
Extending Dreamweaver

Trademarks

Add Life to the Web, Afterburner, Aftershock, Andromedia, Allaire, Animation PowerPack, Aria, Attain, Authorware,
Authorware Star, Backstage, Bright Tiger, Clustercats, Cold Fusion, Contribute, Design in Motion, Director, Dream Templates,
Dreamweaver, Drumbeat 2000, EDJE, EJIPT, Extreme 3D, Fireworks, Flash, Fontographer, FreeHand, Generator, HomeSite,
JFusion, JRun, Kawa, Know Your Site, Knowledge Objects, Knowledge Stream, Knowledge Track, LikeMinds, Lingo, Live
Effects, MacRecorder Logo and Design, Macromedia, Macromedia Action!, Macromedia Flash, Macromedia M Logo & Design,
Macromedia Spectra, Macromedia xRes Logo and Design, MacroModel, Made with Macromedia, Made with Macromedia Logo
and Design, MAGIC Logo and Design, Mediamaker, Movie Critic, Open Sesame!, Roundtrip HTML, Shockwave, Sitespring,
SoundEdit, Titlemaker, UltraDev, Web Design 101, what the web can be, and Xtra are either registered or trademarks of
Macromedia, Inc. and may be registered in the United States or in other jurisdictions including internationally. Other product
names, logos, designs, titles, words or phrases mentioned within this publication may be trademarks, servicemarks, or tradenames
of Macromedia, Inc. or other entities and may be registered in certain jurisdictions including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Third Party Software Notices and/or Additional Terms and Conditions can be found at www.macromedia.com/go/thirdparty/.

Opera ® browser Copyright © 1995-2002 Opera Software ASA and its suppliers. All rights reserved.

Apple Disclaimer

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE
ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME
STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH
SPECIFIC LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY FROM
STATE TO STATE.

Copyright © 1997-2003 Macromedia, Inc and its licensors. All rights reserved. This manual may not be copied,
photocopied, reproduced, translated, or converted to any electronic or machine-readable form in whole or in part without
prior written approval of Macromedia, Inc. Part Number ZDW70M300

Acknowledgments

Senior Management: Sheila McGinn

Project Management: Robert Berry

Writing: Robert Berry, David Jacowitz

Editing Management: Lisa Stanziano

Editing: Mary Kraemer, Noreen Maher

Production Management: Patrice O’Neill

Media Design and Production: Adam Barnett, Aaron Begley, Chris Basmajian, John Francis, Jeff Harmon

Special thanks to Jay London, Jeff Schang, Lori Hylan-Cho, Hisami Scott, Sam Mathews, Jake Cockrell, Russ Helfand, Randy
Edmunds, George Comninos, Rosana Francescato, Charles Nadeau, and the entire Dreamweaver engineering and QA teams.

First Edition: September 2003

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS
CHAPTER 1: Introduction. 13

Background. 14
Installing an extension. 14
Additional resources for extension writers . 14
What’s new in Extending Dreamweaver. 15

Documentation Changes . 15
Macromedia Press. 16

Removed Features . 16
Errata . 16
Conventions used in this guide . 17

PART I: Overview

CHAPTER 2: Extending Dreamweaver . 21

Types of Dreamweaver extensions . 21
Other ways to extend Dreamweaver . 22

Configuration folders and extensions. 23
Multiuser Configuration folders . 25
Running scripts at startup or shutdown . 25

Extension APIs . 25
How Dreamweaver processes JavaScript in extensions. 26
Displaying Help . 27

Localizing an extension . 27
XML String files . 27
Localizable Strings with Embedded Values . 28

Working with the Extension Manager . 28
Customizing Dreamweaver . 29

About customizing Dreamweaver . 29
About customizing Dreamweaver in a multiuser environment 29
About mm_deleted_files.xml tag syntax . 31
Reinstalling and uninstalling Dreamweaver in a multiuser environment 32
Customizing default documents . 32
Customizing page designs. 32
Customizing the appearance of dialog boxes . 32
3

Changing the default file type. 33
Customizing the interpretation of third-party tags . 34

Working with browser profiles. 39
About browser-profile formatting . 39
Creating and editing a browser profile . 41

Changing FTP mappings . 42
Extensible document types in Dreamweaver . 42

Opening a document in Dreamweaver . 51

CHAPTER 3: User Interfaces for Extensions. 53

Designing an extension user interface . 53
Dreamweaver HTML rendering control . 54
Using custom UI controls in extensions. 55

Editable select lists . 55
Database controls . 57
Adding a variable grid control. 59
Adding tree controls . 60
Manipulating content within a tree control . 62
A color button control for extensions . 63

Adding Flash content to Dreamweaver . 63
A simple Flash dialog box example . 64

CHAPTER 4: The Dreamweaver Document Object Model. 67

Which document DOM? . 68
The Dreamweaver DOM . 68

Objects, properties, and methods of the Dreamweaver DOM 68
Properties and methods of the document object . 71
Properties and methods of HTML tag objects . 72
Properties and methods of text objects . 73
Properties and methods of comment objects . 74
The dreamweaver and site objects . 74

CHAPTER 5: Customizing Code View . 77

Code Hints . 77
The CodeHints.xml file . 78
Code Hints tags . 79

Code coloring . 83
Code coloring files . 83
Scheme block delimiter coloring. 97
Scheme processing . 99
Editing schemes . 103
Code coloring examples . 105

Code validation . 107
<css-support> . 108
<property> . 108
<value>. 109

Changing default HTML formatting . 110
4 Contents

PART II: Extension APIs

CHAPTER 6: Insert Bar Objects . 113

How object files work . 113
The Insert bar definition file . 114

Insertbar.xml tag hierarchy . 114
Insert bar definition tags. 115
Insert bar definition tag attributes. 117
Modifying the Insert bar. 119
Adding objects to the Insert bar . 121
Adding objects to the Insert menu . 121

The Objects API . 122
canInsertObject() . 122
displayHelp() . 122
isDomRequired() . 123
insertObject() . 123
objectTag() . 124
windowDimensions() . 125

A simple Insert Object example . 126

CHAPTER 7: Commands. 135

How commands work . 135
Adding commands to the Commands menu . 136
The Commands API . 136

canAcceptCommand() . 136
commandButtons() . 136
isDomRequired() . 137
receiveArguments() . 137
windowDimensions() . 138

A simple Command example. 138
Creating the UI . 139
Writing the JavaScript code . 140
Running the command. 144

CHAPTER 8: Menus and Menu Commands . 145

About the menus.xml file . 146
<menubar> . 146
<menu> . 147
<menuitem>. 147
<separator>. 149
<shortcutlist> . 150
<shortcut> . 150

Changing menus and menu items . 151
Changing the name of a menu item or menu . 152
Changing keyboard shortcuts . 152
Contents 5

Menu Commands . 154
Modifying the Commands menu . 154
How menu commands work. 155

The Menu Commands API . 156
canAcceptCommand() . 156
commandButtons() . 156
getDynamicContent() . 157
isCommandChecked() . 158
receiveArguments() . 159
setMenuText() . 159
windowDimensions() . 160

A simple menu command . 161
Creating the menu items . 161
Writing the JavaScript code . 161
Placing the command file in the Menu folder . 164

A dynamic menu . 164
Creating the dynamic menu items . 164
Writing the JavaScript code . 165

CHAPTER 9: Toolbars . 171

How toolbars work . 171
How toolbars behave . 172
How toolbar commands work . 172

The toolbar definition file . 173
<toolbar> . 174
<include/> . 175
<itemtype/> . 176
<itemref/>. 176
<separator/> . 177

Toolbar item tags. 177
<button> . 177
<checkbutton> . 178
<radiobutton> . 178
<menubutton> . 179
<dropdown>. 180
<combobox>. 180
<editcontrol> . 181
<colorpicker> . 181

Item tag attributes . 182
id="unique_id". 182
showIf="script". 182
image="image_path" . 182
disabledImage="image_path" . 183
overImage="image_path" . 183
tooltip="tooltip string" . 183
label="label string" . 183
width="number" . 184
menuID="menu_id" . 184
colorRect="left top right bottom". 184
6 Contents

file="command_file_path" . 184
domRequired="true" or "false" . 184
enabled="script" . 185
checked="script". 185
value="script" . 185
update="update_frequency_list". 185
command="script" . 186
arguments="argument_list" . 186

The toolbar command API . 187
canAcceptCommand() . 187
getCurrentValue(). 188
getDynamicContent() . 188
getMenuID() . 190
getUpdateFrequency() . 191
isCommandChecked() . 191
isDOMRequired() . 192
receiveArguments() . 193
showIf() . 193

A simple toolbar command file . 194
Creating the text box . 194
Writing the JavaScript code . 195
Placing the files in the Toolbars folder . 196

CHAPTER 10: Reports . 197

How site reports work . 198
How stand-alone reports work. 198
The Reports API . 199

processFile() . 199
beginReporting() . 199
endReporting() . 200
commandButtons() . 200
configureSettings() . 201
windowDimensions() . 201

CHAPTER 11: Tag Libraries and Editors . 203

Tag library file format . 204
The Tag Chooser. 208
Creating a new tag editor . 210
Tag editor APIs . 214

inspectTag() . 214
validateTag(). 215
applyTag() . 216
Contents 7

CHAPTER 12: Property Inspectors . 217

How Property inspector files work. 218
The Property inspector API . 219

canInspectSelection() . 219
displayHelp() . 219
inspectSelection() . 220

CHAPTER 13: Floating Panels . 223

How floating panel files work . 223
The Floating panel API . 224

displayHelp() . 224
documentEdited() . 225
getDockingSide() . 225
initialPosition(). 226
initialTabs() . 226
isATarget() . 227
isAvailableInCodeView() . 227
isResizable() . 228
selectionChanged() . 228

Script Editor: a floating panel extension . 230
Creating the floating panels . 230
Writing the JavaScript code . 231
Saving the file in the Floaters folder . 233
Creating a menu item. 234

CHAPTER 14: Behaviors . 235

How Behaviors work . 236
Inserting multiple functions in the user’s file. 236

The Behaviors API . 237
applyBehavior() . 237
behaviorFunction() . 238
canAcceptBehavior(). 239
displayHelp() . 239
deleteBehavior() . 240
identifyBehaviorArguments() . 240
inspectBehavior() . 242
windowDimensions() . 242
What to do when an action requires a return value . 243

CHAPTER 15: Server Behaviors . 247

Dreamweaver architecture . 248
How the Server Behavior API functions are called . 251
The Server Behavior API . 253

analyzeServerBehavior() . 253
applyServerBehavior(). 254
canApplyServerBehavior(). 254
copyServerBehavior() . 255
8 Contents

deleteServerBehavior() . 255
displayHelp() . 256
findServerBehaviors() . 256
inspectServerBehavior() . 257
pasteServerBehavior() . 257

Server behavior implementation functions. 258
dwscripts.findSBs(). 258
dwscripts.applySB() . 259
dwscripts.deleteSB() . 259

Editing EDML files. 260
Regular expressions. 260
Notes about EDML structure . 261

Group EDML file tags . 262
<group> . 262
<group> attributes . 262
<title>. 265
<groupParticipants> . 265
<groupParticipants> attributes . 266
<groupParticipant>. 266
<groupParticipant> attributes . 266

Participant EDML files . 268
<participant> . 268
<participant> attributes . 268
<quickSearch> . 269
<insertText> . 269
<insertText> attributes . 270
<searchPatterns> . 272
<searchPatterns> attributes . 273
<searchPattern> . 274
<searchPattern> attributes. 275
<updatePatterns> . 277
<updatePattern> . 278
<updatePattern> attributes . 279
<delete> . 280
<delete> attributes . 280
<translator> . 281
<searchPatterns> . 281
<translations> . 282
<translation> . 282
<translation> attributes. 282
<openTag> . 284
<attributes> . 284
<attribute> . 285
<display> . 285
<closeTag> . 286

Server behavior techniques . 286
Finding server behaviors . 286
Updating server behaviors. 290
Deleting server behaviors . 292
Avoiding conflicts with share-in-memory JavaScript files 292
Contents 9

CHAPTER 16: Data Sources . 293

How data sources work . 293
The Data Sources API . 295

addDynamicSource() . 295
deleteDynamicSource(). 295
displayHelp() . 296
editDynamicSource() . 296
findDynamicSources() . 297
generateDynamicDataRef() . 297
generateDynamicSourceBindings() . 298
inspectDynamicDataRef() . 299

A simple data source example . 299
Creating the data source definition file . 300
Creating the EDML file . 300
Creating the JavaScript file that implements the Data Sources API functions . 301
Creating the supporting command files for user input 303
Using the new data source . 304

CHAPTER 17: Server Formats . 307

How data formatting works. 308
The Formats.xml file . 308
The Edit Format List Plus (+) menu . 309

When the data formatting functions are called . 309
The Server Formats API . 310

applyFormat(). 310
applyFormatDefinition() . 310
deleteFormat() . 311
formatDynamicDataRef(). 311
inspectFormatDefinition() . 312

CHAPTER 18: Components. 313

How to customize the Component panel . 314
Component panel files . 314
Component panel API functions . 316

getComponentChildren() . 316
getContextMenuId(). 317
getCodeViewDropCode(). 318
getSetupSteps() . 319
setupStepsCompleted(). 320
handleDesignViewDrop(). 321
handleDoubleClick() . 322
toolbarControls() . 323
10 Contents

CHAPTER 19: Server Models . 327

How customizing server models works . 327
The Server Model API functions . 328

canRecognizeDocument(). 328
getFileExtensions() . 328
getLanguageSignatures() . 329
getServerExtension(). 330
getServerInfo() . 330
getServerLanguages() . 331
getServerModelExtDataNameUD4() . 331
getServerModelDelimiters() . 332
getServerModelDisplayName() . 332
getServerModelFolderName(). 333
getServerSupportsCharset() . 333
getVersionArray() . 334

CHAPTER 20: Data Translators . 335

How data translators work. 335
The Data Translator API . 336

getTranslatorInfo() . 336
translateMarkup(). 338
liveDataTranslateMarkup() . 338

Determining what kind of translator to use . 339
Adding a translated attribute to a tag. 340
Inspecting translated attributes . 344
Locking translated tags or blocks of code. 345
A simple block/tag translator example . 346
Finding bugs in your translator . 352

CHAPTER 21: C-Level Extensibility . 353

How integrating C functions works. 353
C-level extensibility and the JavaScript interpreter. 355
Data types . 355
The C-level API . 356

typedef JSBool (*JSNative)(JSContext *cx, JSObject *obj,
unsigned int argc, jsval *argv, jsval *rval) . 356

JSBool JS_DefineFunction(). 356
char *JS_ValueToString() . 357
JSBool JS_ValueToInteger() . 357
JSBool JS_ValueToDouble() . 358
JSBool JS_ValueToBoolean() . 358
JSBool JS_ValueToObject() . 358
JSBool JS_StringToValue() . 359
JSBool JS_DoubleToValue() . 359
JSVal JS_BooleanToValue() . 360
JSVal JS_IntegerToValue() . 360
JSVal JS_ObjectToValue() . 360
char *JS_ObjectType() . 360
Contents 11

JSObject *JS_NewArrayObject() . 361
long JS_GetArrayLength() . 361
JSBool JS_GetElement(). 362
JSBool JS_SetElement() . 362
JSBool JS_ExecuteScript() . 363
JSBool JS_ReportError() . 363

File Access and Multiuser Configuration API . 364
JS_Object MM_GetConfigFolderList() . 365
JSBool MM_ConfigFileExists() . 366
int MM_OpenConfigFile() . 367
JSBool MM_GetConfigFileAttributes() . 368
JSBool MM_SetConfigFileAttributes(). 369
JSBool MM_CreateConfigFolder(). 369
JSBool MM_RemoveConfigFolder() . 370
JSBool MM_DeleteConfigFile() . 370

Calling a C function from JavaScript. 371

PART III: Appendix

APPENDIX A: The Shared Folder . 375

The Shared folder contents . 375
The Common folder . 376
The MM folder . 377
Other folders . 381

Using the Shared folder . 382

INDEX . 383
12 Contents

CHAPTER 1
Introduction
This book describes the Macromedia Dreamweaver MX 2004 framework and application
programming interface (API) that lets you build extensions to Dreamweaver. Extensions typically
perform the following types of tasks:

• Automating changes to the user’s current document, such as inserting HTML, CFML, or
JavaScript; changing text or image properties; or sorting tables

• Interacting with the application to automatically open or close windows, open or close
documents, change keyboard shortcuts, and more

• Connecting to data sources, which lets Dreamweaver users create dynamic, data-driven pages
• Inserting and managing blocks of server code in the current document

You might want to write an extension to handle a commonly used, and therefore repetitive, task.
Such an extension could be useful to many web developers. On the other hand, you might have a
unique requirement that you can satisfy only by writing an extension for that specific situation. In
both cases, Dreamweaver provides an extensive set of tools that you can use to add to or customize
its functionality.

This book describes the API functions that Dreamweaver calls to implement the various objects,
menus, floating panels, server behaviors, and so on, that comprise the features of Dreamweaver.
To add an object, menu, floating panel, or other feature to Dreamweaver, you must code the
functions that the particular type of extension requires. This book describes the arguments that
Dreamweaver passes to these functions and also the values that Dreamweaver expects these
functions to return.

This book also explains how to customize Dreamweaver by editing and adding tags to various
HTML and XML files to add menu items or document types, and so on.

For information on the utility and general purpose JavaScript APIs that you can use to perform
various support operations in your Dreamweaver extensions, see the Dreamweaver API Reference.
If you plan to create extensions that work with databases, you might also want to review the
sections in Getting Started with Dreamweaver about making connections to databases.
13

Background

Most Dreamweaver extensions are written in HTML and JavaScript. This book assumes that you
are familiar with Dreamweaver, HTML, XML, and JavaScript programming. If you are
implementing C extensions, the book assumes that you know how to create and use C dynamic
linked libraries (DLLs). If you are writing extensions for building web applications, you should
also be familiar with server-side scripting on at least one platform, such as Active Server Pages
(ASP), ASP.net, PHP: Hypertext Preprocessor (PHP), ColdFusion, or Java Server Pages (JSP).

Installing an extension

As you become familiar with the process of writing extensions, you might want to explore the
extensions and resources that are available through the Macromedia Exchange website
(www.macromedia.com/exchange). Installing an existing extension introduces you to some of the
tools that you need to work with in your own extensions.

To install an extension, use the following procedure:

1 Download and install the Extension Manager, which is available on the Macromedia
Downloads website (www.macromedia.com/software/downloads).

2 Log on to the Macromedia Exchange website (www.macromedia.com/exchange).
3 From the available extensions, select one that you want to use. Click the Download link to

download the extension package.
4 Save the extension package in the Dreamweaver MX 2004/Downloaded Extensions folder of

your installed Dreamweaver folder.
5 In the Extension Manager, select File > Install Extension. In Dreamweaver, select

Commands > Manage Extensions to start the Extension Manager.
The Extension Manager automatically installs the extension from the Downloaded Extension
folder into Dreamweaver.

Some extensions need Dreamweaver to restart before you can use them. If you are running
Dreamweaver when you install the extension, you might be prompted to quit and restart
the application.

To view basic information on the extension after its installation, go to the Extension Manager
(Commands > Manage Extensions) in Dreamweaver.

Additional resources for extension writers

To communicate with other developers who are involved in writing extensions, you might want
to join the Dreamweaver extensibility newsgroup. You can access the website for this newsgroup
at www.macromedia.com/go/extending_newsgrp/.
14 Chapter 1: Introduction

http://www.macromedia.com/exchange
http://www.macromedia.com/software/downloads/
http://www.macromedia.com/exchange/
http://www.macromedia.com/go/extending_newsgrp/

What’s new in Extending Dreamweaver

Dreamweaver MX 2004 includes the following new features and interfaces that are extensible.

• New Insert Bar
The Insert Bar is now divided into separate categories (instead of tabs) for grouping various
objects, and also supports pop-up menus. This new grouping and functionality presents a less
cluttered user interface. Users can now group their favorite objects into a Favorites category for
their own quick reference. Extensions can be added to their own category or pop-up menu and
grouped with other existing objects. See Chapter 6, “Insert Bar Objects,” on page 113.

• Extensible code coloring
Lets you add new keywords to an existing code coloring scheme or create a new one. If you
develop new JavaScript functions to use in your client-side script, for example, you can add the
names of these functions to the keywords section so that they display in the color that is
specified in Preferences. You can also add new code coloring schemes for a new document type.
For more information, see Chapter 5, “Customizing Code View,” on page 77.

• The cssimport and cssmedia tags support code coloring rules for the @import and @media
functions of the style element in a cascading style sheet. For more information, see
Chapter 5, “Customizing Code View,” on page 77.

• API support for Flash Elements (SWC files).
Extension developers can add their own Flash Elements to the Insert Bar, Insert menu, or other
Toolbars so users can insert them into documents by simply clicking a button or menu option.
See “Flash Integration” in the Dreamweaver API Reference.

• Enhanced support for “code behind” pages can be found in the CodeBehindMgr.js file in the
Dreamweaver Configuration/Shared/Common folder. See Appendix A, “The Shared folder
contents,” on page 375.

• Integration of Customizing Dreamweaver content.
Material formerly available only as a separate document download from the Macromedia
website is now integrated into this book.

Documentation Changes

Extending Dreamweaver MX has been divided into two books: Extending Dreamweaver and the
Dreamweaver API Reference. Extending Dreamweaver describes how to build various types of
Dreamweaver extensions, including the functions that you must write to create each type. It also
describes how to customize Dreamweaver by modifying some of its configurable HTML and
XML files. The Dreamweaver API Reference describes the two APIs that let you perform various
supporting tasks in your Dreamweaver extensions.

The Extending Dreamweaver book is designed to serve the user who wants to learn how to build a
Dreamweaver extension. The Dreamweaver API Reference is designed to serve the experienced
Dreamweaver programmer who wants to quickly locate the right function to accomplish a
particular task. Dividing the material into two books also clarifies the distinction between the
extension API functions that an extension author must code, and which Dreamweaver calls, and
the JavaScript and Utility API functions that a programmer can call to accomplish various tasks
from within an extension.

Extending Dreamweaver includes the following improvements to help new extension authors to
get started.
What’s new in Extending Dreamweaver 15

• New and updated examples
New examples have been added for the Insert Bar, Components, Data Sources, Flash
Integration, and the Shared folder. The examples in the Commands, Menu Commands,
Toolbars, and Floating Panels chapters have been updated with graphics and explanations to
make them easier to understand.

• New organization
Some material has been reorganized to improve clarity. The JavaScript API functions in the
Dreamweaver API Reference, for example, have been organized into chapters that designate
which part of Dreamweaver the functions affect.

• Description of Shared folder contents (see Appendix A)
The Dreamweaver Configuration/Shared folder holds several files and subfolders containing
HTML and JavaScript code that implement various Dreamweaver features and user interfaces.
These files are in the Shared folder because the HTML and JavaScript code are commonly
useful. Appendix A briefly describes what is contained in the most useful files and subfolders
inside the Configuration/Shared folder.

• Revised Components chapter
The Components chapter has been revised for clarity and depth, including more
function examples.

For information on the new functions that have been added to the Utility API and the JavaScript
API, see the Dreamweaver API Reference.

Macromedia Press

Improve your Dreamweaver skills with books from Macromedia Press. Check out the latest
content written by the experts. See www.macromedia.com/go/dw2004_help_mmp.

Removed Features

In Dreamweaver MX 2004, several features have been removed. As a result, the following material
has been removed from Extending Dreamweaver:

• References to the Dreamweaver 4 style workspace
• The JavaScript Debugger chapter

For information on all the features that have been removed from Dreamweaver, see Using
Dreamweaver. For information on the functions that have been removed from the Utility and
JavaScript APIs, see the Dreamweaver API Reference.

Errata

A current list of known issues can be found in the Extensibility section of the Dreamweaver
Support Center (www.macromedia.com/go/extending_errata).
16 Chapter 1: Introduction

http://www.macromedia.com/go/dw2004_help_mmp
http://www.macromedia.com/go/extending_errata

Conventions used in this guide

The following typographical conventions are used in this guide:

• Code font indicates code fragments and API literals, including class names, method names,
function names, type names, scripts, SQL statements, and both HTML and XML tag and
attribute names.

• Italic code font indicates replaceable items in code.
• The continuation symbol (¬) indicates that a long line of code has been broken across two or

more lines. Due to margin limits in this book’s format, what is otherwise a continuous line of
code must be split. When copying the lines of code, eliminate the continuation symbol, and
type the lines as one line.

• Curly braces ({ }) that surround a function argument indicate that the argument is optional.
• Function names that have the prefix dreamweaver. as in dreamweaver.funcname, can be

abbreviated to dw.funcname when you are writing code. This manual uses the full
dreamweaver. prefix when defining the function and in the index. Many examples use the
shorter dw. prefix, however.

The following naming conventions are used in this guide:

• You—the developer who is responsible for writing extensions
• The user—the person using Dreamweaver
• The visitor—the person who views the web page that the user created
Conventions used in this guide 17

18 Chapter 1: Introduction

P
A

R
T

 I
PART I
Overview
Learn the fundamental concepts of the Macromedia Dreamweaver MX 2004 interface and how
to customize and extend Dreamweaver to suit your web development needs. These fundamental
concepts include the Dreamweaver folders, extension APIs, Dreamweaver interface components,
the Dreamweaver Document Object Model (DOM), and Dreamweaver document types.

Chapter 2: Extending Dreamweaver. 21

Chapter 3: User Interfaces for Extensions. 53

Chapter 4: The Dreamweaver Document Object Model . 67

Chapter 5: Customizing Code View. 77

CHAPTER 2
Extending Dreamweaver
The following features of Macromedia Dreamweaver MX 2004 let you create extensions:

• An HTML parser (also called a renderer), which makes it possible to design user interfaces
(UIs) for extensions using form fields, layers, images, and other HTML elements.
Dreamweaver has its own HTML parser.

• A tree of folders that organize and store the files that implement and configure Dreamweaver
elements and extensions.

• A series of application programming interfaces (APIs) that provide access to Dreamweaver
functionality through JavaScript.

• A JavaScript interpreter, which executes the JavaScript code in extension files. Dreamweaver
uses the Netscape JavaScript version 1.5 interpreter. For more information about changes
between this version of the interpreter and previous versions, see “How Dreamweaver processes
JavaScript in extensions” on page 26.

Types of Dreamweaver extensions

The following list describes the types of Dreamweaver extensions that are documented in
this guide:

Insert Bar object extensions create changes in the Insert bar. An object is typically used to
automate inserting code into a document. It can also contain a form that gathers input from the
user and JavaScript that processes the input. Object files are stored in the Configuration/Objects
folder.

Command extensions can perform almost any specific task, with or without input from the user.
Command files are typically invoked from the Commands menu, but they can also be called from
other extensions. Command files are stored in the Configuration/Commands folder.

Menu Command extensions expand the Command API to accomplish tasks related to calling a
command from a menu. The Menu Commands API also lets you create a dynamic submenu.

Toolbar extensions can add elements to existing toolbars or create new toolbars in the
Dreamweaver UI. New toolbars appear below the default toolbar. Toolbar files are stored in the
Configuration/Toolbars folder.

Report extensions can add custom site reports or modify the set of prewritten reports that come
with Dreamweaver. You can also use the Results Window API to create a stand-alone report.
21

Tag Library and Editor extensions work with the associated tag library files. Tag Library and
Editor extensions can modify attributes of existing Tag Dialogs, create new Tag Dialogs, and add
tags to the tag library. Tag Library and Editor extension files are stored in the Configuration/
TagLibraries folder.

Property Inspector extensions appear in the Property inspector panel. Most of the inspectors in
Dreamweaver are part of the core product code and cannot be modified, but custom Property
inspector files can override the built-in Dreamweaver Property inspector interfaces or create new
ones to inspect custom tags. Inspectors are stored in the Configuration/Inspectors folder.

Floating Panel extensions add floating panels to the Dreamweaver UI. Floating panels can
interact with the selection, the document, or the task. They can also display useful information.
Floating panel files are stored in the Configuration/Floaters folder.

Behavior extensions let users add JavaScript code to their documents. The JavaScript code
performs a specific task in response to an event when the document is viewed in a browser.
Behavior extensions appear on the Plus (+) menu of the Dreamweaver Behaviors panel. Behavior
files are stored in the Configuration/Behaviors/Actions folder.

Server Behavior extensions add blocks of server-side code (ASP, JSP, or ColdFusion) to the
document. The server-side code performs tasks on the server when the document is viewed in a
browser. Server behaviors appear on the Plus (+) menu of the Dreamweaver Server Behaviors
panel. Server behavior files are stored in the Configuration/Server Behaviors folder.

Data source extensions let you build a connection to dynamic data stored in a database. Data
source extensions appear on the Plus (+) menu of the Bindings panel. Data source extension files
are stored in the Configuration/Data Sources folder.

Server Format extensions let you define formatting for dynamic data.

Component extensions let you add new types of components to the Components panel.
Components is the term that Dreamweaver uses to refer to some of the more popular and modern
encapsulation strategies, including web services, JavaBeans, and ColdFusion components (CFCs).

Server model extensions let you add support for new server models. Dreamweaver supports the
most common server models (ASP, JSP, ColdFusion, PHP, and ASP.NET). Server model
extensions are needed only for custom server solutions, different languages, or a customized
server. Server model files are stored in the Configuration/ServerModels folder.

Data translator extensions convert non-HTML code into HTML that appears in the Design
view of the document window. These extensions also lock the non-HTML code to prevent
Dreamweaver from parsing it. Translator files are stored in the Configuration/Translators folder.

Other ways to extend Dreamweaver

You can also extend the following elements of Dreamweaver to expand its capabilities or tailor it
to your needs.

Document types define how Dreamweaver works with different server models. Information
about document types for server models is stored in the Configuration/DocumentTypes folder.

Code snippets are reusable blocks of code that are stored as code snippet (CSN) files in the
Dreamweaver Configuration/Snippets folder and which Dreamweaver makes accessible in the
Snippets panel. You can create additional code snippet files and install them into the Snippets
folder to make them available.
22 Chapter 2: Extending Dreamweaver

Code Hints are menus that offer a typing shortcut by displaying a list of strings that potentially
complete the string you are typing. If one of the strings in the menu matches the string that you
started to type, you can select it to insert it in place of the string that you are typing. Code Hints
menus are defined in the codehints.xml file in the Configuration/CodeHints folder, and you can
add new code hints menus to it for new tags or functions that you have defined.

Menus are defined in the menus.xml file in the Configuration/Menus folder. You can add new
Dreamweaver menus for your extensions by adding the menu tags for them to the menus.xml file.

Configuration folders and extensions

The folders and files that are stored in the Dreamweaver Configuration folder contain the
extensions that come with Dreamweaver. When you write an extension, you must save the files in
the proper folder for Dreamweaver to recognize them. If you download and install an extension
from the Macromedia Exchange website (www.macromedia.com/exchange), the Extension
Manager automatically saves the extension files to the proper folders.

You can use the files in the Dreamweaver Configuration folder as examples, but these files are
generally more complex than the average extension that is available on the Macromedia Exchange
website. For more information on the contents of each subfolder within the Configuration folder,
see the Configuration_ReadMe.htm file.
Configuration folders and extensions 23

http://www.macromedia.com/exchange/

The Configuration/Shared folder does not correspond to a specific extension type. It is the central
repository for utility functions, classes, and images that are used by more than one extension. The
files in the Configuration/Shared/Common folder are designed to be useful to a broad range of
extensions. These files are useful as examples of JavaScript techniques and as utilities. Look here
first for the functions that perform specific tasks, such as creating a valid Document Object
Model (DOM) reference to an object, testing whether the current selection is inside a particular
tag, escaping special characters in strings, and more. If you create common files, you should create
a separate subfolder in the Configuration/Shared/Common folder, which is shown in the
following figure, and store them there.

Configuration/Shared/Common/Scripts folder structure

For more information about the Shared folder, see Appendix A, “The Shared Folder,”
on page 375.
24 Chapter 2: Extending Dreamweaver

Multiuser Configuration folders

For the multiuser operating systems of Windows XP, Windows 2000, and Macintosh OS X,
Dreamweaver creates a separate Configuration folder for each user in addition to the
Dreamweaver Configuration folder. Any time Dreamweaver or a JavaScript extension writes to
the Configuration folder, Dreamweaver automatically writes to the user Configuration folder
instead. This practice lets each Dreamweaver user customize configuration settings without
disturbing the configuration settings of other users. For more information, see “About
customizing Dreamweaver in a multiuser environment” on page 29 and “File Access and
Multiuser Configuration API” in the Dreamweaver API Reference.

Running scripts at startup or shutdown

If you place a command file in the Configuration/Startup folder, the command runs as
Dreamweaver starts up. Startup commands load before the menus.xml file, before the files in the
ThirdPartyTags folder, and before any other commands, objects, behaviors, inspectors, floating
panels, or translators. You can use startup commands to modify the menus.xml file or other
extension files. You can also show warnings, prompt the user for information, or call the
dreamweaver.runCommand() function. However, from within the Startup folder, you cannot call
a command that expects a valid DOM.

Similarly, if you place a command file in the Configuration/Shutdown folder, the command runs
as Dreamweaver shuts down. From the shutdown commands, you can call
dreamweaver.runCommand() function, show warnings, or prompt the user for information, but
you cannot stop the shutdown process.

For more information about commands, see Chapter 7, “Commands,” on page 135. For
more information about the dreamweaver.runCommand() function, see the Dreamweaver
API Reference.

Extension APIs

The extension APIs provide you with the functions that Dreamweaver calls to implement each
type of extension. You must write the bodies of these functions as described for each extension
type and specify the return values that Dreamweaver expects.

If you are a developer who wants to work directly in the C programming language, there is a
C extensibility API that lets you create dynamic link libraries (DLLs). The functionality that is
provided in these APIs wraps your C DLLs in JavaScript so that your extension can work
seamlessly in Dreamweaver.

The documentation of extension APIs outlines what each function does, when Dreamweaver calls
it, and what value Dreamweaver expects it to return.

See the Dreamweaver API Reference for information about the Utility API and the JavaScript API,
which provide functions that you can use to perform specific tasks in your extensions.
Extension APIs 25

How Dreamweaver processes JavaScript in extensions

Dreamweaver checks the Configuration/extension_name folder during startup. If it encounters an
extension file within the folder, Dreamweaver processes the JavaScript by completing the
following steps:

• Compiling everything between the beginning and ending SCRIPT tags
• Executing any code within SCRIPT tags that is not part of a function declaration

Note: This procedure is necessary during startup because some extensions might require global
variables to initialize.

Dreamweaver performs the following actions for any external JavaScript files that are specified in
the SRC attributes of SCRIPT tags:

• Reads in the file
• Compiles the code
• Executes the procedures

Note: If any JavaScript code in your extension file contains the string “</SCRIPT>”, the
JavaScript interpreter reads the string as an ending SCRIPT tag and reports an unterminated
string literal error. To avoid this problem, break the string into pieces and concatenate them like
this: "<' + '/SCRIPT>".

Dreamweaver executes code in the onLoad event handler (if one appears in the BODY tag) when
the user selects the command or action from a menu for the Command and Behavior action
extension types.

Dreamweaver executes code in the onLoad event handler on the BODY tag if the body of the
document contains a form for object extensions.

Dreamweaver ignores the onLoad handler on the BODY tag in the following extensions:

• Data translator
• Property inspector
• Floating panel

For all extensions, Dreamweaver executes code in other event handlers (for example,
onBlur="alert('This is a required field.')") when the user interacts with the form
fields to which they are attached.

Dreamweaver supports the use of event handlers within links. Event handlers in links must use
syntax, as shown in the following example:
link text

Plug-ins (set to play at all times) are supported in the BODY of extensions. The
document.write() statement, Java applets, and ActiveX controls are not supported
in extensions.
26 Chapter 2: Extending Dreamweaver

Displaying Help

The displayHelp() function, which is part of several extension APIs, causes Dreamweaver to do
the following two things when you include it in your extension:

• Add a Help button to the interface.
• Call displayHelp() when the user clicks the Help button.

You must write the body of the displayHelp() function to display Help. How you code the
displayHelp() function determines how your extension displays Help. You can call the
dreamweaver.browseDocument() function to open a file in a browser or devise a custom way to
display Help such as displaying messages in another layer in alert boxes.

The following example uses the displayHelp() function to display Help by calling
dreamweaver.browseDocument():
// The following instance of displayHelp() opens a browser to display a file
// that explains how to use the extension.
function displayHelp() {

var myHelpFile = dw.getConfigurationPath() + "ExtensionsHelp/myExtHelp.htm";
dw.browseDocument(myHelpFile);

}

Localizing an extension

Use the following techniques to make it easier to translate your extensions into local languages.

• Separate extensions into HTML and JavaScript files. The HTML files can be replicated and
localized; the JavaScript files will not be localized.

• Do not define display strings in the JavaScript files (check for alerts and UI code). Extract all
localizable strings into separate XML files in the Dreamweaver Configuration/Strings folder.

• Do not write JavaScript code in the HTML files except for required event handlers. This
eliminates the need to fix a bug multiple times for multiple translations after the HTML files
are replicated and translated into other languages.

XML String files

Store all strings in XML files in the Dreamweaver Configuration/Strings folder. If you install
many related extension files, this lets you share all strings in a single XML file. If applicable, this
also lets you refer to the same string from both C++ and JavaScript extensions.

You could create a file called myExtensionStrings.xml. The following example shows the format
of the file:
<strings>

<!-- errors for feature X -->
<string id="featureX/subProblemY" value="There was a with X when you did Y.
Try not to do Y!"/>
<string id="featureX/subProblemZ" value="There was another problem with X,
regarding Z. Don't ever do Z!"/>

</strings>
Localizing an extension 27

Now your JavaScript files can refer to these translatable strings by calling the dw.loadString()
function, as shown in the following example:
function initializeUI()
{
 ...
 if (problemYhasOccured)
 {
 alert(dw.loadString("featureX/subProblemY");
 }
}

You can use slash (/) characters in your string identifiers, but do not use spaces. Using slashes, you
can create a hierarchy to suit your needs, and include all the strings in a single XML file.
Note: Files that begin with cc in the Configuration/Strings folder are Contribute files. For example,
the file ccSiteStrings.xml is a Contribute file.

Localizable Strings with Embedded Values

Some display strings have values embedded in them. You can use the errMsg() function to
display these strings. You can find the errMsg() function, which is similar to the printf()
function in C, in the string.js file in the Configuration/Shared/MM/Scripts/CMN folder. Use the
placeholder characters percent sign (%) and s to indicate where values should appear in the string
and then pass the string and variable names as arguments to errMsg(). For example:
<string id="featureX/fileNotFoundInFolder" value="File %s could not be found

in folder %s."/>

The following example shows how the string, along with any variables to embed, is passed to the
alert() function.
if (fileMissing)
{

alert(errMsg(dw.loadString("featureX/fileNotFoundInFolder"),fileName,
folderName));

}

Working with the Extension Manager

If you create extensions for others users, you must package them according to the guidelines on
the Macromedia Exchange website (www.macromedia.com/exchange) under the Help > How to
Create an Extension category. After you have written and tested an extension in the Extension
Manager, select File > Package Extension. After the extension is packaged, you can submit it to
the Exchange from the Extension Manager by selecting File > Submit Extension.

The Extension Manager comes with Dreamweaver. Details about its use are available in its Help
files and on the Macromedia Exchange website.
28 Chapter 2: Extending Dreamweaver

http://www.macromedia.com/exchange/

Customizing Dreamweaver

You can customize Dreamweaver in many ways, which lets you work in a manner that’s familiar,
comfortable, and efficient for you. This section describes advanced methods for customizing
Dreamweaver, with a focus on editing configuration files.

About customizing Dreamweaver

There are several general approaches to customizing Dreamweaver. Some of these approaches are
covered in Dreamweaver Help (Help > Using Dreamweaver). These approaches let you customize
your workspace. You can also change settings in dialog boxes in Dreamweaver. You can set
preferences in a variety of areas, including accessibility, code coloring, fonts, highlighting, and
previewing in browsers, using the Preferences panel (Edit > Preferences). You can also change
keyboard shortcuts, using the Keyboard Shortcut Editor (Edit > Keyboard Shortcuts).

The following list describes some of the ways you can customize Dreamweaver by editing
configuration files:

• Rearrange the objects in the Insert bar, create new tabs to reorganize the objects, or add new
objects. See “Modifying the Insert bar” on page 119.

• Change the names of menu items, add new commands to menus, and remove existing
commands from menus. See “About customizing Dreamweaver” on page 29.

• Change browser profiles or create new ones. See “Working with browser profiles” on page 39.
• Change how third-party tags (including ASP and JSP tags) appear in the Document window’s

Design view. See “Customizing the interpretation of third-party tags” on page 34.

About customizing Dreamweaver in a multiuser environment

You can customize Dreamweaver even in a multiuser operating system such as Windows 2000,
Windows XP, or Mac OS X. Dreamweaver prevents any user’s customized configuration from
affecting any other user’s customized configuration. To accomplish this goal, the first time you
run Dreamweaver in a multiuser operating system that it recognizes, Dreamweaver copies various
configuration files into a user Configuration folder for you. When you customize Dreamweaver
using dialog boxes and panels, the application modifies your user Configuration files instead of
modifying the Dreamweaver Configuration files. To customize Dreamweaver by editing a
configuration file in a multiuser environment, edit the appropriate user Configuration file, rather
than editing the files in the Dreamweaver Configuration folder. To make a change that affects
most users, you can edit a Dreamweaver Configuration file, but users who already have
corresponding user-configuration files will not see the change. In general, if you want to make a
change that affects all the users, it’s best to create an extension and install it using the
Extension Manager.
Note: In older operating systems (Windows 98, Windows ME, and Mac OS 9.x), a single set of
Dreamweaver Configuration files is shared by all users, even if the operating system is configured to
support multiple users.

The location of the user’s Configuration folder depends on the user’s platform.

For Windows 2000 and Windows XP platforms:
<drive>:\Documents and Settings\<username>\ ¬

Application Data\Macromedia\Dreamweaver MX 2004\Configuration

Note: In Windows XP, this folder may be inside a hidden folder.
Customizing Dreamweaver 29

For Mac OS X platforms:
<drive>:Users:<username>:Library:Application Support: ¬

Macromedia:Dreamweaver MX 2004:Configuration

Note: To install extensions that all users can use in a multiuser operating system, you must be logged
in as Administrator (Windows) or root (Mac OS X).

Dreamweaver copies only some of the configuration files into your user Configuration folder the
first time you run the application. (The files that it copies are specified in the version.xml file in
the Configuration folder.) When you customize Dreamweaver from within the application (for
example, when you modify one of the predesigned code snippets in the Snippets panel),
Dreamweaver copies the relevant files into your user Configuration folder. The version of a file in
your user Configuration folder always takes precedence over the version in the Dreamweaver
Configuration folder. To customize a configuration file that Dreamweaver has not copied into
your user Configuration folder, first copy the file from the Dreamweaver Configuration folder to
the corresponding location inside your user Configuration folder. Then edit the copy in your user
Configuration folder.

Deleting configuration files in a multiuser environment

When you do something within Dreamweaver in a multiuser operating system that would delete
a configuration file (such as when you delete a predesigned snippet from the Snippets panel),
Dreamweaver creates a file in your user Configuration folder called mm_deleted_files.xml. When
a file is listed in mm_deleted_files.xml, Dreamweaver behaves as if that file doesn’t exist.
Note: The mm_deleted_files.xml file isn’t created until you take an action that would cause a
configuration file to be deleted.

To deactivate a configuration file:

1 Quit Dreamweaver.
2 Using a text editor, edit mm_deleted_files.xml in your user Configuration folder; add an item

tag to that file, giving the path (relative to the Dreamweaver Configuration folder) of the
configuration file to deactivate.
Note: Do not edit mm_deleted_files.xml in Dreamweaver.

3 Save and close mm_deleted_files.xml.
4 Start Dreamweaver again.
30 Chapter 2: Extending Dreamweaver

About mm_deleted_files.xml tag syntax

The mm_deleted_files.xml file contains a structured list of items that describe configuration files
that Dreamweaver is to ignore. These items are described by XML tags, which you can edit in a
text editor.

The following sections describe the syntax of the mm_deleted_files.xml tags. Optional attributes
are marked in the attribute lists with curly braces ({}); all attributes not marked with curly braces
are required.

<deleteditems>

Description

Container tag holding a list of items that Dreamweaver should treat as deleted.

Attributes

None.

Contents

This tag must contain one or more item tags.

Container

None.

Example

<deleteditems>
<!-- item tags here -->
</deleteditems>

<item>

Description

Specifies a configuration file that Dreamweaver should ignore.

Attributes

name

• name The path to the configuration file, relative to the Configuration folder. In Windows, use
a backslash (\) to separate parts of the path; on the Macintosh, use a colon (:).

Contents

None (empty tag).

Container

This tag must be contained in a deleteditems tag.

Example

<item name="snippets\headers\5columnwith4links.csn" />
Customizing Dreamweaver 31

Reinstalling and uninstalling Dreamweaver in a multiuser environment

After you install Dreamweaver, if you later reinstall it or upgrade to a later version, Dreamweaver
automatically makes backup copies of existing user configuration files, so that if you’ve
customized those files, you can still access the changes you made. When you uninstall
Dreamweaver from a multiuser system (which you can do only if you have administrative
privileges), Dreamweaver can remove each user Configuration folder for you.

Customizing default documents

The DocumentTypes/NewDocuments folder contains a default (blank) document of each type
that you can create using Dreamweaver. When you create a new blank document by selecting
File > New and selecting an item from the Basic Page, Dynamic Page, or Other categories,
Dreamweaver bases the new document on the appropriate default document in this folder. To
change what appears in a default document of a given type, edit the appropriate document in
this folder.
Note: If you want all the pages in your site to contain common elements (such as a copyright notice)
or a common layout, it’s better to use templates and library items than to change the default
documents. For more information on templates and library items, see Dreamweaver Help (Help >
Using Dreamweaver).

Customizing page designs

Dreamweaver provides a variety of predesigned cascading style sheets, framesets, and page designs.
You can create pages based on these designs by selecting File > New.

To customize the available designs, edit the files in BuiltIn/css, BuiltIn/framesets,
BuiltIn/Templates, and BuiltIn/TemplatesAccessible folders.
Note: The designs listed in the Page Designs and Page Designs (Accessible) categories are
Dreamweaver template files; for more information on templates, see Dreamweaver Help (Help >
Using Dreamweaver).

You can also create custom page designs by adding files to the subfolders of the BuiltIn folder. To
make a description of the file appear in the New Document dialog box, create a Design Notes file
(in the appropriate _notes folder) that corresponds to the page design file.

Customizing the appearance of dialog boxes

The dialog box layouts for objects, commands, and behaviors are specified as HTML forms; they
reside in HTML files in the Configuration folder within the Dreamweaver application folder. You
edit these forms as you would edit any form in Dreamweaver. For more information, see
Dreamweaver Help (Help > Using Dreamweaver).
Note: Remember that in a multiuser operating system, you should edit copies of configuration files in
your user Configuration folder rather than editing Dreamweaver configuration files. For more
information, see “Multiuser Configuration folders” on page 25.
32 Chapter 2: Extending Dreamweaver

To change the appearance of a dialog box:

1 In Dreamweaver, select Edit > Preferences, and then select the Code Rewriting category.
2 Unselect the Rename Form Items when Pasting option.

Unselecting this option ensures that form items retain their original names when you copy and
paste them.

3 Click OK to close the Preferences dialog box.
4 On your disk, find the appropriate HTM file in the Configuration/Objects, Configuration/

Commands, or Configuration/Behaviors folders.
5 Make a copy of the file somewhere other than the Configuration folder.
6 Open the copy in Dreamweaver, edit the form, and save it.
7 Quit Dreamweaver.
8 Copy the changed file back to the Configuration folder in place of the original. (It’s a good idea

to first make a backup of the original, so you can restore it later if needed.)
9 Restart Dreamweaver to see the changes.
You should change only the appearance of the dialog box, not how it works; it must still contain
the same types of form elements with the same names, so that the information Dreamweaver
obtains from the dialog box can still be used in the same way.

For example, the Comment object takes text input from a text area in a dialog box and uses a
simple JavaScript function to turn that text into an HTML comment and insert the comment
into your document. The form that describes the dialog box is in the Comment.htm file in the
Configuration/Objects/Invisibles folder. You can open that file and change the size and other
attributes of the text area, but if you remove the textarea tag entirely, or change the value of its
name attribute, the Comment object does not work properly.

Changing the default file type

By default, Dreamweaver shows all the file types it recognizes in the File > Open dialog box. You
can use a pop-up menu in that dialog box to limit the display to certain types of files. If most of
your work involves a specific file type (such as ASP files), you can change the default display.
Whatever file type is listed on the first line of the Dreamweaver Extensions.txt file becomes
the default.
Note: If you want to see all file types in the File > Open dialog box (even the files Dreamweaver can’t
open), you must select All Files (*.*). This is different from All Documents, which shows only the files
Dreamweaver can open.

To change the Dreamweaver default File > Open file type:

1 Make a backup copy of the Extensions.txt file in the Configuration folder.
2 Open Extensions.txt in Dreamweaver or in a text editor.
3 Cut the line corresponding to the new default and paste it at the beginning of the file so it

becomes the first line of the file.
4 Save the file.
5 Restart Dreamweaver.

To see the new default, select File > Open, and look at the pop-up menu of file types.
Customizing Dreamweaver 33

To add new file types to the menu in the File > Open dialog box:

1 Make a backup copy of the Extensions.txt file in the Configuration folder.
2 Open Extensions.txt in Dreamweaver or a text editor.
3 Add a new line for each new file type. In capital letters, enter the filename extensions that the

new file type can have, separated by commas; then add a colon and a brief descriptive phrase to
show in the pop-up menu for file types that appears in the File > Open dialog box. For example,
for JPEG files, enter the following:
JPG,JPEG,JFIF:JPEG Image Files

4 Save the file.
5 Restart Dreamweaver.

To see the changes, select File > Open, and click the pop-up menu of file types.

Customizing the interpretation of third-party tags

Server-side technologies such as ASP, ColdFusion, JSP, and PHP use special non-HTML code in
HTML files; servers create and serve HTML content based on that code. When Dreamweaver
encounters non-HTML tags, it compares them with information in its third-party tag files, which
define how Dreamweaver reads and displays non-HTML tags.

For example, ASP files contain—in addition to regular HTML—ASP code for the server to
interpret. ASP code looks almost like an HTML tag, but is marked by a pair of delimiters: it
begins with <% and ends with %>. The Dreamweaver Configuration/ThirdPartyTags folder
contains a file named Tags.xml, which describes the format of various third-party tags, including
ASP code, and defines how Dreamweaver displays that code. Because of the way ASP code is
specified in Tags.xml, Dreamweaver doesn’t try to interpret anything between the delimiters;
instead, in the Document window’s Design view, it simply displays an icon indicating ASP code.
Your own tag database files can define how Dreamweaver reads and displays your tags. Create a
new tag database file for each set of tags, to tell Dreamweaver how to display the tags.
Note: This section explains how to define the way Dreamweaver displays a custom tag, but doesn’t
describe how to provide a way to edit the content or properties of a custom tag. For information on
how to create a Property inspector to inspect and change the properties of a custom tag, see
Chapter 12, “Property Inspectors,” on page 217.

Each tag database file defines the name, type, content model, rendering scheme, and icon for one
or more custom tags. You can create any number of tag database files, but all of them must reside
in the Configuration/ThirdPartyTags folder to be read and processed by Dreamweaver. Tag
database files have the .xml file extension.
Tip: If you are working on several unrelated sites at once (for example, as a freelance developer), you
can put all the tag specifications for a particular site in one file. Then simply include that tag database
file with the custom icons and Property inspectors that you hand over to the people who will maintain
the site.

You define a tag specification with an XML tag called tagspec. For example, the following code
describes the specification for a tag named happy:
<tagspec tag_name="happy" tag_type="nonempty" render_contents="false"

content_model="marker_model" icon="happy.gif" icon_width="18"
icon_height="18"></tagspec>
34 Chapter 2: Extending Dreamweaver

You can define two kinds of tags using tagspec: normal HTML-style tags and string-delimited
tags. String-delimited tags start with one string and end with another string; they’re like empty
HTML tags (such as img) in that they don’t surround content and don’t have closing tags. The
happy tag example is a normal HTML-style tag; it starts with an opening <happy> tag, contains
data between opening and closing tags, and ends with a closing </happy> tag. (If the tag were a
string-delimited tag, the tag specification would include the start_string and end_string
attributes.) An ASP tag is a string-delimited tag; it starts with the string <% and ends with the
string %>, and it has no closing tag.

The following information describes the attributes and valid values for the tagspec tag.
Attributes marked with an asterisk (*) are ignored for string-delimited tags. Optional attributes
are marked in the attribute lists with curly braces ({}); all attributes not marked with curly braces
are required.

<tagspec>

Description

Provides information about a third-party tag.

Attributes

tag_name, {tag_type}, {render_contents}, {content_model}, {start_string},
{end_string}, {detect_in_attribute}, {parse_attributes}, icon, icon_width,
icon_height, {equivalent_tag}, {is_visual}, {server_model}

• tag_name is the name of the custom tag. For string-delimited tags, tag_name is used only to
determine whether a given Property inspector can be used for the tag. If the first line of the
Property inspector contains this tag name with an asterisk on each side, then the inspector can
be used for tags of this type. For example, the tag name for ASP code is ASP; Property
inspectors that can examine ASP code should have *ASP* on the first line. For information on
the Property inspector API, see Chapter 12, “Property Inspectors,” on page 217.

• tag_type determines whether the tag is empty (as with img), or whether it contains anything
between its opening and closing tags (as with code). This attribute is required for normal
(nonstring-delimited) tags. It’s ignored for string-delimited tags because they’re always empty.
Valid values are "empty" and "nonempty".

• render_contents determines whether the contents of the tag should appear in the Document
window’s Design view or whether the specified icon appears instead. This attribute is required
for nonempty tags and ignored for empty tags. (Empty tags have no content.) This attribute
applies only to tags that appear outside of attributes; the contents of tags that appear inside the
values of attributes of other tags are not rendered. Valid values are "true" or "false".
Customizing Dreamweaver 35

• content_model describes what kinds of content the tag can contain and where in an HTML
file the tag can appear. Valid values are "block_model", "head_model", "marker_model",
and "script_model":
■ block_model specifies that the tag can contain block-level elements such as div and p, and

that the tag can appear only in the body section or inside other body-content tags such as
div, layer, or td.

■ head_model specifies that the tag can contain text content and that it can appear only in the
HEAD section.

■ marker_model specifies that the tag can contain any valid HTML code, and that it can
appear anywhere in an HTML file. The HTML validator in Dreamweaver ignores tags that
are specified as marker_model. However, the validator doesn’t ignore the contents of such a
tag; so even though the tag itself can appear anywhere, the contents of the tag may result in
invalid HTML in certain places. For example, plain text can’t appear (outside of a valid head
element) in the head section of a document, so you can’t place a marker_model tag that
contains plain text in the head section. (To place a custom tag containing plain text in the
head section, specify the tag’s content model as head_model instead of marker_model.) Use
marker_model for tags that should be displayed inline (inside a block-level element such as
p or div—for example, inside a paragraph). If the tag should be displayed as a paragraph of
its own, with line breaks before and after it, don’t use this model.

■ script_model lets the tag exist anywhere between the opening and closing HTML tags of a
document. When Dreamweaver encounters a tag with this model, it ignores all of the tag’s
content. Used for markup (such as certain ColdFusion tags) that Dreamweaver
shouldn’t parse.

• start_string specifies a delimiter that marks the beginning of a string-delimited tag. String
delimited tags can appear anywhere in the document where a comment can appear.
Dreamweaver does not parse tags or decode entities or URLs between start_string and
end_string. This attribute is required if end_string is specified.

• end_string specifies a delimiter that marks the end of a string-delimited tag. This attribute is
required if start_string is specified.

• detect_in_attribute indicates whether to ignore everything between start_string and
end_string (or between opening and closing tags if those strings are not defined) even when
those strings appear inside attribute names or values. You should generally set this to "true"
for string-delimited tags; the default is "false". For example, ASP tags sometimes appear
inside attribute values, and sometimes contain quotation marks ("); because the ASP tag
specification specifies detect_in_attribute="true", Dreamweaver ignores the ASP tags,
including the internal quotation marks, when they appear inside attribute values.

• parse_attributes indicates whether to parse the attributes of the tag. If this is set to "true"
(the default), Dreamweaver parses the attributes; if it’s set to "false", Dreamweaver ignores
everything until the next closing angle bracket that appears outside quotation marks. For
example, this attribute should be set to "false" for a tag such as cfif (as in <cfif a is 1>,
which Dreamweaver cannot parse as a set of attribute name/value pairs).

• icon specifies the path and filename of the icon associated with the tag. This attribute is
required for empty tags, and for nonempty tags whose contents do not appear in the
Document window’s Design view.

• icon_width specifies the width of the icon in pixels.
• icon_height specifies the height of the icon in pixels.
36 Chapter 2: Extending Dreamweaver

• equivalent_tag specifies simple HTML equivalents for certain ColdFusion form-related
tags. Not intended for use with other tags.

• is_visual indicates whether the tag has a direct visual effect on the page. For example, the
ColdFusion tag cfgraph doesn’t specify a value for is_visual (so the value defaults to
"true"); the ColdFusion tag cfset is specified as having is_visual set to "false". Visibility
for server markup tags is controlled by the Invisible Elements category of the Preferences dialog
box; visibility for visual server markup tags can be set independent of visibility for nonvisual
server markup tags.

• server_model if specified, indicates that the tagspec tag applies only on pages belonging to
the specified server model. If server_model is not specified, the tagspec tag applies on all
pages. For example, the delimiters for ASP and JSP tags are the same, but the tagspec tag for
JSP specifies a server_model of "JSP", so when Dreamweaver encounters code with the
appropriate delimiters on a JSP page, it displays a JSP icon. When it encounters such code on a
non-JSP page, it displays an ASP icon.

Contents

None (empty tag).

Container

None.

Example

<tagspec tag_name="happy" tag_type="nonempty" render_contents="false"
content_model="marker_model" icon="happy.gif" icon_width="18"
icon_height="18"></tagspec>

How custom tags appear in the Design view

How custom tags appear in the Design view of the Document window depends on the values of
the tag_type and render_contents attributes of the tagspec tag. (See “Customizing the
interpretation of third-party tags” on page 34.) If the value of tag_type is "empty", the icon
specified in the icon attribute appears. If the value of tag_type is "nonempty" but the value of
render_contents is "false", the icon appears as it would for an empty tag. The following
example shows how an instance of the happy tag defined earlier might appear in the HTML:
<p>This is a paragraph that includes an instance of the <code>happy</code>
tag (<happy>Joe</happy>).</p>

Because render_contents is set to "false" in the tag specification, the contents of the happy
tag (the word Joe) are not rendered; instead the start and end tags and their contents appear as a
single icon.

For nonempty tags that have a render_contents value of "true", the icon does not appear in
the Design view; instead, the contents between the opening and closing tags (such as the text
between the tags in <mytag>This is the contents between the opening and closing
tags</mytag>) appears. If View > Invisible Elements is enabled, the content is highlighted using
the third-party tag color specified in Highlighting preferences. (Highlighting applies only to tags
defined in tag database files.)
Customizing Dreamweaver 37

To change the highlighting color of third-party tags:

1 Select Edit > Preferences, and select the Highlighting category.
2 Click the Third-Party Tags color box to display the color picker.
3 Select a color, and click OK to close the Preferences dialog box. For information about selecting

a color, see Dreamweaver Help (Help > Using Dreamweaver).

Avoiding rewriting third-party tags

Dreamweaver corrects certain kinds of errors in HTML code; for details, see Dreamweaver Help
(Help > Using Dreamweaver). By default, Dreamweaver refrains from changing HTML in files
with certain filename extensions, including .asp (ASP), .cfm (ColdFusion), .jsp (JSP), and .php
(PHP). This default is set so that Dreamweaver does not accidentally modify the code contained
in any such non-HTML tags. You can change the Dreamweaver default rewriting behavior so that
it rewrites HTML when it opens such files, and you can add other file types to the list of types
that Dreamweaver does not rewrite.

Dreamweaver encodes certain special characters by replacing them with numerical values when
you enter them in the Property inspector. It’s usually best to let Dreamweaver perform this
encoding because the special characters are more likely to display correctly across platforms and
browsers. However, because such encoding can interfere with third-party tags, you may want to
change the Dreamweaver encoding behavior when you’re working with files containing
third-party tags.

To allow Dreamweaver to rewrite HTML in more kinds of files:

1 Select Edit > Preferences, and select the Code Rewriting category.
2 Select either of the following options:

■ Fix Invalidly Nested and Unclosed Tags
■ Remove Extra Closing Tags

3 Do one of the following:
■ Delete one or more extensions from the list of extensions in the Never Rewrite Code: In

Files with Extensions option.
■ Deselect the Never Rewrite Code: In Files with Extensions option. (Deselecting this option

lets Dreamweaver rewrite HTML in all types of files.)

To add file types that Dreamweaver should not rewrite:

1 Select Edit > Preferences, and select the Code Rewriting category.
2 Select either of the following options:

■ Fix Invalidly Nested and Unclosed Tags
■ Remove Extra Closing Tags

3 Make sure the Never Rewrite Code: In Files with Extensions option is selected, and add the new
file extensions to the list in the text field.

If the new file type doesn’t appear in the file-types pop-up menu in the File > Open dialog box,
you might want to add it to the Configuration/Extensions.txt file. For details, see “Changing the
default file type” on page 33.
38 Chapter 2: Extending Dreamweaver

To turn off Dreamweaver encoding options:

1 Select Edit > Preferences, and select the Code Rewriting category.
2 Deselect either or both Special Characters options.
For information on the other Code Rewriting preferences, see Dreamweaver Help
(Help > Using Dreamweaver).

Working with browser profiles

Browser profiles are the files Dreamweaver uses to check your documents when you run a target
browser check (see Dreamweaver Help [Help > Using Dreamweaver]). Each profile contains
information about the HTML tags and attributes that a particular browser supports. A browser
profile can also contain warnings, error messages, and suggestions for tag substitutions.

Browser profiles are stored in the Configuration/BrowserProfiles folder in the Dreamweaver
application folder. You can edit existing profiles or create new ones using Dreamweaver or a text
editor. It is not necessary to quit Dreamweaver before editing or creating browser profiles.

About browser-profile formatting

Browser profiles follow a specific format. To avoid parsing errors during target browser checks,
follow these rules when editing or creating profiles:

• The first line is reserved for the name of the profile. It must be followed by a single carriage
return. The name on this line appears in the Target Browser Check dialog box and in the target
check report. It must be unique.

• The second line is reserved for the designator PROFILE_TYPE=BROWSER_PROFILE.
Dreamweaver uses this line to determine which documents are browser profiles. Do not change
or move this line.

• Two hyphens (--) at the beginning of a line indicate a comment (that is, the line is ignored
during the target check process). A comment must start at the beginning of a line—you can’t
put two hyphens in the middle of a line.

• You must use a space in the following places:
■ Before the closing angle bracket (>) on the !ELEMENT line
■ After the opening parentheses in a list of values for an attribute
■ Before a closing parentheses in a list of values
■ Before and after each pipe (|) in a list of values.

• You must include an exclamation point (!) without a space before each of the following words:
ELEMENT, ATTLIST, Error, and msg (ELEMENT, !ATTLIST, !Error, !msg).

• You can include !Error, !Warning, and !Info within the !ELEMENT or the !ATTLIST area.
• !msg messages can contain only plain text.
• HTML comments (!---->) cannot be listed as tags in browser profiles because they interfere

with parsing. Dreamweaver does not report an error for comments because all browsers
support them.
Working with browser profiles 39

The following example shows the syntax for a tag entry:
<!ELEMENT htmlTag NAME="tagName ">
<!ATTLIST htmlTag
unsupportedAttribute1 !Error !msg="The unsupportedAttribute1
attribute of the htmlTag tag is not supported.Try using
supportedAttribute1 for a similar effect."
supportedAttribute1
supportedAttribute2 (validValue1 |validValue2 |validValue3)
unsupportedAttribute2 !Error !msg="Don’t ever use the
unsupportedAttribute2 attribute of the htmlTag tag!"
>

The elements shown in this syntax are defined as follows:

• htmlTag is the tag as it appears in an HTML document.
• tagName is an explanatory name for the tag; for example, the name for the HR tag is

“Horizontal Rule.” The NAME attribute is optional. If specified, tagName is used in error
messages; if you do not supply a name, htmlTag is used in error messages.

• unsupportedAttribute is an attribute that is not supported. Any tags or attributes not
specifically mentioned as supported attributes are assumed to be unsupported. Specify
unsupported tags or attributes only when you want to create a custom error message.

• supportedAttribute is an attribute that is supported by htmlTag. Only tags listed without
an !Error designation are considered to be supported by the browser.

• validValue indicates a value that is supported by the attribute.

The following example shows an entry for the APPLET tag that would be accurate for Netscape
Navigator 3.0:
<!ELEMENT APPLET Name="Java Applet">
<!ATTLIST APPLET
Align (top |middle |bottom |left |right |absmiddle |
absbottom |baseline |texttop)
Alt
Archive
Class !Warning !msg="This browser ignores the CLASS attribute for the APPLET
tag."
Code
Codebase
Height
HSpace
ID !Warning !msg="This browser ignores the ID attribute for the APPLET tag.
Use NAME instead."
Name
Style !Warning !msg="This browser ignores the STYLE attribute for the APPLET
tag."
VSpace
Width
>

40 Chapter 2: Extending Dreamweaver

Creating and editing a browser profile

You can create a browser profile by modifying an existing profile. For example, to create a profile
for a future version of Microsoft Internet Explorer, you can open the profile for the most recent
version of Internet Explorer that has a profile, add any new tags or attributes introduced in the
new version, and save it as a profile for the new version.
Note: Before you create a browser profile for a new version of a browser, check the Macromedia
Exchange for Dreamweaver site at www.macromedia.com/exchange/dreamweaver to see if
Macromedia has supplied a browser profile that you can download and install using the
Extension Manager.

To create or edit a browser profile:

1 Open an existing profile for editing.
If you’re creating a new profile, open the profile that most closely resembles the profile you
want to create, and save the file under a new filename.

2 If you’re creating a new profile, change the name that appears on the first line of text in the file.
(Two profiles cannot have the same name.)

3 Add any new tags or attributes that you know are supported by the browser, using the syntax
shown in “About browser-profile formatting” on page 39.
If you don’t want to receive error messages about a particular unsupported tag, add it to the list
of supported tags. If you do this, save the profile in a separate file with a new filename (such as
Browsername x.x limited). Giving this alternate profile a new name preserves the original
profile with only the tags that are truly supported.

4 Delete any tags or attributes that are not supported by the browser.
This step is probably unnecessary if you are creating a profile for a new version of Netscape
Navigator or Internet Explorer because browsers rarely drop support for tags.

5 Add any custom error messages according to the syntax shown in “About browser-profile
formatting” on page 39.
The profiles that come with Dreamweaver list all supported tags for the specified browsers. To
add a custom error message to a tag, type !msg = "message" after !Error. The following
example shows information that appears in the Netscape Navigator 3.0 profile (along with
other attributes not shown here):
<!ELEMENT HR name="Horizontal Rule">
<!ATTLIST HR
COLOR !Error
>

To add a custom error message enter !msg= and then your error message in quotation marks
("):
<!ELEMENT HR name="Horizontal Rule">
<!ATTLIST HR
COLOR !Error !msg="Internet Explorer 3.0 supports the COLOR tag in
horizontal rules,but Netscape Navigator 3.0 does not."
>

6 You can use !Error for all error situations, or you can use !Warning or !Info to indicate that
a tag will be ignored but will not actually cause an error.
Working with browser profiles 41

Changing FTP mappings

The FTPExtensionMap.txt file (Windows) and the FTPExtensionMapMac.txt file (Macintosh)
map filename extensions to FTP transfer modes (ASCII or BINARY).

Each line in each of the two files includes a filename extension (such as GIF) and either the word
ASCII or the word BINARY, to indicate which of the two FTP transfer modes should be used
when transferring a file with that extension. On the Macintosh, each line also includes a creator
code (such as DmWr) and a file type (such as TEXT); when you download a file with the given
filename extension, Dreamweaver assigns the specified creator and file type to the file.

If a file that you are transferring doesn’t have a filename extension, Dreamweaver uses the
BINARY transfer mode.
Note: Dreamweaver cannot transfer files in Macbinary mode. If you need to transfer files in
Macbinary mode, you must use another FTP client.

The following example shows a line (from the Macintosh file) that indicates that files with an
.html extension should be transferred in ASCII mode:
HTML DmWr TEXT ASCII

In both the FTPExtensionMap.txt file and FTPExtensionMapMac.txt file (Macintosh), all
elements on a given line are separated by tabs. The extension and the transfer mode are in
uppercase letters.

To change a default setting, edit the file in a text editor.

To add information about a new filename extension:

1 Edit the extension-map file in a text editor.
2 On a blank line, enter the filename extension (in uppercase letters) and press Tab.
3 On the Macintosh, add the creator code, a tab, the file type, and another tab.
4 Enter ASCII or BINARY to set an FTP transfer mode.
5 Save the file.

Extensible document types in Dreamweaver

XML provides a rich system for defining complex documents and data structures. Dreamweaver
uses several XML schemas to organize information about server behaviors, tags and tag libraries,
components, document types, and reference information.

When you create and work with extensions in Dreamweaver, there are many instances in which
you can create or modify existing XML files to manage the data that your extension uses. In many
cases, you can copy an existing file from the appropriate subfolder within the Configuration
folder to use as a template.
42 Chapter 2: Extending Dreamweaver

Document type definition file

The central component of extensible document types is the document type definition file. There
might be several definition files, all of which are located in the Configuration/DocumentTypes
folder. Each definition file contains information about at least one document type. For each
document type, essential information such as server model, color coding style, descriptions, and
so forth, is described.
Note: Do not confuse Dreamweaver document type definition files with the XML document type
definition (DTD). Document type definition files in Dreamweaver contain a set of documenttype
elements, each of which defines a predefined collection of tags and attributes that are associated
with a document type. When Dreamweaver starts, it parses the document type definition files and
creates an in-memory database of information regarding all defined document types.

Dreamweaver provides an initial document type definition file. This file, named
MMDocumentTypes.xml, contains the document type definitions provided by Macromedia:

Document type Server model Internal type File extensions Previous server
model

ASP.NET C# ASP.NET-
Csharp

Dynamic aspx, ascx

ASP.NET VB ASP.NET-VB Dynamic aspx, ascx

ASP JavaScript ASP-JS Dynamic asp

ASP VBScript ASP-VB Dynamic asp

ColdFusion ColdFusion Dynamic cfm, cfml UltraDev 4
ColdFusion

ColdFusion Component Dynamic cfc

JSP JSP Dynamic jsp

PHP PHP Dynamic php, php3

Library Item DWExtension lbi

ASP.NET C# Template DWTemplate axcs.dwt

ASP.NET VB Template DWTemplate axvb.dwt

ASP JavaScript
Template

DWTemplate aspjs.dwt

ASP VBScript Template DWTemplate aspvb.dwt

ColdFusion Template DWTemplate cfm.dwt

HTML Template DWTemplate dwt

JSP Template DWTemplate jsp.dwt

PHP Template DWTemplate php.dwt

HTML HTML htm, html

ActionScript Text as

CSharp Text cs
Extensible document types in Dreamweaver 43

If you need to create a new document type, you can either add your entry to the document
definition file that Macromedia provides (MMDocumentTypes.xml) or add a custom definition
file to the Configuration/DocumentTypes folder.
Note: The NewDocuments subfolder resides in the Configuration/DocumentTypes folder. This
subfolder contains default pages (templates) for each document type.

Structure of document type definition files

The following example shows what a typical document type definition file might look like:
<?xml version="1.0" encoding="utf-8"?>
<documenttypes

 xmlns:MMString="http://www.macromedia.com/schemes/data/string/">
 <documenttype
 id="dt-ASP-JS"
 servermodel="ASP-JS"
 internaltype="Dynamic"
 winfileextension="asp,htm, html"
 macfileextension=asp, html"
 previewfile="default_aspjs_preview.htm"
 file="default_aspjs.htm"
 priorversionservermodel="UD4-ASP-JS" >
 <title>
 <loadString id="mmdocumenttypes_0title" />
 </title>
 <description>
 <loadString id="mmdocumenttypes_0descr" />
 </description>
 </documenttype>
 ...
</documenttypes>

Note: Color coding for document types is specified in the XML files that reside in the Configuration/
CodeColoring folder.

CSS Text css

Java Text java

JavaScript Text js

VB Text vb

VBScript Text vbs

Text Text txt

EDML XML edml

TLD XML tld

VTML XML vtm, vtml

WML XML wml

XML XML xml

Document type Server model Internal type File extensions Previous server
model
44 Chapter 2: Extending Dreamweaver

In the previous example, the loadstring element identifies the localized strings that
Dreamweaver should use for the title and description for ASP-JS type documents. For more
information about localized strings, see “Localized strings” on page 50.

The following table describes the tags and attributes that you can use within a document type
definition file.

Element Type

Required Description Tag Attribute

documenttype
(root)

Yes Parent node.

id Yes Unique identifier across all document type
definition files.

servermodel No Specifies the associated server model
(case-sensitive); by default, the following
values are valid:
 ASP.NET C#
 ASP.NET VB
 ASP VBScript
 ASP JavaScript
 ColdFusion
 JSP
 PHP MySQL
A call to the getServerModelDisplayName()
functions returns these names. The server
model implementation files are located in the
Configuration/ServerModels folder.
Extension developers can create new server
models extending this list.
Extensible document types in Dreamweaver 45

internaltype Yes A broad classification of how Dreamweaver
treats a file. The internaltype identifies
whether the Design view is enabled for this
document and handles special cases such as
Dreamweaver templates or extensions.
The following values are valid:
 Dynamic
 DWExtension (has special display regions)
 DWTemplate (has special display regions)
 HTML
 HTML4
 Text (Code view only)
 XHTML1
 XML (Code view only)
All server model-related document types
should map to Dynamic. HTML should map to
HTML. Script files (such as CSS, JS, VB, and
CS) should map to Text.
If internaltype is DWTemplate, you should also
specify dynamicid. If you omit dynamicid in this
case, the new blank template that the New
Document dialog box creates is not a
recognized document type by the Server
Behavior or Bindings panel. Instances of this
template are simply an HTML template.

dynamicid No A reference to the unique identifier of a
dynamic document type. This attribute is
meaningful only when internaltype is
DWTemplate. This attribute lets you associate a
dynamic template with a dynamic
document type.

winfileextension Yes The file extension that is associated with the
document type on Windows. You specify
multiple file extensions by using a comma-
separated list. The first extension in the list is
the extension that Dreamweaver uses when
the user saves a documenttype document.
If two nonserver model-associated document
types have the same file extension,
Dreamweaver recognizes the first one as the
document type for the extension.

Element Type

Required Description Tag Attribute
46 Chapter 2: Extending Dreamweaver

Note: When the user saves a new document, Dreamweaver examines the list of extensions for the
current platform that are associated with the document type (winfileextension and
macfileextension). Dreamweaver selects the first string in the list and uses it as the default file
extension. To change this default file extension, you must reorder the extensions in the comma-
separated list so the new default is listed first.

macfileextension Yes The file extension that is associated with the
document type on the Macintosh. You specify
multiple file extensions by using a comma-
separated list. The first extension in the list is
the extension that Dreamweaver uses when
the user saves a documenttype document.
If two nonserver model-associated document
types have the same file extension,
Dreamweaver recognizes the first one as the
document type for the extension.

previewfile No The file that is rendered in the Preview area of
the New Document dialog box.

file Yes The file that is located in the DocumentTypes/
NewDocuments folder that contains template
content for new documenttype documents.

priorversionservermodel No If this document’s server model has a
Dreamweaver UltraDev 4 equivalent, specify
the name of the older version of the
server model.
UltraDev 4 ColdFusion is a valid prior
server model.

title
(subtag)

Yes The string that appears as a category item
under Blank Document in the New Document
dialog box. You can place this string directly in
the definition file or point to it indirectly for
localization purposes. For more information
on localizing this string, see “Localized
strings” on page 50.
Formatting is not allowed, so HTML tags
cannot be specified.

description
(subtag)

No The string that describes the document type.
You can place this string directly in the
definition file or point to it indirectly for
localization purposes. For more information
on localizing this string, see “Localized
strings” on page 50.
Formatting is allowed, so HTML tags can be
specified.

Element Type

Required Description Tag Attribute
Extensible document types in Dreamweaver 47

When Dreamweaver starts, it reads all document type definition files and builds a list of valid
document types. Dreamweaver treats any entries within the definition files that have nonexistent
server models as nonserver model document types. Dreamweaver ignores entries that have bad
contents or IDs that are not unique.

If, while scanning the Configuration/DocumentTypes folder, Dreamweaver finds no document
type definition files or if any of the definition files appear to be corrupt, Dreamweaver closes with
an error message.

Dynamic templates

You can create templates that are based on dynamic document types. These templates are called
dynamic templates. The following two elements are essential to defining a dynamic template:

• The value of the internaltype attribute for the new document type must be DWTemplate.
• The dynamicid attribute must be set, and the value must be a reference to the identifier of an

existing dynamic document type.

The following example defines a dynamic document type:
<documenttype
 id="PHP_MySQL"
 servermodel="PHP MySQL"
 internaltype="Dynamic"
 winfileextension="php,php3"
 macfileextension="php,php3"
 file="Default.php">
 <title>PHP</title>
 <description><![CDATA[PHP document]]></description>
</documenttype>

Now, you can define the following dynamic template, which is based on this PHP_MySQL dynamic
document type:
<documenttype
 id="DWTemplate_PHP"
 internaltype="DWTemplate"
 dynamicid="PHP_MySQL"
 winfileextension="php.dwt"
 macfileextension="php.dwt"
 file="Default.php.dwt">
 <title>PHP Template</title>
 <description><![CDATA[Dreamweaver PHP Template document]]></description>
</documenttype>

When a Dreamweaver user creates a new blank template of type DWTemplate_PHP,
Dreamweaver lets the user create PHP server behaviors in the file. Furthermore, when the user
creates instances of the new template, the user can create PHP server behaviors in the instance.

In the previous example, when the user saves the template, Dreamweaver automatically adds a
.php.dwt extension to the file. When the user saves an instance of the template, Dreamweaver
adds the .php extension to the file.
48 Chapter 2: Extending Dreamweaver

Document extensions and file types

By default, Dreamweaver shows all the file types it recognizes in the File > Open dialog box.
After creating a new document type, extension developers need to update the appropriate
Extensions.txt file. If the user is on a multiuser system (such as Windows XP, Windows 2000, or
Mac OS X), the user has another Extensions.txt file in their Configuration folder. The user must
update the Extensions.txt file because it is the instance that Dreamweaver looks for and parses.

The location of the user’s Configuration folder depends on the user’s platform.

For Windows 2000 and Windows XP platforms:
<drive>:\Documents and Settings\<username>\ ¬

Application Data\Macromedia\Dreamweaver MX 2004\Configuration

Note: In Windows XP, this folder may be inside a hidden folder.

For Mac OS X platforms:
<drive>:Users:<username>:Library:Application Support: ¬

Macromedia:Dreamweaver MX 2004:Configuration

If Dreamweaver cannot find the Extensions.txt file in the user’s Configuration folder,
Dreamweaver looks for it in the Dreamweaver Configuration folder.
Note: On multiuser platforms, if you edit the copy of Extensions.txt that resides in the Dreamweaver
Configuration folder and not the one in the user’s Configuration folder, Dreamweaver is not aware of
the changes because Dreamweaver parses the copy of the Extensions.txt file in the user’s
Configuration folder, not the file in the Dreamweaver Configuration folder.

Suppose you want to create a new document extension. To create a new document extension, you
can either add the new extension to an existing document type or create a new document type.

To add a new extension to an existing document type:

1 Edit MMDocumentTypes.xml.
2 Add the new extension to the winfileextension and macfileextension attributes of the

existing document type.

To add a new document type:

1 Make a backup copy of the Extensions.txt file in the Configuration folder.
2 Open Extensions.txt in Dreamweaver or a text editor.
3 Add a new line for each new file type. In capital letters, enter the filename extensions that the

new file type can have, separated by commas; then add a colon and a brief descriptive phrase to
show in the pop-up menu for file types that appears in the File > Open dialog box.
For example, for JPEG files, enter JPG,JPEG,JFIF:JPEG Image Files

4 Save the Extensions.txt file.
5 Restart Dreamweaver.

To see the changes, select File > Open and click the pop-up menu of file types.
Extensible document types in Dreamweaver 49

To change the Dreamweaver default File > 0pen file type:

1 Make a backup copy of the Extensions.txt file in the Configuration folder.
2 Open Extensions.txt in Dreamweaver or a text editor.
3 Cut the line that corresponds to the new default, and paste it at the beginning of the file, to

make it the first line of the file.
4 Save the Extensions.txt file.
5 Restart Dreamweaver.

To see the changes, select File > Open and click the pop-up menu of file types.

Localized strings

Within a document type definition file, the <title> and <description> subtags specify the
display title and description for the document type. You can use the MMString:loadstring
directive in the subtags as a placeholder for providing localized strings for the two subtags. This
process is similar to server-side scripting where you specify a particular string to use in your page
by using a string identifier as a placeholder. For the placeholder, you can use a special tag or you
can specify a tag attribute whose value is replaced.

To provide localized strings, perform the following steps:

1 Place the following statement at the beginning of the document type definition file:
<?xml version="1.0" encoding="utf-8"?>

2 Declare the MMString name space in the <documenttypes> tag:
 <documenttypes
 xmlns:MMString="http://www.macromedia.com/schemes/data/string/">

3 At the location in the document type definition file where you want to provide a localized string,
use the MMString:loadstring directive to define a placeholder for the localized string. You can
specify this placeholder in one of the following ways:
<description>
 <loadstring>myJSPDocType/Description</loadstring>
</description>

or
<description>
 <loadstring id="myJSPDocType/Description" />
</description>

In these examples, myJSPDocType/Description is a unique string identifier that acts as a
placeholder for the localized string. The localized string is defined in the next step.

4 In the Configuration/Strings folder, create a new XML file (or edit an existing file) that defines
the localized string. For example, the following code, when placed in the Configuration/Strings/
strings.xml file, defines the myJSPDocType/Description string:
<strings>
...
 <string id="myJSPDocType/Description"
 value=
 "<![CDATA[JavaServer Page with special features]]>"
 />
...
</strings>
50 Chapter 2: Extending Dreamweaver

Note: String identifiers, such as myJSPDocType/Description in the previous example, must be
unique within the application. Dreamweaver, when it starts, parses all XML files within the
Configuration/Strings folder and loads these unique strings.

Rules for document type definition files

Dreamweaver lets document types that are associated with a server model share file extensions.
For example: ASP-JS and ASP-VB can claim .asp as their file extension. (For information on
which server model gets preference, see “canRecognizeDocument()” on page 328.)

Dreamweaver does not let document types that are not associated with a server model share
file extensions.

If a file extension is claimed by two document types where one type is associated with a server
model and the other is not, the latter document type gets preference. Suppose you have a
document type called SAM, which is not associated with a server model, that has a file extension
of .sam, and you add this file extension to the ASP-JS document type. When a Dreamweaver user
opens a file that has a .sam extension, Dreamweaver assigns the SAM document type to it, not
ASP-JS.

Opening a document in Dreamweaver

When a user opens a file, Dreamweaver follows a series of steps to identify the document type
based on the file’s extension.

If Dreamweaver successfully finds a unique document type, Dreamweaver uses that type and
loads the associated server model (if any) for the document that the user is opening. If the user has
selected to use Dreamweaver UltraDev 4 server behaviors, Dreamweaver loads the appropriate
UltraDev 4 server model.

If the file extension maps to more than one document type, Dreamweaver performs the
following actions:

• If a static document type is among the list of document types, it gets preference.
• If all the document types are dynamic, Dreamweaver creates an alphabetical list of the server

models that are associated with these document types and then calls the
canRecognizeDocument() function in each server model (see “canRecognizeDocument()”
on page 328). Dreamweaver collects the return values and determines which server model
returned the highest valued positive integer. The document type whose server model returns
the highest integer is the document type that Dreamweaver assigns to the document being
opened. If, however, more than one server model returns the same integer, Dreamweaver goes
through the alphabetical list of those server models, picks the first in the list, and uses that
document type. For example, if both ASP-JS and ASP-VB claim an ASP document and if their
respective canRecognizeDocument() functions return equal values, Dreamweaver assigns the
document to ASP-JS (because, alphabetically, ASP-JS is first).

If Dreamweaver cannot map the file extension to a document type, Dreamweaver opens the
document as a text file.
Extensible document types in Dreamweaver 51

52 Chapter 2: Extending Dreamweaver

CHAPTER 3
User Interfaces for Extensions
Most extensions are built to receive information from the user through a user interface (UI).
If you plan to submit your extension for Macromedia certification, you need to follow the
guidelines that are available within the Extension Manager files on the Macromedia Exchange
website (www.macromedia.com/exchange). These guidelines are not intended to limit your
creativity; their purpose is to ensure that certified extensions work effectively within the
Macromedia Dreamweaver MX 2004 UI and that the extension UI design does not detract from
its functionality.

Designing an extension user interface

Typically, you create an extension to perform a task that users encounter frequently. Certain parts
of the task are repetitive and by creating an extension, you can automate them. Some steps in the
task can change, or specific attributes of the code that the extension processes can change. To
receive user inputs for these variable values, you build a UI.

As an example, an extension can automate updates for a web catalog where users periodically need
to change values for image sources, item descriptions, and prices, but the procedures for taking
these values and formatting the information for display on the website remains the same. A simple
extension can automate the formatting while letting users manually input the new, updated values
for the three variables. An advanced extension can automate the process of pulling a set of values
for image sources, item descriptions, and prices directly from a database, with variables for time
intervals input by the user.

The purpose of your extension UI is to receive information that the user inputs to handle the
variable aspects of a repetitive task that the extension performs. Dreamweaver supports HTML
and JavaScript form elements as the basic building blocks for creating extension UI controls and
displays the UI using its own HTML renderer. Therefore, an extension UI can be as simple as an
HTML file that contains a two-column table with text descriptions and form input fields.

Most extension developers design their extension UI after coding most of the functionality of
their extension in JavaScript. After you begin writing code, it is often easy to discern what
variables are necessary and what form inputs can best handle them.
53

http://www.macromedia.com/exchange

Consider the following basic guidelines when you design an extension UI:

• If you want a name for your extension, place the name in the title tag of your HTML file.
Dreamweaver displays the name in the extension title bar.

• Keep text labels on the left side of your UI, aligned right, with text boxes on the right side,
aligned left. This arrangement lets the user’s eyes easily locate the beginning of any text box.
Minimal text can follow the text box as explanation or units of measure.

• Keep checkbox and radio button labels on the right side of your UI, aligned left.
• For readable code, assign logical names to your text boxes. If you use Dreamweaver to create

your extension UI, you can use the Property inspector or the Quick Tag Editor to assign names
to the fields.

In a typical scenario, after you create the UI, test the extension code to see that it properly
performs the following UI-related tasks:

• Getting the values from the text boxes
• Setting default values for the text boxes or gathering values from the selection
• Applying changes to the user document

Dreamweaver HTML rendering control

For versions through Dreamweaver 4, Dreamweaver rendered more space around form controls
than do Microsoft Internet Explorer and Netscape Navigator. Form controls in extension UIs are
rendered with extra space around them because Dreamweaver uses its HTML rendering engine to
display extension UIs.

Macromedia has improved form-control rendering to more closely match the browsers. To take
advantage of the rendering improvements, you must use one of three new DOCTYPE statements in
your extension files, as shown in the following example:
<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine 5.0//dialog">

<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine5.0//floater">

<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine5.0//pi">

In most cases, DOCTYPE statements must go on the first line of a document. However, to avoid
conflicts with extension-specific directives that, in previous versions, were required to be on the
first line of a file (such as the comment at the top of a Property inspector file, or the MENU-
LOCATION=NONE directive in a command), DOCTYPE statements and directives can now be in any
order as long as they appear before the opening html tag.

In addition to letting you make extension UIs more closely match the built-in dialog boxes and
panels, the new DOCTYPE statements also let you view your extensions in the Dreamweaver Design
view so that you can see them as they would appear when viewed by users.
54 Chapter 3: User Interfaces for Extensions

The following examples show the Base Property inspector without the DOCTYPE statement, which
improves form-control rendering, and then with the DOCTYPE statement.

The Base Property inspector as it appears in Design view without the DOCTYPE statement.

The Base Property inspector as it appears in Design view with the DOCTYPE statement (and after a few
adjustments to accommodate the new rendering).

Using custom UI controls in extensions

In addition to the standard HTML form elements, Dreamweaver supports custom controls to
help you create flexible, professional-looking interfaces, as described in the following list:

• Editable select lists (also known as combo boxes) that let you combine the functionality of a
select list with that of a text box

• Database controls that facilitate the display of data hierarchies and fields
• Tree controls that organize information into expandable and collapsible nodes
• Color button controls that let you add color picker interfaces to your extensions

Editable select lists

Extension UIs often contain pop-up lists that are defined using the select tag. In Dreamweaver,
you can make pop-up lists in extensions editable by adding editable="true" to the select tag.
To set a default value, set the editText attribute and the value that you want the select list to
display.

The following example shows the settings for an editable select list:
<select name="travelOptions" style="width:250px" editable="true"

 editText="other (please specify)">
<option value="plane">plane</option>
<option value="car">car</option>
<option value=""bus">bus</option>
</select>

When you use select lists in your extensions, check for the presence and value of the editable
attribute. If no value is present, the select list returns the default value of false, which indicates
that the select list is not editable.
Using custom UI controls in extensions 55

As with normal (noneditable) select lists, editable select lists have a selectedIndex property (see
“Objects, properties, and methods of the Dreamweaver DOM” on page 68). This property
returns -1 if the text box is selected.

To read the value of an active editable text box into an extension, read the value of the editText
property. The editText property returns the string that the user entered into the editable text
box, the value of the editText attribute, or an empty string if no text has been entered and no
value has been specified for editText.

Dreamweaver adds the following custom attributes for the select tag to control editable
pop-up lists:

Note: Editable select lists are available in Dreamweaver.

The following example creates a command that contains an editable select list using common
JavaScript functions:
<html>
<head>

<title>Editable Dropdown Test</title>
<script language="javascript">
function getAlert()
{

var i=document.myForm.mySelect.selectedIndex;
if (i>=0){

alert ("selectedIndex: " + i);
alert("selected text " + document.myForm.mySelect.options[i].text);

}
else{

var i=document.myForm.mySelect_no.selectedIndex;
if (i>=0){

alert ("selectedIndex: " + i);
alert("selected text " +

document.myForm.mySelect_no.options[i].text);
}
else

alert("nothing is selected");
}

}
function commandButtons()
{

return new Array("OK", "getAlert()", "Cancel", "window.close()");
}
</script>

</head>

<body>
<div name="test">
<form name="myForm">
<table>
<tr>
<td>Editable DropDown with default text:</td>

Attribute name Description Accepted Values

editable Declares that the pop-up list has an editable
text area

A Boolean value of true or false

editText Holds or sets text within the editable text area A string of any value
56 Chapter 3: User Interfaces for Extensions

<td><select name="mySelect" editable="true" style="width:150px"
editText="Editable Text">

<option> opt 1 </option>
<option> opt 2 </option>
<option> opt 3 </option>
</select></td></tr>
<tr> <td>Editable DropDown without default text:</td>
<td><select name="mySelect_no" editable="true" style="width:150px">
<option value="1"> opt 1 </option>
<option value="2"> opt 2 </option>
<option value="3"> opt 3 </option>
</select></td></tr>
</table>

</form>
</div>

</body>
</html>

To use this sample, save it to the Dreamweaver Configuration/Commands folder as
EditableSelectTest.htm. Restart Dreamweaver, and select EditableSelectTest from the Commands
menu.

Database controls

Using Dreamweaver, you can extend the HTML select tag to create a database tree control. You
can also add a variable grid control. The database tree control displays database schema, and the
variable grid control displays tabular information.
Using custom UI controls in extensions 57

The following figure shows an advanced Recordset dialog box that uses a database tree control
and a variable grid control:

Adding a database tree control

The database tree control has the following attributes:

Any option tags that are placed inside the select tag are ignored.

Attribute name Description

name Name of the database tree control

control.style Width and height, in pixels

type Type of control

connection Name of the database connection that is defined in the Connection
Manager; if empty, the control is empty.

noexpandbuttons When this attribute is specified, the tree control does not draw the Plus (+) or
collapse Minus (-) indicators or the associated arrows on the Macintosh.
This attribute is useful for drawing multicolumn list controls.

showheaders When this attribute is specified, the tree control displays a header at the top
that lists the name of each column.
58 Chapter 3: User Interfaces for Extensions

To add a database tree control to a dialog box, you can use the following sample code with
appropriate substitutions for quoted variables:
<select name="DBTree" style="width:400px;height:110px" ¬
type="mmdatabasetree" connection="connectionName" noexpandbuttons

showHeaders></select>

You can change the connection attribute to retrieve selected data and display it in the tree.
You can use the DBTreeControl attribute as a JavaScript wrapper object for the new tag.
For more examples, see the DBTreeControlClass.js file in the Configuration/Shared/Common/
Scripts folder.

Adding a variable grid control

The variable grid control has the following attributes:

The following example adds a simple variable grid control to a dialog box:
<select name="ParamList" style="width:515px;" ¬
type="mmparameterlist columns"="Name,SQL Data ¬
Type,Direction,Default Value,Run-time Value" size=6></select>

The following example creates a variable grid control that is 500 pixels wide, with five columns of
various widths:
<select name="ParamList" style="width:500px;" ¬
type=mmparameterlist columns="Name,SQL Data Type,Direction, ¬
Default Value,Run-time Value" columnWidth="100,25,11," size=6>¬
</select>

This example creates two blank columns that are 182 pixels wide. (The specified columns total
136. The total width of the variable grid control is 500. The remaining space after the first three
columns are placed is 364. Two columns remain; 364 divided by 2 is 182.)

This variable grid control also has a JavaScript wrapper object that should be used to access and
manipulate the variable grid control’s data. You can find the implementation in the
GridControlClass.js file in the Configuration/Shared/MM/Scripts/Class folder.

Attribute name Description

name Name of the variable grid control

style Width of the control, in pixels

type Type of control

columns Each column must have a name, separated by a comma

columnWidth Width of each column, each separated by a comma. The columns are of
equal width if you do not specify widths.
Using custom UI controls in extensions 59

Adding tree controls

Tree controls display data in a hierarchical format and let users expand and collapse nodes in the
tree. The MM:TREECONTROL tag lets you create tree controls for any type of information; unlike the
database tree control that is described in “Adding a database tree control” on page 58, no
association with a database is required. The Dreamweaver Keyboard Shortcuts editor uses the tree
control, as shown in the following figure:
60 Chapter 3: User Interfaces for Extensions

Creating a tree control

The MM:TREECONTROL tag creates a tree control and can use one or more tags to add structure, as
described in the following list:

• MM:TREECOLUMN is an empty, optional tag that defines a column in the tree control.
• MM:TREENODE is an optional tag that defines a node in the tree. It is a nonempty tag that can

contain only other MM:TREENODE tags.

MM:TREECONTROL tags have the following attributes:

MM:TREECOLUMN tags have the following attributes:

For readability, TREECOLUMN tags should follow immediately after the MM:TreeControl tag, as
shown in the following example:
<MM:TREECONTROL name="tree1">
<MM:TREECOLUMN name="Column1" width="100" state="visible">
<MM:TREECOLUMN name="Column2" width="80" state="visible">
...
</MM:TREECONTROL>

Attribute name Description

name Name of the tree control

size Optional. Number of rows that show in the control; default is 5 rows

theControl Optional. If the number of nodes in the theControl attribute exceeds the
value of the size attribute, scrollbars appear

multiple Optional. Allows multiple selections; default is single-selection

style Optional. Style definition for height and width of tree control; if specified,
takes precedence over the size attribute

noheaders Optional. Specifies that the column headers should not appear

Attribute name Description

name Name of the column

value String to appear in column header

width Width of the column in pixels (percentage not supported); default is 100

align Optional. Specifies whether the text in the column should be aligned left,
right, or center; default is left

state Specifies whether the column is visible or hidden
Using custom UI controls in extensions 61

The MM:TREENODE attributes are described in the following table:

For example, the following tree control has all its nodes expanded:
<mm:treecontrol name="test" style="height:300px;width:300px">

<mm:treenode value="rootnode1" state="expanded">
<mm:treenode value="node1" state="expanded"></mm:treenode>
<mm:treenode value="node3" state="expanded"></mm:treenode>
</mm:treenode>

<mm:treenode value="rootnode2" state="expanded">
<mm:treenode value="node2" state="expanded"></mm:treenode>
<mm:treenode value="node4" state="expanded"></mm:treenode>
</mm:treenode>

</mm:treecontrol>

Manipulating content within a tree control

Tree controls and the nodes within them are implemented as HTML tags. They are parsed by
Dreamweaver and stored in the document tree. These tags can be manipulated in the same way as
any other document node. For more information on DOM functions and methods, see Chapter 4,
“The Dreamweaver Document Object Model,” on page 67.

Adding nodes To add a node to an existing tree control programmatically, set the innerHTML
property of the MM:TREECONTROL tag or one of the existing MM:TREENODE tags. Setting the inner
HTML property of a tree node creates a nested node.

The following example adds a node to the top level of a tree:
var tree = document.myTreeControl;
//add a top-level node to the bottom of the tree
tree.innerHTML = tree.innerHTML + ‘<mm:treenode name="node3"¬ value="node3">’;

Adding a child node To add a child node to the currently selected node set the innerHTML
property of the selected node.

The following example adds a child node to the currently selected node:
var tree = document.myTreeControl;
var selNode = tree.selectedNodes[0];
//deselect the node, so we can select the new one
selnode.removeAttribute("selected");

Attribute name Description

name Name of the node

value Contains the content for the given node. For more than one column, this is a
pipe-delimited string. To specify an empty column, place a single space
character before the pipe (|).

state Specifies that the node is expanded or collapsed with the strings
"expanded" or "collapsed".

selected You can select multiple nodes by setting this attribute on more than one tree
node, if the tree has a MULTIPLE attribute.

icon Optional. The index of built-in icon to use, starting with 0:
0 = no icon; 1 = DW document icon; 2 = Multidocument icon
62 Chapter 3: User Interfaces for Extensions

//add the new node to the top of the selected node’s children
selNode.innerHTML = '<mm:treenode name="item10" value="New item11" ¬ expanded

selected>' + selNode.innerHTML;

Deleting nodes To delete the currently selected node from the document structure, use the
innerHTML or outerHTML properties.

The following example deletes the entire selected node and any children:
var tree = document.myTreeControl;
var selNode = tree.selectedNodes[0];
selNode.outerHTML = "";

A color button control for extensions

In addition to the standard input types such as text, checkbox, and button, Dreamweaver
supports mmcolorbutton, an additional input type in extensions.

Specifying <input type="mmcolorbutton"> in your code causes a color picker to appear in the
UI. You can set the default color for the color picker by setting a value attribute on the input tag.
If you do not set a value, the color picker appears grey by default and the value property of the
input object returns an empty string.

The following example shows a valid mmcolorbutton tag:
<input type="mmcolorbutton" name="colorbutton" value="#FF0000">
<input type="mmcolorbutton" name="colorbutton" value="teal">

A color button has one event, onChange, which is triggered when the color changes.

You might want to keep a text box and a color picker synchronized. The following example
creates a text box that synchronizes the color of the text box with the color of the color picker:
<input type = "mmcolorbutton" name="fgcolorPicker"

onChange="document.fgcolorText.value=this.value">
<input type = "test" name="fgcolorText"

onBlur="document.fgColorPicker.value=this.value">

In this example, when the user changes the value of the text box and then tabs or clicks
elsewhere, the color picker updates to show the color that is specified in the text box. Whenever
the user selects a new color with the color picker, the text box updates to show the hex value for
that color.

Adding Flash content to Dreamweaver

Flash content (SWF files) can display in the Dreamweaver interface either as part of an object or
command. This Flash support is especially useful if you build extensions that use Flash forms,
animations, ActionScript or other Flash content.

Basically, you leverage the ability for Dreamweaver objects and commands to display dialogs
(see Chapter 6, “Insert Bar Objects,” on page 113 for more information about building objects
and Chapter 7, “Commands,” on page 135 for information about commands) using the form tag
with the object tag to embed your Flash content in a Dreamweaver dialog box.
Adding Flash content to Dreamweaver 63

A simple Flash dialog box example

In this example, you use Dreamweaver to create a new command that displays a SWF file called
myFlash.swf when the user clicks the command in the Commands menu. For specific
information about creating commands before trying this example, see the information about
commands in Extending Dreamweaver.
Note: This example assumes you already have a SWF file called myFlash.swf in the Configuration/
Commands folder of your Dreamweaver application installation folder. To test this with your own
SWF file, save the SWF file to the application Commands folder, and substitute your filename in all
instances of myFlash.swf.

In Dreamweaver, open a new basic HTML file (this will be your Command definition file).
Between the opening and closing title tags, enter My Flash Movie so the head of your page
reads as follows:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>My Flash Movie</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

Now, save the file as My Flash Movie.htm in the application Configuration/Commands folder
(but do not close the file yet). You save the file at this point so you can embed your Flash content
with a relative path, otherwise Dreamweaver will try to use an absolute path.

Back in the HTML document, between the opening and closing body tags, add an opening and
closing form tag. Then, within the form tags, use the Insert > Media > Flash menu option to add
your Flash content to the Command definition file. When prompted, select the SWF file in the
Commands folder, and click OK. Your Command definition file should now look like the
following example (of course, the width and height attributes might differ, depending on your
SWF file properties):
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>My Flash Movie</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body>
<body>
<form>
<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase="http://

download.macromedia.com/pub/shockwave/cabs/flash/
swflash.cab#version=6,0,29,0" width="200" height="100">

 <param name="movie" value="myFlash.swf">
 <param name="quality" value="high">
 <embed src="myFlash.swf" quality="high" pluginspage="http://

www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash"
width="200" height="100"></embed>

</object>
</form>
</body>
</html>
64 Chapter 3: User Interfaces for Extensions

Save the file again. Next, exit and restart Dreamweaver. Select the Command > My Flash Movie
menu option, and your Flash content appears in a Dreamweaver dialog box, as shown in the
following figure:

This example shows a simple implementation of Dreamweaver’s Flash content support. After you
are familiar with building objects and commands as well as more sophisticated forms, you can
integrate Flash content into your Dreamweaver extensions for a more dynamic user experience.
For more infomation, see Chapter 7, “Commands,” on page 135 about writing a
commandButtons() function to add buttons to the dialog box that displays your Flash content.
Adding Flash content to Dreamweaver 65

66 Chapter 3: User Interfaces for Extensions

CHAPTER 4
The Dreamweaver Document Object Model
In Macromedia Dreamweaver MX 2004, the Document Object Model (DOM) is a critically
important structure for extension builders. It lets you access and manipulate elements within a
user’s document and within the extension file.

A DOM defines the composition of documents that are created using a markup language. By
representing tags and

as objects and properties, the DOM lets programming languages access and manipulate
documents and their components.

The structure of an HTML document can be seen as a document tree. The root is the HTML tag,
and the two largest trunks are the HEAD tag and the BODY tag. Offshoots of the HEAD tag include
the TITLE, STYLE, SCRIPT, ISINDEX, BASE, META, and LINK tags, and offshoots of the BODY tag
include headings (H1, H2, and so on), block-level elements (P, DIV, FORM, and so on), text-level
elements, (FONT, BR, IMG, and so on) and other element types. Leaves on these offshoots include

such as WIDTH, HEIGHT, ALT, and others.

In a DOM, the tree structure is preserved and presented as a hierarchy of parent nodes and child
nodes. The root node has no parent, and leaf nodes have no children. At each level within the
HTML structure, the HTML element can be exposed to JavaScript as a node. Using this
structure, you can access the document or any element within it.

In JavaScript, you can call any document object by name or by index, as described in the
following list:

• By name, as in document.myForm.myButton
• By index, as in document.forms[0].elements[1]

Objects with the same name are collapsed into an array. You can access a particular object in the
array by incrementing the index with zero as the origin (for example, the first radio button with
the name myRadioGroup in the myForm document is referenced as
document.myForm.myRadioGroup[0]).
67

Which document DOM?

It is important to distinguish between the DOM of the user’s document and the DOM of the
extension. The information in this chapter applies to both types of Dreamweaver documents, but
the way that you reference each DOM is different.

If you are familiar with JavaScript in browsers, you can reference objects in the active document
by writing document. (for example, document.forms[0]), the same way that you reference
objects in extension files. To reference objects in the user’s document, however, you must call
dw.getDocumentDOM(), dw.createDocument(), or another function that returns a user
document object.

For example, to refer to the first image in the active document, you can write
dw.getDocumentDOM().images[0]. You can also store the document object in a variable and use
that variable in future references, as shown in the following example:

var dom = dw.getDocumentDOM(); //get the dom of the current document
var firstImg = dom.images[0];
firstImg.src = “myImages.gif”;

This kind of notation is common in files throughout the Configuration folder, especially in
command files. For more information about the dw.getDocumentDOM() method, see the
dreamweaver.getDocumentDOM() function in the Dreamweaver API Reference.

The Dreamweaver DOM

The Dreamweaver DOM contains a subset of objects, properties, and methods from the World
Wide Web Consortium (W3C) (www.w3.org/TR/REC-DOM-Level-1/) DOM Level 1, which
are combined with some properties of the Microsoft Internet Explorer 4.0 DOM.

Objects, properties, and methods of the Dreamweaver DOM

The following table lists the objects, properties, methods, and events that the Dreamweaver
DOM supports. Some properties are read-only when they are accessed as properties of a specific
object. A bullet (•) indicates properties that are read-only when they are used in the listed context.

Object Properties Methods Events

window navigator •
document •
innerWidth •
innerHeight •
screenX •
screenY •

alert()
confirm()
escape()
unescape()
close()
setTimeout()
clearTimeout()
setInterval()
clearInterval()
resizeTo()

onResize

navigator platform • None None
68 Chapter 4: The Dreamweaver Document Object Model

http://www.w3.org/TR/REC-DOM-Level-1/

document forms • (an array of form
objects)
images • (an array of image
objects)
layers • (an array of LAYER,
ILAYER, and absolutely
positioned DIV and SPAN
objects)
child objects by name •
nodeType •
parentNode •
childNodes •
documentElement •
body •
URL •
parentWindow •

getElementsBy TagName()
hasChildNodes()

onLoad

all tags/elements nodeType •
parentNode •
childNodes •
tagName •
attributes by name
innerHTML
outerHTML

getAttribute()
setAttribute()
removeAttribute()
getElementsByTagName()
hasChildNodes()

form In addition to the properties that
are available for all tags:
tags:elements • (an array of
button, checkbox, password,
radio, reset, select, submit,
text, file, hidden, image,
and textarea objects)
mmcolorbutton
child objects by name •

Only those methods
available to all tags

None

layer In addition to the properties that
are available for all tags:
visibility
left
top
width
height
zIndex

Only those methods that
are available to all tags

None

image In addition to the properties that
are available for all tags:
src

Only those methods that
are available to all tags

onMouseOver
onMouseOut
onMouseDown
onMouseUp

button
reset
submit

In addition to the properties that
are available for all tags:
form •

In addition to the methods
that are available for all
tags:
blur()
focus()

onClick

Object Properties Methods Events
The Dreamweaver DOM 69

checkbox
radio

In addition to the properties that
are available for all tags:
checked
form •

In addition to the methods
that are available for all
tags:
blur()
focus()

onClick

password
text
file
hidden
image (field)
textarea

In addition to the properties that
are available for all tags:
form •
value

In addition to the methods
that are available for all
tags:
blur()
focus()
select()

onBlur
onFocus

select In addition to the properties that
are available for all tags:
form •
options • (an array of option

objects)
selectedIndex

In addition to the methods
that are available for all
tags:
blur() (Windows only)
focus() (Windows only)

onBlur
(Windows only)
onChange
onFocus
(Windows only)

option In addition to the properties that
are available for all tags:
text

Only those methods that
are available to all tags

None

mmcolorbutton In addition to the properties that
are available for all tags:
name
value

None onChange

array
boolean
date
function
math
number
object
string
regexp

Matches Netscape Navigator
4.0

Matches Netscape
Navigator 4.0

None

text nodeType •
parentNode •
childNodes •
data

hasChildNodes() None

comment nodeType •
parentNode •
childNodes •
data

hasChildNodes() None

NodeList length • item() None

NamedNodeMap length • item() None

Object Properties Methods Events
70 Chapter 4: The Dreamweaver Document Object Model

Properties and methods of the document object

The following table details the properties and methods of the document object that are taken
from DOM Level 1 and used in Dreamweaver. A bullet (•) marks read-only properties.

Property or method Return value

nodeType • Node.DOCUMENT_NODE

parentNode • null

parentWindow • The JavaScript object that corresponds to the document’s
parent window. (This property is not included in DOM Level 1;
however, Microsoft Internet Explorer 4.0 supports it.)

childNodes • A NodeList that contains all the immediate children of the
document object. Typically the document has a single child,
the HTML object.

documentElement • The JavaScript object that corresponds to the HTML tag.
This property is shorthand for getting the value of
document.childNodes and extracting the HTML tag from
the NodeList.

body • The JavaScript object that corresponds to the BODY tag. This
property is shorthand for calling
document.documentElement.childNodes and extracting the
BODY tag from the NodeList. For frameset documents, this
property returns the node for the outermost frameset.

URL • The file://URL for the document or, if the file has not been
saved, an empty string.

getElementsByTagName(tagName) A NodeList that can be used to step through tags of type
tagName (for example, IMG, DIV, and so on).
If the tag argument is LAYER, the function returns all LAYER and
ILAYER tags and all absolutely positioned DIV and SPAN tags.
If the tag argument is INPUT, the function returns all form
elements. (If a name attribute is specified for one or more
tagName objects, it must begin with a letter, which the HTML
4.01 specification requires, or the length of the array that this
function returns is incorrect.)

hasChildNodes() true
The Dreamweaver DOM 71

Properties and methods of HTML tag objects

Every HTML tag is represented by a JavaScript object. Tags are organized in a tree hierarchy,
where tag x is a parent of tag y, if y falls completely within x’s opening and closing tags (<x>x
content <y>y content</y> more x content.</x>). For this reason, your code should be
well-formed.

The following table lists the properties and methods of tag objects in Dreamweaver, along with
their return values or explanations. A bullet (•) marks read-only properties.

Property or method Return value

nodeType • Node.ELEMENT_NODE

parentNode • The parent tag. If this is the HTML tag, the document
object returns.

childNodes • A NodeList that contains all the immediate children of the tag.

tagName • The HTML name for the tag, such as IMG, A, or BLINK. This
value always returns in uppercase letters.

attrName A string that contains the value of the specified tag attribute.
tag.attrName cannot be used if the attrName attribute is a
reserved word in the JavaScript language (for example,
class). In this case, use getAttribute() and setAttribute().

innerHTML The source code that is contained between the opening tag
and the closing tag.For example, in the code <p>Hello</
b>, World!</p>, p.innerHTML returns Hello, World!.
If you write to this property, the DOM tree immediately
updates to reflect the new structure of the document. (This
property is not included in DOM Level 1, but Internet Explorer
4.0 supports it.)

outerHTML The source code for this tag, including the tag. For the
previous example code, p.outerHTML returns <p>Hello</
b>, World!</p>. If you write to this property, the DOM tree
immediately updates to reflect the new structure of the
document. (This property is not included in DOM Level 1, but
Internet Explorer 4.0 supports it.)

getAttribute(attrName) The value of the specified attribute if it is explicitly specified;
null otherwise.

getTranslatedAttribute(attrName) The translated value of the specified attribute or the same
value that getAttribute() returns if the attribute’s value is not
translated. (This property is not included in DOM Level 1; it
was added to Dreamweaver 3 to support attribute
translation.)

setAttribute(attrName, attrValue) Does not return a value. Sets the specified attribute to the
specified value: for example, img.setAttribute("src",
"image/roses.gif").

removeAttribute(attrName) Does not return a value. Removes the specified attribute and
its value from the HTML for this tag.
72 Chapter 4: The Dreamweaver Document Object Model

Properties and methods of text objects

Each contiguous block of text in an HTML document (for example, the text within a P tag) is
represented by a JavaScript object. Text objects never have children. The following table describes
the properties and methods of text objects that are taken from DOM Level 1 and used in
Dreamweaver. A bullet (•) marks read-only properties.

getElementsByTagName(tagName) A NodeList that can be used to step through child tags of
type tagName (for example, IMG, DIV, and so on).
If the tag argument is LAYER, the function returns all LAYER and
ILAYER tags and all absolutely positioned DIV and SPAN tags.
If the tag argument is INPUT, the function returns all form
elements. (If a name attribute is specified for one or more
tagName objects, it must begin with a letter, which the HTML
4.01 specification requires, or the length of the array that this
function returns is incorrect.)

hasChildNodes() A Boolean value that indicates whether the tag has
any children.

hasTranslatedAttributes() A Boolean value that indicates whether the tag has any
translated attributes. (This property is not included in
DOM Level 1; it was added to Dreamweaver 3 to support
attribute translation.)

Property or method Return value

nodeType • Node.TEXT_NODE

parentNode • The parent tag

childNodes • An empty NodeList

data The actual text string. Entities in the text are represented as a
single character (for example, the text Joseph & I is
returned as Joseph & I).

hasChildNodes() false

Property or method Return value
The Dreamweaver DOM 73

Properties and methods of comment objects

A JavaScript object represents each HTML comment. The following table details the properties
and methods of comment objects that are taken from DOM Level 1 and are used in
Dreamweaver. A bullet (•) marks read-only properties.

The dreamweaver and site objects

Dreamweaver implements the standard objects that are accessible through the DOM and adds
two custom objects: dreamweaver and site. These custom objects are widely used within the
APIs and in writing extensions. For more information on the methods of the dreamweaver and
site objects, see the Dreamweaver API Reference.

Properties of the dreamweaver object

The dreamweaver object has two read-only properties, which are described in the following list:

• The appName property has the value "Dreamweaver".
• The appVersion property has a value of the form

"versionNumber.releaseNumber.buildNumber [languageCode] (platform)".

As an example, the value of the appVersion property for the Swedish Windows version of
Dreamweaver MX 2004 is "7.0.XXXX [se] (Win32)"; the value for the English Macintosh
version is "7.0.XXXX [en] (MacPPC)".
Note: You can find the version and build number by selecting the Help > About menu item.

The appName and appVersion properties were implemented in Dreamweaver 3 and are not
available in earlier versions of Dreamweaver. You might want to check that the user of your
extension has Dreamweaver version 3 or later by checking for the existence of the appVersion or
appName property.

To find the specific version of Dreamweaver, check first for the existence of appVersion and then
for the version number, as shown in the following example:
if (dreamweaver.appVersion && ¬
dreamweaver.appVersion.indexOf('3.01') != -1){

// execute code
}

Property or method Return value

nodeType • Node.COMMENT_NODE

parentNode • The parent tag

childNodes • An empty NodeList array

data The text string between the comment markers
(<!-- and -->)

hasChildNodes() false
74 Chapter 4: The Dreamweaver Document Object Model

The dreamweaver object has a property called systemScript that lets you query the language of
the user’s operating system. Use this property if you need to include special cases in your
extension code for localized operating systems, as shown in the following example:
if (dreamweaver,systemScript && (dreamweaver.systemScript.indexOf('ja')!=-1){
SpecialCase
}

The systemScript property returns the following values for localized operating systems:

Operating systems for all European languages return 'en'.

The site object

The site object has no properties. For information about the methods of the site object, see the
Dreamweaver API Reference.

Language Value

Japanese ja

Korean ko

TChinese zh_tw

SChinese zh_cn
The Dreamweaver DOM 75

76 Chapter 4: The Dreamweaver Document Object Model

CHAPTER 5
Customizing Code View
Macromedia Dreamweaver MX 2004 uses two devices in Code view that help you enter code
quickly and make your code readable and accurate. These two devices are Code Hints and Code
Coloring. In addition, Dreamweaver validates your code for the target browsers that you specify
and allows you to change default HTML formatting.

You can customize Code Hints and Code Coloring by modifying the XML files that implement
them. You can add items to the Code Hints menus by adding entries to the CodeHints.xml file.
You can modify color schemes by modifying the code coloring style file, Colors.xml, or you can
change code coloring schemes or add new ones by modifying one of the code coloring syntax files,
such as CodeColoring.xml. You can also modify the cascading style sheet (CSS) profile file for
your target browser to affect how Dreamweaver validates CSS properties and values. You can also
change Dreamweaver’s default HTML formatting through the Preferences dialog box. The
following sections describe how to customize these features.

Code Hints
Code Hints are menus that Dreamweaver opens when you type certain character patterns in the
Code View. Code Hints offer a typing shortcut by providing a list of strings that potentially
complete the string you are typing. If the string you are typing appears in the menu, you can scroll
to it and press Enter or Return to complete your entry. For example, when you type <, a pop-up
menu shows a list of tag names. Instead of typing the rest of the tag name, you can select the tag
from the menu to include it in your text.

Dreamweaver loads Code Hints menus from the CodeHints.xml file in the Configuration/
CodeHints folder. You can add Code Hints menus to Dreamweaver by defining them in the
CodeHints.xml file. After Dreamweaver loads the contents of CodeHints.xml, you can also add
new Code Hints menus dynamically through JavaScript. For example, JavaScript code populates
the list of session variables in the Bindings panel. You can use the same code to add a Code Hints
menu, so when a user types "Session." in Code view, Dreamweaver displays a menu of session
variables. For information on using JavaScript to add or modify a Code Hints menu, see Code
Functions in the Dreamweaver API Reference.

Dreamweaver cannot express some types of Code Hints menus through the XML file or the
JavaScript API. Both the CodeHints.xml file and the JavaScript API expose a useful subset of the
Code Hints engine, but some Dreamweaver functionality is not accessible. For example, there is
no JavaScript hook to open a color picker, so Dreamweaver cannot express the Attribute Values
menu using JavaScript. You can only open a menu of text items from which you can insert text.
Note: When you insert text, the insertion pointer is placed after the inserted string.
77

The CodeHints.xml file

The CodeHints.xml file contains the following entities:

• A list of all the menu groups
Dreamweaver displays the list of menu groups when you select the Code Hints category
from the Preferences dialog box. You can open the Preferences dialog box by selecting
Edit > Preferences. Dreamweaver MX provides the following menu groups or types of Code
Hints menus: Tag Names, Attribute Names, Attribute Values, Function Arguments, Object
Methods and Variables, and HTML Entities.

• The description for each menu group
The description appears in the Preferences dialog box for the Code Hints category when you
select the menu group in the list. The description for the selected entry appears below the
menu group list.

• Code Hints menus
A menu consists of a pattern that triggers the Code Hints menu and a list of menu items. For
example, a pattern such as "&" could trigger a menu such as "&", ">", "<".

The following example shows the format of the CodeHints.xml file:
<codehints>
<menugroup name="HTML Entities" enabled="true" id="CodeHints_HTML_Entities">

<description>
<![CDATA[When you type a '&', a drop-down menu shows

a list of HTML entities. The list of HTML entities
is stored in Configuration/CodeHints.xml.]]>

</description>

<menu pattern="&">
 <menuitem value="&amp;" texticon="&"/>
 <menuitem value="&lt;" icon="lessThan.gif"/>

</menu>
</menugroup>

<menugroup name="Tag Names" enabled="true" id="CodeHints_Tag_Names">
<description>

 <![CDATA[When you type '<', a drop-down menu shows
 all possible tag names. You can edit the list of tag
 names using the
 Tag Library Editor

]]>
</description>

</menugroup>

<menugroup name="Function Arguments" enabled="true"
id="CodeHints_Function_Arguments">

<description>
...

</description>
<function pattern="ArraySort(array, sort_type, sort_order)"

doctypes="CFML"/>
<function pattern="Response.addCookie(Cookie cookie)"

doctypes="JSP"/>
</menugroup>
<codehints>
78 Chapter 5: Customizing Code View

Code Hints tags

The CodeHints.xml file contains the following tags, which define Code Hints menus. You can
use these tags to define additional Code Hints menus.

<codehints>

Description

The codehints tag is the root of the CodeHints.xml file.

Attributes

None.

Contents

One or more menugroup tags.

Container

None.

Example

<codehints>

<menugroup>

Description

Each menugroup tag corresponds to a type of menu. You can see the menu types that
Dreamweaver defines by selecting the Code Hints category from the Preferences dialog box.
Select Preferences from the Edit menu to display the Preferences dialog box.

You can create a new menu group or add to an existing group. Menu groups are logical collections
of menus that the user might want to enable or disable using the Preferences dialog box.

Attributes

name, enabled, id

• The name attribute is the localized name that appears in the list of menu groups in the Code
Hints category of the Preferences dialog box.

• The enabled attribute indicates whether the menu group is currently checked or enabled. A
menu group that is enabled appears with a check mark next to it in the Code Hints category of
the Preferences dialog box. Assign a true value to enable the menu group or a false value to
disable a menu group.

• The id attribute is a nonlocalized identifier that refers to the menu group.

Contents

The description, menu, and function tags.

Container

The codehints tag.
Example

<menugroup name="Session Variables" enabled="true" id="Session_Code_Hints">
Code Hints 79

<description>

Description

The description tag contains text that Dreamweaver displays when you select the menu group
from the Preferences dialog box. The description text displays below the list of menu groups. The
description text might optionally contain a single a tag where the href attribute must be a
JavaScript URL that Dreamweaver executes if the user clicks the link. Use the XML CDATA
construct to enclose any special or illegal characters in the string so that Dreamweaver treats them
as text.

Attributes

None.

Contents

Description text.

Container

The menugroup tag.

Example

<description>
<![CDATA[To add or remove tags and attributes, use the Tag Library Editor</
a>.

]]>
</description>

<menu>

Description

This tag describes a single pop-up menu. Dreamweaver opens the menu whenever the user types
the last character of the string in the pattern attribute. For example, the menu that shows the
contents of a Session variable might have a pattern attribute that is equal to "Session.".

Attributes

pattern, doctypes, casesensitive

• The pattern attribute specifies the pattern of typed characters that cause Dreamweaver to
open the Code Hints menu. If the first character of the pattern is a letter, number, or
underscore, Dreamweaver displays the menu only if the character that precedes the pattern in
the document is not a letter, number, or underscore. For example, if the pattern is "Session.",
Dreamweaver does not display the menu if the user types "my_Session.".

• The doctypes attribute specifies that the menu is active only for the specified document types.
This attribute lets you specify different lists of function names for ASP-JavaScript (ASP-JS),
Java Server Pages (JSP), Macromedia ColdFusion, and so on. You can specify the doctypes
attribute as a comma-separated list of document type IDs. See the Dreamweaver
Configuration/Documenttypes/MMDocumentTypes.xml file for a list of Dreamweaver
document types.
80 Chapter 5: Customizing Code View

• The casesensitive attribute specifies whether the pattern is case-sensitive. The possible
values for the casesensitive attribute are true, false, or a subset of the comma-separated
list that you specify for the doctypes attribute. The list of document types lets you specify that
the pattern is case-sensitive for some document types but not for others. The value defaults to
false if you omit this attribute. If the casesensitive attribute is a value of true, the Code
Hints menu will open only if the text that the user types exactly matches the pattern that the
pattern attribute specifies. If the casesensitive attribute is a value of false, the menu
appears even if the pattern is lowercase and the text is uppercase.

Contents

The menuitem tag.

Container

The menugroup tag.

Example

<menu pattern="CGI." doctypes="ColdFusion">

<menuitem>

Description

This tag specifies the text for an item in a Code Hints pop-up menu. The menuitem tag also
specifies the value to insert into the text when you select the item.

Attributes

label, value {icon}, {texticon}

• The label attribute is the string that Dreamweaver displays in the pop-up menu.
• The value attribute is the string that Dreamweaver inserts in the document when you select

the menu item. When the user selects the item from the menu and presses Enter or Return,
Dreamweaver replaces all the text that the user typed since the menu opened. The user typed
the pattern-matching characters before the menu opened, so Dreamweaver does not insert
them again. For example, if you want to insert &, which is the HTML entity for ampersand
(&), you can define the following menu and menuitem tags:
<menu pattern="&">
<menuitem label="&amp;" value="amp;" texticon="&"/>

The value attribute does not include the ampersand (&) character because the user typed it
before the menu opened.

• The icon attribute, which is optional, specifies the path to an image file that Dreamweaver
displays as an icon to the left of the menu text. The location is expressed as a URL, relative to
the Configuration folder.

• The texticon attribute, which is optional, specifies a text string to appear in the icon area
instead of an image file. This attribute is used for the HTML Entities menu.

Contents

None.
Code Hints 81

Container

The menu tag.

Example

<menuitem label="CONTENT_TYPE" value=""CONTENT_TYPE")" icon="shared/
mm/images/hintMisc.gif" />

<function>

Description

This tag replaces the menu tag for specifying function arguments and object methods for a Code
Hints pop-up menu. When you type a function or method name in Code View, Dreamweaver
opens a menu of function prototypes, displaying the current argument in bold. Each time you
type a comma, Dreamweaver updates the menu to display the next argument in bold. For
example, if you typed the function name ArrayAppend in a Coldfusion document, the Code
Hints menu would display ArrayAppend(array, value). After you type the comma following
array, the menu updates to show ArrayAppend(array, value).

For object methods, when you type the object name, Dreamweaver opens a menu of the methods
that are defined for that object.

The set of recognized functions is stored in the Dreamweaver Configuration/CodeHints.xml file.

Attributes

pattern, doctypes, casesensitive

• The pattern attribute specifies the name of the function and its argument list. For methods,
the pattern attribute describes the name of the object, the name of the method, and the
method’s arguments. For a function name, the Code Hints menu appears when the user types
functionname(. The menu shows the list of arguments for the function. For an object
method, the Code Hints menu appears when the user types objectname. (including the
period). This menu shows the methods that have been specified for the object. After that, the
Code Hints menu opens a list of the arguments for the method in the same way it does for
a function.

• The doctypes attribute specifies that the menu is active only for the specified document types.
This attribute lets you specify different lists of function names for ASP-JavaScript (ASP-JS),
Java Server Pages (JSP), Macromedia ColdFusion, and so on. You can specify the doctypes
attribute as a comma-separated list of document type IDs. For a list of Dreamweaver document
types, see the Dreamweaver Configuration/Documenttypes/MMDocumentTypes.xml file.

• The casesensitive attribute specifies whether the pattern is case-sensitive. The possible
values for the casesensitive attribute are true, false, or a subset of the comma-separated
list that you specify for the doctypes attribute. The list of document types lets you specify that
the pattern is case-sensitive for some document types but not for others. The value defaults to
false if you omit this attribute. If the casesensitive attribute is a value of true, the Code
Hints menu appears only if the text that the user types exactly matches the pattern that the
pattern attribute specifies. If the casesensitive attribute is a value of false, the menu
appears even if the pattern is lowercase and the text is uppercase.

Contents

None.
82 Chapter 5: Customizing Code View

Container

The menugroup tag.

Example

// function example
<function pattern="CreateDate(year, month, day)" DOCTYPES="ColdFusion" />
// object method example
<function pattern="application.getAttribute(String name)" DOCTYPES="JSP" />

Code coloring

Dreamweaver lets you customize or extend the code coloring schemes that you see in Code view
so that you can add new keywords to a scheme or add code coloring schemes for new document
types. If you develop JavaScript functions to use in your client-side script, for example, you can
add the names of these functions to the keywords section so that they display in the color that is
specified in Preferences. Likewise, if you develop a new programming language for an application
server and you want to distribute a new document type to help Dreamweaver users build pages
with it, you could add a code coloring scheme for the document type.

Dreamweaver provides the JavaScript function dreamweaver.reloadCodeColoring(), which
enables you to reload code coloring XML files that might have been edited manually. For more
information on this function, see the Dreamweaver API Reference.

To update a code coloring scheme or add a new scheme, you must modify the code coloring
definition files.

Code coloring files

Dreamweaver defines code coloring styles and schemes in XML files that reside in the
Configuration/CodeColoring folder. A code coloring style file defines styles for fields that are
defined in syntax definitions. It has a root node of <codeColors>. A code coloring scheme file
defines code coloring syntax and has a root node of <codeColoring>.

The code coloring style file that Dreamweaver provides is Colors.xml. The code coloring syntax
files that Dreamweaver provides are CodeColoring.xml, ASP JavaScript.xml, ASP VBScript.xml,
ASP.NET CSharp.xml, and ASP.NET VB.xml.
Note: The code coloring in the following examples does not appear on a black and white printed
page. To see the code coloring in these examples, see Dreamweaver Help > Extensions > Extending
Dreamweaver or see the PDF file for Extending Dreamweaver in the Documentation folder on your
installation CD.
Code coloring 83

The following excerpt from the Colors.xml file illustrates the hierarchy of tags in a code coloring
style file:
<codeColors>

<colorGroup>
<syntaxColor id="CodeColor_HTMLEntity" bold="true" italic="true" />
<syntaxColor id="CodeColor_JavascriptNative" text="#009999" />
<syntaxColor id="CodeColor_JavascriptNumber" text="#FF0000" />

…
<tagColor id="CodeColor_HTMLStyle" text="#990099" />
<tagColor id="CodeColor_HTMLTable" text="#009999" />
<syntaxColor id="CodeColor_HTMLComment" text="#999999" italic="true" />

…
</colorGroup>

</codeColors>

Colors are specified in red-green-blue (RGB) hexadecimal values. For example, the statement
text="009999" in the preceding XML code assigns a blue-green (teal) color to the ID
"CodeColor_JavascriptNative".

The following excerpt from the codeColoring.xml file illustrates the hierarchy of tags in a code
coloring scheme file, and it also illustrates the relationship between the styles file and the scheme
file:
<codeColoring>

<scheme name="Text" id="Text" doctypes="Text" priority="1">
<ignoreTags>Yes</ignoreTags>
<defaultText name="Text" id="CodeColor_TextText" />
<sampleText doctypes="Text">

<![CDATA[Default file syntax highlighting.
The quick brown fox
jumped over the lazy dog.
]]>

</sampleText>
</scheme>

<scheme name="HTML" id="HTML" doctypes="ASP.NET_VB,ASP.NET_CSharp,ASP-JS,ASP-
VB,ColdFusion,CFC,HTML,JSP,EDML,PHP_MySQL,DWTemplate,LibraryItem,WML"
priority="50">

<ignoreCase>Yes</ignoreCase>
<ignoreTags>No</ignoreTags>
<defaultText name="Text" id="CodeColor_HTMLText" />
<defaultTag name="Other Tags" id="CodeColor_HTMLTag" />
<defaultAttribute />
<commentStart name="Comment" id="CodeColor_HTMLComment"><![CDATA[<!--

]]></commentStart>
. . .

<tagGroup name="HTML Anchor Tags" id="CodeColor_HTMLAnchor"
taglibrary="DWTagLibrary_html" tags="a" />
<tagGroup name="HTML Form Tags" id="CodeColor_HTMLForm"
taglibrary="DWTagLibrary_html" tags="select,form,input,option,textarea" />

. . .
</codeColoring>
84 Chapter 5: Customizing Code View

Notice that the syntaxColor and tagColor tags in the Colors.xml file assign color and style
values to an id string value. The id value is then used in the codeColoring.xml file to assign a
style to a scheme tag. For example, the defaultTag tag in the codeColoring.xml excerpt has an
id of "CodeColor_HTMLComment". In the Colors.xml file, the id value of
"CodeColor_HTMLComment" is assigned a text= value of "#999999", which is gray.

Dreamweaver includes the following code coloring schemes: Default, HTML, JavaScript,
ASP_JavaScript, ASP_VBScript, JSP, and ColdFusion. The Default scheme has an id value equal
to "Text". Dreamweaver uses the Default scheme for document types that do not have a defined
code coloring scheme.

A code coloring file contains the following tags.

<scheme>

Description

The scheme tag specifies code coloring for a block of code text. You can have multiple schemes
within a file to specify different coloring for different scripting or tag languages. Each scheme has
a priority that lets you nest a block of text with one scheme inside a block of text with a
different scheme.

Attributes

name, id, priority, doctypes

• name="scheme_name" A string that assigns a name to the scheme. Dreamweaver shows the
scheme name in the Edit Coloring Scheme dialog box. Dreamweaver shows a combination of
scheme name and field name, such as HTML Comment. If you do not specify a name, the fields
for the scheme do not appear in the Edit Coloring Scheme dialog box. For more information
about the Edit Coloring Scheme dialog box, see “Editing schemes” on page 103.

• id="id_string" Required. An identifier string that maps color and style to this syntax item.
• priority="string" The value ranges from "1" to "99". Highest priority is "1". Specifies

the precedence of the scheme. Blocks that are inside blocks with higher priority are ignored;
blocks that are inside blocks with the same or lower priority take precedence. The priority
defaults to "50" if you do not specify one.

• doctypes="doc_list" Optional. Specifies a comma-separated list of the document types to
which this code coloring scheme applies. This value is necessary to resolve conflicts in which
different start and end blocks use the same extensions.

Contents

blockEnd, blockStart, brackets, charStart, charEnd, charEsc, commentStart,
commentEnd, cssProperty, cssSelector, cssValue, defaultAttribute, defaultText,
endOfLineComment, entity, functionKeyword, idChar1, idCharrest, ignoreCase,
ignoreMMTParam, ignoreTags, keywords, numbers, operators, regexp, sampletext,
searchPattern, stringStart, stringEnd, stringEsc, urlProtocol, urlProtocols

Container

The codeColoring tag.

Example

<scheme name="Text" id="Text" doctypes="Text" priority="1">
Code coloring 85

<blockEnd>

Description

Optional. Text values that delimit the end of the text block for this scheme. The blockEnd and
blockStart tags must be paired and the combination must be unique. Values are not evaluated
as case-sensitive. The blockEnd value can be one character. Multiple instances of this tag are
allowed. For more information on blockEnd strings, see “Wildcard characters” on page 100.

Attributes

None.

Example

<blockEnd><![CDATA[--->]]></blockEnd>

<blockStart>

Description

Optional. Specified only if the coloring scheme can be embedded inside a different coloring
scheme. The blockStart and blockEnd tags must be paired, and the combination must be
unique. Values are not evaluated as case-sensitive. The blockStart value must be two or more
characters in length. Multiple instances of this tag are allowed. For more information on
blockStart strings, see “Wildcard characters” on page 100. For information on the blockStart
scheme attribute, see “Scheme block delimiter coloring” on page 97.

Attributes

canNest, doctypes, id, name, scheme

• canNest Specifies whether the scheme can nest inside itself. Values are "Yes" or "No". The
default is "No".

• doctypes="doc_type1, doc_type2,…" Required. Specifies a comma-separated list of
document types into which you can nest this code coloring scheme. Document types are
defined in the Dreamweaver Configuration/Document Types/MMDocumentTypes.xml file.

• id="id_string" Required when scheme="customText". An identifier string that maps
color and style to this syntax item.

• name="display_name" A string that appears in the Edit Coloring Scheme dialog box when
scheme="customText".

• scheme Required. This defines how the blockStart and blockEnd strings are colored. For
information on the possible values for the scheme attribute, see “Scheme block delimiter
coloring” on page 97.

Example

<blockStart doctypes="ColdFusion,CFC" scheme="innerText"
canNest="Yes"><![CDATA[<!---]]></blockStart>
86 Chapter 5: Customizing Code View

<brackets>

Description

A list of characters that represent brackets.

Attributes

name, id

• name="bracket_name" A string that assigns a name to the list of brackets.
• id="id_string" Required. An identifier string that maps color and style to this syntax item.

Example

<brackets name="Bracket" id="CodeColor_JavaBracket"><![CDATA[{[()]}]]></
brackets>

<charStart>

Description

Contains a text string that represents the delimiter of the start of a character. You must specify the
charStart and charEnd tags in pairs. Multiple charStart … charEnd pairs are allowed.

Attributes

None.

Example

<charStart><![CDATA[']]></charStart>

<charEnd>

Description

Contains a text string that represents the delimiter of the end of a character. You must specify the
charStart and charEnd tags in pairs. Multiple charStart … charEnd pairs are allowed.

Attributes

None.

Example

<charEnd><![CDATA[']]></charEnd>

<charEsc>

Description

Contains a text string that represents an escape character. Multiple charEsc tags are allowed.

Attributes

None.

Example

<charEsc><![CDATA[\]]></charEsc>
Code coloring 87

<commentStart>

Description

A text string that delimits the start of a comment block. You must specify the commentStart and
commentEnd tags in pairs. Multiple commentStart…/commentEnd pairs are allowed.

Attributes

None.

Example

<commentStart><![CDATA[<%--]]></commentStart>

<commentEnd>

Description

A text string that delimits the end of a comment block. You must specify the commentStart and
commentEnd tags in pairs. Multiple commentStart…/commentEnd pairs are allowed.

Attributes

None.

Example

<commentEnd><![CDATA[--%>]]></commentEnd>

<cssImport/>

Description

An empty tag that indicates the code coloring rule for the @import function of the style element
in a CSS.

Attributes

name, id

name="cssImport_name" A string that assigns a name to the CSS @import function.

id="id_string" Required. An identifier string that maps color and style to this syntax item.

Example

<cssImport name="@import" id="CodeColor_CSSImport" />

<cssMedia/>

Description

An empty tag that indicates the code coloring rule for the @media function of the style element
in a CSS.

Attributes

name, id

• name="cssMedia_name" A string that assigns a name to the CSS @media function.
• id="id_string" Required. An identifier string that maps color and style to this syntax item.
88 Chapter 5: Customizing Code View

Example

<cssMedia name="@media" id="CodeColor_CSSMedia" />

<cssProperty/>

Description

An empty tag that indicates CSS rules and holds code coloring attributes.

Attributes

name, id

• name="cssProperty_name" A string that assigns a name to the CSS property.
• id="id_string" Required. An identifier string that maps color and style to this syntax item.

Code Color Preference

CSS Property

Example

<cssProperty name="Property" id="CodeColor_CSSProperty" />

<cssSelector/>

Description

An empty tag that indicates CSS rules and holds code coloring attributes.

Attributes

name, id

• name="cssSelector_name" A string that assigns a name to the CSS Selector.
• id="id_string" Required. An identifier string that maps color and style to this syntax item.

Example

<cssSelector name="Selector" id="CodeColor_CSSSelector" />

<cssValue/>

Description

An empty tag that indicates CSS rules and holds code coloring attributes.

Attributes

name, id

• name="cssValue_name" A string that assigns a name to the CSS value.
• id="id_string" Required. An identifier string that maps color and style to this syntax item.

Example

<cssValue name="Value" id="CodeColor_CSSValue" />
Code coloring 89

<defaultAttribute>

Description

Optional. This tag applies only to tag-based syntax (that is, where ignoreTags="No"). If this tag
is present, then all tag attributes are colored according to the style assigned to this tag. If this tag is
omitted, then attributes are colored the same as the tag.

Attributes

name

• A string that assigns a name to the default attribute.

Example

<defaultAttribute name="Attribute"/>

<defaultTag>

Description

This tag is used to specify the default color and style for tags in a scheme.

Attributes

name, id

• name="display_name" A string that Dreamweaver displays in the code color editor.
• id="id_string" Required. An identifier string that maps color and style to this syntax item.

Example

<defaultTag name="Other Tags" id="CodeColor_HTMLTag" />

<defaultText/>

Description

Optional. If this tag is present, all text that is not defined by any other tag is colored according to
the style assigned to this tag. If this tag is omitted, black text is used.

Attributes

name, id

• name="cssSelector_name" A string that assigns a name to the CSS Selector.
• id="id_string" Required. An identifier string that maps color and style to this syntax item.

Example

<defaultText name="Text" id="CodeColor_TextText" />
90 Chapter 5: Customizing Code View

<endOfLineComment>

Description

A text string that delimits the start of a comment that continues until the end of the current line.
Multiple endOfLineComment…/endOfLineComment tags are allowed.

Attributes

None.

Example

<endOfLineComment><![CDATA[//]]></endOfLineComment>

<entity/>

Description

An empty tag that indicates that HTML special characters should be recognized and hold
coloring attributes.

Attributes

name, id

• name="entity_name" A string that assigns a name to the entity.
• id="id_string" Required. An identifier string that maps color and style to this syntax item.

Example

<entity name="Special Characters" id="CodeColor_HTMLEntity" />

<functionKeyword>

Description

Identifies keywords that define a function. Dreamweaver uses these keywords to perform code
navigation. Multiple functionKeyword tags are allowed.

Attributes

name, id

• name="functionKeyword_name" A string that assigns a name to the functionKeyword
block.

• id="id_string" Required. An identifier string that maps color and style to this syntax item.

Example

<functionKeyword name="Function Keyword"
id="CodeColor_JavascriptFunction">function</functionKeyword>
Code coloring 91

<idChar1>

Description

A list of characters, each of which Dreamweaver can recognize as the first character in
an identifier.

Attributes

name, id

• name="idChar1_name" A string that assigns a name to the list of identifier characters.
• id="id_string" Required. An identifier string that maps color and style to this syntax item.

Example

<idChar1>_$abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ</idChar1>

<idCharRest>

Description

A list of characters that are to be recognized as the remaining characters in an identifier. If
idChar1 is not specified, all characters of the identifier are validated against this list.

Attributes

name, id

• name="idCharRest_name" A string that assigns a name to the stringStart block.
• id="id_string" Required. An identifier string that maps color and style to this syntax item.

Example

<idCharRest name="Identifier"
id="CodeColor_JavascriptIdentifier">_$abcdefghijklmnopqrstuvwxyzABCDEFGHIJK
LMNOPQRSTUVWXYZ0123456789</idCharRest>

<ignoreCase>

Description

Specifies whether case should be ignored when comparing tokens to keywords. Values are Yes or
No. The default is Yes.

Attributes

None.

Example

<ignoreCase>Yes</ignoreCase>

<ignoreMMTParams>

Description

Specifies whether the MMTInstance:Param, <!-- InstanceParam, or <!-- #InstanceParam tags
should be colored specially. Values are Yes and No; the default is Yes. This handles proper
coloring in pages that use Templates.
92 Chapter 5: Customizing Code View

Attributes

None.

Example

<ignoreMMTParams>No</ignoreMMTParams>

<ignoreTags>

Description

Specifies whether markup tags should be ignored. Values are Yes and No; the default is Yes. Set to
No when syntax is for tag markup language that is delimited by < and >. Set to Yes when syntax is
for a programming language.

Attributes

None.

Example

<ignoreTags>No</ignoreTags>

<isLocked>

Description

Specifies whether the text that is matched by this scheme is locked from being edited in the Code
view. Values are Yes and No. Default is No.

Attributes

None.

Example

<isLocked>Yes</isLocked>

<keyword>

Description

A string of text that defines a keyword. Multiple keyword tags are allowed. A keyword may start
with any character, but subsequent characters may only be a-z, A-Z, 0-9, _, $, or @.

The code color is specified by the containing keyword tags.

Attributes

None.

Example

<keyword>.getdate</keyword>
Code coloring 93

<keywords>

Description

List of keywords for type specified in category attribute. Multiple keywords tags are allowed.

Attributes

name, id

• name="keywords_name" A string that assigns a name to the list of keywords.
• id="id_string" Required. An identifier string that maps color and style to this syntax item.

Contents

<keyword></keyword>

Example

<keywords name="Reserved Keywords" id="CodeColor_JavascriptReserved">
<keyword>break</keyword>
<keyword>case</keyword>

</keywords>

<numbers/>

Description

An empty tag that specifies numbers that should be recognized and also holds color attributes.

Attributes

name, id

• name="number_name" A string that assigns a name to the numbers tag.
• id="id_string" Required. An identifier string that maps color and style to this syntax item.

Example

<numbers name="Number" id="CodeColor_CFScriptNumber" />

<operators>

Description

A list of characters to be recognized as operators.

Attributes

name, id

• name="operator_name" A string that assigns a name to the list of operator characters.
• id="id_string" Required. An identifier string that maps color and style to this syntax item.

Example

<operators name="Operator" id="CodeColor_JavaOperator"><![CDATA[+-*/
%<>!?:=&|^~]]></operators>
94 Chapter 5: Customizing Code View

<regexp>

Description

Specifies a list of searchPattern tags.

Attributes

name, id, delimiter, escape

• name="stringStart_name" A string that assigns a name to the list of search pattern strings.
• id="id_string" Required. An identifier string that maps color and style to this syntax item.
• delimiter The character or string that starts and ends a regular expression.
• escape The character or string that signals special character processing, known as the

“escape” character or string.

Contents

<searchPattern></searchPattern>

Example

<regexp name="RegExp" id="CodeColor_JavascriptRegexp" delimiter="/"
escape="\\">

<searchPattern><![CDATA[(\s*/\e*\\/]]></searchPattern>
<searchPattern><![CDATA[=\s*/\e*\\/]]></searchPattern>

</regexp>

<sampleText>

Description

Representative text that appears in the Preview window of the Edit Coloring Scheme dialog box.
For more information on the Edit Coloring Scheme dialog box, see “Editing schemes”
on page 103.

Attributes

doctypes

• doctypes="doc_type1, doc_type2,...” The document types for which this sample
text appears.

Example

<sampleText doctypes="JavaScript"><![CDATA[/* JavaScript */
function displayWords(arrayWords) {

for (i=0; i < arrayWords.length(); i++) {
// inline comment
alert("Word " + i + " is " + arrayWords[i]);

}
}

var tokens = new Array("Hello", "world");
displayWords(tokens);
]]></sampleText>
Code coloring 95

<searchPattern>

Description

A string of characters that define a regular search pattern using supported wildcard characters.
Multiple searchPattern tags are allowed.

Attributes

None.

Container

The regexp tag.

Example

<searchPattern><![CDATA[(\s*/\e*\\/]]></searchPattern>

<stringStart>

Description

These tags contain a text string that represents the delimiter of the start of a string. You must
specify the stringStart and stringEnd tags in pairs. Multiple stringStart … stringEnd
pairs are allowed.

Attributes

name, id, wrap

• name="stringStart_name" A string that assigns a name to the stringStart block.
• id="id_string" Required. An identifier string that maps color and style to this syntax item.
• wrap="true" or "false". Defines whether code coloring recognizes text strings that wrap to

the next line. The default is "true".

Example

<stringStart name="Attribute Value" id="CodeColor_HTMLString"><![CDATA["]]></
stringStart>

<stringEnd>

Description

Contains a text string that represents the delimiter of the end of a code string. You must specify
the stringStart and stringEnd tags in pairs. Multiple stringStart … stringEnd pairs are
allowed.

Attributes

None.

Example

<stringEnd><![CDATA["]]></stringEnd>
96 Chapter 5: Customizing Code View

<stringEsc>

Description

Contains a text string that represents the delimiter of a string escape character. Multiple
stringEsc tags are allowed.

Attributes

None.

Example

<stringEsc><![CDATA[\]]></stringEsc>

<tagGroup>

Description

This tag groups one or more tags to which you can assign a unique color and style.

Attributes

id, name, taglibrary, tags

• id="id_string" Required. An identifier string that maps color and style to this syntax item.
• name="display_name" A string that Dreamweaver displays in the code color editor.
• taglibrary="tag_library_id" The identifier of the tag library to which this group of

tags belongs.
• tags="tag_list" A tag or comma-separated list of tags that comprise the tag group.

Example

<tagGroup name="HTML Table Tags" id="CodeColor_HTMLTable"
taglibrary="DWTagLibrary_html"
tags="table,tbody,td,tfoot,th,thead,tr,vspec,colw,hspec" />

Scheme block delimiter coloring

The blockStart scheme attribute controls the coloring of block opening and closing strings or
block delimiters. The following values are valid values for the blockStart attribute.
Note: Do not confuse the blockStart.scheme attribute with the scheme tag.

innerText

This value tells Dreamweaver to color the block delimiters the same as the default text of the
scheme inside them.

The Template scheme provides an example of the effect of this scheme. The Template scheme
matches blocks of read-only code that are colored gray because you cannot edit them. The block
delimiters, which are the <!-- #EndEditable --> and <!-- #BeginEditable "..." -->
strings, are also colored gray because they also are not editable.
Code coloring 97

Sample code

<!-- #EndEditable -->
<p>header</p>
<!-- #BeginEditable "test" -->
<p>Here's some editable text </p>
<p> </p>
<!-- #EndEditable -->

Example

<blockStart doctypes="ASP-JS,ASP-VB, ASP.NET_CSharp, ASP.NET_VB,
ColdFusion,CFC, HTML, JSP,LibraryItem,PHP_MySQL"
scheme="innerText"><![CDATA[<!--\s*#BeginTemplate]]></blockStart>

customText

This value tells Dreamweaver to use custom colors to color the block delimiters.

Sample code

The delimiters for blocks of PHP script, which appear in red, provide an example of the effect of
the customText value:
<?php

if ($loginMsg <> "")
echo $loginMsg;
?>

Example

<blockStart name="Block Delimiter" id="CodeColor_JavaBlock" doctypes="JSP"
scheme="customText"><![CDATA[<%]]></blockStart>

outerTag

The outerTag value specifies that both the blockStart and blockEnd tags are complete tags and
that Dreamweaver should color them as tags would be colored in the scheme that
surrounds them.

The JavaScript scheme, in which <script> and </script> strings are the blockStart and
blockEnd tags, provides an example of this value. This scheme matches blocks of JavaScript code,
which does not recognize tags, so the delimiters need to be colored by the scheme that
surrounds them.

Sample code

<script language="JavaScript">
// comment
if (true)
window.alert("Hello, World");
</script>

Example

<blockStart doctypes="PHP_MySQL"
scheme="outerTag"><![CDATA[<script\s+language="php">]]></blockStart>
98 Chapter 5: Customizing Code View

innerTag

This value is identical to the outerTag value, except that the tag coloring is taken from the
scheme inside the delimiters. This is currently used for the html tag.

nameTag

This value specifies that the blockStart string is the opening of a tag and blockEnd string is the
closing of a tag, and these delimiters are to be colored based on the tag settings of the scheme.

This type of scheme displays tags that can be embedded inside other tags, such as the cfoutput
tag.

Sample code

<input type="text" name="zip"
<cfif newRecord IS "no">
<cfoutput query="employee"> Value="#zip#" </cfoutput>
</cfif>
>

Example

<blockStart doctypes="ColdFusion,CFC"
scheme="nameTag"><![CDATA[<cfoutput\n]]></blockStart>

nameTagScript

This value is identical to the nameTag scheme; however, the content is script, such as assignment
statements or expressions, as opposed to attribute name=value pairs.

This type of scheme displays a unique type of tag that contains script inside the tag itself, such as
the ColdFusion cfset, cfif, and cfifelse tags, and can be embedded inside other tags.

Sample Code

See the sample text for nameTag.

Example

<blockStart doctypes="ColdFusion,CFC"
scheme="nameTagScript"><![CDATA[<cfset\n]]></blockStart>

Scheme processing

Dreamweaver has three basic code coloring modes: CSS mode, Script mode, and Tags mode.

In each mode, Dreamweaver applies code coloring only to particular fields. The following chart
indicates which fields are subject to code coloring in each mode.

Field CSS Tags Script

defaultText X X

defaultTag X

defaultAttribute X

comment X X X

string X X X
Code coloring 99

To make the process of defining schemes more flexible, Dreamweaver lets you specify wildcard
and escape characters.

Wildcard characters

The following is a list of wildcard characters that Dreamweaver supports, along with the strings to
specify them and descriptions of their usage.

cssProperty X

cssSelector X

cssValue X

character X X

function keyword X

identifier X

number X X

operator X

brackets X X

keywords X X

Wildcard Escape
string

Description

Wildcard * Skip all characters in the rule until the character that follows the
wildcard is found. For example, use <MMTInstance:Editable
name=”*”> to match all tags of this type that have the name attribute
specified.

Wildcard with
escape character

\e*x Where x is the escape character.
This is the same as the wildcard, except that an escape character
can be specified. The character following any escape character is
ignored. This lets the character following the wildcard appear in the
string without matching the criteria to end wildcard processing.
For example, /\e*\\/ is used to recognize a JavaScript regular
expression that starts and ends with a forward slash (/) and can
contain forward slashes that are preceded by a backslash (\).
Because the backslash is the code coloring escape character, you
must precede it with a backslash when you specify it in code
coloring XML.

Field CSS Tags Script
100 Chapter 5: Customizing Code View

Escape characters

The following is a list of escape characters that Dreamweaver supports, along with the strings to
specify them and descriptions of their usage.

Maximum string length

The maximum length allowed for a data string is 100 characters. For example, the following
blockEnd tag contains a wildcard character.
<blockEnd><![CDATA[<!--\s*#BeginEditable\s*"*"\s*-->]]></blockEnd>

Assuming the optional white space wildcard strings (\s*) are a single space character, which
Dreamweaver generates automatically, then the data string is 26 characters long, plus a wildcard
string (*) for the name.
<!-- #BeginEditable "*" -->

This leaves an editable region name that can be as man y as 74 characters, which is the maximum
of 100 characters minus 26.

Optional whitespace \s* This matches zero or more white space or newline characters.
For example, <!--\s*#include is used to match ASP include
directives whether they have any white space preceding the
#include token or not because either case is valid.
The white space wildcards match any combination of white space
and newline characters.

Required whitespace \s+ This matches one or more white space or newline characters.
For example, <!--#include\s+virtual is used to match ASP
include directives with any combination of white space between
#include and virtual. White space must be specified between
these tokens, but it can be any combination of valid white space
characters.
The white space wildcards match any combination of white space
and newline characters.

Escape character Escape
string

Description

Backslash \\ The backslash character (\) is the code coloring escape character,
so it must be escaped to be specified in a code coloring rule.

White space \s This escape character matches any non-visible characters, except
those listed that match the Newline escape character, such as space
and tab characters.
The optional white space and required white space wildcards match
both the white space and newline characters.

Newline \n This escape character matches the newline (also known as linefeed)
and carriage-return characters.

Wildcard Escape
string

Description
Code coloring 101

Scheme precedence

Dreamweaver uses the following algorithm to color text syntax in Code view:

1 Dreamweaver determines the initial syntax scheme based on the document type of the current
file. The file document type is matched against the scheme.documentType attribute. If no
match is found, the scheme where scheme.documentType = "Text" is used.

2 Schemes can be nested if they specify blockStart…blockEnd pairs. All nestable schemes that
have the current file extension listed in one of the blockStart.doctypes attribute are enabled
for the current file and all others are disabled.
Note: All blockStart/blockEnd combinations should be unique.

Schemes can nest within another scheme only if the scheme.priority is equal to or greater
than the outer scheme. If the priority is equal, the scheme can nest only in the body state of the
outer scheme. For example, the <script>...</script> block can nest only inside the
<html>...</html> block where tags are legal—not inside a tag, attribute, string, comment, and
so on.
Schemes with a higher priority than the outer scheme can nest almost anywhere within the
outer scheme. For example, in addition to nesting in the body state of the <html>...</html>
block, the <%...%> block can also nest inside a tag, attribute, string, comment, and so on.
The maximum nesting level is 4.

3 When matching blockStart strings, Dreamweaver always uses the longest match.
4 After reaching the blockEnd string for the current scheme, syntax coloring returns to the state

where the blockStart string is detected. For example, if a <%...%> block is found within an
HTML string, then coloring resumes with the HTML string color.
102 Chapter 5: Customizing Code View

Editing schemes

You can edit the styles for a code coloring scheme either by editing the code coloring file or by
selecting the Code Coloring category in the Dreamweaver Preferences dialog box, as shown in the
following figure:

For fields that you can specify more than once, such as stringStart, specify color and style settings
only on the first tag. Data will be lost when you split color and style settings across tags and you
later edit the colors or styles by using the Preferences dialog box.
Note: Macromedia recommends that you create backup copies of all XML files before you make
changes. You should verify all manual changes before you edit color and style settings using the
Preferences dialog box. Data will be lost if you edit an invalid XML file using the Preferences
dialog box.
Code coloring 103

To edit styles for a scheme using the Code Coloring category in the Preferences dialog box,
double-click a document type, or click the Edit Coloring Scheme button, to open the Edit
Coloring Scheme dialog box.

To edit the style for a particular element, select it in the Styles For list. The items listed in the
Styles For pane include the fields for the scheme being edited and also the schemes that might
appear as blocks within this scheme. For example, if you edit the HTML scheme, the fields for
CSS and JavaScript blocks are also listed.

The fields listed for a scheme correspond to the fields defined in the XML file. The value of the
scheme.name attribute precedes each field listed in the Styles For pane. Fields that do not have a
name are not listed.

The style for a particular element includes bold, italic, underline, and background color in
addition to code coloring. After you select an element in the Styles For pane, you can change any
of these style characteristics.

The Preview area displays how sample text would appear with the current settings. The sample
text is taken from the sampleText setting for the scheme.

Select an element in the Preview area to change the selection in the Styles For list.

If you change the setting for an element of a scheme, Dreamweaver stores the value in the code
coloring file and overrides the original setting. When you click OK, Dreamweaver reloads all code
coloring changes automatically.
104 Chapter 5: Customizing Code View

Code coloring examples

The following code coloring examples illustrate the code coloring schemes for a cascading style
document and a JavaScript document. The lists of keywords in the JavaScript example are
abbreviated for the sake of keeping the example short.

CSS code coloring

<scheme name="CSS" id="CSS" doctypes="CSS" priority="50">
<ignoreCase>Yes</ignoreCase>
<ignoreTags>Yes</ignoreTags>
<blockStart doctypes="ASP-JS,ASP-

VB,ASP.NET_CSharp,ASP.NET_VB,ColdFusion,CFC,HTML,JSP,LibraryItem,DWTemplate
,PHP_MySQL" scheme="outerTag"><![CDATA[<style>]]></blockStart>

<blockEnd><![CDATA[</style>]]></blockEnd>
<blockStart doctypes="ASP-JS,ASP-

VB,ASP.NET_CSharp,ASP.NET_VB,ColdFusion,CFC,HTML,JSP,LibraryItem,DWTemplate
,PHP_MySQL" scheme="outerTag"><![CDATA[<style\s+*>]]></blockStart>

<blockEnd><![CDATA[</style>]]></blockEnd>
<commentStart name="Comment" id="CodeColor_CSSComment"><![CDATA[/*]]></

commentStart>
<commentEnd><![CDATA[*/]]></commentEnd>
<endOfLineComment><![CDATA[<!--]]></endOfLineComment>
<endOfLineComment><![CDATA[-->]]></endOfLineComment>
<stringStart name="String" id="CodeColor_CSSString"><![CDATA["]]></

stringStart>
<stringEnd><![CDATA["]]></stringEnd>
<stringStart><![CDATA[']]></stringStart>
<stringEnd><![CDATA[']]></stringEnd>
<stringEsc><![CDATA[\]]></stringEsc>
<cssSelector name="Selector" id="CodeColor_CSSSelector" />
<cssProperty name="Property" id="CodeColor_CSSProperty" />
<cssValue name="Value" id="CodeColor_CSSValue" />
<sampleText doctypes="CSS"><![CDATA[/* Comment */

H2, .head2 {
 font-family : 'Sans-Serif';
 font-weight : bold;
 color : #339999;
 }]]>

</sampleText>
</scheme>

CSS sample text

The following sample text for the CSS scheme illustrates the CSS code coloring scheme:
/* Comment */
H2, .head2 {
 font-family : 'Sans-Serif';
 font-weight : bold;
 color : #339999;

 }

The following lines from the Colors.xml file provide the color and style values that are seen in the
sample text and were assigned by the code coloring scheme:
<syntaxColor id="CodeColor_CSSSelector" text="#FF00FF" />
<syntaxColor id="CodeColor_CSSProperty" text="#000099" />
<syntaxColor id="CodeColor_CSSValue" text="#0000FF" />
Code coloring 105

JavaScript code coloring

<scheme name="JavaScript" id="JavaScript" doctypes="JavaScript" priority="50">
<ignoreCase>No</ignoreCase>
<ignoreTags>Yes</ignoreTags>
<blockStart doctypes="ASP-JS,ASP-

VB,ASP.NET_CSharp,ASP.NET_VB,ColdFusion,CFC,HTML,JSP,LibraryItem,DWTemplate
,PHP_MySQL" scheme="outerTag"><![CDATA[<script>]]></blockStart>

<blockEnd><![CDATA[</script>]]></blockEnd>
<blockStart doctypes="ASP-JS,ASP-

VB,ASP.NET_CSharp,ASP.NET_VB,ColdFusion,CFC,HTML,JSP,LibraryItem,DWTemplate
,PHP_MySQL" scheme="outerTag"><![CDATA[<script\s+*>]]></blockStart>

<blockEnd><![CDATA[</script>]]></blockEnd>
<commentStart name="Comment" id="CodeColor_JavascriptComment"><![CDATA[/

*]]></commentStart>
<commentEnd><![CDATA[*/]]></commentEnd>
<endOfLineComment><![CDATA[//]]></endOfLineComment>
<endOfLineComment><![CDATA[<!--]]></endOfLineComment>
<endOfLineComment><![CDATA[-->]]></endOfLineComment>
<stringStart name="String"

id="CodeColor_JavascriptString"><![CDATA["]]></stringStart>
<stringEnd><![CDATA["]]></stringEnd>
<stringStart><![CDATA[']]></stringStart>
<stringEnd><![CDATA[']]></stringEnd>
<stringEsc><![CDATA[\]]></stringEsc>
<brackets name="Bracket"

id="CodeColor_JavascriptBracket"><![CDATA[{[()]}]]></brackets>
<operators name="Operator" id="CodeColor_JavascriptOperator"><![CDATA[+-

*/%<>!?:=&|^]]></operators>
<numbers name="Number" id="CodeColor_JavascriptNumber" />
<regexp name="RegExp" id="CodeColor_JavascriptRegexp" delimiter="/"

escape="\\">
<searchPattern><![CDATA[(\s*/\e*\\/]]></searchPattern>
<searchPattern><![CDATA[=\s*/\e*\\/]]></searchPattern>

</regexp>
<idChar1>_$abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ</idChar1>
<idCharRest name="Identifier"

id="CodeColor_JavascriptIdentifier">_$abcdefghijklmnopqrstuvwxyzABCDEFGHIJK
LMNOPQRSTUVWXYZ0123456789</idCharRest>

<functionKeyword name="Function Keyword"
id="CodeColor_JavascriptFunction">function</functionKeyword>

<keywords name="Reserved Keywords" id="CodeColor_JavascriptReserved">
<keyword>break</keyword>

. . .
</keywords>
<keywords name="Native Keywords" id="CodeColor_JavascriptNative">

<keyword>abs</keyword>
. . .

</keywords>
<keywords id="CodeColor_JavascriptNumber">

<keyword>Infinity</keyword>
<keyword>Nan</keyword>

</keywords>
<keywords name="Client Keywords" id="CodeColor_JavascriptClient">

<keyword>alert</keyword>
. . .

</keywords>
<sampleText><![CDATA[/* JavaScript */

function displayWords(arrayWords) {
for (i=0; i < arrayWords.length(); i++) {

// inline comment
106 Chapter 5: Customizing Code View

alert("Word " + i + " is " + arrayWords[i]);
}

}

var tokens = new Array("Hello", "world");
displayWords(tokens);
]]></sampleText>

</scheme>

JavaScript sample text

The sample text for the JavaScript scheme illustrates the JavaScript code coloring scheme as
follows:
* JavaScript */
function displayWords(arrayWords) {

for (i=0; i < arrayWords.length(); i++) {
// inline comment
alert("Word " + i + " is " + arrayWords[i]);

}
}

var tokens = new Array("Hello", "world");
displayWords(tokens);

The following lines from the Colors.xml file provide the color and style values that are seen in the
sample text and were assigned by the code coloring scheme:
<syntaxColor id="CodeColor_JavascriptComment" text="#999999" italic="true" />
<syntaxColor id="CodeColor_JavascriptFunction" text="#000000" bold="true" />
<syntaxColor id="CodeColor_JavascriptBracket" text="#000099" bold="true" />
<syntaxColor id="CodeColor_JavascriptNumber" text="#FF0000" />
<syntaxColor id="CodeColor_JavascriptClient" text="#990099" />
<syntaxColor id="CodeColor_JavascriptNative" text="#009999" />

Code validation

When opening a document in Code view, Dreamweaver automatically validates that the
document is not using any tags, attributes, CSS properties, or CSS values that are not available in
the target browsers that the user selected. Dreamweaver underlines errors with a wavy red line.

Dreamweaver stores browser profiles in the Browser Profile folder inside the Dreamweaver
Configuration folder. Each browser profile is defined as a text file that is named for the browser.
For example, the browser profile for Internet Explorer version 6.0 is Internet_Explorer_6.0.txt.
To support target browser checking for CSS, Dreamweaver stores CSS profile information for a
browser in an XML file whose name corresponds to the browser profile but with a suffix of
_CSS.xml. For example, the CSS profile for Internet Explorer 6.0 is
Internet_Explorer_6.0_CSS.xml. You might want to make changes to a CSS profile file if you
find that Dreamweaver is reporting an error that you do not want.

The CSS profile file consists of three XML tags: css-support, property, and value. The
following sections describe these tags.
Code validation 107

<css-support>

Description

This tag is the root node for a set of property and value tags that are supported by a
particular browser.

Attributes

None.

Contents

The property and value tags.

Container

None.

Example

<css-support>

. . .
</css-support>

<property>

Description

Defines a supported CSS property for the browser profile.

Attributes

name, names, supportlevel, message

• name="property_name" The name of the property for which you are specifying support.
• names="property_name, property_name, ..." A comma-separated list of property names

for which you are specifying support.
The names attribute is a kind of shorthand. For example, the following names attribute is a
shorthand method of defining the name attribute that follows it:
<property names="foo,bar">

<value type="named" name="top"/>
<value type="named" name="bottom"/>

</property>

<property name="foo">
<value type="named" name="top"/>
<value type="named" name="bottom"/>

</property>
<property name="bar">

<value type="named" name="top"/>
<value type="named" name="bottom"/>

</property>

• supportlevel="error", "warning", "info", or "supported" Specifies the level of
support for the property. If not specified, "supported" is assumed. If you specify a support
level other than "supported" and omit the message attribute, Dreamweaver uses the default
message, “CSS property name property_name is not supported.”
108 Chapter 5: Customizing Code View

• message="message_string" The message attribute defines a message string that
Dreamweaver displays when it finds the property in a document. The message string describes
possible limitations or workarounds for the property value.

Contents

value

Container

css-support

Example

<property name="background-color" supportLevel="supported">

<value>

Description

Defines a list of values supported by the current property.

Attributes

type, name, names, supportlevel, message,

• type="any", "named", "units", "color", "string", or "function" Specifies the type
of value. If you specify "named", "units", or "color", then either the name or names
attribute must specify the value IDs to match for this item. The "units" value matches a
numeric value, followed by one of the units values specified in the names attribute.

• name="value_name" A CSS value identifier. No spaces or punctuation allowed other than
hyphen (-). The name of one of the values that are valid for the CSS property named in the
parent property node. This can identify either a specific value or a units specifier.

• names="name1, name2, . . ." Specifies a comma-separated list of value IDs.
• supportlevel="error", "warning", "info", or "supported" Specifies the level of

support for this value in the browser. If not specified, the value "supported" is assumed.
• message="message_string" The message attribute defines a message string that

Dreamweaver displays when it finds the property value in a document. If the message
attribute is omitted, Dreamweaver displays a message string of “value_name is not supported.”

Contents

None.

Container

property

Example

<property name="margin">
<value type="units" name="ex" supportLevel="warning"

message="The implementation of ex units is buggy in Safari 1.0."/>
<value type="units" names="%,em,px,in,cm,mm,pt,pc”/>
<value type="named" name="auto"/>
<value type="named" name="inherit"/>

</property>
Code validation 109

Changing default HTML formatting

To change general code formatting preferences, use the Code Format category of the Preferences
dialog box. To change the format of specific tags and attributes, use the Tag Library Editor
(Edit > Tag Libraries). For more information, see Using Dreamweaver on the Dreamweaver
Help menu.

You can also edit the formatting for a tag by editing the VTM file that corresponds to the tag
(in a subfolder of the Tag Libraries configuration folder), but it’s much easier to change
formatting within Dreamweaver.

If you add or remove a VTM file, you must edit the TagLibraries.vtm file; Dreamweaver ignores
any VTM file that is not listed in TagLibraries.vtm.
Note: Edit this file in a text editor, not in Dreamweaver.
110 Chapter 5: Customizing Code View

P
A

R
T

 II
PART II
Extension APIs
Learn about functions that you need to write when you create new objects, toolbars, tag editors,
floating panels, server behaviors, components, or server models.

Chapter 6: Insert Bar Objects. 113

Chapter 7: Commands. 135

Chapter 8: Menus and Menu Commands . 145

Chapter 9: Toolbars . 171

Chapter 10: Reports. 197

Chapter 11: Tag Libraries and Editors . 203

Chapter 12: Property Inspectors. 217

Chapter 13: Floating Panels . 223

Chapter 14: Behaviors . 235

Chapter 15: Server Behaviors . 247

Chapter 16: Data Sources . 293

Chapter 17: Server Formats . 307

Chapter 18: Components . 313

Chapter 19: Server Models. 327

Chapter 20: Data Translators . 335

Chapter 21: C-Level Extensibility . 353

CHAPTER 6
Insert Bar Objects
In Dreamweaver, objects insert specific strings of code into a user’s document. Objects commonly
reside on the Insert bar, on the Insert menu, or both, so users can add content, such as images,
layers, and tables, by clicking icons or menu options. You can add items to the Insert bar
to automate repetitive tasks for your users or even create dialog boxes for users to set
specific attributes.

Objects reside in the Configuration/Objects folder inside the Dreamweaver application folder.
The Objects subfolders are grouped according to their location on the Insert bar, and you can
open these files to see the construction of current objects. For example, you can open the
Configuration/Objects/Common/Hyperlink.htm file to see the code that corresponds to the
hypertext link object button on the Insert bar.

How object files work

Objects have the following three components:

• The HTML file that defines what is inserted into a document
The HEAD section of an Object file contains JavaScript functions (or references external
JavaScript files) that process form input from the BODY section and control what content is
added to the user’s document.The BODY of an Object file can contain an HTML form that
accepts parameters for the object (for example, the number of rows and columns to insert in a
table) and activates a dialog box for users to input attributes.
Note: The simplest objects contain only the HTML to insert, without a BODY and HEAD tag. For
more information, see “Customizing Dreamweaver” on the Macromedia Support Center.

• The 18 x 18 pixel image that appears on the Insert bar
• Additions to the insertbar.xml file. The insertbar.xml file defines where the object appears on

the Insert bar.
113

When a user selects an object by clicking an icon on the Insert bar or by selecting an item on the
Insert menu, the following events occur:

1 Dreamweaver calls the canInsertObject() function to determine whether to show a
dialog box.

2 The Object file is scanned for a FORM tag. If a form exists and you select the Show Dialog When
Inserting Objects option in the General Preferences dialog box, Dreamweaver calls the
windowDimensions() function, if defined, to determine the size of the dialog box in which to
display the form. If no form exists in the Object file, Dreamweaver does not display a dialog
box, and skips step 2.

3 If Dreamweaver displays a dialog box in step 1, the user enters parameters for the object (such
as the number of rows and columns in a table) in the dialog box text fields and clicks OK.

4 Dreamweaver calls the objectTag() function and inserts its return value into the document
after the current selection (it does not replace the current selection).

5 If Dreamweaver does not find the objectTag() function, it looks for an insertObject()
function and calls that function instead.

The Insert bar definition file

The Configuration/Objects/insertbar.xml file defines the Insert bar properties. This XML file
contains definitions for each individual object, in the order that the objects appear.

The first time a user starts Dreamweaver, the Insert bar appears horizontally above the document.
After that, its visibility and position are saved in the registry.

Insertbar.xml tag hierarchy

The following example shows the format and hierarchy of nested tags in the insertbar.xml file:
<?xml version="1.0" ?>
<!DOCTYPE insertbarset SYSTEM "-//Macromedia//DWExtension insertbar 5.0">

<insertbar xmlns:MMString="http://www.macromedia.com/schemes/data/string/">

<category id="DW_Insertbar_Common" MMString:name="insertbar/categorycommon"
folder="Common">

<button id="DW_Hyperlink" image="Common\Hyperlink.png"
MMString:name="insertbar/hyperlink" file="Common\Hyperlink.htm" />
<button id="DW_Email" image="Common\E-Mail Link.png"
MMString:name="insertbar/email" file="Common\E-Mail Link.htm" />
<separator />

<menubutton id="DW_Images" MMString:name="insertbar/images"
image="Common\Image.png">

<button id="DW_Image" image="Common\Image.png"
MMString:name="insertbar/image" file="Common\Image.htm" />

...
</menubutton>
<separator />

<button id="DW_TagChooser" MMString:name="insertbar/tagChooser"
image="Common\Tag Chooser.gif" command="dw.showTagChooser()"
codeOnly="TRUE"/>

</category>
...

</insertbar>
114 Chapter 6: Insert Bar Objects

Note: Although the insertbar and category tags use </insertbar> and </category> closing
tags to denote the end of their content, the tags button, checkbutton, and separator do not have
related closing tags. Instead button, checkbutton, and separator use a slash (/) before the closing
bracket to denote the end of their attributes and content.

Insert bar definition tags

The insertbar.xml file contains the following tags and attributes:

<insertbar>

Description

This tag signals the content of the Insert bar definition file, and the end of the content is noted
with the </insertbar> closing tag.

Attributes

None.

Example

<insertbar>

<category id="DW_Insertbar_Common" folder="Common">
<button id="DW_Hyperlink" image="Common\Hyperlink.gif"
file="Common\Hyperlink.htm"/>

...
</insertbar>

<category>

Description

This tag defines a category on the Insert bar (such as Common, Forms, or HTML). The end of
the category content is denoted with the </category> closing tag.
Note: By default, the Insert bar is organized into categories of use (such as Common, Forms, or
HTML). In previous versions of Dreamweaver, the Insert bar was organized similarly by tabs. Users
can set their own preferences for how the Insert bar objects are organized (by category or tab). If the
user has selected the tab organization, then the category tag will define each tab.

Attributes

id, {folder}, {showIf}

Example

<category id="DW_Insertbar_Common" folder="Common">
<button id="DW_Hyperlink" image="Common\Hyperlink.gif"
file="Common\Hyperlink.htm"/>

</category>
The Insert bar definition file 115

<menubutton>

Description

This tag defines a pop-up menu for the Insert bar.

Attributes

id, image, {showIf}, {name}, {folder}

Example

<menubutton
 id="DW_ImageMenu"
 name="Images"
 image="Common\imagemenu.gif"
 folder="Images">

 <button id="DW_Image"
 image="Common\Image.gif"
 enabled=""
 showIf=""
 file="Common\Image.htm" />
</menubutton>

<button />

Description

This tag defines a button on the Insert bar that the user clicks to execute the code that the
command or file attributes specify.

Attributes

id, image, name, {canDrag}, {showIf}, {enabled}, {command}, {file}, {tag},
{codeOnly}

Example

<button id="DW_Object"
image="Common\Object.gif"
name=”Object”
enabled="true"
showIf=""
file="Common\Obect.htm"

/>

<checkbutton />

Description

A checkbutton is a button that has a checked or unchecked state. When you click it, a
checkbutton appears pressed in and highlighted. When it is unchecked, a checkbutton appears
flat. Dreamweaver has Mouse-over, Pressed, Mouse-over-while-pressed, and Disabled-while-
pressed states. The command must ensure that clicking the checkbutton causes its state to change.

Attributes

id, image, checked, {showIf}, {enabled}, {command}, {file}, {tag}, {name},
{codeOnly}
116 Chapter 6: Insert Bar Objects

Example

<checkbutton id="DW_StandardView"
name = "Standard View"
image="Tools\Standard View.gif"
checked="_View_Standard"
command="dw.getDocumentDOM().setShowLayoutView(false)"/>

<separator />

Description

This tag displays a vertical line on the Insert bar.

Attributes

{showIf}

Example

<separator showIf="_VIEW_CODE"/>

Insert bar definition tag attributes

The attributes for the Insert bar definition tags have the following meanings:

id="unique id"

Description

The id attribute is an identifier for the buttons that appear on the Insert bar. The id attribute
must be unique identifier for the element within the file.

Example

id="DW_Anchor"

image="image_path”

Description

This attribute specifies the path, relative to the Dreamweaver Configuration folder, to the icon
file that appears on the Insert bar. The icon can be in any format that Dreamweaver can render,
but typically it is a GIF or JPEG file format, 18 x 18 pixels.

Example

image="Common/table.gif"

canDrag="Boolean”

Description

This attribute specifies whether the user can drag the icon into the code or workspace to insert the
object into a document. If omitted, the default value is true.

Example

canDrag="false"
The Insert bar definition file 117

showIf="enabler"

Description

This attribute specifies that this button should appear on the Insert bar only if the given
Dreamweaver enabler is a true value. If you do not specify showIf, the button always appears.
The possible enablers are _SERVERMODEL_ASP, _SERVERMODEL_ASPNET, _SERVERMODEL_JSP,
_SERVERMODEL_CFML (for all versions of ColdFusion), _SERVERMODEL_CFML_UD4 (only for
UltraDev version 4 of ColdFusion), _SERVERMODEL_PHP, _FILE_TEMPLATE, _VIEW_CODE,
_VIEW_DESIGN, _VIEW_LAYOUT, _VIEW_EXPANDED_TABLES, and _VIEW_STANDARD.
You can specify multiple enablers by placing a comma (which means AND) between the enablers.
You can specify NOT with "!".

Example

If you want a button to appear only in Code view for an ASP page, specify the enablers as
showIf="_VIEW_CODE, _SERVERMODEL_ASP".

enabled="enabler"

Description

This attribute specifies that the item is available to the user if the DW_enabler value is true. If
you do not specify the enabled function, the item defaults to always enabled. The possible
enablers are _SERVERMODEL_ASP, _SERVERMODEL_ASPNET, _SERVERMODEL_JSP,
_SERVERMODEL_CFML (for all versions of ColdFusion), _SERVERMODEL_CFML_UD4 (only for
UltraDev version 4 of ColdFusion), _SERVERMODEL_PHP, _FILE_TEMPLATE, _VIEW_CODE,
_VIEW_DESIGN, _VIEW_LAYOUT, _VIEW_EXPANDED_TABLES, and _VIEW_STANDARD.

You can specify multiple enablers by placing a comma (which means AND) between the enablers.
You can specify NOT with "!".

Example

If you want the button to be available only in Code view, specify enabled="_VIEW_CODE", and
the button will be dimmed in other views.

checked="enabler"

Description

The checked attribute is required if you use the checkbutton tag.

The item is checked if the DW_enabler value is true. The possible enablers are
_SERVERMODEL_ASP, _SERVERMODEL_ASPNET, _SERVERMODEL_JSP, _SERVERMODEL_CFML (for
all versions of ColdFusion), _SERVERMODEL_CFML_UD4 (only for UltraDev version 4 of
ColdFusion), _SERVERMODEL_PHP, _FILE_TEMPLATE, _VIEW_CODE, _VIEW_DESIGN,
_VIEW_LAYOUT, _VIEW_EXPANDED_TABLES, and _VIEW_STANDARD.

You can specify multiple enablers by placing a comma (which means AND) between them. You
can specify NOT with "!".

Example

checked="_View_Layout"
118 Chapter 6: Insert Bar Objects

command="API_function"

Description

Instead of referring Dreamweaver to an HTML file with the code to insert, you can use this tag to
specify a command that Dreamweaver performs when the button is clicked with this tag.

Example

command="dw.showTagChooser()"

file="file_path"

Description

The file attribute specifies the path, relative to the Dreamweaver Configuration folder, of an
object file. Dreamweaver derives the tooltip for the object icon from the title of the object file,
unless you specify the name attribute.

Example

file="Templates/Editable.htm"

tag="editor"

Description

This attribute tells Dreamweaver to invoke a Tag editor. In Code view, if the tag attribute is
defined and the user clicks the object, Dreamweaver invokes the Tag dialog box. In Code view, if
you specify the tag and command attributes, Dreamweaver invokes the Tag editor. In Design view,
if codeOnly="TRUE" and you do not specify the file attribute, Dreamweaver MX invokes Split
view, places focus in the code, and invokes the Tag editor.

Example

tag = "form"

name="tooltip_text"

Description

The name attribute specifies the tooltip that appears when the mouse pointer rests over the object.
If you specify an object file but do not specify the name attribute, Dreamweaver uses the name of
the object file for the tooltip.
Note: If the name attribute is not provided, the object will not be available for grouping in the Favorites
category on the Insert bar UI.

Some Insert bar objects use a variation of the name attribute with prefix MMString. The
MMString denotes a localized string; these values are explained in “Localized strings” on page 50.

Example

name = "cfoutput"

Modifying the Insert bar

You can move objects from one category to another, rename categories, and completely remove
objects from the panel. To make the changes appear in the Insert bar, you must either restart
Dreamweaver or reload extensions.
The Insert bar definition file 119

To reload extensions

1 Control-click (Windows) or Option-click (Macintosh) the Categories menu in the Insert bar’s
title bar.

2 Select Reload Extensions.
Note: Remember that in a multiuser operating system, you should edit copies of configuration files in
your user Configuration folder rather than editing master configuration files. For more information,
see “Configuration folders and extensions” on page 23.

To move or copy an object from one Insert bar category to another or to a new location
within a category:

1 Save a backup copy of insertbar.xml (with a name such as insertbar.backup.xml).
2 Open the original insertbar.xml file.
3 Find the button tag that represents the object you want to move or copy. For example, to move

the Image object from its location in the Common category, find the button tag that has an id
attribute of "DW_Image".

4 Cut or copy the entire button tag.
5 Find the category tag that represents the category in which you want to move or copy

the object.
6 Find the location within the category where you want the object to appear.
7 Paste the copied button tag.
8 Save the insertbar.xml file.
9 Reload extensions.

To remove an object from the Insert bar:

1 Save a backup copy of insertbar.xml (with a name such as insertbar.backup.xml).
2 Open the original insertbar.xml file.
3 Find the button tag that represents the object you want to remove.
4 Delete the entire button tag.
5 Save the insertbar.xml file.
6 On your disk, move the object’s HTML, GIF, and JavaScript files out of their current folder,

and put them into a folder that isn’t listed in the insertbar.xml file. For example, you can create
a new folder in the Configuration/Objects folder named Unused, and move the object’s files
there. (If you’re certain you want to remove the object, you can delete those files entirely, but
it’s a good idea to keep backups of those files in case you need to restore the object later.)

7 Reload extensions.
120 Chapter 6: Insert Bar Objects

To change the order of categories in the Insert bar:

1 Save a backup copy of insertbar.xml (with a name such as insertbar.backup.xml).
2 Open the original insertbar.xml file.
3 Find the category tag that corresponds to the category you want to move, and select that tag,

including all the tags it contains.
4 Cut that tag.
5 Paste the tag into its new location. Be sure to paste the tag in a location that isn’t inside any

other category tag.
6 Save the insertbar.xml file.
7 Reload extensions.

To create a new category:

1 Save a backup copy of insertbar.xml (with a name such as “insertbar.backup.xml”).
2 Open the original insertbar.xml file.
3 Create a new category tag, specifying the default folder for the category and a set of objects to

appear in the category.
4 For information on the syntax of the tags in insertbar.xml, see “Insert bar definition tags”

on page 115.
5 Save the insertbar.xml file.
6 Reload extensions.

Adding objects to the Insert bar

To add a new object to the Insert bar, define the specific string of code for the user’s document
using HTML and, optionally, JavaScript. Then, identify or create a graphic (18 x 18 pixels) for
the button in the Dreamweaver interface. If you create a larger object image, Dreamweaver scales
it to 18 x 18 pixels. If you do not create an image for your object, a default object icon with a
question mark (?) appears on the Insert bar. Add the new files to the Configuration/Objects
folder. Finally, edit the insertbar.xml file to identify the location of these new files and set some
parameters (see “The Insert bar definition file” on page 114) for the button’s appearance. After
editing the inserbar.xml file, restart Dreamweaver, and the new object appears on the Insert bar in
the specified location.
Note: Although you can store Object files in separate folders, it’s important that each filename be
unique. The dom.insertObject() function, for example, looks for files anywhere within the Objects
folder without regard to subfolders (for more information about the dom.insertObject() function,
see the Dreamweaver API Reference). If a file called Button.htm exists in the Forms folder and another
object file called Button.htm is in the MyObjects folder, Dreamweaver cannot distinguish between
them. So, if two separate instances of Button.htm exist, dom.insertObject() displays two objects
called Button, and the user might not recognize any difference.

Adding objects to the Insert menu

To add or control the position of an object on the Insert menu (or any other menu), modify the
menus.xml file. This file controls the entire menu structure for Dreamweaver. For more
information about modifying the menus.xml file, see “Menus and Menu Commands”
on page 145.

If you plan to distribute the extension to other Dreamweaver users, see “Working with the
Extension Manager” on page 28 to learn more about packaging extensions.
The Insert bar definition file 121

The Objects API

This section describes the functions in the Objects API. You must define either the
insertObject() or the objectTag() function. For details about these functions, see
“insertObject()” on page 123. The remaining functions are optional.

canInsertObject()

Availability

Dreamweaver MX.

Description

This function determines whether to display the Object dialog box.

Arguments

None.

Returns

Dreamweaver expects a Boolean value.

Example

The following code tells Dreamweaver to check to see that the document contains a particular
string before allowing the user to insert the selected object:
function canInsertObject(){
 var docStr = dw.getDocumentDOM().documentElement.outerHTML;
 var patt = /hava/;
 var found = (docStr.search(patt) != -1);
 var insertionIsValid = true;

 if (!found){
 insertionIsValid = false;
 alert("the document must contain a 'hava' string to use this object.");}
 return insertionIsValid;}

displayHelp()

Description

If you define this function, it displays a Help button below the OK and Cancel buttons in the
Parameters dialog box. This function is called when the user clicks the Help button.

Arguments

None.

Returns

Dreamweaver expects nothing.
122 Chapter 6: Insert Bar Objects

Example

The following example opens the myObjectHelp.htm file in a browser; this file explains how to
use the extension:
function displayHelp(){

var myHelpFile = dw.getConfigurationPath() +
'/ExtensionsHelp/myObjectHelp.htm';

 dw.browseDocument(myHelpFile);
}

isDomRequired()

Description

This function determines whether the object requires a valid DOM to operate. If this function
returns a true value or if the function is not defined, Dreamweaver assumes that the command
requires a valid DOM and synchronizes the Code and Design views for the document before
executing. Synchronization causes all edits in the Code view to be updated in the Design view.

Arguments

None.

Returns

Dreamweaver expects a true value if a command requires a valid DOM to operate;
false otherwise.

insertObject()

Availability

Dreamweaver MX.

Description

This function is required if the objectTag() function is not defined. It is called when the user
clicks OK; it either inserts code into the user’s document and closes the dialog box or displays an
error message and leaves the dialog box open. This works as an alternate function to use in objects
instead of the objectTag() function. It does not assume that the user is inserting text at the
current insertion point and allows data validation when the user clicks OK. You should use the
insertObject() function if one of the following conditions exists:

• You need to insert code in more than one place.
• You need to insert code somewhere other than the insertion point.
• You need to validate input before inserting code.

If none of these conditions apply, use the objectTag() function.

Arguments

None.
The Objects API 123

Returns

Dreamweaver expects a string that contains an error message or an empty string. If it returns an
empty string, the Object dialog box closes when the user clicks OK. If it is not empty,
Dreamweaver displays the error message and the dialog box remains.

Enabler

canInsertObject()

Example

The following example uses the insertObject() function because it needs to validate input
before inserting code:
function insertObject() {
 var theForm = document.forms[0];
 var nameVal = theForm.firstField.value;
 var passwordVal = theForm.secondField.value;
 var errMsg = "",
 var isValid = true;

 // ensure that field values are complete and valid
 if (nameVal == "" || passwordVal == "") {
 errMsg = "Complete all values or click Cancel."
 } else if (nameVal.length < 4 || passwordVal.length < 6) {
 errMsg = "Your name must be at least four characters, and your password at
least six";
 }

 if (!errMsg) {
 // do some document manipulation here. Exercise left to the reader
 }
 return errMsg;
}

objectTag()

Description

The objectTag() and insertObject() functions are mutually exclusive: If both are defined in a
document, the objectTag() function is used. For more information, see “insertObject()”
on page 123.

This function inserts a string of code into the user’s document. In Dreamweaver MX, returning
an empty string, or a null value (also known as "return;"), is a signal to Dreamweaver to
do nothing.
Note: The assumption is that edits have been made manually before the return statement, so doing
nothing in this case is not equivalent to clicking Cancel.

In Dreamweaver 4, if the focus is in Code view and the selection is a range (meaning that it is not
an insertion point), the range is replaced by the string that the objectTag() function returns.
This is the value true, even if the objectTag() function returns an empty string or returns
nothing. The reason for returning an empty string, or a null value from the objectTag()
function is because edits to the document have already been made manually. Otherwise, double
quotes ("") often deletes the edit by replacing the selection.
124 Chapter 6: Insert Bar Objects

Arguments

None.

Returns

Dreamweaver expects the string to insert into the user’s document.

Example

The following example of the objectTag() function inserts an OBJECT/EMBED combination for a
specific ActiveX control and plug-in:
function objectTag() {
return '\n' +
'<OBJECT CLASSID="clsid:166F1OOB-3A9R-11FB-8075444553540000" \n'¬
+ 'CODEBASE="http://www.mysite.com/product/cabs/¬
myproduct.cab#version=1,0,0,0" \n' + 'NAME="MyProductName"> \n' ¬
+ '<PARAM NAME="SRC" VALUE=""> \n' + '<EMBED SRC="" HEIGHT="" ¬
WIDTH="" NAME="MyProductName"> \n' + '</OBJECT>'
}

windowDimensions()

Description

This function sets specific dimensions for the Options dialog box. If this function is not defined,
the window dimensions are computed automatically.
Note: Do not define this function unless you want an Options dialog box that is larger than
640 x 480 pixels.

Arguments

platform

• The value of the platform argument is either "macintosh" or "windows", depending on the
user’s platform.

Returns

Dreamweaver expects a string of the form "widthInPixels,heightInPixels".

The returned dimensions are smaller than the size of the entire dialog box because they do not
include the area for the OK and Cancel buttons. If the returned dimensions do not accommodate
all options, scroll bars appear.

Example

The following example of the windowDimensions() function sets the dimensions of the
Parameters dialog box to 648 x 520 pixels for Windows and 660 x 580 pixels for the Macintosh:
function windowDimensions(platform){

var retval = ""
if (platform = = "windows"){
retval = "648, 520";
}else{
retval = "660, 580";
}
return retval;

}

The Objects API 125

A simple Insert Object example

This example adds an object to the Insert bar so users can add a line through (strikethrough)
selected text by clicking a button. This object is useful if a user needs to make editorial comments
on a document.

Because this example performs text manipulation, you can explore some existing objects from the
Text pop-up menu in the HTML category on the Insert bar as models. For example, look at the
Bold, Emphasis, and even the Heading object files to see similar functionality, where
Dreamweaver wraps a tag around selected text.

First, create an HTML object definition file, and give it the title Strikethrough. Specify that the
scripting language is JavaScript.
<html>
<head>
<title>Strikethrough</title>
<script language="javascript">
</script>
</head>
<body>
</body>
</html>

Next, add the JavaScript functions that define the behavior and insert code for the Strikethrough
object. All the API functions need to go in the head of the document. The existing object files,
such as Configuration/Objects/Text/Em.htm, follow a similar pattern of functions and
comments. The first function the object definition file uses is isDOMRequired() to indicate if the
Design view needs to be synchronized to the existing Code view before continuing. Because the
Superscript object might be used with many other objects within the Code view, it does not
require a forced synchronization.
function isDOMRequired() {

// Return false, indicating that this object is available in code view.
return false;

}

Next, decide whether to use objectTag() or insertObject() for the next function.
Strikethrough simply wraps the s tag around the selected text, so it doesn’t meet the criteria for
using the insertObject() function (see “insertObject()” on page 123).

Within the objectTag() function, use dw.getFocus() to determine if the Code view is the
current view. If the Code view is in focus, the function should wrap the appropriate (uppercase or
lowercase) tag around the selected text. If the Design view is in focus, the function can use
dom.applyCharacterMarkup() to assign the formatting to the selected text. Remember that this
function works only for specific supported tags (for more information, see
dom.applyCharacterMarkup() in the Dreamweaver API Reference). For other tags or operations,
other API functions may be necessary.
126 Chapter 6: Insert Bar Objects

After Dreamweaver applies the formatting, it should return the cursor to the document without
any messages or prompting. The following example shows how the objectTag() function
now reads:
function objectTag() {

// Determine if the user is in Code view.
var dom = dw.getDocumentDOM();
if (dw.getFocus() == 'textView' || dw.getFocus(true) == 'html'){

 var upCaseTag = (dw.getPreferenceString("Source Format", "Tags Upper Case",
"") == 'TRUE');

 // Manually wrap tags around selection.
 if (upCaseTag){
 dom.source.wrapSelection('<S>','</S>');
 }else{
 dom.source.wrapSelection('<s>','</s>');
 }

// If the user is not in Code view, apply the formatting in the Design view
}else if (dw.getFocus() == 'document'){

dom.applyCharacterMarkup("s");
 }

 // Just return -- don't do anything else.
 return;
}

The following example shows how the entire Strikethrough.htm file reads the proper closing
HTML tags:
<html>
<head>
<title>Strikethrough</title>
<script language="javascript">

//--------------- API FUNCTIONS ---------------

function isDOMRequired() {
// Return false, indicating that this object is available in code view.
return false;

}

function objectTag() {
// Determine if the user is in Code view.
var dom = dw.getDocumentDOM();
if (dw.getFocus() == 'textView' || dw.getFocus(true) == 'html'){

 var upCaseTag = (dw.getPreferenceString("Source Format", "Tags Upper Case",
"") == 'TRUE');

 // Manually wrap tags around selection.
 if (upCaseTag){
 dom.source.wrapSelection('<S>','</S>');
 }else{
 dom.source.wrapSelection('<s>','</s>');
 }

// If the user is not in Code view, apply the formatting in the Design view
}else if (dw.getFocus() == 'document'){

dom.applyCharacterMarkup("s");
 }

 // Just return -- don't do anything else.
 return;
}

A simple Insert Object example 127

</script>
</head>
<body>
</body>
</html>

Save this file to the Configuration/Objects/Text folder as Strikethrough.htm, and create a graphic
(GIF format, 18 x 18 pixels) for use on the Insert bar, as shown in the following figure:

Name the graphic file Strikethrough.gif, and save it in the Configuration/Objects/Text folder.

Now your HTML file identifies the code to insert into the document, and you have the
accompanying graphic file for the Insert bar. You need to edit the insertbar.xml file so
Dreamweaver can associate these two items with the Insert bar interface.
Note: Before you edit the insertbar.xml file, you might want to copy the original one as
insertbar.xml.bak, so you have a backup.

The code within the insertbar.xml file identifies all the existing objects on the Insert bar. Each
category tag in the XML file creates a category in the interface. Each menubutton tag creates a
pop-up menu on the Insert bar. And, each button tag in the XML file places an icon on the
Insert bar and connects it to the proper HTML file or function.

To add the new object to the Insert bar, find the following line near the beginning of the
inserbar.xml file:
<category id="DW_Insertbar_Common" MMString:name="insertbar/category/common"

folder="Common">

This line identifies the beginning of the Common category on the Insert bar. Start a new line after
the category tag, and insert the button tag and assign it the id, image, and file attributes for the
Strikethrough object. The id must be a unique name for the button (following standard naming
conventions; use DW_Text_Strikethrough for this object). The image and file attributes
simply tell Dreamweaver the location of the supporting files, as shown in the following example:
<button id="DW_Text_Strikethrough"
image="Text\Strikethrough.gif"
file="Text\Strikethrough.htm"/>

Save the insertbar.xml file, reload the extensions (see “To reload extensions” on page 120), and the
new object appears at the beginning of the Common category on the Insert bar, as shown in the
following figure:

Creating a separate JavaScript file

In “A simple Insert Object example” on page 126, you create a single object HTML file
containing both the HTML for the object and the JavaScript supporting the implementation of
the object. However, you can separate the JavaScript functions from the HTML object definition
file. This separate organization is very useful for objects containing several functions, or functions
that might be shared by other objects.
128 Chapter 6: Insert Bar Objects

To separate the HTML object definition file from the supporting JavaScript functions, create a
new JS file in the same folder as the original HTML file (for example, Strikethrough.js) and paste
all the JavaScript functions into that file. Remove the functions from Strikethrough.htm, and add
the JavaScript filename to the src attribute of the script tag, as shown in the following example:
<html>
<head>
<title>Strikethrough</title>
<script language="javascript" src=”Strikethrough.js”>
</script>
</head>
<body>
</body>
</html>

In Dreamweaver, select Reload Extensions (see “To reload extensions” on page 120), and test
the object.

Adding a dialog box

You can add a form to your Object to let the user enter parameters before Dreamweaver inserts
the specified code (for example, the Hyperlink object requests the Text, Link, Target, category
Index, Title, and Access Key values from the user). In this example, you will add a form to the
Strikethrough object from the previous example. The form opens a dialog boxthat provides the
user with the option to change the text color to red as well as add the strikethrough tag.

This example assumes you have already created a separate JavaScript file called Strikethrough.js, as
shown in “Creating a separate JavaScript file” on page 128.

First, in Strikethrough.js, add the function the form will call if the user selects to change the text
color. This function will be very similar to the objectTag() function for the Strikethrough
object, but it is an optional function. So, after the objectTag() function, create a function called
fontColorRed(). The entire Strikethrough.js file should contain the following code:
function isDOMRequired() {

// Return false, indicating that this object is available in code view.
return false;

}

function objectTag() {
// Manually wrap tags around selection.
var dom = dw.getDocumentDOM();
if (dw.getFocus() == 'textView' || dw.getFocus(true) == 'html'){

 var upCaseTag = (dw.getPreferenceString("Source Format", "Tags Upper
Case", "") == 'TRUE');

 // Manually wrap tags around selection.
 if (upCaseTag){
 dom.source.wrapSelection('<S>','</S>');
 }else{
 dom.source.wrapSelection('<s>','</s>');
 }
 }else if (dw.getFocus() == 'document'){
 dom.applyCharacterMarkup("s");
 }

A simple Insert Object example 129

 // Just return -- don't do anything else.
 return;
}

function fontColorRed(){
var dom = dw.getDocumentDOM();

if (dw.getFocus() == 'textView' || dw.getFocus(true) == 'html'){

 var upCaseTag = (dw.getPreferenceString("Source Format", "Tags Upper
Case", "") == 'TRUE');

 // Manually wrap tags around selection.
 if (upCaseTag){
 dom.source.wrapSelection('','');
 }else{
 dom.source.wrapSelection('','');
 }
 }else if (dw.getFocus() == 'document'){
 dom.applyFontMarkup("color", "#FF0000");
 }

 // Just return -- don't do anything else.
 return;

}

Note: Because dom.applyCharacterMarkup() doesn’t support font color changes, you need to find
the appropriate API function for font color changes (for more information, see
dom.applyFontMarkup() in the Dreamweaver API Reference).

Then, in the Strikethrough.htm file, add the form. After the body tag, use the form tag to define
your form, and the table tag for layout control (otherwise, the dialog box might wrap words or
size awkwardly). The form for this example is a simple checkbox that calls the fontColorRed()
function when the user clicks on it. The entire Strikethrough.htm file should contain the
following code:
<html>
<head>
<title>Strikethrough</title>
<script language="javascript" src=”Strikethrough.js”>
</script>
</head>

<body>
<form>
<table border="0" height="100" width="100">

<tr valign="baseline">
<td align="left" nowrap>
<input type="checkbox" name="red" onClick=fontColorRed()>Red text</input>
</td>
</tr>

</table>
</form>
</body>
</html>
130 Chapter 6: Insert Bar Objects

Now, you can reload extensions, and test the dialog box. Clicking the Red text checkbox changes
the font color:

Clicking the OK button performs the objectTag() function, which adds the strikethrough:
A simple Insert Object example 131

Building an Insert bar pop-up menu

The Dreamweaver Insert bar introduces a new organization for objects and now supports pop-up
menus to help organize objects into smaller groups, as shown in the following figure.

The following example builds a new category on the Insert bar called Editorial and then adds a
pop-up menu to that category. The pop-up menu will contain the Strikethrough object from “A
simple Insert Object example” on page 126 and groups it with a Blue Text object you will create.
The objects in the Editorial category on the Insert bar let users make editorial comments on a file
and either strikethrough the content they want to remove or make new content blue so from the
rest of the text.

To keep the files organized, create a new Configuration/Objects/Editorial folder in your
Dreamweaver installation folder. Copy the files for the Strikethrough object example you created
to the Editorial folder (Strikethrough.htm, Strikethrough.js, and Strikethrough.gif).

Next, make the new Blue Text object. Create a new HTML file called AddBlue.htm that contains
the following code:
<html>
<head>
<title>Blue Text</title>
<script language="javascript">

//--------------- API FUNCTIONS ---------------

function isDOMRequired() {
// Return false, indicating that this object is available in code view.
return false;

}

function objectTag() {
// Manually wrap tags around selection.
var dom = dw.getDocumentDOM();
if (dw.getFocus() == 'textView' || dw.getFocus(true) == 'html'){

 var upCaseTag = (dw.getPreferenceString("Source Format", "Tags Upper
Case", "") == 'TRUE');

 // Manually wrap tags around selection.
 if (upCaseTag){
 dom.source.wrapSelection('','');
 }else{
 dom.source.wrapSelection('','');
 }
 }else if (dw.getFocus() == 'document'){
132 Chapter 6: Insert Bar Objects

 dom.applyFontMarkup("color", "#0000FF");
 }

 // Just return -- don't do anything else.
 return;
}

</script>
</head>
<body>
</body>
</html>

Save AddBlue.htm in the Editorial folder.

Now you can create an image for the Blue Text Object, an 18 x 18 pixel GIF, which will look like
the following figure:

Save the image as AddBlue.gif in the Editorial folder.

Open the insertbar.xml file. This file defines the objects on the Insert bar and their locations.
Notice the various menubutton tags and their attributes within the category tags; these
menubutton tags define each pop-up menu on the HTML category. Within the menubutton
tags, each button tag defines an item on the pop-up menu.

Find the following line of code near the beginning of the file:
<insertbar xmlns:MMString="http://www.macromedia.com/schemes/data/string/">

The insertbar tag defines the beginning of all the Insert bar contents. After that line, add a new
category tag for the Editorial category you want to create, giving it unique ID, name, and folder
attributes, and then add a closing category tag, as shown in the following example:
<category id="DW_Insertbar_Editorial" name="Editorial" folder="Editorial">
</category>

Click on Reload Extensions, and the Editorial category appears on the Insert bar:
A simple Insert Object example 133

Next, within the opening and closing category tags, add the pop-up menu using the
menubutton tag and the following attributes, including a unique ID (for more information about
attributes, see “Insert bar definition tag attributes” on page 117):
<menubutton id="DW_Insertbar_Markup" name="markup"

image="Editorial\Strikethrough.gif" folder="Editorial">

Finally, add the objects for the new pop-up menu using the button tag. To add the Strikethrough
object, enter the following code:
<button id="DW_Editorial_Strikethrough" image="Editorial\Strikethrough.gif"

file="Editorial\Strikethrough.htm"/>

and, after the Strikethrough object button tag, add the hypertext object:
<button id="DW_Blue_Text" image="Editorial\AddBlue.gif name="Blue Text"

file="Editorial\AddBlue.htm"/>

Note: The button tag does not have a separate closing tag, it simply ends with “/>”.

Now you can end the pop-up menu with the </menubutton> closing tag. The following code
shows your entire category with the pop-up menu and the two objects:
<category id="DW_Insertbar_Editorial" name="Editorial" folder="Editorial">

<menubutton id="DW_Insertbar_Markup" name="markup"
image="Editorial\Strikethrough.gif" folder="Editorial">

<button id="DW_Editorial_Strikethrough"
image="Editorial\Strikethrough.gif" file="Editorial\Strikethrough.htm"/>
<button id="DW_Blue_Text" image="Editorial\AddBlue.gif" name="Blue Text"
file="Editorial\AddBlue.htm"/>

</menubutton>
</category>

To test the new pop-up menu, Reload Extensions. The following pop-up menu appears:
134 Chapter 6: Insert Bar Objects

CHAPTER 7
Commands
Macromedia Dreamweaver MX 2004 commands can perform almost any kind of edit to a user’s
current document, other open documents, or any HTML document on a local drive. Commands
can insert, remove, or rearrange HTML tags and attributes, comments, and text.

Commands are HTML files. The BODY section of a command file can contain an HTML form
that accepts options for the command (for example, how a table should be sorted and by which
column). The HEAD section of a command file contains JavaScript functions that process form
input from the BODY section and control what edits are made to the user’s document.

How commands work

When a user clicks a menu that contains a command, the following events occur:

1 Dreamweaver calls the canAcceptCommand() function to determine whether the menu
item should be disabled. If the canAcceptCommand() function returns a false value, the
command is dimmed in the menu, and the procedure stops. If the canAcceptCommand()
function returns a true value, the procedure can continue.

2 The user selects a command from the menu.
3 Dreamweaver calls the receiveArguments() function, if defined, in the selected Command

file to let the command process any arguments that pass from the menu item or from the
dreamweaver.runCommand() function. For more information on the
dreamweaver.runCommand() function, see the Dreamweaver API Reference.

4 Dreamweaver calls the commandButtons() function, if defined, to determine which buttons
appear on the right side of the Options dialog box and what code should execute when the user
clicks the buttons.

5 Dreamweaver scans the command file for a FORM tag. If a form exists, Dreamweaver calls the
windowDimensions() function, which sizes the Options dialog box that contains the BODY
elements of the file. If the windowDimensions() function is not defined, Dreamweaver
automatically sizes the dialog box.

6 If the command file’s BODY tag contains an onLoad handler, Dreamweaver executes it (whether
or not a dialog box appears). If no dialog box appears, the remaining steps do not occur.

7 The user selects options for the command. Dreamweaver executes event handlers that are
associated with the fields as the user encounters them.

8 The user clicks one of the buttons that is defined by the commandButtons() function.
9 Dreamweaver executes the associated code. The dialog box remains visible until one of the

scripts in the command calls the window.close() function.
135

Adding commands to the Commands menu

Dreamweaver automatically adds any files that are inside the Configuration/Commands folder to
the bottom of the Commands menu. To prevent a command from appearing in the Commands
menu, insert the following comment on the first line of the file:
<!-- MENU-LOCATION=NONE -->

When this line is present, Dreamweaver does not create a menu item for the file, and you must
call dw.runCommand() to execute the command.

The Commands API

The custom functions in the Commands API are not required.

canAcceptCommand()

Description

Determines whether the command is appropriate for the current selection.
Note: Do not define canAcceptCommand() unless it returns a value of false in at least one case. If the
function is not defined, the command is assumed to be appropriate. Making this assumption saves
time and improves performance.

Arguments

None.

Returns

Dreamweaver expects a true value if the command is allowed; false otherwise, dimming the
command in the menu.

Example

The following example of the canAcceptCommand() function makes the command available only
when the selection is a table:
function canAcceptCommand(){

var retval=false;
var selObj=dw.getDocumentDOM.getSelectedNode();
return (selObj.nodeType == Node.ELEMENT_NODE && ¬
selObj.tagName=="TABLE");{

retval=true;
}
return retval;
}

commandButtons()

Description

Defines the buttons that should appear on the right side of the Options dialog box and their
behaviors when they are clicked. If this function is not defined, no buttons appear, and the BODY
section of the Commands file expands to fill the entire dialog box.

Arguments

None.
136 Chapter 7: Commands

Returns

Dreamweaver expects an array that contains an even number of elements. The first element is a
string that contains the label for the topmost button. The second element is a string of JavaScript
code that defines the behavior of the topmost button when it is clicked. The remaining elements
define additional buttons in the same way.

Example

The following instance of commandButtons() defines three buttons: OK, Cancel, and Help:
function commandButtons(){

return new Array("OK" , "doCommand()" , "Cancel" , ¬
"window.close()" , "Help" , "showHelp()");

}

isDomRequired()

Description

Determines whether the command requires a valid DOM to operate. If this function returns a
value of true or if the function is not defined, Dreamweaver assumes that the command requires
a valid DOM and synchronizes the Design and Code views of the document before executing.
Synchronization causes all edits in the Code view to update in the Design view.

Arguments

None.

Returns

Dreamweaver expects a true value if a command requires a valid DOM to operate;
false otherwise.

receiveArguments()

Description

Processes any arguments that pass from a menu item or from the dw.runCommand() function.

Arguments

{arg1}, {arg2},...{argN}

• If the arguments attribute is defined for a menuitem tag, the value of that attribute passes to
the receiveArguments() function as one or more arguments. Arguments can also pass to a
command by the dw.runCommand() function.

Returns

Dreamweaver expects nothing.
The Commands API 137

windowDimensions()

Description

Sets specific dimensions for the Parameters dialog box. If this function is not defined, the window
dimensions are computed automatically.
Note: Do not define this function unless you want an Options dialog box that is larger than
640 x 480 pixels.

Arguments

platform

• The value of the platform argument is either "macintosh" or "windows", depending on the
user’s platform.

Returns

Dreamweaver expects a string of the form "widthInPixels,heightInPixels".

The returned dimensions are smaller than the size of the entire dialog box because they do not
include the area for the OK and Cancel buttons. If the returned dimensions do not accommodate
all options, scroll bars appear.

Example

The following example of the windowDimensions() function sets the dimensions of the
Parameters dialog box to 648 x 520 pixels:
function windowDimensions(){

return "648,520";
}

A simple Command example

This simple extension adds an item to the Commands menu and lets you convert selected text in
your document to either uppercase or lowercase. When you click the menu item, it activates a
three-button interface that lets you submit your choice.

You create this extension by performing the following steps:

1 Creating the user interface (UI)
2 Writing the JavaScript code
3 Placing the files in the Commands folder
This example creates two files in the Commands folder: Change Case.html, which contains the
UI, and Change Case.js, which contains the JavaScript code. If you prefer, you can create only the
Change Case.html file and put both the JavaScript code and the UI in it.
138 Chapter 7: Commands

Creating the UI

The UI is a form that contains two radio buttons that let the user select uppercase or lowercase.
The following example shows the HTML code to create the form:
<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine 5.0//dialog">

<HTML>
<HEAD>
<!-- Copyright 2001-2002 Macromedia, Inc. All rights reserved. -->
<Title>Make Uppercase or Lowercase</Title>
<SCRIPT SRC="Change Selection Case.js"></SCRIPT>

</HEAD>
<BODY>
 <form name="uorl">
 <table border="0">
 <!--DWLayoutTable-->
 <tr>
 <td valign="top" nowrap> <p>
 <label>
 <input type="radio" name="RadioGroup1" value="uppercase" checked>
 Uppercase</label>

 <label>
 <input type="radio" name="RadioGroup1" value="lowercase">
 Lowercase</label>
 </p></td>
 </tr>
 </table>
 </div>
</form>
</BODY>
</HTML>

The contents of the Title tag, Make Uppercase or Lowercase, appears in the top bar of the
dialog box. Within the form, a table with two cells controls the layout of the elements. Within the
table cells are the two radio buttons, Uppercase and Lowercase. The Uppercase button has the
checked attribute, making it the default selection and ensuring that the user must either select
one of the two buttons or cancel the command.

The form looks like the following figure.

The commandButtons() function supplies the OK and Cancel buttons that let the user submit
the choice or cancel the operation.

Save the HTML code as ChangeCase.html in the Commands folder within the Dreamweaver
Configuration folder.
A simple Command example 139

Writing the JavaScript code

The following example consists of two extension API functions, canAcceptCommand() and
commandButtons(), which Dreamweaver calls, and one user-defined function, changeCase()
which is called from the commandButtons() function.

canAcceptCommand()

When a user clicks the Commands menu, Dreamweaver calls the canAcceptCommand() function
for each menu item to determine whether it should be enabled. If canAcceptCommand() returns
the value true, Dreamweaver displays the menu item text as active or enabled. If
canAcceptCommand() returns the value false, Dreamweaver dims the menu item.

The first task in creating a command is to determine when the item should be active and when it
should be dimmed. In this example, the menu item is active when the user has selected text in
the document.

The first lines of canAcceptCommand() retrieve the selected text by retrieving the DOM for the
user’s document and calling the getSelection() function on the document object. Next, the
function retrieves the node that contains the selected text, followed by any children of the node,
as shown in the following code:
function canAcceptCommand(){

var theDOM = dw.getDocumentDOM(); // Get the DOM of the current document
var theSel = theDOM.getSelection(); // Get start and end of selection
var theSelNode = theDOM.getSelectedNode(); // Get the selected node
var theChildren = theSelNode.childNodes; // Get children of selected node

The last line checks to see if the selection or its first child is text and returns the result as a value of
true or false:
return (theSel[0] != theSel[1] && (theSelNode.nodeType ==

Node.TEXT_NODE || theSelNode.hasChildNodes() && (theChildren[0].nodeType ==
Node.TEXT_NODE)));

The first part of the return statement (theSel[0] != theSel[1]) checks if the user has selected
anything in the document. The variable theSel is a two-slot array that holds the beginning and
ending offsets of the selection within the document. If the two values are not equal, content has
been selected. If the values in the two slots are equal, there is only an insertion point and nothing
has been selected.
140 Chapter 7: Commands

The next part of the return statement (&& (theSelNode.nodeType == Node.TEXT_NODE)
checks to see if the selected node type is text. If so, the canAcceptCommand() function
returns the value true. If the node type is not text, the test continues to see if the node has
children (|| theSelNode.hasChildNodes()), and if the type of the first child node is text
(&& (theChildren[0].nodeType == Node.TEXT_NODE))). If both conditions are true,
canAcceptCommand() returns the value true, and Dreamweaver enables the menu item at the
bottom of the Commands menu, as shown in the following figure:

Otherwise, canAcceptCommand() returns the value false and Dreamweaver dims the item, as
shown in the following figure:
A simple Command example 141

commandButtons()

When the user clicks a menu item, the extension needs a mechanism that lets the user select
uppercase or lowercase. The UI provides this mechanism by defining two radio buttons to let the
user make that choice.

The commandButtons() function causes Dreamweaver to supply the OK and Cancel buttons and
tells Dreamweaver what to do when the user clicks them. In the following example,
commandButtons() tells Dreamweaver to call changeCase() when the user clicks OK and to call
window.close() when the user clicks Cancel:
function commandButtons() {

return new Array("OK", "changeCase()", "Cancel", "window.close()");
}

For more information, see “Creating the UI” on page 139.

changeCase()

The changeCase() function is a user-defined function that is called by the commandButtons()
function when the user clicks OK. This function changes the selected text to uppercase or
lowercase. Because the UI uses radio buttons, the code can rely on one choice or the other being
checked; it does not need to test for the possibility that the user makes neither choice.

The changeCase() function first tests the property
document.forms[0].elements[0].checked. The document.forms[0].elements[0]
property refers to the first element in the first form of the current document object, which is the
UI for the extension. The checked property has the value true if the element is checked
(or enabled) and false if it is not. In the interface, elements[0] refers to the first radio button,
which is the Uppercase button. Because one of the radio buttons is always checked when the
user clicks OK, the code assumes that if the choice is not uppercase, it must be lowercase. The
function sets the variable uorl to “u” or “l” to store the user’s response, as shown in the
following code:
function changeCase() {
 var uorl;

 // check whether user requested uppercase or lowercase
 if(document.forms[0].elements[0].checked)

uorl = 'u';
else

uorl = 'l';

The remaining code in the function retrieves the selected text, converts it to the specified case,
and copies it back in place in the document.

To retrieve the selected text for the user’s document, the function gets the DOM again, as well as
the root element of the document, which is the html tag. It then extracts the whole document
into the theWholeDoc variable. The code looks like the following example:
// Get the DOM again
var theDOM = dw.getDocumentDOM();

// Get the outerHTML of the HTML tag (the
// entire contents of the document)
var theDocEl = theDOM.documentElement;
var theWholeDoc = theDocEl.outerHTML;
142 Chapter 7: Commands

Next, changeCase() calls getSelectedNode() to retrieve the node that contains the selected
text. It also retrieves any child nodes (theSelNode.childNodes) in case the selection is a tag that
contains text, such as text:
// Get the node containing the selection
var theSelNode = theDOM.getSelectedNode();

// Get the children of the selected node
var theChildren = theSelNode.childNodes;

If there are child nodes (hasChildNodes() returns the value true), the command loops through
the children looking for a text node. If one is found, the text (theChildren[i].data) is stored
in selText, and the offsets of the text node are stored in theSel. The code looks like the
following example:
var i = 0;
if(theSelNode.hasChildNodes()){

while (i < theChildren.length){
if(theChildren[i].nodeType == Node.TEXT_NODE){

 var selText = theChildren[i].data;
var theSel = theDOM.nodeToOffsets(theChildren[0]);
break;

}
++i;

}
}

If there are no child nodes, the command calls getSelection() and stores the beginning and
ending offsets of the selection in theSel. It then extracts the string between those two offsets and
stores it in selText. The code looks like the following example:
else {
// Get the offsets of the selection
 var theSel = theDOM.getSelection();
 // Extract the selection
 var selText = theWholeDoc.substring(theSel[0],theSel[1]);
}

The following code checks the uorl variable to determine whether the user selected uppercase:
if(uorl == 'u'){

If so, the following code writes the HTML code back to the document in sections: first, the
beginning of the document to the beginning of the selection; then the selected text, converting
it to uppercase (selText.toUppercase()); and last, the end of the selected text to the end of
the document.

theDocEl.outerHTML = theWholeDoc.substring(0,theSel[0]) +
selText.toUpperCase() + theWholeDoc.substring(theSel[1]);

}

If the user selects lowercase, the function performs the same operation but calls
selText.toLowerCase(), to convert the selected text to lowercase. The code looks like the
following example:

else {
theDocEl.outerHTML = theWholeDoc.substring(0,theSel[0]) +
selText.toLowerCase() + theWholeDoc.substring(theSel[1]);

}

A simple Command example 143

Finally, changeCase() resets the selection and calls window.close() to close the UI. The code
looks like the following example:
 // Set the selection back to where it was when you
 // started
 theDOM.setSelection(theSel[0],theSel[1]);

window.close(); // close extension UI
}

Running the command

After you place the files in the Commands folder, you must either restart Dreamweaver or reload
the extensions before the new extension appears on the Commands menu.

To make Dreamweaver reload extensions, hold down the Control key (Windows) or the Options
key (Macintosh) and click the current category button on the Insert bar, as shown in the
following figure:

Next, click the Reload Extensions item on the Context menu, as shown in the following figure:

The Change Case entry should now appear on the Commands menu.

When Dreamweaver starts, it creates a Commands menu entry for each HTML file in the
Commands folder, except those that contain the following line:
<!-- MENU-LOCATION=NONE -->

Because the Change Case.html file does not contain this line, Dreamweaver adds an entry for
Change Case to the Commands menu. The entry will be dim, however, until the user selects text
in the document.

To test the command, type some text in a document, select it, and select Change Case from the
Commands menu.
144 Chapter 7: Commands

CHAPTER 8
Menus and Menu Commands
Macromedia Dreamweaver MX 2004 creates all its menus from the structure defined in the
menus.xml file in the Dreamweaver Configuration/Menus folder. You can rearrange, rename, and
remove menu items by editing the menus.xml file. You can also add, change, and remove
keyboard shortcuts for menu items, although in most cases it is easier to do that using the
Keyboard Shortcut Editor (see Dreamweaver Help). Changes to the Dreamweaver menus take
effect the next time you start Dreamweaver or reload extensions.

In a multiuser operating system, when you make changes within Dreamweaver that result in
changes to menus.xml (such as changing keyboard shortcuts using the Keyboard Shortcut
Editor), Dreamweaver creates a new menus.xml file in your user Configuration folder. To
customize menus.xml in a multiuser operating system, edit the copy of the file in your user
Configuration folder (or copy the master menus.xml file to your user Configuration folder if
Dreamweaver hasn’t yet created a version there). For more information, see “About customizing
Dreamweaver in a multiuser environment” on page 29.

If you open menus.xml in an XML editor, you might see error messages regarding the ampersands
(&) in the menus.xml file. It’s best to edit menus.xml in a text editor; do not edit it in
Dreamweaver. For basic information about XML, see Dreamweaver Help.
Note: Always make a backup copy of the current menus.xml file, or any other Dreamweaver
configuration file, before you modify it. It’s easy to make mistakes while editing the menu
configuration file, and there’s no way to revert to a previous set of menus other than replacing the
menus.xml file. In case you forget to make a backup, the Configuration folder contains a backup of the
default menus.xml file, called menus.bak; to revert to the default menu set, replace menus.xml with a
copy of menus.bak.
145

About the menus.xml file

The menus.xml file contains a structured list of menu bars, menus, menu items, separators,
shortcut lists, and keyboard shortcuts. These items are described by XML tags that you can edit in
a text editor.
Note: Be careful when making changes to menus. Dreamweaver ignores any menu or menu item that
contains an XML syntax error.

A menu bar (tagged with opening and closing menubar tags) is a discrete menu or set of menus—
for example, there’s a main menu bar, a separate Site window menu bar (which appears only on
Windows, not the Macintosh), and a menu bar for each context menu. Each menu bar contains
one or more menus; a menu is contained in a menu tag. Each menu contains one or more menu
items, each described by a menuitem tag and its attributes. A menu can also contain separators
(described by separator tags) and submenus.

In addition to the keyboard shortcuts associated with menu items, Dreamweaver provides a
variety of other keyboard shortcuts, including alternate shortcuts and shortcuts that are available
only in certain contexts. For example, Control+Y (Windows) or Command+Y (Macintosh) is the
shortcut for Redo; but Control+Shift+Z or Command+Shift+Z is an alternate shortcut for Redo.
These alternates—and other shortcuts that can’t be represented in the tags for menu items—are
defined in shortcut lists in the menus.xml file. Each shortcut list (described by a shortcutlist
tag) contains one or more shortcuts, each of which is described by a shortcut tag.

The following sections describe the syntax of the menus.xml tags. Optional attributes are marked
in the attribute lists with curly braces ({}); all attributes not marked with curly braces are required.

<menubar>

Description

Provides information about a menu bar in the Dreamweaver menu structure.

Attributes

name, {app}, id, {platform}

• name The name of the menu bar. Although name is a required attribute, you can give it the
value "".

• app The name of the application in which the menu bar is available. Not currently used.
• id The menu ID for the menu bar. Each menu ID in the menus.xml file should be unique.
• platform Indicates that the menu bar should appear only on the given platform. Valid values

are "win" and "mac".

Contents

This tag must contain one or more menu tags.

Container

None.
146 Chapter 8: Menus and Menu Commands

Example

The main (Document window) menu bar uses the following menubar tag:
<menubar name="Main Window" id="DWMainWindow">
<!-- menu tags here -->
</menubar>

<menu>

Description

Provides information about a menu or submenu to appear in the Dreamweaver menu structure.

Attributes

name, {app}, id, {platform}, {showIf}

• name The name of the menu as it will appear on the menu bar. To set the menu’s access key
(mnemonic) in Windows, use an underscore (_) before the access letter. The underscore is
automatically removed on the Macintosh.

• app The name of the application in which the menu is available. Not currently used.
• id The menu ID for the menu. Every ID in the file should be unique.
• platform Indicates that the menu should appear only on the given platform. Valid values

are "win" and "mac".
• showIf Specifies that the menu should appear only if the given Dreamweaver enabler is the

value true. The possible enablers are: _SERVERMODEL_ASP, _SERVERMODEL_ASPNET,
_SERVERMODEL_JSP, _SERVERMODEL_CFML (for all versions of ColdFusion),
_SERVERMODEL_CFML_UD4 (for UltraDev version 4 of ColdFusion), _SERVERMODEL_PHP,
_FILE_TEMPLATE, _VIEW_CODE, _VIEW_DESIGN, _VIEW_LAYOUT,
_VIEW_EXPANDED_TABLES, and _VIEW_STANDARD. You can specify multiple enablers by
placing a comma (which means AND) between the enablers. You can specify NOT with "!".
For example, if you want the menu to appear only in Code view for an ASP page, specify the
attribute as showIf="_VIEW_CODE, _SERVERMODEL_ASP".

Contents

This tag can contain one or more menuitem tags, and one or more separator tags. It can also
contain other menu tags (to create submenus) and standard HTML comment tags.

Container

This tag must be contained in a menubar tag.

Example

<menu name="_File" id="DWMenu_File">
<!-- menuitem, separator, menu, and comment tags here -->

</menu>

<menuitem>

Description

Defines a menu item for a Dreamweaver menu.
About the menus.xml file 147

Attributes

name, id, {app}, {key}, {platform}, {enabled}, {arguments}, {command}, {file},
{checked}, {dynamic}, {isdomrequired}, {showIf}

• name The menu item name that appears in the menu. An underscore indicates that the
following letter is the command’s access key (mnemonic), for Windows only.

• id Used by Dreamweaver to identify the item. This ID must be unique throughout the menu
structure. If you add new menu items to menus.xml, ensure uniqueness by using your
company name or another unique string as a prefix for each menu item’s ID.

• app The name of the application in which the menu item is available. Not currently used.
• key The keyboard shortcut for the command, if any. Use the following strings to specify

modifier keys:
■ Cmd specifies the Control key (Windows) or Command key (Macintosh).
■ Alt and Opt interchangeably specify the Alt key (Windows) or Option key (Macintosh).
■ Shift specifies the Shift key on both platforms.
■ Ctrl specifies the Control key on both platforms.
■ A Plus (+) sign separates modifier keys if a given shortcut uses more than one modifier. For

example, Cmd+Opt+5 in the key attribute means the menu item is executed when the user
presses Control+Alt+5 (Windows) or Command+Option+5 (Macintosh).

■ Special keys are specified by name: F1 through F12, PgDn, PgUp, Home, End, Ins, Del, Tab,
Esc, BkSp, and Space. Modifier keys can also be applied to special keys.

• platform Indicates on which platform the item appears. Valid values are "win", meaning
Windows, or "mac", meaning Macintosh. If you don’t specify the platform attribute, the
menu item appears on both platforms. If you want a menu item to behave differently on
different platforms, supply two menu items with the same name (but different IDs): one
with platform="win" and the other with platform="mac".

• enabled Provides JavaScript code (usually a JavaScript function call) that determines
whether the menu item is currently enabled. If the function returns the value false, the
menu item is dimmed. The default value is "true", but it’s best to always specify a value
for clarity even if the value is "true".

• arguments Provides arguments for Dreamweaver to pass to the code in the JavaScript file
that you specify in the file attribute. Enclose arguments in single quotation marks ('),
inside the double quotation marks (") used to delimit an attribute’s value.

• command Specifies a JavaScript expression that’s executed when the user selects this item
from the menu. For complex JavaScript code, use a JavaScript file (specified in the file
attribute) instead. You must specify either file or command for each menu item.

• file The name of an HTML file containing JavaScript that controls the menu item. Specify a
path to the file relative to the Configuration folder. (For example, the Help > Welcome menu
item specifies file="Commands/Welcome.htm".) The file attribute overrides the command,
enabled, and checked attributes. You must specify either file or command for each menu
item. For information on creating a command file using the History panel, see Dreamweaver
Help. For information on writing your own JavaScript commands, see Chapter 7,
“Commands,” on page 135.

• checked A JavaScript expression that indicates whether the menu item has a check mark
next to it in the menu; if the expression evaluates as true, the item appears with a
check mark.
148 Chapter 8: Menus and Menu Commands

• dynamic If present, indicates that a menu item is to be determined dynamically, by an
HTML file; the file contains JavaScript code to set the text and state of the menu item. If
you specify a tag as dynamic, you must also specify a file attribute.

• isdomrequired Indicates whether to synchronize the Design view and the Code view before
executing the code for this menu item. Valid values are "true" (the default) and "false". If
you set this attribute to "false", it means that the changes to the file that this menu item
makes do not use the Dreamweaver DOM. For information about the DOM, see Chapter 4,
“The Dreamweaver Document Object Model,” on page 67).

• showIf Specifies that the menuitem should appear only if the given Dreamweaver enabler has
value true. The possible enablers are: _SERVERMODEL_ASP, _SERVERMODEL_ASPNET,
_SERVERMODEL_JSP, _SERVERMODEL_CFML (for all versions of ColdFusion),
_SERVERMODEL_CFML_UD4 (for UltraDev version 4 of ColdFusion), _SERVERMODEL_PHP,
_FILE_TEMPLATE, _VIEW_CODE, _VIEW_DESIGN, _VIEW_LAYOUT,
_VIEW_EXPANDED_TABLES, and _VIEW_STANDARD. You can specify multiple enablers by placing
a comma (which means AND) between the enablers. You can specify NOT with "!". For
example, if you want the menu item to appear in Code view but not for a ColdFusion page,
specify the attribute as showIf="_VIEW_CODE, !_SERVERMODEL_CFML".

Contents

None (empty tag).

Container

This tag must be contained in a menu tag.

Example

<menuitem name="_New" key="Cmd+N" enabled="true" command="dw.createDocument()"
id="DWMenu_File_New" />

<separator>

Description

Indicates that a separator should appear at the corresponding location in the menu.

Attributes

{app}

• app The name of the application in which the separator is shown. Not currently used.

Contents

None (empty tag).

Container

This tag must be contained in a menu tag.

Example

<separator />
About the menus.xml file 149

<shortcutlist>

Description

Specifies a shortcut list in the menus.xml file.

Attributes

{app}, id, {platform}

• app The name of the application in which the shortcut list is available. Not currently used.
• id The ID for the shortcut list. It should be the same as the menu ID for the menu bar

(or context menu) in Dreamweaver that the shortcuts are associated with. Valid values are
"DWMainWindow", "DWMainSite", "DWTimelineContext", and "DWHTMLContext".

• platform Indicates that the shortcut list should appear only on the given platform. Valid
values are "win" and "mac".

Contents

This tag can contain one or more shortcut tags. It can also contain one or more comment tags
(which use the same syntax as HTML comment tags).

Container

None.

Example

<shortcutlist id="DWMainWindow">
<!-- shortcut and comment tags here -->
</shortcutlist>

<shortcut>

Description

Specifies a keyboard shortcut in the menus.xml file.

Attributes

key, {app}, {platform}, {file}, {arguments}, {command}, id, {name}

• key The key combination that activates the keyboard shortcut. For syntax details, see
<menuitem>.

• app The name of the application in which the shortcut is available. Not currently used.
• platform Specifies that the shortcut works only on the indicated platform. Valid values are

"win" and "mac". If you do not specify this attribute, the shortcut works on both platforms.
• file The path to a file containing the JavaScript code that Dreamweaver executes when

you use the keyboard shortcut. The file attribute overrides the command attribute. You must
specify either file or command for each shortcut.

• arguments Provides arguments for Dreamweaver to pass to the code in the JavaScript file
that you specify in the file attribute. Enclose arguments in single quotation marks ('),
inside the double quotation marks (") used to delimit an attribute’s value.

• command The JavaScript code that Dreamweaver executes when you use the keyboard
shortcut. Specify either file or command for each shortcut.
150 Chapter 8: Menus and Menu Commands

• id A unique identifier for a shortcut.
• name A name for the command executed by the keyboard shortcut, in the style of a menu

item name. For example, the name attribute for the F12 shortcut is "Preview in
Primary Browser".

Contents

None (empty tag).

Container

This tag must be contained in a shortcutlist tag.

Example

<shortcut key="Cmd+Shift+Z" file="Menus/MM/Edit_Clipboard.htm"
arguments="’redo’" id="DWShortcuts_Edit_Redo" />

Changing menus and menu items

By editing the menus.xml file, you can move menu items within a menu or from one menu to
another, add separators to or remove them from menus, and move menus within a menu bar or
even from one menu bar to another.

You can move items into or out of context menus using the same procedure as for other menus.

For information, see “About the menus.xml file” on page 146.

To move a menu item:

1 Quit Dreamweaver.
2 Make a backup copy of the menus.xml file.
3 Open menus.xml in a text editor such as BBEdit, HomeSite, or Wordpad. (Don’t open it

in Dreamweaver.)
4 Cut an entire menuitem tag, from the <menuitem at the beginning to the /> at the end.
5 Place the insertion point at the new location for the menu item. (Make sure it’s between a

menu tag and the corresponding /menu tag.)
6 Paste the menu item into its new location.

To create a submenu while moving a menu item:

1 Place the insertion point inside a menu (somewhere between a menu tag and the
corresponding /menu tag).

2 Insert a new menu tag and /menu tag pair inside the menu.
3 Add new menu items to the new submenu.

To insert a separator between two menu items:

• Place a separator/ tag between the two menuitem tags.

To remove an existing separator:

• Delete the corresponding separator/ line.
Changing menus and menu items 151

To move a menu:

1 Quit Dreamweaver.
2 Make a backup copy of the menus.xml file.
3 Open menus.xml in a text editor such as BBEdit, HomeSite, or Wordpad. (Don’t open it

in Dreamweaver.)
4 Cut an entire menu and its contents, from the opening menu tag to the closing /menu tag.
5 Place the insertion point at the new location for the menu. (Make sure it’s between a menubar

tag and the corresponding /menubar tag.)
6 Paste the menu into its new location.

Changing the name of a menu item or menu

You can easily change the name of any menu item or menu by editing the menus.xml file.

To change the name of a menu item or menu:

1 Quit Dreamweaver.
2 Make a backup copy of the menus.xml file.
3 Open menus.xml in a text editor such as HomeSite, BBEdit, or Wordpad. (Don’t open it

in Dreamweaver.)
4 If you’re changing a menu item, find the appropriate menuitem tag, and change the value of

its name attribute. If you are changing a menu, find the appropriate menu tag, and change the
value of its name attribute. In either case, do not change the id attribute.

5 Save and close menus.xml; then start Dreamweaver again to see your changes.

Changing keyboard shortcuts

If the default keyboard shortcuts aren’t convenient for you, you can change or remove existing
shortcuts or add new ones. The easiest way to do this is to use the Keyboard Shortcut Editor. (For
more information, see Dreamweaver Help). However, you can also modify keyboard shortcuts
directly in menus.xml if you prefer, but it’s much easier to make mistakes entering shortcuts in
menus.xml than in the Keyboard Shortcut Editor.

To change a keyboard shortcut:

1 Quit Dreamweaver.
2 Make a backup copy of the menus.xml file.
3 Open menus.xml in a text editor such as BBEdit, HomeSite, or Wordpad. (Don’t open it

in Dreamweaver.)
4 Look at the Keyboard Shortcut Matrix (available from the Dreamweaver Support Center) and

find a shortcut that’s not being used or one that you want to reassign.
If you reassign a keyboard shortcut, change it on a printed copy of the matrix for
future reference.

5 If you’re reassigning a keyboard shortcut, find the menu item that the shortcut is assigned to,
and remove the key="shortcut" attribute from that menu item.

6 Find the menu item to assign or reassign the keyboard shortcut.
7 If the menu item already has a keyboard shortcut, find the key attribute on that line. If it doesn’t

already have a shortcut, add key="" anywhere between attributes inside the menuitem tag.
152 Chapter 8: Menus and Menu Commands

8 Between the double quotation marks (") of the key attribute, enter the new
keyboard shortcut.
Use a Plus (+) sign between the keys in a key combination. For more information about
modifiers, see the description of the menuitem tag in <menuitem>.
If the keyboard shortcut is in use elsewhere and you didn’t remove its other use, the shortcut
will apply only to the first menu item that uses it in menus.xml.
Note: You can use the same keyboard shortcut for a Windows-only menu item and for a
Macintosh-only menu item.

9 Write your new shortcut in the appropriate location in the Keyboard Shortcut Matrix.

Modifying pop-up menus and context menus

Dreamweaver provides pop-up menus and context menus in many of its panels and dialog boxes.
Some context menus are defined in the menus.xml file; others are defined in other XML files. You
can add, remove, or modify items in those menus, although in most cases it’s better to write an
extension to make such changes.

The following pop-up menus and context menus in Dreamweaver are specified in XML files,
using the same tags as menus.xml:
• Data sources (listed in the Plus (+) pop-up menu on the Bindings panel) are specified in

DataSources.xml files, in subfolders of the DataSources folder.
• Server behaviors (listed in the Plus (+) pop-up menu on the Server Behaviors panel) are

specified in ServerBehaviors.xml files, in subfolders of the ServerBehaviors folder.
• Server formats (listed in the Plus (+) pop-up menu in the Edit Format List dialog box) are

specified in ServerFormats.xml files, in subfolders of the ServerFormats folder.
• Items in the formats pop-up menu for a binding in the Bindings panel are specified in

Formats.xml files, in subfolders of the ServerFormats folder. You can add entries to this menu
from inside Dreamweaver by using the Add Format dialog box.

• The Tag Library Editor dialog box menu items are specified in the TagLibraries/TagImporters/
TagImporters.xml file.

• Menu items for parameters in the Generate Behavior dialog box, which is part of the Server
Behavior Builder, are specified in Shared/Controls/String Menu/Controls.xml.

• Items for context menus associated with ColdFusion Components are specified in
Components/ColdFusion/CFCs/CFCsMenus.xml.

• Items for context menus associated with ColdFusion data sources are specified in
Components/ColdFusion/DataSources/DataSourcesMenus.xml.

• Items for context menus associated with JavaBeans are specified in Components/Jsp/
JavaBeans/JavaBeanMenus.xml.

• Items for context menus associated with various server components are specified in XML
files, in subfolders of the Components folder.
Changing menus and menu items 153

Menu Commands

Menu commands make menus more flexible and dynamic. As with regular commands, menu
commands can perform almost any kind of edit to the current document, other open documents,
or any HTML document on a local drive. The Menu Commands API expands the regular
Commands API to accomplish several tasks that are related to displaying and calling the
command from the menu system.

Menu commands are HTML files that are referenced in the file attribute of a menuitem tag in
the menus.xml file. The BODY section of a Menu Commands file can contain an HTML form that
accepts options for the command (for example, how a table should be sorted and by which
column). The HEAD section of a Menu Commands file contains JavaScript functions that process
form input from the BODY section and control the edits to the user’s document.

Menu commands are stored in the Configuration/Menus folder inside the Dreamweaver
application folder.
Note: If you add custom menu commands to Dreamweaver, add them at the top level of the Menus
folder or create a subfolder. The Macromedia folder MM is reserved for the menu commands that
come with Dreamweaver.

Modifying the Commands menu

You can add certain kinds of commands to the Commands menu, and change their names,
without editing the menus.xml file. For more information about menus.xml, see “Changing
menus and menu items” on page 151.
Note: The term “command” has two meanings in Dreamweaver. Strictly speaking, a command is a
particular kind of extension. In some contexts, however, “command” is used interchangeably with
“menu item” to mean any item that appears in a Dreamweaver menu, no matter what it does or how
it’s implemented.

To create new commands that are automatically placed in the Commands menu, use the History
panel. Alternatively, you can use the Extension Manager to install new extensions, including
commands. For more information, see Dreamweaver Help.

To reorder the items in the Commands menu, or to move items between menus, you must edit
the menus.xml file.

To rename a command you’ve created:

1 Select Commands > Edit Command List.
A dialog box appears, listing all the commands whose names you can change. (Commands
that are in the default Commands menu don’t appear on this list and can’t be edited using
this approach.)

2 Select a command to rename.
3 Enter a new name for it.
4 Click Close.
The command is renamed in the Commands menu.
154 Chapter 8: Menus and Menu Commands

To delete a command you’ve created:

1 Select Commands > Edit Command List.
A dialog box appears, listing all the commands you can delete. (Commands that are in the
default Commands menu don’t appear on this list and can’t be deleted using this approach.)

2 Select a command to delete.
3 Click Delete, and then confirm that you want to delete the command.

The command is deleted. The file that contains the code for the command is also deleted;
deleting a command does not simply remove the menu item from the menu. Be certain that
you really want to delete the command before you use this approach. If you want to remove it
from the Commands menu without deleting the file, you can find the file in Configuration/
Commands and move it to another folder.

4 Click Close.

How menu commands work

When the user clicks a menu with a menu item that contains a menu command, the following
events occur:

1 If any menuitem tag in the menu contains the dynamic attribute, Dreamweaver calls the
getDynamicContent() function in the associated Menu Commands file to populate the menu.

2 Dreamweaver calls the canAcceptCommand() function in each Menu Commands file that is
referenced in the menu to check whether the command is appropriate for the selection.
■ If the canAcceptCommand() function returns a false value, the menu item is dimmed.
■ If the canAcceptCommand() function returns a true value or is not defined, Dreamweaver

calls the isCommandChecked() function to determine whether to display a check mark
next to the menu item. If the isCommandChecked() function is not defined, no check
mark appears.

3 Dreamweaver calls the setMenuText() function to determine the text that should appear in the
menu.
If the setMenuText() function is not defined, Dreamweaver uses the text that is specified in
the menuitem tag.

4 The user selects an item from the menu.
5 Dreamweaver calls the receiveArguments() function, if defined, in the selected Menu

Commands file to let the command process any arguments that pass from the menu item.
Note: If it is a dynamic menu item, the ID of the menu item passes as the only argument.

6 Dreamweaver calls the commandButtons() function, if defined, to determine which buttons
appear on the right side of the Options dialog box and what code should execute when the user
clicks the buttons.

7 Dreamweaver scans the Menu Commands file for a FORM tag.
If a form exists, Dreamweaver calls the windowDimensions() function to determine the size of
the Options dialog box that contains the BODY elements of the file.
If the windowDimensions() function is not defined, Dreamweaver automatically sizes the
dialog box.

8 If the Menu Commands file’s BODY tag contains an onLoad handler, Dreamweaver executes the
associated code (whether or not a dialog box appears). If no dialog box appears, the remaining
steps do not occur.
Menu Commands 155

9 The user selects options in the dialog box. Dreamweaver executes event handlers that are
associated with the fields as the user encounters them.

10 The user clicks one of the buttons that are defined by the commandButtons() function.
11 Dreamweaver executes the code that is associated with the clicked button.
12 The dialog box remains visible until one of the scripts in the Menu Commands calls the

window.close() function.

The Menu Commands API

The custom functions in the Menu Commands API are not required.

canAcceptCommand()

Description

Determines whether the menu item is active or dimmed.

Arguments

{arg1}, {arg2},...{argN}}

• If it is a dynamic menu item, the unique ID that the getDynamicContents() function
specifies is the only argument. Otherwise, if the arguments attribute is defined for a menuitem
tag, the value of that attribute passes to the canAcceptCommand() function (and to the
isCommandChecked(), receiveArguments(), and setMenuText() functions) as one or more
arguments. The arguments attribute is useful for distinguishing between two menu items that
call the same menu command.

Note: The arguments attribute is ignored for dynamic menu items.

Returns

Dreamweaver expects a Boolean value: true if the item should be enabled; false otherwise.

commandButtons()

Description

Defines the buttons that appear on the right side of the Options dialog box and their behavior
when they are clicked. If this function is not defined, no buttons appear, and the BODY section of
the Menu Commands file expands to fill the entire dialog box.

Arguments

None.

Returns

Dreamweaver expects an array that contains an even number of elements. The first element is a
string that contains the label for the topmost button. The second element is a string of JavaScript
code that defines the behavior of the topmost button when it is clicked. The remaining elements
define additional buttons in the same manner.
156 Chapter 8: Menus and Menu Commands

Example

The following example of the commandButtons() function defines the OK, Cancel, and Help
buttons:
function commandButtons(){

return new Array("OK" , "doCommand()" , "Cancel" , ¬
"window.close()" , "Help" , "showHelp()");

}

getDynamicContent()

Description

Retrieves the content for the dynamic portion of the menu.

Arguments

menuID

• The menuID argument is the value of the id attribute in the menuitem tag that is associated
with the item.

Returns

Dreamweaver expects an array of strings where each string contains the name of a menu item
and its unique ID, separated by a semicolon. If the function returns a null value, the menu does
not change.

Example

The following example of the getDynamicContent() function returns an array of four menu
items (My Menu Item 1, My Menu Item 2, My Menu Item 3, and My Menu Item 4):
function getDynamicContent(){

var stringArray= new Array();
var i=0;
var numItems = 4;

for (i=0; i<numItems;i++)

stringArray[i] = new String("My Menu Item " + i + ";¬
id=’My-MenuItem" + i + “‘”);

return stringArray;
}

The Menu Commands API 157

isCommandChecked()

Description

Determines whether to display a check mark next to the menu item.

Arguments

{arg1}, {arg2},...{argN}

• If it is a dynamic menu item, the unique ID that the getDynamicContents() function
specifies is the only argument. Otherwise, if the arguments attribute is defined for a menuitem
tag, the value of that attribute passes to the isCommandChecked() function (and to the
canAcceptCommand(), receiveArguments(), and setMenuText() functions) as one or more
arguments. The arguments attribute is useful for distinguishing between two menu items that
call the same menu command.

Note: The arguments attribute is ignored for dynamic menu items.

Returns

Dreamweaver expects a Boolean value: true if a check mark should appear next to the menu
item; false otherwise.

Example

function isCommandChecked()
{
 var bChecked = false;

var cssStyle = arguments[0];

if (dw.getDocumentDOM() == null)
 return false;

if (cssStyle == "(None)")
{

return dw.cssStylePalette.getSelectedStyle() == '';
}
else
{

return dw.cssStylePalette.getSelectedStyle() == cssStyle;
}

return bChecked;
}

158 Chapter 8: Menus and Menu Commands

receiveArguments()

Description

Processes any arguments passed from a menu item or from the dw.runCommand() function. If it
is a dynamic menu item, it processes the dynamic menu item ID.

Arguments

{arg1}, {arg2},...{argN}

• If it is a dynamic menu item, the unique ID that the getDynamicContents() function
specifies is the only argument. Otherwise, if the arguments attribute is defined for a menuitem
tag, the value of that attribute passes to the receiveArguments() function (and to the
canAcceptCommand(), isCommandChecked(), and setMenuText() functions) as one or more
arguments. The arguments attribute is useful for distinguishing between two menu items that
call the same menu command.

Note: The arguments attribute is ignored for dynamic menu items.

Returns

Dreamweaver expects nothing.

Example

function receiveArguments()
{

var styleName = arguments[0];
if (styleName == "(None)")

dw.getDocumentDOM('document').applyCSSStyle('','');
else

dw.getDocumentDOM('document').applyCSSStyle('',styleName);
}

setMenuText()

Description

Specifies the text that should appear in the menu.
Note: Do not use this function if you are using getDynamicContent().

Arguments

{arg1}, {arg2},...{argN}

• If the arguments attribute is defined for a menuitem tag, the value of that attribute passes to
the setMenuText() function (and to the canAcceptCommand(), isCommandChecked(), and
receiveArguments() functions) as one or more arguments. The arguments attribute is useful
for distinguishing between two menu items that call the same menu command.

Returns

Dreamweaver expects the string that should appear in the menu.
The Menu Commands API 159

Example

function setMenuText()
{

if (arguments.length != 1) return "";

var whatToDo = arguments[0];
if (whatToDo == "undo")

return dw.getUndoText();
else if (whatToDo == "redo")

return dw.getRedoText();
else return "";

}

windowDimensions()

Description

Sets specific dimensions for the Parameters dialog box. If this function is not defined, the window
dimensions are computed automatically.
Note: Do not define this function unless you want a dialog box that is larger than 640 x 480 pixels.

Arguments

platform

• The value of the platform argument is either "macintosh" or "windows", depending on the
user’s platform.

Returns

Dreamweaver expects a string of the form "widthInPixels,heightInPixels".

The returned dimensions are smaller than the size of the entire dialog box because they do not
include the area for the OK and Cancel buttons. If the returned dimensions do not accommodate
all options, scroll bars appear.

Example

The following example of windowDimensions() sets the dimensions of the Parameters dialog box
to 648 x 520 pixels:
function windowDimensions(){

return "648,520";
}

160 Chapter 8: Menus and Menu Commands

A simple menu command

This simple menu command example shows how Undo and Redo menu commands might work.
The Undo menu item reverses the effect of a user’s editing operation, and the Redo item reverses
an Undo operation and restores the effect of the user’s last editing operation.

You can implement this example by performing the following steps:

1 Creating the menu items
2 Writing the JavaScript code
3 Placing the menu command file in the Menus folder

Creating the menu items

Add the following HTML menu tags to the end of the menus.xml file to create a menu called
MyMenu that contains the Undo and Redo menu items.
<menu name="MyMenu" id="MyMenu_Edit">
<menuitem name="MyUndo" key="Cmd+Z" file="Menus/MyMenu.htm" arguments="'undo'"

id="MyMenu_Edit_Undo" />
<menuitem name="MyRedo" key="Cmd+Y" file="Menus/MyMenu.htm" arguments="'redo'"

id="MyMenu_Edit_Redo" />
</menu>

The key attribute defines keyboard shortcut keys that the user can type to invoke the menu item.
The file attribute specifies the name of the command file that Dreamweaver executes when
Dreamweaver invokes the menu item. The value of the arguments attribute defines the
arguments that Dreamweaver will pass when it calls the receiveArguments() function.

The following figure shows these menu items:

Writing the JavaScript code

When the user clicks either Undo or Redo on the MyMenu menu, Dreamweaver calls the
MyMenu.htm command file, which is specified by the file attribute of the menuitem tag. Create
the MyMenu.htm command file in the Dreamweaver Configuration/Menus folder and add the
three menu command API function, canAcceptCommand(), receiveArguments(), and
setMenuText(), to implement the logic associated with the Undo and Redo menu items. The
following sections describe these functions.
A simple menu command 161

canAcceptCommand()

Dreamweaver calls the canAcceptCommand() function for each menu item in the MyMenu menu
to determine whether it should be enabled or disabled. In the MyMenu.htm file, the
canAcceptCommand() function checks the value of arguments[0] to determine whether
Dreamweaver is processing a Redo menu item or an Undo menu item. If the argument is "undo",
the canAcceptCommand() function calls the enabler function dw.canUndo() and returns the
returned value, which is either true or false. Likewise, if the argument is "redo", the
canAcceptCommand() function calls the enabler function dw.canRedo(), and returns its value to
Dreamweaver. If the canAcceptCommand() function returns the value false, Dreamweaver dims
the menu item for which it called the function. The following example shows the code for the
canAcceptCommand() function:
function canAcceptCommand()
{
 var selarray;
 if (arguments.length != 1) return false;
 var bResult = false;

 var whatToDo = arguments[0];
 if (whatToDo == "undo")
 {
 bResult = dw.canUndo();
 }
 else if (whatToDo == "redo")
 {
 bResult = dw.canRedo();
 }
 return bResult;
}

receiveArguments()

Dreamweaver calls the receiveArguments() function to process any arguments that you defined
for the menuitem tag. For the Undo and Redo menu items, the receiveArguments() function
calls either the dw.undo() function or the dw.redo() function, depending on whether the value
of the argument, arguments[0], is "undo" or "redo". The dw.undo() function undoes the
previous step that the user performed in the document window, dialog box, or panel that has
focus. The dw.redo() function redoes the last operation that was undone.

The receiveArguments() function looks like the following example code:
function receiveArguments()
{
 if (arguments.length != 1) return;

 var whatToDo = arguments[0];
 if (whatToDo == "undo")
 {
 dw.undo();
 }
 else if (whatToDo == "redo")
 {
 dw.redo();
 }
}

162 Chapter 8: Menus and Menu Commands

For more information about the dw.undo() and dw.redo() functions, see the Dreamweaver API
Reference.

In this command, the receiveArguments() function processes the arguments and executes the
command. More complex menu commands might call different functions to execute the
command. For example, the following code checks whether the first argument is "foo"; if it is, it
calls the doOperationX() function and passes it the second argument. If the first argument is
"bar", it calls the doOperationY() function and passes it the second argument. The
doOperationX() or doOperationY() function is responsible for executing the command.
function receiveArguments(){
 if (arguments.length != 2) return;

 var whatToDo = arguments[0];

 if (whatToDo == "foo"){
 doOperationX(arguments[1]);
 }else if (whatToDo == "bar"){
 doOperationX(arguments[1]);
 }
}

setMenuText()

Dreamweaver calls the setMenuText() function to determine what text appears for the menu
item. If you do not define the setMenuText() function, Dreamweaver uses the text that you
specified on the name attribute of the menuitem tag.

The setMenuText() function checks the value of the argument that Dreamweaver passes,
arguments[0]. If the value of the argument is "undo", Dreamweaver calls the
dw.getUndoText() function; if it is "redo", Dreamweaver calls dw.getRedoText(). The
dw.getUndoText() function returns text that specifies the operation that Dreamweaver will
undo. For example, if the user executes multiple Redo operations, dw.getUndoText() could
return the menu text, Undo Edit Source. Likewise, the dw.getRedoText() function returns text
that specifies the operation that Dreamweaver will redo. If the user executes multiple Undo
operations, the dw.RedoText() function could return the menu text, Redo Edit Source.

The setMenuText() function looks like the following example code:
function setMenuText()
{
 if (arguments.length != 1) return "";

 var whatToDo = arguments[0];
 if (whatToDo == "undo")
 return dw.getUndoText();
 else if (whatToDo == "redo")
 return dw.getRedoText();
 else return "";
}

A simple menu command 163

Placing the command file in the Menu folder

To implement the menu Undo and Redo menu items, you must save the MyMenu.htm
command file in the Dreamweaver Configuration/Menus folder or a subfolder that you create.
The location of the file must agree with the location that you specified on the menuitem tag. To
make it accessible to Dreamweaver, either restart Dreamweaver or reload extensions. For
information on how to reload extensions, see “Running the command” on page 144.

To run the menu commands, select the menu item when it is enabled. Dreamweaver will invoke
the functions in the command file, as described in “How menu commands work” on page 155.

A dynamic menu

This example implements the Dreamweaver Preview in Browser submenu that displays a list of
available browsers. The example also opens the current file, or the selected files in the Site panel,
in the user-specified browser. Implementing this dynamic menu consists of the following steps:

1 Creating the dynamic menu items
2 Writing the JavaScript code

Creating the dynamic menu items

The following menu tags in the menus.xml file define the Preview in Browser submenu of the
File menu:
<menu name="_Preview in Browser" id="DWMenu_File_PIB">

<menuitem dynamic name="No Browsers Selected"
file="Menus/MM/PIB_Dynamic.htm" arguments="'No Browsers'"
id="DWMenu_File_PIB_Default" />

<separator />
<menuitem name="_Edit Browser List..." enabled="true"

command="dw.editBrowserList()" id="DWMenu_File_PIB_EditBrowserList" />
</menu>

The first menuitem tag defines the default menu item No Browsers Selected, which appears on
the submenu if you have not specified any browsers for the Preview in Browser item in
Preferences. If you specified the Internet Explorer browser, however, the submenu would look like
the following figure:

The name attribute for the first menu item specifies the command file PIB_Dynamic.htm. This
file contains the following line:
<SCRIPT LANGUAGE="javascript" SRC="PIB_Dynamic.js"></SCRIPT>

The script tag includes the JavaScript code in the PIB_Dynamic.js file, which supplies the
JavaScript code that interacts with the Preview in Browser submenu. This code could be saved
directly in the PIB_Dynamic.htm file, but storing it in a separate file allows multiple commands
to include the same code.
164 Chapter 8: Menus and Menu Commands

Writing the JavaScript code

Because the first menuitem tag contains the dynamic attribute, Dreamweaver calls the
getDynamicContent() function in the PIB_Dynamic.js file, which is shown in the following
example:
function getDynamicContent(itemID)
{

var browsers = null;
var PIB = null;
var i;
var j=0;
browsers = new Array();
PIB = dw.getBrowserList();

for (i=0; i<PIB.length; i=i+2)
{

browsers[j] = new String(PIB[i]);

if (dw.getPrimaryBrowser() == PIB[i+1])
 browsers[j] += "\tF12";
else if (dw.getSecondaryBrowser() == PIB[i+1])
 browsers[j] += "\tCmd+F12";

browsers[j] += ";id='"+escQuotes(PIB[i])+"'";

if (itemID == "DWPopup_PIB_Default")
browsers[j] = MENU_strPreviewIn + browsers[j];

j = j+1;
}
return browsers;

}

The getDynamicContent() function calls the dw.getBrowserList() function to obtain an
array of the browser names that have been specified in the Preview in Browser section of
Dreamweaver Preferences. This array contains the name of each browser and the path to the
executable file. Next, for each item in the array (i=0; i<PIB.length; i=i+2), the
getDynamicContents() function moves the name of the browser (PIB[i]) into a second array
called browsers (browsers[j] = new String(PIB[i]);). If the browser has been designated as
the primary or secondary browser, the function appends the names of the keyboard shortcut keys
that invoke them. Next it appends the string ";id=" followed by the name of the browser in
single quotes (for example, ;id=’iexplore’). If the itemID argument is
"DWPopup_PIB_Default", the function prefixes the array item with the string Preview in.
After it constructs an entry for each browser listed in Preferences, the getDynamicContent()
function returns the array browsers to Dreamweaver. If no browsers have been selected in
Preferences, the function returns the value null, and Dreamweaver displays No Browsers Selected
in the menu.
A dynamic menu 165

canAcceptCommand()

Dreamweaver next calls the canAcceptCommand() function for each menuitem tag that references
a command file with the file attribute. If the canAcceptCommand() function returns the value
false, the menu item is dimmed. If the canAcceptCommand() function returns the value true,
Dreamweaver enables the item on the menu. If the function returns true or is not defined,
Dreamweaver calls the isCommandChecked() function to determine whether to display a check
mark next to the menu item. If the isCommandChecked() function is not defined, no check
mark appears.
function canAcceptCommand()
{

var PIB = dw.getBrowserList();

if (arguments[0] == 'primary' || arguments[0] == 'secondary')
return havePreviewTarget();

return havePreviewTarget() && (PIB.length > 0);
}

The canAcceptCommand() function in the PIB_Dynamic.js file again retrieves the browser list
that was created in Preferences. Then it checks whether the first argument (arguments[0]) is
primary or secondary. If so, it returns the value returned by the havePreviewTarget() function.
If not, it tests the call to the havePreviewTarget() function and tests whether any browsers have
been specified (PIB.length > 0). If both tests are true, the function returns the value true. If
either or both of the tests are false, the function returns the value false.

havePreviewTarget()

The havePreviewTarget() function is a user-defined function that returns the value true
if Dreamweaver has a valid target to display in the browser. A valid target is a document or a
selected group of files in the site panel. The havePreviewTarget() function looks like the
following example:
function havePreviewTarget()
{

var bHavePreviewTarget = false;

if (dw.getFocus(true) == 'site')
{

if (site.getFocus() == 'remote')
{

bHavePreviewTarget = site.getRemoteSelection().length > 0 &&
site.canBrowseDocument();

}
else if (site.getFocus() != 'none')
{

var selFiles = site.getSelection();

if (selFiles.length > 0)
{

var i;

bHavePreviewTarget = true;

for (i = 0; i < selFiles.length; i++)
{

var selFile = selFiles[i];
166 Chapter 8: Menus and Menu Commands

// For server connections, the files will
// already be remote urls.

if (selFile.indexOf("://") == (-1))
{

var urlPrefix = "file:///";
var strTemp = selFile.substr(urlPrefix.length);

if (selFile.indexOf(urlPrefix) == -1)
bHavePreviewTarget = false;

else if (strTemp.indexOf("/") == -1)
bHavePreviewTarget = false;

else if (!DWfile.exists(selFile))
bHavePreviewTarget = false;

else if (DWfile.getAttributes(selFile).indexOf("D") != -1)
bHavePreviewTarget = false;

}
else
{

bHavePreviewTarget = true;
}

}
}

}
}
else if (dw.getFocus() == 'document' ||

dw.getFocus() == 'textView' || dw.getFocus("true") == 'html')
{

var dom = dw.getDocumentDOM('document');
if (dom != null)
{

var parseMode = dom.getParseMode();
if (parseMode == 'html' || parseMode == 'xml')

bHavePreviewTarget = true;
}

}

return bHavePreviewTarget;
}

The havePreviewTarget() function sets the value bHavePreviewTarget to false as the
default return value. The function performs two basic tests calling the dw.getFocus() function
to determine what part of the application currently has focus. The first test checks whether the
site panel has focus (if (dw.getFocus(true) == 'site')). If the site panel does not have
focus, the second test checks to see if a document (dw.getFocus() == 'document'), Text view
(dw.getFocus() == 'textView'), or the Code inspector (dw.getFocus("true") == 'html')
has focus. If neither test is true, the function returns the value false.

If the site panel has focus, the function checks whether the view setting is Remote view. If it is, the
function sets bHavePreviewTarget to true if there are remote files
(site.getRemoteSelection().length > 0) and the files can be opened in a browser
(site.canBrowseDocument()). If the view setting is not Remote view, and if the view is not
None, the function gets a list of the selected files (var selFiles = site.getSelection();) in
the form of file:/// URLs.
A dynamic menu 167

For each item in the selected list, the function tests for the presence of the character string
"://". If it is not found, the code performs a series of tests on the list item. If the item is not in
the form of a file:/// URL (if (selFile.indexOf(urlPrefix) == -1)), it sets the return
value to false. If the remainder of the string following the file:/// prefix does not contain a
slash (/) (if (strTemp.indexOf("/") == -1)), it sets the return value to false. If the file does
not exist (else if (!DWfile.exists(selFile))), it sets the return value to false. Last, it
checks to see if the specified file is a folder (else if
(DWfile.getAttributes(selFile).indexOf("D") != -1)). If selfile is a folder, the
function returns the value false. Otherwise, if the target is a file, the function sets
bHavePreviewTarget to the value true.

If a document, Text view, or the Code inspector have focus (else if (dw.getFocus() ==
'document' || dw.getFocus() == 'textView' || dw.getFocus("true") == 'html')),
the function gets the DOM and checks to see if the document is an HTML or an XML
document. If so, the function sets bHavePreviewTarget to true. Finally, the function returns
the value stored in bHavePreviewTarget.

receiveArguments()

Dreamweaver calls the receiveArguments() function to let the command process
any arguments that pass from the menu item. For the Preview in Browsers menu,
the receiveArguments() function invokes the browser that the user selects.
The receiveArguments() function looks like the following example:

function receiveArguments()
{

var whichBrowser = arguments[0];
var theBrowser = null;
var i=0;
var browserList = null;
var result = false;

if (havePreviewTarget())
{

// Code to check if we were called from a shortcut key
if (whichBrowser == 'primary' || whichBrowser == 'secondary')
{

// get the path of the selected browser
if (whichBrowser == 'primary')
{

theBrowser = dw.getPrimaryBrowser();
}
else if (whichBrowser == 'secondary')
{

theBrowser = dw.getSecondaryBrowser();
}

// match up the path with the name of the corresponding browser
// that appears in the menu
browserList = dw.getBrowserList();
while (i < browserList.length)
{

if (browserList[i+1] == theBrowser)
theBrowser = browserList[i];

i+=2;
}

}
else

theBrowser = whichBrowser;
168 Chapter 8: Menus and Menu Commands

// Only launch the browser if we have a valid browser selected
if (theBrowser != "file:///" && typeof(theBrowser) != "undefined" &&

theBrowser.length > 0)
{

if (dw.getFocus(true) == 'site')
{

// Only get the first item of the selection because
// browseDocument() can't take an array.
//dw.browseDocument(site.getSelection()[0],theBrowser);
site.browseDocument(theBrowser);

}
else

dw.browseDocument(dw.getDocumentPath('document'),theBrowser);
}
else
{

// otherwise, if the user hit the F12 or Ctrl+F12 keys,
// ask if they want to specify a primary or secondary browser now.
if (whichBrowser == 'primary')
{

result = window.confirm(MSG_NoPrimaryBrowserDefined);
}
else if (whichBrowser == 'secondary')
{

result = window.confirm(MSG_NoSecondaryBrowserDefined);
}

// If they clicked OK, show the prefs dialog with the browser panel
if (result)

dw.showPreferencesDialog('browsers');
}

}
}

The function first sets the variable whichBrowser to the value that Dreamweaver passes,
arguments[0]. Along with setting other default values, the function also sets return to a default
value of false.

After initializing variables, the receiveArguments() function calls the user-defined function
havePreviewTarget() and tests the result. If the result of the test is true, the function checks to
see if the user selected the primary or secondary browser. If so, the function sets the variable
theBrowser to the path of the executable file that starts the browser (dw.getPrimaryBrowser()
or dw.getSecondaryBrowser()). The function then performs a loop that examines the list of
browsers returned by dw.getBrowsersList(). If the path to a browser in the list matches the
path to the primary or secondary browser, the function sets the variable theBrowser to the
matching value in browserList. This value contains the name of the browser and the path to the
executable file that starts the browser. If havePreviewTarget() returns the value false, the
function sets the variable theBrowser to the value of the variable whichBrowser.

Next, the receiveArguments() function tests the variable theBrowser to make sure that it does
not begin with a path, that it is not "undefined", and that it has a length greater than zero. If all
these conditions are true, and if the Site panel has focus, the receiveArguments() function calls
the site.browseDocument() function to invoke the selected browser with the files selected in
the Site panel. If the Site panel does not have focus, the receiveArguments() function calls the
function dw.browseDocument() and passes it the path of the current document and the value
of the variable theBrowser, which specifies the name of the browser with which to open
the document.
A dynamic menu 169

If the user entered the shortcut keys (F12 or Ctrl+F12) and no primary or secondary browser
has been specified, a dialog box appears to inform the user. If the user clicks OK, the function
calls the function dw.showPreferencesDialog() with the browsers argument to let the user
specify a browser at that point.
170 Chapter 8: Menus and Menu Commands

CHAPTER 9
Toolbars
You can create a toolbar for Macromedia Dreamweaver MX 2004 simply by creating a file that
defines the toolbar and placing that file in the Configuration/Toolbars folder. Within a toolbar
file, you can define items such as check buttons, radio buttons, text boxes, and pop-up menus
using a few custom XML tags. You can assign attributes and commands to toolbar items to
specify how they look and behave, include other toolbar files, and reference toolbar items that are
defined in other toolbars.

How toolbars work

Toolbars are defined by XML and image files that are stored in the Toolbars folder of the main
Dreamweaver Configuration folder. The default Dreamweaver toolbars are stored in the
toolbars.xml file in the Configuration/Toolbars folder. When Dreamweaver starts, it loads all the
toolbar files in the Toolbars folder. You can add new toolbars simply by copying a file into the
Toolbars folder rather than modifying the original toolbars.xml file.

Toolbar XML files define one or more toolbars and their toolbar items. A toolbar is a list of items
such as buttons, text boxes, pop-up menus, and so on. A toolbar item represents a single control
that a user can access in a toolbar.

Some types of toolbar controls, such as push buttons and pop-up menus, have icon images
associated with them. Icon images are stored in an images folder in the Toolbars folder. Images
can be in any format that Dreamweaver can render but are typically GIF or JPEG file formats.
Images for Macromedia-authored toolbars are stored in the Toolbars/images/MM folder.

As with menus, you can specify the functionality of individual toolbar items either through the
item attributes or through a command file. Macromedia-authored toolbar command files are
stored in the Toolbars/MM folder.
Tip: The Toolbar API is compatible with the Menu Commands API, so toolbar controls can reuse
menu command files.

Unlike menus, you can define toolbar items independently from the toolbars that use them. This
flexibility lets you use toolbar items in multiple toolbars by using the itemref tag.

The first time Dreamweaver loads a toolbar, its visibility and position are set by the toolbar
definition. After that, its visibility and position are saved in and restored from the registry
(Windows) or the Dreamweaver Preferences file (Macintosh).
171

How toolbars behave

In Windows, Dreamweaver toolbars generally act the same as standard Windows toolbars.
Dreamweaver toolbars have the following characteristics:

• You can drag and drop toolbars to dock them, undock them, and reposition them relative to
other toolbars.

• You can horizontally dock toolbars to the top or bottom of the frame window.
In the Dreamweaver workspace, which integrates all the Dreamweaver document windows
within a single parent frame, you can specify whether toolbars dock to the workspace frame or
to the document window.
For toolbars that dock to the Dreamweaver workspace frame, there is only one instance of each
toolbar. In this case, the toolbars always operate on the document in front. In the
Dreamweaver workspace, you can dock toolbars above, below, or to the left or right of the
Insert toolbar. Toolbars that are attached to the Dreamweaver workspace frame do not
automatically disable when there is no document window. The toolbar items determine
whether they are enabled when no document is open.
When toolbars stay docked to the document window, there is one instance for each window.
Toolbars that are attached to a document window completely disable themselves when their
window is not the front document and rerun all their update handlers when their window
comes to the front.
You cannot drag and drop toolbars between the document window and the Dreamweaver
workspace frame.

• Toolbars remain a fixed size. A toolbar does not shrink if the container shrinks or if other
toolbars are placed next to it.

• You can show or hide toolbars from the View >Toolbars menu.
• Toolbars cannot overlap.
• Only the outline of the toolbar appears while you drag it.

On the Macintosh, toolbars are always attached to the document window. They can be shown or
hidden from the menu, but you cannot drag and drop, rearrange, or undock them.

How toolbar commands work

When Dreamweaver draws a toolbar, the following events occur:

1 For each toolbar control item, Dreamweaver determines whether the file attribute exists.
2 If the file attribute exists, Dreamweaver calls the canAcceptCommand() function to determine

whether it should enable the control in the current context of the document.
For the Document Title text box in the Dreamweaver toolbar, for example, the
canAcceptCommand() function checks to see if there is a current DOM and if the current
document is an HTML file. If both these conditions are true, the function returns true and
Dreamweaver enables the text box on the toolbar.

3 If the file attribute exists, Dreamweaver ignores the following attributes, if they are specified:
checked, command, DOMRequired, enabled, script, showif, update, and value.

4 If the file attribute does not exist, Dreamweaver processes the attributes that are set for the
toolbar control item: checked, command, DomRequired, and so on.
For more information on specific item tag attributes, see “Item tag attributes” on page 182.
172 Chapter 9: Toolbars

5 Dreamweaver calls the getCurrentValue() function on every update cycle, as specified by the
update attribute, to determine what value to display for the control.

6 The user selects an item on the toolbar.
7 Dreamweaver calls the receiveArguments() function to process any arguments that the

arguments attribute of the toolbar item specifies.
For more information on the purpose of specific functions in the Toolbar Command API, see
“The toolbar command API” on page 187.

The toolbar definition file

A toolbar is simply a list of radio buttons, check buttons, edit boxes, and other toolbar items,
optionally divided by separator tags. Each toolbar item can be a reference to an item using the
itemref tag, a separator using the separator tag, or a complete toolbar item definition, for a
checkbox or an edit box, for example, as described in “Toolbar item tags” on page 177.

Each toolbar definition file starts with the following declarations:
<?xml version="1.0" encoding="optional_encoding"?>
<!DOCTYPE toolbarset SYSTEM "-//Macromedia//DWExtension toolbar 5.0">

If the encoding is omitted, Dreamweaver uses the default encoding of the operating system.

After the declarations, the file consists of a single toolbarset tag, which contains any number of
the following tags: toolbar, itemref, separator, include, and itemtype tags, where itemtype
is a button, checkbutton, radiobutton, menubutton, dropdown, combobox, editcontrol, or
colorpicker. The following example, which is an abbreviated excerpt from the toolbars.xml file,
illustrates the hierarchy of tags in the toolbar file. The example substitutes ellipses (. . .) for the
toolbar item attributes that are described in the following sections.
<?xml version="1.0"?>
<!DOCTYPE toolbarset SYSTEM "-//Macromedia//DWExtension toolbar 5.0">
<toolbarset>

<!-- main toolbar -->
<toolbar id="DW_Toolbar_Main" label="Document">

<radiobutton id="DW_CodeView" . . ./>
<radiobutton id="DW_SplitView" . . ./>
<radiobutton id="DW_DesignView" . . ./>
<separator/>
<checkbutton id="DW_LiveDebug" . . ./>
<checkbutton id="DW_LiveDataView" . . ./>
<separator/>
<editcontrol id="DW_SetTitle" . . ./>
<menubutton id="DW_FileTransfer" . . ./>
<menubutton id="DW_Preview" . . ./>
<separator/>
<button id="DW_DocRefresh" . . ./>
<button id="DW_Reference" . . ./>
<menubutton id="DW_CodeNav" . . ./>
<menubutton id="DW_ViewOptions" . . ./>

</toolbar>
</toolbarset>

The following section describes each of the toolbar tags.
The toolbar definition file 173

<toolbar>

Description

Defines a toolbar. Dreamweaver displays the items and separators from left to right in the
specified order, laying out the items automatically. The toolbar file does not specify control over
the spacing between the items, but you can specify the widths of certain kinds of items.

Attributes

id, label, {container}, {initiallyVisible}, {initialPosition}, {relativeTo}

• id="unique_id" Required. An identifier string must be unique within a file and within all
files that the file includes. The JavaScript API functions that manipulate a toolbar refer to it by
its ID. For more information on these functions, see the Dreamweaver API Reference. If two
toolbars that are included in the same file have the same ID, Dreamweaver displays an error.

• label="string" Required. The label attribute specifies the label, which is a character string,
that Dreamweaver displays to the user. The label appears in the View >Toolbars menu and in
the title bar of the toolbar when it’s floating.

• container="mainframe" or "document" Defaults to "mainframe". Specifies where the
toolbar should dock in the Dreamweaver workspace on Windows. If the container is set to
"mainframe", the toolbar appears in the outer workspace frame and operates on the front
document. If the container is set to "document", the toolbar appears in each document
window. On the Macintosh, all toolbars appear in each document window.

• initiallyVisible="true" or "false". This tag specifies whether the toolbar should be
visible the first time that Dreamweaver loads it from the Toolbars folder. After the first time,
the user controls visibility. Dreamweaver saves the current state to the system registry
(Windows) or the Dreamweaver Preferences file (Macintosh) when the user quits
Dreamweaver. Dreamweaver restores the setting from the registry or the Preferences file when
it restarts. You can manipulate toolbar visibility using the dom.getToolbarVisibility() and
dom.setToolbarVisibility() functions, as described in the Dreamweaver API Reference. If
you do not set the initiallyVisible attribute, it defaults to true.

• initialPosition="top", "below", or "floating". Specifies where Dreamweaver initially
positions the toolbar, relative to other toolbars, the first time that Dreamweaver loads it. The
possible values for intialPosition are described in the following list:
■ top This is the default position, so the toolbar appears at the top of the document window.

If multiple toolbars specify top for a given window type, the toolbars appear in the order
that Dreamweaver encounters them during loading, which might not be predictable, if the
toolbars reside in separate files.

■ below The toolbar appears at the beginning of the row immediately below the toolbar that
the relativeTo attribute specifies. Dreamweaver reports an error if the relativeTo
toolbar isn’t found. If multiple toolbars specify below relative to the same toolbar, they
appear in the order that Dreamweaver encounters them during loading, which might not be
predictable if the toolbars reside in separate files.

■ floating Toolbar is not initially docked to the window; it floats above the document.
Dreamweaver automatically places the toolbar so it is offset from other floating toolbars. On
the Macintosh, floating is treated the same as top.
174 Chapter 9: Toolbars

As with the initiallyVisible attribute, the initialPosition attribute applies only the
first time that Dreamweaver loads the toolbar. After that, the toolbar’s position is saved to the
registry or the Dreamweaver Preferences file. You can reset the position of the toolbar by using
the dom.setToolbarPosition() function. For more information on the
dom.setToolbarPosition() function, see the Dreamweaver API Reference.
If you do not specify the initialPosition attribute, Dreamweaver positions the toolbar in
the order that it is encountered during loading.

• relativeTo="toolbar_id" This attribute is required if the initialPosition attribute
specifies below. Otherwise, it is ignored. Specifies the ID of the toolbar below which this
toolbar should be positioned.

Contents

The toolbar tag contains include, itemref, and separator tags as well as individual item
definitions such as button, combobox, dropdown, and so on. For descriptions of the item
definitions that you can specify, see “Toolbar item tags” on page 177.

Container

The toolbarset tag.

Example

<toolbar id="MyDWedit_toolbar" label="Edit">

<include/>

Description

Loads toolbar items from the specified file before continuing to load the current file. Toolbar
items that are defined in the included file can be referenced in the current file. If a file attempts to
recursively include another file, Dreamweaver displays an error message and ignores the recursive
include. Any toolbar tags in the included file are skipped, although toolbar items in those
toolbars are available for reference in the current file.

Attributes

• The file path, relative to the Toolbars folder, of the toolbar XML file to include.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example

<include file="mine/editbar.xml"/>
The toolbar definition file 175

<itemtype/>

Description

Defines a single toolbar item. Toolbar items include buttons, radio buttons, check buttons,
combo boxes, pop-up menus, and so on. For a list of the types of toolbar items that you can
define, see “Toolbar item tags” on page 177.

Attributes

The attributes vary, depending on the item that you define. For a complete list of the attributes
that you can specify for toolbar items, see “Item tag attributes” on page 182.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example

<button id="strikeout_button" .../>

<itemref/>

Description

Refers to (and includes in the current toolbar) a toolbar item that was defined either inside a
previous toolbar or outside of all toolbars.

Attributes

id, {showIf}

• id="id_reference" Required. Must be the ID of an item that was previously defined or
included in the file. Dreamweaver does not allow forward references. If a toolbar item tag
references an undefined ID, Dreamweaver reports an error and ignores the reference.

• showIf="script" Specifies that this item appears on the toolbar only if the specified script
returns a true value. For example, you can use showIf to show certain buttons only in a given
application or only when a page is written in a server-side language such as ColdFusion, ASP,
or JSP. If you do not specify showIf, the item always appears. Dreamweaver checks this
property whenever the item’s enabler runs; that is, according to the value of the update
attribute. You should use this attribute sparingly. The showIf attribute can be used either in
the item definition or in a reference to the item from a toolbar. If both the definition and the
reference specify the showIf attribute, Dreamweaver shows the item only if both conditions
are true. The showIf attribute is equivalent to the showIf() function in a command file.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example

<itemref id="strikeout_button">
176 Chapter 9: Toolbars

<separator/>

Description

Inserts a separator at the current location in the toolbar.

Attributes

{showIf}

• The showif attribute specifies that the separator should appear only on the toolbar if the given
script returns true. For example, you can use the showIf attribute to show the separator only
in a given application or only when the page has a certain document type. If the showIf
attribute is unspecified, the separator always appears.

Contents

None.

Container

The toolbar tag.

Example

<separator/>

Toolbar item tags

Each type of toolbar item has its own tag and set of required and optional attributes. You can
define toolbar items either inside or outside of toolbars. In general, it is better to define them
outside of toolbars and refer to them within toolbars using the itemref tag.

You can define the following types of items in a toolbar.

<button>

Description

This push button executes a specific command when you click it. It looks and acts the same as the
Reference button on the Dreamweaver toolbar.

Attributes

id, image, tooltip, command, {showIf}, {disabledImage}, {overImage}, {label},
{file}, {domRequired}, {enabled}, {update}, {arguments}

For a description of each attribute, see “Item tag attributes” on page 182.

Contents

None.

Container

The toolbar tag or the toolbarset tag.
Toolbar item tags 177

Example

<BUTTON ID="DW_DocRefresh"
image="Toolbars/images/MM/refresh.gif"
disabledImage="Toolbars/images/MM/refresh_dis.gif"
tooltip="Refresh Design View (F5)"
enabled="((dw.getDocumentDOM() != null) && (dw.getDocumentDOM().getView() !=
'browse') && (!dw.getDocumentDOM().isDesignViewUpdated()))"
command="dw.getDocumentDOM().synchronizeDocument()"
update="onViewChange,onCodeViewSyncChange"/>

<checkbutton>

Description

A check button is a button that has a checked or unchecked state and that executes a specific
command when clicked. When it is checked, it appears pressed in and highlighted. When it is not
checked, it appears flat. Dreamweaver implements the following states for the check button:
Mouse-over, Pressed, Mouse-over-while-pressed, and Disabled-while-pressed. The handler that is
specified by the checked attribute or the isCommandChecked() function must ensure that
clicking the check button causes the button’s state to toggle.

Attributes

id, {showIf}, image, {disabledImage}, {overImage}, tooltip, {label}, {file},
{domRequired}, {enabled}, checked, {update}, command, {arguments}

For a description of each attribute, see “Item tag attributes” on page 182.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example

<CHECKBUTTON ID="DW_LiveDebug"
image="Toolbars/images/MM/debugview.gif"
disabledImage="Toolbars/images/MM/globe_dis.gif"
tooltip="Live Debug"
enabled="dw.canLiveDebug()"
checked="dw.getDocumentDOM() != null && dw.getDocumentDOM().getView() ==
'browse'"
command="dw.toggleLiveDebug()"
showIf="dw.canLiveDebug()"
update="onViewChange"/>

<radiobutton>

Description

A radio button is exactly the same as a check button, except that when it is off, it appears as a
raised button. Dreamweaver implements the following states for the radio button: Mouse-over,
Pressed, Mouse-over-while-pressed, and Disabled-while-pressed. Dreamweaver does not enforce
mutual exclusion between radio buttons. The handler that the checked attribute or the
isCommandChecked() function specifies must ensure that the checked and unchecked states of
radio buttons are consistent with each other.
178 Chapter 9: Toolbars

Radio buttons act the same as the Code view, Design view, and Split view buttons on the
Dreamweaver document toolbar.

Attributes

id, image, tooltip, checked, command, {showIf}, {disabledImage}, {overImage},
{label}, {file}, {domRequired}, {enabled}, {update}, {arguments}

For a description of each attribute, see “Item tag attributes” on page 182.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example

<RADIOBUTTON ID="DW_CodeView"
image="Toolbars/images/MM/codeView.gif"
disabledImage="Toolbars/images/MM/codeView_dis.gif"
tooltip="Show Code View"
domRequired="false"
enabled="dw.getDocumentDOM() != null"
checked="dw.getDocumentDOM() != null && dw.getDocumentDOM().getView() ==
'code'"
command="dw.getDocumentDOM().setView('code')"
update="onViewChange"/>

<menubutton>

Description

A menu button is a button that invokes the context menu that is specified by the menuid
attribute. Dreamweaver implements Mouse-over and Pressed states for menu buttons.
Dreamweaver does not draw the menu arrow, which is the downward-pointing arrow that
indicates menu items are attached to the button; you must include it in your icon. The File
Management and Code Navigation buttons on the Dreamweaver document toolbar are examples
of menu buttons.

Attributes

id, image, tooltip, menuID, domRequired, enabled, {showIf}, {disabledImage},
{overImage}, {label}, {file}, {update}

For a description of each attribute, see “Item tag attributes” on page 182.

Contents

None.

Container

The toolbar tag or the toolbarset tag.
Toolbar item tags 179

Example

<MENUBUTTON ID="DW_CodeNav"
image="Toolbars/images/MM/codenav.gif"
disabledImage="Toolbars/images/MM/codenav_dis.gif"
tooltip="Code Navigation"
enabled="dw.getFocus() == 'textView' || dw.getFocus() == 'html'"
menuID="DWCodeNavPopup"
update="onViewChange"/>

<dropdown>

Description

A dropdown menu is a noneditable menu that executes a specific command when you select an
entry and the menu updates itself, based on an attached JavaScript function. The dropdown
menu looks and acts the same as the Format control in the Text Property inspector, except it’s a
standard size instead of the small Property inspector size.

Attributes

id, tooltip, file, enabled, checked, value, command, {showIf}, {label},
{width}, {domRequired}, {update}, {arguments}

For a description of each attribute, see “Item tag attributes” on page 182.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example

<dropdown id="Font_Example"
width="115"
tooltip="Font"
domRequired="false"
file="Toolbars/mine/fontExample.htm"
update="onSelChange"/>

<combobox>

Description

A combo box is an editable pop-up menu that executes its command when you select an entry or
when the user makes an edit in the text box and switches focus. The menu looks and acts the
same as the Font control on the Text Property inspector, except it’s a standard size instead of the
small Property inspector size.

Attributes

id, file, tooltip, enabled, value, command, {showiI}, {label}, {width},
{domRequired}, {update}, {arguments}

For a description of each attribute, see “Item tag attributes” on page 182.

Contents

None.
180 Chapter 9: Toolbars

Container

The toolbar tag or the toolbarset tag.

Example

<COMBOBOX ID="Address_URL"
width="300"
tooltip="Address"
label="Address: "
file="Toolbars/MM/AddressURL.htm"
update="onBrowserPageBusyChange"/>

<editcontrol>

Description

An edit control box is a text-editing box that executes its command when the user changes text in
the box and switches focus.

Attributes

id, tooltip, file, value, command, {showIf}, {label}, {width}, {domRequired},
{enabled}, {update}, {arguments}

For a description of each attribute, see “Item tag attributes” on page 182.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example

<EDITCONTROL ID="DW_SetTitle"
label="Title: "
tooltip="Document Title"
width="150"
file="Toolbars/MM/EditTitle.htm"/>

<colorpicker>

Description

A color picker is a panel of colors that does not have an associated text box that executes its
command when the user selects a new color. This panel looks and acts the same as the color
picker on the Dreamweaver Property inspector. You can specify a different icon to replace the
default icon.

Attributes

id, tooltip, value, command, {showIf}, {image}, {disabledImage}, {overImage},
{label}, {colorRect}, {file}, {domRequired}, {enabled}, {update},
{arguments}

For a description of each attribute, see “Item tag attributes” on page 182.

Contents

None.
Toolbar item tags 181

Container

The toolbar tag or the toolbarset tag.

Example

<colorpicker id="Color_Example"
image="Toolbars/images/colorpickerIcon.gif"
disabledImage="Toolbars/images/colorpickerIconD.gif"
colorRect="0 12 16 16"
tooltip="Text Color"
domRequired="false"
file="Toolbars/mine/colorExample.htm"
update="onSelChange"/>

Item tag attributes

The attributes for toolbar item tags have the following meanings:

id="unique_id"

Required. The id attribute is an identifier for the toolbar item. The id attribute must be unique
within the current file and all files that are included within the current file. The itemref tag uses
the item id to refer to and include an item within a toolbar.

Example

<button id="DW_DocRerefresh" . . . >

showIf="script"

Optional. This attribute specifies that the item appears on the toolbar only if the script returns a
true value. For example, you can use the showIf attribute to show certain buttons only when a
page is written in a certain server-side language such as ColdFusion, ASP, or JSP. If you do not
specify showIf, the item always appears.

The showIf attribute is checked whenever the item’s enabler runs; that is, according to the value
of the update attribute. You should use the showIf attribute sparingly.

You can specify the showIf attribute in the item definition and in a reference to the item on an
itemref tag. If the definition and the reference specify the showIf attribute, the item shows only
if both conditions are true. The showIf attribute is the same as the showIf() function in a
toolbar command file. If you specify both the showIf attribute and the showif() function, the
function overrides the attribute.

Example

showIf="dw.canLiveDebug()"

image="image_path"

This attribute is required for buttons, check buttons, radio buttons, menu buttons, and combo
buttons. The image attribute is optional for color pickers and is ignored for other item types. The
image attribute specifies the path, relative to the Configuration folder, of the icon file that
displays on the button. The icon can be in any format that Dreamweaver can render, but typically
it is a GIF or JPEG file format.
182 Chapter 9: Toolbars

If an icon is specified for a color picker, the icon replaces the color picker entirely. If the
colorRect attribute is also set, the current color appears on top of the icon in the specified
rectangle.

Example

image="Toolbars/images/MM/codenav.gif"

disabledImage="image_path"

Optional. Dreamweaver ignores the disabledImage attribute for items other than buttons, check
buttons, radio buttons, menu buttons, color pickers, and combo buttons. This attribute specifies
the path, relative to the Configuration folder, of the icon file that Dreamweaver displays if the
button is disabled. If you do not specify the disabledImage attribute, Dreamweaver displays the
image that is specified in the image attribute when the button is disabled.

Example

disabledImage="Toolbars/images/MM/codenav_dis.gif"

overImage="image_path"

Optional. Dreamweaver ignores the overImage attribute for items other than buttons, check
buttons, radio buttons, menu buttons, color pickers, and combo buttons. This attribute specifies
the path, relative to the Configuration folder, of the icon file that Dreamweaver displays when the
user moves the mouse over the button. If you do not specify the overImage attribute, the button
does not change when the user moves the mouse over it, except for a ring that Dreamweaver
draws around the button.

Example

overImage="Toolbars/images/MM/codenav_ovr.gif"

tooltip="tooltip string"

Required. This attribute specifies the identifying text, or tooltip, that appears when the mouse
pointer hovers over the toolbar item.

Example

tooltip="Code Navigation"

label="label string"

Optional. This attribute specifies a label that displays next to the item. Dreamweaver does not
automatically add a colon to labels. Labels for nonbutton items are always positioned on the left
of the item. Dreamweaver places labels for buttons, check buttons, radio buttons, menu buttons,
and combo buttons inside the button and to the right of the icon.

Example

label="Title: "
Item tag attributes 183

width="number"

Optional. This attribute applies only to text box, pop-up menu, and combo box items by
specifying the width of the item in pixels. If you do not specify the width attribute, Dreamweaver
uses a reasonable default width.

Example

width="150"

menuID="menu_id"

This attribute is required for menu buttons and combo buttons, unless you specify the
getMenuID() function in an associated command file. Dreamweaver ignores the menuID attribute
for other types of items. This attribute specifies the ID of the menu bar that contains the context
menu to pop up when the user clicks the button, menu button, or combo button. The ID comes
from the ID attribute of a menubar tag in the menus.xml file.

Example

menuID="DWCodeNavPopup"

colorRect="left top right bottom"

This attribute is optional for color pickers that have an image attribute. The colorRect attribute
is ignored for other types of items and for color pickers that do not specify an image. If you
specify the colorRect attribute, Dreamweaver displays the color that is currently selected in the
color picker in the rectangle, relative to the left or top of the icon. If you do not specify the
colorRect attribute, Dreamweaver does not display the current color on the image.

Example

colorRect=”0 12 16 16”

file="command_file_path"

Required for pop-up menus and combo boxes. The file attribute is optional for other types of
items. The file attribute specifies the path, relative to the Configuration folder, of a command
file that contains JavaScript functions to populate, update, and execute the item. The file
attribute overrides the enabled, checked, value, update, domRequired, menuID, showIf, and
command attributes. In general, if you specify a command file with the file attribute,
Dreamweaver ignores all the equivalent attributes that are specified in the tag. For more
information about command files, see “The toolbar command API” on page 187.

Example

file="Toolbars/MM/EditTitle.htm"

domRequired="true" or "false"

Optional. As with menus, the domRequired attribute specifies whether the Design view should be
synchronized with the Code view before Dreamweaver runs the associated command. If you do
not specify this attribute, it defaults to a true value. This attribute is equivalent to the
isDOMRequired() function in a toolbar command file.

Example

domRequired="false"
184 Chapter 9: Toolbars

enabled="script"

Optional. As with menus, the script returns a value that specifies whether the item is enabled. If
you do not specify this attribute, it defaults to enabled. The enabled attribute is equivalent to the
canAcceptCommand() function in a toolbar command file.

Example

enabled="dw.getFocus() == 'textView' || dw.getFocus() == 'html'"

checked="script"

This attribute is required for check buttons and radio buttons. Dreamweaver ignores the checked
attribute for other types of items. As with menus, the script returns a value that specifies whether
the item is checked or unchecked. The checked attribute is equivalent to isCommandChecked()
in a toolbar command file. If you do not specify this attribute, it defaults to unchecked.

Example

checked="dw.getDocumentDOM() != null && dw.getDocumentDOM().getView() ==
'code'"

value="script"

This attribute is required for pop-up menus, combo boxes, text boxes, and color pickers.
Dreamweaver ignores the value attribute for other types of items.

To determine what value to display for pop-up menus and combo boxes, Dreamweaver first calls
isCommandchecked() for each item in the menu. If the isCommandchecked() function returns a
true value for any items, Dreamweaver displays the value for the first one. If no items return a
true value or the isCommandChecked() function is not defined, Dreamweaver calls the
getCurrentValue() function or executes the script that the value attribute specifies. If the
control is a combo box, Dreamweaver displays the returned value. If the control is a pop-up
menu, Dreamweaver temporarily adds the returned value to the list and displays it.

In all other cases, the script returns the current value to display. For pop-up menus or combo
boxes, this value should be one of the items in the menu list. For combo boxes and text boxes, the
value can be any string that the script returns. For color pickers, the value should be a valid color
but Dreamweaver does not enforce this.

The value attribute is equivalent to the getCurrentValue() function in a toolbar command file.

update="update_frequency_list"

Optional. This attribute specifies how often the enabled, checked, showif, and value handlers
should run to update the visible state of the item. The update attribute is equivalent to the
getUpdateFrequency() function in a toolbar command file.

You must specify the update frequency for toolbar items because these items are always visible,
unlike menu items. For this reason, you should always select the lowest frequency possible and
make sure your handlers for the enabled, checked, and value handlers are as simple as possible.
Item tag attributes 185

The following list shows the possible handlers for update_frequency_list, from least to most
frequent. If you do not specify the update attribute, the update frequency defaults to onEdit
frequency. You can specify multiple update frequencies, separated by commas. The handlers run
on any of the following specified events:

• onServerModelChange executes when the server model of the current page changes.
• onCodeViewSyncChange executes when the Code view becomes in or out of sync with the

Design view.
• onViewChange executes whenever the user switches focus between Code view and Design view

or when the user changes between Code view, Design view, or Split view.
• onEdit executes whenever the document is edited in Design view. Changes that you make in

Code view do not trigger this event.
• onSelChange executes whenever the selection changes in Design view. Changes that you make

in Code view do not trigger this event.
• onEveryIdle executes regularly when the application is idle. This can be time-consuming

because the enabler/checked/showif/value handlers are running often. It should be used
only for buttons that need to have their enable state changed at special times, and handlers
should be quick.

Note: In all these cases, Dreamweaver actually executes the handlers after the specified event
occurs, when the application is in a quiescent state. It is not guaranteed that your handlers run after
every edit or selection change; your handlers run soon after a batch of edits or selection changes
occur. The handlers are guaranteed to run when the user clicks on a toolbar item.

Example

update="onViewChange"

command="script"

This attribute is required for all items except menu buttons. Dreamweaver ignores the command
attribute for menu buttons. Specifies the JavaScript function to execute when the user performs
one of the following actions:

• Clicks a button
• Selects an item from a pop-up menu or combo box
• Tabs out of, presses Return in, or clicks away from a text box or combo box
• Selects a color from a color picker

The command attribute is equivalent to the receiveArguments() function in a toolbar
command file.

Example

command="dw.toggleLiveDebug()"

arguments="argument_list"

Optional. This attribute specifies the comma-separated list of arguments to pass to
the receiveArguments() function in a toolbar command file. If you do not specify the
arguments attribute, Dreamweaver passes the ID of the toolbar item. In addition, pop-up menus,
combo boxes, text boxes, and color pickers pass their current value as the first argument, before
any arguments that the arguments attribute specifies, and before the item ID if no arguments
are specified.
186 Chapter 9: Toolbars

Example

On a toolbar that has Undo and Redo buttons, each button calls the menu command file,
Edit_Clipboard.htm, and passes an argument that specifies the action, as shown in the
following example:
<button id="DW_Undo"
 image="Toolbars/images/MM/undo.gif"
 disabledImage="Toolbars/images/MM/undo_dis.gif"
 tooltip="Undo"
 file="Menus/MM/Edit_Clipboard.htm"
 arguments="'undo'"
 update="onEveryIdle"/>

<button id="DW_Redo"
 image="Toolbars/images/MM/redo.gif"
 disabledImage="Toolbars/images/MM/redo_dis.gif"
 tooltip="Redo"
 file="Menus/MM/Edit_Clipboard.htm"
 arguments="'redo'"
 update="onEveryIdle"/>

The toolbar command API

In many cases where you specify a script for an attribute, you can also implement the attribute
through a JavaScript function in a command file. This action is necessary when the functions
need to take arguments, as in the command handler for a text box. It is required for pop-up
menus and combo boxes.

The command file API for toolbar items is an extension of the menu command file API, so you
can reuse menu command files directly as toolbar command files, perhaps with some additional
functions that are specific to toolbars.

canAcceptCommand()

Availability

Dreamweaver MX.

Description

Determines whether the toolbar item is enabled. The enabled state is the default condition for an
item, so you should not define this function unless it returns a false value in at least one case.

Arguments

For pop-up menus, combo boxes, text boxes, and color pickers, the first argument is the current
value within the control. The getDynamicContent() function can optionally attach individual
IDs to items within a pop-up menu. If the selected item in the pop-up menu has an ID attached,
Dreamweaver passes that ID to canAcceptCommand() instead of the value. For combo boxes, if
the current contents of the text box do not match an entry in the pop-up menu, Dreamweaver
passes the contents of the text box. Dreamweaver compares against the pop-up menu without
case-sensitivity to determine whether the contents of the text box match an entry in the list.

If you specify the arguments attribute for this toolbar item in the toolbars.xml file, those
arguments are passed next. If you did not specify the arguments attribute, Dreamweaver passes
the ID of the item.
The toolbar command API 187

Returns

Dreamweaver expects a Boolean value; true if the item is enabled; false otherwise.

Example

function canAcceptCommand()
{

return (dw.getDocumentDOM() != null);
}

getCurrentValue()

Availability

Dreamweaver MX.

Description

Returns the current value to display in the item. Dreamweaver calls the getCurrentValue()
function for pop-up menus, combo boxes, text boxes, and color pickers. For pop-up menus, the
current value should be one of the items in the menu. If the value is not in the pop-up menu,
Dreamweaver selects the first item. For combo boxes and text boxes, this value can be any string
that the function returns. For color pickers, the value should be a valid color, but Dreamweaver
does not enforce this. This function is equivalent to the value attribute.

Arguments

None.

Returns

Dreamweaver expects a string that contains the current value to display. For the color picker, the
string contains the RGB form of the selected color (for example #FFFFFF for the color white).

Example

function getCurrentValue()
{

var title = "";
var dom = dw.getDocumentDOM();
if (dom)

title = dom.getTitle();
return title;

}

getDynamicContent()

Availability

Dreamweaver MX.

Description

This function is required for pop-up menus and combo boxes. As with menus, this function
returns an array of strings that populate the pop-up menu. Each string can optionally end with
";id=id". If an ID is specified, Dreamweaver passes the ID to the receiveArguments()
function instead of the actual string to appear in the menu.
188 Chapter 9: Toolbars

The name getDynamicContent() is a misnomer because this function should be used even if the
list of entries in the menu is fixed. For example, the Text_Size.htm file in the Configuration/
Menus/MM folder is not a dynamic menu; it is designed to be called from each one of a set of
static menu items. By adding a getDynamicContent() function that simply returns the list of
possible font sizes, however, the same command file can also be used for a toolbar pop-up menu.
Toolbar items ignore underscores in the strings in a returned array so you can reuse menu
command files. In the menu command file, Dreamweaver ignores the getDynamicContent()
function because the menu item is not marked as dynamic.

Arguments

None.

Returns

Dreamweaver expects an array of strings with which to populate the menu.

Example

function getDynamicContent()
{

var items = new Array;
var filename = dw.getConfigurationPath() + "/Toolbars/MM/AddressList.xml";
var location = MMNotes.localURLToFilePath(filename);
if (DWfile.exists(location))
{

var addressData = DWfile.read(location);
var addressDOM = dw.getDocumentDOM(dw.getConfigurationPath() +

'/Shared/MM/Cache/empty.htm');
addressDOM.documentElement.outerHTML = addressData;
var addressNodes = addressDOM.getElementsByTagName("url");
if (addressNodes.length)
{

for (var i=0; i < addressNodes.length ; i++)
{

items[i] = addressNodes[i].address + ";id='" +
addressNodes[i].address + "'";

}
}

}
return items;
The toolbar command API 189

getMenuID()

Availability

Dreamweaver MX.

Description

Only valid for menu buttons. Dreamweaver calls the getMenuID() function to get the ID of the
menu that should appear when the user clicks the button.

Arguments

None.

Returns

Dreamweaver expects a string that contains a menu ID, which is defined in the menus.xml file.

Example

function getMenuID()
{

var dom = dw.getDocumentDOM();
var menuID = '';
if (dom)
{

var view = dom.getView();
var focus = dw.getFocus();
if (view == 'design')
{

menuID = 'DWDesignOnlyOptionsPopup';
}
else if (view == 'split')
{

if (focus == 'textView')
{

menuID = 'DWSplitCodeOptionsPopup';
}
else
{

menuID = 'DWSplitDesignOptionsPopup';
}

}
else if (view == 'code')
{

menuID = 'DWCodeOnlyOptionsPopup';
}
else
{

menuID = 'DWBrowseOptionsPopup';
}

}
return menuID;

}

190 Chapter 9: Toolbars

getUpdateFrequency()

Availability

Dreamweaver MX.

Description

Specifies how often to run the handlers for the enabled, checked, showIf, and value attributes
to update the visible state of the item.

You must specify the update frequency for toolbar items because they are always visible, unlike
menus. For this reason, you should always select the lowest frequency possible and make sure your
enabled, checked, and value handlers are as simple as possible.

This function is equivalent to the update attribute in a toolbar item.

Arguments

None.

Returns

Dreamweaver expects a string that contains a comma-separated list of update handlers. For a
complete list of the possible update handlers, see “update="update_frequency_list"” on page 185.

Example

function getUpdateFrequency()
{

return onSelChange”;
}

isCommandChecked()

Availability

Dreamweaver MX.

Description

Returns a value that specifies whether the item is selected. For a button, checked means that the
button appears on or depressed. The isCommandChecked() function is equivalent to the checked
attribute in a toolbar item tag.

Arguments

For pop-up menus, combo boxes, text boxes, and color pickers, the first argument is the current
value within the control. The getDynamicContent() function can optionally attach individual
IDs to items within a pop-up menu. If the selected item in the menu has an ID attached,
Dreamweaver passes that ID to the isCommandChecked() function instead of the value. For
combo boxes, if the current contents of the text box do not match an entry in the pop-up menu,
Dreamweaver passes the contents of the text box. For determining whether the text box matches,
Dreamweaver compares against the menu without case-sensitivity.

If you specified the arguments attribute, those arguments are passed next. If you do not specify
the arguments attribute, Dreamweaver passes the ID of the item.
The toolbar command API 191

Returns

Dreamweaver expects a Boolean value: true if the item is checked; false otherwise.

Example

The following example determines which item, if any, should be checked in a pop-up menu of
paragraph formats and CSS styles:
function isCommandChecked()
{
 var bChecked = false;
 var style = arguments[0];
 var textFormat = dw.getDocumentDOM().getTextFormat();

 if (dw.getDocumentDOM() == null)
 bChecked = false;

 if (style == "(None)")
 bChecked = (dw.cssStylePalette.getSelectedStyle() == '' || textFormat ==
"" || textFormat == "P" || textFormat == "PRE");
 else if (style == "Heading 1")
 bChecked = (textFormat == "h1");
 else if (style == "Heading 2")
 bChecked = (textFormat == "h2");
 else if (style == "Heading 3")
 bChecked = (textFormat == "h3");
 else if (style == "Heading 4")
 bChecked = (textFormat == "h4");
 else if (style == "Heading 5")
 bChecked = (textFormat == "h5");
 else if (style == "Heading 6")
 bChecked = (textFormat == "h6");
 else
 bChecked = (dw.cssStylePalette.getSelectedStyle() == style);

 return bChecked;
}

isDOMRequired()

Availability

Dreamweaver MX.

Description

Specifies whether the toolbar command requires a valid DOM to operate. If this function returns
a true value or if the function is not defined, Dreamweaver assumes that the command requires a
valid DOM and synchronizes the Code view and Design view for the document before executing
the associated command. This function is equivalent to the domRequired attribute in a toolbar
item tag.

Arguments

None.

Returns

Dreamweaver expects a Boolean value: true if the DOM is required; false otherwise.
192 Chapter 9: Toolbars

Example

function isDOMRequired()
{

return false;
}

receiveArguments()

Availability

Dreamweaver MX.

Description

Processes any arguments that pass from a toolbar item. The receiveArguments() function is
equivalent to the command attribute in a toolbar item tag.

Arguments

For pop-up menus, combo boxes, text boxes, and color pickers, the first argument is the current
value within the control. The getDynamicContent() function can optionally attach individual
IDs to items within a pop-up menu. If the selected item in the pop-up menu has an ID attached,
Dreamweaver passes that ID to the receiveArguments() function instead of the value. For
combo boxes, if the current contents of the text box do not match an entry in the pop-up menu,
Dreamweaver passes the contents of the text box. To determine whether the text box matches,
Dreamweaver compares against the pop-up menu without case-sensitivity.

If you specified the arguments attribute, those arguments are passed next. If you did not specify
the arguments attribute, Dreamweaver passes the ID of the item.

Returns

Dreamweaver expects nothing.

Example

function receiveArguments(newTitle)
{

var dom = dw.getDocumentDOM();
if (dom)

dom.setTitle(newTitle);
}

showIf()

Availability

Dreamweaver MX.

Description

Specifies that an item appears on the toolbar only if the function returns a true value. For
example, you can use the showIf() function to show certain buttons only when the page has a
certain server model. If the showif() function is not defined, the item always appears. The
showIf() function is the same as the showIf attribute in a toolbar item tag.

The showIf() function is called whenever the item’s enabler runs; that is, according to the value
that the getUpdateFrequency() function returns.
The toolbar command API 193

Arguments

None.

Returns

Dreamweaver expects a Boolean value: true if the item appears; false otherwise.

Example

function showif()
{

var retval = false;
var dom = dw.getDocumentDOM();

if(dom)
{

var view = dom.getView();
if(view == ‘design’)
{

retval = true;
}

}
return retval;

}

A simple toolbar command file

This simple example implements a Title text box item as seen on the Dreamweaver document
toolbar. The text box item lets the user enter a name for the current Dreamweaver document. You
can implement this toolbar example by performing the following steps:

1 Creating the text box item
2 Writing the JavaScript code
3 Placing the file in the Toolbars folder

Creating the text box

The following toolbar editcontrol item defines a text-editing box that is labelled Title:
<EDITCONTROL ID="DW_SetTitle"

label="Title: "
tooltip="Document Title"
width="150"
file="Toolbars/MM/EditTitle.htm"/>

The tooltip attribute causes Dreamweaver to display Document Title in a tooltip box when the
user places the cursor over the text box. The width attribute specifies the size of the field in pixels.
The file attribute specifies that the EditTitle.htm file contains the JavaScript functions that
operate on the text box.

The following figure shows the Title text-editing box:
194 Chapter 9: Toolbars

Writing the JavaScript code

When the user interacts with the text box, it causes Dreamweaver to invoke the EditTitle.htm
command file in the Toolbars/MM folder. This file contains three JavaScript functions that
operate on the Title text box. These functions are canAcceptCommand(),
receiveArguments(), and getCurrentValue().

canAcceptCommand(): enable the toolbar item

The canAcceptCommand() function consists of one line of code that checks to see if there is a
current DOM and if the document is parsed as HTML. The function returns the result of those
tests. If the conditions are true, Dreamweaver enables text box item on the toolbar. If the
function returns the value false, Dreamweaver disables the item.
function canAcceptCommand()
{

return (dw.getDocumentDOM() != null && dw.getDocumentDOM().getParseMode() ==
'html');

}

receiveArguments(): set the title

Dreamweaver invokes the receiveArguments() function, shown in the following example,
when the user enters a value in the Document Title text box and presses the Enter key or moves
the focus away from the control:
function receiveArguments(newTitle)
{

var dom = dw.getDocumentDOM();
if (dom)

dom.setTitle(newTitle);
}

Dreamweaver passes newTitle, which is the value that the user enters, to the
receiveArguments() function. The receiveArguments() function first checks to see if a
current DOM exists. If it does, the receiveArguments() function sets the new document title
by passing newTitle to the dom.setTitle() function.

getCurrentValue(): get the title

Whenever an update cycle occurs, as determined by the default update frequency of the onEdit
event handler, Dreamweaver calls the getCurrentValue() function to determine what value to
display for the control. The default update frequency of the onEdit handler determines the
update frequency because the Title text edit control has no update attribute.

For the Document Title text box, the following getCurrentValue() function calls the JavaScript
API function dom.getTitle() to obtain and return the current title:
function getCurrentValue()
{

var title = "";
var dom = dw.getDocumentDOM();
if (dom)

title = dom.getTitle();
return title;

}

A simple toolbar command file 195

Until the user enters a title for the document, the getTitle() function returns Untitled
Document, which appears in the text box. After the user enters a title, the getTitle() function
returns that value, and Dreamweaver displays it as the new document title.

Placing the files in the Toolbars folder

To add a toolbar to Dreamweaver, place the XML file that contains the toolbar definition in the
Toolbars folder inside the Dreamweaver Configuration folder. To see the full definition of the
Dreamweaver Document toolbar, see the main toolbar (id="DW_Toolbar_Main") in the
toolbars.xml file. To see the complete HTML file that contains the JavaScript functions for the
Document Title text box, see the EditTitle.htm file in the Toolbars/MM folder.
Note: The MM folder is reserved for Macromedia files. Create another folder inside the Toolbars
folder, and place your JavaScript code in that folder.
196 Chapter 9: Toolbars

CHAPTER 10
Reports
You can use the Reports API functions to create custom site reports or modify the set of
prewritten reports that come with Macromedia Dreamweaver MX 2004. You can access site
reports only through the Site Reports dialog box.

You can use the Results Window API to create a stand-alone report. Stand-alone reports are
regular commands that directly use the Results Window API rather than the Reports API. You
can access a stand-alone report the same way as any other command, through the menus or
through another command.

Site reports reside in the Dreamweaver Configuration/Reports folder. The Reports folder has
subfolders that represent report categories. Each report can belong to only one category. The
category name cannot exceed 31 characters. Each subfolder can have a file in it named
_foldername.txt. If this file is present, Dreamweaver uses its contents as the category name. If
_foldername.txt is not present, Dreamweaver uses the folder name as the category name.

Stand-alone reports reside in the Dreamweaver Configuration/Commands folder.

When the user selects multiple site reports from the Site Reports dialog box, Dreamweaver places
all the results in the same Results window under the Site Reports tab. Dreamweaver replaces these
results the next time the user runs any site report.

In contrast, Dreamweaver creates a new Results window each time the user runs a new stand-
alone report.
197

How site reports work
1 Reports are accessible through the Site > Reports... menu. When it is selected, this menu item

displays a dialog box from which the user selects reports to run on a choice of targets.
2 The user selects which files to run the selected reports on using the Report On: pop-up menu.

This menu contains Current Document, Entire Current Local Site, Selected Files In Site, and
Folder. When the user selects the Folder option, a Browse button and text field appear, so the
user can select a folder.

3 The user can customize reports that have parameters by selecting the Settings button and
entering values for the parameters. Each report must include a Settings dialog box, if a user
needs to set report parameters. This dialog box is optional; not every report requires the user to
set the report’s parameters. If a report does not have a Settings dialog box, then the Report
Settings... button is dimmed when the report is selected in the list.

4 After the reports are selected and their settings are set, the user clicks the Run button.
At this point, Dreamweaver clears all items from the Site Reports tab of the Results panel.
Dreamweaver calls the beginReporting() function in each report before the reporting
process begins. If a report returns a false value from this function, it is removed from the
report run.

5 Each file is passed to each report that was selected in the Reports dialog box using the
processFile() function. If the report needs to include information about this file in the results
list, it should call the dw.resultsPalette.siteReports.addResultItem() function. This
process continues until all files that pertain to the user’s selection are processed or the user clicks
the Stop button in the bottom of the window. Dreamweaver displays the name of each file being
processed and the number of files that remain to be processed.
Dreamweaver calls the endReporting() function in each report after all the files have been
processed and the reporting process completes.

How stand-alone reports work
1 The custom command opens a new results window by calling the dw.createResultsWindow()

function and storing the returned results object in a window variable. The remaining functions
in this process should be called as methods of this object.

2 The custom command initializes the title and format of the Results window by calling the
setTitle() and SetColumnWidths() functions as methods of the Results window object.

3 The command can either start adding items to the Results window immediately by calling the
addItem() function, or it can begin iterating through a list of files by calling the
setFileList() and startProcessing() functions as methods of the Results window object.

4 When the command calls resWin.startProcessing(), Dreamweaver calls the
processFile() function for each file URL in the list. Define the processFile() function in
the stand-alone command. It receives the file URL as its only argument. Use the
setCallbackCommands() function of the Results window object if you want Dreamweaver to
call the processFile() function in some other command.

5 To call the addItem() function, the processFile() function needs to have access to the
Results window that was created by the stand-alone command. The processFile() function
can also call the stopProcessing() function of the Results window object to stop processing
the list of files.
198 Chapter 10: Reports

The Reports API

The only required function for the Reports API is the processFile() function. All other
functions are optional.

processFile()

Availability

Dreamweaver 4.

Description

This function is called when there is a file to process. The Report command should process the
file without modifying it and use the dw.ResultsPalette.SiteReports() function, the
addResultItem() function, or the resWin.addItem() function to return information about the
file. Dreamweaver automatically releases each file’s DOM when it finishes.

Arguments

strFilePath

• The strFilePath argument is the full path and filename of the file to process.

Returns

Dreamweaver expects nothing.

beginReporting()

Availability

Dreamweaver 4.

Description

This function is called at the start of the reporting process, before any reports are run. If the
Report command returns a false value from this function, the Report command is excluded
from the report run.

Arguments

target

• The target argument is a string that indicates the target of the report session. It can be one of
the following values: "CurrentDoc", "CurrentSite", "CurrentSiteSelection" (for the
selected files in a site), or "Folder:+ the path to the folder the user selected" (for
example, "Folder:c:temp").

Returns

Dreamweaver expects a Boolean value: true if the report runs successfully; false if target is
excluded from the report run.
The Reports API 199

endReporting()

Availability

Dreamweaver 4.

Description

This function is called at the end of the Report process.

Arguments

None.

Returns

Dreamweaver expects nothing.

commandButtons()

Availability

Dreamweaver 4.

Description

Defines the buttons that should appear on the right side of the Options dialog box and their
behavior when they are clicked. If this function is not defined, no buttons appear, and the BODY
section of the report file expands to fill the entire dialog box.

Arguments

None.

Returns

Dreamweaver expects an array that contains an even number of elements. The first element is a
string that contains the label for the topmost button. The second element is a string of JavaScript
code that defines the behavior of the topmost button when it is clicked. The remaining elements
define additional buttons in the same manner.

Example

The following instance of the commandButtons() function defines the OK, Cancel, and Help
buttons.
function commandButtons(){

return new Array("OK" , "doCommand()" , "Cancel" , ¬
"window.close()" , "Help" , "showHelp()");

}

200 Chapter 10: Reports

configureSettings()

Availability

Dreamweaver 4.

Description

Determines whether the Report Settings button should be enabled in the Reports dialog box
when this report is selected.

Arguments

None.

Returns

Dreamweaver expects a Boolean value: true if the Report Settings button should be enabled;
false otherwise.

windowDimensions()

Availability

Dreamweaver 4.

Description

Sets specific dimensions for the Parameters dialog box. If this function is not defined, the window
dimensions are computed automatically.
Note: Do not define this function unless you want an Options dialog box that is larger than
640 x 480 pixels.

Arguments

platform

• The value of the platform argument is either "macintosh" or "windows", depending on the
user’s platform.

Returns

Dreamweaver expects a string of the form "widthInPixels,heightInPixels".

The returned dimensions are smaller than the size of the entire dialog box because they do not
include the area for the OK and Cancel buttons. If the returned dimensions do not accommodate
all options, scroll bars appear.

Example

The following instance of the windowDimensions() function sets the dimensions of the
Parameters dialog box to 648 x 520 pixels:
function windowDimensions(){

return "648,520";
}

The Reports API 201

202 Chapter 10: Reports

CHAPTER 11
Tag Libraries and Editors
Macromedia Dreamweaver MX 2004 users can use tag editors to insert new tags, edit existing
tags, and access reference information about tags. Dreamweaver comes with editors for the
following languages: HTML, ASP.Net, CFML, JRun, and JSP. You can customize tag editors that
come with Dreamweaver, and you can create new tag editors. You can also add new tags to the
tag libraries.

The Tag Chooser uses information that is stored in the tag libraries to let Dreamweaver users view
available tags and select them to use in the active document.

Dreamweaver stores information about each tag, including all tag attributes, in a set of subfolders
that reside in the Configuration/TagLibraries folder. The tag editor and Tag Chooser functions
use the information that is stored in this folder when manipulating and editing tags. Before you
can create custom tag editors, you should understand the tag library structure.
203

Tag library file format

A tag library consists of a single root file, the TagLibraries.vtm file, that lists every installed tag,
plus a VTML file for each tag in the tag library. The TagLibraries.vtm file functions as a table of
contents and contains pointers to each individual tag’s VTML file. The following figure shows
how Dreamweaver organizes the VTML files by markup language:

Macromedia HomeSite users can recognize the VTML file structure, but Dreamweaver does not
use VTML files in the same way as HomeSite. The most important difference is that
Dreamweaver contains its own HTML renderer that displays extension user interfaces (UIs), so
the Dreamweaver VTML files are not used in the GUI rendering process.

The following example illustrates the structure of the TagLibraries.vtm file:
<taglibraries>
<taglibrary name="Name of tag library" doctypes="HTML,ASP-JS,ASP-VB"

tagchooser="relative path to TagChooser.xml file" id="DWTagLibrary_html">
 <tagref name="tag name" file="relative path to tag .vtm file"/>
</taglibrary>

<taglibrary name="CFML Tags" doctypes="ColdFusion" servermodel="Cold Fusion"
tagchooser="cfml/TagChooser.xml" id="DWTagLibrary_cfml">

 <tagref name="cfabort" file="cfml/cfabort.vtm"/>
</taglibrary>

<taglibrary name="ASP.NET Tags" doctypes="ASP.NET_CSharp,ASP.NET_VB"¬
servermodel="ASPNet" prefix="<asp:" tagchooser="ASPNet/TagChooser.xml"¬
id="DWTagLibrary_aspnet">

 <tagref name="dataset" file="aspnet/dataset.vtm" prefix="<mm:dataset"/>
</taglibrary>
</taglibraries>
204 Chapter 11: Tag Libraries and Editors

The taglibrary tag groups one or more tags into a tag library. When you import tags or create a
new set of tags, you can group them into tag libraries. Typically, a taglibrary grouping
corresponds to a set of tags that are defined in a JavaServer Pages (JSP) TLD file, an XML
document type definition (DTD) file, an ASP.Net name space, or some other logical grouping.

The following table lists the taglibrary attributes:

Attribute Description Mandatory/
optional

taglibary.name Used to refer to the tag library in the UI. Mandatory

taglibrary.doctypes Indicates the document types for which this
library is active. When the library is active, library
tags appear in the Code Hints pop-up menu.
Not all tag libraries can be active at the same
time because name conflicts can occur
(for example, HTML and WML files
are incompatible).

Mandatory

taglibrary.prefix When specified, tags within the tag library have
the form taglibrary.prefix + tagref.name For
example, if the taglibrary.prefix is "<jrun:"
and the tagref.name is "if" then the tag is of
the form "<jrun:if". This can be overridden for
a particular tag.

Optional

taglibrary.servermodel If the tags in the tag library execute on an
application server, the servermodel attribute
identifies the server model of the tag. If the tags
are client-side tags (not server-side tags), the
servermodel attribute is omitted. The
servermodel attribute is also used for Check
Target Browsers.

Optional

taglibrary.id This can be any string that is different from the
taglibrary.ID attributes of other tag libraries in
the file. The Extension Manager uses the ID
attribute, so the MXP files can insert new
taglibrary and the tags files into the
TagLibraries.vtm file.

Optional

taglibrary.tagchooser A relative path to the TagChooser.xml file that is
associated with this tag library.

Optional
Tag library file format 205

The following table lists tagref attributes:

Because the tagref.prefix attribute can override the taglibrary.prefix attribute, the
relationship between the two attributes can be confusing. The following table shows the
relationship between the taglibrary.prefix and tagref.prefix attributes:

To define tags, Dreamweaver uses a modified version of the Macromedia VTML file format. The
following example demonstrates all the elements that Dreamweaver must use to define an
individual tag:
<tag name="input" bind="value" casesensitive="no" endtag="no">
 <tagformat indentcontents="yes" formatcontents="yes" nlbeforetag ¬

nlbeforecontents=0 nlaftercontents=0 nlaftertag=1 />
 <tagdialog file = "input.HTM"/>
 <attributes>
 <attrib name="name"/>
 <attrib name="wrap" type="Enumerated">
 <attriboption value="off"/>
 <attriboption value="soft"/>
 <attriboption value="hard"/>
 </attrib>
 <attrib name="onFocus" casesensitive="yes"/>
 <event name="onFocus"/>
 </attributes>
</tag>

Attribute Description Mandatory/
optional

tagref.name Used to refer to the tag in the UI. Mandatory

tagref.prefix Specifies how the tag appears in Source view.
When used, the tagref.prefix attribute
determines the prefix of the current tag. When
the attribute is defined, it overrides the value
specified for the taglibrary.prefix attribute.

Optional

tagref.file References the VTML file for the tag. Optional

Is the taglibrary.prefix
defined?

Is the tagref.prefix defined? Resulting tag prefix

No No '<' + tagref.name

Yes No taglibrary.prefix +
tagref.name

No Yes tagref.prefix

Yes Yes tagref.prefix
206 Chapter 11: Tag Libraries and Editors

The following table lists the attributes that define tags:

Attribute Description Mandatory/
optional

tag.bind Used by the Data Binding panel. When you
select a tag of this type, the bind attribute
indicates the default attribute for data binding.

Optional

tag.casesensitive Specifies whether the tag name is case-
sensitive. If the tag is case-sensitive, it is inserted
into the user’s document using exactly the case
that the tag library specifies. If the tag is not
case-sensitive, it is inserted using the default
case that is specified in the Code Format tab in
the Preferences dialog box. If casesensitive
is omitted, the tag is assumed to be
case-insensitive.

Optional

tag.endtag Specifies whether the tag has both a opening
and a closing tag. For example, the input tag
has no closing tag; there is no matching /input
tag. If the closing tag is optional, the ENDTAG
attribute should be set to Yes.

Optional

tagformat Specifies the tag’s formatting rules. In
Dreamweaver versions before Dreamweaver
MX, these rules were stored in the
SourceFormat.txt file.

Optional

tagformat.indentcontents Specifies whether the contents of this tag
should be indented.

Optional

tagformat.formatcontents Specifies whether the contents of this tag
should be parsed. This attribute is set to No for
tags such as SCRIPT and STYLE, for which content
is something other than HTML.

Optional

tagformat.nlbeforetag The number of newline characters to insert
before this tag.

Optional

tagformat.nlbeforecontents The number of newline characters to insert
before the contents of this tag.

Optional

tagformat.nlaftercontents The number of newline characters to insert after
the contents of this tag.

Optional

tagformat.nlaftertag The number of newline characters to insert after
this tag.

Optional

attrib.name The name of the attribute, as it appears in the
source code.

Mandatory
Tag library file format 207

Note: In versions before Dreamweaver MX, tag information is stored in the Configuration/
TagAttributeList.txt file.

The Tag Chooser

The Tag Chooser lets you view tags in functional groups so you can easily access frequently used
tags. In order to add a tag or a set of tags to the Tag Chooser, you must add them to the tag
library. You can do this by using the Tag Library Editor dialog box or by installing a Dreamweaver
extension, which is packaged in an MXP file.

TagChooser.xml files

The TagChooser.xml file provides the metadata for organizing tag groupings that appear in the
Tag Chooser. Each tag that comes with Dreamweaver is stored in a functional grouping and is
available in the Tag Chooser. By editing the TagChooser.xml file, you can regroup existing tags
and group new tags. You can customize how tags are organized for your users by creating
subcategories so they can easily access their most important tags.

The TagLibraries.vtm file supports the use of the TAGLIBRARY.TAGCHOOSER attribute, which
points to the TagChooser.xml file. If you change existing TagChooser.xml files or create new ones,
the TAGLIBRARY.TAGCHOOSER attribute must point to the correct location for the Tag Chooser to
be fully functional.

If there is no TAGLIBRARY.TAGCHOOSER attribute, the Tag Chooser displays the tree structure that
is in the TagLibraries.vtm file.

TagChooser.xml files are stored in Configuration/TagLibraries/TagLibraryName folder. The
following example shows the structure of TagChooser.xml files:
<?xml version="1.0" encoding="iso-8859-1" standalone="yes" ?>
<tclibrary name="Friendly name for library node" desc='Description for

incorporated reference' reference="Language[,Topic[,Subtopic]]">

attrib.type If omitted, attrib.type is "text".
It can have the following values:
TEXT—free text content
ENUMERATED—a list of enumerated values
COLOR—a color value (name or hex)
FONT—font name or font family
STYLE—CSS styles attribute
FILEPATH —a full file path
DIRECTORY—a folder path
FILENAME—filename only
RELATIVEPATH —a relative representation of the
path
FLAG —an ON/OFF attribute that contains
no value

Optional

attrib.casesensitive Specifies whether the attribute name is case-
sensitive. If the CASESENSITIVE attribute is
missing, the attribute name is case-insensitive.

Optional

Attribute Description Mandatory/
optional
208 Chapter 11: Tag Libraries and Editors

 <category name="Friendly name for category node" desc='Description for
incorporated reference' reference="Language[,Topic[,Subtopic]]" id="Unique
id">

 <category name="Friendly name for subcategory node" ICON="Relative path"
desc='Description for incorporated reference'
reference="Language,Topic[,Subtopic]" id="Unique id">

 <element name="Friendly name for list item" value='Value to pass to
visual dialog editors' desc='Description for incorporated reference'
reference="Language[,Topic[,Subtopic]]" id="Unique id"/>

 ... more elements to display in the list view ...
 </category>
 ... more subcategories ...
 </category>
 ... more categories ...
</tclibrary>

The following table lists the tags that are available for use in the TagChooser.xml files:

The CATEGORY tag represents all other nodes in the Tree view under the TCLIBRARY’s node, as
shown in the following table:

Tag Description Mandatory/
Optional

tclibrary The tag is the outermost tag, which
encapsulates this tag library’s Tag
Chooser structure.

Mandatory

tclibrary.name Value appears in the Tree view node. Mandatory

tclibrary.desc Value is an HTML string and appears in the Tag
Info section of the Tag Chooser dialog box. If
there is no DESC attribute, the information for Tag
Info comes from the Reference panel.
Interchangeable with tclibrary.reference.

Optional
(desc and
reference are
mutually exclusive)

tclibrary.reference Value describes the language, topic, and
subtopic to display in the Tag Info section of the
Tag Chooser dialog box. Interchangeable with
tclibrary.desc.

Optional
(desc and
reference are
mutually exclusive)

Tag Description Mandatory/
Optional

category.name Value appears in the Tree view node. Mandatory

category.desc Value is an HTML string that appears in the Tag
Info section of the Tag Chooser dialog box. If
neither desc nor reference attr are specified,
nothing appears in the Tag info section.

Optional
(desc and
reference are
mutually exclusive)

category.reference Value describes the language, topic, and
subtopic to display in the Tag info section.

Optional
(desc and
reference are
mutually exclusive)
The Tag Chooser 209

The following table lists the attributes of the ELEMENT tag, which represents the tag to insert:

Creating a new tag editor

The examples in this section use cfweather, a hypothetical ColdFusion tag designed to extract
the current temperature from a weather database, to illustrate the steps necessary to create a new
tag editor.

The attributes for the cfweather tag are described in the following table:

category.icon Value is a relative path to an icon GIF. Optional

category.id Any string that is different from the category.id
attributes of other categories in this file.

Mandatory

Attribute Description Mandatory/
Optional

element.name Value appears as a List view item. Mandatory

element.value Value that is either placed directly into the
code or a parameter that passes into visual
dialog boxes.

Mandatory

element.desc Value is an HTML string and appears in the
incorporated Reference panel. If not specified,
the REFERENCE attribute displays reference
content in the incorporated Reference panel.

Optional
(desc and
reference are
mutually exclusive)

element.reference As many as three strings separated by commas
that describes the language, topic, and subtopic
respectively. This information appears in the
Reference panel. The first string is mandatory.
The second string is mandatory for the ELEMENT
tag only; optional for CATEGORY and TCLIBRARY
tags. The third string is optional.

Optional
(desc and
reference are
mutually exclusive)

element.id Any string that is different from the element.id
attributes of other elements in this file.

Optional

Attribute Description

zip A five-digit ZIP code

tempaturescale The temperature scale (Celsius or Farhenheit)

Tag Description Mandatory/
Optional
210 Chapter 11: Tag Libraries and Editors

Registering the tag in the tag library

For Dreamweaver to recognize the new tag, it must be identified in the TagLibraries.vtm file,
which is located in the Configuration/TagLibraries folder. However, if the user is on multiuser
platform (such as Windows XP, Windows 2000, Windows NT, or Mac OS X), the user has
another TagLibraries.vtm file in their user Configuration folder. This file is the one that needs to
be updated because this file is the instance that Dreamweaver searches for and parses.

The location of the user’s Configuration folder depends on the user’s platform.

For Windows 2000 and Windows XP platforms:
<drive>:\Documents and Settings\<username>\ ¬

Application Data\Macromedia\Dreamweaver MX 2004\Configuration

Note: In Windows XP, this folder may be inside a hidden folder.

For Mac OS X platforms:
<drive>:Users:<username>:Library:Application Support: ¬

Macromedia:Dreamweaver MX 2004:Configuration

If Dreamweaver cannot find the TagLibraries.vtm file in the user’s Configuration folder, it
searches for the file in the Dreamweaver Configuration folder.
Note: On multiuser platforms, if you edit the copy of TagLibraries.vtm that resides in the
Dreamweaver Configuration folder and not the one located in the user’s configuration folder,
Dreamweaver is not aware of the changes because it parses the copy of the TagLibraries.vtm file in
the user’s Configuration folder, not the one in the Dreamweaver Configuration folder.

The cfweather tag is a ColdFusion tag, so an appropriate tag library group already exists that you
can use to register the cfweather tag.

To register the tag:

1 Open the TagLibraries.vtm file in a text editor.
2 Scroll through the existing tag libraries to find the CFML tags taglibrary group.
3 Add a new tag reference element, as shown in the following example:

<tagref name="cfweather" file="cfml/cfweather.vtm"/>

4 Save the file.
The tag is now registered in the tag library, and it has a file pointer to the cfweather.vtm tag
definition file.
Creating a new tag editor 211

Creating a tag definition (VTML) file

When a user selects a registered tag using the Tag Chooser or a tag editor, Dreamweaver searches
for a corresponding VTML file for the tag definition.

To create a tag definition file:

1 In a text editor, create a file with the following contents:
<TAG NAME="cfweather" endtag="no">

<TAGFORMAT NLBEFORETAG="1" NLAFTERTAG="1"/>
<TAGDIALOG FILE="cfweather.htm"/>

<ATTRIBUTES>

<ATTRIB NAME="zip" TYPE="TEXT"/>
<ATTRIB NAME="tempaturescale" TYPE="ENUMERATED">

<ATTRIBOPTION VALUE="Celsius"/>
<ATTRIBOPTION VALUE="Fahrenheit"/>

</ATTRIB>
</ATTRIBUTES>

</TAG>

2 Save the cfweather.vtm file in the Configuration/Taglibraries/CFML folder.
Using the tag definition file, Dreamweaver can perform code hinting, code completion, and
tag formatting functionality for the cfweather tag.

Creating a tag editor UI

To create the cfweather tag editor user interface:

1 Save the cfweather.htm file in the Configuration/Taglibraries/CFML folder:
<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine 5.0//dialog">
<html>
<head>
<title>CFWEATHER</title>
<script src="../../Shared/Common/Scripts/dwscripts.js"></script>
<script src="../../Shared/Common/Scripts/ListControlClass.js"></script>
<script src="../../Shared/Common/Scripts/tagDialogsCmn.js"></script>
<script>

/************************* GLOBAL VARS **************************/
var TEMPATURESCALELIST; // tempaurelist control (initialized in

initializeUI())
var theUIObjects; // array of UI objects used by common API functions

/**/

// inspectTag() API function defined (required by all tag editors)
function inspectTag(tagNodeObj)
{
 // call into a common library version of inspectTagCommon defined
 // in tagDialogCmns.js (note that it's been included)
 // For more information about this function, look at the comments
 // for inspectTagCommon in tagDialogCmn.js
 tagDialog.inspectTagCommon(tagNodeObj, theUIObjects);
}

function applyTag(tagNodeObj)
{
 // call into a common library version of applyTagCommon defined
212 Chapter 11: Tag Libraries and Editors

 // in tagDialogCmns.js (note that it's been included)
 // For more information about this function, look at the comments
 // for applyTagCommon in tagDialogCmn.js
 tagDialog.applyTagCommon(tagNodeObj, theUIObjects);
}

function initializeUI()
{
 // define two arrays for the values and display captions for the list control
 var theTempatureScaleCap = new Array("celsius","fahrenheit");
 var theTempatureScaleVal = new Array("celsius","fahrenheit");

 // instantiate a new list control
 TEMPATURESCALELIST = new ListControl("thetempaturescale");

 // add the tempaturescalelist dropdown list control to the uiobjects
 theUIObjects = new Array(TEMPATURESCALELIST);

 // call common populateDropDownList function defined in tagDialogCmn.js to
 // populate the tempaturescale list control
 tagDialog.populateDropDownList(TEMPATURESCALELIST, theTempatureScaleCap,

theTempatureScaleVal, 1);
}
</script>

</head>
<body onLoad="initializeUI()">
<div name="General">
 <table border="0" cellspacing="4">
 <tr>
 <td valign="baseline" align="right" nowrap="nowrap">Zip Code: </td>
 <td nowrap="nowrap">
 <input type="text" id="attr:cfargument:zip" name="thezip" attname="zip"

style="width:100px" />
 </td>
 </tr>
 <tr>
 <td valign="baseline" align="right" nowrap="nowrap">Type: </td>
 <td nowrap="nowrap">
 <select name="thetempaturescale" id="attr:cfargument:tempaturescale"

attname="tempaturescale" editable="false" style="width:200px">
 </select>
 </td>
 </tr>
 </table>
</div>
</body>
</html>

2 Verify that the tag editor is working by performing the following steps:
■ Launch Dreamweaver.
■ Type cfweather in Code view.
■ Right click on the tag.
■ Select Edit Tag cfweather from the Context menu.
If the tag editor launches, it has been created successfully.
Creating a new tag editor 213

Adding a tag to Tag Chooser

To add the cfweather tag to the Tag Chooser:

1 Modify the TagChooser.xml file in the Configuration/Taglibraries/CFML folder by adding a
new category called Third Party Tags, which features the cfweather tag, as shown in the
following example:
<category name="Third Party Tags" icon="icons/Elements.gif"

reference='CFML'>
<element name="cfweather" value='cfweather zip=""
temperaturescale="fahrenheit">' />

</category>

Note: On multiuser platforms, the TagChooser.xml file also exists in the user’s Configuration folder.
For more information regarding multiuser platforms, see the discussion in “Registering the tag in the
tag library” on page 211.

2 Verify the cfweather tag now appears in the Tag Chooser by performing the following steps:
■ Select Insert > Tag.
■ Expand the CFML Tags group.
■ Select the Third Party Tags group that appears at the bottom of the Tag Chooser.
■ The cfweather tag appears in the list box on the right.
■ Select cfweather, and click the Insert button.
The tag editor should appear.

Tag editor APIs

In order to create a new tag editor, you must provide an implementation for the inspectTag(),
validateTag(), and applyTag() functions. For an example of an implementation, see
“Creating a tag editor UI” on page 212.

inspectTag()

Availability

Dreamweaver MX.

Description

The function is called when the tag editor first appears. The function receives as an argument the
tag that the user is editing, which is expressed as a dom object. The function extracts attribute
values from the tag that is being edited and uses these values to initialize form elements in the
tag editor.

Arguments

tag

• The tag argument is the DOM node of the edited tag.

Returns

Dreamweaver expects nothing.
214 Chapter 11: Tag Libraries and Editors

Example

Suppose the user edits the following tag:
<crfweather zip = “94065”/>

If the editor contains a text field for editing the zip attribute, the function needs to initialize the
form element so that the user sees the actual ZIP code in the text field, rather than an empty field.

The following code performs the initialization:
function inspectTag(tag)
{

document.forms[0].zip.value = tag.zip

}

validateTag()

Availability

Dreamweaver MX.

Description

When a user clicks on a node in the tree control or clicks OK, the function performs input
validation on the currently displayed HTML form elements.

Arguments

None.

Returns

Dreamweaver expects a Boolean value: true if the input for HTML form elements is valid; false
if input values are not valid.

Example

When the user creates a table, a negative integer is entered for the number of table rows. The
validateTag() function detects the invalid input, displays an alert message, and returns a
false value.
Tag editor APIs 215

applyTag()

Availability

Dreamweaver MX.

Description

When the user clicks OK, Dreamweaver calls the validateTag() function. If the
validateTag() function returns a true value, Dreamweaver calls this function and passes the
dom object that represents the current tag (the tag that is being edited). The function reads the
values out of the form elements and writes them into the dom object.

Arguments

tag

• The tag argument is the DOM node of the tag being edited.

Returns

Dreamweaver expects nothing.

Example

Continuing the cfweather example, in the following code, if the user changes the ZIP code from
94065 to 53402, in order to update the user’s document to use the new ZIP code, the dom object
must be updated:
function applyTag(tag)
{

tag.zip = document.forms[0].zip.value

}

216 Chapter 11: Tag Libraries and Editors

CHAPTER 12
Property Inspectors
The Property inspector is perhaps the most familiar floating panel in the Macromedia
Dreamweaver MX 2004 interface. It is indispensable for defining, reviewing, and changing the
name, size, appearance, and other attributes of the selection as well as for launching internal and
external editors for the selected element.

Dreamweaver has several built-in interfaces for the Property inspector that let you set properties
for many standard HTML tags. These built-in inspectors are part of the core Dreamweaver code;
for this reason, you cannot find corresponding Property inspector files for them in the
Configuration folder. Custom Property inspector files let you override these built-in interfaces or
create new ones to inspect custom tags. Custom Property inspector files are HTML files that
reside in the Configuration/Inspectors folder inside the Dreamweaver application folder. Property
inspector files must contain a comment (in addition to the doctype comment) immediately
preceding the opening HTML tag, as shown in the following example:
<!-- tag:tagNameOrKeyword,priority:1to10,selection:¬
exactOrWithin,hline,vline, serverModel-->
<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine5.0//pi">

This comment has the following elements:

• The tagNameOrKeyword element is the tag to be inspected or one of the following keywords:
COMMENT (for comments), *LOCKED* (for locked regions), or *ASP* (for ASP tags).

• The 1to10 element is the priority of the Property inspector file: 1 indicates that this inspector
should be used only when no others can inspect the selection; 10 indicates that this inspector
takes precedence over all others that can inspect the selection.

• The exactOrWithin element indicates whether the selection can be within the tag (within)
or must exactly contain the tag (exact).

• The hline element (optional) indicates that a horizontal gray line should appear between the
upper and lower halves of the inspector in expanded mode.

• The vline element (optional) indicates that a vertical gray line should appear between the tag
name field and the rest of the properties in the inspector (for an example, see an HTML file in
the Configuration/Inspectors folder).

• The serverModel element (optional) indicates the server model of the Property inspector. If
the server model of the Property inspector is not the same as the server model for the
document, Dreamweaver does not use the Property inspector to display the properties of the
current selection.
217

The following comment is appropriate for an inspector that is designed to inspect the HAPPY tag:
<!-- tag:HAPPY, priority:8,selection:exact,hline,vline, ¬
serverModel:ASP -->

In some cases, you might want to specify that your extension use only Dreamweaver extension
rendering (and not the previous rendering engine) by inserting the following line immediately
before the Tag comment, as shown in the following example:
<!--DOCTYPE HTML SYSTEM “-//Macromedia//DWEtension layout-engine 5.0//pi”-->

The BODY section of a Property inspector file contains an HTML form. Instead of displaying the
form contents in a dialog box, however, Dreamweaver uses the form to define the input areas and
layout of the inspector.

How Property inspector files work

At start up, Dreamweaver reads the first line of each HTM and HTML file in the Configuration/
Inspectors folder, searching for the comment string that defines the type, priority, and selection
type of a Property inspector. Files that do not have this comment as their first line are ignored.

When the user makes a selection in Dreamweaver or moves the insertion point to a different
location, the following events occur:

1 Dreamweaver searches for any inspectors that have a within selection type.
2 If there are any within inspectors, Dreamweaver searches up the document tree from the

currently selected tag to check whether there are inspectors for any tags that surround the
selection. If—and only if—there are no within inspectors, Dreamweaver searches for any
inspectors that have a selection type of exact.

3 For the first tag that has one or more inspectors, Dreamweaver calls each inspector’s
canInspectSelection() function. If this function returns the value false, Dreamweaver no
longer considers the inspector a candidate for inspecting the selection.

4 If more than one potential inspector remains after calling the canInspectSelection()
function, Dreamweaver sorts the remaining inspectors by priority.

5 If more than one potential inspector shares the same priority, Dreamweaver selects an inspector
alphabetically by name.

6 The selected inspector appears in the Property inspector floating panel. If the Property inspector
file defines the displayHelp() function, a small question mark (?) icon appears in the upper-
right corner of the inspector.

7 Dreamweaver calls the inspectSelection() function to gather information about the current
selection and populate the inspector’s fields.

8 Event handlers attached to the fields in the Property inspector interface execute as the user
encounters them. (For example, you might have an onBlur event that calls the
setAttribute() function to set an attribute to the value that the user enters.)
218 Chapter 12: Property Inspectors

The Property inspector API

Two of the Property inspector API functions (canInspectSelection() and
inspectSelection()) are required.

canInspectSelection()

Description

Determines whether the Property inspector is appropriate for the current selection.

Arguments

None.

Use dom.getSelectedNode() to get the current selection as a JavaScript object (for more
information about dom.getSelectedNode(), see the Dreamweaver API Reference).

Returns

Dreamweaver expects a Boolean value: true if the inspector can inspect the current selection;
false otherwise.

Example

The following instance of the canInspectSelection() function returns a true value if the
selection contains the CLASSID attribute, and the value of that attribute is "clsid:D27CDB6E-
AE6D-11cf-96B8-444553540000" (the class ID for Flash Player):
function canInspectSelection(){

var theDOM = dw.getDocumentDOM();
var theObj = theDOM.getSelectedNode();
return (theObj.nodeType == Node.ELEMENT_NODE && ¬

theObj.hasAttribute("classid") && ¬
theObj.getAttribute("classid").toLowerCase()== ¬
"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000");

}

displayHelp()

Description

If this function is defined, a question mark (?) icon appears in the upper-right corner of the
Property inspector. This function is called when the user clicks the icon.

Arguments

None.

Returns

Dreamweaver expects nothing.
The Property inspector API 219

Example

The following example of the displayHelp() function opens a file in a browser window. The file
explains the fields of the Property inspector.
function displayHelp(){

dw.browseDocument(‘http://www.hooha.com/dw/inspectors/inspHelp.html’);
}

inspectSelection()

Description

Refreshes the contents of the text fields based on the attributes of the current selection.

Arguments

maxOrMin

• The maxOrMin argument is either max or min, depending on whether the Property inspector is
in its expanded or contracted state.

Returns

Dreamweaver expects nothing.

Example

The following example of the inspectSelection() function gets the value of the CONTENT
attribute and uses it to populate a form field called keywords:
function inspectSelection(){

var dom = dreamweaver.getDocumentDOM();
var theObj = dom.getSelectedNode();
document.forms[0].keywords.value = ¬
theObj.getAttribute("content");

}

A simple Property inspector example

The following Property inspector inspects a fictional tag called INTJ. The INTJ tag is empty (it
has no closing tag), so its selection type is exact. As long as the selection is an INTJ tag, the
Property inspector appears—so the canInspectSelection() function returns a true value every
time. To have a different inspector appear, depending on the value of the INTJ tag’s TYPE
attribute, for example, the canInspectSelection() function must check the value of the TYPE
attribute to determine which Property inspector is the right one. (This is how the keywords and
description Property inspectors work, because “keywords” and “description” are values, not tags,
of the META tag’s NAME attribute.)
<!-- tag:INTJ,priority:5,selection:exact,vline,hline -->
<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine5.0//pi">
<HTML>
<HEAD>
<TITLE>Interjection Inspector</TITLE>
<SCRIPT LANGUAGE="JavaScript">

function canInspectSelection(){
 return true;
}

220 Chapter 12: Property Inspectors

function inspectSelection(){
 // Get the DOM of the current document var
 // theDOM = dw.getDocumentDOM();
 // Get the selected node var theObj = theDOM.getSelectedNode();

 // Get the value of the TYPE attribute on the INTJ tag var
 // theType = theObj.getAttribute('type');
 // Initialize a variable called typeIndex to -1. This will be
 // used to store the menu index that corresponds to
 // the value of the TYPE attribute
 var typeIndex = -1;

 // If there was a TYPE attribute
 if (theType){
 // If the value of TYPE is "jeepers", set typeIndex to 0
 if (theType.toLowerCase() == "jeepers"){
 typeIndex = 0;
 // If the value of TYPE is "jinkies", set typeIndex to 1
 }else if (theType.toLowerCase() == "jinkies"){
 typeIndex = 1;
 // If the value of TYPE is "zoinks", set typeIndex to 2
 }else if (theType.toLowerCase() == "zoinks"){
 typeIndex = 2;
 }
 }

 // If the value of the TYPE attribute was "jeepers",
 // "jinkies", or "zoinks", choose the corresponding
 // option from the pop-up menu in the interface
 if (typeIndex != -1){
 document.topLayer.document.topLayerForm.intType.¬
 selectedIndex = typeIndex;
 }
}

function setInterjectionTag(){
 // Get the DOM of the current document
 var theDOM = dw.getDocumentDOM();
 // Get the selected node
 var theObj = theDOM.getSelectedNode();

 // Get the index of the selected option in the pop-up menu
 // in the interface
 var typeIndex = document.topLayer.document.¬
 topLayerForm.intType.selectedIndex;
 // Get the value of the selected option in the pop-up menu
 // in the interface
 var theType = document.topLayer.document.¬
 topLayerForm.intType.options[typeIndex].value;

 // Set the value of the TYPE attribute to theType
 theObj.setAttribute('type',theType);
}

</SCRIPT>
</HEAD>

<BODY>
<SPAN ID="image" STYLE="position:absolute; width:23px; ¬
height:17px; z-index:16; left: 3px; top: 2px">
<IMG SRC="interjection.gif" WIDTH="36" HEIGHT="36" ¬
The Property inspector API 221

NAME="interjectionImage">

<SPAN ID="label" STYLE="position:absolute; width:23px; ¬
height:17px; z-index:16; left: 44px; top: 5px">Interjection

<!-- If your form fields are in different layers, you must ¬
create a separate form inside each layer and reference it as ¬
shown in the inspectSelection() and setInterjectionTag() ¬
functions above. -->

<SPAN ID="topLayer" STYLE="position:absolute; z-index:1; ¬
left: 125px; top: 3px; width: 431px; height: 32px">
<FORM NAME="topLayerForm">
<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="0">
<TR>
<TD VALIGN="baseline" ALIGN="right">Type:</TD>
<TD VALIGN="baseline" ALIGN="right">
<SELECT NAME="intType" STYLE="width:86" ¬
onChange="setInterjectionTag()">
<OPTION VALUE="jeepers">Jeepers</OPTION>
<OPTION VALUE="jinkies">Jinkies</OPTION>
<OPTION VALUE="zoinks">Zoinks</OPTION>
</SELECT>
</TR>
</TABLE>
</FORM>

</BODY>
</HTML>
222 Chapter 12: Property Inspectors

CHAPTER 13
Floating Panels
You can create any kind of floating panel or inspector without the size and layout limitations of
Property inspectors.

Although a custom Property inspector should be your first choice for setting the properties of the
current selection, custom floating panels offer more room and flexibility for displaying
information about the entire document or multiple selections.

Custom floating panel files are HTML files that reside in the Configuration/Floaters folder inside
the Macromedia Dreamweaver MX 2004 application folder. The BODY section of a floating panel
file contains an HTML form; event handlers that are attached to form elements can call
JavaScript code that performs arbitrary edits to the current document.

Dreamweaver has several built-in floating panels that are accessible from the Window menu.
(These built-in panels are part of the core Dreamweaver code and do not have corresponding
floating panel files for them in the Configuration/Floaters folder.)

You can create custom panels and add them to the Window menu. For more information on
adding items to the menu system, see Chapter 8, “Menus and Menu Commands,” on page 145.

How floating panel files work

Custom floating panels can be moved, resized, and tabbed together the same way as the floating
panels that are built in to Dreamweaver. Custom floating panels differ from built-in floating
panels in the following ways:

• Custom floating panels display in the default gray. Setting the BGCOLOR attribute in the BODY
tag has no effect.

• All custom floating panels either appear always in front of the Document window or float
behind it when inactive, depending on the setting for All Other Floaters in the
Panels preferences.

Floating panel files also differ somewhat from other extensions. Unlike other extension files,
Dreamweaver does not load floating panel files into memory at startup unless the floating panels
were visible when Dreamweaver last shut down. If the floating panels were not visible when
Dreamweaver shut down, the files that define them are loaded only when referenced from one of
the following functions: dreamweaver.getFloaterVisibility(),
dreamweaver.setFloaterVisibility(), or dreamweaver.toggleFloater(). For more
information on these functions, see the Dreamweaver API Reference.
223

When one of the files inside the Configuration folder calls the
dw.getFloaterVisibility(floaterName), dw.setFloaterVisibility(floaterName), or
dw.toggleFloater(floaterName) functions, the following events occur:

1 If floaterName is not one of the reserved floating panel names, Dreamweaver searches the
Configuration/Floaters folder for a file called floaterName.htm. (For a complete list of reserved
floating panel names, see the dreamweaver.getFloaterVisibility() function in the
Dreamweaver API Reference. If floaterName.htm is not found, Dreamweaver searches for
floaterName.html. If no file is found, nothing happens.

2 If the floating panel file is being loaded for the first time, the initialPosition() function
is called, if it is defined, to determine the floating panel’s default position on the screen, and
the initialTabs() function is called, if it is defined, to determine the floating panel’s default
tab grouping.

3 The selectionChanged() and documentEdited() functions are called on the assumption that
changes probably occurred while the floating panel was hidden.

4 When the floating panel is visible, the following actions occur:
■ When the selection changes, the selectionChanged() function is called, if it is defined.
■ When the user makes changes to the document, the documentEdited() function is called,

if it is defined.
■ Event handlers that are attached to the fields in the floating panel interface execute as the

user encounters them. (For example, a button with an onClick event handler that executes
dw.getDocumentDOM().body.innerHTML='' removes everything between the opening and
closing BODY tags in the document when it is clicked.)

5 When the user quits Dreamweaver, the current visibility, position, and tab grouping of the
floating panel are saved. The next time Dreamweaver starts up, it loads the floating panel files
for any floating panels that were visible at the last shutdown and displays the floating panels in
their last position and tab grouping.

The Floating panel API

All the custom functions in the Floating panel API are optional.

Some of the functions in this section operate only on the Windows operating system. The
description of the function indicates whether this is the case.

displayHelp()

Description

If this function is defined, a Help button appears below the OK and Cancel buttons in your
dialog box. This function is called when the user clicks the Help button.

Arguments

None.

Returns

Dreamweaver expects nothing.
224 Chapter 13: Floating Panels

Example

// the following instance of displayHelp() opens
// in a browser a file that explains how to use
// the extension.
function displayHelp(){

var myHelpFile = dw.getConfigurationPath() +
'/ExtensionsHelp/superDuperHelp.htm';

dw.browseDocument(myHelpFile);
}

documentEdited()

Description

This function is called when the floating panel becomes visible and after the current series of edits
is complete; that is, multiple edits might occur before this function is called. This function should
be defined only if the floating panel must track edits to the document.
Note: Define the documentEdited() function only if you require it because its existence
impacts performance.

Arguments

None.

Returns

Dreamweaver expects nothing.

Example

The following example of the documentEdited() function scans the document for layers and
updates a text field that displays the number of layers in the document:
function documentEdited(){

/* create a list of all the layers in the document */
var theDOM = dw.getDocumentDOM();
var layersInDoc = theDOM.getElementsByTagName("layer");
var layerCount = layersInDoc.length;

/* update the numOfLayers field with the new layer count */
document.theForm.numOfLayers.value = layerCount;

}

getDockingSide()

Availability

Dreamweaver MX.

Description

Specifies the locations at which a floating panel can dock. The function returns a string that
contains some combination of the words "left", "right", "top", and "bottom". If the label is in
the string, you can dock a floating panel to that side. If the function is missing, you cannot dock
a floating panel to any side.

You can use this function to prevent certain panels from docking on a certain side of the
Dreamweaver workspace or to each other.
The Floating panel API 225

Arguments

None.

Returns

Dreamweaver expects a string containing the words "left", "right", "top", and "bottom", or a
combination of them, that specifies where Dreamweaver can dock the floating panel.

Example

getDockingSide()
{

return dock_side = “left top”;
}

initialPosition()

Description

Determines the initial position of the floating panel the first time it is called. If this function is
not defined, the default position is the center of the screen.

Arguments

platform

• The platform argument has a value of either "Mac" or "Win", depending on the
user’s platform.

Returns

Dreamweaver expects a string of the form "leftPosInPixels,topPosInPixels".

Example

The following example of the initialPosition() function specifies that the first time the
floating panel appears, it should be 420 pixels from the left and 20 pixels from the top in
Windows, and 390 pixels from the left side of the screen and 20 pixels from the top of the screen
on the Macintosh:
function initialPosition(platform){

var initPos = "420,20";
if (platform == "macintosh"){

initPos = "390,20";
}
return initPos;

}

initialTabs()

Description

Determines which other floating panels are tabbed together the first time that this floating panel
appears. If any listed floating panel has appeared previously, it is not included in the tab group. To
ensure that two custom floating panels are tabbed together, each panel should reference the other
with the initialTabs() function.

Arguments

None.
226 Chapter 13: Floating Panels

Returns

Dreamweaver expects a string of the form "floaterName1,floaterName2,...floaterNameN".

Example

The following example of the initialTabs() function specifies that the first time the floating
panel appears, it should be tabbed with the scriptEditor floating panel:
function initialTabs(){

return "scriptEditor";
}

isATarget()

Availability

Dreamweaver MX (Windows only).

Description

Specifies whether other panels can dock to this floating panel. If the isATarget() function is not
specified, Dreamweaver prevents other panels from docking to this one. Dreamweaver calls this
function when the user tries to combine this panel with others.

Arguments

None.

Returns

Dreamweaver expects a Boolean value: true if other floating panels can dock to this one; false
otherwise.

Example

IsATarget()
{

return true;
}

isAvailableInCodeView()

Description

Determines whether the floating panel should be enabled when Code view is selected. If this
function is not defined, the floating panel is disabled in the Code view.

Arguments

None.

Returns

Dreamweaver expects a Boolean value: true if the floating panel should be enabled in Code view;
false otherwise.
The Floating panel API 227

isResizable()

Availability

Dreamweaver 4.

Description

Determines whether a user can resize a floating panel. If the function is not defined or returns a
true value, the user can resize the floating panel. If the function returns a false value, the user
cannot resize the floating panel.

Arguments

None.

Returns

Dreamweaver expects a Boolean value: true if the user can resize the floating panel;
false otherwise.

Example

The following example prevents the user from resizing the floating panel:
function isResizable()
{

return false;
}

selectionChanged()

Description

Called when the floating panel becomes visible and when the selection changes (when focus
switches to a new document or when the insertion pointer moves to a new location in the current
document). This function should be defined only if the floating panel must track the selection.
Note: Define selectionChanged() only if you absolutely require it because its existence impacts
performance.

Arguments

None.

Returns

Dreamweaver expects nothing.

Example

The following example of selectionChanged() shows a different layer in the floating panel,
depending on whether the selection is a script marker. If the selection is a script marker,
Dreamweaver makes the script layer visible. Otherwise, Dreamweaver makes the blank
layer visible.
function selectionChanged(){
 /* get the selected node */
 var theDOM = dw.getDocumentDOM();
 var theNode = theDOM.getSelectedNode();
228 Chapter 13: Floating Panels

 /* check to see if the node is a script marker */
 if (theNode.nodeType == Node.ELEMENT_NODE && ¬
 theNode.tagName == "SCRIPT"){
 document.layers['blanklayer'].visibility = 'hidden';
 document.layers['scriptlayer'].visibility = 'visible';}

else{
document.layers['scriptlayer'].visibility = 'hidden';
document.layers['blanklayer'].visibility = 'visible';

 }
}

About performance

Declaring the selectionChanged() or documentEdited() function in your custom floating
panels can impact Dreamweaver performance adversely. Consider that the documentEdited()
and selectionChanged() functions are called after every keystroke and mouse click when
Dreamweaver is idle for more than one-tenth of a second. It’s important to use different scenarios
to test your floating panel, using large documents (100K or more of HTML) whenever possible,
to test performance impact.

To help avoid performance penalties, the setTimeout() function was implemented as a global
method in Dreamweaver 3. As in the browsers, the setTimeout() function takes two arguments:
the JavaScript to be called and the amount of time in milliseconds to wait before calling it.

The setTimeout() method lets you build pauses into your processing. These pauses let the user
continue interacting with the application. You must build in these pauses explicitly because the
screen freezes while scripts process, which prevents the user from performing further edits. The
pauses also prevent you from updating the interface or the floating panel.

The following example is from a floating panel that displays information about every layer in the
document. It uses the setTimeout() method to pause for a half second after processing
each layer.
/* create a flag that specifies whether an edit is being processed, and set it

to false. */
document.running = false;

/* this function called when document is edited */
function documentEdited(){
 /* create a list of all the layers to be processed */
 var dom = dw.getDocumentDOM();
 document.layers = dom.getElementsByTagName("layer");
 document.numLayers = document.layers.length;
 document.numProcessed = 0;

 /* set a timer to call processLayer(); if we didn't get
 * to finish processing the previous edit, then the timer
 * is already set. */
 if (document.running = false){
 setTimeout("processLayer()", 500);
 }

 /* set the processing flag to true */
 document.running = true;
}

/* process one layer */
function processLayer(){
The Floating panel API 229

 /* display information for the next unprocessed layer.
 displayLayer() is a function you would write to
 perform the "magic". */
 displayLayer(document.layers[document.numProcessed]);

 /* if there's more work to do, set a timeout to process
 * the next layer. If we're finished, set the document.running
 * flag to false. */
 document.numProcessed = document.numProcessed + 1;
 if (document.numProcessed < document.numLayers){
 setTimeout("processLayer()", 500);
 }else{
 document.running = false;
 }
}

Script Editor: a floating panel extension

The Script Editor extension creates a floating panel to display the JavaScript code that underlies a
selected Script marker in Design view. The Script Editor displays the JavaScript code in the
textarea element of an HTML form that is defined in a layer called scriptlayer. If you make
changes to the selected code in the floating panel, the extension calls the updateScript()
function to save your changes. If you have not selected a Script marker when you invoke the
Script Editor, the extension displays (no script selected) in a layer called blanklayer.

To create the example extension:

1 Create an HTML layer (scriptlayer) to display the JavaScript code for a selected Script
marker and a second layer (blanklayer) to display (no script selected) if a Script marker
has not been selected.

2 Write the JavaScript code
3 Save the JavaScript and HTML code in the scriptEditor.htm file in the Configuration/

Floaters folder.
4 Create a menuitem tag in the menus.xml file to invoke the extension.

Creating the floating panels

The beginning of the HTML file for this extension contains the standard document header
information and a title tag that puts the words Script Editor in the title bar of the floating
panels. The following example shows the code:
<!doctype html public "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Script Editor</title>
<script language="JavaScript">

The extension defines two floating panels that display either (no script selected) if the user
has not selected a Script marker or the JavaScript code that underlies a selected Script marker. The
following code defines these two floating panels, or layers, called blanklayer and scriptlayer:
<body>
<div id="blanklayer" style="position:absolute; width:422px; ¬
height:181px; z-index:1; left: 8px; top: 11px; ¬
visibility: hidden">
<center>

230 Chapter 13: Floating Panels

(no script selected)
</center>
</div>

<div id="scriptlayer" style="position:absolute; width:422px; ¬
height:181px; z-index:1; left: 8px; top: 11px; ¬
visibility: visible">
<form name="theForm">
<textarea name="scriptCode" cols="80" rows="20" wrap="VIRTUAL" ¬
onBlur="updateScript()"></textarea>
</form>
</div>

</body>
</html>

Both div tags use the style attribute to specify the position (absolute), size (width: 422px
and height:181px), and default visibility setting (visible) of the floating panels. The
blanklayer panel uses the center attribute and a series of break (br) tags to position the text in
the center of the panel. The scriptlayer panel creates a form with a single textarea to display
the selected JavaScript code. The textarea tag also specifies that when an onBlur event occurs,
indicating that the selected code has changed, the updateScript() function is called to write the
changed text back to the document.

Writing the JavaScript code

The JavaScript code for the Script Editor consists of one floating panel function that
Dreamweaver calls, selectionchanged(), and one user-defined function, updateScript().

selectionChanged(): is a Script marker selected?

The selectionChanged() function determines if a Script marker has been selected in Design
view. A Script marker appears in Design view if there is a JavaScript routine in the BODY section of
a document and if Scripts is checked on the Invisible Elements section of the Preferences dialog
box. The following figure shows a Script marker icon:

Script marker
Script Editor: a floating panel extension 231

The selectionChanged() function for the Script Editor contains the following code:
function selectionChanged(){
 /* get the selected node */
 var theDOM = dw.getDocumentDOM();
 var theNode = theDOM.getSelectedNode();

 /* check to see if the node is a script marker */
 if (theNode.nodeType == Node.ELEMENT_NODE && ¬
 theNode.tagName == "SCRIPT"){
 document.layers['scriptlayer'].visibility = 'visible';
 document.layers['scriptlayer'].document.theForm.¬
 scriptCode.value = theNode.innerHTML;
 document.layers['blanklayer'].visibility = 'hidden';
 }else{
 document.layers['scriptlayer'].visibility = 'hidden';
 document.layers['blanklayer'].visibility = 'visible';
 }
}

The selectionChanged() function first calls the dw.getDocumentDOM() function to get the
DOM for the user’s document. It then calls the getSelectedNode() function to see if the
selected node for that document is, first, an element and, second, a SCRIPT tag. If both these
conditions are true, the selectionChanged() function makes the scripteditor layer visible
and loads it with the underlying JavaScript code. It also sets the visibility property of the
blanklayer layer to the value hidden. The following figure shows the scriptlayer floating
panel with the selected JavaScript code:
232 Chapter 13: Floating Panels

If the selected node is not an element, or it is not a SCRIPT tag, the selectionChanged()
function makes the layer blanklayer visible and hides scriptlayer. The blanklayer floating
panel displays the text (no script selected), as shown in the following figure:

updateScript(): write back changes

The updateScript() function writes back the selected script when an onBlur event occurs in
the textarea of the scriptlayer panel. The textarea form element contains the JavaScript
code and the onBlur event occurs when textarea loses input focus. The updateScript()
function looks like the following example:
/* update the document with any changes made by
 the user in the textarea */
function updateScript(){
 var theDOM = dw.getDocumentDOM();
 var theNode = dw.getSelectedNode();
 theNode.innerHTML = document.layers['scriptlayer'].document.¬
 theForm.scriptCode.value;
}

</script>
</head>

Saving the file in the Floaters folder

The next step is to save the JavaScript and HTML code in the scripteditor.htm file in the
Configuration/Floaters folder. Saving the scriptEditor.htm file in the Floaters folder makes the
floating panel extension available to Dreamweaver.
Script Editor: a floating panel extension 233

Creating a menu item

It is not sufficient to save the Script Editor code in the Configuration/Floaters folder. You must
also call either the dw.setFloaterVisibility('scriptEditor',true) function or the
dw.toggleFloater('scriptEditor') function to load the floating panel and make it visible.
The most obvious place from which to invoke the Script Editor is from the Window menu,
which is defined in the menus.xml file. The menuitem tag for the Script Editor might look like
the following example:
<menuitem name="Script Editor" enabled="true" ¬
command="dw.toggleFloater('scriptEditor')"¬
checked="dw.getFloaterVisibility('scriptEditor')" />

This menuitem tag creates an entry for the Script Editor extension on the Window menu, as
shown in the following figure:

If you select a Script marker in Design view for the current document and then select the Script
Editor menu item, it invokes the Script Editor floating panel and displays the JavaScript code that
underlies the Script marker. If you select the menu item when a Script marker has not been
selected, it displays the blanklayer panel that contains the text (no script selected).
234 Chapter 13: Floating Panels

CHAPTER 14
Behaviors
Behaviors let users make their HTML pages interactive. They offer web designers an easy way to
assign actions to page elements by filling in an HTML form.

You should write behavior actions when you want to share functions with users or when you want
to insert the same JavaScript function repeatedly but change the parameters each time.
Note: You cannot use behaviors to insert VBScript functions directly; however, you can add a
VBScript function indirectly by editing the DOM in the applyBehavior() function.

The term behavior refers to the combination of an event (such as onClick, onLoad, or onSubmit)
and an action (such as Check Plugin, Go to URL, Swap Image). The browser determines which
HTML elements accept which events. Files that list events that each browser supports are stored
in the Configuration/Behaviors/Events folder within the Macromedia Dreamweaver MX 2004
application folder.

Actions are the part of a behavior that you can control; when you write a behavior, you’re really
writing an Action file. Actions are HTML files. The BODY section of an Action file generally
contains an HTML form that accepts parameters for the action (for example, parameters that
indicate which layers are to be shown or hidden). The HEAD section of an Action file contains
JavaScript functions that process form input from the BODY content and control the functions,
arguments, and event handlers that are inserted into a user’s document.
Note: For information about server behaviors that provide web application functionality, see “Server
Behaviors” on page 247.
235

How Behaviors work

When a user selects an HTML element in a Dreamweaver document and clicks the Plus (+)
button, the following events occur:

1 Dreamweaver calls the canAcceptBehavior() function in each Action file to see whether this
action is appropriate for the document or the selected element.
If the return value of this function is the value false, Dreamweaver dims the action in the
Actions pop-up menu. (For example, the Control Shockwave action is dimmed when the user’s
document has no SWF files.) If the return value is a list of events, Dreamweaver compares each
event with the valid events for the currently selected HTML element and target browser until
it finds a match. Dreamweaver populates the Events pop-up menu with the matched event
from the canAcceptBehavior() function at the top of the list; if no match exists, the default
event for the HTML element (marked in the Event file with an asterisk [*]) becomes the top
item. The remaining events in the menu are assembled from the Event file.

2 The user selects an action from the Actions pop-up menu.
3 Dreamweaver calls the windowDimensions() function to determine the size of the Parameters

dialog box. If the windowDimensions() function is not defined, the size is
determined automatically.
A dialog box always appears, with OK and Cancel buttons appearing at the right edge,
regardless of the contents of the BODY element.

4 Dreamweaver displays a dialog box that contains the BODY elements of the Action file. If the
Action file’s BODY tag contains an onLoad handler, Dreamweaver executes it.

5 The user fills in the parameters for the action. Dreamweaver executes event handlers that are
associated with the form fields as the user encounters them.

6 The user clicks OK.
7 Dreamweaver calls the behaviorFunction() and applyBehavior() functions in the selected

Action file. These functions return strings that are inserted into the user’s document.
8 If the user later double-clicks the action in the Actions column, Dreamweaver reopens the

Parameters dialog box and executes the onLoad handler. Dreamweaver then calls the
inspectBehavior() function in the selected Action file, which fills in the fields with the data
that the user previously entered.

Inserting multiple functions in the user’s file

Actions can insert multiple functions—the main behavior function plus any number of helper
functions—into the HEAD section. Two or more behaviors can even share helper functions as long
as the function definition is exactly the same in each Action file. One way of ensuring that shared
functions are identical is to store each helper function in an external JavaScript file and insert it
into the appropriate Action files using <SCRIPT SRC="externalFile.js">.

When the user deletes a behavior, Dreamweaver attempts to remove any unused helper functions
that are associated with the behavior. If other behaviors are using a helper function, it is not
deleted. Because the algorithm for deleting helper functions errs on the side of caution,
Dreamweaver might occasionally leave an unused function in the user’s document.
236 Chapter 14: Behaviors

The Behaviors API

Two Behaviors API functions are required (applyBehavior() and behaviorFunction()); the
rest are optional.

applyBehavior()

Description

This function inserts into the user’s document an event handler that calls the function that the
behaviorFunction() function inserts. The applyBehavior() function can also perform other
edits on the user’s document, but it must not delete the object to which the behavior is being
applied or the object that receives the action.

Arguments

uniqueName

• The argument is a unique identifier among all instances of all behaviors in the user’s
document. Its format is functionNameInteger, where functionName is the name of the
function that behaviorFunction() inserts. This argument is useful if you insert a tag into the
user’s document and you want to assign a unique value to its NAME attribute.

Returns

Dreamweaver expects a string that contains the function call to be inserted in the user’s
document, usually after accepting parameters from the user. If the applyBehavior() function
determines that the user made an invalid entry, the function can return an error string instead of
the function call. If the string is empty (return "";), Dreamweaver does not report an error; if
the string is not empty and not a function call, Dreamweaver displays a dialog box with the text
Invalid input supplied for this behavior: [the string returned from applyBehavior()]. If the
return value is null (return;), Dreamweaver indicates that an error occurred but gives no
specific information.
Note: Quotation marks ("")within the returned string must be preceded by a backslash (\) to avoid
errors that the JavaScript interpreter reports.

Example

The following example of the applyBehavior() function returns a call to the
MM_openBrWindow() function and passes user-specified parameters (the height and width of the
window; whether the window should have scroll bars, a toolbar, a location bar, and other features;
and the URL that should open in the window):
function applyBehavior() {

var i,theURL,theName,arrayIndex = 0;
var argArray = new Array(); //use array to produce correct ¬
number of commas w/o spaces
var checkBoxNames = new Array("toolbar","location",¬
"status","menubar","scrollbars","resizable");

for (i=0; i<checkBoxNames.length; i++) {
theCheckBox = eval("document.theForm." + checkBoxNames[i]);
if (theCheckBox.checked) argArray[arrayIndex++] = ¬
(checkBoxNames[i] + "=yes");

}
if (document.theForm.width.value)

argArray[arrayIndex++] = ("width=" + ¬
The Behaviors API 237

document.theForm.width.value);
if (document.theForm.height.value)

argArray[arrayIndex++] = ("height=" + ¬
document.theForm.height.value);

theURL = escape(document.theForm.URL.value);
theName = document.theForm.winName.value;
return "MM_openBrWindow('"+theURL+"',¬
'"+theName+"','"+argArray.join()+"')";

}

behaviorFunction()

Description

This function inserts one or more functions—surrounded by the following tags, if they don’t yet
exist—into the HEAD section of the user’s document:
<SCRIPT LANGUAGE="JavaScript"></SCRIPT>

Arguments

None.

Returns

Dreamweaver expects either a string that contains the JavaScript functions or a string that
contains the names of the functions to be inserted in the user’s document. This value must be
exactly the same every time (it cannot depend on user input). The functions are inserted only
once, regardless of how many times the action is applied to elements in the document.
Note: Quotation marks ("")within the returned string must be preceded by a backslash (\) escape
character to avoid errors that the JavaScript interpreter reports.

Example

The following instance of the behaviorFunction() function returns the MM_popupMsg()
function:
function behaviorFunction(){

return ""+
"function MM_popupMsg(theMsg) { //v1.0\n"+
" alert(theMsg);\n"+
"}";

}

The following example is equivalent to the preceding behaviorFunction() declaration and is
the method used to declare the behaviorFunction() function in all behaviors that come with
Dreamweaver:
function MM_popupMsg(theMsg){ //v1.0

alert(theMsg);
}

function behaviorFunction(){
return "MM_popupMsg";

}

238 Chapter 14: Behaviors

canAcceptBehavior()

Description

This function determines whether the action is allowed for the selected HTML element and
specifies the default event that should trigger the action. Can also check for the existence of
certain objects (such as SWF files) in the user’s document and not allow the action if these objects
do not appear.

Arguments

HTMLElement

• The argument is the selected HTML element.

Returns

Dreamweaver expects one of the following values:

• A true value if the action is allowed but has no preferred events.
• A list of preferred events (in descending order of preference) for this action. Specifying

preferred events overrides the default event (as denoted with an asterisk [*] in the Event file) for
the selected object. See step 1 in “How Behaviors work” on page 236.

• A false value if the action is not allowed.

If the canAcceptBehavior() function returns a false value, the action is dimmed in the
Actions pop-up menu on the Behaviors panel.

Example

The following instance of the canAcceptBehavior() function returns a list of preferred events
for the behavior if the document has any named images:
function canAcceptBehavior(){

var theDOM = dreamweaver.getDocumentDOM();
// Get an array of all images in the document
var allImages = theDOM.getElementsByTagName('IMG');
if (allImages.length > 0){

return "onMouseOver, onClick, onMouseDown";
}else{

return false;
}

}

displayHelp()

Description

If this function is defined, a Help button appears below the OK and Cancel buttons in the
Parameters dialog box. This function is called when the user clicks the Help button.

Arguments

None.

Returns

Dreamweaver expects nothing.
The Behaviors API 239

Example

// the following instance of displayHelp() opens
// in a browser a file that explains how to use
// the extension.
function displayHelp(){

var myHelpFile = dw.getConfigurationPath() +
'/ExtensionsHelp/superDuperHelp.htm';

 dw.browseDocument(myHelpFile);
}

deleteBehavior()

Description

This function undoes any edits that the applyBehavior() function performed.
Note: Dreamweaver automatically deletes the function declaration and the event handler that are
associated with a behavior when the user deletes the behavior in the Behaviors panel. It is necessary
to define the deleteBehavior() function only if the applyBehavior() function performs additional
edits on the user’s document (for example, if it inserts a tag).

Arguments

applyBehaviorString

• This argument is the string that the applyBehavior() function returns.

Returns

Dreamweaver expects nothing.

identifyBehaviorArguments()

Description

This function identifies arguments from a behavior function call as navigation links, dependent
files, URLs, Netscape Navigator 4.0-style references, or object names so that URLs in behaviors
can update if the user saves the document to another location and so the referenced files can
appear in the site map and be considered dependent files for the purposes of uploading to and
downloading from a server.

Arguments

theFunctionCall

• This argument is the string that the applyBehavior() function returns.

Returns

Dreamweaver expects a string that contains a comma-separated list of the types of arguments in
the function call. The length of the list must equal the number of arguments in the function call.
Argument types must be one of the following types:

• The nav argument type specifies that the argument is a navigational URL, and therefore, it
should appear in the site map.

• The dep argument type specifies that the argument is a dependent file URL, and therefore, it
should be included with all other dependent files when a document that contains this behavior
is downloaded from or uploaded to a server.
240 Chapter 14: Behaviors

• The URL argument type specifies that the argument is both a navigational URL and a
dependent URL or that it is a URL of an unknown type and should appear in the site map and
be considered a dependent file when downloading from or uploading to a server.

• The NS4.0ref argument type specifies that the argument is a Netscape Navigator 4.0-style
object reference.

• The IE4.0ref argument type specifies that the argument is an Internet Explorer DOM 4.0-
style object reference.

• The objName argument type specifies that the argument is a simple object name, as specified in
the NAME attribute for the object. This type was added in Dreamweaver 3.

• The other argument type specifies that the argument is none of the above types.

Example

This simple example of the identifyBehaviorArguments() function works for the Open
Browser Window behavior action, which returns a function that always has three arguments (the
URL to open, the name of the new window, and the list of window properties):
function identifyBehaviorArguments(fnCallStr) {

return "URL,other,other";
}

A more complex version of the identifyBehaviorArguments() function is necessary for
behavior functions that have a variable number of arguments (such as Show/Hide Layer). For this
example version of the identifyBehaviorArguments() function, there is a minimum number
of arguments, and additional arguments always come in multiples of the minimum number. In
other words, a function with a minimum number of arguments of 4 may have 4, 8, or 12
arguments, but it cannot have 10 arguments:
function identifyBehaviorArguments(fnCallStr) {

var listOfArgTypes;
var itemArray = dreamweaver.getTokens(fnCallStr, '(),');

// The array of items returned by getTokens() includes the
// function name, so the number of *arguments* in the array
// is the length of the array minus one. Divide by 4 to get the
// number of groups of arguments.
var numArgGroups = ((itemArray.length - 1)/4);
// For each group of arguments
for (i=0; i < numArgGroups; i++){

// Add a comma and "NS4.0ref,IE4.0ref,other,dep" (because this
// hypothetical behavior function has a minimum of four
// arguments the Netscape object reference, the IE object
// reference, a dependent URL, and perhaps a property value
// such as "show" or "hide") to the existing list of argument
// types, or if no list yet exists, add only
// "NS4.0ref,IE4.0ref,other,dep"
var listOfArgTypes += ((listOfArgTypes)?",":"") + ¬
"NS4.0ref,IE4.0ref,other,dep";
}

}

The Behaviors API 241

inspectBehavior()

Description

This function inspects the function call for a previously applied behavior in the user’s document
and sets the values of the options in the Parameters dialog box accordingly. If the
inspectBehavior() function is not defined, the default option values appear.
Note: The inspectBehavior() function must rely solely on information that the applyBehaviorString
argument passes to it. Do not attempt to obtain other information about the user’s document (for
example, using dreamweaver.getDocumentDOM()) within this function.

Arguments

applyBehaviorString

• This argument is the string that the applyBehavior() function returns.

Returns

Dreamweaver expects nothing.

Example

The following instance of the inspectBehavior() function, taken from the Display Status
Message.htm file, fills in the Message field in the Parameters dialog box with the message that the
user selected when the behavior was originally applied:
function inspectBehavior(msgStr){

var startStr = msgStr.indexOf("'") + 1;
var endStr = msgStr.lastIndexOf("'");
if (startStr > 0 && endStr > startStr) {

document.theForm.message.value = ¬
unescQuotes(msgStr.substring(startStr,endStr));

}
}

Note: For more information about the unescQuotes() function, see the dwscripts.js file in the
Configuration/Shared/Common/Scripts/CMN folder.

windowDimensions()

Description

This function sets specific dimensions for the Parameters dialog box. If this function is not
defined, the window dimensions are computed automatically.
Note: Do not define this function unless you want an Parameters dialog box that is larger than
640 x 480 pixels.

Arguments

platform

• The value of the argument is either "macintosh" or "windows", depending on the user’s
platform.

Returns

Dreamweaver expects a string of the form "widthInPixels,heightInPixels".
242 Chapter 14: Behaviors

The returned dimensions are smaller than the size of the entire dialog box because they do not
include the area for the OK and Cancel buttons. If the returned dimensions do not accommodate
all options, scroll bars appear.

Example

The following instance of windowDimensions() sets the dimensions of the Parameters dialog box
to 648 x 520 pixels:
function windowDimensions(){

return "648,520";
}

What to do when an action requires a return value

Sometimes an event handler must have a return value (for example,
onMouseOver="window.status='This is a link'; return true"). But if Dreamweaver
inserts the "return behaviorName(args)" action into the event handler, behaviors later in the
list are skipped.

To get around this limitation, set the document.MM_returnValue variable to the desired return
value within the string that the behaviorFunction() function returns. This setting causes
Dreamweaver to insert return document.MM_returnValue at the end of the list of actions in
the event handler. For an example about using the MM_returnValue variable, see the Validate
Form.js file in the Configuration/Behaviors/Actions folder within the Dreamweaver
application folder.

A simple behavior example

To understand how behaviors work and how you can create one, it’s helpful to look at an example.
The Configuration/Behaviors/Actions folder inside the Dreamweaver application folder contains
examples, but many are too complex except for the most advanced developers. Start with the
simple Action file Call JavaScript.htm (along with its counterpart, Call JavaScript.js, which
contains all the JavaScript functions).

The following code presents a relatively simple example. It checks the brand of the browser and
goes to one page if the brand is Netscape Navigator and another if the brand is Microsoft Internet
Explorer. This code can easily be expanded to check for other brands such as Opera and WebTV
and modified to perform actions other than going to URLs.
<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine 5.0//dialog">
<html>
<head>
<title>behavior "Check Browser Brand"</title>
<meta http-equiv="Content-Type" content="text/html">
<script language="JavaScript">

// The function that will be inserted into the
// HEAD of the user's document
function checkBrowserBrand(netscapeURL,explorerURL) {
 if (navigator.appName == "Netscape") {
 if (netscapeURL) location.href = netscapeURL;
 }else if (navigator.appName == "Microsoft Internet Explorer") {
 if (explorerURL) location.href = explorerURL;
 }
}

The Behaviors API 243

//******************* API **********************

function canAcceptBehavior(){
 return true;
}

// Return the name of the function to be inserted into
// the HEAD of the user's document
function behaviorFunction(){
 return "checkBrowserBrand";
}

// Create the function call that will be inserted
// with the event handler
function applyBehavior() {
 var nsURL = escape(document.theForm.nsURL.value);
 var ieURL = escape(document.theForm.ieURL.value);
 if (nsURL && ieURL) {
 return "checkBrowserBrand(\'" + nsURL + "\',\'" + ieURL + ¬
 "\')";
 }else{
 return "Please enter URLs in both fields."
 }
}

// Extract the arguments from the function call
// in the event handler and repopulate the
// parameters form
function inspectBehavior(fnCall){
 var argArray = getTokens(fnCall, "()',");
 var nsURL = unescape(argArray[1]);
 var ieURL = unescape(argArray[2]);
 document.theForm.nsURL.value = nsURL;
 document.theForm.ieURL.value = ieURL;
}

//***************** LOCAL FUNCTIONS ******************

// Put the cursor in the first text field
// and select the contents, if any
function initializeUI(){
 document.theForm.nsURL.focus();
 document.theForm.nsURL.select();
}

// Let the user browse to the Navigator and
// IE URLs
function browseForURLs(whichButton){
 var theURL = dreamweaver.browseForFileURL();
 if (whichButton == "nsURL"){
 document.theForm.nsURL.value = theURL;
 }else{
 document.theForm.ieURL.value = theURL;
 }
}

//*************** END OF JAVASCRIPT *****************
</script>
</head>
<body>
<form method="post" action="" name="theForm">
244 Chapter 14: Behaviors

<table border="0" cellpadding="8">
<tr>
<td nowrap="nowrap"> Go to this URL if the browser is ¬
Netscape Navigator:

<input type="text" name="nsURL" size="50" value="">
<input type="button" name="nsBrowse" value="Browse..." ¬
onClick="browseForURLs('nsURL')"></td>
</tr>
<tr>
<td nowrap="nowrap"> Go to this URL is the browser is ¬
Microsoft Internet Explorer:

<input type="text" name="ieURL" size="50" value="">
<input type="button" name="ieBrowse" value="Browse..." ¬
onClick="browseForURLs('ieURL')"></td>
</tr>
</table>
</form>
</body>
</html>
The Behaviors API 245

246 Chapter 14: Behaviors

CHAPTER 15
Server Behaviors
Macromedia Dreamweaver MX 2004 provides users with an interface for adding server behaviors
into their documents to perform server-side tasks such as filtering records based on user criteria,
paging through records, linking result lists to details pages, and inserting records into a result set.
If a Dreamweaver user repeatedly inserts the same runtime code into documents, you can create a
new extension to automate updating a document with these frequently used code blocks. For
details about working with the Server Behavior Builder interface to implement a custom server
behavior, see “Adding Custom Server Behaviors” in Getting Started with Dreamweaver. Then, refer
to this chapter for details about working with the supporting server behavior files and the
functions that interact with established server behaviors. For individual function information, see
“Server Behavior functions” and “Extension Data Manager functions” in the Dreamweaver API
Reference. Dreamweaver currently supports server behavior extensions that add runtime code for
the following server models: ASP.Net/C#, ASP.Net/VisualBasic, ASP/JavaScript, ASP/VBScript,
ColdFusion, JSP, and PHP/MySQL.

The following terms are used throughout this chapter:

• Server behavior extension: The server behavior extension is the interface between server-side
code and Dreamweaver. A server behavior extension consists of JavaScript, HTML, and
Extension Data Markup Language (EDML), which is XML that is created specifically for
extension data. Examples of these files reside in your installation folder in the Configuration/
ServerBehaviors folder, arranged according to server model. When you script an extension, use
the dwscripts.applySB() function to instruct Dreamweaver to read the EDML files,
retrieve the components of your extension, and add the appropriate code blocks to the
user’s document.

• Server behavior instance: When Dreamweaver adds code blocks to a user’s document, the
inserted code constitutes an instance of the server behavior. The user can apply most server
behaviors more than once, which results in multiple server behavior instances. Each server
behavior instance is listed in the Server Behaviors panel of the Dreamweaver interface.

• Runtime code: Runtime code is the set of code blocks that are added to a document when a
server behavior is applied. These code blocks usually include some server-side code, such as
ASP script that is enclosed in <% ... %> tags.

• Participants: Your server behavior extension inserts code blocks into the user’s document. A
code block is a single, continuous block of script, such as a server-side tag, an HTML tag, or an
attribute that adds server-side functionality to a web page. An EDML file defines each code
block as a participant. All the participants for a given server behavior comprise one
participant group.
247

Note: For information about participants, participant groups, and how Dreamweaver EDML files are
structured, see “Extension Data Markup Language” on page 248.

Dreamweaver architecture

When you use the Server Behavior Builder to create a Dreamweaver-specific extension,
Dreamweaver creates several files (EDML and HTML script files) that support inserting the
Server Behavior code into a Dreamweaver document (some behaviors also reference JavaScript
files for additional functionality). The architecture simplifies your implementation of the API and
also separates your runtime code from how Dreamweaver deploys it. This chapter discusses ways
of modifying these files.

Server behavior folders and files

The user interface (UI) for each server behavior resides in the Configuration/ServerBehaviors/
ServerModelName folder, where ServerModelName is one of the following server types:
ASP.NET_Csharp, ASP.NET_VB (Visual Basic), ASP_Js (JavaScript), ASP_Vbs (VBScript),
ColdFusion, JSP, PHP_MySQL, or Shared (cross-server model implementations).

Extension Data Markup Language

Dreamweaver generates two EDML files when you use the Server Behavior Builder: a group
EDML file and a participant EDML file corresponding to the names that you provide in the
Server Behavior Builder. The group file defines the relevant participants, which represent
code blocks, and the groups define which participants are combined to make an individual
server behavior.

Group files

Group files contain a list of participants, and participant files have all server-model-specific code
data. Participant files can be used by more than one extension, so several group files can refer to
the same participant file.

The following example shows a high-level view of the Server Behavior Group EDML file. For a
complete list of elements and attributes, see “Group EDML file tags” on page 262.
<group serverBehavior="Go To Detail Page.htm" dataSource="Recordset.htm">
 <groupParticipants selectParticipant="goToDetailPage_attr">
 <groupParticipant name="moveTo_declareParam" partType="member"/>
 <groupParticipant name="moveTo_keepParams" partType="member"/>
 <groupParticipant name="goToDetailPage_attr" partType="identifier" />
 </groupParticipants>
</group>

In the groupParticipants block tag, each groupParticipant tag indicates the EDML
participant file that contains the code block to use. The value of the name attribute is the
participant file name minus the .edml extension (for example, the moveTo_declareParam
attribute).
248 Chapter 15: Server Behaviors

Participant files

A participant represents a single code block on the page, such as a server tag, an HTML tag, or an
attribute. A participant file must be listed in a group file to be available to a Dreamweaver
document author. Several group files can use a single participant file.

For example, the moveTo_declareParam.edml file contains the following code:
<participant>
 <quickSearch><![CDATA[MM_paramName]]></quickSearch>
 <insertText location="aboveHTML+80">
<![CDATA[
<% var MM_paramName = ""; %>
]]>
 </insertText>
 <searchPatterns whereToSearch="directive">
 <searchPattern><![CDATA[/var\s*MM_paramName/]]></searchPattern>
 </searchPatterns>
</participant>

When Dreamweaver adds a server behavior to a document, it needs to have detailed information,
including where to insert the code, what the code looks like, and what parameters the
Dreamweaver author or data replaced at runtime. Each participant EDML file describes these
details for each block of code. Specifically, the participant file describes the following data:

• The code and where to put the unique instance are defined by the insertText tag parameters,
as shown in the following example:
<insertText location="aboveHTML+80">

• How to recognize instances already on the page are defined by the searchPatterns tag, as
shown in the following example:
<searchPatterns whereToSearch="directive">

 <searchPattern><![CDATA[/var\s*MM_paramName/]]></searchPattern>

</searchPatterns>

In the searchPatterns block tag, each searchPattern tag contains a pattern that finds
instances of runtime code and extracts specific parameters. For more details, see “Server behavior
techniques” on page 286.

The script file

Each server behavior also has an HTML file that contains functions and links to the scripts that
manage the integration of the server behavior code with the Dreamweaver interface. The
functions that are available for editing in this file are discussed in “Server behavior
implementation functions” on page 258.

Hello World example

This example shows the process of creating a new server behavior so you can see the files that
Dreamweaver generates and how to handle them. For details about working with the Server
Behavior Builder interface, see “Adding Custom Server Behaviors” in Getting Started with
Dreamweaver. The example displays “Hello World” from the ASP server. The Hello World
behavior has only one participant (a single ASP tag) and does not modify or add anything else on
the page.
Note: This example refers to functions that are defined later in this chapter.
Dreamweaver architecture 249

To create a new dynamic page document:

1 In Dreamweaver, select the File > New menu option.
2 In the New Document dialog box, select Category: Dynamic Page and Dynamic Page:

ASP JavaScript
3 Click Create.

To use the Server Behavior Builder to define your new server behavior:

Note: If the Server Behaviors panel is not open and visible, select the Window > Server Behaviors
menu option.

1 In the Server Behaviors panel, select the Plus (+) button, and then select the New Server
Behavior menu option.

2 In the New Server Behavior dialog box, select Document Type: ASP JavaScript and Name:
Hello World
(Leave the “Copy existing server behavior” checkbox unchecked.)

3 Click OK.

To define the code to insert:

1 Select the Plus (+) button for Code Blocks to Insert.
2 In the Create a New Code Block dialog box, enter Hello_World_block1 (Dreamweaver might

automatically enter this information for you).
3 Click OK.
4 In the Code Block text field, enter <% Response.Write(“Hello World”) %>.
5 In the Insert Code pop-up menu, select Relative to the Selection so the user can control where

this code goes in the document.
6 In the Relative Position pop-up menu, select After the Selection.
7 Click OK.
In the Server Behaviors panel, you can see that the Plus (+) menu contains the new server
behavior in the pop-up list. Also, in the installation folder for your Dreamweaver files, the
Configuration/ServerBehaviors/ASP_Js folder now contains the following three files:

• The group file: Hello World.edml
• The participant file: Hello World_block1.edml
• A script file: Hello World.htm
Note: If you are working in a multiuser configuration, these files appear in your Application
Data folder.
250 Chapter 15: Server Behaviors

How the Server Behavior API functions are called

The Server Behavior API functions are called in the following scenarios:

• The findServerBehaviors() function is called when the document opens and again when
the participant is edited. It searches the user’s document for instances of the server behavior.
For each instance it finds, the findServerBehaviors() function creates a JavaScript object,
and uses JavaScript properties to attach state information to the object.

• If it is implemented, Dreamweaver calls the analyzeServerBehavior() function for each
behavior instance that is found in the user’s document after all the findServerBehaviors()
functions are called.
When the findServerBehaviors() function creates a behavior object, it usually sets the four
properties (incomplete, participants, selectedNode, and title). However, it is
sometimes easier to delay setting some of the properties until all the other server behaviors find
instances of themselves. For example, the Move To Next Record behavior has two participants;
a link object and a recordset object. Rather than finding the recordset object in its
findServerBehaviors() function, wait until the recordset behavior’s
findServerBehaviors() function runs because the recordset finds all instances of itself.
When the Move To Next Record behavior’s analyzeServerBehavior() function is called, it
gets an array that contains all the server behavior objects in the document. The function can
look through the array for its recordset object.
Sometimes during analysis, a single tag in the user’s document is identified by two or more
behaviors as being an instance of that behavior. For example, the findServerBehaviors()
function for the Dynamic Attribute behavior might detect an instance of the Dynamic
Attribute behavior that is associated with an input tag in the user’s document. At the same
time, the findServerBehaviors() function for the Dynamic Textfield behavior might look
at the same input tag and detect an instance of the Dynamic Textfield behavior. As a result,
the Server Behaviors panel shows the Dynamic Attribute block and the Dynamic Textfield. To
correct this problem, the analyzeServerBehavior() functions need to delete all but one of
these redundant server behaviors.
To delete a server behavior, an analyzeServerBehavior() function can set the deleted
property of any server behavior to the value true. If the deleted property still has the value
true when Dreamweaver finishes calling the analyzeServerBehavior() functions, the
behavior is deleted from the list.

• When the user clicks the Plus (+) button in the Server Behaviors panel, the pop-up
menu appears.
To determine the content of the menu, Dreamweaver first looks for a ServerBehaviors.xml file
in the same folder as the behaviors. ServerBehaviors.xml references the HTML files that should
appear in the menu.
If the referenced HTML file contains a title tag, the contents of the title tag appear in the
menu. For example, if the ServerBehaviors/ASP_Js/ GetRecords.htm file contains the tag
<title>Get More Records</title>, the text Get More Records appears in the menu.
If the file does not contain a title tag, the filename appears in the menu. For example, if
GetRecords.htm does not contain a title tag, the text GetRecords appears in the menu.
If there is no ServerBehaviors.xml file or the folder contains one or more HTML files that are
not mentioned in ServerBehaviors.xml, Dreamweaver checks each file for a title tag and uses
the title tag or filename to populate the menu.
How the Server Behavior API functions are called 251

If you do not want a file that is in the ServerBehaviors folder to appear in the menu, put the
following statement on the first line in the HTML file:
<!-- MENU-LOCATION=NONE -->

• When the user selects an item from the menu, the canApplyServerBehavior() function is
called. If that function returns a true value, a dialog box appears. When the user clicks OK,
the applyServerBehavior() function is called.

• If the user edits an existing server behavior by double-clicking it, Dreamweaver displays the
dialog box, executes the onLoad handler on the BODY tag, if one exists, and then calls the
inspectServerBehavior() function. The inspectServerBehavior() function populates
the form elements with the current parameter values. When the user clicks OK, Dreamweaver
calls the applyServerBehavior() function again.

• If the user clicks the Minus (-) button, the deleteServerBehavior() function is called. The
deleteServerBehavior() function removes the behavior from the document.

• When the user selects a server behavior and uses the Cut or Copy commands, Dreamweaver
passes the object that represents the server behavior to its copyServerBehavior() function.
The copyServerBehavior() function adds any other properties to the server behavior object
that are needed to paste it later.
After the copyServerBehavior() function returns, Dreamweaver converts the server behavior
object to a form that can be put on the Clipboard. When Dreamweaver converts the object, it
deletes all the properties that reference objects; every property on the object that is not a
number, Boolean value, or string is lost.
When the user uses the Paste command, Dreamweaver unpacks the contents of the Clipboard
and generates a new server behavior object. The new object is identical to the original, except
that it does not have properties that reference objects. Dreamweaver passes the new server
behavior object to the pasteServerBehavior() function. The pasteServerBehavior()
function adds the behavior to the user’s document. After the pasteServerBehavior()
function returns, Dreamweaver calls the findServerBehaviors() function to get a new list of
all the server behaviors in the user’s document.

Users can copy and paste behaviors from one document to another. The copyServerBehavior()
and pasteServerBehavior() functions should rely only on properties on the behavior object to
exchange information.
252 Chapter 15: Server Behaviors

The Server Behavior API

You can manage server behaviors with the following API functions.

analyzeServerBehavior()

Availability

Dreamweaver UltraDev 1

Description

Lets server behaviors set their incomplete and deleted properties.

After the findServerBehaviors() function is called for every server behavior on the page, an
array of all the behaviors in the user’s document appears. The analyzeServerBehavior()
function is called for each JavaScript object in this array. For example, for a Dynamic Text
behavior, Dreamweaver calls the analyzeServerBehavior() function in the DynamicText.htm
(or DynamicText.js) file.

One purpose of the analyzeServerBehavior() function is to finish setting all the properties
(incomplete, participants, selectedNode, and title) on the behavior object. Sometimes it’s
easier to perform this task after the findServerBehaviors() function generates the complete list
of server behaviors in the user’s document.

The other purpose of the analyzeServerBehavior() function is to notice when two or more
behaviors refer to the same tag in the user’s document. In this case, the deleted property removes
all but one behavior from the array.

Suppose the Recordset1, DynamicText1, and DynamicText2 server behaviors are on a page. Both
DynamicText server behaviors need Recordset1 to exist on the page. After the server behaviors are
found with the findServerBehaviors() function, Dreamweaver calls the
analyzeServerBehavior() function for the three server behaviors. When the
analyzeServerBehavior() function is called for DynamicText1, the function searches the array
of all the server behavior objects on the page, looking for the one that belongs to Recordset1. If a
server behavior object that belongs to Recordset1 cannot be found, the incomplete property is
set to the value true so that an exclamation point appears in the Server Behaviors panel, which
alerts the user that a problem exists. Similarly, when the analyzeServerBehavior() function is
called for DynamicText2, the function searches for the object that belongs to Recordset1. Because
Recordset1 does not depend on other server behaviors, it does not need to define the
analyzeServerBehavior() function in this example.

Arguments

serverBehavior, [serverBehaviorArray]

• The serverBehavior argument is a JavaScript object that represents the behavior to analyze.
• The [serverBehaviorArray] argument is an array of JavaScript objects that represents all the

server behaviors that are found on a page.

Returns

Dreamweaver expects nothing.
The Server Behavior API 253

applyServerBehavior()

Availability

Dreamweaver UltraDev 1.

Description

Reads values from the form elements in the dialog box and adds the behavior to the user’s
document. Dreamweaver calls this function when the user clicks OK in the Server Behaviors
dialog box. If this function returns successfully, the Server Behaviors dialog box closes. If this
function fails, it displays an error message without closing the Server Behaviors dialog box. This
function can edit a user’s document.

For more information, see “dwscripts.applySB()” on page 259.

Arguments

serverBehavior

• The serverBehavior JavaScript object represents the server behavior; it is necessary to modify
an existing behavior. If this is a new behavior, the argument is null.

Returns

Dreamweaver expects an empty string if successful or an error message if this function fails.

canApplyServerBehavior()

Availability

Dreamweaver UltraDev 1.

Description

Determines whether a behavior can be applied. Dreamweaver calls this function before the Server
Behaviors dialog box appears. If this function returns a true value, the Server Behaviors dialog
box appears. If this function returns a false value, the Server Behaviors dialog box does not
appear and the attempt to add a server behavior stops.

Arguments

serverBehavior

• The serverBehavior JavaScript object represents the behavior; it is necessary to modify an
existing behavior. If this is a new behavior, the argument is null.

Returns

Dreamweaver expects a Boolean value: true if the behavior can be applied; false otherwise.
254 Chapter 15: Server Behaviors

copyServerBehavior()

Availability

Dreamweaver UltraDev 1.

Description

Implementing the copyServerBehavior() function is optional. Users can copy instances of the
specified server behavior. In the following example, this function is implemented for recordsets. If
a user selects a recordset in the Server Behaviors panel or the Data Binding panel, using the Copy
command copies the behavior to the Clipboard; using the Cut command cuts the behavior to the
Clipboard. For server behaviors that do not implement this function, the Copy and Cut
commands do nothing. For more information, see “How the Server Behavior API functions are
called” on page 251.

The copyServerBehavior() function should rely only on behavior object properties that can be
converted into strings to exchange information with the pasteServerBehavior() function. The
Clipboard stores only raw text, so participant nodes in the document should be resolved and
the resulting raw text should be saved into a secondary property.
Note: The pasteServerBehavior() function must also be implemented to let the user paste the
behavior into any Dreamweaver document.

Arguments

serverBehavior

• The serverBehavior JavaScript object represents the behavior.

Returns

Dreamweaver expects a Boolean value: true if the behavior copies successfully to the Clipboard;
false otherwise.

deleteServerBehavior()

Availability

Dreamweaver UltraDev 1.

Description

Removes the behavior from the user’s document. It is called when the user clicks the Minus (-)
button on the Server Behaviors panel. It can edit a user’s document.

For more information, see “dwscripts.deleteSB()” on page 259.

Arguments

serverBehavior

• The serverBehavior JavaScript object represents the behavior.

Returns

Dreamweaver expects nothing.
The Server Behavior API 255

displayHelp()

Description

If this function is defined, a Help button appears below the OK and Cancel buttons in the dialog
box. This function is called when the user clicks the Help button.

Arguments

None.

Returns

Dreamweaver expects nothing.

Example

// the following instance of displayHelp() opens
// in a browser a file that explains how to use
// the extension.
function displayHelp(){

var myHelpFile = dw.getConfigurationPath() +
'/ExtensionsHelp/superDuperHelp.htm';

 dw.browseDocument(myHelpFile);
}

findServerBehaviors()

Availability

Dreamweaver UltraDev 1.

Description

Searches the user’s document for instances of itself. For each instance it finds, the
findServerBehaviors() function creates a JavaScript object, and it attaches state information as
JavaScript properties of the object.

The four required properties are incomplete, participants, title, and selectedNode. You
can set additional properties as necessary.

For more information, see dwscripts.findSBs() and dreamweaver.getParticipants() in the
Dreamweaver API Reference.

Arguments

None.

Returns

Dreamweaver expects an array of JavaScript objects; the length of the array is equal to the number
of behavior instances that are found in the page.
256 Chapter 15: Server Behaviors

inspectServerBehavior()

Availability

Dreamweaver UltraDev 1.

Description

Determines the settings for the Server Behavior dialog box, based on the specified behavior
object. Dreamweaver calls the inspectServerBehavior() function when a user opens a Server
Behavior dialog box. Dreamweaver calls this function only when a user edits an existing behavior.

Arguments

serverBehavior

• The serverBehavior argument is a JavaScript object that represents the behavior. It is the
same object that findServerBehaviors() returns.

Returns

Dreamweaver expects nothing.

pasteServerBehavior()

Availability

Dreamweaver UltraDev 1.

Description

If this function is implemented, users can paste instances of the specified server behavior using the
pasteServerBehavior() function. When the user pastes the server behavior, Dreamweaver
organizes the contents of the Clipboard and generates a new behavior object. The new object is
identical to the original, except that it lacks pointer properties. Dreamweaver passes the new
behavior object to the pasteServerBehavior() function. The pasteServerBehavior()
function relies on the properties of the behavior object to determine what to add to the user’s
document. The pasteServerBehavior() function then adds the behavior to the user’s
document. After pasteServerBehavior() returns, Dreamweaver calls the
findServerBehaviors() functions to get a new list of all the server behaviors in the user’s
document.

Implementing the pasteServerBehavior() function is optional. For more information, see
“How the Server Behavior API functions are called” on page 251.
Note: If you implement this function, you must also implement the copyServerBehavior() function.

Arguments

behavior

• The behavior JavaScript object represents the behavior.

Returns

Dreamweaver expects a Boolean value: true if the behavior pastes successfully from the
Clipboard; false otherwise.
The Server Behavior API 257

Server behavior implementation functions

These functions can be added or edited within the HTML script files or the specified JavaScript
files that are listed within the HTML script file.

dwscripts.findSBs()

Availability

Dreamweaver MX (this function replaces the findSBs() function from earlier versions
of Dreamweaver).

Description

Finds all instances of a server behavior and all the participants on the current page. It sets the title,
type, participants array, weights array, types array, selectedNode value, and incomplete flag. This
function also creates a parameter object that holds an array of user-definable properties such as
recordset, name, and column name. You can return this array from the findServerBehaviors()
function.

Arguments

serverBehaviorTitle

• The serverBehaviorTitle argument is an optional title string that is used if no title is
specified in the EDML title, which is useful for localization.

Returns

Dreamweaver expects an array of JavaScript objects where the required properties are defined.
Returns an empty array if no instances of the server behavior appear on the page.

Example

The following example searches for all instances of a particular server behavior in the current
user document:
function findServerBehaviors() {

allMySBs = dwscripts.findSBs();
return allMySBs;

}

258 Chapter 15: Server Behaviors

dwscripts.applySB()

Availability

Dreamweaver MX (this function replaces the applySB() function from earlier versions
of Dreamweaver).

Description

Inserts or updates runtime code for the server behavior. If the sbObj parameter has a null value,
it inserts new runtime code; otherwise, it updates existing runtime code that is indicated by the
sbObj object. User settings should be set as properties on a JavaScript object and passed in as
paramObj. These settings should match all the parameters that are declared as @@paramName@@ in
the EDML insertion text.

Arguments

paramObj, sbObj

• The paramObj argument is the object that contains the user parameters.
• The sbObj argument is the prior server behavior object if you are updating an existing server

behavior; null otherwise.

Returns

Dreamweaver expects a Boolean value: true if the server behavior is added successfully to the
user’s document; false otherwise.

Example

In the following example, you fill the paramObj object with the user’s input and call the
dwscripts.applySB() function, passing in the input and your server behavior, sbObj:
function applyServerBehaviors(sbObj) {

// get all UI values here...
paramObj = new Object();
paramObj.rs = rsName.value;
paramObj.col = colName.value;
paramObj.url = urlPath.value;
paramObj.form__tag = formObj;

dwscripts.applySB(paramObj, sbObj);
}

dwscripts.deleteSB()

Availability

Dreamweaver MX (this function replaces the deleteSB() function from earlier versions of
Dreamweaver).

Description

Deletes all the participants of the sbObj server behavior instance. The entire participant is
deleted, unless the EDML file indicates special delete instructions with the delete tag. It
does not delete participants that belong to more than one server behavior instance (reference
count > 1).
Server behavior implementation functions 259

Arguments

sbObj

• The sbObj argument is the server behavior object instance that you want to remove from the
user’s document.

Returns

Dreamweaver expects nothing.

Example

The following example deletes all the participants of the sbObj server behavior, except the
participants that are protected by the EDML file’s delete tag.
function deleteServerBehavior(sbObj) {

dwscripts.deleteSB(sbObj);
}

Editing EDML files

You must maintain Dreamweaver coding conventions when you edit a file. Pay attention to the
dependency of one element upon another. For example, if you update the tags that are being
inserted, you might also need to update the search patterns.
Note: EDML files were new in Dreamweaver MX. If you are working with legacy server behaviors, see
the earlier versions of the Extending Dreamweaver manuals.

Regular expressions

You must understand regular expressions as they are implemented in JavaScript 1.5. You must also
know when it is appropriate to use them in the server behavior EDML files. For example, regular
expressions cannot be used in quickSearch values, but they are used in the content of the
searchPattern tag to find and extract data.

Regular expressions describe text strings by using characters that are assigned with special
meanings (metacharacters) to represent the text, break it up, and process it according to
predefined rules. Regular expressions are powerful parsing and processing tools because they
provide a generalized way to represent a pattern.

Good reference books on JavaScript 1.5 have a regular expression section or chapter. This section
examines how Dreamweaver server behavior EDML files use regular expressions in order to find
parameters in your runtime code and extract their values. Each time a user edits a server behavior,
prior parameter values need to be extracted from the instances of the runtime code. You use
regular expressions for the extraction process.

You should understand a few metacharacters and metasequences (special character groupings)
that are useful in server behavior EDML files, as described in the following table:

Regular Expression Description

\ Escapes special characters. For example: \. reverts the metacharacter
back to a literal period; \/ reverts the forward slash to its literal meaning;
and, \) reverts the parens to its literal meaning.

/ ... /i Ignore case when searching for the metasequence
260 Chapter 15: Server Behaviors

The EDML tag <searchPatterns whereToSearch="directive"> declares that runtime code
needs to be searched. Each <searchPattern>...</searchPattern> subtag defines one pattern
in the runtime code that must be identified. For the Redirect If Empty example, there are
two patterns.

In the following example, to extract parameter values from <% if (@@rs@@.EOF)
Response.Redirect("@@new__url@@"); %>,write a regular expression that identifies any string
rs and new__url:
<searchPattern paramNames="rs,new__url">

/if d ((\w+)\.EOF\) Response\.Redirect\("([^\r\n]*)"\)/i
</searchPattern>

This process searches the user’s document, and if there is a match, extracts the parameter values.
The first parenthetical subexpression (\w+) extracts the value for rs. The second subexpression
([^\r\n]*) extracts the value for new_url.
Note: The character sequence "[^\r\n]*" matches any character that is not a linefeed, for the
Macintosh and Windows.

Notes about EDML structure

You should use a unique filename to identify your server behavior group. If only one group file
uses an associated participant file, match the participant filename with the group name. Using
this convention, the server behavior group file updateRecord.edml works with the participant
file updateRecord_init.edml. When participant files might be shared among server behavior
groups, assign unique descriptive names.
Note: The EDML name space is shared, regardless of folder structure, make sure you use unique
filenames. Filenames should not exceed 31 characters (including the .edml extension), due to
Macintosh limitations.

The runtime code for your server behavior resides inside the EDML files. The EDML parser
should not confuse any of your runtime code with EDML markup, so the CDATA tag must wrap
around your runtime code. The CDATA tag represents character data and is any text that is not
EDML markup. When you use the CDATA tag, the EDML parser won’t try to interpret it as
markup, but instead, considers it as a block of plain text. The CDATA-marked blocks begin with
<![CDATA[and end with]]>.

If you insert the text Hello, World, it is simple to specify your EDML, as shown in the
following example:
<insertText>Hello, World</insertText>

However, if you insert content that has tags in it, such as , it can confuse
the EDML parser. In that case, embed it in the CDATA construct, as shown in the following
example:
<insertText><![CDATA[]]></insertText>

(...) Creates a parenthetical subexpression within the metasequence

\s* Searches for white spaces

Regular Expression Description
Editing EDML files 261

The ASP runtime code is wrapped within the CDATA tag, as shown in the following example:
<![CDATA[

<% if (@@rs@@.EOF) Response.Redirect("@@new__url@@"); %>
]]

Because of the CDATA tag, the ASP tags <%= %>, along with the other content within the tag, aren’t
processed. Instead, the Extension Data Manager (EDM) receives the uninterpreted text, as shown
in the following example:
<% if (Recordset1.EOF) Response.Redirect("http://www.macromedia.com"); %>

In the following EDML definitions, the locations where the CDATA tag is recommended are
indicated in the examples.

Group EDML file tags

These tags and attributes are valid within the EDML group files.

<group>

Description

This tag contains all the specifications for a group of participants.

Parent

None.

Type

Block tag.

Required

Yes.

<group> attributes

The following items are valid attributes of the group tag.

version

Description

This attribute defines which version of Dreamweaver server behavior processing the current server
behavior targets. For Dreamweaver MX 2004, the version number is 7. If no version is specified,
Dreamweaver assumes version 7. For this release of Dreamweaver, all groups and participants that
the Server Behavior Builder creates have the version attribute set to 7.0. The group version of this
attribute currently has no effect.

Parent

group

Type

Attribute.
262 Chapter 15: Server Behaviors

Required

No.

serverBehavior

Description

The serverBehavior attribute indicates which server behavior can use the group. When any of
the group’s participant quickSearch strings are found in the document, the server behavior that
is indicated by the serverBehavior attribute has Dreamweaver call the
findServerBehaviors() function.

In some cases, if multiple groups are associated with a single server behavior, the server behavior
must resolve which particular group to use.

Parent

group

Type

Attribute.

Required

No.

Value

The value is the exact name (without a path) of any server behavior HTML file within a
Configuration/ServerBehaviors folder, as shown in the following example:
<group serverBehavior="redirectIfEmpty.htm">

dataSource

Description

This advanced feature supports new data sources that can be added to Dreamweaver.

Multiple versions of a server behavior can differ, depending on which data source you use. For
example, the Repeat Region server behavior is designed for the standard Recordset.htm data
source. If Dreamweaver is extended to support a new type of data source (such as a COM object),
you can set dataSource="COM.htm" in a group file with a different implementation of Repeat
Region. The Repeat Region server behavior then applies the new implementation of Repeat
Region if you select the new data source.

Parent

group

Type

Attribute.

Required

No.
Group EDML file tags 263

Value

The exact name of a data source file within a Configuration/DataSources folder, as shown in the
following example:
<group serverBehavior="Repeat Region.htm" ¬
dataSource="myCOMdataSource.htm">

This group defines a new implementation of the Repeat Region server behavior to use if you use
the COM data source. In the applyServerBehaviors() function, you can indicate that this
group should be applied by setting the MM_dataSource property on the parameter object, as
shown in the following example:
function applyServerBehavior(ssRec) {

var paramObj = new Object();
paramObj.rs = getComObjectName();
paramObj.MM_dataSource = "myCOMdataSource.htm";

dwscripts.applySB(paramObj, sbObj);
}

subType

Description

This advanced feature supports multiple implementations of a server behavior.

Multiple versions of a server behavior might differ, depending on user selection. When a server
behavior is applied, but multiple group files are relevant, the correct group file can be selected by
passing in a subType value. The group with that specific subType value is applied.

Parent

group

Type

Attribute.

Required

No.

Value

The value is a unique string that determines which group to apply, as shown in the following
example:
<group serverBehavior="myServerBehavior.htm" ¬
subType="longVersion">
264 Chapter 15: Server Behaviors

This group attribute defines the long version of the myServerBehavior subtype. You would also
have a version with the subType="shortVersion" attribute. In the applyServerBehaviors()
function, you can indicate which group should be applied by setting the MM_subType property on
the parameter object, as shown in the following example:
function applyServerBehavior(ssRec) {

var paramObj = new Object();
if (longVersionChecked) {

paramObj.MM_subType = "longVersion";
} else {

paramObj.MM_subType = "shortVersion";
}
dwscripts.applySB(paramObj, sbObj);

}

<title>

Description

This string appears in the Server Behaviors panel for each server behavior instance that is found in
the current document.

Parent

group

Type

Block tag.

Required

No.

Value

The value is a plain text string that can include parameter names to make each instance unique, as
shown in the following example:
<title>Redirect If Empty (@@recordsetName@@)</title>

<groupParticipants>

Description

This tag contains an array of groupParticipant declarations.

Parent

group

Type

Block tag.

Required

Yes.
Group EDML file tags 265

<groupParticipants> attributes

The following items are valid attributes of the groupParticipants tag.

selectParticipant

Description

Indicates which participant should be selected and highlighted in the document when an
instance is selected in the Server Behaviors panel. The server behavior instances that are listed in
this panel are ordered by the selected participant, so set the selectParticipant attribute even if
the participant is not visible.

Parent

groupParticipants

Type

Attribute.

Required

No.

Value

The participantName value is the exact name (without the .edml extension) of a single
participant file that is listed as a group participant, as shown in the following example. See “name”
on page 267.
<groupParticipants selectParticipant="redirectIfEmpty_link">

<groupParticipant>

Description

This tag represents the inclusion of a single participant in the group.

Parent

groupParticipants

Type

Tag.

Required

Yes (at least one).

<groupParticipant> attributes

The following items are valid attributes of the groupParticipant tag.
266 Chapter 15: Server Behaviors

name

Description

This attribute names a particular participant to be included in the group. The name attribute on
the groupParticipant tag should be the same as the filename of the participant (without the
.edml file extension).

Parent

groupParticipant

Type

Attribute.

Required

Yes.

Value

The value is the exact name (without the .edml extension) of any participant file, as shown in the
following example:
<groupParticipant name="redirectIfEmpty_init">

This example refers to the redirectIfEmpty_init.edml file.

partType

Description

This attribute indicates the type of participant.

Parent

groupParticipant

Type

Attribute.

Required

No.

Values

identifier, member, option, multiple, data

• The identifier value is a participant that identifies the entire group. If this participant is
found in the document, the group is considered to exist whether other group participants are
found. This is the default value if the partType attribute is not specified.

• The member value is a normal member of a group. If it is found by itself, it does not identify a
group. If it is not found in a group, the group is considered incomplete.

• The option value indicates that the participant is optional. If it is not found, the group is still
considered complete and no incomplete flag is set in the Server Behaviors panel.
Group EDML file tags 267

• The multiple value indicates that the participant is optional and multiple copies of it can be
associated with the server behavior. Any parameters that are unique to this participant are not
used when grouping participants because they might have different values.

• The data value is a nonstandard participant that is used by programmers as a repository for
additional group data. It is ignored by everything else.

Participant EDML files

These tags and attributes are valid within the EDML participant files.

<participant>

Description

This tag contains all the specifications for a single participant.

Parent

None.

Type

Block tag.

Required

Yes.

<participant> attributes

The following items are valid attributes of the participant tag.

version

Description

This attribute defines which version of Dreamweaver server behavior processing the current server
behavior targets. For Dreamweaver MX 2004, the version number is 7. If no version is specified,
Dreamweaver assumes version 7. For this release of Dreamweaver, all groups and participants that
the Server Behavior Builder creates have the version attribute set to 7.0.
Note: The participant version attribute overrides the group version attribute if they are different. But,
the participant file will use the group version attribute if the participant does not specify one.

For participant files, this attribute determines if code-block merging should occur. For
participants without this attribute (or have it set to 4 or earlier), the inserted code blocks are not
merged with other code blocks on the page. Participants that have this set to version 5 or later are
merged with other code blocks on the page when possible. Please note that code-block merging
occurs only for participants above and below the HTML tag.

Parent

participant

Type

Attribute.
268 Chapter 15: Server Behaviors

Required

No.

<quickSearch>

Description

This tag is a simple search string that is used for performance reasons. It cannot be a regular
expression. If the string is found in the current document, the rest of the search patterns are called
to locate specific instances. This string can be empty to always use the search patterns.

Parent

participant

Type

Block tag.

Required

No.

Value

The searchString value is a literal string that exists on the page if the participant exists. The
string should be as unique as possible to maximize performance, but the string does not have to
be definitively unique. It is not case-sensitive, but be careful with nonessential spaces that can be
changed by the user, as shown in the following example:
<quickSearch>Response.Redirect</quickSearch>

If the quickSearch tag is empty, it is considered to match, and more precise searches use the
regular expressions that are defined in the searchPattern tags. This is helpful if a simple string
cannot be used to express a reliable search pattern and regular expressions are required.

<insertText>

Description

This tag provides information about what to insert in the document and where to insert it. It
contains the text to insert. Parts of the text that are customized should be indicated by using the
@@parameterName@@ format.

In some cases, such as a translator-only participant, you might not need this tag.

Parent

implementation

Type

Block tag.

Required

No.
Participant EDML files 269

Value

The value is the text to insert in the document. If any parts of the text need customizing, they can
be passed in later as parameters. Parameters should be embedded within two at (@@) signs.
Because this text can interfere with the EDML structure, it should use the CDATA construct, as
shown in the following example:
<insertText location="aboveHTML">

<![CDATA[<%= @@recordset@@).cursorType %>]]>
</insertText>

When the text is inserted, the @@recordset@@ parameter is replaced by a recordset name that the
user supplies. For more information on conditional and repeating code blocks, see the “Adding
Custom Server Behaviors” chapter in Getting Started with Dreamweaver.

<insertText> attributes

The following items are valid attributes of the insertText tag.

location

Description

This attribute specifies where the participant text should be inserted. The insert location is related
to the whereToSearch attribute of the searchPatterns tag, so be sure to set both carefully (see
whereToSearch on page 273).

Parent

insertText

Type

Attribute.

Required

Yes.

Values

aboveHTML[+weight], belowHTML[+weight], beforeSelection, replaceSelection,
wrapSelection, afterSelection, beforeNode, replaceNode, afterNode,
firstChildOfNode, lastChildOfNode, nodeAttribute[+attribute]

• The aboveHTML[+weight] value inserts the text above the HTML tag (suitable only for server
code). The weight can be an integer from 1 to 99 and is used to preserve relative order among
different participants. By convention, recordsets have a weight of 50, so if a participant refers to
recordset variables, it needs a heavier weight, such as 60, so the code is inserted below the
recordset, as shown in the following example:
<insert location="aboveHTML+60">

If no weight is provided, it is internally assigned a weight of 100 and is added below all
specifically weighted participants, as shown in the following example:
<insert location="aboveHTML">

• The belowHTML[+weight] value is similar to the aboveHTML location, except that participants
are added below the closing /HTML tag.
270 Chapter 15: Server Behaviors

• The beforeSelection value inserts the text before the current selection or insertion point. If
there is no selection, it inserts the text at the end of the BODY tag.

• The replaceSelection value replaces the current selection with the text. If there is no
selection, it inserts the text at the end of the BODY tag.

• The wrapSelection value balances the current selection, inserts a block tag before the
selection, and adds the appropriate closing tag after the selection.

• The afterSelection value inserts the text after the current selection or insertion point. If
there is no selection, it inserts the text at the end of the BODY tag.

• The beforeNode value inserts the text before a node, which is a specific location in the DOM.
When a function such as dwscripts.applySB() is called to make the insertion, the node
pointer must pass in as a paramObj parameter. The user-definable name of this parameter must
be specified by the nodeParamName attribute (see “nodeParamName” on page 271).
In summary, if your location includes the word node, make sure that you declare the
nodeParamName tag.

• The replaceNode value replaces a node with the text.
• The afterNode value inserts the text after a node.
• The firstChildOfNode value inserts the text as the first child of a block tag; for example, if

you want to insert something at the beginning of a FORM tag.
• lastChildOfNode inserts the text as the last child of a block tag; for example, if you want to

insert code at the end of a FORM tag (useful for adding hidden form fields).
• nodeAttribute[+attribute] sets an attribute of a tag node. If the attribute does not already

exist, this value creates it.
For example, use <insert location="nodeAttribute+ACTION" nodeParamName="form">
to set the ACTION attribute of a form. This variation changes the user’s FORM tag from <form>
to <form action="myText">.
If you do not specify an attribute, the nodeAttribute location causes the text to be added
directly to the open tag. For example, use insert location="nodeAttribute" to add an
optional attribute to a tag. This can be used to change a user’s INPUT tag from
<input type="checkbox"> to <input type="checkbox"
<%if(foo)Reponse.Write("CHECKED")%>> .
Note: For the location="nodeAttribute" attribute value, the last search pattern determines where
the attribute starts and ends. Make sure that the last pattern finds the entire statement.

nodeParamName

Description

This attribute is used only for node-relative insert locations. It indicates the name of the
parameter that passes the node in at insertion time.

Parent

insertText

Type

Attribute.
Participant EDML files 271

Required

This attribute is required only if the insert location contains the word node.

Value

The tagtype__Tag value is a user-specified name for the node parameter that passes with the
parameter object to the dwscripts.applySB() function. For example, if you insert some text
into a form, you might use a form__tag parameter. In your server behavior
applyServerBehavior() function, you could use the form__tag parameter to indicate the exact
form to update, as shown in the following example:
function applyServerBehavior(ssRec) {

var paramObj = new Object();
paramObj.rs = getRecordsetName();
paramObj.form__tag = getFormNode();
dwscripts.applySB(paramObj, sbObj);

}

You can indicate the form__tag node parameter in your EDML file, as shown in the
following example:
<insertText location="lastChildOfNode" nodeParamName="form__tag">

<![CDATA[<input type="hidden" name="MY_DATA">]]>
</insertText>

The text is inserted as the lastChildOfNode value, and the specific node passes in using the
form__tag property of the parameter object.

<searchPatterns>

Description

This tag provides information about finding the participant text in the document, and it contains
a list of patterns that are used when searching for a participant. If multiple search patterns are
defined, they must all be found within the text being searched (the search patterns have a logical
AND relationship), unless they are marked as optional using the isOptional flag.

Parent

implementation

Type

Block tag.

Required

No.
272 Chapter 15: Server Behaviors

<searchPatterns> attributes

The following items are valid attributes of the searchPatterns tag.

whereToSearch

Description

This attribute specifies where to search for the participant text. This attribute is related to the
insert location, so be sure to set each attribute carefully (see “location” on page 270).

Parent

searchPatterns

Type

Attribute.

Required

Yes.

Values

directive, tag+tagName, tag+*, comment, text

• The directive value searches all server directives (server-specific tags). For ASP and JSP, this
means search all <% ... %> script blocks.
Note: Tag attributes are not searched, even if they contain directives.

• The tag+tagName value searches the contents of a specified tag, as shown in the
following example:
<searchPatterns whereToSearch="tag+FORM">

This example searches only form tags. By default, the entire outerHTML node is searched. For
INPUT tags, specify the type after a slash (/). In the following example, to search all submit
buttons, use the following code:
<searchPatterns whereToSearch="tag+INPUT/SUBMIT">.

• The tag+* value searches the contents of any tag, as shown in the following example:
<searchPatterns whereToSearch="tag+*">

This example searches all tags.
• The comment value searches only within the HTML comments <! ... >, as shown in the

following example:
<searchPatterns whereToSearch="comment">

This example searches tags such as <!-- my comment here -->.
• The text value searches only within raw text sections, as shown in the following example:

<searchPatterns whereToSearch="text">
<searchPattern>XYZ</searchPattern>

</searchPatterns>

This example finds a text node that contains the text XYZ.
Participant EDML files 273

<searchPattern>

Description

This tag is a pattern that identifies participant text and extracts parameter values from it. Each
parameter subexpression must be enclosed in parentheses ().

You can have patterns with no parameters (which are used to identify participant text), patterns
with one parameter, or patterns with many parameters. All non-optional patterns must be found,
and each parameter must be named and found exactly once.

For more information about using the searchPattern tag, see “Finding server behaviors”
on page 286.

Parent

searchPatterns

Type

Block tag.

Required

Yes.

Values

searchString, /regularExpression/, <empty>

• The searchString value is a simple search string that is case-sensitive. It cannot be used to
extract parameters.

• The /regularExpression/ value is a regular expression search pattern.
• The <empty> value is used if no pattern is given. It is always considered a match, and the entire

value is assigned to the first parameter.
In the following example, to identify the participant text
<%= RS1.Field.Items("author_id") %>, you can define a simple pattern, followed by a
precise pattern that also extracts the two parameter values:
<searchPattern>Field.Items</searchPattern>
<searchPattern paramNames="rs,col">

<![CDATA[
/<%=\s*(\w+)\.Field\.Items\("(\w+)"\)/
]]>

</searchPattern>

This example matches the pattern precisely and assigns the value of the first subexpression
(\w+) to parameter "rs" and the second subexpression (\w+) to parameter "col".
Note: It is important that regular expressions start and end with a slash (/). Otherwise, the
expression is used as a literal string search. Regular expressions can be followed by the regular-
expression modifier "i" to indicate case-insensitivity (as in /pattern/i). For example, VBScript is
not case-sensitive, so it should use /pattern/i. JavaScript is case-sensitive and should use /
pattern/.
274 Chapter 15: Server Behaviors

Sometimes you might want to assign the entire contents of the limited search location to a
parameter. In that case, provide no pattern, as shown in the following example:
<searchPatterns whereToSearch="tag+OPTION">

<searchPattern>MY_OPTION_NAME</searchPattern>
<searchPattern paramNames="optionLabel" limitSearch="innerOnly">
</searchPattern>

</searchPatterns>

This example sets the optionLabel parameter to the entire innerHTML contents of an
OPTION tag.

<searchPattern> attributes

The following items are valid attributes of the searchPattern tag.

paramNames

Description

This attribute is a comma-separated list of parameter names whose values are being extracted.
These parameters are assigned in the order of the subexpression. You can assign single parameters
or use a comma-separated list to assign multiple parameters. If other parenthetical expressions are
used but do not indicate parameters, extra commas can be used as placeholders in the Parameter
Name list.

The parameter names should match the ones that are specified in the insertion text and the
update parameters.

Parent

searchPattern

Type

Attribute.

Required

Yes.

Values

paramName1, paramName2, ...

Each parameter name should be the exact name of a parameter that is used in the insertion text.
For example, if the insertion text contains @@p1@@, you should define exactly one parameter
with that name:
<searchPattern paramNames="p1">patterns</searchPattern>

To extract multiple parameters using a single pattern, use a comma-separated list of parameter
names, in the order that the subexpressions appear in the pattern. Suppose the following example
shows your search pattern:
<searchPattern paramName="p1,,p2">/(\w+)_(BIG|SMALL)_(\w+)/¬
</searchPattern>
Participant EDML files 275

There are two parameters (with some text in between them) to extract. Given the text:
<%= a_BIG_b %>, the first subexpression in the search pattern matches "a", so p1="a". The
second subexpression is ignored (note the ,, in the paramName value). The third subexpression
matches "b", so p2="b".

limitSearch

Description

This attribute limits the search to some part of the whereToSearch tag.

Parent

searchPattern

Type

Attribute.

Required

No.

Values

all, attribute+attribName, tagOnly, innerOnly

• The all value (default) searches the entire tag that is specified in the whereToSearch attribute.
• The attribute+attribName value searches only within the value of the specified attribute, as

shown in the following example:
<searchPatterns whereToSearch="tag+FORM">

<searchPattern limitSearch="attribute+ACTION">
/MY_PATTERN/

</searchPattern>
</searchPatterns>

This example indicates that only the value of the ACTION attribute of FORM tags should be
searched. If that attribute is not defined, the tag is ignored.

• The tagOnly value searches only the outer tag and ignores the innerHTML tag. This value is
valid only if whereToSearch is a tag.

• The innerOnly value searches only the innerHTML tag and ignores the outer tag. This value is
valid only if whereToSearch is a tag.

isOptional

Description

This attribute is a flag that indicates that the search pattern is not required to find the participant.
This is useful for complex participants that might have non-critical parameters to extract. You can
create some patterns for distinctly identifying a participant and have some optional patterns for
extracting non-critical parameters.

Parent

searchPattern
276 Chapter 15: Server Behaviors

Type

Attribute.

Required

No.

Values

true, false

• The value is true if the searchPattern is not necessary to identify the participant.
• The value is false (default) if the searchPattern tag is required.

For example, consider the following simple recordset string:
<%
var Recordset1 = Server.CreateObject("ADODB.Recordset");
Recordset1.ActiveConnection = "dsn=andescoffee;";
Recordset1.Source = "SELECT * FROM PressReleases";
Recordset1.CursorType = 3;
Recordset1.Open();
%>

The search patterns must identify the participant and extract several parameters. However,
if a parameter such as cursorType is not found, you should still recognize this pattern as a
recordset. The cursor parameter is optional. In the EDML, the search patterns might look like
the following example:
<searchPattern paramNames="rs">/var (\w+) = Server.CreateObject/
</searchPattern>
<searchPattern paramNames="src">/ActiveConnection = "([^\r\n]*)"/¬
</searchPattern>
<searchPattern paramNames="conn">/Source = "([^\r\n]*)"/¬
</searchPattern>
<searchPattern paramNames="cursor" isOptional="true">¬
/CursorType = (\d+)/
</searchPattern>

The first three patterns are required to identify the recordset. If the last parameter is not found,
the recordset is still identified.

<updatePatterns>

Description

This optional advanced feature lets you update the participant precisely. Without this tag, the
participant is updated automatically by replacing the entire participant text each time. If you
specify an <updatePatterns> tag, it must contain specific patterns to find and replace each
parameter within the participant.

This tag is beneficial if the user edits the participant text. It performs precise updates only to the
parts of the text that need changing.

Parent

implementation
Participant EDML files 277

Type

Block tag.

Required

No.

<updatePattern>

Description

This tag is a specific type of regular expression that lets you update participant text precisely.
There should be at least one update pattern definition for every unique parameter that is declared
in the insertion text (of the form @@paramName@@).

Parent

updatePatterns

Type

Block tag.

Required

Yes (at least one, if you declare the updatePatterns tag).

Values

The value is a regular expression that finds a parameter between two parenthetical subexpressions,
in the form /(pre-pattern)parameter-pattern(post-pattern)/. You need to define at least
one update pattern for each unique @@paramName@@ in the insertion text. The following example
shows how your insertion text might look:
<insertText location="afterSelection">

<![CDATA[<%= @@rs@@.Field.Items("@@col@@") %>]]>
</insertText>

A particular instance of the insertion text on a page might look like the following example:
<%= RS1.Field.Items("author_id") %>

There are two parameters, rs and col. To update this text after you insert it on the page, you
need two update pattern definitions:
<updatePattern paramName="rs" >

/(\b)\w+(\.Field\.Items)/
</updatePattern>
<updatePattern paramName="col">

/(\bItems\(")\w+("\))/
</updatePattern>

The literal parentheses, as well as other special regular expression characters, are escaped by
preceding them with a backslash (\). The middle expression, defined as \w+, is updated with the
latest value that passed in for parameters "rs" and "col", respectively. The values "RS1" and
"author_id" can be precisely updated with new values.

Multiple occurrences of the same pattern can be updated simultaneously by using the regular
expression global flag "g" after the closing slash (such as /pattern/g).
278 Chapter 15: Server Behaviors

If the participant text is long and complex, you might need multiple patterns to update a single
parameter, as shown in the following example:
<% ...

Recordset1.CursorType = 0;
Recordset1.CursorLocation = 2;
Recordset1.LockType = 3;

%>

To update the recordset name in all three positions, you need three update patterns for a single
parameter, as shown in the following example:
<updatePattern paramName="rs">

/(\b)\w+(\.CursorType)/
</updatePattern>
<updatePattern paramName="rs">

/(\b)\w+(\.CursorLocation)/
</updatePattern>
<updatePattern paramName="rs">

/(\b)\w+(\.LockType)/
</updatePattern>

Now you can pass in a new value for the recordset, and it is precisely updated in three locations.

<updatePattern> attributes

The following items are valid attributes of the updatePattern tag.

paramName

Description

This attribute indicates the name of the parameter whose value is used to update the
participant. This parameter should match the ones that are specified in the insertion text and
search parameters.

Parent

updatePattern

Type

Attribute.

Required

Yes.

Values

The value is the exact name of a parameter that is used in the insertion text. In the following
example, if the insertion text contains an @@rs@@ value, you should have a parameter with
that name:
<updatePattern paramName="rs">pattern</updatePattern>
Participant EDML files 279

<delete>

Description

This tag is an optional advanced feature lets you control how to delete a participant. Without this
tag, the participant is deleted by removing it completely but only if no server behaviors refer to it.
By specifying a <delete> tag, you can specify that it should never be deleted or that only portions
should be deleted.

Parent

implementation

Type

Tag.

Required

No.

<delete> attributes

The following items are valid attributes of the delete tag.

deleteType

Description

This attribute is used to indicate the type of delete to perform. It has different meanings,
depending on whether the participant is a directive, a tag, or an attribute. By default, the entire
participant is deleted.

Parent

delete

Type

Attribute.

Required

No.

Values

all, none, tagOnly, innerOnly, attribute+attribName, attribute+*

• The all value (default) deletes the entire directive or tag. For attributes, it deletes the
entire definition.

• The none value is never automatically deleted.
• The tagOnly value removes only the outer tag but leaves the contents of the innerHTML tag

intact. For attributes, it also removes the outer tag if it is a block tag. It is meaningless for
directives.

• The innerOnly value, when applied to tags, removes only the contents (the innerHTML tag).
For attributes, it removes only the value. It is meaningless for directives.
280 Chapter 15: Server Behaviors

• The attribute+attribName value, when applied to tags, removes only the specified attribute.
It is meaningless for directives and attributes.

• The attribute+* value removes all attributes for tags. It is meaningless for directives
and attributes.

If your server behavior converts selected text into a link, you can remove the link by removing the
outer tag only, as shown in the following example:
<delete deleteType="tagOnly"/>

This example changes a link participant from HELLO to HELLO.

<translator>

Description

This tag provides information for translating a participant so that it can be rendered differently
and have a custom Property inspector.

Parent

implementation

Type

Block tag.

Required

No.

<searchPatterns>

Description

This tag lets Dreamweaver find each specified instance in a document. If multiple search patterns
are defined, they must all be found within the text being searched (the search patterns have a
logical AND relationship), unless they are marked as optional using the isOptional flag.

Parent

translator

Type

Block tag.

Required

Yes.
Participant EDML files 281

<translations>

Description

This tag contains a list of translation instructions where each instruction indicates where to search
for the participant and what to do with the participant.

Parent

translator

Type

Block tag.

Required

No.

<translation>

Description

This tag contains a single translation instruction that includes the location for the participant,
what type of translation to perform, and the content that should replace the participant text.

Parent

translations

Type

Block tag.

Required

No.

<translation> attributes

The following items are valid attributes of the translation tag.

whereToSearch

Description

This attribute specifies where to search for the text, which is related to the insert location, so be
sure to set each location carefully (see “location” on page 270).

Parent

translation

Type

Attribute.

Required

Yes.
282 Chapter 15: Server Behaviors

limitSearch

Description

This attribute limits the search to some part of the whereToSearch tag.

Parent

translation

Type

Attribute.

Required

No.

translationType

Description

This attribute indicates the type of translation to perform. These types are preset and give the
translation specific functionality. For example, if you specify "dynamic data", any data that is
translated should behave the same as Dreamweaver dynamic data; that is, it should have the
dynamic data placeholder look in the Design view (curly braces ({}) notation with dynamic
background color) and appear in the Server Behaviors panel.

Parent

translation

Type

Attribute.

Required

Yes.

Values

dynamic data, dynamic image, dynamic source, tabbed region start, tabbed region
end, custom

• The dynamic data value indicates that the translated directives look and behave the same as
Dreamweaver dynamic data, as shown in the following example:
<translation whereToSearch="tag+IMAGE"

limitSearch="attribute+SRC"
translationType="dynamic data">

• The dynamic image value indicates that the translated attributes should look and behave the
same as Dreamweaver dynamic images, as shown in the following example:
<translation whereToSearch="IMAGE+SRC"

translationType="dynamic image">

• The dynamic source value indicates that the translated directives should behave the same as
Dreamweaver dynamic sources, as shown in the following example:
<translation whereToSearch="directive"

translationType="dynamic source">
Participant EDML files 283

• The tabbed region start value indicates that the translated <CFLOOP> tags define the
beginning of a tabbed outline, as shown in the following example:
<translation whereToSearch="CFLOOP"

translationType="tabbed region start">

• The tabbed region end value indicates that the translated </CFLOOP> tags define the end of
a tabbed outline, as shown in the following example:
<translation whereToSearch="CFLOOP"

translationType="tabbed region end">

• The custom value is the default case in which no internal Dreamweaver functionality is added
to the translation. It is often used when specifying a tag to insert for a custom Property
inspector, as shown in the following example:
<translation whereToSearch="directive"

translationType="custom">

<openTag>

Description

This optional tag can be inserted at the beginning of the translation section. This tag lets certain
other extensions, such as custom Property inspectors, find the translation.

Parent

translation

Type

Block tag.

Required

No.

Values

The tagName value is a valid tag name. It should be unique to prevent conflicts with known tag
types. For example, if you specify <openTag>MM_DYNAMIC_CONTENT</openTag> the dynamic
data is translated to the MM_DYNAMIC_CONTENT tag.

<attributes>

Description

This tag contains a list of attributes to add to the translated tag that is specified by the openTag
tag. Alternatively, if the openTag tag is not defined and the searchPattern tag specifies tag, this
tag contains a list of translated attributes to add to the tag that is found.

Parent

translation

Type

Block tag.

Required

No.
284 Chapter 15: Server Behaviors

<attribute>

Description

This tag specifies a single attribute (or translated attribute) to add to the translated tag.

Parent

attributes

Type

Block tag.

Required

Yes (at least one).

Values

The attributeName="attributeValue" specification sets an attribute to a value. Typically, the
attribute name is fixed, and the value contains some parameter references that are extracted by the
parameter patterns, as shown in the following example:
<attribute>SOURCE="@@rs@@"</attribute>
<attribute>BINDING="@@col@@"</attribute>

or
<attribute>

mmTranslatedValueDynValue="VALUE={@@rs@@.@@col@@}"
</attribute>

<display>

Description

This tag is an optional display string that should be inserted in the translation.

Parent

translation

Type

Block tag.

Required

No.

Values

The displayString value is any string comprising text and HTML. It can include parameter
references that are extracted by the parameter patterns. For example,
<display>{@@rs@@.@@col@@}</display> causes the translation to render as
{myRecordset.myCol}.
Participant EDML files 285

<closeTag>

Description

This optional tag should be inserted at the end of the translated section. This tag enables certain
other extensions, such as custom Property inspectors, to find the translation.

Parent

translation

Type

Block tag.

Required

No.

Values

The tagName value is a valid tag name; it should match a translation openTag tag.

Example

If you specify the value <closeTag>MM_DYNAMIC_CONTENT</closeTag>, the dynamic data is
translated to end with the </MM_DYNAMIC_CONTENT> tag.

Server behavior techniques

This section covers the common and advanced techniques that create and edit server behaviors.
Most of the suggestions involve specific settings in the EDML files.

Finding server behaviors

Writing search patterns In order to update or delete server behaviors, you must provide a way
for Dreamweaver to find each instance in a document. This requires a quickSearch tag and at
least one searchPattern tag, which is contained within the searchPatterns tag.

The quickSearch tag should be a string, not a regular expression, that indicates that the server
behavior might exist on the page. It is not case-sensitive. It should be short and unique, and it
should avoid spaces and other sections that can be changed by the user. The following example
shows a participant that consists of the simple ASP JavaScript tag:
<% if (Recordset1.EOF) Response.Redirect("some_url_here") %>

In the following example, the quickSearch string checks for that tag:
<quickSearch>Response.Redirect</quickSearch>

For performance reasons, the quickSearch pattern is the beginning of the process of finding
server behavior instances. If this string is found in the document and the participant identifies a
server behavior (in the group file, partType="identifier" for this participant), the related
server behavior files are loaded and the findServerBehaviors() function is called. If your
participant has no reliable strings for which to search (or for debugging purposes), you can leave
the quickSearch string empty, as shown in the following example:
<quickSearch></quickSearch>

In this example, the server behavior is always loaded and can search the document.
286 Chapter 15: Server Behaviors

Next, the searchPattern tag searches the document more precisely than the quickSearch tag
and extracts parameter values from the participant code. The search patterns specify where to
search (the whereToSearch attribute) with a series of searchPattern tags that contain specific
patterns. These patterns can use simple strings or regular expressions. The previous example code
is an ASP directive, so the whereToSearch="directive" specification and a regular expression
identifies the directive and extracts the parameters, as shown in the following example:
<quickSearch>Response.Write</quickSearch>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="rs,new__url">
/if\s*\((\w+)\.EOF\)\s*Response\.Redirect\("([^\r\n]*)"\)/i

</searchPattern>
</searchPatterns>

The search string is defined as a regular expression by starting and ending with a slash (/) and is
followed by i, which means that it is not case-sensitive. Within the regular expression, special
characters such as parentheses () and periods (.) are escaped by preceding them with a backslash
(\). The two parameters rs and new__url are extracted from the string by using parenthetical
subexpressions (the parameters must be enclosed in parentheses). In this example, they are
indicated by (\w+) and ([^\r\n]*): These values correspond to the regular expression values
that are normally returned by $1 and $2.

Optional search patterns There might be cases where you want to identify a participant even
if some parameters are not found. You might have a participant that stores some optional
information such as a telephone number. For such an example, you could use the following
ASP code:
<% //address block

LNAME = "joe";
FNAME = "smith";
PHONE = "123-4567";

%>

You could use the following search patterns:
<quickSearch>address</quickSearch>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="lname">/LNAME\s*=\s*"([^\r\n]*)"/i¬
</searchPattern>
<searchPattern paramNames="fname">/FNAME\s*=\s*"([^\r\n]*)"/i¬
</searchPattern>

<searchPattern paramNames="phone">/PHONE\s*=\s*"([^\r\n]*)"/i¬
</searchPattern>
</searchPatterns>

In the previous example, the telephone number must be specified. However, you can make
the telephone number optional, by adding the isOptional attribute, as shown in the
following example:
<quickSearch>address</quickSearch>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="lname">/LNAME\s*=\s*"([^\r\n]*)"/i¬
</searchPattern>
<searchPattern paramNames="fname">/FNAME\s*=\s*"([^\r\n]*)"/i¬
</searchPattern>
<searchPattern paramNames="phone" isOptional="true">¬
/PHONE\s*=\s*"([^\r\n]*)"/i
</searchPattern>

</searchPatterns>
Server behavior techniques 287

Now the participant is recognized, even if the telephone number is not found.

How participants are matched If a server behavior has more than one participant, the
participants must be identified in the user’s document and matched. If the user applies multiple
instances of the server behavior to a document, each group of participants must be matched
accordingly. To ensure participants are matched correctly, you might need to change or add
parameters and construct participants so they can be uniquely identified.

Matching requires some rules. Participants are matched when all parameters with the same name
have the same value. Above and below the html tag, there can be only one instance of a
participant with a given set of parameter values. Within the html.../html tags, participants are
also matched by their position relative to the selection or to common nodes that are used
for insertion.

Participants without parameters are automatically matched, as shown in the following example of
a server behavior with group file:
<group serverBehavior="test.htm">

<title>Test</title>
<groupParticipants>

<groupParticipant name="test_p1" partType="identifier" />
<groupParticipant name="test_p2" partType="identifier" />

</groupParticipants>
</group>

The following example inserts two simple participants above the html tag:
<% //test_p1 %>
<% //test_p2 %>
<html>

These participants are found and matched, and Test appears once in the Server Behaviors panel.
If you add the server behavior again, nothing is added because the participants already exist.

If the participants have unique parameters, multiple instances can be inserted above the html tag.
For example, by adding a name parameter to the participant, a user can enter a unique name in
the Test Server Behavior dialog box. If the user enters name "aaa", the following participants
are inserted:
<% //test_p1 name="aaa" %>
<% //test_p2 name="aaa" %>
<html>

If you add the server behavior again with a different name, such as "bbb", the document now
looks like the following example:
<% //test_p1 name="aaa" %>
<% //test_p2 name="aaa" %>
<% //test_p1 name="bbb" %>
<% //test_p2 name="bbb" %>
<html>

There are two instances of Test listed in the Server Behaviors panel. If the user tries to add a third
instance to the page and names it "aaa", nothing is added because it already exists.
288 Chapter 15: Server Behaviors

Within the html tag, matching can also use position information. In the following example, there
are two participants, one that is added before the selection and another that is added after the
selection:
<% if (expression) { //mySBName %>

Random HTML selection here
<% } //end mySBName %>

These two participants are without parameters, so they are grouped together. However, you
can add another instance of this server behavior elsewhere in the HTML, as shown in the
following example:
<% if (expression) { //mySBName %>

Random HTML selection here
<% } //end mySBName %>

More HTML here...
<% if (expression) { //mySBName %>

Another HTML selection here
<% } //end mySBName %>

Now there are two identical instances of each participant, which is allowed within the HTML.
They are matched by the order in which they occur in the document.

The following example shows a matching problem and how to avoid it. You can create a
participant that computes the tax on some dynamic data and displays the result at the selection.
<% total = Recordset1.Fields.Item("itemPrice").Value * 1.0825 %>
<html>
<body>

The total (with taxes) is $<%=total%>
</body>
</html>

The two participants are matched because they have no common parameters. However, if you add
a second instance of this server behavior, you should have the following code:
<% total = Recordset1.Fields.Item("itemPrice").Value * 1.0825 %>
<% total = Recordset1.Fields.Item("salePrice").Value * 1.0825 %>
<html>
<body>

The total (with taxes) is $<%=total%>
Sale price (with taxes) is $<%=total%>

</body>
</html>

This server behavior no longer works correctly because only one parameter is named total. To
solve this problem, make sure that there is a parameter with a unique value and can be used to
match the participants. In the following example, you could make the total variable name
unique using the column name:
<% itemPrice_total = Recordset1.Fields.Item("itemPrice").¬
Value * 1.0825 %>
<% salePrice_total = Recordset1.Fields.Item("salePrice").¬
Value * 1.0825 %>
<html>
<body>

The total (with taxes) is $<%=itemPrice_total%>
Sale price (with taxes) is $<%=salePrice_total%>

</body>
</html>

The search patterns now uniquely identify and match the participants.
Server behavior techniques 289

Search pattern resolution

Dreamweaver supports the following actions by using the participant
searchPatterns functionality:

• File transfer dependency
• Updating the file paths for any file reference (such as those for include files)

When Dreamweaver creates server models, it builds lists of patterns by scanning all the
participants for special paramNames attributes. To find URLs to check file dependency and to fix
the pathname, Dreamweaver uses each searchPattern tag in which one of the paramNames
attribute ends with _url. Multiple URLs can be specified in a single searchPattern tag.

For each translator searchPattern tag that has a paramNames attribute value that ends with
_includeUrl, Dreamweaver uses that searchPattern tag to translate include file statements on
the page. Dreamweaver uses a different suffix string to identify include file URLs because not all
URL references are translated. Also, only a single URL can be translated as an include file.

In resolving a searchPatterns tag, Dreamweaver uses the following algorithm:

1 Look for the whereToSearch attribute within the searchPatterns tag.
2 If the attribute value starts with tag+, the remaining string is assumed to be the tag name (no

spaces are allowed in the tag name).
3 Look for the limitSearch attribute within the searchPattern tag.
4 If the attribute value starts with attribute+, the remaining string is assumed to be the attribute

name (no spaces are allowed in the attribute name).
If these four steps are successful, Dreamweaver assumes a tag/attribute combination. Otherwise,
Dreamweaver starts looking for searchPattern tags with a paramName attribute that has a _url
suffix and a regular expression that is defined. (For information about regular expressions, see the
“Regular expressions” on page 260.)

The following example of a searchPatterns tag has no search pattern because it combines a tag
(cfinclude) with an attribute (template) to isolate the URL for dependency file checking, path
fixing, and so forth:
<searchPatterns whereToSearch="tag+cfinclude">
 <searchPattern paramNames="include_url" limitSearch="attribute+template" />
</searchPatterns>

The tag/attribute combination (see the previous example) does not apply to translation because
Dreamweaver always translates to straight text in the JavaScript layer. File dependency checking,
path fixing, and so on occurs in the C layer. In the C layer, Dreamweaver internally splits the
document into directives (straight text) and tags (parsed into an efficient tree structure).

Updating server behaviors

Replacement update By default, participant EDML files do not have an <updatePatterns>
tag, and instances of the participant are updated in the document by replacing them entirely.
When a user edits an existing server behavior and clicks OK, any participant that contains a
parameter whose value has changed is removed and reinserted with the new value in the
same location.
290 Chapter 15: Server Behaviors

If the user customizes participant code in the document, the participant might not be recognized
if the search patterns look for the old code. Shorter search patterns can let the user customize the
participant code in their document; however, updating the server behavior instance can cause the
participant to be replaced, which loses the custom edits.

Precision update In some cases, it can be desirable to let users customize the participant code
after it is inserted in the document. This situation can be achieved by limiting the search patterns
and providing update patterns in the EDML file. After you add the participant to the page, the
server behavior updates only specific parts of it. The following example shows a simple
participant with two parameters:
<% if (Recordset1.EOF) Response.Redirect("some_url_here") %>

This example might use the following search patterns:
<quickSearch>Response.Write</quickSearch>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="rs,new__url">
/if\s*\((\w+)\.EOF\)\s*Response\.Redirect\("([^\r\n]*)"\)/i

</searchPattern>
</searchPatterns>

The user might add another test to a particular instance of this code, as shown in the
following example:
<% if (Recordset1.EOF || x > 2) Response.Redirect("some_url_here") %>

The search patterns fail because they are looking for a parenthesis after the EOF parameter. To
make the search patterns more forgiving, you can shorten them by splitting them up, as shown in
the following example:
<quickSearch>Response.Write</quickSearch>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="rs">/(\w+)\.EOF/</searchPattern>
<searchPattern paramNames="new__url">

/if\s*\([^\r\n]*\)\s*Response\.Redirect\("([^\r\n]*)"/i
</searchPattern>

</searchPatterns>

These shortened search patterns are flexible, so the user can add to the code. However, if the
server behavior changes the URL, when the user clicks OK, the participant is replaced, and the
customizations are lost. To update more precisely, add an updatePatterns tag that contains a
pattern for updating each parameter:
<updatePatterns>

<updatePattern paramNames="rs">/(\b)\w+(\.EOF)/¬
</updatePattern>
<updatePattern paramNames="new__url">

/(Response\.Redirect\(")[^\r\n]*(")/i
</updatePattern>

</updatePatterns>

In update patterns, the parentheses are reversed and are placed around the text before and after
the parameter. For search patterns, use the textBeforeParam(param)textAfterParam
parameter. For update patterns, use the (textBeforeParam)param(textAfterParam)
parameter. All the text between the two parenthetical subexpressions is replaced with the new
value for the parameter.
Server behavior techniques 291

Deleting server behaviors

Default deletion and dependency counts The user can delete an instance that is selected in
the Server Behaviors panel by clicking the Minus (-) button or pressing Delete. All the
participants are removed except for the ones that are shared by other server behaviors. Specifically,
if more than one server behavior has a participant pointer to the same node, the node is
not deleted.

By default, participants are deleted by removing an entire tag. If the insert location is
"wrapSelection", only the outer tag is removed. For attributes, the entire attribute declaration is
removed. The following example shows an attribute participant on the ACTION attribute of
a form tag:
<form action="<% my_participant %>">

After deleting the attribute, only form remains.

Using delete flags to limit participant deletion There might be cases where you want to limit the
way that participants are deleted. This can be achieved by adding a delete tag to the EDML file.
The following example shows a participant that is an href attribute of a link:
<a href="<%=MY_URL%>">Link Text

When this attribute participant is deleted, the resulting tag is <a>Link Text, which no
longer appears as a link in Dreamweaver. It might be preferable to delete only the attribute value,
which is done by adding the following tag to the participant EDML file:
<delete deleteType="innerOnly"/>

Another approach is to remove the entire tag when the attribute is deleted by typing <delete
deleteType="tagOnly"/>. The resulting text is Link Text.

Avoiding conflicts with share-in-memory JavaScript files

If several HTML files reference a particular JavaScript file, Dreamweaver loads the JavaScript into
a central location where the HTML files can share the same JavaScript source. These files contain
the following line:
//SHARE-IN-MEMORY=true

If a JavaScript file has the SHARE-IN-MEMORY directive and an HTML file references it (by using
the SCRIPT tag with the SRC attribute), Dreamweaver loads the JavaScript into a memory location
where the code is implicitly included in all HTML files thereafter.
Note: Because JavaScript files that are loaded into this central location share memory, the files
cannot duplicate any declarations. If a share-in-memory file defines a variable or function and any
other JavaScript file defines the same variable or function, a name conflict occurs. When writing new
JavaScript files, be aware of these files and their naming conventions.
292 Chapter 15: Server Behaviors

CHAPTER 16
Data Sources
The Macromedia Dreamweaver MX 2004 Data Sources API functions let you add data sources,
which appear in the Plus (+) menu in the Bindings panel (for related information, see the
function dreamweaver.dbi.getDataSources() in the Dreamweaver API Reference).

Data source files are stored in the Configuration/DataSources/ServerModelName folder.
Dreamweaver currently supports the following server models: ASP.Net/C#, ASP.Net/VisualBasic,
ASP/JavaScript, ASP/VBScript, ColdFusion, JSP, and PHP/MySQL. Within each server model
subfolder are HTML and EDML files that are associated with the data sources for that
server model.

How data sources work

Dreamweaver users can add dynamic data by using the Bindings panel. The dynamic data objects
that are shown on the Plus (+) menu are based on the server model that is specified for the page.
For example, users can insert recordsets, commands, request variables, session variables, and
application variables for ASP applications.

The following steps describe the process that is involved in adding dynamic data:

1 When the user clicks the Plus (+) menu in the Bindings panel, a pop-up menu appears.
To determine the contents of the menu, Dreamweaver first looks for a DataSources.xml file in
the same folder as the data sources (for example, Configuration/DataSources/ASP_Js/
DataSources.xml). The DataSources.xml file describes the contents of the pop-up menu; it
contains references to the HTML files that should be placed in the pop-up menu.
Dreamweaver checks each referenced HTML file for a title tag. If the file contains a title tag,
the content of the title tag appears in the menu. If the file does not contain a title tag, the
filename is used in the menu.
After Dreamweaver finishes reading the DataSources.xml file or if the file does not exist,
Dreamweaver searches the rest of the folder to find other items that should appear in the
menu. If Dreamweaver finds files in the main folder that aren’t in the menu, it adds them to
the menu. If subfolders contain files that aren’t in the menu, Dreamweaver creates a submenu
and adds those files to the submenu.

2 When the user selects an item from the Plus (+) menu, Dreamweaver calls the
addDynamicSource() function, so that code for the data source is added to the
user’s document.
293

3 Dreamweaver goes through each file in the appropriate server model folder, calling the
findDynamicSources() function in each file. For each value in the returned array,
Dreamweaver calls the generateDynamicSourceBindings() function in the same file to get a
new list of all the fields in each data source for the user’s document. Those fields are presented
to the user as a tree control in the Dynamic Data or the Dynamic Text dialog box or in the
Bindings panel. The data source tree for an ASP document might appear as shown in the
following example:
Recordset (Recordset1)

ColumnOneInRecordset
ColumnTwoInRecordset

Recordset (Recordset2)
ColumnOfRecordset

Request
NameOfRequestVariable
NameOfAnotherRequestVariable

Session
NameOfSessionVariable

4 If the user double-clicks on a data source name in the Bindings panel to edit the data source,
Dreamweaver calls the editDynamicSource() function to handle the user edits within the tree.

5 If the user clicks the Minus (-) button, Dreamweaver gets the current node selection from the
tree and passes it to the deleteDynamicSource() function, which deletes the code that was
added earlier with the addDynamicSource() function. If it cannot delete the current selection,
the function returns an error message. After the deleteDynamicSource() function returns,
Dreamweaver refreshes the data source tree by calling the findDynamicSources() and the
generateDynamicSourceBindings() functions.

6 If the user selects a data source and clicks OK in the Dynamic Data or the Dynamic Text dialog
box, or clicks Insert or Bind in the Bindings panel, Dreamweaver calls the
generateDynamicDataRef() function. The return value is inserted in the document at the
current insertion point.

7 If the user displays the Dynamic Data or the Dynamic Text dialog box to edit an existing
dynamic data object, the selection in the data source tree needs to be initialized to the dynamic
data object. To initialize the tree control, Dreamweaver goes through each file in the
appropriate server model folder (for example, the Configuration/DataSources/ASP_Js folder),
calling the implementation of the inspectDynamicDataRef() function in each file.
Dreamweaver calls the inspectDynamicDataRef() function to convert the dynamic data
object back from the code in the user’s document to an item in the tree. (This process is the
reverse of what occurs when the generateDynamicDataRef() function is called.) If the
inspectDynamicDataRef() function returns an array that contains two elements,
Dreamweaver shows with a visual cue which item in the tree is bound to the current selection.

8 Every time the user changes the selection, Dreamweaver calls the inspectDynamicDataRef()
function to determine whether the new selection is dynamic text or a tag with a dynamic
attribute. If it is dynamic text, Dreamweaver displays the bindings for the current selection in
the Bindings panel.

9 Using the Dynamic Data or the Dynamic Text dialog box or the Bindings panel, it’s possible
to change the data format for a dynamic text object or a dynamic attribute that the user has
already added to the page. When the format changes, Dreamweaver calls the
generateDynamicDataRef() function to get the string to insert into the user’s document and
passes that string to the formatDynamicDataRef() function (see “formatDynamicDataRef()”
on page 311). The string that the formatDynamicDataRef() function returns is inserted in the
user’s document.
294 Chapter 16: Data Sources

The Data Sources API

The functions in the Data Sources API let you find, add, edit, and delete data sources and also
generate and inspect dynamic data objects.

addDynamicSource()

Availability

Dreamweaver UltraDev 1.

Description

Adds a dynamic data source. Because there is one implementation of this function in each data
source file, Dreamweaver calls the appropriate implementation of the addDynamicSource()
function when you select a data source from the Plus (+) menu.

For example, for recordsets or commands, Dreamweaver calls the
dw.serverBehaviorInspector.popupServerBehavior() function, which inserts a new server
behavior into the document. For request, session, and application variables, Dreamweaver
displays an HTML/JavaScript dialog box to collect the name of the variable; the behavior stores
the variable name for future use.

After the addDynamicSource() function returns, Dreamweaver erases the contents of the data
source tree and calls the findDynamicSources() and generateDynamicSourceBindings()
functions to repopulate the data source tree.

Returns

Dreamweaver expects nothing.

deleteDynamicSource()

Availability

Dreamweaver UltraDev 1.

Description

Dreamweaver calls this function when a user selects a data source in the tree and clicks the Minus
(-) button.

For example, in Dreamweaver, if the selection is a recordset or command, the
deleteDynamicSource() function calls the
dw.serverBehaviorInspector.deleteServerBehavior() function. If the selection is a
request, session, or application variable, the function remembers that the variable was deleted and
does not display it any more. After the deleteDynamicSource() function returns, Dreamweaver
erases the contents of the data source tree and calls the findDynamicSources() and the
generateDynamicSourceBindings() functions to get a new list of all the data sources for the
user’s document.
The Data Sources API 295

Arguments

sourceName, bindingName

• The sourceName argument is the name of the top-level node to which the child node is
associated.

• The bindingName argument is the name of the child node.

Returns

Dreamweaver expects nothing.

displayHelp()

Description

If this function is defined, a Help button appears below the OK and Cancel buttons in the dialog
box. This function is called when the user clicks the Help button.

Arguments

None.

Returns

Dreamweaver expects nothing.

Example

// the following instance of displayHelp() opens
// in a browser a file that explains how to use
// the extension.
function displayHelp(){

var myHelpFile = dw.getConfigurationPath() +
'/ExtensionsHelp/superDuperHelp.htm';

 dw.browseDocument(myHelpFile);
}

editDynamicSource()

Availability

Dreamweaver MX.

Description

This function is called when the user double clicks on a data source name in the Bindings panel to
edit the data source. An extension developer can implement this function to handle user edits
within the tree. Otherwise, the server behavior that matches the data source is automatically
invoked. The extension developer can use this function to override the default implementation of
server behaviors and provide a custom handler.

Arguments

sourceName, bindingName

• The sourceName argument is the name of the top-level node to which the child node is
associated.

• The bindingName argument is the name of the child node.
296 Chapter 16: Data Sources

Returns

Dreamweaver expects a Boolean value: true if the function has handled the edit;
false otherwise.

findDynamicSources()

Availability

Dreamweaver UltraDev 1.

Description

Returns the top-level nodes from the data source tree that appears in the Dynamic Data or the
Dynamic Text dialog box or in the Bindings panel. Each data source file has an implementation
of the findDynamicSources() function. When Dreamweaver refreshes the tree, Dreamweaver
reads through all the files in the DataSources folder and calls the findDynamicSources()
function in each file.

Returns

Dreamweaver expects an array of JavaScript objects where each object can have as many as
five attributes, which are described in the following list:

• The title property is the label string that appears to the right of the icon for each parent
node. The title property is always required.

• The imageFile property is the path of a file that contains the icon (a GIF image), which
represents the parent node in the tree control in the Dynamic Data or the Dynamic Text dialog
box or in the Bindings panel. The imageFile property is required.

• The allowDelete property is optional. If this property is set to a value of false, when the
user clicks this node in the Bindings panel, the Minus (-) button is disabled. If the property is
set to the value true, the Minus (-) button is enabled. If the property is not defined, the
default is the value true.

• The dataSource property is the simple name of the file in which the findDynamicSources()
function is defined. For example, the findDynamicSources() function in the Session.htm
file, which is located in the Configuration/DataSources/ASP_Js folder, sets the dataSource
property to session.htm. The dataSource property is required.

• The name property is the name of the server behavior that is associated with the data source, if
one exists. Some data sources, such as recordsets, are associated with server behaviors. When
you create a recordset and name it rsAuthors, the name property must equal rsAuthors. The
name property is always defined, but can be an empty string ("") if no server behavior is
associated with the data source (such as a session variable).

Note: A JavaScript class that defines these properties exists in the DataSourceClass.js file, which is
located in the Configuration/Shared/Common/Scripts folder.

generateDynamicDataRef()

Availability

Dreamweaver UltraDev 1.

Description

Generates the dynamic data object for a child node.
The Data Sources API 297

Arguments

sourceName, bindingName

• The sourceName argument is the name of the top-level node that is associated with the
child node.

• The bindingName argument is the name of the child node from which you want to generate a
dynamic data object.

Returns

Dreamweaver expects a string, which can be passed to the formatDynamicDataRef() function to
format it before inserting it in a user’s document.

generateDynamicSourceBindings()

Availability

Dreamweaver UltraDev 1.

Description

Returns the children of a top-level node.

Arguments

sourceName

• The sourceName argument is the name of the top-level node whose children you want
to return.

Returns

Dreamweaver expects an array of JavaScript objects where each object can have as many as
four properties, which are described in the following list:

• The title property is the label string that appears on the right of the icon for each parent
node. The title property is required.

• The allowDelete property is optional. If this property is set to the value false, when the user
clicks this node in the Bindings panel, the Minus (-) button is disabled. If this property is set to
the value true, the Minus (-) button is enabled. If the property is not defined, the default is
the value true.

• The dataSource property is the simple name of the file in which the findDynamicSources()
function is defined. For example, the findDynamicSources() function in the Session.htm
file, which is located in the Configuration/DataSources/ASP_Js folder, sets the dataSource
property to session.htm. This is a required property.

• The name property is the name of the server behavior that is associated with the data source, if
one exists. It is a required property. Some data sources, such as recordsets, are associated with
server behaviors. When you create a recordset and name it rsAuthors, the name property
must equal rsAuthors. Other data sources, such as session variables, do not have a
corresponding server behavior. Their name property must be the empty string ("").

Note: A JavaScript class that defines these properties exists in the DataSourceClass.js file, which is
located in the Configuration/Shared/Common/Scripts folder.
298 Chapter 16: Data Sources

inspectDynamicDataRef()

Availability

Dreamweaver UltraDev 1.

Description

Determines the corresponding node in the data source tree from a dynamic data object. The
inspectDynamicDataRef() function compares the string that Dreamweaver passes in to the
string that generateDynamicDataRef() returns for each node in the tree. If a match is found,
the inspectDynamicDataRef() function indicates which node in the tree matches the passed-in
string. The function identifies the node by using an array that contains two elements. The first
element is the name of the parent node, and the second element is the name of the child node. If
no match is found, the inspectDynamicDataRef() function returns an empty array.

Each implementation of the inspectDynamicDataRef() function checks only for matches of its
own object type. For example, the recordset implementation of the inspectDynamicDataRef()
function finds a match only if the passed-in string matches a recordset node in the tree.

Arguments

string

• The string argument is the dynamic data object.

Returns

Dreamweaver expects an array of two elements (parent name and child name) for the matched
node; it returns a null value if no matches are found.

A simple data source example

This extension adds a custom data source to the Bindings panel for ColdFusion documents. Users
can specify the variable they want from the new data source.

To create a new data source:

1 Create a data source definition file in HTML.
The data source definition file tells Dreamweaver the name of the data source as it will appear
in the Bindings Plus (+) menu and also tells Dreamweaver where to find the supporting
JavaScript files for the data source implementation.

2 Create an EDML file that defines the code Dreamweaver will insert into the document to
represent the data source value (for more information about EDML files, see “Server Behaviors”
on page 247).

3 Write the JavaScript code to implement the new data source.
4 Create any other supporting files, such as dialog boxes for user input or images to accompany

the data source in the Bindings panel.
This example creates a data source called MyDatasource, which includes a MyDatasource.js
JavaScript file that uses “The Data Sources API” on page 295 a MyDatasource_DataRef.edml file,
and MyDatasource Variable command files to implement a dialog box for users to input the name
of a specific variable. The MyDatasource example is based on the implementation of the Cookie
Variable data source and the URL Variable data source. The files for both these data sources reside
in the Configuration\DataSources\ColdFusion folder.
A simple data source example 299

Creating the data source definition file

First, when a user clicks on the Bindings Plus (+) menu, Dreamweaver searches the DataSources
folder for the current server model to gather all available data sources defined in the folder’s
HTML (HTM) files. So, to make a new data source available to the user, you need to create a
data source definition file that simply provides the name of the data source using the TITLE tag
and the location of all supporting JavaScript files using the SCRIPT tag.

For a data source called MyDatasource (and with a supporting JavaScript file MyDatasource.js to
be created later), write the following data source definition file:
<HTML>
<HEAD>
<TITLE>MyDatasource</TITLE>
<SCRIPT SRC="../../Shared/Common/Scripts/dwscripts.js"></SCRIPT>
<SCRIPT SRC="../../Shared/Common/Scripts/dwscriptsServer.js"></SCRIPT>
<SCRIPT SRC="../../Shared/Common/Scripts/DataSourceClass.js"></SCRIPT>
<SCRIPT SRC="MyDatasource.js"></SCRIPT>
</HEAD>
<body></body>
</HTML>

Several supporting files are necessary for implementing this data source. In general, you might not
need to use the functions in these supporting files, but they are often useful (and necessary in this
example). For example, the dwscriptsServer.js file contains the
dwscripts.stripCFOutputTags() function used in the implementation of this data source.
And, using the DataSourceClass.js file, we will create an instance of the DataSource class to use as
the return value of the findDynamicSources() function.

Next, save this definition file in the Configuration\DataSources\ColdFusion folder as
MyDatasource.htm.

Creating the EDML file

When a user adds a particular value from a data source to a document, Dreamweaver inserts the
code that will translate into the actual value at runtime. The participant EDML file defines the
code for the document (for more information, see “Participant EDML files” on page 268).

For the MyDatasource Variable, you want Dreamweaver to insert the ColdFusion code
<cfoutput>#MyXML.variable#</cfoutput> where variable is the value the user wants from
the data source.

Create a file with the following content:
<participant>
 <quickSearch><![CDATA[#]]></quickSearch>
 <insertText

location="replaceSelection"><![CDATA[<cfoutput>#MyDatasource.@@bindingName@
@#</cfoutput>]]></insertText>

 <searchPatterns whereToSearch="tag+cfoutput">
 <searchPattern paramNames="sourceName,bindingName"><![CDATA[/

#(?:\s*\w+\s*\()?(MyDatasource)\.(\w+)\b[^#]*#/i]]></searchPattern>
 </searchPatterns>
</participant>

Save the file in the Configuration\DataSources\ColdFusion folder as
MyDatasource_DataRef.edml.
300 Chapter 16: Data Sources

Creating the JavaScript file that implements the Data Sources API functions

After you have defined the name of the data source, the name of the supporting script files, and
the code for the working Dreamweaver document, you need to write out the JavaScript functions
for Dreamweaver to provide the user with the ability to add, insert, and delete the necessary code
into a document.

Based on the construction of the Cookie Variable data source, you can implement the MyXML
data source, as shown in the following example (the MyDatasource_Variable command used in
the addDynamicSource() function is defined in “Creating the supporting command files for user
input” on page 303):
//************** GLOBALS VARS *****************
var MyDatasource_FILENAME = "REQ_D.gif";
var DATASOURCELEAF_FILENAME = "DSL_D.gif";

//****************** API **********************
function addDynamicSource()
{
 MM.retVal = "";
 MM.MyDatasourceContents = "";
 dw.popupCommand("MyDatasource_Variable");
 if (MM.retVal == "OK")
 {
 var theResponse = MM.MyDatasourceContents;
 if (theResponse.length)
 {
 var siteURL = dw.getSiteRoot();
 if (siteURL.length)
 {
 dwscripts.addListValueToNote(siteURL, "MyDatasource", theResponse);
 }
 else
 {
 alert(MM.MSG_DefineSite);
 }
 }
 else
 {
 alert(MM.MSG_DefineMyDatasource);
 }
 }
}

function findDynamicSources()
{
 var retList = new Array();

 var siteURL = dw.getSiteRoot()

 if (siteURL.length)
 {
 var bindingsArray = dwscripts.getListValuesFromNote(siteURL,

"MyDatasource");
 if (bindingsArray.length > 0)
 {

// Here we create an instance of the DataSource class as defined in the
// DataSourceClass.js file to store the return values.
A simple data source example 301

 retList.push(new DataSource("MyDatasource",
 MyDatasource_FILENAME,
 false,
 "MyDatasource.htm"))
 }
 }

 return retList;
}

function generateDynamicSourceBindings(sourceName)
{
 var retVal = new Array();

 var siteURL = dw.getSiteRoot();

 //For localized object name
 if (sourceName != "MyDatasource")
 {
 sourceName = "MyDatasource";
 }

 if (siteURL.length)
 {
 var bindingsArray = dwscripts.getListValuesFromNote(siteURL, sourceName);
 retVal = getDataSourceBindingList(bindingsArray,
 DATASOURCELEAF_FILENAME,
 true,
 "MyDatasource.htm");
 }

 return retVal;
}

function generateDynamicDataRef(sourceName, bindingName, dropObject)
{
 var paramObj = new Object();
 paramObj.bindingName = bindingName;
 var retStr = extPart.getInsertString("", "MyDatasource_DataRef", paramObj);

 // We need to strip the cfoutput tags if we are inserting into a CFOUTPUT tag
 // or binding to the attributes of a ColdFusion tag. So, we use the

// dwscripts.canStripCfOutputTags() function from dwscriptsServer.js

 if (dwscripts.canStripCfOutputTags(dropObject, true))
 {
 retStr = dwscripts.stripCFOutputTags(retStr, true);
 }

 return retStr;
}

function inspectDynamicDataRef(expression)
{
 var retArray = new Array();

 if(expression.length)
 {
 var params = extPart.findInString("MyDatasource_DataRef", expression);
 if (params)
302 Chapter 16: Data Sources

 {
 retArray[0] = params.sourceName;
 retArray[1] = params.bindingName;
 }
 }

 return retArray;
}

function deleteDynamicSource(sourceName, bindingName)
{
 var siteURL = dw.getSiteRoot();

 if (siteURL.length)
 {
 //For localized object name
 if (sourceName != "MyDatasource")
 {
 sourceName = "MyDatasource";
 }

 dwscripts.deleteListValueFromNote(siteURL, sourceName, bindingName);
 }
}

Note: Save this file in the Configuration\DataSources\ColdFusion folder as MyDatasource.js
because that name is specified in “Creating the data source definition file” on page 300.

Creating the supporting command files for user input

The addDynamicSource() function contains the command
dw.popupCommand("MyDatasrouce_Variable"), which opens a dialog box for the user to
input a specific variable name. However, you still need to create the actual dialog box for
MyDatasource Variable.

To provide a dialog box for the user, you must create a new set of command files: a command
definition file in HTML and a command implementation file in JavaScript (for more information
about command files, see “How commands work” on page 135).

The command definition file tells Dreamweaver the location of the supporting implementation
JavaScript files as well as the form for the dialog box that the user sees. Create an HTML file with
the following content (where MyDatasource_Variable.js is the implementation file that you will
create later):
<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine 5.0//dialog">
<html>
<head>
<title>MyDatasource Variable</title>
<script src="MyDatasource_Variable.js"></script>
<SCRIPT SRC="../Shared/MM/Scripts/CMN/displayHelp.js"></SCRIPT>
<SCRIPT SRC="../Shared/MM/Scripts/CMN/string.js"></SCRIPT>
<link href="../fields.css" rel="stylesheet" type="text/css">
</head>
<body>
<form>
 <div ALIGN="center">
 <table border="0" cellpadding="2" cellspacing="4">
 <tr>
 <td align="right" valign="baseline" nowrap>Name:</td>
 <td valign="baseline" nowrap>
A simple data source example 303

 <input name="theName" type="text" class="medTField">
 </td>
 </tr>
 </table>
 </div>
</form>
</body>
</html>

Save the file in the Configuration/Commands folder as MyDatasource_Variable.htm.

Then, as shown in the following example, the supporting JavaScript file simply determines the
buttons for the dialog box and how to assign the user input from the dialog box:
//******************* API **********************

function commandButtons(){
 return new Array(MM.BTN_OK,"okClicked()",MM.BTN_Cancel,"window.close()");
}

//***************** LOCAL FUNCTIONS ******************

function okClicked(){
 var nameObj = document.forms[0].theName;

 if (nameObj.value) {
 if (IsValidVarName(nameObj.value)) {
 MM.MyDatasourceContents = nameObj.value;
 MM.retVal = "OK";
 window.close();
 } else {
 alert(nameObj.value + " " + MM.MSG_InvalidParamName);
 }
 } else {
 alert(MM.MSG_NoName);
 }
}

Save this JavaScript file in the Configuration/Commands folder as MyDatasource_Variable.js.

Using the new data source

You can now open Dreamweaver (or restart it if you already have it open), and open a ColdFusion
file or create a new one.
304 Chapter 16: Data Sources

To test your new data source:

1 With the pointer in the document, click on the Bindings Plus (+) menu to see all the available
data sources. MyDatasource should appear at the bottom of the list:

2 Click the MyDatasource data source option, and the MyDatasource Variable dialog box you
created appears:

3 Enter a value in the dialog box and click OK.
The Bindings panel displays the data source in a tree with the variable from the dialog box
under the data source name:
A simple data source example 305

4 Drag the variable to your document, and Dreamweaver will insert the appropriate code from
the EDML file:
306 Chapter 16: Data Sources

CHAPTER 17
Server Formats
Chapter 16, “Data Sources,” on page 293, discusses how Macromedia Dreamweaver MX 2004
inserts dynamic data into a user’s document by adding a server expression at the appropriate
location. When a visitor requests the document from the web server, that server expression is
converted to a value from a database, the contents of a request variable, or some other dynamic
value. The Dreamweaver server formats let you format how this dynamic value is presented to
the visitor.

This chapter discusses the API that formats the dynamic data that is returned by the functions
described in “Data Sources”. The functions that are described in both chapters work together to
format dynamic data. If the user selects a format for the dynamic data, Dreamweaver calls the
data source function generateDynamicDataRef(), see “generateDynamicDataRef()”
on page 297, to get the string to insert into the user’s document. Before inserting the string into
the user’s document, Dreamweaver passes that string to the formatDynamicDataRef() function,
which is described in this chapter. The string that the formatDynamicDataRef() function
returns is the formatted dynamic data that is finally inserted in the user’s document.

Dreamweaver users can format data with built-in formats, create new formats that are based on
built-in format types, or create new formats that are based on custom format types.

The user can format dynamic data in several ways. By using the Format menu in the Dynamic
Data or the Dynamic Text dialog box or in the Bindings panel, the user can format the data
before inserting it into an HTML document. If the user wants to create a format, he or she can
select the Edit Format List command from the Format menu and select a format type from the
Plus (+) menu. The Plus (+) menu contains a list of format types. Format types are basic format
categories, such as Currency, DateTime, or AlphaCase. Format types collect all the common
parameters for a category of format, letting you streamline the work to create a new format.

One example might be to create a new currency format. Essentially, all currency formatting
consists of converting a number to a string, inserting commas and decimal points, and inserting a
currency symbol, such as a dollar ($) sign. The Currency format data type collects all the common
parameters and prompts you for the required values.
307

How data formatting works

All format files reside in the Configuration/ServerFormats/currentServerModel folder. Each
subfolder contains one XML file and multiple HTML files.

The Formats.xml file describes all the choices in the Format menu. Dreamweaver automatically
adds the Edit Format List and None options.

The folder also contains one HTML file for each currently installed format type, which includes
AlphaCase, Currency, DateTime, Math, Number, Percent, Simple, and Trim.

The Formats.xml file

The Formats.xml file contains one format tag for each item in the Format menu. Each format
tag contains the following mandatory attributes:

• The file=fileName attribute is the HTML file for this format type, such as "Currency".
• The title=string attribute is the string that appears in the Format menu, such as

"Currency - default".
• The expression=regexp attribute is a regular expression that matches the dynamic data

objects that use this format. The expression determines what format is currently applied to a
dynamic data object. For example, the expression for the "Currency - default" format is
"<%\s*=\s*FormatCurrency\(.*, -1, -2, -2, -2\)\s*%>|<%\s*=\s*DoCurrency\(.*,
-1, -2, -2, -2\)\s*%>". The value of the expression attribute must be unique among all
format tags in the file; it must be specific enough to guarantee that only instances of this
format match the expression.

• The visibility=[hidden | visible] attribute indicates whether the value appears in the
Format menu. If the value of the visibility attribute is hidden, the format does not appear
in the Format menu.

The format tag can contain additional, arbitrarily named attributes.

Some data formatting functions require an argument, format, which is a JavaScript object. This
object is the node that corresponds to the format tag in the Formats.xml file. The object has a
JavaScript property for each attribute of the corresponding format tag.

The following example shows the format tag for the "Currency - default" string:
<format file="Currency" title="Currency - default" ¬
expression="<%\s*=\s*FormatCurrency\(.*, -1, -2, -2, -2\)\s*%>|¬
<%\s*=\s*DoCurrency\(.*, -1, -2, -2, -2\)\s*%>"
NumDigitsAfterDecimal=-1 IncludeLeadingDigit=-2 ¬
UseParensForNegativeNumbers=-2 GroupDigits=-2/>

The format type for this format is Currency. The "Currency - default" string appears on the
Format menu. The expression <%\s*=\s*FormatCurrency\(.*, -1, -2, -2,¬
-2\)\s*%>|<%\s*=\s*DoCurrency\(.*, -1, -2, -2, -2\)\s*%> finds occurrences of this
format in the user’s document.

The NumDigitsAfterDecimal, IncludeLeadingDigit, UseParensForNegativeNumbers, and
GroupDigits parameters are for the Currency format type and are not required. These
parameters appear in the Parameters dialog box for the Currency format type. The Parameters
dialog box appears when a user selects the Currency format type from the Plus (+) menu of the
Edit Format List dialog box. The values that are specified for these parameters define the
new format.
308 Chapter 17: Server Formats

The Edit Format List Plus (+) menu

If you do not want a file in the ServerFormats folder to appear in the Edit Format List Plus (+)
menu, add the following statement as the first line of the HTML file:
<!-- MENU-LOCATION=NONE -->

To determine the contents of the menu, Dreamweaver first searches for a ServerFormats.xml file
in the same folder as the data formats (for example, Configuration/ServerFormats/ASP/
ServerFormats.xml). The ServerFormats.xml file describes the contents of the Edit Format List
Plus (+) menu, and it contains references to the HTML files that it lists in the menu.

Dreamweaver checks each referenced HTML file for a title tag. If the file contains a title tag, the
content of the title tag appears in the menu. If the file does not contain a title tag, the filename is
used in the menu.

After Dreamweaver finishes searching for the file, or if the file does not exist, Dreamweaver scans
the rest of the folder to find other items that should appear in the menu. If Dreamweaver finds
files in the main folder that aren’t already in the menu, it adds them. If subfolders contain files
that aren’t already in the menu, Dreamweaver creates a submenu and adds those files to it.

When the data formatting functions are called

The data formatting functions are called in the following scenarios:

• In the Dynamic Data or the Dynamic Text dialog box, the user selects a node from the data
source tree and a format from the Format menu. When the user selects the format,
Dreamweaver calls the generateDynamicDataRef() function and passes the return value
from the generateDynamicDataRef() function to the formatDynamicDataRef() function.
The return value from the formatDynamicDataRef() function appears in the Code setting of
the dialog box. After the user clicks OK, the string of code is inserted into the user’s document.
Next, Dreamweaver calls the applyFormat() function to insert a function declaration. For
more information, see “generateDynamicDataRef()” on page 297. A similar process occurs
when the user works with the Bindings panel.

• If the user changes the format or deletes the dynamic data item, the deleteFormat() function
is called. The deleteFormat() function removes the support scripts from the document.

• When the user clicks the Plus (+) button in the Edit Format List dialog box, Dreamweaver
displays a menu that contains all the format types for the specified server model. Each format
type corresponds to a file in the Configuration/ServerFormats/currentServerModel folder.
If the user selects a format from the Plus (+) menu that requires a user-specified parameter,
Dreamweaver executes the onload handler on the body tag and displays the Parameters dialog
box, which shows the parameters for the format type. In this dialog box, when the user selects
parameters for the format and clicks OK, Dreamweaver calls the
applyFormatDefinition() function.
If the selected format does not need to display a Parameters dialog box, Dreamweaver calls the
applyFormatDefinition() function when the user selects the format type from the Plus
(+) menu.

• Later, if the user edits the format by selecting it in the Edit Format List dialog box and clicking
the Edit button, Dreamweaver calls the inspectFormatDefinition() function before the
Parameters dialog box appears, so the form controls can be initialized to the correct values.
When the data formatting functions are called 309

The Server Formats API

The server formats API consists of the following data formatting functions.

applyFormat()

Availability

Dreamweaver UltraDev 1.

Description

This function can edit a user’s document by adding a format function declaration to it. When a
user selects a format from the Format text field in the Dynamic Data or the Dynamic Text dialog
box or in the Bindings panel, Dreamweaver makes two changes to the user’s document: It adds
the appropriate format function before the HTML tag (if it’s not already there), and it changes
the dynamic data object to call the appropriate format function.

Dreamweaver adds the function declaration by calling the applyFormat() JavaScript
function in the data format file. It changes the dynamic data object by calling the
formatDynamicDataRef() function.

The applyFormat() function should use the DOM to add function declarations to the top of the
user’s document. For example, if the user selects Currency - Default, the function adds the
Currency function declaration.

Arguments

format

• The format argument is a JavaScript object that describes the format to apply. The JavaScript
object is the node that corresponds to the format tag in the Formats.xml file. The object has a
JavaScript property for each attribute of the corresponding format tag.

Returns

Dreamweaver expects nothing.

applyFormatDefinition()

Availability

Dreamweaver UltraDev 1.

Description

Commits the changes to a format that was created using the Edit Format dialog box.

Users can create, edit, or delete formats with the Edit Format List dialog box. This function is
called to commit any modifications that are made to a format. It can also set other, arbitrarily
named properties on the object. Each property is stored as an attribute of the format tag in the
Formats.xml file.
310 Chapter 17: Server Formats

Arguments

format

• The format argument corresponds to the JavaScript format object. The function must set the
expression property of the JavaScript object to be the regular expression for the format. The
function can also set other, arbitrarily named properties of the object. Each property is stored
as an attribute of the format tag.

Returns

Dreamweaver expects the format object, if the function completes successfully. If an error occurs,
the function returns an error string. If it returns an empty string, the form is closed, but the new
format is not created, which is the same as a Cancel operation.

deleteFormat()

Availability

Dreamweaver UltraDev 1.

Description

Removes the format function declaration from the top of the user’s document.

When the user changes the format of a dynamic data object (in the Dynamic Data or the
Dynamic Text dialog box or in the Bindings panel) or deletes a formatted dynamic data object,
Dreamweaver removes the function declaration from the top of the document and also removes
the function call from the dynamic data object by calling the deleteFormat() function.

Use the DOM with the deleteFormat() function to remove the function declaration from the
top of the current document.

Arguments

format

• The format argument is a JavaScript object that describes the format to remove. The
JavaScript object is the node that corresponds to the format tag in the Formats.xml file.

Returns

Dreamweaver expects nothing.

formatDynamicDataRef()

Availability

Dreamweaver UltraDev 1.

Description

Adds the format function call to the dynamic data object. When a user selects a format from the
Format text box in the Dynamic Data or the Dynamic Text dialog box or in the Bindings panel,
Dreamweaver makes two changes to the user’s document: It adds the appropriate format function
before the HTML tag (if it’s not already there), and it changes the dynamic data object to call the
appropriate format function.
The Server Formats API 311

Dreamweaver adds the function declaration by calling the applyFormat() JavaScript
function in the data format file. It changes the dynamic data object by calling the
formatDynamicDataRef() function.

The formatDynamicDataRef() function is called when the user selects a format from the Format
text box in the Dynamic Data or the Dynamic Text dialog box or in the Bindings panel. It does
not edit the user’s document.

Arguments

dynamicDataObject, format

• The dynamicDataObject argument is a string that contains the dynamic data object.
• The format argument is a JavaScript object that describes the format to apply. The JavaScript

object is the node that corresponds to the format tag in the Formats.xml file. The object has a
JavaScript property for each attribute of the corresponding format tag.

Returns

Dreamweaver expects the new value for the dynamic data object.

If an error occurs, the function displays an alert message under certain conditions. If the function
returns an empty string, the Format text box is set to None.

inspectFormatDefinition()

Availability

Dreamweaver UltraDev 1.

Description

Initializes form controls when a user edits a format in the Edit Format List dialog box.

Arguments

format

• The format argument is a JavaScript object that describes the format to apply. The JavaScript
object is the node that corresponds to the format tag in the Formats.xml file. The object has a
JavaScript property for each attribute of the corresponding format tag.

Returns

Dreamweaver expects nothing.
312 Chapter 17: Server Formats

CHAPTER 18
Components
Programmers use various strategies to encapsulate their work because experience shows that well-
organized programs are easier to maintain, enhance, and reuse. Different technologies offer
programmers different ways to accomplish this encapsulation, and different names describe these
strategies: functions, modules, and others. Macromedia Dreamweaver MX 2004 uses the term
component to refer to some of the more popular and modern encapsulation strategies, including
web services, JavaBeans, and ColdFusion components (CFCs). So, when users build web
applications in Dreamweaver, the Components panel assists them in using available web services,
JavaBeans, and CFCs.

If you have invented (or simply use) a component strategy that is not represented in
Dreamweaver’s current Component panel, you can extend the Component panel’s logic so the
panel can handle new kinds of components. The files you need to alter are discussed in this
chapter. In some cases, you need to write some JavaScript code that calls certain component-
related functions.

Components from recent technologies (such as web services, JavaBeans, or CFCs) can describe
themselves. In other words, a program such as Dreamweaver can ask a component for a list of the
functions it exposes (meaning functions that can be invoked from another program). Depending
on the technology in use, a component can reveal other information about itself. For example, a
web service might describe new data types.

To add a new kind of component to the Dreamweaver Component panel, you need to locate the
available components (in the user’s environment) and request descriptions from each component
(or parse them if they are written using ASCII files).

The precise way that the location of components and how component details are retrieved varies
among technologies. Additionally, it can vary based on the server model (ASP.NET, JSP/J2EE,
ColdFusion, or others). So, the JavaScript you write to extend the Component panel depends on
the component technology you need to add. The functions described here are meant to assist you
in getting information to appear in the Component panel, but you must write much of the logic
for locating components and introspecting them (querying the internal structure of the
component and making its fields, methods, and properties available through Dreamweaver).

Finally, server models such as ASP.NET, JSP/J2EE, or ColdFusion tend to support some, but not
all, component types. For example, ASP.NET supports web services but not JavaBeans.
ColdFusion also supports web services and CFCs. When you add a new component type to the
Component panel, it must be server-model specific.
313

How to customize the Component panel

The Dreamweaver Component panel lets users load and work with components. It lists all the
available component types that are compatible with each enabled server model. For instance,
because JavaBeans can work only on a JavaServer Page (JSP), JavaBeans components appear only
in the JSP server model within the Component panel. Likewise, because CFCs can work only
on a ColdFusion page, they appear only in the ColdFusion server model within the
Component panel.

Extensibility lets you add new component types into the panel. After you add the new
components, they appear in the Components pop-up list. You can also add instructions for
setting up components that appear in the Component panel or in a dialog box (depending on the
extension for which the steps are implemented) as numbered steps. The Setup Steps then display
interactively as users load the new components, with check marks appearing next to any
completed step.

Component panel files

The Configuration/Components folder has a subfolder for each implemented server model.
Component files are stored in the Configuration/Components/server-model/ServerType folder.
You can add other server models and supporting server extensions (for more information on
server models, see Chapter 19, “Server Models,” on page 327; for more information on server
behaviors, seeChapter 15, “Server Behaviors,” on page 247).

To create a custom component that can work in the Component panel:

• Create an HTML file identifying the locations of supporting JavaScript and image files.
• Write the JavaScript to enable the component.
• Create, or identify existing, GIF image files to represent the component in the

Component panel.

If you want the component type to appear in a tree control view, you also need to create the
associated optional files and populate the tree control.

You can set a component type to work at the level of an individual web page, to a set of web pages,
or to an entire site. Your JavaScript code must include the logic for component persistence—for
saving itself between sessions and reloading at the start of a new session.

The following example shows a data entry in the file JavaBeansList.xml (to be saved in the
multiuser configuration folder) that defines the component class and its location:
<javabeans>
<javabean classname="TestCollection.MusicCollection"
classlocation="d:\music\music.jar"></javabean>
</javabeans>

JavaBeans should contain the logic for saving themselves in the multiuser configuration folder, so
the next time the user launches an application, the component loads itself again from the saved
data file.
314 Chapter 18: Components

Adding a service component

To add a new lightweight directory access protocol (LDAP) service using Dreamweaver MX:

1 Using existing component type files as a model (such as the files in the application folder
Configuration/Components/Common/WebServices) create all the required files, plus the
desired optional files, to display the new component type in the Dreamweaver Components
panel, as shown in the following table:

Note: Keep the same prefix throughout all the files that correspond to one component so that
each file and its corresponding component can be identified easily.

2 Write the JavaScript code to implement the new server component.
The extension file (HTM) defines the locations of the JavaScript code in the SCRIPT tag. These
JavaScript files can reside in the Shared folder, in the same folder as the extension file, or in the
Common folder for code that applies to multiple server models.
For example, the Configuration/Components/Common/WebServices/WebServices.htm file
contains the line:
<SCRIPT SRC="../../Common/WebServices/WebServicesCommon.js"></SCRIPT>.

For more information on the available Component API functions, see “Component panel API
functions” on page 316.
Tip: When adding a new service, you might want to use the Component panel to browse meta
information so that the information is readily available as you create the extension. Dreamweaver can
browse added components and display nodes in the component tree. The Components panel
provides drag-and-drop support and keyboard support in Code view.

Filename Description Required/Optional

.htm The extension file that identifies other supporting
JavaScript and GIF files.

Required

.js The extension file that implements the Component API
callback.

Required

.gif The image that appears in the Components pop-up list. Required

*Menus.xml The repository for metadata that organizes the
Components panel structure. Although the common
WebServices component does not use this file, you can
refer to the file WebServicesMenus.xml in the application
folder Components/ColdFusion/ WebServices as an
example.

Optional

*.gif Toolbar images, which can be enabled or disabled, as
shown in the following example:
ToolBarImageUp.gif
ToolBarImageDown.gif
ToolBarImageDisabled.gif.

Or, tree node images.

Optional
Component panel files 315

Populating the tree control

Use the ComponentRec property to populate a Component panel tree control, so that it appears
within the Component panel in the proper location. Every node in a tree control must have the
following properties:

For example, the following WebServicesClass node has web methods as its children:
this.name = "TrafficLocatorWebService";
this.image = "Components/Common/WebServices/WebServices.gif";
this.hasChildren = true;
this.toolTipText = "TrafficLocatorWebService";
this.isCodeViewDraggable = true;
// the following allows of enabling/disabling of the button that appears
// above the Component Tree
this.allowDelete = true;
this.isDesignViewDraggable = false;

Component panel API functions

This section describes the API functions for populating the Component panel.

getComponentChildren()

Availability

Dreamweaver MX.

Description

This function returns a list of child ComponentRec objects for the active parent ComponentRec
object. To load the root-level tree items, this function needs to read its metadata from its
persistent store.

Arguments

{parentComponentRec}

• The parentComponentRec argument is the componentRec object of the parent. If it is
omitted, Dreamweaver expects a list of ComponentRec objects for the root node.

Property name Description Required/
Optional

name Name of the tree node item Required

image Icon of the tree node item. If it is not specified, a default
icon is used.

Optional

hasChildren Responds to clicks on the Plus (+) and Minus (-)
buttons in the tree control by loading children.You can
work with a tree that is not prepopulated.

Required

toolTipText Tooltip text of the tree node item Optional

isCodeViewDraggable Determines whether the item can be dragged and
dropped into the Code view.

Optional

isDesignViewDraggable Determines whether the item can be dragged and
dropped into the Design view.

Optional
316 Chapter 18: Components

Returns

An array of ComponentRec objects.

Example

See function getComponentChildren(componentRec) in the WebServices.js file in the
Configuration/Components/Common/WebServices folder.

getContextMenuId()

Availability

Dreamweaver MX.

Description:

Returns the Context Menu ID for the component type. Every component type can have a context
menu associated with it. The Context Menu pop-up menus are defined in the
ComponentNameMenus.xml file, and they work the same way as the menu.xml file. The menu
string can be static or dynamic. Shortcut keys (accelerator keys) are supported.

Arguments

None.

Returns

A string defining the Context Menu ID.

Example

The following example sets the menu options for the Component panel for web services
associated with the ASP.NET/C# server model and defines the shortcut keys for that menu:
function getContextMenuId()
{

return "DWWebServicesContext";
}

Where DWWebServicesContext is defined in the file in the Configuration/Components/
ASP.NET_CSharp/WebServices/WebServicesMenus.xml as follows:
<shortcutlist id="DWWebServicesContext">

<shortcut key="Del" domRequired="false"
enabled="(dw.serverComponentsPalette.getSelectedNode() != null &&
(dw.serverComponentsPalette.getSelectedNode().objectType=='Root'))"
command="clickedDelete();" id="DWShortcuts_ServerComponent_Delete" />

</shortcutlist>

<menubar name="" id="DWWebServicesContext">
 <menu name="Server Component Popup" id="DWContext_WebServices">
 <menuitem name="Edit Web Service" domRequired="false"

enabled="dw.serverComponentsPalette.getSelectedNode() != null &&
(dw.serverComponentsPalette.getSelectedNode().objectType=='Root') &&
dw.serverComponentsPalette.getSelectedNode().wsRec != null &&
dw.serverComponentsPalette.getSelectedNode().wsRec.ProxyGeneratorName !=
null" command="editWebService()" id="DWContext_WebServices_EditWebService" /
>

...
</menubar>
Component panel API functions 317

getCodeViewDropCode()

Availability

Dreamweaver MX.

Description

This function gets the code that is dragged and dropped in Code view from the Component
panel or the code that is cut, copied, or pasted from the Component panel.

Arguments

componentRec

• The componentRec argument is an object.

Returns

The string that contains the code for the component.

Example

The following example identifies the code for a common web service:
function getCodeViewDropCode(componentRec)
{

var codeToDrop="";
if (componentRec)
{

if (componentRec.objectType=="Class")
{

codeToDrop =¬
dw.getExtDataValue("webservices_constructor","insertText");

codeToDrop =¬
codeToDrop.replace(RegExp("@@Id@@","g"),componentRec.name);

codeToDrop =¬
codeToDrop.replace(RegExp("@@Class@@","g"),componentRec.name);

}
else if (componentRec.objectType=="Method")
{

codeToDrop = componentRec.dropCode;
}
if(componentRec.dropCode)
{

codeToDrop = componentRec.dropCode;
}
else
{

codeToDrop = componentRec.name;
}

}
return codeToDrop;

}

318 Chapter 18: Components

getSetupSteps()

Availability

Dreamweaver MX.

Description

Dreamweaver calls this function if the setupStepsCompleted() function returns zero or a
positive integer. This function controls the server-side setup instructions, which can be
implemented using extensions that use a modal dialog box and extensions that use server
components.

This function returns an array of the strings for Dreamweaver to display in either the Setup Steps
dialog box or the Components panel, depending on the extension type.

Arguments

None.

Returns

An array of n+1 strings, where n is the number of steps, as described in the following list:

• The title that appears above the list of setup steps
• For each step, the text instructions, which can include any HTML markup that is legal inside a

li tag

You can include hypertext links (a tags) in the list of steps by using the following form:
Blue Underlined Text

The "handler" value can be replaced by any of the following strings or any JavaScript
expression, such as "dw.browseDocument('http://www.macromedia.com')":

• An "Event:SetCurSite" handler opens a dialog box to set the current site.
• An "Event:CreateSite" handler opens a dialog box to create a new site.
• An "Event:SetDocType" handler opens a dialog box to change the document type of the

user’s document.
• An "Event:CreateConnection" handler opens a dialog box to create a new

database connection.
• An "Event:SetRDSPassword" handler opens a dialog box to set the Remote Development

Service (RDS) user name and password (ColdFusion only).
• An "Event:CreateCFDataSource" handler opens the ColdFusion administrator in a browser.
Component panel API functions 319

Example

The following example sets four steps for ColdFusion components, and provides a hypertext link
in the fourth step so the user can enter the RDS user name and password:
function getSetupSteps()
{

var doSDK = false;
dom = dw.getDocumentDOM();
if (dom && dom.serverModel)
{

var aServerModelName = dom.serverModel.getDisplayName();
}
else
{

var aServerModelName = site.getServerDisplayNameForSite();
}
if (aServerModelName.length)
{

if(aServerModelName != "ColdFusion")
{

if(needsSDKInstalled != null)
{

doSDK = needsSDKInstalled();
}

}
}

var someSteps = new Array();
someSteps.push(MM.MSG_WebService_InstructionsTitle);
someSteps.push(MM.MSG_Dynamic_InstructionsStep1);
someSteps.push(MM.MSG_Dynamic_InstructionsStep2);
if(doSDK == true)
{

someSteps.push(MM.MSG_WebService_InstructionsStep3);
}
someSteps.push(MM.MSG_WebService_InstructionsStep4);

return someSteps;
}

setupStepsCompleted()

Availability

Dreamweaver MX.

Description

Dreamweaver calls this function before the Components tab appears. Dreamweaver then calls
the getSetupSteps() function if the setupStepsCompleted() function returns zero or a
positive integer.

Arguments

None.
320 Chapter 18: Components

Returns

An integer that represents the number of setup steps the user has completed, as described in the
following list:

• A value of either zero or a positive integer indicates the number of completed steps.
• A value of -1 indicates that all the necessary steps are complete, so the instruction list does

not appear.

handleDesignViewDrop()

Availability

Dreamweaver MX.

Description

Handles the drop operation when the user drags a table or view from the Database panel or a
component from the Component panel to the Design view.

Arguments

componentRec

• The componentRec argument is an object that contains the following properties:
■ The name property is the name of the tree node item.
■ The image property is an optional icon for the tree node item. If omitted, Dreamweaver

MX uses a default icon.
■ The hasChildren property is a Boolean value that indicates whether the tree node item is

expandable: if true, Dreamweaver MX displays the Plus (+) and Minus (-) buttons for the
tree node item; if false, the item is not expandable.

■ The toolTipText property is optional tool tip text for the tree node item.
■ The isCodeViewDraggable property is a Boolean value that indicates whether the tree

node item can be dragged and dropped into the Code view.
■ The isDesignViewDraggable property is a Boolean value that indicates whether the tree

node item can be dragged and dropped into the Design view.

Returns

A Boolean value that indicates whether the drop operation was successful: true if successful;
false otherwise.
Component panel API functions 321

Example

The following example determines if the component is a table or view, and then returns the
appropriate bHandled value:
function handleDesignViewDrop(componentRec)
{

var bHandled = false;
if (componentRec)
{

if ((componentRec.objectType == "Table")||
 (componentRec.objectType == "View"))
{

alert("popup Recordset Server Behavior");
bHandled = true;

}
}
return bHandled;

}

handleDoubleClick()

Availability

Dreamweaver MX.

Description

When the user double-clicks the node in the tree, the event handler is called to allow editing. This
function is optional. The function can return a false value, which indicates that the event
handler is not defined. In this case, double-clicking causes the default behavior, which expands or
collapses the tree nodes.

Arguments

componentRec

• The componentRec argument is an object that contains the following properties:
■ The name property is the name of the tree node item.
■ The image property is an optional icon for the tree node item. If this icon is omitted,

Dreamweaver uses a default icon.
■ The hasChildren property is a Boolean value that indicates whether the tree node item is

expandable: if true, Dreamweaver displays the Plus (+) and Minus (-) buttons for the tree
node item; if false, the item is not expandable.

■ The toolTipText property is an optional tooltip text for the tree node item.
■ The isCodeViewDraggable property is a Boolean value that indicates whether the tree

node item can be dragged and dropped into Code view.
■ The isDesignViewDraggable property is a Boolean value that indicates whether the tree

node item can be dragged and dropped into Design view.

Returns

Nothing.
322 Chapter 18: Components

Example

In the following example, the extension has a chance to handle a double-click on the tree node
item; if it returns the value false, the default behavior is to expand/collapse the nodes.
function handleDoubleClick(componentRec)
{

var selectedObj = dw.serverComponentsPalette.getSelectedNode();
if(dwscripts.IS_WIN)
{

if (selectedObj && selectedObj.wsRec &&
selectedObj.wsRec[ProxyGeneratorNamePropName])

{
if (selectedObj.objectType == "Root")
{

editWebService();
return true;

}
else if (selectedObj.objectType == "MissingProxyGen")
{

displayMissingProxyGenMessage(componentRec);
editWebService();
return true;

}
}

}
return false;

}

toolbarControls()

Availability

Dreamweaver MX.

Description

Every component type returns a list of toolBarButtonRec objects, which represents the toolbar
icons, in left-to-right order. Each toolBarButtonRec object contains the following properties:

Property Name Description

image Path to image file

disabledImage Optional; path to disabled image searches for the toolbar button

pressedImage Optional; path to pressed image searches for the toolbar button

toolTipText Tooltip for the toolbar button

toolStyle Left /right

enabled JavaScript code that returns a Boolean value (true or false). The enablers are
called when the following conditions exist:
• When the dreamweaver.serverComponents.refresh() function is called
• When the selection in the tree changes
• When server model changes
Component panel API functions 323

Arguments

None.

Returns

An array of toolbar buttons in left-to-right order.

Example

The following example assigns properties to the toolbar buttons:
function toolbarControls()
{

var toolBarBtnArray = new Array();

dom = dw.getDocumentDOM();
var plusButton = new ToolbarControlRec();
var aServerModelName = null;
if (dom && dom.serverModel)
{

aServerModelName = dom.serverModel.getDisplayName();
}
else
{

//look in the site for potential server model
aServerModelName = site.getServerDisplayNameForSite();

}

if (aServerModelName.length)
{

if(aServerModelName == "ColdFusion")
{

plusButton.image= PLUS_BUTTON_UP;
plusButton.pressedImage= PLUS_BUTTON_DOWN;
plusButton.disabledImage= PLUS_BUTTON_UP;
plusButton.toolStyle= "left";
plusButton.toolTipText= MM.MSG_WebServicesAddToolTipText;
plusButton.enabled= "dwscripts.IS_WIN";
plusButton.command= "invokeWebService()";

}
else
{

plusButton.image= PLUSDROPBUTTONUP;
plusButton.pressedImage= PLUSDROPBUTTONDOWN;
plusButton.disabledImage= PLUSDROPBUTTONUP;
plusButton.toolStyle= "left";
plusButton.toolTipText= MM.MSG_WebServicesAddToolTipText;
plusButton.enabled= "dwscripts.IS_WIN";
plusButton.menuId = "DWWebServicesChoosersContext";

}

command The JavaScript code to execute. The command handler can force a refresh using
the dreamweaver.serverComponents.refresh() function.

menuId The unique menu ID for the pop-up menu button when the button is clicked.
When this ID is present, it overrides the command handler. In other words, the
button can be either a button associated with a command, or a button that has a
pop-up menu associated with it, but not both at the same time.

Property Name Description
324 Chapter 18: Components

toolBarBtnArray.push(plusButton);

var minusButton = new ToolbarControlRec();
minusButton.image= MINUSBUTTONUP;
minusButton.pressedImage= MINUSBUTTONDOWN;
minusButton.disabledImage= MINUSBUTTONDISABLED;
minusButton.toolStyle= "left";
minusButton.toolTipText= MM.MSG_WebServicesDeleteToolTipText;
minusButton.command = "clickedDelete()";
minusButton.enabled = "(dw.serverComponentsPalette.getSelectedNode() !=

null && dw.serverComponentsPalette.getSelectedNode() &&
((dw.serverComponentsPalette.getSelectedNode().objectType=='Root') ||
(dw.serverComponentsPalette.getSelectedNode().objectType == 'Error') ||
(dw.serverComponentsPalette.getSelectedNode().objectType ==
'MissingProxyGen')))";

toolBarBtnArray.push(minusButton);

if(aServerModelName != null && aServerModelName.indexOf(".NET") >= 0)
{

var deployWServiceButton = new ToolbarControlRec();
deployWServiceButton.image= DEPLOYSUPPORTBUTTONUP;
deployWServiceButton.pressedImage= DEPLOYSUPPORTBUTTONDOWN;
deployWServiceButton.disabledImage= DEPLOYSUPPORTBUTTONUP;
deployWServiceButton.toolStyle= "right";
deployWServiceButton.toolTipText= MM.MSG_WebServicesDeployToolTipText;
deployWServiceButton.command =

"site.showTestingServerBinDeployDialog()";
deployWServiceButton.enabled = true;
toolBarBtnArray.push(deployWServiceButton);

}
//add the rebuild proxy button for windows only.
//bug 45552:
if(navigator.platform.charAt(0) !="M")
{

var proxyButton = new ToolbarControlRec();
proxyButton.image= PROXYBUTTONUP;
proxyButton.pressedImage= PROXYBUTTONDOWN;
proxyButton.disabledImage= PROXYBUTTONDISABLED;
proxyButton.toolStyle= "right";
proxyButton.toolTipText= MM.MSG_WebServicesRegenToolTipText;
proxyButton.command = "reGenerateProxy()";
proxyButton.enabled = "enableRegenerateProxyButton()";
toolBarBtnArray.push(proxyButton);

}
}

return toolBarBtnArray;

}

Component panel API functions 325

326 Chapter 18: Components

CHAPTER 19
Server Models
Server models are the technologies that run scripts on a server. When users define a new site, they
can identify the server model that they want to use at the site level and at the individual document
level. This server model handles any dynamic elements that the user adds to the document.

Server model configuration files are stored in the Configuration/ServerModels folder. Within that
folder, each server model has its own HTML file that implements a set of functions that the server
model requires.

How customizing server models works

You can customize some features of a server model using the functions that are available in the
Server Model API.

Macromedia Dreamweaver MX 2004 asks new users to identify server models when they first
start Dreamweaver. For cases when the user does not identify a server model, you can create a
dynamic dialog box that prompts the user to complete the necessary steps. This dialog box
appears when the user attempts to insert a server object. For information on creating this dialog
box, see the getSetupSteps() and setupStepsCompleted() functions.

You might want to create a specialized server model. Macromedia suggests that you create a new
server model rather than editing any of the ones that come with Dreamweaver. (For information
regarding creating new document types that are supported by your server model, see “Extensible
document types in Dreamweaver” on page 42.)

When you create a new server model, you need to include an implementation of the
canRecognizeDocument() function in your server model file. This function tells Dreamweaver
the level of preference that it should give to your server model for handling a file extension when
multiple server models claim a particular file extension.
327

The Server Model API functions

This section describes the functions that configure server models for Dreamweaver.

canRecognizeDocument()

Availability

Dreamweaver MX.

Description

When opening a document (and when more than one server model claims a file extension),
Dreamweaver calls this function for each of the extension-associated server models to see whether
any of the functions can identify whether the document is its file. If more than one server model
claims the file extension, Dreamweaver gives priority to the server model that returns the
highest integer.
Note: All Dreamweaver-defined server models return a value of 1, so third-party server models can
override the file-extension association.

Arguments

dom

• The dom argument is the Macromedia document object, which is returned by the
dreamweaver.getDocumentDOM() function.

Returns

Dreamweaver expects an integer that indicates the priority that you give to the server model for
the file extension. This function should return a value of -1 if the server model does not claim the
file extension; otherwise, this function should return a value greater than zero.

Example

In the following example, if the user opens a JavaScript document for the current server model,
the sample code returns a value of 2. This value lets the current server model take precedence over
the Dreamweaver default server model.
var retVal = -1;
var langRE = /@\s*language\s*=\s*(\"|\')?javascript(\"|\')?/i;
// Search for the string language="javascript"
var oHTML = dom.documentElement.outerHTML;
if (oHTML.search(langRE) > -1)
 retVal = 2;
return retVal;

getFileExtensions()

Availability

Dreamweaver UltraDev 1, deprecated in Dreamweaver MX.
328 Chapter 19: Server Models

Description

Returns the document file extensions with which a server model can work. For example, the ASP
server model supports .asp and .htm file extensions. This function returns an array of strings, and
Dreamweaver uses these strings to populate the Default Page Extension list that is found in the
App Server category in the Site Definition dialog box.
Note: The Default Page Extension list exists only in Dreamweaver 4 and earlier. For
Dreamweaver MX, and later, the Site Definition dialog box does not list file extension settings.
Instead, Dreamweaver reads the Extensions.txt file and parses the documenttype element in the
mmDocumentTypes.xml file. (For more information on these two files and the documenttype element,
see “Extensible document types in Dreamweaver” on page 42.)

Arguments

None.

Returns

Dreamweaver expects an array of strings that represent the allowed file extensions.

getLanguageSignatures()

Availability

Dreamweaver MX.

Description

This function returns an object that describes the method and array signatures that the scripting
language uses. The getLanguageSignatures() function helps map generic signature mapping
to language-specific mapping for the following elements:

• The function
• Constructors
• Drop code (return values)
• Arrays
• Exceptions
• Data type mappings for primitive data types

The getLanguageSignatures() function returns a map of these signature declarations.
Extension developers can use this map to generate language-specific code blocks that
Dreamweaver drops on the page (based on the appropriate server model for the page) when the
user drags and drops a Web Services method, for example.

For examples of how to write this function, see the HTML implementation files for the JSP and
the ASP.Net server models. Server model implementation files are located in the Configuration/
ServerModels folder.

Arguments

None.

Returns

Dreamweaver expects an object that defines the scripting language signatures. This object should
map the generic signatures to language-specific ones.
The Server Model API functions 329

getServerExtension()

Availability

Dreamweaver UltraDev 4, deprecated in Dreamweaver MX.

Description

This function returns the default file extension of files that use the current server model. The
serverModel object is set to the server model of the currently selected site if no user document is
currently selected.

Arguments

None.

Returns

Dreamweaver expects a string that represents the supported file extensions.

getServerInfo()

Availability

Dreamweaver MX.

Description

This function returns a JavaScript object that can be accessed from within the JavaScript code.
You can retrieve this object by calling the dom.serverModel.getServerInfo() JavaScript
function. Furthermore, serverName, serverLanguage, and serverVersion are special
properties, which you can access through the following JavaScript functions:
dom.serverModel.getServerName()
dom.serverModel.getServerLanguage()
dom.serverModel.getServerVersion()

Arguments

None.

Returns

Dreamweaver expects an object that contains the properties of your server model.

Example

var obj = new Object();
obj.serverName = "ASP";
obj.serverLanguage = "JavaScript";
obj.serverVersion = "2.0";
...
return obj;
330 Chapter 19: Server Models

getServerLanguages()

Availability

Dreamweaver UltraDev 1, deprecated in Dreamweaver MX.

Description

This function returns the supported scripting languages of a server model with an array of strings.
Dreamweaver uses these strings to populate the Default Scripting Language list that is found in
the App Server category in the Site Definition dialog box.
Note: The Default Scripting Language list exists only in Dreamweaver 4 and earlier. For
Dreamweaver MX and later, the Site Definition dialog box does not list supported scripting
languages, nor does Dreamweaver use the getServerLanguages() function. Dreamweaver does not
use this function because each server model has only one server language in Dreamweaver.

In earlier versions of Dreamweaver, a server model could support multiple scripting languages; for
example, the ASP server model supports JavaScript and VBScript.

If you want a file in the ServerFormats folder to apply only to a specific scripting language, add
the following statement so it is the first line in the HTML file:
<!-- SCRIPTING-LANGUAGE=XXX -->

In this example, XXX represents the scripting language. This statement causes the server behavior
to appear in the Plus (+) menu of the Server Behaviors panel only when the currently selected
scripting language is XXX.

Arguments

None.

Returns

Dreamweaver expects an array of strings that represent the supported scripting languages.

getServerModelExtDataNameUD4()

Availability

Dreamweaver MX.

Description

This function returns the server model implementation name that Dreamweaver should
use when accessing the UltraDev 4 extension data files that reside in the Configurations/
ExtensionData folder.

Arguments

None.

Returns

Dreamweaver expects a string, such as "ASP/JavaScript".
The Server Model API functions 331

getServerModelDelimiters()

Availability

Dreamweaver MX.

Description

This function returns the script delimiters that the application server uses, and it indicates
whether each delimiter can participate in merging code blocks. You can access this returned value
from JavaScript by calling the dom.serverModel.getDelimiters() function.

Arguments

None.

Returns

Dreamweaver expects an array of objects where each object contains the following three
properties:

• The startPattern property is a regular expression that matches the opening script delimiter
(such as "<%").

• The endPattern property is a regular expression that matches the closing script delimiter
(such as "%>").

• The participateInMerge property is a Boolean value that specifies whether the content
enclosed in the listed delimiters should (true) or should not (false) participate in
block merging.

getServerModelDisplayName()

Availability

Dreamweaver MX.

Description

This function returns the name that should appear in the user interface for this server model. You
can access this value from JavaScript by calling the dom.serverModel.getDisplayName()
function.

Arguments

None.

Returns

Dreamweaver expects a string, such as "ASP JavaScript".
332 Chapter 19: Server Models

getServerModelFolderName()

Availability

Dreamweaver MX.

Description

This function returns the folder name to use for this server model within the Configuration
folder. You can access this value from JavaScript by calling the
dom.serverModel.getFolderName() function.

Arguments

None.

Returns

Dreamweaver expects a string, such as "ASP_JS".

getServerSupportsCharset()

Availability

Dreamweaver MX.

Description

This function returns a true value if the current server supports the specified character set. From
JavaScript, you can determine whether the server model supports a specific character set by calling
the dom.serverModel.getServerSupportsCharset() function.

Arguments

metaCharSetString

• The metaCharSetString argument is a string that holds the value of the documents
"charset=" attribute.

Returns

Dreamweaver expects a Boolean value.
The Server Model API functions 333

getVersionArray()

Availability

Dreamweaver UltraDev 1, deprecated in Dreamweaver MX.

Description

This function retrieves the mapping of server technologies to version numbers. This function is
called by the dom.serverModel.getServerVersion() function.

Arguments

None.

Returns

Dreamweaver expects an array of version objects, each with a version name and version value, as
listed in the following examples:

• ASP version 2.0
• ADODB version 2.1
334 Chapter 19: Server Models

CHAPTER 20
Data Translators
Data translators translate specialized markup—server-side includes, conditional JavaScript
statements, or other code such as PHP3, JSP, CFML, or ASP—into code that Macromedia
Dreamweaver MX 2004 can read and display. In Dreamweaver, you can translate attributes
within tags as well as entire tags or blocks of code. All data translators—block/tag or attribute—
are HTML files.

Translated tags or blocks of code must be enclosed in locked regions to preserve the original
markup. Translated attributes do not require locks, which makes it simple to inspect the tags that
contain them.

Data translation—especially for entire tags or blocks of code—might involve complex operations
that either cannot be done with JavaScript or that can be done more efficiently using C. If you are
familiar with C or C++, you should also read “C-Level Extensibility” on page 353.

How data translators work

Dreamweaver handles all translator files the same way, regardless of whether they translate entire
tags or only attributes. At startup, Dreamweaver reads all the files in the Configuration/
Translators folder and calls the getTranslatorInfo() function to obtain information about the
translator. Dreamweaver ignores any file in which the getTranslatorInfo() function does not
exist or contains an error that causes it to be undefined.
Note: To prevent JavaScript errors from interfering with startup, errors in any translator file are
reported only after all translators are loaded. For more information on debugging translators, see
“Finding bugs in your translator” on page 352.

Dreamweaver also calls the translateMarkup() function in all applicable translator files (as
specified in the Translation preferences) whenever the user might add new or changed existing
content that needs translation. Dreamweaver calls the translateMarkup() function when the
user performs one of the following actions:

• Opens a file in Dreamweaver
• Switches back to Design view after making changes in the HTML panel or in Code view
• Changes the properties of an object in the current document
• Inserts an object (using either the Objects panel or the Insert menu)
• Refreshes the current document after making changes to it in another application
• Applies a template to the document
335

• Pastes or drags content into or within the Document window
• Saves changes to a dependent file
• Invokes a command, behavior, server behavior, Property inspector, or other extension that sets

the innerHTML or outerHTML property of any tag object or the data property of any comment
object

• Selects File > Convert > 3.0 Browser Compatible
• Selects Modify > Convert > Convert Tables to Layers
• Selects Modify > Convert > Convert Layers to Tables
• Changes a tag or attribute in the Quick Tag Editor and presses Tab or Enter

The Data Translator API

This section describes the functions used to define translators for Dreamweaver.

getTranslatorInfo()

Description

This function provides information about the translator and the files it can affect.

Arguments

None.

Returns

An array of strings. The elements of the array must appear in the following order:

1 The translatorClass string uniquely identifies the translator. This string must begin with a
letter and can contain only alphanumeric characters, hyphens (-), and underscores (_).

2 The title string describes the translator in no more than 40 characters.
3 The nExtensions string specifies the number of file extensions to follow. If nExtensions is

zero, the translator can run on any file. If nExtensions is zero, nRegExps is the next element
in the array.

4 The extension string specifies a file extension (for example, "htm" or "SHTML") that works
with this translator. This string is not case-sensitive and should not contain a leading period.
The array should contain the same number of extension elements that are specified
in nExtensions.

5 The nRegExps string specifies the number of regular expressions that follow. If nRegExps is
zero, runDefault is the next element in the array.

6 The regExps string specifies a regular expression that you can check. The array should contain
the same number of regExps elements as are specified in nRegExps, and at least one of the
regExps must match a piece of the document’s source code before the translator can act on
a file.
336 Chapter 20: Data Translators

7 The runDefault string specifies when this translator executes. The following list gives the
possible string values:

Note: If you set runDefault to "byExtension" but do not specify any extensions (see step 4), the
effect is the same as setting "allFiles". If you set runDefault to "byExpression" but do not
specify any expressions (see step 6), the effect is the same as setting "noFiles".

8 The priority string specifies the default priority for running this translator. The priority is a
number between 0 and 100. If you do not specify a priority, the default priority is 100. The
highest priority is 0, and 100 is lowest. When multiple translators apply to a document, this
setting controls the order in which the translators are applied. The highest priority is applied
first. When multiple translators have the same priority, they are applied in alphabetical order by
translatorClass.

Example

The following instance of the getTranslatorInfo() function gives information about a
translator for server-side includes:
function getTranslatorInfo(){

var transArray = new Array(11);

transArray[0] = "SSI";
transArray[1] = "Server-Side Includes";
transArray[2] = "4";
transArray[3] = "htm";
transArray[4] = "stm";
transArray[5] = "html";
transArray[6] = "shtml";
transArray[7] = "2";
transArray[8] = "<!--#include file";
transArray[9] = "<!--#include virtual";
transArray[10] = "byExtension";
transArray[11] = "50";

return transArray;
}

String Definition

"allFiles" Sets the translator to always execute.

"noFiles" Sets the translator to never execute.

"byExtension" Sets the translator to execute for files that have one of the file
extensions that are specified in the extension.

"byExpression" Sets the translator to execute if the document contains a match for one
of the specified regular expressions.

"bystring" Sets the translator to execute if the document contains a match for one
of the specified strings.
The Data Translator API 337

translateMarkup()

Description

This function performs the translation.

Arguments

docName, siteRoot, docContent

• The docName argument is a string that contains the file:// URL for the document to be
translated.

• The siteRoot argument is a string that contains the file:// URL for the root of the site that
contains the document to be translated. If the document is outside a site, this string might be
empty.

• The docContent argument is a string that contains the contents of the document.

Returns

A string that contains the translated document or an empty string if nothing is translated.

Example

The following instance of the translateMarkup() function calls the C function
translateASP(), which is contained in a DLL (Windows) or a code library (Macintosh)
called ASPTrans:
function translateMarkup(docName, siteRoot, docContent){

var translatedString = "";
if (docContent.length > 0){
translatedString = ASPTrans.translateASP(docName, siteRoot, ¬
docContent);
}
return translatedString;

}

For an all-JavaScript example, see “A simple attribute translator example” on page 341 or “A
simple block/tag translator example” on page 346.

liveDataTranslateMarkup()

Availability

Dreamweaver UltraDev 1.

Description

This function translates documents when users are using the Live Data window. When the user
selects the View > Live Data menu item or clicks the Refresh button, Dreamweaver calls the
liveDataTranslateMarkup() function instead of the translateMarkup() function.
338 Chapter 20: Data Translators

Arguments

docName, siteRoot, docContent

• The docName argument is a string that contains the file:// URL for the document to
be translated.

• The siteRoot argument is a string that contains the file:// URL for the root of the site that
contains the document to be translated. If the document is outside a site, this string might be
empty.

• The docContent argument is a string that contains the contents of the document.

Returns

A string that contains the translated document or an empty string if nothing is translated.

Example

The following instance of the liveDataTranslateMarkup() function calls the C function
translateASP(), which is contained in a DLL (Windows) or a code library (Macintosh)
called ASPTrans:
function liveDataTranslateMarkup(docName, siteRoot, docContent){

var translatedString = "";
if (docContent.length > 0){
translatedString = ASPTrans.translateASP(docName, siteRoot, docContent);
}
return translatedString;

}

Determining what kind of translator to use

All translators must contain the getTranslatorInfo() and translateMarkup() functions, and
they must reside in the Configuration/Translators folder. They differ, however, in the kind of code
that they insert into the user’s document and in how that code must be inspected, as described in
the following list:

• To translate small pieces of server markup that determine attribute values or that conditionally
add attributes to a standard HTML tag, write an attribute translator. Standard HTML tags
that contain translated attributes can be inspected with the Property inspectors that are built
into Dreamweaver. It is not necessary to write a custom Property inspector (see “Adding a
translated attribute to a tag” on page 340).

• To translate an entire tag (for example, a server-side include) or a block of code (for example,
JavaScript, ColdFusion, PHP, or other scripting), write a block/tag translator. The code that is
generated by a block/tag translator cannot be inspected with the Property inspectors that are
built into Dreamweaver. You must write a custom Property inspector for the translated content
if you want users to be able to change the properties of the original code (see “Locking
translated tags or blocks of code” on page 345).
Determining what kind of translator to use 339

Adding a translated attribute to a tag

Attribute translation relies on the Dreamweaver parser to ignore server markup. By default,
Dreamweaver already ignores the most common kinds of server markup (including ASP, CFML,
and PHP); if you use server markup that has different opening and closing markers, you must
modify the third-party tag database to ensure that your translator works properly. For more
information on modifying the third-party tag database, see “Customizing Dreamweaver” in
Using Dreamweaver.

When Dreamweaver handles preserving the original server markup, the translator generates a
valid attribute value that can be viewed in the Document window. (If you use server markup only
for attributes that do not have a user-visible effect, you do not need a translator.)

The translator creates an attribute value that has a visible effect in the Document window by
adding a special attribute, mmTranslatedValue, to the tag that contains the server markup. The
mmTranslatedValue attribute and its value are not visible in the HTML panel or in Code view,
nor are they saved with the document.

The mmTranslatedValue attribute must be unique within the tag. If it is likely that your
translator needs to translate more than one attribute in a single tag, you must add a routine in the
translator that appends numbers to the mmTranslatedValue attribute (for example,
mmTranslatedValue1, mmTranslatedValue2, and so on).

The value of the mmTranslatedValue attribute must be a URL-encoded string that contains at
least one valid attribute/value pair. This means that
mmTranslatedValue="src=%22open.jpg%22" is a valid translation for both src="<? if
(dayType == weekday) then open.jpg else closed.jpg" ?> and <? if (dayType ==
weekday) then src="open.jpg" else src="closed.jpg" ?>.
mmTranslatedValue="%22open.jpg%22" is not valid for either example because it contains only
the value, not the attribute.

Translating more than one attribute at a time

The mmTranslatedValue attribute can contain more than one valid attribute/value pair.
Consider the following untranslated code:
<img <? if (dayType==weekday) then src="open.jpg" width="320" ¬

height="100" else
src="closed.jpg" width="100" height="320" ?> alt="We're open 24 ¬
hours a day from
12:01am Monday until 11:59pm Friday">

The following example shows how the translated markup might appear:
<img <? if (dayType==weekday) then src="open.jpg" width="320" ¬
height="100" else
src="closed.jpg" width="100" height="320" ?>
mmTranslatedValue="src=%22open.jpg%22 width=%22320%22 ¬

height=%22100%22"
alt="We're open 24 hours a day from 12:01am Monday until 11:59pm ¬
Friday">

The spaces between the attribute/value pairs in the mmTranslatedValue attribute are not
encoded. Because Dreamweaver looks for these spaces when it attempts to render the translated
value, each attribute/value pair in the mmTranslatedValue attribute must be encoded separately
and then pieced back together to form the full mmTranslatedValue attribute. For an example of
this process, see “A simple attribute translator example” in the next section.
340 Chapter 20: Data Translators

A simple attribute translator example

To better understand attribute translation, it’s helpful to look at an example. The following
translator is Pound Conditional (Poco) markup, a syntax that’s somewhat similar to ASP or PHP.
The first step in making this translator work properly is to create a tagspec tag for Poco markup,
which prevents Dreamweaver from parsing the untranslated Poco statements.

The following example shows the tagspec for Poco markup:
<tagspec tag_name="poco" start_string="<#" end_string="#>"
detect_in_attribute="true" icon="poco.gif" icon_width="17"
icon_height="15"></tagspec>

The poco.xml file that contains this tagspec is stored in the Configuration/ThirdPartyTags folder,
along with the icon for Poco tags.
<html>
<head>
<title>Conditional Translator</title>
<meta http-equiv="Content-Type" content="text/html; charset=">
<script language="JavaScript">

/***
 * This translator handles the following statement syntaxes: *
 * <# if (condition) then foo else bar #> *
 * <# if (condition) then att="foo" else att="bar" #> *
 * <# if (condition) then att1="foo" att2="jinkies" *
 * att3="jeepers" else att1="bar" att2="zoinks" #> *
 * *
 * It does not handle statements with no else clause. *
 ***/

var count = 1;

function translateMarkup(docNameStr, siteRootStr, inStr){
var count = 1;

// Counter to ensure unique mmTranslatedValues

var outStr = inStr;

// String that will be manipulated

var spacer = "";

// String to manage space between encoded attributes

var start = inStr.indexOf('<# if'); // 1st instance of Pound Conditional code

// Declared but not initalized. //

var attAndValue;
Adding a translated attribute to a tag 341

// Boolean indicating whether the attribute is part of
// the conditional statement

var trueStart;

// The beginning of the true case

var falseStart;

// The beginning of the false case

var trueValue;

// The HTML that would render in the true case

var attName;

// The name of the attribute that is being'
// set conditionally.

var equalSign;

// The position of the equal sign just to the
// left of the <#, if there is one

var transAtt;

// The entire translated attribute

var transValue;

// The value that must be URL-encoded

var back3FromStart;

// Three characters back from the start position
// (used to find equal sign to the left of <#

var tokens;

// An array of all the attributes set in the true case

var end;

// The end of the current conditional statement.

// As long as there's still a <# conditional that hasn't been
// translated

while (start != -1){
 back3FromStart = start-3;
 end = outStr.indexOf(' #>',start);
 equalSign = outStr.indexOf('="<# if',back3FromStart);
 attAndValue = (equalSign != -1)?false:true;
 trueStart = outStr.indexOf('then', start);
 falseStart = outStr.indexOf(' else', start);
 trueValue = outStr.substring(trueStart+5, falseStart);
 tokens = dreamweaver.getTokens(trueValue,' ');

 // If attAndValue is false, find out what attribute you're
 // translating by backing up from the equal sign to the
 // first space. The substring between the space and the
 // equal sign is the attribute.

if (!attAndValue){
 for (var i=equalSign; i > 0; i--){
 if (outStr.charAt(i) == " "){
 attName = outStr.substring(i+1,equalSign);
342 Chapter 20: Data Translators

 break;
 }
 }
 transValue = attName + '="' + trueValue + '"';
 transAtt = ' mmTranslatedValue' + count + '="' + ¬
 escape(transValue) + '"';
 outStr = outStr.substring(0,end+4) + transAtt + ¬
 outStr.substring(end+4);

 // If attAndValue is true, and tokens is greater than
 // 1, then trueValue is a series of attribute/value
 // pairs, not just one. In that case, each attribute/value
 // pair must be encoded separately and then added back
 // together to make the translated value.
 }else if (tokens.length > 1){
 transAtt = ' mmTranslatedValue' + count + '="'
 for (var j=0; j < tokens.length; j++){
 tokens[j] = escape(tokens[j]);
 if (j>0){
 spacer=" ";
 }
 transAtt += spacer + tokens[j];
 }
 transAtt += '"';
 outStr = outStr.substring(0,end+3) + transAtt + ¬
 outStr.substring(end+3)

 // If attAndValue is true and tokens is not greater
 // than 1, then trueValue is a single attribute/value pair.
 // This is the simplest case, where all that is necessary is
 // to encode trueValue.
 }else{
 transValue = trueValue;
 transAtt = ' mmTranslatedValue' + count + '="' + ¬
 escape(transValue) + '"';
 outStr = outStr.substring(0,end+3) + transAtt + ¬
 outStr.substring(end+3);
 }

 // Increment the counter so that the next instance
 // of mmTranslatedValue will have a unique name, and
 // then find the next <# conditional in the code.
 count++;
 start = outStr.indexOf('<# if',end);
 }

 // Return the translated string.
 return outStr
}

function getTranslatorInfo(){
 returnArray = new Array(7);

 returnArray[0] = "Pound_Conditional"; // The translatorClass
 returnArray[1] = "Pound Conditional Translator"; // The title
 returnArray[2] = "2"; // The number of extensions
 returnArray[3] = "html"; // The first extension
 returnArray[4] = "htm"; // The second extension
 returnArray[5] = "1"; // The number of expressions
 returnArray[6] = "<#"; // The first expression
 returnArray[7] = "byString"; //
Adding a translated attribute to a tag 343

 returnArray[8] = "50"; //

 return returnArray
}

</script>
</head>

<body>
</body>
</html>

Inspecting translated attributes

When server markup specifies a single attribute and the attribute is represented in a Property
inspector, Dreamweaver displays the server markup in the Property inspector, as shown in the
following figure:

The markup appears whether or not a translator is associated with it. The translator runs
whenever the user edits the server markup that appears in the Property inspector.

When server markup controls more than one attribute in a tag, the server markup does not appear
in the Property inspector. However, the lightning bolt icon shows that translated markup exists
for the selected element
Note: The lightning bolt icon does not appear when text or table cells, rows, or columns are selected.
Translation continues if the user edits server markup in the panel, and a translator exists to handle that
type of markup.

The text fields in the Property inspector are editable; users can enter values for attributes that
might be controlled by server markup, which results in duplicate attributes. If both a translated
value and a regular value are set for a particular attribute, Dreamweaver displays the translated
value in the Document window. You must decide whether your translator searches for duplicate
attributes and removes them.
344 Chapter 20: Data Translators

Locking translated tags or blocks of code

In most cases, you want a translator to change markup so that Dreamweaver can display it, but
you want to save the original markup, not the changes. For such cases, Dreamweaver provides
special XML tags in which to wrap translated content and to refer to the original code.

When you use these XML tags, the contents of the original attributes are duplicated in Code
view. If the file is saved, the original, untranslated markup is written to the file. The untranslated
content is what Dreamweaver displays in Code view.

The syntax of the XML tags is shown in the following example:
<MM:BeginLock translatorClass="translatorClass" ¬
type="tagNameOrType" depFiles="dependentFilesList" ¬
orig="encodedOrignalMarkup">
Translated content
<MM:EndLock>

The italicized values in this example have the following significance:

• The translatorClass value is the unique identifier for the translator; it is the first string in
the array that the getTranslatorInfo() function returns.

• The tagNameOrType value is a string that identifies the type of markup (or the tag name that is
associated with the markup) that is contained in the lock. The string can contain only
alphanumeric, hyphen (-), or underscore (_) characters. You can check this value in the
canInspectSelection() function of a custom Property inspector to determine if the
Property inspector is the right one for the content. For more information, see “Creating
Property inspectors for locked content” on page 349. Locked content cannot be inspected by
the Dreamweaver built-in Property inspectors. For example, specifying type="IMG" does not
make the Image panel appear.

• The dependentFilesList value is a string that contains a comma-separated list of files on
which the locked markup depends. Files are referenced as URLs, relative to the user’s
document. If the user updates one of the files named in the dependentFilesList string,
Dreamweaver automatically retranslates the content in the document that contains the list.

• The encodedOriginalMarkup value is a string that contains the original, untranslated
markup, encoded using a small subset of URL encoding (use %22 for ", %3C for <, %3E
for >, and %25 for %). The quickest way to URL-encode a string is to use the escape()
method. For example, if myString equals '', escape(myString)
returns %3Cimg%20src=%22foo.gif%22%3E.

The following example shows the locked portion of code that might be generated from the
translation of the server-side include <!--#include virtual="/footer.html" -->:
<MM:BeginLock translatorClass="MM_SSI" type="ssi" ¬
depFiles="C:\sites\webdev\footer.html" orig="%3C!--#include ¬
virtual=%22/footer.html%22%20--%3E">
<!-- begin footer -->
<CENTER>
<HR SIZE=1 NOSHADE WIDTH=100%>

[home]
[products]
[services]
[support]
Locking translated tags or blocks of code 345

[about us]
[help]
</CENTER>
<!-- end footer -->
<MM:EndLock>

A simple block/tag translator example

To help understand translation, look at a translator that is written entirely in JavaScript, which
does not rely on a C library for any functionality. The following translator example would be
more efficient if it was written in C, but the JavaScript version is simpler, which makes it perfect
for demonstrating how translators work.

As with most translators, this one is designed to mimic server behavior. Assume that your web
server is configured to replace the KENT tag with a different picture of an engineer, depending on
the day of the week, the time of day, and the user’s platform. The translator does the same thing,
only locally.
<html>
<head>
<title>Kent Tag Translator</title>
<meta http-equiv="Content-Type" content="text/html; charset=">
<script language="JavaScript">
/**
 * The getTranslatorInfo() function provides information *
 * about the translator, including its class and name, *
 * the types of documents that are likely to contain the *
 * markup to be translated, the regular expressions that *
 * a document containing the markup to be translated *
 * would match (whether the translator should run on all *
 * files, no files, in files with the specified *
 * extensions, or in files matching the specified *
 * expressions). *
 **/
function getTranslatorInfo(){
 //Create a new array with 6 slots in it
 returnArray = new Array(6);

 returnArray[0] = "DREAMWEAVER_TEAM"// The translatorClass
 returnArray[1] = "Kent Tags"// The title
 returnArray[2] = "0" // The number of extensions
 returnArray[3] = "1"// The number of expressions
 returnArray[4] = "<kent"// Expression
 returnArray[5] = "byExpression"// run if the file contains "<kent"
 return returnArray;
}

/**
* The translateMarkup() function performs the actual translation. *
* In this translator, the translateMarkup() function is written *
* entirely in JavaScript (that is, it does not rely on a C library) -- *
* and it's also extremely inefficient. It's a simple example, however, *
* which is good for learning. *
**/
function translateMarkup(docNameStr, siteRootStr, inStr){
 var outStr = ""; // The string to be returned after

translation
 var start = inStr.indexOf('<kent>'); // The first position of the KENT

tag
346 Chapter 20: Data Translators

 // in the document.
 var replCode = replaceKentTag(); // Calls the replaceKentTag()

function
 // to get the code that will replace KENT.
 var outStr = ""; // The string to be returned after

translation

 //If the document does not contain any content, terminate the translation.
 if (inStr.length <= 0){
 return "";
 }

 // As long as start, which is equal to the location in inStr of the
 // KENT tag, is not equal to -1 (that is, as long as there is another
 // KENT tag in the document)
 while (start != -1){
 // Copy everything up to the start of the KENT tag.
 // This is very important, as translators should never change
 // anything other than the markup that is to be translated.
 outStr = inStr.substring(0, start);
 // Replace the KENT tag with the translated HTML, wrapped in special
 // locking tags. For more information on the replacement operation, see
 // the comments in the replaceKentTag() function.
 outStr = outStr + replCode;

 // Copy everything after the KENT tag.
 outStr = outStr + inStr.substring(start+6);

 // Use the string you just created for the next trip through
 // the document. This is the most inefficient part of all.
 inStr = outStr;
 start = inStr.indexOf('<kent>');

 }
 // When there are no more KENT tags in the document, return outStr.
 return outStr;
}

/**
* The replaceKentTag() function assembles the HTML that will *
* replace the KENT tag and the special locking tags that will *
* surround the HTML. It calls the getImage() function to *
* determine the SRC of the IMG tag. *
**/
function replaceKentTag(){
 // The image to display.
 var image = getImage();
 // The location of the image on the local disk.
 var depFiles = dreamweaver.getSiteRoot() + image;
 // The IMG tag that will be inserted between the lock tags.
 var imgTag = '<IMG SRC="/' + image + '" WIDTH="320" HEIGHT="240"

ALT="Kent">\n';
 // 1st part of the opening lock tag. The remainder of the tag is assembled

below.
 var start = '<MM:BeginLock translatorClass="DREAMWEAVER_TEAM" type="kent"';
 // The closing lock tag.
 var end = '<MM:EndLock>';

 //Assemble the lock tags and the replacement HTML.
 var replCode = start + ' depFiles="' + depFiles + '"';
 replCode = replCode + ' orig="%3Ckent%3E">\n';
A simple block/tag translator example 347

 replCode = replCode + imgTag;
 replCode = replCode + end;

 return replCode;
}

/**
 * The getImage() function determines which image to display *
 * based on the day of the week, the time of day and the *
 * user's platform. The day and time are figured based on UTC *
 * time (Greenwich Mean Time) minus 8 hours, which gives *
 * Pacific Standard Time (PST). No allowance is made for Daylight *
 * Savings Time in this routine. *
**/
function getImage(){
 var today = new Date(); // Today's date & time.
 var day = today.getUTCDay(); // Day of the week in the GMT time zone.
 // 0=Sunday, 1=Monday, and so on.
 var hour = today.getUTCHours(); // The current hour in GMT, based on the
 // 24-hour clock.
 var SFhour = hour - 8; // The time in San Francisco, based on the
 // 24-hour clock.
 var platform = navigator.platform; // User's platform. All Windows machines
 // are identified by Dreamweaver as "Win32",
 // all Macs as "MacPPC".
 var imageRef; // The image reference to be returned.
// If SFhour is negative, you have two adjustments to make.
 // First, subtract one from the day count because it is already the wee
 // hours of the next day in GMT. Second, add SFhour to 24 to
 // give a valid hour in the 24-hour clock.
 if (SFhour < 0){
 day = day - 1;
 // The day count back one would make it negative, and it's Saturday,
 // so set the count to 6.
 if (day < 0){
 day = 6;
 }
 SFhour = SFhour + 24;
 }

 // Now determine which photo to show based on whether it's a workday or a
 // weekend; what time it is; and, if it's a time and day when Kent is
 // working, what platform the user is on.

 //If it's not Sunday
 if (day != 0){
 //And it's between 10am and noon, inclusive
 if (SFhour >= 10 && SFhour <= 12){
 imageRef = "images/kent_tiredAndIrritated.jpg";
 //Or else it's between 1pm and 3pm, inclusive
 }else if (SFhour >= 13 && SFhour <= 15){
 imageRef = "images/kent_hungry.jpg";
 //Or else it's between 4pm and 5pm, inclusive
 }else if (SFhour >= 16 && SFhour <= 17){
 //If user is on Mac, show Kent working on Mac
 if (platform == "MacPPC"){
 imageRef = "images/kent_gettingStartedOnMac.jpg";
 //If user is on Win, show Kent working on Win
 }else{
 imageRef = "images/kent_gettingStartedOnWin.jpg";
 }
348 Chapter 20: Data Translators

 //Or else it's after 6pm but before the stroke of midnight
 }else if (SFhour >= 18){
 //If it's Saturday
 if (day == 6){
 imageRef = "images/kent_dancing.jpg";
 //If it's not Saturday, check the user's platform
 }else if (platform == "MacPPC"){
 imageRef = "images/kent_hardAtWorkOnMac.jpg";
 }else{
 imageRef = "images/kent_hardAtWorkOnWin.jpg";
 }
 }else{
 imageRef = "images/kent_sleeping.jpg";
 }
 //If it's after midnight and before 10am, or anytime on Sunday
 }else{
 imageRef = "images/kent_sleeping.jpg";
 }

 return imageRef;
}

</script>
</head>

<body>
</body>
</html>

Creating Property inspectors for locked content

After you create a translator, you need to create a Property inspector for the content so the user
can change its properties (for example, the file to be included or one of the conditions in a
conditional statement). Inspecting translated content is a unique problem for several reasons:

• The user might want to change the properties of the translated content, and those changes
must be reflected in the untranslated content.

• The DOM contains the translated content (that is, the lock tags and the tags they surround are
nodes in the DOM), but the outerHTML property of the documentElement object and the
dreamweaver.getSelection() and dreamweaver.nodeToOffsets() functions act on the
untranslated source.

• The tags you inspect are different before and after translation.

A Property inspector for the HAPPY tag might have a comment that looks similar to the following
example:
<!-- tag:HAPPY,priority:5,selection:exact,hline,vline, attrName:xxx,¬

attrValue:yyy -->

The Property inspector for the translated HAPPY tag, however, would have a comment that looks
similar to the following example:
<!-- tag:*LOCKED*,priority:5,selection:within,hline,vline -->
A simple block/tag translator example 349

The canInspectSelection() function for the untranslated HAPPY Property inspector is simple.
Because the selection type is exact, it can return a value of true without further analysis. For the
translated HAPPY Property inspector, this function is more complicated; the keyword *LOCKED*
indicates that the Property inspector is appropriate when the selection is within a locked region,
but because a document can have several locked regions, further checks must be performed to
determine if the Property inspector matches this particular locked region.

Another problem is inherent in inspecting translated content. When you call the
dom.getSelection() function, the values that return by default are offsets into the untranslated
source. To expand the selection properly so that the locked region (and only the locked region) is
selected, use the following technique:
var currentDOM = dw.getDocumentDOM();
var offsets = currentDOM.getSelection();
var theSelection = currentDOM.offsetsToNode(offsets[0],offsets[0]+1);

Using offsets[0]+1 as the second argument ensures that you remain within the opening lock
tag when you convert the offsets to a node. If you use offsets[1] as the second argument, you
risk selecting the node above the lock.

After you make the selection (after ensuring that its nodeType is node.ELEMENT_NODE), you can
inspect the type attribute to see if the locked region matches this Property inspector, as shown in
the following example:
if (theSelection.nodeType == node.ELEMENT_NODE && ¬
theSelection.getAttribute('type') == 'happy'){

return true;
}else{

return false
}

To populate the fields in the Property inspector for the translated tag, you must parse the value of
the orig attribute. For example, if the untranslated code is <HAPPY TIME="22"> and the Property
inspector has a Time field, you must extract the value of the TIME attribute from the orig string:
function inspectSelection() {

var currentDOM = dw.getDocumentDOM();
var currSelection = currentDOM.getSelection();
var theObj = currentDOM.offsetsToNode¬
(curSelection[0],curSelection[0]+1);

if (theObj.nodeType != Node.ELEMENT_NODE) {
return;

}

// To convert the encoded characters back to their
// original values, use the unescape() method.
var origAtt = unescape(theObj.getAttribute("ORIG"));

// Convert the string to lower case for processing
var origAttLC = origAtt.toLowerCase();

var timeStart = origAttLC.indexOf('time="');
var timeEnd = origAttLC.indexOf('"',timeStart+6);
var timeValue = origAtt.substring(timeStart+6,timeEnd);

document.layers['timelayer'].document.timeForm.timefield.¬
value = timeValue;

}

350 Chapter 20: Data Translators

After you parse the orig attribute to populate the fields in the Property inspector for the
translated tag, the next step is probably to set the value of the orig attribute if the user changes
the value in any of the fields. You might find restrictions against making changes in a locked
region. You can avoid this problem by changing the original markup and retranslating.

The Property inspector for translated server-side includes (the ssi_translated.js file in the
Configuration/Inspectors folder) demonstrates this technique in its setComment() function.
Rather than rewriting the orig attribute, the Property inspector assembles a new server-side
include comment. It inserts that comment into the document, replacing the old one by rewriting
the contents of the document, which generates a new orig attribute. The following code
summarizes this technique:
// Assemble the new include comment. radioStr and URL are
// variables defined earlier in the code.
newInc = "<!--#include " + radioStr + "=" + '"' + URL + '"' ¬
+" -->";

// Get the contents of the document.
var entireDocObj = dreamweaver.getDocumentDOM();
var docSrc = entireDocObj.documentElement.outerHTML;

// Store everything up to the SSI comment and everything after
// the SSI comment in the beforeSelStr and afterSelStr variables.
var beforeSelStr = docSrc.substring(0, curSelection[0]);
var afterSelStr = docSrc.substring(curSelection[1]);

// Assemble the new contents of the document.
docSrc = beforeSelStr + newInc + afterSelStr;

// Set the outerHTML of the HTML tag (represented by
// the documentElement object) to the new contents,
// and then set the selection back to the locked region
// surrounding the SSI comment.
entireDocObj.documentElement.outerHTML = docSrc;
entireDocObj.setSelection(curSelection[0], curSelection[0]+1);
A simple block/tag translator example 351

Finding bugs in your translator

If the translateMarkup() function contains certain types of errors, the translator loads properly,
but it fails without an error message when you invoke it. Although failing silently prevents
Dreamweaver from becoming unstable, it can hinder development, especially when you need to
find one small syntax error in multiple lines of code.

If your translator fails, one effective debugging method is to turn the translator into a command,
as described in the following steps:

1 Copy the entire contents of the translator file to a new document, and save it in the
Configuration/Commands folder inside the Dreamweaver application folder.

2 At the top of the document, between the SCRIPT tags, add the following function:
function commandButtons(){

return new Array("OK","translateMarkup(dreamweaver.¬
getDocumentPath('document'), dreamweaver.getSiteRoot(), ¬
dreamweaver.getDocumentDOM().documentElement.outerHTML); ¬
window.close()", "Cancel", "window.close()");

}

3 At the end of the translateMarkup() function, comment out the return
whateverTheReturnValueIs line, and replace it with
dreamweaver.getDocumentDOM().documentElement.outerHTML =
whateverTheReturnValueIs, as shown in the following example:

// return theCode;
dreamweaver.getDocumentDOM().documentElement.outerHTML = ¬
theCode;

}
/* end of translateMarkup() */

4 In the BODY of the document, add the following form with no text boxes:
<body>
<form>
Hello.
</form>
</body>

5 Restart Dreamweaver, and select your translator command from the Commands menu. When
you click OK, the translateMarkup() function is called, which simulates translation.
If no error message appears and translation still fails, you probably have a logic error in
your code.

6 Add alert() statements in strategic spots throughout the translateMarkup() function so
you can make sure you’re getting the proper branches and so you can check the values of
variables and properties at different points:
for (var i=0; i< foo.length; i++){

alert("we're at the top of foo.length array, and the value ¬
of i is " + i);
/* rest of loop */

}

7 After adding in the alert() statements, select your command from the Commands menu, click
Cancel, and select it again. This process reloads the command file and incorporates
your changes.
352 Chapter 20: Data Translators

CHAPTER 21
C-Level Extensibility
The C-level extensibility mechanism lets you implement Macromedia Dreamweaver MX 2004
extensibility files using a combination of JavaScript and custom C code. You define functions
using C, bundle them in a dynamic linked library (DLL) or a shared library, save the library in the
Configuration/JSExtensions folder within the Dreamweaver application folder, and then call the
functions from JavaScript using the Dreamweaver JavaScript interpreter.

For example, you might want to define a Dreamweaver object that inserts the contents of a user-
specified file into the current document. Because client-side JavaScript does not provide support
file input/output (I/O), you must write a function in C to provide this functionality.

How integrating C functions works

You can use the following HTML and JavaScript to create a simple Insert Text from File object.
The objectTag() function calls the readContentsOfFile() C function, which is stored in a
library named myLibrary.
<HTML>
<HEAD>
<SCRIPT>
function objectTag() {

fileName = document.forms[0].myFile.value;
return myLibrary.readContentsOfFile(fileName);

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Enter the name of the file to be inserted:
<INPUT TYPE="file" NAME="myFile">
</FORM>
</BODY>
</HTML>

The readContentsOfFile() function accepts a list of arguments from the user, retrieves the
filename argument, reads the contents of the file, and returns the contents of the file. For more
information about the JavaScript data structures and functions that appear in the
readContentsOfFile() function, see “C-level extensibility and the JavaScript interpreter”
on page 355.
JSBool
353

readContentsOfFile(JSContext *cx, JSObject *obj, unsigned int ¬
argc, jsval *argv, jsval *rval)
{

char *fileName, *fileContents;
JSBool success;
unsigned int length;

/* Make sure caller passed in exactly one argument. If not,
 * then tell the interpreter to abort script execution. */
if (argc != 1){

JS_ReportError(cx, "Wrong number of arguments", 0);
return JS_FALSE;
}

/* Convert the argument to a string */
fileName = JS_ValueToString(cx, argv[0], &length);
if (fileName == NULL){

JS_ReportError(cx, "The argument must be a string", 0);
return JS_FALSE;

}

/* Use the string (the file name) to open and read a file */
fileContents = exerciseLeftToTheReader(fileName);

/* Store file contents in rval, which is the return value ¬
 passed
* back to the caller */
success = JS_StringToValue(cx, fileContents, 0, *rval);
free(fileContents);

/* Return true to continue or false to abort the script */
return success;

}

To ensure that the readContentsOfFile() function executes properly and doesn’t cause a
JavaScript error, you must register the function with the JavaScript interpreter by including a
MM_Init() function in your library. When Dreamweaver loads the library at startup, it calls the
MM_Init() function to get the following three pieces of information:

• The JavaScript name of the function
• A pointer to the function
• The number of arguments that the function expects

The following example shows how the MM_Init() function for the library myLibrary
might look:
void
MM_Init()
{

JS_DefineFunction("readContentsOfFile", readContentsOfFile, 1);
}

Your library must include exactly one instance of the following macro:
/* MM_STATE is a macro that expands to some definitions that are
 * needed to interact with Dreamweaver. This macro must
 * be defined exactly once in your library. */
MM_STATE
354 Chapter 21: C-Level Extensibility

Note: The library can be implemented in either C or C++, but the file that contains the MM_Init()
function and the MM_STATE macro must be implemented in C. The C++ compiler garbles function
names, which makes it impossible for Dreamweaver to find the MM_Init() function.

C-level extensibility and the JavaScript interpreter

The C code in your library must interact with the Dreamweaver JavaScript interpreter at the
following different times:

• At startup, to register the library’s functions
• When the function is called, to parse the arguments that JavaScript is passing to C
• Before the function returns, to package the return value

To accomplish these tasks, the interpreter defines several data types and exposes an API.
Definitions for the data types and functions that are listed in this section appear in the
mm_jsapi.h file. For your library to work properly, you must include the mm_jsapi.h file with the
following line at the top of each file in your library:
#include "mm_jsapi.h"

Including the mm_jsapi.h file includes, in turn, mm_jsapi_environment.h, which defines the
MM_Environment structure.

Data types

The JavaScript interpreter defines the following data types.

typedef struct JSContext JSContext

A pointer to this opaque data type passes to the C-level function. Some functions in the API
accept this pointer as one of their arguments.

typedef struct JSObject JSObject

A pointer to this opaque data type passes to the C-level function. This data type represents an
object, which might be an array object or some other object type.

typedef struct jsval jsval

An opaque data structure that can contain an integer, or a pointer to a float, string, or object.
Some functions in the API can read the values of function arguments by reading the contents of a
jsval structure, and some can be used to write the function’s return value by writing a jsval
structure.

typedef enum { JS_FALSE = 0, JS_TRUE = 1 } JSBool

A simple data type that stores a Boolean value.
Data types 355

The C-level API

The C-level extensibility API consists of the following functions:

typedef JSBool (*JSNative)(JSContext *cx, JSObject *obj, unsigned int
argc, jsval *argv, jsval *rval)

Description

This function signature describes C-level implementations of JavaScript functions in the
following situations:

• The cx pointer is a pointer to an opaque JSContext structure, which must be passed to some
of the functions in the JavaScript API. This variable holds the interpreter’s execution context.

• The obj pointer is a pointer to the object in whose context the script executes. While the script
is running, the this keyword is equal to this object.

• The argc integer is the number of arguments being passed to the function.
• The argv pointer is a pointer to an array of jsval structures. The array is argc elements

in length.
• The rval pointer is a pointer to a single jsval structure. The function’s return value should

be written to *rval.

The function returns JS_TRUE if successful; JS_FALSE otherwise. If the function returns
JS_FALSE, the current script stops executing and an error message appears.

JSBool JS_DefineFunction()

Description

This function registers a C-level function with the JavaScript interpreter in Dreamweaver. After
the JS_DefineFunction() function registers the C-level function that you specify in the call
argument, you can invoke it in a JavaScript script by referring to it with the name that you specify
in the name argument. The name is case-sensitive.

Typically, this function is called from the MM_Init() function, which Dreamweaver calls
during startup.

Arguments

char *name, JSNative call, unsigned int nargs

• The name argument is the name of the function as it is exposed to JavaScript.
• The call argument is a pointer to a C-level function. The function must accept the same

arguments as readContentsOfFile, and it must return a JSBool, which indicates success or
failure.

• The nargs argument is the number of arguments that the function expects to receive.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.
356 Chapter 21: C-Level Extensibility

char *JS_ValueToString()

Description

This function extracts a function argument from a jsval structure, converts it to a string, if
possible, and passes the converted value back to the caller.
Note: Do not modify the returned buffer pointer or you might corrupt the data structures of the
JavaScript interpreter. To change the string, you must copy the characters into another buffer and
create a new JavaScript string.

Arguments

JSContext *cx, jsval v, unsigned int *pLength

• The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
• The v argument is the jsval structure from which the string is to be extracted.
• The pLength argument is a pointer to an unsigned integer. This function sets *plength equal

to the length of the string in bytes.

Returns

A pointer that points to a null-terminated string if successful or to a null value on failure. The
calling routine must not free this string when it finishes.

JSBool JS_ValueToInteger()

Description

This function extracts a function argument from a jsval structure, converts it to an integer (if
possible), and passes the converted value back to the caller.

Arguments

JSContext *cx, jsval v, long *lp

• The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
• The v argument is the jsval structure from which the integer is to be extracted.
• The lp argument is a pointer to a 4-byte integer. This function stores the converted value

in *lp.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.
The C-level API 357

JSBool JS_ValueToDouble()

Description

This function extracts a function argument from a jsval structure, converts it to a double (if
possible), and passes the converted value back to the caller.

Arguments

JSContext *cx, jsval v, double *dp

• The cx argument is the opaque JSContext pointer that passed to the JavaScript function.
• The v argument is the jsval structure from which the double is to be extracted.
• The dp argument is a pointer to an 8-byte double. This function stores the converted value

in *dp.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

JSBool JS_ValueToBoolean()

Description

This function extracts a function argument from a jsval structure, converts it to a Boolean value
(if possible), and passes the converted value back to the caller.

Arguments

JSContext *cx, jsval v, JSBool *bp

• The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
• The v argument is the jsval structure from which the Boolean value is to be extracted.
• The bp argument is a pointer to a JSBool Boolean value. This function stores the converted

value in *bp.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

JSBool JS_ValueToObject()

Description

This function extracts a function argument from a jsval structure, converts it to an object (if
possible), and passes the converted value back to the caller. If the object is an array, use
JS_GetArrayLength() and JS_GetElement() to read its contents.

Arguments

JSContext *cx, jsval v, JSObject **op

• The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
• The v argument is the jsval structure from which the object is to be extracted.
• The op argument is a pointer to a JSObject pointer. This function stores the converted value

in *op.
358 Chapter 21: C-Level Extensibility

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

JSBool JS_StringToValue()

Description

This function stores a string return value in a jsval structure. It allocates a new JavaScript string
object.

Arguments

JSContext *cx, char *bytes, size_t sz, jsval *vp

• The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
• The bytes argument is the string to be stored in the jsval structure. The string data is copied,

so the caller should free the string when it is not needed. If the string size is not specified (see
the sz argument), the string must be null-terminated.

• The sz argument is the size of the string, in bytes. If sz is 0, the length of the null-terminated
string is computed automatically.

• The vp argument is a pointer to the jsval structure into which the contents of the string
should be copied.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

JSBool JS_DoubleToValue()

Description

This function stores a floating-point number return value in a jsval structure.

Arguments

JSContext *cx, double dv, jsval *vp

• The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
• The dv argument is an 8-byte floating-point number.
• The vp argument is a pointer to the jsval structure into which the contents of the double

should be copied.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.
The C-level API 359

JSVal JS_BooleanToValue()

Description

This function stores a Boolean return value in a jsval structure.

Arguments

JSBool bv

• The bv argument is a Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

Returns

A JSVal structure that contains the Boolean value that passes to the function as an argument.

JSVal JS_IntegerToValue()

Description

This function converts a long integer value to JSVal structure.

Arguments

lv

• The lv argument is the long integer value that you want to convert to a jsval structure.

Returns

A JSVal structure that contains the integer that was passed to the function as an argument.

JSVal JS_ObjectToValue()

Description

This function stores an object return value in a JSVal. Use JS_ NewArrayObject() to create an
array object; use JS_SetElement() to define its contents.

Arguments

JSObject *obj

• The obj argument is a pointer to the JSObject object that you want to convert to a JSVal
structure.

Returns

A JSVal structure that contains the object that you passed to the function as an argument.

char *JS_ObjectType()

Description

Given an object reference, the JS_ObjectType() function returns the class name of the object.
For example, if the object is a DOM object, the function returns "Document". If the object is a
node in the document, the function returns "Element". For an array object, the function
returns "Array".
Note: Do not modify the returned buffer pointer or you might corrupt the data structures of the
JavaScript interpreter.
360 Chapter 21: C-Level Extensibility

Arguments

JSObject *obj

• Typically, this argument is passed in and converted using the JS_ValueToObject() function.

Returns

A pointer to a null-terminated string. The caller should not free this string when it finishes.

JSObject *JS_NewArrayObject()

Description

This function creates a new object that contains an array of JSVals.

Arguments

JSContext *cx, unsigned int length, jsval *v

• The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
• The length argument is the number of elements that the array can hold.
• The v argument is an optional pointer to the jsvals to be stored in the array. If the return

value is not null, v is an array that contains length elements. If the return value is null,
the initial content of the array object is undefined and can be set using the
JS_SetElement() function.

Returns

A pointer to a new array object or the value null upon failure.

long JS_GetArrayLength()

Description

Given a pointer to an array object, this function gets the number of elements in the array.

Arguments

JSContext *cx, JSObject *obj

• The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
• The obj argument is a pointer to an array object.

Returns

The number of elements in the array or -1 upon failure.
The C-level API 361

JSBool JS_GetElement()

Description

This function reads a single element of an array object.

Arguments

JSContext *cx, JSObject *obj, unsigned int index, jsval *v

• The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
• The obj argument is a pointer to an array object.
• The index argument is an integer index into the array. The first element is index 0, and the

last element is index (length - 1).
• The v argument is a pointer to a jsval where the contents of the jsval structure in the array

should be copied.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

JSBool JS_SetElement()

Description

This function writes a single element of an array object.

Arguments

JSContext *cx, JSObject *obj, unsigned int index, jsval *v

• The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
• The obj argument is a pointer to an array object.
• The index argument is an integer index into the array. The first element is index 0, and the

last element is index (length - 1).
• The v argument is a pointer to a jsval structure whose contents should be copied to the

jsval in the array.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.
362 Chapter 21: C-Level Extensibility

JSBool JS_ExecuteScript()

Description

This function compiles and executes a JavaScript string. If the script generates a return value, it
returns in *rval.

Arguments

JSContext *cx, JSObject *obj, char *script, unsigned int sz, jsval *rval

• The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
• The obj argument is a pointer to the object in whose context the script executes. While the

script is running, the this keyword is equal to this object. Usually this is the JSObject pointer
that passes to the JavaScript function.

• The script argument is a string that contains JavaScript code. If the string size is not specified
(see the sz argument), the string must be null-terminated.

• The sz argument is the size of the string, in bytes. If sz is 0, the length of the null-terminated
string is computed automatically.

• The rval argument is a pointer to a single jsval structure. The function’s return value is
stored in *rval.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

JSBool JS_ReportError()

Description

This function describes the reason for a script error. Call this function before returning the value
JS_FALSE for a script error to give the user information about why the script failed (for example,
“wrong number of arguments”).

Arguments

JSContext *cx, char *error, size_t sz

• The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
• The error argument is a string that contains the error message. The string is copied, so the

caller should free the string when it is not needed. If the string size is not specified (see the sz
argument), the string must be null-terminated.

• The sz argument is the size of the string, in bytes. If sz is 0, the length of the null-terminated
string is computed automatically.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.
The C-level API 363

File Access and Multiuser Configuration API

Macromedia recommends that you always use the File Access and Multiuser Configuration API
to access the file system through C-level extensions. For files other than configuration files, the
functions access the specified file or folder.

Dreamweaver supports multiple-user configurations for the Windows XP, Windows 2000, and
Mac OS X operating systems.

Typically, you install Dreamweaver in a restricted folder such as C:/Program Folders in Windows.
As a result, only users with Administrator privileges can make changes in the Dreamweaver
Configuration folder. To enable users on multiuser operating systems to create and maintain
individual configurations, Dreamweaver creates a separate Configuration folder for each user.
Whenever Dreamweaver or a JavaScript extension writes to the Dreamweaver Configuration
folder, Dreamweaver automatically writes to the user Configuration folder instead. This process
lets each user customize Dreamweaver configuration settings without disturbing the customized
configurations of other users.

Dreamweaver creates the user Configuration folder in a location where the user has full read and
write access. The location of the user’s Configuration folder depends on the user’s platform.

For Windows 2000 and Windows XP platforms:
<drive>:\Documents and Settings\<username>\ ¬

Application Data\Macromedia\Dreamweaver MX 2004\Configuration

Note: In Windows XP, this folder may be inside a hidden folder.

For Mac OS X platforms:
<drive>:Users:<username>:Library:Application Support: ¬

Macromedia:Dreamweaver MX 2004:Configuration

There are many cases where JavaScript extensions open files and write to the Configuration
folder. JavaScript extensions can access the file system by using DWFile, MMNotes, or passing a
URL to the dreamweaver.getDocumentDOM() function. When an extension accesses the file
system in a Configuration folder, it generally uses the dw.getConfigurationPath() function
and adds the filename, or it gets the path by accessing the dom.URL property of an open document
and adding the filename. An extension can also get the path by accessing the dom.URL and
stripping the filename. The dw.getConfigurationPath() function and the dom.URL property
always return a URL in the Dreamweaver Configuration folder, even if the document is located in
the user Configuration folder.

Any time a JavaScript extension opens a file in the Dreamweaver Configuration folder,
Dreamweaver intercepts the access and checks the user Configuration folder first. If a JavaScript
extension saves data to disk in the Dreamweaver Configuration folder through DWFile or
MMNotes, Dreamweaver intercepts the call and redirects it to the user Configuration folder.

For example, in Windows 2000 or Windows XP, if the user asks for "file:///C|/Program
Files/Macromedia/Dreamweaver/Configuration/Objects/Common/Table.htm",
Dreamweaver searches for a Table.htm file in the C:/Documents and Settings/username/
Macromedia/Dreamweaver/Configuration/Objects/Common folder and, if it exists, uses
it instead.
364 Chapter 21: C-Level Extensibility

C-level extensions, or shared libraries, must use the File Access and Multiuser Configuration API
to read and write to the Dreamweaver Configuration folder. Using the File Access and Multiuser
Configuration API lets Dreamweaver read and write to the user Configuration folder and ensures
that the file operations do not fail due to insufficient access privileges. If your C-level extension
accesses files in the Dreamweaver Configuration folder that were created through JavaScript
with DWFile, MMNotes, or DOM manipulations, it is essential that you use the File Access
and Multiuser Configuration API because these files might be located in the user
Configuration folder.
Note: Most JavaScript extensions do not need to be changed to write to the user Configuration
folder. Only C shared libraries that write to the Configuration folder need to be updated to use the File
Access and Multiuser Configuration API functions.

When you delete a file from the Dreamweaver Configuration folder, Dreamweaver adds an entry
to a mask file to indicate which files in the Configuration folder should not appear in the user
interface. A masked file or folder does not appear to exist to Dreamweaver although it might
physically exist in the folder.

For example, if you use the trash can icon in the Snippets panel to delete a Snippets folder called
javascript and a file called onepixelborder.csn, Dreamweaver writes a file in the user
Configuration folder called mm_deleted_files.xml, which looks like the following example:
<?xml version = "1.0" encoding="utf-8" ?>

<deleteditems>
<item name="snippets/javascript/" />
<item name="snippets/html/onepixelborder.csn" />
</deleteditems>

As Dreamweaver populates the Snippets panel, it reads all the files in the user’s Configuration/
Snippets folder and all the files in the Dreamweaver Configuration/Snippets folder, except the
Configuration/Snippets/javascript folder and the Configuration/Snippets/html/
onepixelborder.csn file, and it adds the resulting list of files to the Snippets panel list.

If a C-level extension calls the MM_ConfigFileExists() function for the file:///c|Program Files/
Macromedia/Dreamweaver/Configuration/Snippets/javascript/onepixelborder.csn URL, it
returns a value of false. Likewise, if a JavaScript extension tries to call
dw.getDocumentDom("file:///c|Program Files/Macromedia/Dreamweaver/
Configuration/Snippets/javascript/onepixelborder.csn"), it returns a null value.

You can modify the mm_deleted_files.xml file to prevent Dreamweaver from showing files in the
user interface, such as objects, canned content in the new dialog box, and so on. You can call the
MM_DeleteConfigfile() function to add file paths to the mm_deleted_files.xml file.

JS_Object MM_GetConfigFolderList()

Availability

Dreamweaver MX.

Description

This function gets a list of files, folders, or both for the specified folder. If you specify a
configuration folder, the function gets a list of the folders that exists in both the user
Configuration folder and the Dreamweaver Configuration folder, subject to filtering by the
mm_deleted_files.xml file.
File Access and Multiuser Configuration API 365

Arguments

char *fileURL, char *constraints

• The char *fileUrl argument is a pointer to a string that names the folder for which you
want a list of the contents. The string must have the format of a file:// URL. The function
accepts valid wildcard characters of asterisks (*) and question marks (?) in the file:// URL
string. Use asterisks (*) to represent one or more unspecified characters, and question marks (?)
to represent a single unspecified character.

• The char *contstraints argument can be "files" or "directories" or a null value. If
you specify null, the MM_GetConfigFolderList() function returns files and folders.

Returns

JSObject is an array that contains the list of files or folders in either the user Configuration folder
or the Dreamweaver Configuration folder, subject to filtering by the mm_deleted_files.xml file.

Examples

JSObject *jsobj_array;
jsobj_array = MM_GetConfigFolderList("file:///¬
c|/Program Files/Macromedia/Dreamweaver/Configuration", "directories");

JSBool MM_ConfigFileExists()

Availability

Dreamweaver MX.

Description

This function checks whether the specified file exists. If it is a file in a configuration folder, the
function searches for the file in the user Configuration folder or the Dreamweaver Configuration
folder. The function also checks whether the filename is listed in the mm_deleted_files.xml file. If
the name is listed in this file, the function returns a false value.

Arguments

char *fileUrl

• The char *fileUrl argument is a pointer to a string that names the desired file, which is
provided in the format of a file:// URL.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

Example

char *dwConfig = “file:///c|/Program Files/Macromedia/Dreamweaver/
Configuration/Extensions.txt”;

int fileno = 0;
if(MM_ConfigFileExists(dwConfig))
{

fileno = MM_OpenConfigFile(dwConfig, “read”);
}

366 Chapter 21: C-Level Extensibility

int MM_OpenConfigFile()

Availability

Dreamweaver MX.

Description

This function opens the file and returns an operating system file handle. You can use the
operating system file handle in calls to system file functions. You must close the file handle with a
call to the system _close function.

If the file is a configuration file, it finds the file in either the user Configuration folder or the
Dreamweaver Configuration folder. If you open the Configuration file for writing, the function
creates the file in the user Configuration folder, even if it exists in the Dreamweaver
Configuration folder.
Note: If you want to read the file before writing to it, open the file in "read" mode. When you want to
write to the file, close the read handle and open the file again in "write" or "append" mode.

Arguments

char *fileURL, char *mode

• The char *fileURL argument is a pointer to a string that names the file that you are opening,
which is provided as a file:// URL. If it specifies a path in the Dreamweaver Configuration
folder, the MM_OpenConfigFile() function resolves the path before opening the file.

• The char *mode argument points to a string that specifies how you want to open the file. You
can specify null, "read", "write", or "append" mode. If you specify "write" and the file does
not exist, the MM_OpenconfigFile() function creates it. If you specify "write", the
MM_OpenConfigFile() function opens the file with an exclusive share. If you specify "read",
the MM_OpenConfigFile() function opens the file with a nonexclusive share.
If you open the file in "write" mode, any existing data in the file is truncated before writing
new data. If you open the file in "append" mode, any data you write is appended to the end
of the file.

Returns

An integer that is the operating system file handle for this file. Returns -1 if the file cannot be
found or does not exist.

Example

char *dwConfig = "file:///c|/Program Files/Macromedia/Dreamweaver/
Configuration/Extensions.txt";

int = fileno;
if(MM_ConfigFileExists(dwConfig))
{

fileno = MM_OpenConfigFile(dwConfig, "read");

}

File Access and Multiuser Configuration API 367

JSBool MM_GetConfigFileAttributes()

Availability

Dreamweaver MX.

Description

This function finds the file and returns the attributes of the file. You can set any of the arguments
except fileURL to null if you do not need the value.

Arguments

char *fileURL, unsigned long *attrs, unsigned long *filesize,
unsigned long *modtime, unsigned long *createtime

• The char *fileURL argument is a pointer to a string that names the file for which you want
the attributes. You must provide this argument as a file:// URL. If fileURL specifies a path in
the Dreamweaver Configuration folder, the MM_GetConfigFileAttributes() function
resolves the path before opening the file.

• The unsigned long *attrs argument is the address of an integer that contains the returned
attribute bits (see JSBool MM_SetConfigFileAttributes() for available attributes).

• The unsigned long *filesize argument is the address of an integer in which the function
returns the file size in bytes.

• The unsigned long *modtime argument is the address of an integer in which the function
returns the time that the file was last modified. The time is given as the operating-system time
value. For more information about the operating-system time value, see
DWfile.getModificationDate() in the Dreamweaver API Reference.

• The unsigned long *createtime argument is the address of an integer in which the
function returns the time that the file was created. The time is given as the operating-system
time value. For more information on the operating system time value, see
DWfile.getCreationDate() in the Dreamweaver API Reference.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure. Returns JS_FALSE if the
file does not exist or an error occurs while getting the attributes.

Example

char dwConfig = "file:///c|/Program Files/Macromedia/Dreamweaver/
Configuration/Extensions.txt";

unsigned long attrs;
unsigned long filesize;
unsigned long modtime;
unsigned long createtime;
MM_GetConfigAttributes(dwConfig, &attrs, &filesize, &modtime, &createtime);
368 Chapter 21: C-Level Extensibility

JSBool MM_SetConfigFileAttributes()

Availability

Dreamweaver MX.

Description

This function sets the attributes that you specify for the file, if they are different from the
current attributes.

If the specified file URL is in the Dreamweaver Configuration folder, this function first copies the
file to the user Configuration folder before it sets the attributes. If the attributes are the same as
the current file attributes, the file is not copied.

Arguments

char *fileURL, unsigned long attrs

• The char *fileURL argument is a pointer to a string that names the file for which you want
to set the attributes, which is provided as a file:// URL.

• The unsigned long attrs argument specifies the attribute bits to set on the file. You can use
a logical OR on the following constants to set the attributes:
MM_FILEATTR_NORMAL
MM_FILEATTR_RDONLY
MM_FILEATTR_HIDDEN
MM_FILEATTR_SYSTEM
MM_FILEATTR_SUBDIR

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure. Returns JS_FALSE if the
file does not exist or it is marked for deletion.

Example

char *dwConfig = "file:///c|/Program Files/Macromedia/Dreamweaver/
Configuration/Extensions.txt";

unsigned long attrs;
attrs = (MM_FILEATTR_NORMAL | MM_FILEATTR_RDONLY);
int fileno = 0;
if(MM_SetConfigFileAttrs(dwConfig, attrs))
{

fileno = MM_OpenConfigFile(dwConfig);
}

JSBool MM_CreateConfigFolder()

Availability

Dreamweaver MX.

Description

This function creates a folder in the specified location.

If the fileURL argument specifies a folder within the Dreamweaver Configuration folder, the
function creates the folder in the user Configuration folder. If fileURL does not specify a folder
in the Dreamweaver Configuration folder, the function creates the specified folder, including all
higher-level folders in the path if they do not already exist.
File Access and Multiuser Configuration API 369

Arguments

char *fileURL

• The char *fileURL argument is a pointer to a file:// URL string that names the configuration
folder that you want to create.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

Example

char *dwConfig = "file:///c|/Program Files\Macromedia\Dreamweaver
\Configuration\Extensions.txt";

MM_CreateConfigFolder(dwConfig);

JSBool MM_RemoveConfigFolder()

Availability

Dreamweaver MX.

Description

This function removes the folder and its files and subfolders. If the folder is in the Dreamweaver
Configuration folder, it marks the folder for deletion in the mm_deleted_files.xml file.

Arguments

char *fileURL

• The char *fileURL argument is a pointer to a string that names the folder to remove, which
is provided as a file:// URL.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

Example

char *dwConfig = "file:///c|/Program Files\Macromedia\Dreamweaver
\Configuration\Objects";

MM_RemoveConfigFolder(dwConfig);

JSBool MM_DeleteConfigFile()

Availability

Dreamweaver MX.

Description

This function deletes the file, if it exists. If the file exists below the Dreamweaver Configuration
folder, the function marks the file for deletion in the mm_deleted_files.xml file.

If the fileURL argument does not specify a folder in the Dreamweaver Configuration folder, the
function deletes the specified file.
370 Chapter 21: C-Level Extensibility

Arguments

char *fileURL

• The char *fileURL argument is a pointer to a string that names the configuration folder to
remove, which is provided as a file:// URL.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

Example

char dwConfig = "file:///c:|Program Files\Macromedia\Dreamweaver
\Configuration\Objects\insertbar.xml";

MM_DeleteConfigFile(dwConfig);

Calling a C function from JavaScript

After you understand how C-level extensibility works in Dreamweaver and its dependency on
certain data types and functions, it’s useful to know how to build a library and call a function.

The following example requires the following five files, located in the Dreamweaver application
folder Samples/Extending as archives for both the Macintosh and Windows:

• The mm_jsapi.h header file includes definitions for the data types and functions that are
described in “C-level extensibility and the JavaScript interpreter” on page 355.

• The mm_jsapi_environment.h file defines the MM_Environment.h structure.
• The MMInfo.h file provides access to the Design Notes API.
• The Sample.c example file defines the computeSum() function.
• The Sample.mak makefile lets you build the Sample.c source file into a DLL with Microsoft

Visual C++; Sample.proj is the equivalent file for building a CFM Library with Metrowerks
CodeWarrior. If you use another tool, you can create the makefile.

To build the DLL in Windows:

1 In Microsoft Visual C++, select File > Open Workspace, and select Sample.mak.
2 Select Build > Rebuild All.

When the build operation finishes, the Sample.dll file appears in the folder that contains
Sample.mak (or one of its subfolders).

To build the shared library on the Macintosh:

1 Open Sample.proj in Metrowerks CodeWarrior.
2 Build the project to generate a CFM Library.

When the build operation finishes, the Sample file appears in the folder that contains
Sample.proj (or in one of its subfolders).
Calling a C function from JavaScript 371

To call the computeSum() function from the Insert Horizontal Rule object:

1 Create a folder called JSExtensions in the Configuration folder within the Dreamweaver
application folder.

2 Copy Sample.dll (Windows) or Sample (Macintosh) to the JSExtensions folder.
3 In a text editor, open the HR.htm file in the Configuration/Objects/Common folder.
4 Add the line alert(Sample.computeSum(2,2)); to the objectTag() function, as shown in

the following example:
function objectTag() {

// Return the html tag that should be inserted
alert(Sample.computeSum(2,2));
return "<HR>";

}

5 Save the file and restart Dreamweaver.
To execute the computeSum() function, select Insert > Horizontal Rule.

A dialog box that contains the number 4 (the result of computing the sum of 2 plus 2) appears.
372 Chapter 21: C-Level Extensibility

P
A

R
T

 III
PART III
Appendix
Find information about supporting files and reference resources that can aid in developing
Macromedia Dreamweaver MX 2004 extensions.

Appendix A: The Shared Folder . 375

APPENDIX A
The Shared Folder
The Shared folder is the central repository for utility functions, classes, and images that are
commonly used by all extensions. Any extension can reference the files in the Shared folder’s
subfolders, and you can add custom common utilities to the ones already provided by
Macromedia Dreamweaver MX 2004. The multiple user Configuration folders installed for users
on Windows XP, Windows 2000, and Macintosh OS X also contain a Shared folder for individual
customizations. For example, when you install an extension from the Macromedia exchange, you
might notice that the new extension adds contents to your user Configuration/Shared folder
rather than the Dreamweaver application Configuration/Shared folder. For more information on
the Dreamweaver Configuration folders on a multiuser computer, see “Multiuser Configuration
folders” on page 25.

The Shared folder contents

The Shared folder has subfolders that contain files shared by multiple extensions, including
functions for browsing a user’s folder system, inserting a tree control, creating editable grids, and
other features.
Note: The JavaScript files in the Shared folder have comments within the code that provide details
about the functions they contain.

In addition to looking at the JavaScript files in the Shared folder, you should also search for
HTML files in the Configuration folder that include these JavaScript files so that you can
investigate how they are used.

Generally, you use the functions and resources in the Common and Macromedia (MM) folders or
add resources to the Common folder for use in new extensions. You should always look in the
Shared/Common/Scripts folder first for utilities and functions. These functions and utilities are
the most current and comprise the formal interface to the Shared folder. Use files in other folders
at your own risk because they might be out of date.

Specifically, the Shared folder contains the following useful folders.
375

The Common folder

The Common folder has shared scripts and classes for use in third-party extensions.

CodeBehindMgr.js Contains functions for creating a code-behind document. A
code-behind document lets you create distinct pages that
separate the code for user interface (UI) logic from the code for a
UI design. The methods of JSCodeBehindMgr defined in this file
can create new code-behind documents and manage the link to
design documents,

ColumnValueNodeClass.js Contains functions for mapping database columns to values. The
methods of ColumnValueNode defined in this file let you get and set
various values and properties of a database column.
Dreamweaver uses this storage class when applying and
inspecting edit operations objects (insert and update record
objects) and working with the SQLStatement class.

CompilerClass.js Contains functions for a base class used by
CompilerASPNetCSharp and CompilerASPNVBNet but could be
extended to support other compilers.

DataSourceClass.js Contains functions that define the return structure for
findDynamicSources().

DBTreeControlClass.js Contains functions that build a database tree control. This class is
used to create and interact with a database tree control. To
create a database tree control, such as the one in the advanced
recordset server behaviors, create a special <select> list with
type="mmdatabasetree" in your HTML file. Attach a
CBTreeControl class to the HTML control by passing the
<select> list name to the class constructor. Then use the
DBTreeControl functions to manipulate the control.

dotNetUtils.js Contains functions to facilitate working with object property
inspectors, and server behaviors for ASP .NET form controls,
which are translated.

dwscripts.js Look in the main file to find useful functions for all Dreamweaver
extensions. It includes functions for working with strings, files,
design notes, and so on.

dwscriptsExtData.js This file is an extension of the dwscripts.js file. This file facilitates
working with server behaviors, particularly with server behavior
EDML files. Used extensively in Dreamweaver’s implementation
of server behaviors.

dwscriptsServer.js This file is an extension of the dwscripts.js file. It contains
functions that are specific to server models. Many of these
functions are used when working with server behaviors.

GridControlClass.js Use this class to create and manipulate an editable grid. You add
a special select list in your HTML, and attach this class to it in
JavaScript to manipulate the grid.

ImageButtonClass.js This class makes it easy to control the Pressed/Mouse-over-
while-pressed/Mouse-over/Disabled-while-pressed look of
a button.
376 Appendix A: The Shared Folder

The MM folder

The MM folder contains the shared scripts, images, and classes used by the extensions that come
with Dreamweaver, including the scripts for building a navigation bar, specifying preload calls,
and the shortcut key definitions.

ListControlClass.js Contains functions that manage a <select> tag>, also known as a
list control. The methods of the ListControl object in this file get,
set, and change the value of the SELECT control.

PageSettingsASPNet.js Contains functions that set the properties of an
ASP .NET document.

RadioGroupClass.js Contains functions that define and manage a radio button group.
The methods of the RadioGroup object in this file set and get
values and behavior of a radio button group. You attach this class
to radio buttons in your HTML to control their behavior.

SBDatabaseCallClass.js A subclass of ServerBehavior class. This class includes
functionality specific to making database calls, for example,
calling a stored procedure, using SQL to return a recordset, and
so on. This is an abstract base class, which means that it cannot
be created and used on its own. To use it, you must subclass
SBDatabaseCall() and implement the placeholder functions.
Dreamweaver uses this class to implement its recordset and
stored procedures server behaviors.

ServerBehaviorClass.js Contains functions that communicate information about server
behaviors to Dreamweaver. You can subclass this class as part of
implementing your own server behaviors.

ServerSettingsASPNet.js Contains functions that store the properties of a
ASP .NET server.

SQLStatementClass.js Contains functions that let you create and edit SQL statements
such as SELECT, INSERT, UPDATE, DELETE, and stored procedure
statements.

tagDialogsCmn.js Contains functions that help you develop custom tag dialog
boxes. The methods of the tagDialog object defined in this file
modify attributes and values for a particular tag.

TagEditClass.js Contains functions that edit tags without changing the DOM of
the current page. The methods of the TagEdit object defined in
this file get and set a tag’s value, attributes, and children. This
class is useful for making complex edits because the DOM does
not get stale.

TreeControlClass.js Contains functions that manage a tree control within
Dreamweaver. The methods of the TreeControl object defined in
this file get, set, and arrange values in a tree. You attach this class
to a special MM:TREECONTROL tag in your HTML to manage the tree
control functionality.

XMLPropSheetClass.js Contains functions that manage the location and values of a XML
property sheet.
The Shared folder contents 377

The Scripts folder

The Scripts subfolder contains the following utility functions:

The Scripts folder also contains two subfolders, Class and CMN.

CFCutilities.js Contains utility functions related to ColdFusion components.
Functions parse attributes from within the opening tag of a given
node, parse a CFC tree, get the current URL DOM, get the CFC
DOM, and more.

event.js Contains functions to register events, notify parties of events
from the menus.xml file, and add event notifiers to the menus.xml
file.

FlashObjects.js Contains functions that update a color picker, check for hex color,
check for an absolute link, add an extension to a filename,
generate error messages, set Flash attributes, check a link for
Flash object, and so on.

insertFireworksHTML.js Contains functions to insert Fireworks HTML code into
Dreamweaver documents. Functions check whether current
document is a Fireworks document, insert Fireworks HTML at
insertion point, update Macromedia Fireworks style block
to Dreamweaver, and more. Also contains related
utility functions.

jumpMenuUI.js Contains functions for use with the Jump Menu object and Jump
Menu behavior. Functions populate menu options, create an
option label, add an option, delete an option, and so on.

keyCodes.js Contains an array of keyboard key codes.

navBar.js Contains classes and functions for working with a navigation bar
and navigation bar elements. Includes functions to add, remove,
and manipulate navigation bar elements.

NBInit.js Contains functions related to navigation bar image behaviors.

pageEncodings.js Defines various language codes.

preload.js Contains functions for adding and deleting preload-image calls to
the BODY/onLoad MM_preloadImages handler.

RecordsetDialogClass.js Contains the static class and functions to display the recordset
server behaviors UI. Functions determine which interface, simple
or advanced, to display. Also, houses functionality shared
between the UI implementations and mediates switches between
the UIs.

sbUtils.js Contains shared functions for use within Macromedia server
behaviors. The dwscripts class in the Configuration/Shared/
Common/Scripts folder contains more general purpose utilities.

setText.js Contains functions to escape an expression string, unescape an
expression string, and extract an expression string.

sortTable.js Contains functions to initialize and sort a table as well as
functions to sort an array, set the mouse pointer to a hand icon or
pointer, and check the type and version of the browser.
378 Appendix A: The Shared Folder

The Class folder

The Class folder contains the following utility functions:

classCheckbox.js Helps manipulate a checkbox control in your HTML extension.

FileClass.js Contains class that represents a file in the file system. The paths
are represented by URLs for cross-platform compatibility.
Methods include toString(), getName(), getSimpleName(),
getExtension(), getPath(), setPath(), isAbsolute(),
getAbsolutePath(), getParent(), getAbsoluteParent(),
exists(), getAttributes(), canRead(), canWrite(), isFile(),
isFolder(), listFolder(), createFolder(), getContents(),
setContents(), copyTo(), and remove().

GridClass.js Contains class that manages MM:TREECONTROL.

GridControlClass.js Older version of the GridControlClass in the Common folder.
See the GridControlClass.js file in the Shared/Common/Scripts
folder.

ImageButtonClass.js Older version of the ImageButtonClass in the Common folder.
See the ImageButtonClass.js file in the Shared/Common/Scripts
folder.

ListControlClass.js Older version of the ListControlClass in the Common folder.
See the Shared/Common/Scripts/ListControlClass.js file.

NameValuePairClass.js Creates and manages a list of name/value pairs. Names can
contain any character. Values can be blank, but cannot be set to
null, which is the same as deleting them.

PageControlClass.js Example of a page class to be used with the TabControl class.
See TabControl class.

PreferencesClass.js Contains an object and methods that contain all the preference
information for a command.

RadioGroupClass.js Older version of the RadioGroupClass in the Common folder. See
the RadioGroupClass.js file in the Shared/Common/Scripts
folder.

TabControlClass.js Helps build an extension that has multiple tab views,
page.lastUnload()
The Shared folder contents 379

The CMN folder

The CMN folder contains the following utility functions:

dateID.js Contains two functions, createDateID() and decipherDateID().
Given three strings, dayFormat, dateFormat, and timeFormat,
createDateID() creates an ID for them. Given a date array,
decipherDateID() returns an array with three items: the
dayFormat, the dateFormat, and the timeFormat.

displayHelp.js Contains one function that displays the specified Help document.

docInfo.js Contains functions that provide information about the user’s
document. Operations performed by functions include returning
an array of object references for a specified browser type and tag,
returning all instances of a specified tag name, searching for a tag
that wraps the current selection, and so on,

DOM.js Contains general helper functions for working with the
Dreamweaver DOM. Includes functions that get the root node of
the active document, find a tag of a given name, create a list of
nodes from the specified starting node, check whether a given
tag is contained inside another tag, perform various operations
on behavior functions, and more.

enableControl.js Contains one function, SetEnabled(), which enables or disables a
control based on the arguments it receives. It is OK to enable a
control that is already enabled or disable a control that is
already disabled.

errmsg.js Contains logging functions for accumulating tracing output into
an array of log pages that appear in a dialog box.

file.js Contains functions pertaining to file operations. Functions let the
user browse for local filename, convert the relative path to the file
URL path, return filename for current document, determine if a
specified document has been saved in current site and return the
document-relative path, or determine if a specified file is
currently open.

form.js Contains functions that add a form around a given text string if a
form does not already exist in the current document or layer.
Includes functions that determine if an object is a layer and
determine if the cursor is inside a form.

handler.js Contains functions that get a function for an event handler, add a
function to an event handler, and delete a function for an
event handler.

helper.js Contains a handful of useful functions that replace encoding,
unescape quotation marks ("), check whether a node is inside a
selection range, and checks for duplicate object names.
380 Appendix A: The Shared Folder

Other folders

The following list describes other folders of interest in the Shared folder:

• Controls
The Controls folder contains the elements used to build a server behavior. These controls
include interfaces for text and recordset menus.
Note: These controls are used by the Dreamweaver Server Behavior Builder and by many of
Dreamweaver’s server behaviors but some are useful for managing a control in your extension.

• Fireworks
The Fireworks folder has the supporting files for Fireworks integration.

• UltraDev
Dreamweaver maintains this folder primarily for backward compatibility, and it should not be
used for new extensions. Use the Dreamweaver Configuration/Shared/Common folder, where
most of this functionality also exists. See “The Common folder” on page 376.

insertion.js Contains the insertIntoDocument() function, which inserts a text
string into a document at the insertion point. Also contains the
supporting functions getHigherBlockTag() and arrContains().
The getHigherBlockTag() function gets get the next highest
blockTag, as defined in the blockTags array, and the arrCon()
function finds a specified item in an array.

localText.js Reserved variables, not for general use. Use Startup/mminit.htm
instead or use the strings from the Dreamweaver Configuration/
Strings/*.xml files.

menuItem.js Contains functions that add stars or values to a listed menu item,
or removes them.

niceName.js Contains functions that convert an array of Object references to
an array of simpler names.

quickString.js Contains functions that aggregate smaller strings without doing a
memory allocation each time.

string.js Contains a generic set of functions for manipulating and parsing
text strings. Functions include: extractArgs(),
escQuotes(), unescQuotes(), quoteMeta(), errMsg(), badChars(),
getParam(), quote(), stripSpaces(), StripChars(),
AllInRange(), reformat(), trim(), createDisplayString(),
entityNameEncode(), entityNameDecode(), stripAccelerator(),
and SprintF(),

TemplateUtils.js Contains utility functions for Dreamweaver templates. Functions
insert an editable region into a document, insert a repeating
region into a document, scan a document for a specified editable
region and so on.

UI.js Contains generic functions that control the UI. These functions
find a designated object in the current document, load select list
options with localized strings, return the attribute value for a
selected option, and word-wrap the text message for an alert.
The Shared folder contents 381

Using the Shared folder

Look first in the Dreamweaver Configuration/Shared/Common folder for useful extension code
because this folder contains the most current and commonly used functionality.

Extensions can leverage the resources in the Shared folder for their own functionality. An object,
command, or other extension can specify one of the JavaScript files in the Shared folder as a
source file in a script tag, and then use the function in the body of the file or in another
included JavaScript file. Objects and commands can even link several JavaScript files together,
and those JavaScript files can leverage Shared folder resources.

For example, open the Hypertext object file (Hyperlink.htm) in the application folder
Configuration/Objects/Common. Notice that the head tag of the file contains the following lines:
<script language="javascript" src="../../Shared/Common/Scripts/

ListControlClass.js"></script>
<script language="javascript" src="Hyperlink.js"></script>

And, if you open the related Hyperlink.js file, you can see the following lines:
LIST_LINKS = new ListControl('linkPath');

and
LIST_TARGETS = new ListControl('linkTarget');

With the new listControl declarations, Hyperlink.js defines two new ListControl objects. The
code in the Hyperlink.htm file then attaches them to the SELECT controls in the form, as follows:
<td align="left"> <input name="linkText" type="text" class="basicTextField"
value="">

and
<td align="left" nowrap><select name="linkPath" class="basicTextField"

editable="true">

Now, the Hyperlink.js script can call methods or get properties for the LIST_LINKS or
LIST_TARGETS objects to interact with the SELECT controls in the form.
382 Appendix A: The Shared Folder

INDEX
A
action files 235
addDynamicSource() 295
alert() 68
analyzeServerBehavior() 253
APIs, types of

Behaviors 237
C-level extensibility 356
Commands 136
Component panel 316
data formatting 307
Data Sources 295
Data Translator 335
Floating panel 224
Menu Commands 156
Objects 122
Property inspector 219
Reports 199
Server Behavior 253
Server Formats 310
Server Model 327
Tag editor 214
toolbar command 187

appearance of dialog boxes 32
applyBehavior() 237
applyFormat() 310
applyFormatDefinition() 310
applySB() 259
applyServerBehavior() 254
applyTag() 216
appName property 74
appVersion property 74
arguments

passed from menuitem 155
receiveArguments() 159

arguments attribute 186
array object 68

attribute translators
about 339
creating 340
debugging 352
sample code 341

attributes
arguments 186
checked 185
colorRect 184
command 186
disabledImage 183
domRequired 184
enabled 185
file 184
id 182
image 182
label 183
menu_ID 184
overImage 183
showIf 182
toolbar item tags 182
tooltip 183
update 185
value 185
width 184

attributes property 72
attributes tag 284

B
beginReporting() 199
behavior extensions, definition 22
behaviorFunction() 238
behaviors

API 237
helper functions 236
inserting multiple functions with 236
required functions 237
383

sample code 243
user experience 236

Behaviors API
applyBehavior() 237
behaviorFunction() 238
canAcceptBehavior() 239
deleteBehavior() 240
displayHelp() 239
identifyBehaviorArguments() 240
inspectBehavior() 242
windowDimensions() 242

Binding inspector 293
block/tag translators

about 339
debugging 352
sample code 346

blockEnd tag, code coloring 86
blockStart attribute

customText value 98
description of 97
innerTag value 99
innerText value 97
nameTag value 99
nameTagScript value 99
outerTag value 98

blockStart tag, code coloring 86
blur() 68
body property 71
boolean object 68
brackets tag, code coloring 87
browser profiles

changing 29
creating and editing 41
css-support tag 108
formatting 39
property tag 108
value tag 109
working with 39

button object 68
button tag 116, 177

C
C extensibility API

JS_BooleanToValue() 360
JS_DoubleToValue() 359
JS_ExecuteScript() 363
JS_GetArrayLength() 361
JS_GetElement() 362
JS_IntegerToValue() 360
JS_NewArrayObject() 361

JS_ObjectToValue() 360
JS_ObjectType() 360
JS_ReportError() 363
JS_SetElement() 362
JS_StringToValue() 359
JS_ValueToBoolean() 358
JS_ValueToDouble() 358
JS_ValueToInteger() 357
JS_ValueToObject() 358
JS_ValueToString() 357
MM_ConfigFileExists() 366
MM_GetConfigFileAttributes() 368
MM_GetConfigFolderList() 365
MM_OpenConfigFile() 367

C functions
calling from JavaScript 371
in the mm_jsapi.h file 355

C-level extensibility, in translators 335
canAcceptBehavior() 239
canAcceptCommand() 156, 187
canApplyServerBehavior() 254
canDrag attribute 117
canInsertObject() 122
canRecognizeDocument() 328
category tag 115
changing default file type 33
charEnd tag, code coloring 87
charEsc tag, code coloring 87
charStart tag, code coloring 87
checkbox object 68
checkbutton tag 116, 178
checked attribute 118, 185
childNodes property

of comment objects 74
of document objects 71
of tag objects 72
of text objects 73

clearInterval() 68
clearTimeout() 68
close() 68
closeTag tag 286
code coloring

about 83
blockEnd tag 86
blockStart tag 86
brackets tag 87
charEnd tag 87
charEsc tag 87
charStart tag 87
commentEnd tag 88
384 Index

commentStart tag 88
CSS sample text 105
cssImport tag 88
cssMedia tag 88
cssProperty tag 89
cssSelector tag 89
cssValue tag 89
defaultAttribute tag 90
defaultTag tag 90
defaultText tag 90
editing schemes 103
endOfLineComment tag 91
entity tag 91
examples 105
file 83
functionKeyword tag 91
idChar1 tag 92
idCharRest tag 92
ignoreCase tag 92
ignoreMMTParams tag 92
ignoreTags tag 93
isLocked tag 93
JavaScript 106
keyword tag 93
keywords tag 94
numbers tag 94
operators tag 94
regexp tag 95
sampleText tag 95
scheme processing 99
scheme tag 85
searchPattern tag 96
stringEnd tag 96
stringEsc tag 97
stringStart tag 96
style, Colors.xml file 83
tagGroup tag 97

Code Hints
codehints tag 79
definition 23, 77
description tag 80
function tag 82
menu tag 80
menugroup tag 79
menuitem tag 81

code snippet extensions, definition 22
code validation 107
CodeHints.xml file

contains 78
description of 77

color button control 63
colorpicker tag 181
colorRect attribute 184
Colors.xml file 83
combobox tag 180
command attribute 119, 186
command extensions, definition 21
commandButtons() 136, 156, 200
commands

adding Flash SWF files 63
adding to menus 136
menu commands 145
sample code 138
toolbar 172
user experience 135

Commands API
canAcceptCommand() 136
commandButtons() 136
isDomRequired() 137
receiveArguments() 137
windowDimensions() 138

Commands menu, modifying 154
comment object 74
commentEnd tag, code coloring 88
commentStart tag, code coloring 88
component extensions, definition 22
Component panel

files 314
tree control 316

Component panel API functions
getCodeViewDropCode() 318
getComponentChildren() 316
getContextMenuId() 317
getSetupSteps() 319
handleDoubleClick() 322
setupStepsCompleted() 320
toolbarControls() 323

Configuration folders and extensions 23
configureSettings() 201
confirm() 68
conventions, in this guide 17
copyServerBehavior() 255
css-support tag, code validation 108
cssImport tag, code coloring 88
cssMedia tag, code coloring 88
cssProperty tag, code coloring 89
cssSelector tag, code coloring 89
cssValue tag, code coloring 89
custom JavaScript controls 55
Index 385

customizing
appearance of dialog boxes 32
browser profiles 29
default documents 32
definition of 29
Dreamweaver 13
editing configuration files 29
in a multiuser environment 29
Insert bar 29
interpretation of third-party tags 34
menus 29
page designs 32
third-party tags 29

customText value, blockStart 98

D
data formatting 307
data property

of comment objects 74
of text objects 73

data source extensions, definition 22
data sources 293
Data Sources API

addDynamicSource() 295
deleteDynamicSource() 295
displayHelp() 296
editDynamicSource() 296
findDynamicSources() 297
generateDynamicDataRef() 297
generateDynamicSourceBindings() 298
inspectDynamicDataRef() 299

Data Translator API
getTranslatorInfo() 336
liveDataTranslateMarkup() 338
translateMarkup() 338

data translator extensions, definition 22
data translators

debugging 352
for attributes 340
for tags or blocks of code 345
kinds of 339
user experience 335

database controls 57
database tree controls 58
date object 68
default documents, customizing 32
defaultAttribute tag, code coloring 90
defaultTag tag, code coloring 90
defaultText tag, code coloring 90
definition file, document type 43

delete tag 280
deleteBehavior() 240
deleteditems tag 31
deleteDynamicSource() 295
deleteFormat() 311
deleteSB() 259
deleteServerBehavior() 255
deleteType attribute 280
description tag 80
dialog boxes, customizing appearance 32
disabledImage attribute 183
display tag 285
displayHelp()

in Behaviors API 239
in Data Sources API 296
in Floating panel API 224
in object files 122
in Objects API 122
in Property inspector API 219
in Server Behavior API 256

docking toolbars 172
DOCTYPE 54
document extensions 49
document node 71
document object

DOM Level 1 properties and methods of 71
Netscape DOM properties and methods of 68

Document Object Model
about 67
DOM Level 1 specification 68
Dreamweaver 68

document types
definition 22
definition file 43, 44
definition file, rules 51
dynamic templates 48
extensible 42
extensions 49
localizing 45, 50
opening, procedure for 51
tags in definition file 45

document, opening 51
documentEdited() 225
documentElement property 71
DOM. <italic>See Document Object Model.
domRequired attribute 184
Dreamweaver DOM 68
dreamweaver object 74, 75
Dreamweaver, customizing or extending 13
dropdown tag 180
386 Index

dwscripts functions
applySB() 259
deleteSB() 259
findSBs() 258

Dynamic Data dialog box 293
dynamic menus

sample code 164
user experience 155

dynamic templates 48
Dynamic Text dialog box 293

E
Edit Format List Plus (+) pop-up menu 309
editcontrol tag 181
editDynamicSource() 296
editing 151
editing schemes, code coloring 103
EDML definition 247
EDML file tags

attributes 284
closeTag 286
delete 280
deleteType attribute 280
display 285
group 262
groupParticipant 266
groupParticipants 265, 266
insertText 269, 270
isOptional attribute 276
limitSearch attribute 276, 283
location attribute 270
name attribute 267
nodeParamName attribute 271
openTag 284
paramName attribute 279
paramNames attribute 275
participant 268
partType attribute 267
quickSearch 269
searchPatterns 272, 273, 281
selectParticipant attribute 266
subType attribute 264
title 265
translation 282
translations 282
translationType attribute 283
translator 281
updatePattern 278, 279
updatePatterns 277

version attribute 268
whereToSearch attribute 282

EDML files
about 248
editing 260
EDML structure 261
group file tags 262
using regular expressions 260

element node 72
enabled attribute 118, 185
endOfLineComment tag, code coloring 91
endReporting() 200
entity tag, code coloring 91
errata 16
escape() 68
event handlers

in behavior dialog boxes 236
in extension files 26
returning a value from 243

events
in extension files 68
role in behaviors 235

extensible document types 42
extension APIs, types of 21
Extension Data Markup Language (EDML) 248
Extension Manager

guidelines 53
working with 28

extension user interface 53
extensions

color button control for 63
Dreamweaver 13
enabling features 21
installing 14

Extensions.txt file 49
external JavaScript files 26

F
file (field) object 68
file attribute 119, 184
file type, changing default 33
files

CodeHints.xml 78
insertbar.xml 121
menus.xml 146
mm_deleted_files.xml 30
MMDocumentTypes.xml 43
toolbars.xml 171
XML 68

findDynamicSources() 297
Index 387

findSBs() 258
findServerBehaviors() 256
Flash SWF files, displaying in Dreamweaver 63
Floating panel API

displayHelp() 224
documentEdited() 225
getDockingSide() 225
initialPosition() 226
initialTabs() 226
isATarget() 227
isAvailableInCodeView() 227
isResizable() 228
selectionChanged() 228

floating panel extensions, definition 22
floating panels

performance issues 229
sample code 230
user experience 223

focus() 68
form object 68
formatDynamicDataRef() 311
formats 307
FTP mappings, changing 42
function object 68
function tag 82
functionKeyword tag, code coloring 91

G
generateDynamicDataRef() 297
generateDynamicSourceBindings() 298
getAttribute() 72
getCodeViewDropCode() 318
getComponentChildren() 316
getContextMenuId() 317
getCurrentValue() 188
getDockingSide() 225
getDynamicContent() 157, 188
getElementsByTagName()

for document objects 71
for tag objects 72

getFileExtensions() 328
getLanguageSignatures() 329
getMenuID() 190
getServerExtension() 330
getServerInfo() 330
getServerLanguages() 331
getServerModelDelimiters() 332
getServerModelDisplayName() 332
getServerModelExtDataNameUD4() 331
getServerModelFolderName() 333

getServerSupportsCharset() 333
getSetupSteps() 319
getTranslatedAttribute() 72
getTranslatorInfo() 336
getUpdateFrequency() 191
getVersionArray() 334
group file tags 262
group files 248
groupParticipant tag 266
groupParticipants tag 265
groupParticipants tag attributes 266

H
handleDoubleClick() 322
hasChildNodes()

for comment objects 74
for document objects 71
for tag objects 72
for text objects 73

hasTranslatedAttributes() 72
helper functions, in behaviors 236
hidden (field) object 68
hline 217
HTML

default formatting, changing 110
inner/outer properties 72

I
id attribute 117, 182
idChar1 tag, code coloring 92
idCharRest tag, code coloring 92
identifyBehaviorArguments() 240
ignoreCase tag, code coloring 92
ignoreMMTParams tag, code coloring 92
ignoreTags tag, code coloring 93
image attribute 117, 182
image object 68
include/ tag 175
initialPosition() 226
initialTabs() 226
innerHTML property 72
innerTag value, blockStart 99
innerText value, blockStart 97
Insert bar

adding objects 121
definition file 114
modifying 29
388 Index

Insert bar object
example 126
files 113
reordering 121

Insert bar object extensions, definition 21
insertbar tag 115
insertbar.xml file 113, 121
insertObject() 123
insertText tag 269, 270
inspectBehavior() 242
inspectDynamicDataRef() 299
inspectFormatDefinition() 312
inspector extensions, definition 22
inspectServerBehavior() 257
inspectTag() 214
installing an extension 14
isATarget() 227
isAvailableInCodeView() 227
isCommandChecked() 158, 191
isDOMRequired() 192
isDomRequired() 123, 137
isLocked tag, code coloring 93
isOptional attribute 276
isResizable() 228
item tag 31
item tags, in toolbars 177
item() 68
itemref/ tag 176
itemtype/ tag 176

J
JavaScript

controls 55
external files 26
URLs 26

JS_BooleanToValue() 360
JS_DefineFunction() 356
JS_DoubleToValue() 359
JS_ExecuteScript() 363
JS_GetArrayLength() 361
JS_GetElement() 362
JS_IntegerToValue() 360
JS_NewArrayObject() 361
JS_ObjectToValue() 360
JS_ObjectType() 360
JS_ReportError() 363
JS_SetElement() 362
JS_StringToValue() 359
JS_ValueToBoolean() 358
JS_ValueToDouble() 358

JS_ValueToInteger() 357
JS_ValueToObject() 358
JS_ValueToString() 357
JSBool 355
JSContext 355
JSNative 356
JSObject 355
jsval 355

K
keyboard shortcuts, changing 152
keyword tag, code coloring 93
keywords tag, code coloring 94

L
label attribute 183
language information 74
layer object 68
limitSearch attribute 276, 283
liveDataTranslateMarkup() 338
localized strings 45
location attribute 270
locked content, inspecting 349
LOCKED keyword 349

M
manipulating tree control content 62
math object 68
menu command extensions, definition 21
menu commands

about 154
sample code 161
user experience 155

Menu Commands API
canAcceptCommand() 156
commandButtons() 156
getDynamicContent() 157
isCommandChecked() 158
receiveArguments() 159
setMenuText() 159
windowDimensions() 160

menu folder, placing command file 164
menu tag 80, 147
MENU-LOCATION 252
menu_ID attribute 184
menubar tag 146
menubutton tag 116, 179
menugroup tag 79
menuitem tag 81, 147
Index 389

menus
changing 29, 151
commands 154
definition 23
modifying pop-up and context 153

menus.xml file
about 146
changing 151
menu tag 147
menubar tag 146
menuitem tag 147
separator tag 149
shortcut tag 150
shortcutlist tag 150

MM
TREECOLUMN 61
TREENODE 61

MM_ConfigFileExists() 366
mm_deleted_files.xml file

about 30
deleteditems tag 31
item tag 31
tag syntax 31

MM_GetConfigFileAttributes() 368
MM_GetConfigFolderList() 365
mm_jsapi.h file

including 355
sample 371

MM_OpenConfigFile() 367
MM_returnValue 243
MMDocumentTypes.xml file 43
multiuser configuration

customizing 29
deleting configuration files in 30
folders 25
reinstalling and uninstalling in 32

multiuser platforms, Configuration folder 49

N
name attribute 119, 267
nameTag value, blockStart 99
nameTagScript value, blockStart 99
navigator object 68
node constants 68
Node.COMMENT_NODE 68
Node.DOCUMENT_NODE 68
Node.ELEMENT_NODE 68
Node.TEXT_NODE 68
nodelist object 68
nodeParamName attribute 271

nodes 68
nodeType property

of comment objects 74
of document objects 71
of tag objects 72
of text objects 73

number object 68
numbers tag, code coloring 94

O
object object 68
objects

adding Flash SWF files 63
adding to Insert bar 121
components of 113
creating 113
how files work 121

Objects API
canInsertObject() 122
displayHelp() 122
insertObject() 123
isDomRequired() 123
objectTag() 124
windowDimensions() 125

objectTag() 124
onBlur 68
onChange 68
onClick 68
onFocus 68
onLoad 68
onMouseOver 68
onResize 68
opening a document 51
openTag attribute 284
operating system, user’s 75
operators tag, code coloring 94
option object 68
outerHTML property 72
outerTag value, blockStart 98
overImage attributes 183

P
page designs 32
panel extensions, definition 22
paramName attribute 279
paramNames attribute 275
parentNode property

of comment objects 74
of document objects 71
390 Index

of tag objects 72
of text objects 73

parentWindow property 71
participant files 249
participant tag 268
participants 247
partType attribute 267
password (field) object 68
pasteServerBehavior() 257
processFile() 199
Property inspector API

canInspectSelection() 219
displayHelp() 219
inspectSelection() 220

Property inspectors
LOCKED keyword 349
comment at top of file 217
custom 217
file structure 217
lightning bolt icon 344
locked content, for 349
overview 217
sample code 220
translated attributes in 344
user experience 218

property tag, code validation 108

Q
quickSearch tag 269, 286

R
radio object 68
radiobutton tag 178
receiveArguments() 137, 159, 193
regexp object 68
regexp tag, code coloring 95
regular expressions in EDML files 260
reinstalling 32
removeAttribute() 72
report extensions, definition 21
reports

site 198
stand-alone 198

Reports API
beginReporting() 199
commandButtons() 200
configureSettings() 201
endReporting() 200

processfile() 199
windowDimensions() 201

reset object 68
resizeTo() 68

S
sampleText tag, code coloring 95
scheme block delimiter coloring 97
scheme processing

code coloring 99
escape characters 101
maximum string length 101
precedence 102
wildcard characters 100

scheme tag, code coloring 85
SCRIPTING-LANGUAGE statement 331
search pattern resolution 290
searchPattern tag, code coloring 96
searchPatterns tag 272, 273, 281
select object 68
select() 68
selection, exact versus within 217
selectionChanged() 228
selectParticipant attribute 266
separator tag 117, 149, 177
server behavior

deleting 292
dwscripts functions 258
example 249
extension 247
finding 286
group files 248
instance 247
overview 247
participant files 249
participants 247
runtime code 247
search pattern resolution 290
techniques 286
updating 290

Server Behavior API
analyzeServerBehavior() 253
applyServerBehavior() 254
canApplyServerBehavior() 254
copyServerBehavior() 255
deleteServerBehavior() 255
displayHelp() 256
findServerBehaviors() 256
inspectServerBehavior() 257
pasteServerBehavior() 257
Index 391

server behavior extensions, definition 22
server format extensions, definition 22
Server Formats API

applyFormat() 310
applyFormatDefinition() 310
deleteFormat() 311
formatDynamicDataRef() 311
inspectFormatDefinition() 312

Server Model API
about 327
canRecognizeDocument() 328
getFileExtensions() 328
getLanguageSignatures() 329
getServerExtension() 330
getServerInfo() 330
getServerLanguages() 331
getServerModelDelimiters() 332
getServerModelDisplayName() 332
getServerModelExtDataNameUD4() 331
getServerModelFolderName() 333
getServerSupportsCharset() 333
getVersionArray() 334

server model extensions, definition 22
server models, definition 327
service component, adding 315
setAttribute() 72
setInterval() 68
setMenuText() 159
setTimeout() 68, 229
setupStepsCompleted() 320
share-in-memory 292
shortcut tag 150
shortcutlist tag 150
showIf attribute 118, 182
showIf() 193
shutdown commands 25
Shutdown folder 25
site object, properties of 74
site reports 198
stand-alone reports 198
startup commands 25
Startup folder 25
string object 68
stringEnd tag, code coloring 96
stringEsc tag, code coloring 97
stringStart tag, code coloring 96
submit object 68
subType attribute 264
systemScript property 75

T
tag attribute 119
Tag Chooser 208
Tag Dialog extensions, definition 22
Tag editor API

applyTag() 216
inspectTag() 214
validateTag() 215

Tag editor, creating 214
tag libraries 204
tag object 72
tagGroup tag, code coloring 97
tagName property 72
tagspec tag 35
target browser, code validation 107
text (field) object 68
text node 73
text objects 73
textarea object 68
third-party tags

avoiding rewriting 38
changing appearance of 29
changing color highlighting 38
customizing interpretation of 34
tagspec 35

title tag 265
toolbar command API

canAcceptCommand() 187
getCurrentValue() 188
getDynamicContent() 188
getMenuID() 190
getUpdateFrequency() 191
isCommandChecked() 191
isDOMRequired() 192
receiveArguments() 193
showIf() 193

toolbar extensions, definition 21
toolbar tag 174
toolbarControls() 323
toolbars

button tag 177
checkbutton tag 178
colorpicker tag 181
combobox tag 180
command API 187
controls 171
creating 171
docking 172
dropdown tag 180
editcontrol tag 181
392 Index

file definition 173
how commands work 172
how toolbars work 171
include/ tag 175
item tags 177
itemref/ tag 176
itemtype/ tag 176
menubutton tag 179
radiobutton tag 178
separator tag 177
simple command file 194
tag attributes 182
toolbar tag 173, 174
toolbars.xml file 171

toolbars.xml file 171, 173
tooltip attribute 183
translated attributes

finding in tags 72
individual 340
inspecting 344
multiple 340

translated tags, inspecting 349
translateMarkup() 338
translation tag 282
translations tag 282
translationType attribute 283
translator tag 281
translators

attribute 340
block/ tag 345
debugging 352

tree controls 57, 58, 60
tree controls, manipulating content 62
tree view, XML 68
TREECOLUMN 61
TREENODE 61

U
unescape() 68
uninstalling 32
update attribute 185
updatePattern tag 278, 279
updatePatterns tag 277
URL property 71

V
validateTag() 215
value attribute 185
value tag, code validation 109
variable grid controls 59
VBScript 235
version attribute 268
versioning 74
vline 217

W
W3C 68
whereToSearch attribute 282
width attribute 184
window object 68
window.close() 68
windowDimensions()

in behavior actions 242
in Commands API 138
in menu commands 160
in Objects API 125
in Reports API 201

workspace, Dreamweaver MX 172

X
XML

files 68
structure 261
tree view 68

XML files
CodeHints.xml 78
insertbar.xml 121
menus.xml 146
MMDocumentTypes.xml 43
toolbars.xml 171

XML tag
codehints 79
toolbar 173, 174
Index 393

394 Index

	Contents
	Introduction
	Background
	Installing an extension
	Additional resources for extension writers
	What’s new in Extending Dreamweaver
	Documentation Changes
	Macromedia Press

	Removed Features
	Errata
	Conventions used in this guide

	Overview
	Extending Dreamweaver
	Types of Dreamweaver extensions
	Other ways to extend Dreamweaver

	Configuration folders and extensions
	Multiuser Configuration folders
	Running scripts at startup or shutdown

	Extension APIs
	How Dreamweaver processes JavaScript in extensions
	Displaying Help

	Localizing an extension
	XML String files
	Localizable Strings with Embedded Values

	Working with the Extension Manager
	Customizing Dreamweaver
	About customizing Dreamweaver
	About customizing Dreamweaver in a multiuser environment
	About mm_deleted_files.xml tag syntax
	<deleteditems>
	<item>

	Reinstalling and uninstalling Dreamweaver in a multiuser environment
	Customizing default documents
	Customizing page designs
	Customizing the appearance of dialog boxes
	Changing the default file type
	Customizing the interpretation of third-party tags
	<tagspec>
	How custom tags appear in the Design view
	Avoiding rewriting third-party tags

	Working with browser profiles
	About browser-profile formatting
	Creating and editing a browser profile

	Changing FTP mappings
	Extensible document types in Dreamweaver
	Document type definition file
	Structure of document type definition files

	Dynamic templates
	Document extensions and file types
	Localized strings
	Rules for document type definition files
	Opening a document in Dreamweaver

	User Interfaces for Extensions
	Designing an extension user interface
	Dreamweaver HTML rendering control
	Using custom UI controls in extensions
	Editable select lists
	Database controls
	Adding a database tree control

	Adding a variable grid control
	Adding tree controls
	Creating a tree control
	Manipulating content within a tree control
	A color button control for extensions

	Adding Flash content to Dreamweaver
	A simple Flash dialog box example

	The Dreamweaver Document Object Model
	Which document DOM?
	The Dreamweaver DOM
	Objects, properties, and methods of the Dreamweaver DOM
	Properties and methods of the document object
	Properties and methods of HTML tag objects
	Properties and methods of text objects
	Properties and methods of comment objects
	The dreamweaver and site objects
	Properties of the dreamweaver object
	The site object

	Customizing Code View
	Code Hints
	The CodeHints.xml file
	Code Hints tags
	<codehints>
	<menugroup>
	<description>
	<menu>
	<menuitem>
	<function>

	Code coloring
	Code coloring files
	<scheme>
	<blockEnd>
	<blockStart>
	<brackets>
	<charStart>
	<charEnd>
	<charEsc>
	<commentStart>
	<commentEnd>
	<cssImport/>
	<cssMedia/>
	<cssProperty/>
	<cssSelector/>
	<cssValue/>
	<defaultAttribute>
	<defaultTag>
	<defaultText/>
	<endOfLineComment>
	<entity/>
	<functionKeyword>
	<idChar1>
	<idCharRest>
	<ignoreCase>
	<ignoreMMTParams>
	<ignoreTags>
	<isLocked>
	<keyword>
	<keywords>
	<numbers/>
	<operators>
	<regexp>
	<sampleText>
	<searchPattern>
	<stringStart>
	<stringEnd>
	<stringEsc>
	<tagGroup>

	Scheme block delimiter coloring
	innerText
	customText
	outerTag
	innerTag
	nameTag
	nameTagScript

	Scheme processing
	Wildcard characters
	Escape characters
	Maximum string length
	Scheme precedence

	Editing schemes
	Code coloring examples

	Code validation
	<css-support>
	<property>
	<value>

	Changing default HTML formatting

	Extension APIs
	Insert Bar Objects
	How object files work
	The Insert bar definition file
	Insertbar.xml tag hierarchy
	Insert bar definition tags
	<insertbar>
	<category>
	<menubutton>
	<button />
	<checkbutton />
	<separator />

	Insert bar definition tag attributes
	id="unique id"
	image="image_path”
	canDrag="Boolean”
	showIf="enabler"
	enabled="enabler"
	checked="enabler"
	command="API_function"
	file="file_path"
	tag="editor"
	name="tooltip_text"

	Modifying the Insert bar
	Adding objects to the Insert bar
	Adding objects to the Insert menu

	The Objects API
	canInsertObject()
	displayHelp()
	isDomRequired()
	insertObject()
	objectTag()
	windowDimensions()

	A simple Insert Object example
	Creating a separate JavaScript file
	Adding a dialog box
	Building an Insert bar pop-up menu

	Commands
	How commands work
	Adding commands to the Commands menu
	The Commands API
	canAcceptCommand()
	commandButtons()
	isDomRequired()
	receiveArguments()
	windowDimensions()

	A simple Command example
	Creating the UI
	Writing the JavaScript code
	canAcceptCommand()
	commandButtons()
	changeCase()

	Running the command

	Menus and Menu Commands
	About the menus.xml file
	<menubar>
	<menu>
	<menuitem>
	<separator>
	<shortcutlist>
	<shortcut>

	Changing menus and menu items
	Changing the name of a menu item or menu
	Changing keyboard shortcuts

	Menu Commands
	Modifying the Commands menu
	How menu commands work

	The Menu Commands API
	canAcceptCommand()
	commandButtons()
	getDynamicContent()
	isCommandChecked()
	receiveArguments()
	setMenuText()
	windowDimensions()

	A simple menu command
	Creating the menu items
	Writing the JavaScript code
	canAcceptCommand()
	receiveArguments()
	setMenuText()

	Placing the command file in the Menu folder

	A dynamic menu
	Creating the dynamic menu items
	Writing the JavaScript code
	canAcceptCommand()
	havePreviewTarget()
	receiveArguments()

	Toolbars
	How toolbars work
	How toolbars behave
	How toolbar commands work

	The toolbar definition file
	<toolbar>
	<include/>
	<itemtype/>
	<itemref/>
	<separator/>

	Toolbar item tags
	<button>
	<checkbutton>
	<radiobutton>
	<menubutton>
	<dropdown>
	<combobox>
	<editcontrol>
	<colorpicker>

	Item tag attributes
	id="unique_id"
	showIf="script"
	image="image_path"
	disabledImage="image_path"
	overImage="image_path"
	tooltip="tooltip string"
	label="label string"
	width="number"
	menuID="menu_id"
	colorRect="left top right bottom"
	file="command_file_path"
	domRequired="true" or "false"
	enabled="script"
	checked="script"
	value="script"
	update="update_frequency_list"
	command="script"
	arguments="argument_list"

	The toolbar command API
	canAcceptCommand()
	getCurrentValue()
	getDynamicContent()
	getMenuID()
	getUpdateFrequency()
	isCommandChecked()
	isDOMRequired()
	receiveArguments()
	showIf()

	A simple toolbar command file
	Creating the text box
	Writing the JavaScript code
	canAcceptCommand(): enable the toolbar item
	receiveArguments(): set the title
	getCurrentValue(): get the title

	Placing the files in the Toolbars folder

	Reports
	How site reports work
	How stand-alone reports work
	The Reports API
	processFile()
	beginReporting()
	endReporting()
	commandButtons()
	configureSettings()
	windowDimensions()

	Tag Libraries and Editors
	Tag library file format
	The Tag Chooser
	TagChooser.xml files

	Creating a new tag editor
	Registering the tag in the tag library
	Creating a tag definition (VTML) file
	Creating a tag editor UI
	Adding a tag to Tag Chooser

	Tag editor APIs
	inspectTag()
	validateTag()
	applyTag()

	Property Inspectors
	How Property inspector files work
	The Property inspector API
	canInspectSelection()
	displayHelp()
	inspectSelection()
	A simple Property inspector example

	Floating Panels
	How floating panel files work
	The Floating panel API
	displayHelp()
	documentEdited()
	getDockingSide()
	initialPosition()
	initialTabs()
	isATarget()
	isAvailableInCodeView()
	isResizable()
	selectionChanged()
	About performance

	Script Editor: a floating panel extension
	Creating the floating panels
	Writing the JavaScript code
	selectionChanged(): is a Script marker selected?
	updateScript(): write back changes

	Saving the file in the Floaters folder
	Creating a menu item

	Behaviors
	How Behaviors work
	Inserting multiple functions in the user’s file

	The Behaviors API
	applyBehavior()
	behaviorFunction()
	canAcceptBehavior()
	displayHelp()
	deleteBehavior()
	identifyBehaviorArguments()
	inspectBehavior()
	windowDimensions()
	What to do when an action requires a return value
	A simple behavior example

	Server Behaviors
	Dreamweaver architecture
	Server behavior folders and files
	Extension Data Markup Language
	Group files
	Participant files
	The script file

	Hello World example

	How the Server Behavior API functions are called
	The Server Behavior API
	analyzeServerBehavior()
	applyServerBehavior()
	canApplyServerBehavior()
	copyServerBehavior()
	deleteServerBehavior()
	displayHelp()
	findServerBehaviors()
	inspectServerBehavior()
	pasteServerBehavior()

	Server behavior implementation functions
	dwscripts.findSBs()
	dwscripts.applySB()
	dwscripts.deleteSB()

	Editing EDML files
	Regular expressions
	Notes about EDML structure

	Group EDML file tags
	<group>
	<group> attributes
	version
	serverBehavior
	dataSource
	subType

	<title>
	<groupParticipants>
	<groupParticipants> attributes
	selectParticipant

	<groupParticipant>
	<groupParticipant> attributes
	name
	partType

	Participant EDML files
	<participant>
	<participant> attributes
	version

	<quickSearch>
	<insertText>
	<insertText> attributes
	location
	nodeParamName

	<searchPatterns>
	<searchPatterns> attributes
	whereToSearch

	<searchPattern>
	<searchPattern> attributes
	paramNames
	limitSearch
	isOptional

	<updatePatterns>
	<updatePattern>
	<updatePattern> attributes
	paramName

	<delete>
	<delete> attributes
	deleteType

	<translator>
	<searchPatterns>
	<translations>
	<translation>
	<translation> attributes
	whereToSearch
	limitSearch
	translationType

	<openTag>
	<attributes>
	<attribute>
	<display>
	<closeTag>

	Server behavior techniques
	Finding server behaviors
	Search pattern resolution
	Updating server behaviors
	Deleting server behaviors
	Avoiding conflicts with share-in-memory JavaScript files

	Data Sources
	How data sources work
	The Data Sources API
	addDynamicSource()
	deleteDynamicSource()
	displayHelp()
	editDynamicSource()
	findDynamicSources()
	generateDynamicDataRef()
	generateDynamicSourceBindings()
	inspectDynamicDataRef()

	A simple data source example
	Creating the data source definition file
	Creating the EDML file
	Creating the JavaScript file that implements the Data Sources API functions
	Creating the supporting command files for user input
	Using the new data source

	Server Formats
	How data formatting works
	The Formats.xml file
	The Edit Format List Plus (+) menu

	When the data formatting functions are called
	The Server Formats API
	applyFormat()
	applyFormatDefinition()
	deleteFormat()
	formatDynamicDataRef()
	inspectFormatDefinition()

	Components
	How to customize the Component panel
	Component panel files
	Adding a service component
	Populating the tree control

	Component panel API functions
	getComponentChildren()
	getContextMenuId()
	getCodeViewDropCode()
	getSetupSteps()
	setupStepsCompleted()
	handleDesignViewDrop()
	handleDoubleClick()
	toolbarControls()

	Server Models
	How customizing server models works
	The Server Model API functions
	canRecognizeDocument()
	getFileExtensions()
	getLanguageSignatures()
	getServerExtension()
	getServerInfo()
	getServerLanguages()
	getServerModelExtDataNameUD4()
	getServerModelDelimiters()
	getServerModelDisplayName()
	getServerModelFolderName()
	getServerSupportsCharset()
	getVersionArray()

	Data Translators
	How data translators work
	The Data Translator API
	getTranslatorInfo()
	translateMarkup()
	liveDataTranslateMarkup()

	Determining what kind of translator to use
	Adding a translated attribute to a tag
	Translating more than one attribute at a time
	A simple attribute translator example

	Inspecting translated attributes
	Locking translated tags or blocks of code
	A simple block/tag translator example
	Creating Property inspectors for locked content

	Finding bugs in your translator

	C-Level Extensibility
	How integrating C functions works
	C-level extensibility and the JavaScript interpreter
	Data types
	typedef struct JSContext JSContext
	typedef struct JSObject JSObject
	typedef struct jsval jsval
	typedef enum { JS_FALSE = 0, JS_TRUE = 1 } JSBool

	The C-level API
	typedef JSBool (*JSNative)(JSContext *cx, JSObject *obj, unsigned int argc, jsval *argv, jsval *rval)
	JSBool JS_DefineFunction()
	char *JS_ValueToString()
	JSBool JS_ValueToInteger()
	JSBool JS_ValueToDouble()
	JSBool JS_ValueToBoolean()
	JSBool JS_ValueToObject()
	JSBool JS_StringToValue()
	JSBool JS_DoubleToValue()
	JSVal JS_BooleanToValue()
	JSVal JS_IntegerToValue()
	JSVal JS_ObjectToValue()
	char *JS_ObjectType()
	JSObject *JS_NewArrayObject()
	long JS_GetArrayLength()
	JSBool JS_GetElement()
	JSBool JS_SetElement()
	JSBool JS_ExecuteScript()
	JSBool JS_ReportError()

	File Access and Multiuser Configuration API
	JS_Object MM_GetConfigFolderList()
	JSBool MM_ConfigFileExists()
	int MM_OpenConfigFile()
	JSBool MM_GetConfigFileAttributes()
	JSBool MM_SetConfigFileAttributes()
	JSBool MM_CreateConfigFolder()
	JSBool MM_RemoveConfigFolder()
	JSBool MM_DeleteConfigFile()

	Calling a C function from JavaScript

	Appendix
	The Shared Folder
	The Shared folder contents
	The Common folder
	The MM folder
	The Scripts folder

	Other folders

	Using the Shared folder

	Index

