSet example:
Dim MyDataWrapper as VBOFDataWrapper
Dim MyLong as Long
. . .
MyLong = MyDataWrapper.CloseRecordSet

EOF (Method)
The EOF method returns the EOF property of the underlying RecordSet object within the VBOFCollection
to which the VBOFDataWrapper is bound.

Returns:
A Boolean.

Parameters:
None

EOF example:
Dim MyDataWrapper as VBOFDataWrapper
Dim MyBoolean as Boolean
. . .
MyBoolean = MyDataWrapper.EOF

Appendix D: Public Methods of the Class Module VBOFDataWrapper

FindFirst (Method)
The FindFirst method executes a search forward across the underlying RecordSet object within the
VBOFCollection to which the VBOFDataWrapper is bound, beginning at the start of the RecordSet, using
the search criteria specified in the SearchCriteria:= parameter.

Returns:
A Variant, which is the object which is the equivalent of the first data row retrieved which
qualifies for the search criteria specified in the SearchCriteria:= parameter, or Nothing,
if a suitable object for the SearchCriteria:= parameter is not found.

Parameters:
SearchCriteria:=

(Required, String) Identifies the search criteria to be used to locate the first qualifying row.

FindFirst example:
Dim MyDataWrapper as VBOFDataWrapper
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyDataWrapper.FindFirst
 (SearchCriteria:=”LastName = 'Jones'”)

FindLast (Method)
The FindLast method executes a search backward across the underlying RecordSet object within the
VBOFCollection to which the VBOFDataWrapper is bound, beginning at the end of the RecordSet, using
the search criteria specified in the SearchCriteria:= parameter.

Returns:
A Variant, which is the object which is the equivalent of the first data row retrieved which
qualifies for the search criteria specified in the SearchCriteria:= parameter, or Nothing,
if a suitable object for the SearchCriteria:= parameter is not found.

Parameters:
SearchCriteria:=

(Required, String) Identifies the search criteria to be used to locate the first qualifying row.

FindLast example:
Dim MyDataWrapper as VBOFDataWrapper
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyDataWrapper.FindLast
 (SearchCriteria:=”LastName = 'Jones'”)

FindNext (Method)
The FindFirst method executes a search forward across the underlying RecordSet object within the
VBOFCollection to which the VBOFDataWrapper is bound, beginning at the current position of the
RecordSet, using the search criteria specified in the SearchCriteria:= parameter.

Returns:
A Variant, which is the object which is the equivalent of the next data row retrieved which
qualifies for the search criteria specified in the SearchCriteria:= parameter, or Nothing,
if a suitable object for the SearchCriteria:= parameter is not found.

Appendix D: Public Methods of the Class Module VBOFDataWrapper

Parameters:
SearchCriteria:=

(Required, String) Identifies the search criteria to be used to locate the first qualifying row.

FindNext example:
Dim MyDataWrapper as VBOFDataWrapper
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyDataWrapper.FindNext
 (SearchCriteria:=”LastName = 'Jones'”)

FindPrevious (Method)
The FindLast method executes a search backward across the underlying RecordSet object within the
VBOFCollection to which the VBOFDataWrapper is bound, beginning at the current position of the
RecordSet, using the search criteria specified in the SearchCriteria:= parameter.

Returns:
A Variant, which is the object which is the equivalent of the next data row retrieved which
qualifies for the search criteria specified in the SearchCriteria:= parameter, or Nothing,
if a suitable object for the SearchCriteria:= parameter is not found.

Parameters:
SearchCriteria:=

(Required, String) Identifies the search criteria to be used to locate the first qualifying row.

FindLast example:
Dim MyDataWrapper as VBOFDataWrapper
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyDataWrapper.FindPrevious
 (SearchCriteria:=”LastName = 'Jones'”)

MoveFirst (Method)
The MoveFirst method positions the underlying RecordSet object within the VBOFCollection to which
the VBOFDataWrapper is bound, to the beginning of the RecordSet.

Returns:
A Variant, which is the object which is the equivalent of the first data row in the underlying
RecordSet object within the VBOFCollection, or Nothing, if no objects are found in the
VBOFCollection.

Parameters:
None

MoveFirst example:
Dim MyDataWrapper as VBOFDataWrapper
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyDataWrapper.MoveFirst

Appendix D: Public Methods of the Class Module VBOFDataWrapper

MoveLast (Method)
The MoveLast method positions the underlying RecordSet object within the VBOFCollection to which
the VBOFDataWrapper is bound, to the last row of the RecordSet beyond the current.

Returns:
A Variant, which is the object which is the equivalent of the last data row in the underlying
RecordSet object within the VBOFCollection, or Nothing, if no objects are found in the
VBOFCollection.

Parameters:
None

MoveFirst example:
Dim MyDataWrapper as VBOFDataWrapper
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyDataWrapper.MoveLast

MoveNext (Method)
The MoveNext method positions the underlying RecordSet object within the VBOFCollection to which
the VBOFDataWrapper is bound, to the next row of the RecordSet beyond the current.

Returns:
A Variant, which is the object which is the equivalent of the next data row in the underlying
RecordSet object within the VBOFCollection, or Nothing, if no more objects are found in the
VBOFCollection.

Parameters:
None

MoveNext example:
Dim MyDataWrapper as VBOFDataWrapper
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyDataWrapper.MoveNext

MoveToObject (Method)
The MoveToObject method positions the underlying RecordSet object of the VBOFCollection to which
the VBOFDataWrapper is bound, to the row which is the equivalent of the object specified in the
Object:= parameter.

Returns:
A Variant, which is the object specified in the Object:= parameter or Nothing, if no suitable
object for the specified Object:= parameter is not found.

Parameters:
Object:=

(Required, Variant) Identifies the object to be used to position the underlying RecordSet object.

FindNext example:
Dim MyDataWrapper as VBOFDataWrapper
Dim pvtPerson as Person

Appendix D: Public Methods of the Class Module VBOFDataWrapper

. . .
Set pvtPerson = _
 MyDataWrapper.MoveToObject
 (Object:=pvtPerson)

MoveToRecordNumber (Method)
The MoveToRecordNumber method positions the underlying RecordSet object of the VBOFCollection
to which the VBOFDataWrapper is bound, to the row whose RecordNumber is specified in the
RecordNumber:= parameter.

Returns:
A Variant, which is the object equating to the specified RecordNumber:= parameter or
Nothing, if no suitable object for the specified RecordNumber:= parameter is not found.

Parameters:
RecordNumber:=

(Required, Variant) Identifies the RecordNumber to be used to position the underlying RecordSet
object.

FindNext example:
Dim MyDataWrapper as VBOFDataWrapper
Dim MyLong as Long
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyDataWrapper.MoveToRecordNumber
 (RecordNumber:=MyLong)

Rebind (Method)
The Rebind method must be invoked if either the bound VBOFCollection or DataControl are
significantly altered.

Returns:
A Boolean indicating whether or not the Rebind was successful.

Parameters:
Collection:=

(Optional, VBOFCollection) The VBOFCollection object which is to be bound to the
VBOFDataWrapper.

DataControl:=
(Optional, DataControl) The DataControl object which is to be bound to the VBOFDataWrapper.

Rebind example:
MyDataWrapper.Rebind _
 Collection:=pvtPersons, _
 DataControl:=Data1

RecordCount (Method)
The RecordCount method returns the number of rows which are contained in the underlying RecordSet
object within the VBOFCollection to which the VBOFDataWrapper is bound.

Returns:
A Long.

Appendix D: Public Methods of the Class Module VBOFDataWrapper

Parameters:
None

RecordCount example:
Dim MyDataWrapper as VBOFDataWrapper
Dim MyLong as Long
. . .
MyLong = MyDataWrapper.RecordCount

RecordSet (Method)
The RecordSet method returns the underlying RecordSet object in use by the VBOFCollection.

Returns:
A RecordSet object.

Parameters:
None.

RecordSet example:
Dim MyDataWrapper as VBOFDataWrapper
Dim MyRecordSet as RecordSet
. . .
Set MyRecordSet = _
 MyDataWrapper.RecordSet

Refresh (Method)
The Refresh method can be invoked if the application needs to refresh the DataControl display, perhaps
after the bound VBOFCollection as been significantly changed.

Returns:
A RecordSet object which is the RecordSet object contained within the bound VBOFCollection,
reflecting any changes which may have occurred due to the Refresh method

Parameters:
DisplayOnly:=

(Optional, Boolean) Indicates whether or not the application requests that only the DataControl is
to be refreshed. The default action is False, to refresh the both underlying VBOFCollection and
the DataControl display.

Refresh example:
MyDataWrapper.Refresh

Unbind (Method)
The Unbind method releases the underlying VBOFCollection and DataControl from the
VBOFDataWrapper. This is necessary because Visual Basic does not release the memory consumed by
any given object until all references to the object have been severed. The Unbind method releases the
reference to the VBOFCollection and DataControl once established by the VBOFDBGridWrapper.

Note: This method is not typically executed by the application. Rather, the application Form modules
should invoke the VBOFObjectManager’s Form_QueryUnload event procedure. The
Form_QueryUnload method is a more thorough and encapsulated implementation than if the
application were to attempt to perform a clean-up process.

Appendix D: Public Methods of the Class Module VBOFDataWrapper

Unbind example (indirectly):
Private Sub Form_QueryUnload(. . .)

 MyObjectManager.Form_QueryUnload (_
 Me, _
 MyDataWrapper

Appendix D: Public Methods of the Class Module VBOFDataWrapper

Appendix E: Public Methods of the Class Module
VBOFDBGridWrapper
This section outlines the public methods of the VBOFDBGridWrapper and the parameters for each.

Bookmark (Property)
The Bookmark Property Get and Set methods control the Bookmark attribute of the bound DBGrid. The
DBGrid’s Bookmark value is roughly the character representation of the numeric index of the row,
although adding and removing rows after the initial object population can effect this value. The Bookmark
value can be Get or Set at any time after the VBOFDBGridWrapper has been instantiated and bound (see
the VBOFObjectManager’s method NewVBOFDBGridWrapper).

In the DBGrid_RowColChange event procedure, the Bookmark can be retrieved so the application
program can keep track of the Bookmark of the selected object in the DBGrid. Elsewhere, the Bookmark
can be programmatically set to a specific variant value.

Get Bookmark example:
Dim MyDBGridWrapper as VBOFDBGridWrapper
Dim MyBookMark As Variant
. . .
MyBookMark = _
 MyDBGridWrapper.Bookmark

Set Bookmark example:
Dim MyDBGridWrapper as VBOFDBGridWrapper
Dim MyBookMark As Variant
. . .
MyDBGridWrapper.Bookmark = _
 MyBookMark

Note: For a more object-oriented technique, refer to the BookmarkObject methods.

BookmarkObject (Property)
The BookmarkObject Property Get and Set methods control the Bookmark attribute of the bound
DBGrid in an object-oriented manner by referring to an object, versus a Bookmark variant. The
BookmarkObject value can be Get or Set at any time after the VBOFDBGridWrapper has been
instantiated and bound (see the VBOFObjectManager’s method NewVBOFDBGridWrapper).

In the DBGrid_RowColChange event procedure, the BookmarkObject can be retrieved so the application
program can keep track of the selected object in the DBGrid. Elsewhere, the BookmarkObject can be
programmatically set to a specific object.

Get BookmarkObject example:
Dim MyObject As Person ' or Variant, or other Class type
. . .
Set MyObject = _
 MyDBGridWrapper.BookmarkObject

Set BookmarkObject example:
Dim MyObject As Person ' or Variant, or other Class type
. . .
Set MyDBGridWrapper.BookmarkObject = _
 MyObject

Appendix E: Public Methods of the Class Module VBOFDBGridWrapper

Rebind (Method)
The Rebind method allows either the underlying VBOFCollection or DBGrid to be significantly altered,
then rebound to continue processing with the new components.

If the application needs to significantly change either the underlying VBOFCollection or DBGrid after the
VBOFDBGridWrapper has been instantiated by the VBOFObjectManager, the Rebind method must be
executed for continued processing. Examples of significant changes are if the VBOFDBGridWrapper is
currently bound to the VBOFCollection of “Joe’s” Addresses (instances of Address objects), then the
VBOFCollection is reprocessed to be a VBOFCollection of “Bill’s” Addresses (instances of Address
objects) or if the VBOFCollection of “Joe’s” Addresses is reprocessed as a VBOFCollection of “Joe’s”
Phone objects.

Parameters:
Collection:=

(Optional, VBOFCollection) Identifies the VBOFCollection which has been significantly altered,
or which replaces the previously used VBOFCollection.

DBGrid:=
(Optional, DBGrid) Identifies the DBGrid which has been significantly altered, or which replaces
the previously used DBGrid.

Rebind example.
The following example shows the VBOFCollection instance MyAddresses being significantly
altered. Assume that AddressesDBGridWrapper had already been bound to the collection of
Addresses of some other Person object:

Private Sub PersonsDBGrid_RowColChange(. . .)
 Dim MyPerson As Person
 Dim MyAddresses As VBOFCollection
 . . .
 Set MyPerson = _
 PersonsDBGridWrapper.BookmarkObject
 Set MyAddresses = _
 MyPerson.Addresses
 AddressesDBGridWrapper.Rebind _
 Collection:=MyAddresses

Refresh (Method)
The Refresh method causes the displayed contents of the underlying DBGrid to be refreshed.

Note: There is no need to execute the Refresh method after having executed the Rebind method
because VBOFDBGridWrapper automatically refreshes the DBGrid during the Rebind operation.

Refresh example:
MyDBGridWrapper.Refresh

Unbind (Method)
The Unbind method releases the underlying VBOFCollection and DBGrid from the
VBOFDBGridWrapper. This is necessary because Visual Basic does not release the memory consumed
by any given object until all references to the object have been severed. The Unbind method releases the
reference to the VBOFCollection and DBGrid once established by the VBOFDBGridWrapper.

Note: This method is not typically executed by the application. Rather, the application Form modules
should invoke the VBOFObjectManager’s Form_QueryUnload event procedure. The

Appendix E: Public Methods of the Class Module VBOFDBGridWrapper

Form_QueryUnload method is a more thorough and encapsulated implementation than if the
application were to attempt to perform a clean-up process.

Unbind example (indirectly):
Private Sub Form_QueryUnload(. . .)

 MyObjectManager.Form_QueryUnload (_
 Me, _
 MyDBGridWrapper

UnboundAddData (Method)
The DBGrid’s UnboundAddData event procedure should be coded within the Form module if the
DBGrid is intended to allow new rows to be added.

Returns:
The new object, populated with the data from the new row.

Parameters:
RowBuf:=

(Required) The identical RowBuf parameter passed to the DBGrid_UnboundAddData event
procedure.

NewRowBookmark:=
(Required) The identical NewRowBookmark parameter passed to the
DBGrid_UnboundAddData event procedure.

Sample:=
(Required, Variant) A temporary, “throw-away” object of the class to be instantiated and
populated with the data from the new row.

Parent:=
(Optional, Variant) The container object of the underlying VBOFCollection. If not presented, the
VBOFDBGridWrapper uses the Parent:= value previously defined to the VBOFCollection, if
available.

UnboundAddData example:
Private Sub DBGrid1_UnboundAddData(ByVal RowBuf As RowBuffer,
NewRowBookmark As Variant)
 Dim tempSample as New MyClass ' (not literally “MyClass”)
 MyDBGridWrapper.UnboundAddData _
 RowBuf:=RowBuf, _
 NewRowBookmark:=NewRowBookmark, _
 Sample:=tempSample
End Sub

UnboundDeleteRow (Method)
The DBGrid’s UnboundDeleteRow event procedure should be coded within the Form module to have
VBOF automatically manage the deletion of objects through the DBGrid.

Returns:
A Long which contains the number of rows currently in the DBGrid

Parameters:
Bookmark:=

Appendix E: Public Methods of the Class Module VBOFDBGridWrapper

(Required) The identical Bookmark parameter passed to the DBGrid_UnboundDeleteRow
event procedure.

UnboundDeleteRow example:
Private Sub DBGrid1_UnboundDeleteRow(Bookmark As Variant)
 pvtPersonsDBGridWrapper. _
 UnboundDeleteRow _
 Bookmark:=Bookmark
End Sub

UnboundReadData (Method)
The DBGrid’s UnboundReadData event procedure should be coded within the Form module to allow
VBOF to automatically populate the DBGrid with values from the objects contained within the associated
VBOFCollection.

Returns:
A Long, which contains the number of rows added to the DBGrid.

Parameters:
RowBuf:=

(Required) The identical RowBuf parameter passed to the DBGrid_UnboundReadData event
procedure.

StartLocation:=
(Required) The identical StartLocation parameter passed to the
DBGrid_UnboundReadData event procedure.

ReadPriorRows:=
(Required) The identical ReadPriorRows parameter passed to the
DBGrid_UnboundReadData event procedure.

UnboundReadData example:
Private Sub DBGrid1_UnboundReadData(ByVal RowBuf As RowBuffer,
StartLocation As Variant, ByVal ReadPriorRows As Boolean)
 pvtPersonsDBGridWrapper. _
 UnboundReadData _
 RowBuf:=RowBuf, _
 StartLocation:=StartLocation, _
 ReadPriorRows:=ReadPriorRows
End Sub

UnboundWriteData (Method)
The DBGrid’s UnboundWriteData event procedure should be coded within the Form module if the
DBGrid is intended to allow updates to rows.

Returns:
A Variant, which is the object which was updated by the user.

Parameters:
RowBuf:=

(Required) The identical RowBuf parameter passed to the DBGrid_UnboundWriteData
event procedure.

WriteLocation:=

Appendix E: Public Methods of the Class Module VBOFDBGridWrapper

(Required) The identical WriteLocation parameter passed to the
DBGrid_UnboundWriteData event procedure.

UnboundWriteData example:
Private Sub DBGrid1_UnboundWriteData(ByVal RowBuf As RowBuffer,
WriteLocation As Variant)
 pvtPersonsDBGridWrapper. _
 UnboundWriteData _
 RowBuf:=RowBuf, _
 WriteLocation:=WriteLocation

Appendix E: Public Methods of the Class Module VBOFDBGridWrapper

Appendix F: Public Methods of the Class Module
VBOFListBoxWrapper

AddItems (Method)
The AddItems method causes VBOF to populate the bound ListBox with values from the objects
contained in the bound VBOFListBoxWrapper.

Note: The Class Modules for objects which are to be supported by the VBOFListBoxWrapper must have
the method ObjectListBoxValue.

Returns:
A Boolean indicating whether or not the items were successfully added to the ListBox.

Parameters:
None.

AddItems example:
pvtPersonsListBoxWrapper.Clear
pvtPersonsListBoxWrapper.AddItems

ListCount (Method)
The ListCount method returns the number of objects which are currently in the ListBox.

Returns:
A Long which contains the number of objects currently in the ListBox.

Parameters:
None.

ListCount example:
Dim MyLong As Long
. . .
MyLong = _
 pvtPersonsListBoxWrapper.ListCount

ListIndex (Property)
The VBOFListBoxWrapper provides the ListIndex Get and Set Property methods as part of the object-
oriented management properties. In “Get” mode, this method returns the ListBox’s ListIndex property
for the object which selected in the ListBox. In “Set” mode, this method sets the ListBox’s ListIndex
property to the specified number.

Get ListIndex example:
Dim MyLong As Long
. . .
MyLong = _
 pvtPersonsListBoxWrapper.ListIndex

Set ListIndex example:
Dim MyLong As Long
. . .
pvtPersonsListBoxWrapper.ListIndex = _
 MyLong

Appendix F: Public Methods of the Class Module VBOFListBoxWrapper

See also the ListIndexObject method for a more object-oriented technique of accomplishing the
same task.

ListIndexObject (Property)
The VBOFListBoxWrapper provides the ListIndexObject Get and Set Property methods as part of
the object-oriented management properties in a more object-oriented technique than the ListIndex
method. In “Get” mode, this method returns the object which is referenced by the current value of the
ListBox’s ListIndex property. In “Set” mode, this method sets the ListBox’s ListIndex property to
the object which is specified by the application.

Get ListIndexObject example:
Dim pvtCurrentPerson as Person
. . .
Set pvtCurrentPerson = _
 pvtPersonsListBoxWrapper.ListIndexObject

Set ListIndexObject example:
Dim pvtCurrentPerson as Person
. . .
pvtPersonsListBoxWrapper.ListIndexObject = _
 pvtCurrentPerson

Rebind (Method)
The VBOFListBoxWrapper’s Rebind method must be invoked if either the bound VBOFCollection or
ListBox are significantly altered.

Returns:
A Boolean indicating whether or not the Rebind was successful.

Parameters:
Collection:=

(Optional, VBOFCollection) The VBOFCollection object which is to be bound to the
VBOFListBoxWrapper.

ListBox:=
(Optional, ListBox) The ListBox which is to be bound to the VBOFListBoxWrapper.

Rebind example:
pvtPersonsListBoxWrapper.Rebind _
 Collection:=pvtPersons, _
 ListBox:=ListBox1

Refresh (Method)
The VBOFListBoxWrapper’s Refresh method can be invoked if the application needs to refresh the
ListBox display, perhaps after the bound VBOFCollection as been significantly changed.

Returns:
A Long which contains the number of objects currently in the ListBox.

Parameters:
DisplayOnly:=

Appendix F: Public Methods of the Class Module VBOFListBoxWrapper

(Optional, Boolean) Indicates whether or not the application requests that only the ListBox is to
be refreshed. The default action is False, to refresh the both underlying VBOFCollection and the
ListBox display.

Refresh example:
pvtPersonsListBoxWrapper.Refresh

RemoveItem (Method)
The VBOFListBoxWrapper’s RemoveItem method can be invoked when the application needs to
remove an object from the ListBox and knows (or can determine) the ListIndex of the object to be
removed.

Returns:
A Boolean which indicates whether or not the object was successfully removed from the
VBOFCollection and the ListBox.

Parameters:
ListIndex:=

(Required, Long) References the ListIndex value of the item to be removed from the ListBox and
the underlying VBOFCollection..

RemoveItem example:
pvtPersonsListBoxWrapper.RemoveItem _
 ListIndex:= 1

See also the RemoveObject method for a more object-oriented technique of accomplishing the same
task.

RemoveObject (Method)
The VBOFListBoxWrapper’s RemoveObject method can be invoked when the application needs to
remove an object from the ListBox and the application knows the object to be removed. This is a more
object-oriented technique than the RemoveItem method.

Returns:
A Boolean which indicates whether or not the object was successfully removed from the
VBOFCollection and the ListBox.

Parameters:
Object:=

(Required, Variant) References the object which is to be removed from the ListBox and the
underlying VBOFCollection..

RemoveItem example:
pvtPersonsListBoxWrapper.RemoveObject _
 pvtCurrentPerson

SelectObject (Property)
The VBOFListBoxWrapper provides the SelectObject Get and Set Property methods as part of the
object-oriented management properties. The “Get” mode of this method returns the object in the ListBox
which is currently selected by the user. The “Set” mode selects the specified object in the ListBox.

Get SelectObject example:
Dim pvtCurrentPerson as Person
. . .

Appendix F: Public Methods of the Class Module VBOFListBoxWrapper

Set pvtCurrentPerson =
 pvtPersonsListBoxWrapper.SelectObject

Set SelectObject example:
Set pvtPersonsListBoxWrapper.SelectObject = _
 pvtCurrentPerson

SelectObjects (Property)
The VBOFListBoxWrapper provides the SelectObjects Get and Set Property methods as part of the
object-oriented management properties. The “Get” mode of this method returns a VB Collection of the
objects in the ListBox which are currently selected by the user. The “Set” mode receives a VB Collection
of objects to be selected in the ListBox.

Get SelectObjects example:
Dim MyCollection As Collection
 . . .
Set MyCollection =
 pvtPersonsListBoxWrapper.SelectObjects

Set SelectObjects example:
Dim MyCollection As Collection
 . . .
MyCollection.Add MyPerson1
MyCollection.Add MyPerson2
 . . .
Set pvtPersonsListBoxWrapper.SelectObjects = _
 MyCollection

TopIndex (Property)
The VBOFListBoxWrapper provides the TopIndex Get and Set Property methods to wrap the
TopIndex methods of the VB ListBox in an object-oriented manner. The “Get” method returns
TopIndex property of the ListBox bound to the VBOFListBoxWrapper. The “Set” method sets
TopIndex property of the ListBox bound to the VBOFListBoxWrapper.

Get TopIndex example:
Dim MyTopIndex As Long
 . . .
MyTopIndex = _
 pvtPersonsListBoxWrapper. _
 TopIndex

Set TopIndex example:
Dim MyTopIndex As Long
 . . .
pvtPersonsListBoxWrapper.TopIndex = _
 MyTopIndex

See also the TopObject methods for a more object-oriented technique of accomplishing the same task.

TopObject (Property)
The VBOFListBoxWrapper provides the TopObject Get and Set Property methods as part of the object-
oriented management properties. The “Get” method returns the object which is currently positioned at the
top of the visible area of the ListBox bound to the VBOFListBoxWrapper. The “Set” method sets the
object which is to appear at the top.

Appendix F: Public Methods of the Class Module VBOFListBoxWrapper

Get TopObject example:
Dim MyTopObject As Person
 . . .
Set MyTopObject = _
 pvtPersonsListBoxWrapper.TopObject

Set TopObject example:
Dim MyTopObject As Person
 . . .
Set pvtPersonsListBoxWrapper.TopObject = _
 MyTopObject

Unbind (Method)
The Unbind method releases the underlying VBOFCollection and ListBox from the
VBOFListBoxWrapper. This is necessary because Visual Basic does not release the memory consumed
by any given object until all references to the object have been severed. The Unbind method releases the
reference to the VBOFCollection and ListBox once established by the VBOFListBoxWrapper.

Note: This method is not typically executed by the application. Rather, the application Form modules
should invoke the VBOFObjectManager’s Form_QueryUnload event procedure. The
Form_QueryUnload method is a more thorough and encapsulated implementation than if the
application were to attempt to perform a clean-up process.

Unbind example (indirectly):
Private Sub Form_QueryUnload(. . .)

 MyObjectManager.Form_QueryUnload (_
 Me, _
 MyListBoxWrapper

Appendix F: Public Methods of the Class Module VBOFListBoxWrapper

Appendix G: Public Methods of the Class Module
VBOFRecordSetWrapper

AbsolutePosition (Property)
The AbsolutePosition Property Get and Set methods control the Bookmark property of the
underlying RecordSet object within the VBOFCollection.

Get AbsolutePosition example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim MyLong As Long
. . .
MyLong = MyRecordSetWrapper.AbsolutePosition

Set AbsolutePosition example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim MyLong As Long
. . .
MyRecordSetWrapper.AbsolutePosition = MyLong

AbsolutePositionObject (Property)
The AbsolutePositionObject Property Get and Set methods interface with the
AbsolutePosition property of the underlying RecordSet object within the according to the desired
object.

Get AbsolutePositionObject example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim MyPerson As Person
. . .
Set MyPerson = MyRecordSetWrapper.AbsolutePositionObject

Set AbsolutePositionObject example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim MyPerson As Person
. . .
Set MyRecordSetWrapper.AbsolutePositionObject = MyPerson

BOF (Method)
The BOF method returns the BOF property of the underlying RecordSet object within the VBOFCollection
to which the VBOFRecordSetWrapper is bound.

Returns:
A Boolean.

Parameters:
None

BOF example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim MyBoolean as Boolean
. . .
MyBoolean = MyRecordSetWrapper.BOF

Appendix G: Public Methods of the Class Module VBOFRecordSetWrapper

Clone (Method)
The Clone method returns a RecordSet which has been cloned from the underlying RecordSet object
within the VBOFCollection to which the VBOFRecordSetWrapper is bound.

Returns:
A RecordSet object.

Parameters:
None

Clone example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim MyRecordSet as RecordSet
. . .
Set MyRecordSet = MyRecordSetWrapper.Clone

CloseRecordSet (Method)
The CloseRecordSet method closes the underlying RecordSet object within the VBOFCollection to
which the VBOFRecordSetWrapper is bound.

Returns:
A Long, containing the value of the VB Err object reflecting the state of the Close method of
the underlying RecordSet object.

Parameters:
None

CloseRecordSet example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim MyLong as Long
. . .
MyLong = MyRecordSetWrapper.CloseRecordSet

EOF (Method)
The EOF method returns the EOF property of the underlying RecordSet object within the VBOFCollection
to which the VBOFRecordSetWrapper is bound.

Returns:
A Boolean.

Parameters:
None

EOF example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim MyBoolean as Boolean
. . .
MyBoolean = MyRecordSetWrapper.EOF

FindFirst (Method)
The FindFirst method executes a search forward across the underlying RecordSet object within the
VBOFCollection to which the VBOFRecordSetWrapper is bound, beginning at the start of the RecordSet,
using the search criteria specified in the SearchCriteria:= parameter.

Appendix G: Public Methods of the Class Module VBOFRecordSetWrapper

Returns:
A Variant, which is the object which is the equivalent of the first data row retrieved which
qualifies for the search criteria specified in the SearchCriteria:= parameter, or Nothing,
if a suitable object for the SearchCriteria:= parameter is not found.

Parameters:
SearchCriteria:=

(Required, String) Identifies the search criteria to be used to locate the first qualifying row.

FindFirst example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyRecordSetWrapper.FindFirst
 (SearchCriteria:="LastName = 'Jones'")

FindLast (Method)
The FindLast method executes a search backward across the underlying RecordSet object within the
VBOFCollection to which the VBOFRecordSetWrapper is bound, beginning at the end of the RecordSet,
using the search criteria specified in the SearchCriteria:= parameter.

Returns:
A Variant, which is the object which is the equivalent of the first data row retrieved which
qualifies for the search criteria specified in the SearchCriteria:= parameter, or Nothing,
if a suitable object for the SearchCriteria:= parameter is not found.

Parameters:
SearchCriteria:=

(Required, String) Identifies the search criteria to be used to locate the first qualifying row.

FindLast example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyRecordSetWrapper.FindLast
 (SearchCriteria:="LastName = 'Jones'")

FindNext (Method)
The FindFirst method executes a search forward across the underlying RecordSet object within the
VBOFCollection to which the VBOFRecordSetWrapper is bound, beginning at the current position of the
RecordSet, using the search criteria specified in the SearchCriteria:= parameter.

Returns:
A Variant, which is the object which is the equivalent of the next data row retrieved which
qualifies for the search criteria specified in the SearchCriteria:= parameter, or Nothing,
if a suitable object for the SearchCriteria:= parameter is not found.

Parameters:
SearchCriteria:=

(Required, String) Identifies the search criteria to be used to locate the first qualifying row.

Appendix G: Public Methods of the Class Module VBOFRecordSetWrapper

FindNext example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyRecordSetWrapper.FindNext
 (SearchCriteria:="LastName = 'Jones'")

FindPrevious (Method)
The FindLast method executes a search backward across the underlying RecordSet object within the
VBOFCollection to which the VBOFRecordSetWrapper is bound, beginning at the current position of the
RecordSet, using the search criteria specified in the SearchCriteria:= parameter.

Returns:
A Variant, which is the object which is the equivalent of the next data row retrieved which
qualifies for the search criteria specified in the SearchCriteria:= parameter, or Nothing,
if a suitable object for the SearchCriteria:= parameter is not found.

Parameters:
SearchCriteria:=

(Required, String) Identifies the search criteria to be used to locate the first qualifying row.

FindLast example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyRecordSetWrapper.FindPrevious
 (SearchCriteria:="LastName = 'Jones'")

MoveFirst (Method)
The MoveFirst method positions the underlying RecordSet object within the VBOFCollection to which
the VBOFRecordSetWrapper is bound, to the beginning of the RecordSet.

Returns:
A Variant, which is the object which is the equivalent of the first data row in the underlying
RecordSet object within the VBOFCollection, or Nothing, if no objects are found in the
VBOFCollection.

Parameters:
None

MoveFirst example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyRecordSetWrapper.MoveFirst

MoveLast (Method)
The MoveLast method positions the underlying RecordSet object within the VBOFCollection to which
the VBOFRecordSetWrapper is bound, to the last row of the RecordSet beyond the current.

Returns:

Appendix G: Public Methods of the Class Module VBOFRecordSetWrapper

A Variant, which is the object which is the equivalent of the last data row in the underlying
RecordSet object within the VBOFCollection, or Nothing, if no objects are found in the
VBOFCollection.

Parameters:
None

MoveFirst example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyRecordSetWrapper.MoveLast

MoveNext (Method)
The MoveNext method positions the underlying RecordSet object within the VBOFCollection to which
the VBOFRecordSetWrapper is bound, to the next row of the RecordSet beyond the current.

Returns:
A Variant, which is the object which is the equivalent of the next data row in the underlying
RecordSet object within the VBOFCollection, or Nothing, if no more objects are found in the
VBOFCollection.

Parameters:
None

MoveNext example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyRecordSetWrapper.MoveNext

MoveToObject (Method)
The MoveToObject method positions the underlying RecordSet object of the VBOFCollection to which
the VBOFRecordSetWrapper is bound, to the row which is the equivalent of the object specified in the
Object:= parameter.

Returns:
A Variant, which is the object specified in the Object:= parameter or Nothing, if no suitable
object for the specified Object:= parameter is not found.

Parameters:
Object:=

(Required, Variant) Identifies the object to be used to position the underlying RecordSet object.

FindNext example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyRecordSetWrapper.MoveToObject
 (Object:=pvtPerson)

Appendix G: Public Methods of the Class Module VBOFRecordSetWrapper

MoveToRecordNumber (Method)
The MoveToRecordNumber method positions the underlying RecordSet object of the VBOFCollection
to which the VBOFRecordSetWrapper is bound, to the row whose RecordNumber is specified in the
RecordNumber:= parameter.

Returns:
A Variant, which is the object equating to the specified RecordNumber:= parameter or
Nothing, if no suitable object for the specified RecordNumber:= parameter is not found.

Parameters:
RecordNumber:=

(Required, Variant) Identifies the RecordNumber to be used to position the underlying RecordSet
object.

FindNext example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim MyLong as Long
Dim pvtPerson as Person
. . .
Set pvtPerson = _
 MyRecordSetWrapper.MoveToRecordNumber
 (RecordNumber:=MyLong)

Rebind (Method)
The Rebind method must be invoked if either the bound VBOFCollection or DataControl are
significantly altered.

Returns:
A Boolean indicating whether or not the Rebind was successful.

Parameters:
Collection:=

(Optional, VBOFCollection) The VBOFCollection object which is to be bound to the
VBOFRecordSetWrapper.

DataControl:=
(Optional, DataControl) The DataControl object which is to be bound to the
VBOFRecordSetWrapper.

Rebind example:
MyRecordSetWrapper.Rebind _
 Collection:=pvtPersons, _
 DataControl:=Data1

RecordCount (Method)
The RecordCount method returns the number of rows which are contained in the underlying RecordSet
object within the VBOFCollection to which the VBOFRecordSetWrapper is bound.

Returns:
A Long.

Parameters:
None

Appendix G: Public Methods of the Class Module VBOFRecordSetWrapper

RecordCount example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim MyLong as Long
. . .
MyLong = MyRecordSetWrapper.RecordCount

RecordSet (Method)
The RecordSet method returns the underlying RecordSet object in use by the VBOFCollection.

Returns:
A RecordSet object.

Parameters:
None.

RecordSet example:
Dim MyRecordSetWrapper as VBOFRecordSetWrapper
Dim MyRecordSet as RecordSet
. . .
Set MyRecordSet = _
 MyRecordSetWrapper.RecordSet

Refresh (Method)
The Refresh method can be invoked if the application needs to refresh the DataControl display, perhaps
after the bound VBOFCollection as been significantly changed.

Returns:
A RecordSet object which is the RecordSet object contained within the bound VBOFCollection,
reflecting any changes which may have occurred due to the Refresh method

Parameters:
DisplayOnly:=

(Optional, Boolean) Indicates whether or not the application requests that only the DataControl is
to be refreshed. The default action is False, to refresh the both underlying VBOFCollection and
the DataControl display.

Refresh example:
MyRecordSetWrapper.Refresh

Unbind (Method)
The Unbind method releases the underlying VBOFCollection and DataControl from the
VBOFRecordSetWrapper. This is necessary because Visual Basic does not release the memory consumed
by any given object until all references to the object have been severed. The Unbind method releases the
reference to the VBOFCollection and DataControl once established by the VBOFDBGridWrapper.

Note: This method is not typically executed by the application. Rather, the application Form modules
should invoke the VBOFObjectManager’s Form_QueryUnload event procedure. The
Form_QueryUnload method is a more thorough and encapsulated implementation than if the
application were to attempt to perform a clean-up process.

Unbind example (indirectly):
Private Sub Form_QueryUnload(. . .)

Appendix G: Public Methods of the Class Module VBOFRecordSetWrapper

 MyObjectManager.Form_QueryUnload (_
 Me, _
 MyRecordSetWrapper

Appendix G: Public Methods of the Class Module VBOFRecordSetWrapper

	Chapter 1: Introduction to the VB Object Framework
	Overview
	VBOF Services List
	VBOF Components, Overview
	VBOF Components, Details
	What’s Not Included
	Intended Use

	Chapter 2: VBOF Services
	Starting VBOF Services
	Implementing Contained Objects
	Populating Collections
	Managing Collections within Class Modules
	Initializing Objects
	VB Control Wrappers
	Wrapping the Data Object
	Form Methods
	Form-Level Declarations
	Form_Load Event Procedure, Preparing for Data Control Processing
	Data_Reposition Event Procedure, Tracking the Selected Object

	Wrapping DBGrids
	Class Module Methods
	ObjectDBGridUnboundAddData Method, Adding and Updating Objects
	ObjectDBGridUnboundReadData Method, Populating the DBGrid

	Form Methods
	Form-Level Declarations
	Form_Load Event Procedure, Preparing for DBGrid Processing
	DBGrid1_RowColChange Event Procedure, Following the User
	DBGrid1_UnboundAddData Event Procedure, Adding Objects
	DBGrid1_UnboundDeleteRow Event Procedure, Deleting Objects
	DBGrid1_UnboundWriteData Event Procedure, Updating Objects
	DBGrid1_UnboundReadData Event Procedure, Providing Property Values

	Wrapping List Boxes and Combo Boxes
	Class Module Methods
	ObjectListBoxValue, Providing a Representative String for the ListBox

	Form Methods
	Form-Level Declarations
	Form_Load Event Procedure, Preparing for ListBox Processing
	ListBox_Click Event Procedure, Tracking the Selected Object

	Wrapping the RecordSet Object
	Form Methods
	Form-Level Declarations
	Form_Load Event Procedure, Preparing for RecordSet Processing

	Using VB Object Framework in Conjunction with the Visual Basic Object Browser

	Chapter 3: Application Requirements and Recommendations
	Visual Basic Project
	Class Modules
	Class Modules and Forms
	Forms
	Data Sources

	Chapter 4: Object-Oriented Development Strategies
	Developing the Non-Visual BOM First
	Using Events in Conjunction with OO Programming
	Using VB Object Framework in Collection-Emulation mode
	Introducing a Database into the Non-Visual BOM
	Introducing a GUI over a Non-Visual BOM
	Performance Discussions
	Maximizing Performance by Eliminating the DataControl
	Performance Impacts of Conventional Programming Techniques Compared to VBOF

	Chapter 5: Conditional Compilation Options
	Using “NoEventMgr” to Suppress Event Management
	Using “NoDebugMode” to Suppress Generation of Debugging Code

	Appendix A: Converting from the DataAwareCollection
	Appendix B.1: Public Methods of the Class Module VBOFObjectManager
	AutoDeleteOrphans (Property)
	Database (Property)
	DebugMode (Property)
	Form_UnloadQuery (Method)
	InitializeObject (Method)
	ManageCollection (Method)
	NewObject (Method)
	NewVBOFCollection (Method)
	NewVBOFDataWrapper (Method)
	NewVBOFDBGridWrapper (Method)
	NewVBOFListBoxWrapper (Method)
	NewVBOFRecordSetWrapper (Method)
	RegisterForCollectionEvent (Method)
	RegisterForObjectEvent (Method)
	RemoveCollection (Method)
	TerminateForm (Method)
	TerminateObject (Method)
	TriggerObjectEvent (Method)
	Verbose (Property)
	Workspace (Property)

	Appendix B.2: Events Triggered by the Class Module VBOFObjectManager
	Instantiated

	Appendix C.1: Public Methods of the Class Module VBOFCollection
	Add (Method)
	AutoDeleteOrphans (Property)
	Collection (Method)
	CollectionIndex (Method)
	Count (Method)
	Database (Property)
	MostRecentlyAddedObject (Property)
	MostRecentlyAddedObjectIndex (Property)
	OrderByClause (Property)
	Parent (Property)
	PopulateCollection (Method)
	RecordSet (Method)
	Refresh (Method)
	Remove (Method)
	Replace (Method)
	WhereClause (Property)

	Appendix C.2: Events Triggered by the Class Module VBOFCollection
	AddedItem (Collection Event)
	PopulatedFromDatabase (Collection Event)
	PopulatedFromRecordSet (Collection Event)
	Refreshed (Collection Event)
	RemovedItem (Collection Event)
	RemovedItem (Object Event)
	ReplacedItem (Collection Event)

	Appendix D: Public Methods of the Class Module VBOFDataWrapper
	AbsolutePosition (Property)
	AbsolutePositionObject (Property)
	BOF (Method)
	Clone (Method)
	CloseRecordSet (Method)
	EOF (Method)
	FindFirst (Method)
	FindLast (Method)
	FindNext (Method)
	FindPrevious (Method)
	MoveFirst (Method)
	MoveLast (Method)
	MoveNext (Method)
	MoveToObject (Method)
	MoveToRecordNumber (Method)
	Rebind (Method)
	RecordCount (Method)
	RecordSet (Method)
	Refresh (Method)
	Unbind (Method)

	Appendix E: Public Methods of the Class Module VBOFDBGridWrapper
	Bookmark (Property)
	BookmarkObject (Property)
	Rebind (Method)
	Refresh (Method)
	Unbind (Method)
	UnboundAddData (Method)
	UnboundDeleteRow (Method)
	UnboundReadData (Method)
	UnboundWriteData (Method)

	Appendix F: Public Methods of the Class Module VBOFListBoxWrapper
	AddItems (Method)
	ListCount (Method)
	ListIndex (Property)
	ListIndexObject (Property)
	Rebind (Method)
	Refresh (Method)
	RemoveItem (Method)
	RemoveObject (Method)
	SelectObject (Property)
	SelectObjects (Property)
	TopIndex (Property)
	TopObject (Property)
	Unbind (Method)

	Appendix G: Public Methods of the Class Module VBOFRecordSetWrapper
	AbsolutePosition (Property)
	AbsolutePositionObject (Property)
	BOF (Method)
	Clone (Method)
	CloseRecordSet (Method)
	EOF (Method)
	FindFirst (Method)
	FindLast (Method)
	FindNext (Method)
	FindPrevious (Method)
	MoveFirst (Method)
	MoveLast (Method)
	MoveNext (Method)
	MoveToObject (Method)
	MoveToRecordNumber (Method)
	Rebind (Method)
	RecordCount (Method)
	RecordSet (Method)
	Refresh (Method)
	Unbind (Method)

